WO2023148806A1 - 情報処理プログラム、情報処理方法、および情報処理装置 - Google Patents

情報処理プログラム、情報処理方法、および情報処理装置 Download PDF

Info

Publication number
WO2023148806A1
WO2023148806A1 PCT/JP2022/003792 JP2022003792W WO2023148806A1 WO 2023148806 A1 WO2023148806 A1 WO 2023148806A1 JP 2022003792 W JP2022003792 W JP 2022003792W WO 2023148806 A1 WO2023148806 A1 WO 2023148806A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
quantum
rotation angle
rotation
quantum circuit
Prior art date
Application number
PCT/JP2022/003792
Other languages
English (en)
French (fr)
Inventor
幹雄 森田
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2022/003792 priority Critical patent/WO2023148806A1/ja
Priority to JP2023578211A priority patent/JPWO2023148806A1/ja
Publication of WO2023148806A1 publication Critical patent/WO2023148806A1/ja
Priority to US18/764,751 priority patent/US20240362516A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/60Quantum algorithms, e.g. based on quantum optimisation, quantum Fourier or Hadamard transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/20Models of quantum computing, e.g. quantum circuits or universal quantum computers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control

Definitions

  • the present invention relates to an information processing program, an information processing method, and an information processing apparatus.
  • NISQ Noisy Intermediate-Scale Quantum computer
  • NISQ is a medium-sized quantum computer without error correction.
  • One of the uses of NISQ is calculation by the variational quantum eigenvalue method (VQE: Variational Quantum Eigensolver).
  • VQE is a variational algorithm for finding the ground state of a quantum many-body system.
  • VQE can be used, for example, to perform quantum chemical calculations in NISQ.
  • Quantum chemical calculations are calculations for obtaining molecular state and physical property information by solving the Schrödinger equation.
  • various researches are underway toward practical application of calculations using VQE.
  • VQE As a technology related to VQE, for example, a method to improve the efficiency of VQE has been proposed. Techniques have also been proposed for improving the efficiency of calculations for finding the excited state of the Hamiltonian.
  • the time required for gate processing is several ns to several hundred ns, and the calculation time increases as the circuit depth increases.
  • one quantum computation (initialization of qubits, gate operation, measurement) is required to be completed within the duration of the qubit (coherence time). If the circuit depth is too large, the calculation cannot be completed within the coherence time, and the calculation result cannot be obtained.
  • quantum computation an error occurs stochastically for one gate operation. If the circuit depth is large (the number of gate operations is large), errors accumulate in the quantum computation process, and the effect of the errors on the computation results becomes large.
  • the present invention aims at reducing the circuit depth of quantum circuits.
  • One proposal provides an information processing program that causes a computer to execute the following processes.
  • the computer uses a variational quantum eigenvalue method, including a first quantum circuit for creating a wave function representing the electron orbit of a molecule to be calculated, and a second quantum circuit for converting the basis of the wave function.
  • a quantum circuit for performing quantum chemical calculations.
  • the computer modifies a first rotation angle applied to the rotation operation within the first quantum circuit according to a second rotation angle applied to the partial circuit representing the rotation operation within the second quantum circuit.
  • the computer then removes the subcircuit from the quantum circuit.
  • the circuit depth of the quantum circuit can be reduced.
  • FIG. 1 is a diagram showing an example of classical computer hardware
  • FIG. 1 is a block diagram showing an example of the functionality of a classical computer for quantum chemistry calculations with VQE
  • FIG. 2 is a diagram showing an example of a VQE quantum circuit
  • FIG. 2 is a diagram showing an example of an Ansatz circuit by Jastrow factor Ansatz
  • It is a figure which shows an example of a basis conversion circuit.
  • It is a figure which shows an example of the partial circuit of the 1st two-electron excitation operation.
  • FIG. 4 is a flow chart showing an example of a procedure for quantum chemical calculation by VQE; It is a figure which shows an example of the calculation method of rotation angle (alpha).
  • FIG. 4 is a diagram showing an example of a method of calculating a parameter ⁇ ';
  • FIG. 11 is a diagram showing an example of a method of calculating a rotation angle ⁇ ′ after integration;
  • FIG. 5 is a diagram showing an example of optimization of the rotation angle ⁇ ';
  • FIG. 10 is a diagram showing a first example of rotation integration;
  • 10 is a diagram showing a second example of rotation integration
  • 10 is a flowchart illustrating an example of a procedure for quantum circuit generation processing
  • FIG. 12 illustrates an example of a connection management table
  • FIG. 4 is a flow chart showing an example of a procedure of base energy calculation processing
  • It is a figure which shows an example of the quantum chemical calculation of a hydrogen molecule.
  • It is a figure which shows an example of the quantum circuit for calculating
  • requiring the Hamiltonian of the 2nd term of a hydrogen molecule It is a figure which shows an example of the comparison result of the circuit depth.
  • the first embodiment is an information processing method for reducing the circuit depth of a quantum circuit for performing quantum chemical calculations by VQE.
  • FIG. 1 is a diagram showing an example of an information processing method according to the first embodiment.
  • FIG. 1 shows an information processing apparatus 10 for carrying out the information processing method according to the first embodiment.
  • the information processing apparatus 10 can implement the information processing method according to the first embodiment by executing an information processing program in which a predetermined processing procedure is described, for example.
  • the information processing device 10 has a storage unit 11 and a processing unit 12 .
  • the storage unit 11 is, for example, a memory or a storage device that the information processing device 10 has.
  • the processing unit 12 is, for example, a processor or an arithmetic circuit included in the information processing device 10 .
  • the storage unit 11 stores information on molecules to be calculated, the quantum circuit 1, and the like.
  • the processing unit 12 uses a quantum computer to generate a quantum circuit 1 for performing quantum chemical calculations by VQE. For example, the processing unit 12 acquires the quantum circuit 1 for performing quantum chemical calculations by VQE. If the quantum circuit 1 is already stored in the storage unit 11 , the processing unit 12 acquires the quantum circuit 1 from the storage unit 11 .
  • the processing unit 12 may also generate the quantum circuit 1 based on information about molecules to be calculated.
  • the quantum circuit 1 includes a first quantum circuit 2 for creating a wave function that expresses the electron orbit of a molecule to be calculated, and a second quantum circuit 3 for converting the basis of the wave function.
  • the first quantum circuit 2 includes, for example, a plurality of partial circuits 2a, 2b, . . . with different applied rotation angles.
  • the first rotation angle applied to the first quantum circuit 2 is, for example, the rotation angle applied to the rotation operation of the Givens rotation.
  • the second quantum circuit 3 also includes a plurality of partial circuits 3a, 3b, . . . that indicate rotation operations.
  • the processing unit 12 converts the first rotation angles ⁇ 1 , ⁇ 2 , . is changed according to the second rotation angles ⁇ 1 , ⁇ 2 , .
  • the first rotation angles ⁇ 1 , ⁇ 2 , . . . is changed to
  • the processing unit 12 deletes the partial circuit to be deleted from the quantum circuit 1 to generate the quantum circuit 1a.
  • the quantum circuit 1a is generated by deleting the partial circuit 3a from the quantum circuit 1.
  • FIG. The processing unit 12 stores the generated quantum circuit 1a in the storage unit 11, for example.
  • the partial circuit 3a that is executed first in the second quantum circuit 3 is integrated into the first quantum circuit 2.
  • the partial circuit 3a is deleted from the integrated quantum circuit 1a.
  • the circuit depth of the quantum circuit 1a is reduced.
  • the processing unit 12 can target a plurality of partial circuits among the partial circuits 3a, 3b, . . . included in the second quantum circuit 3 to be deleted. In that case, the processing unit 12 selects, for example, a plurality of partial circuits 3a, 3b, . Each time a partial circuit is selected, the processing unit 12 changes the first rotation angle according to the second rotation angle applied to the selected partial circuit, and deletes the selected partial circuit. Thereby, the circuit depth of the quantum circuit 1a after integration can be further reduced.
  • the processing unit 12 calculates the changed first rotation angles ⁇ 1 ', ⁇ 2 ', . can be calculated.
  • the third rotation angle indirectly expresses the electronic transition intensity, which indicates the ease of transition between electronic states, by using an angle.
  • the processing unit 12 inputs the value of the first rotation angle before change to the inverse function of the functional expression for obtaining the second rotation angle from the third rotation angle, and obtains the value of the inverse function at that time.
  • the processing unit 12 subtracts the value of the obtained inverse function from the value of the second rotation angle.
  • the processing unit 12 inputs the result of the subtraction to the above functional expression to obtain the value of the functional expression.
  • the processing unit 12 determines the finally obtained value of the functional expression as the changed first rotation angle.
  • the second embodiment is a computer system that uses a quantum computer to perform quantum chemical calculations by VQE.
  • FIG. 2 is a diagram showing an example of the system configuration of the second embodiment.
  • a classical computer 100 and a quantum computer 200 are connected.
  • the classical computer 100 is a von Neumann computer, and performs processes such as generation of quantum circuits and optimization of parameters used for calculation of the quantum circuits.
  • the quantum computer 200 is a computer that performs quantum chemical calculations by performing quantum gate-based operations on quantum bits.
  • the quantum computer 200 performs quantum chemical calculations of the VQE algorithm according to the quantum circuit and parameters generated by the classical computer 100 to calculate expected energy values.
  • FIG. 3 is a diagram showing an example of the hardware of a classical computer.
  • a classical computer 100 is entirely controlled by a processor 101 .
  • a memory 102 and a plurality of peripheral devices are connected to the processor 101 via a bus 109 .
  • Processor 101 may be a multiprocessor.
  • the processor 101 is, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or a DSP (Digital Signal Processor).
  • processor 101 executing a program may be realized by an electronic circuit such as ASIC (Application Specific Integrated Circuit) or PLD (Programmable Logic Device).
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • the memory 102 is used as the main storage device of the classical computer 100.
  • the memory 102 temporarily stores at least part of an OS (Operating System) program and application programs to be executed by the processor 101 .
  • the memory 102 stores various data used for processing by the processor 101 .
  • a volatile semiconductor memory device such as RAM (Random Access Memory) is used.
  • Peripheral devices connected to the bus 109 include a storage device 103 , a GPU (Graphics Processing Unit) 104 , an input interface 105 , an optical drive device 106 , a device connection interface 107 and a network interface 108 .
  • a storage device 103 a storage device 103 , a GPU (Graphics Processing Unit) 104 , an input interface 105 , an optical drive device 106 , a device connection interface 107 and a network interface 108 .
  • GPU Graphics Processing Unit
  • the storage device 103 electrically or magnetically writes data to and reads data from a built-in recording medium.
  • the storage device 103 is used as an auxiliary storage device for the classical computer 100 .
  • the storage device 103 stores an OS program, application programs, and various data.
  • an HDD Hard Disk Drive
  • an SSD Solid State Drive
  • the GPU 104 is an arithmetic unit that performs image processing, and is also called a graphics controller.
  • a monitor 21 is connected to the GPU 104 .
  • the GPU 104 displays an image on the screen of the monitor 21 according to instructions from the processor 101 .
  • Examples of the monitor 21 include a display device using an organic EL (Electro Luminescence), a liquid crystal display device, and the like.
  • a keyboard 22 and a mouse 23 are connected to the input interface 105 .
  • the input interface 105 transmits signals sent from the keyboard 22 and mouse 23 to the processor 101 .
  • the mouse 23 is an example of a pointing device, and other pointing devices can also be used.
  • Other pointing devices include touch panels, tablets, touchpads, trackballs, and the like.
  • the optical drive device 106 reads data recorded on the optical disc 24 or writes data to the optical disc 24 using laser light or the like.
  • the optical disc 24 is a portable recording medium on which data is recorded so as to be readable by light reflection.
  • the optical disc 24 includes DVD (Digital Versatile Disc), DVD-RAM, CD-ROM (Compact Disc Read Only Memory), CD-R (Recordable)/RW (ReWritable), and the like.
  • the device connection interface 107 is a communication interface for connecting peripheral devices to the classical computer 100 .
  • the device connection interface 107 can be connected to the memory device 25 and the memory reader/writer 26 .
  • the memory device 25 is a recording medium equipped with a communication function with the device connection interface 107 .
  • the memory reader/writer 26 is a device that writes data to the memory card 27 or reads data from the memory card 27 .
  • the memory card 27 is a card-type recording medium.
  • the network interface 108 is connected to the quantum computer 200.
  • the network interface 108 transmits and receives data to and from the quantum computer 200 .
  • the classical computer 100 can implement the processing functions of the second embodiment with the above hardware.
  • the apparatus shown in the first embodiment can also be realized by hardware similar to the classical computer 100 shown in FIG.
  • the classical computer 100 implements the processing functions of the second embodiment, for example, by executing a program recorded on a computer-readable recording medium.
  • a program describing the processing content to be executed by the classical computer 100 can be recorded in various recording media.
  • a program to be executed by the classical computer 100 can be stored in the storage device 103 .
  • the processor 101 loads at least part of the program in the storage device 103 into the memory 102 and executes the program.
  • the program to be executed by the classical computer 100 can also be recorded in a portable recording medium such as the optical disk 24, memory device 25, memory card 27, or the like.
  • a program stored in a portable recording medium can be executed after being installed in the storage device 103 under the control of the processor 101, for example.
  • the processor 101 can read and execute the program directly from the portable recording medium.
  • the classical computer 100 can perform quantum chemical calculation by VQE in cooperation with the quantum computer 200 by the hardware shown in FIG.
  • FIG. 4 is a block diagram showing an example of the functionality of a classical computer for quantum chemical calculations by VQE.
  • the classical computer 100 has a quantum circuit generator 110 , a quantum computation manager 120 and an optimization computation unit 130 .
  • the quantum circuit generation unit 110 generates a quantum circuit for calculating the energy of quantum many-body systems such as molecules. For example, the quantum circuit generation unit 110 generates a quantum circuit using the VQE algorithm and performs processing to reduce the circuit depth of the quantum circuit. The quantum circuit generation unit 110 transmits the quantum circuit with reduced circuit depth to the quantum computation management unit 120 .
  • the quantum computation management unit 120 instructs the quantum computer 200 to perform energy computation based on the generated quantum circuit. For example, the quantum computation manager 120 sets a plurality of parameters ⁇ related to gate operations in quantum gates in the quantum circuit. Quantum computation management unit 120 sets initial values for the values of a plurality of parameters ⁇ before the first quantum computation. The quantum computation manager 120 acquires from the quantum computer 200 energy computation results based on a quantum circuit parameterized by a plurality of parameters ⁇ . After acquiring the energy calculation result, the quantum computation management unit 120 determines whether or not the energy has converged. If the energy has not converged, the quantum computation manager 120 instructs the optimization calculator 130 to optimize the parameters.
  • the optimization calculation unit 130 updates the values of all or part of the multiple parameters ⁇ in the direction of decreasing the energy value for each quantum calculation. After completing the optimization calculation, the optimization calculation unit 130 notifies the quantum calculation management unit 120 of the updated values of the plurality of parameters ⁇ .
  • each element in the classical computer 100 shown in FIG. 4 can be realized, for example, by causing the computer to execute a program module corresponding to the element.
  • a method for calculating the ground energy of a molecule by VQE will be described.
  • the energy E obtained in the molecular basis energy calculation by VQE is represented by the following equation (1).
  • indicates the quantum state.
  • H indicates the Hamiltonian.
  • the Hamiltonian is a function of the intermolecular distance R.
  • is the rotation angle used as an optimization variable.
  • the ground energy is the lowest energy. Therefore, when the equation (1) is repeatedly calculated while varying the rotation angle ⁇ , the lowest energy among the energies obtained in multiple calculations becomes the base energy E 0 .
  • the formula for the ground energy E 0 is:
  • FIG. 5 is a diagram illustrating an example of a VQE quantum circuit.
  • a quantum circuit 30 for computing the i-th Hamiltonian H i of VQE includes an Ansatz circuit 31 , a basis change circuit 32 and a Z-axis measurement 33 .
  • the Ansatz circuit 31 is a quantum circuit part for creating the wave function
  • the wave function represented by the Ansatz circuit 31 is a superposition state (
  • ⁇ ( ⁇ )> a
  • the basis conversion circuit 32 is a quantum circuit part that converts the basis in order to cause the generated wave function
  • the matrix M corresponding to the basis conversion circuit 32 By causing the matrix M corresponding to the basis conversion circuit 32 to act on the Hamiltonian H i converted into a diagonal matrix, the Z-axis measurement of the Hamiltonian H i becomes possible.
  • Acting on a matrix M is expressed by multiplying the Hermitian conjugate (M ⁇ ) of the matrix M from the left of the operand and multiplying the matrix M from the right of the operand.
  • the quantum circuit 30 for quantum chemical calculation by VQE is provided with the Ansatz circuit 31 in the front stage and the basis conversion circuit 32 in the rear stage. Then, after manipulation by the basis conversion circuit 32, the quantum state is measured by the Z-axis measurement 33.
  • Jastrow factor ansatz can express chemical one-electron excitation and two-electron excitation. Also, Jastrow factor anthesis has the advantage that the circuit depth can be shallower than other anthesis that can express chemical one-electron excitation and two-electron excitation.
  • FIG. 6 is a diagram showing an example of an Ansatz circuit according to Jastrow factor ansatz.
  • Ansatz circuit 31 operates four quantum gates. Let the quantum gates to be operated be q0 , q1 , q2 , and q3 .
  • the Ansatz circuit 31 of the two-electron excitation representation by Jastrow factor Ansatz is divided into three partial circuits 31a to 31c.
  • the partial circuits 31a and 31c both exhibit single-electron excitation due to Givens rotation.
  • Subcircuit 31b exhibits phase rotation.
  • Subcircuit 31a and subcircuit 31c each include two Givens rotations.
  • the Givens rotations G 1 ( ⁇ 1 ), G 2 ( ⁇ 2 ), G 3 ( ⁇ 3 ) contain two ⁇ iswap gates and a rotation gate about the Z axis.
  • the Givens rotation G 4 ( ⁇ 4 ) contains two ⁇ iswap gates.
  • the partial circuit 31a showing one-electron excitation shows the Givens rotation with respect to the initial state
  • phase rotation P( ⁇ 5 ) be the phase rotation indicated by the partial circuit 31b. If the phase rotation P( ⁇ 5 ) is expressed by an equation, it becomes "a
  • each rotation gate is set to a rotation angle according to the value of the optimization variable applied.
  • the rotation angle of the rotation gate with respect to qubit q 0 in the Givens rotation G 1 ( ⁇ 1 ) is "- ⁇ 1 " and is denoted as "R z (- ⁇ 1 )".
  • the rotation angle of the rotation gate with respect to qubit q 1 in the Givens rotation G 1 ( ⁇ 1 ) is "2 ⁇ 2 + ⁇ ” and is represented as "R z (2 ⁇ 2 + ⁇ )”.
  • the rotation angle of the rotation gate with respect to qubit q 2 in the Givens rotation G 1 ( ⁇ 1 ) is " ⁇ 1 + ⁇ ” and is represented as "R z ( ⁇ 1 + ⁇ )".
  • the rotation angle of the rotation gate for qubit q 3 in the Givens rotation G 1 ( ⁇ 1 ) is "- ⁇ 2 " and is denoted as "R z (- ⁇ 2 )”.
  • the rotation angle of the rotation gate for each of the four qubits in the Givens rotation G 2 ( ⁇ 2 ) is '0' and is denoted as 'R z (0)'.
  • the rotation angle of the first rotation gate for qubit q 2 at phase rotation P( ⁇ 5 ) is "0" and the rotation angle of the second rotation gate is "- ⁇ /2".
  • These rotation gates are denoted as “R z (0)” and “R z (- ⁇ /2)", respectively.
  • the rotation angle of the first rotation gate for qubit q 3 at phase rotation P( ⁇ 5 ) is “0”, the rotation angle of the second rotation gate is “ ⁇ /2”, and 3 The rotation angle of the first rotation gate is " ⁇ /2”.
  • the rotation angle of the rotation gate with respect to qubit q 0 in the Givens rotation G 3 ( ⁇ 3 ) is “ ⁇ 3 ” and is denoted as “R z ( ⁇ 3 )”.
  • the rotation angle of the rotation gate for qubit q 1 in the Givens rotation G 3 ( ⁇ 3 ) is "- ⁇ 4 " and is denoted as "R z (- ⁇ 4 )”.
  • the rotation angle of the rotation gate with respect to qubit q 2 in the Givens rotation G 3 ( ⁇ 3 ) is " ⁇ 3 + ⁇ ” and is represented as "R z ( ⁇ 3 + ⁇ )".
  • the rotation angle of the rotation gate with respect to qubit q 3 in the Givens rotation G 3 ( ⁇ 3 ) is " ⁇ 4 + ⁇ ” and is represented as "R z ( ⁇ 4 + ⁇ )”.
  • the circuit depth of the Ansatz circuit 31 is O(N) (N is the number of qubits) in order notation.
  • the circuit depth of the basis conversion circuit 32 is O(N) when commuting pauli grouping is used, and is N when basis rotation is used.
  • various circuits have been considered for reducing the circuit depth of quantum circuits for quantum chemical calculations using VQE, but there is a demand for further reduction of the circuit depth.
  • FIG. 7 is a diagram showing an example of a basis conversion circuit.
  • the basis conversion circuit 32 includes, for example, three partial circuits 32a-32c.
  • the partial circuit 32a is a circuit (two-electron excitation circuit) indicating the first two-electron excitation operation.
  • the partial circuit 32b is a circuit (one-electron rotation circuit) indicating a one-electron rotation operation.
  • the partial circuit 32c is a circuit (two-electron excitation circuit) indicating the second two-electron excitation operation.
  • the partial circuits 32a to 32c of the basis conversion circuit 32 are circuits as shown in FIGS. 8 to 10 when performing quantum chemical calculations of hydrogen molecules, for example.
  • FIG. 8 is a diagram showing an example of a partial circuit for the first two-electron excitation operation.
  • a partial circuit 32a shown in FIG. 8 is composed of a Hadamard gate, a CNOT gate, a CZ gate, and a rotation gate about the Y axis.
  • FIG. 9 is an example of a partial circuit showing a one-electron rotation operation.
  • a partial circuit 32b shown in FIG. 9 is composed of a ⁇ iswap gate and a rotation gate around the Z-axis.
  • FIG. 8 is a diagram showing an example of a partial circuit for the first two-electron excitation operation.
  • a partial circuit 32a shown in FIG. 8 is composed of a Hadamard gate, a CNOT gate, a CZ gate, and a rotation gate about the Y axis.
  • a partial circuit 32c shown in FIG. 10 is composed of a Hadamard gate, a CNOT gate, a CZ gate, and a rotation gate around the Y axis.
  • the quantum circuit generator 110 integrates the partial circuits 32a to 32c shown in FIGS. 7 to 10 into the Ansatz circuit 31 in order from the partial circuit to be executed first.
  • the quantum circuit generation unit 110 generates a quantum circuit that integrates an Ansatz circuit 31 parameterized by an optimization variable ⁇ and a basis conversion circuit 32 that performs a rotation operation at a specific rotation angle ⁇ ( ⁇ is a real number).
  • f(x) is a function expression for determining the optimization variable ⁇ from the rotation angle, where x is the rotation angle corresponding to the two-electron excitation of the Jastrow factor anthesis.
  • the rotation angle corresponding to the two-electron excitation indirectly expresses the easiness of electron transition between states (called electron transition strength or electron excitation strength).
  • electron transition strength or electron excitation strength For example, the state before excitation is
  • ⁇ > be the state created by the rotation angle ⁇ corresponding to the two-electron excitation. Then, "
  • ⁇ > cos ⁇
  • the quantum circuit 30 as shown in FIGS. 5 to 10 is the quantum circuit before the circuit depth reduction process is applied. Generating a quantum circuit with a reduced circuit depth and calculating a base value of energy based on the quantum circuit will be described in detail below.
  • FIG. 11 is a flow chart showing an example of a procedure for quantum chemical calculation by VQE. The processing shown in FIG. 11 will be described below along with the step numbers.
  • the quantum circuit generator 110 defines a computation target and a Hamiltonian. For example, the calculation target is designated by the user. For example, if the calculation target is a hydrogen molecule, the quantum circuit generation unit 110 acquires a predefined Hamiltonian of the hydrogen molecule.
  • the quantum circuit generator 110 calculates the rotation angle ⁇ and the parameter ⁇ '.
  • the quantum circuit generation unit 110 generates a quantum circuit whose circuit depth is reduced by integrating a plurality of partial circuits representing rotation operations. Details of the quantum circuit generation process will be described later (see FIG. 18).
  • Step S104 The quantum computation management unit 120 controls the quantum computer 200 to compute the basis energy.
  • VQE is used to calculate the basis energy, and the optimization calculation unit 130 optimizes the optimization variable ⁇ . Details of the base energy calculation process will be described later (see FIG. 20).
  • Step S105 The quantum computation management unit 120 outputs the finally found optimal solution (the state where the energy is the minimum value). Quantum chemical calculation by VQE is performed in such a procedure. Each process of the quantum chemical calculation will be described in detail below.
  • FIG. 12 is a diagram showing an example of a method of calculating the rotation angle ⁇ .
  • H i ' be a matrix obtained by diagonalizing the divided Hamiltonian H i .
  • a basis conversion circuit (unitary matrix) M for diagonalizing the Hamiltonian H i can be represented by a set of unitary rotation operations.
  • Each of the plurality of unitary rotation operations is represented by a subcircuit 41, 42, . . . , 4n.
  • FIG. 13 is a diagram showing an example of a method of calculating the parameter ⁇ '.
  • optimization variables ⁇ ⁇ 1 , ⁇ 2 , . . . ⁇ to be applied to the partial circuits 51, 52, .
  • the number (m) of the partial circuits 51, 52, . . . The number (n) of the partial circuits 41, 42, . . . That is, the circuit depth is shortened.
  • FIG. 14 is a diagram showing an example of a method of calculating the rotation angle ⁇ ' after integration.
  • a graph 60 shown in FIG. 14 shows the relationship between the rotation angle x (representing electron transition intensity) corresponding to two-electron excitation and the rotation angle ⁇ applied to the Jastrow factor anthesis.
  • the horizontal axis of the graph 60 is the rotation angle x corresponding to the two-electron excitation, and the vertical axis is the rotation angle ⁇ applied to the Jastrow factor anthesis.
  • the rotation angle applied to the Jastrow factor anthesis is determined according to the electron transition intensity in the molecule to be calculated.
  • the electron transition intensity is represented by the rotation angle x corresponding to the two-electron excitation
  • the integrated rotation angle ⁇ ' is calculated based on the rotation angle ⁇ and the rotation angle ⁇ . That is, the quantum circuit is parameterized using the rotation angle ⁇ '.
  • the rotation angle ⁇ is repeatedly updated by optimization calculations.
  • the rotation angle ⁇ has a different value for each quantum circuit. Therefore, the rotation angle .theta.' is calculated for each quantum circuit used in the quantum chemical calculation by VQE each time the rotation angle .theta. is updated.
  • FIG. 15 is a diagram showing an example of optimization of the rotation angle ⁇ '.
  • a plurality of divided Hamiltonians H 1 , H 2 , . . . , H N
  • a plurality of calculated Hamiltonians are added by an adder 210 to obtain an expected value of the energy of the entire system.
  • the optimization calculator 130 optimizes the rotation angle ⁇ based on the expected energy value. That is, the optimization calculation unit 130 updates the rotation angles ⁇ 1 , ⁇ 2 , .
  • the rotation angle ⁇ when the rotation angle ⁇ is updated by the optimization process, the rotation angle ⁇ ′ corresponding to the value of the updated rotation angle ⁇ of the quantum circuit for each of the plurality of quantum circuits 201, 202, .
  • the rotation angle ⁇ ' of the quantum circuit 201 is "f( ⁇ , ⁇ 1 )".
  • FIG. 16 is a diagram showing a first example of rotation integration. It is assumed that the quantum circuit 61 before integration shown in FIG. 16 represents, for example, electron transition from the first quantum bit of four quantum bits to the third quantum bit.
  • the second rotation operation is performed on the same quantum bit as the first rotation operation.
  • the two rotation operations can be integrated by adding the rotation angles of the two rotation operations. For example, the rotation angle of the first rotation operation of the quantum circuit 61 is ⁇ 1 , and the rotation angle of the second rotation operation is ⁇ 2 .
  • these two rotation operations are integrated, they can be integrated into a quantum circuit 62 representing a rotation operation resulting in a rotation of ⁇ 1 + ⁇ 2 .
  • FIG. 17 is a diagram showing a second example of rotation integration. It is assumed that the quantum circuit 63 before integration shown in FIG. 17 represents, for example, electron transition from the first quantum bit of four quantum bits to the third quantum bit.
  • the third rotation operation is performed on the same quantum bit as the first rotation operation.
  • the second rotation operation of quantum circuit 63 is a rotation operation on a quantum bit different from the first and third rotation operations.
  • the three rotation operations can be integrated.
  • the rotation angle of the first rotation operation of the quantum circuit 63 is ⁇ 1
  • the rotation angle of the third rotation operation is ⁇ 3 .
  • FIG. 18 is a flowchart illustrating an example of the procedure of quantum circuit generation processing. The processing shown in FIG. 18 will be described below along with the step numbers.
  • the quantum circuit generator 110 generates an Ansatz circuit of Jastrow factor ansatz.
  • the quantum circuit generator 110 generates a basis conversion circuit.
  • the quantum circuit generator 110 reads the connection flag.
  • the combination flag is a flag indicating whether or not to perform calculation for each combination of qubits.
  • the connection flag is indicated, for example, in the connection management table.
  • FIG. 19 is a diagram showing an example of a join management table.
  • the combination management table 111 registers a record for each combination of four qubits among qubits that can be used in the quantum computer 200 .
  • Each record contains the first excitation source (excitation source 1), the second excitation source (excitation source 2), the first excitation destination (excitation destination) in association with the pair number of the generated pair. 1), the number of the quantum bit corresponding to each of the second excitation destination (excitation destination 2) is set. Further, each record is set with a connection flag indicating whether or not to perform quantum chemical calculation by VQE for the set combination of quantum bit numbers. For example, if the connection flag is "Yes", it indicates that the calculation is to be performed, and if the connection flag is "No", it indicates that the calculation is not to be performed.
  • the connection management table 111 is stored in the memory 102 or the storage device 103, for example.
  • the quantum circuit generator 110 can read the connection flag from the connection management table 111 .
  • values are set when the number of qubits is 10.
  • qubits 0 to 3 are used as excitation sources.
  • the 4th to 9th qubits are used as excitation destinations.
  • the quantum circuit generator 110 selects a set of four quantum bits. For example, the quantum circuit generation unit 110 selects a set of quantum bits set in the record in order from the top record in the connection management table 111 .
  • the quantum circuit generation unit 110 integrates the first two-electron excitation circuit in the basis conversion circuit into the Ansatz circuit for the quantum circuit for quantum chemical calculation by VQE corresponding to the selected set of qubits. .
  • the quantum circuit generation unit 110 integrates the one-electron rotation circuit in the basis conversion circuit into the Ansatz circuit for the quantum circuit of the quantum chemical calculation by VQE corresponding to the selected set of quantum bits.
  • the quantum circuit generation unit 110 integrates the second two-electron excitation circuit in the basis conversion circuit into the Ansatz circuit for the quantum circuit for quantum chemical calculation by VQE corresponding to the selected set of qubits. .
  • the second two-electron excitation circuit cannot be integrated into the Ansatz circuit.
  • a second two-electron excitation circuit can be integrated if the molecular orbitals have symmetry. If the integration is not possible, the integration processing of the second two-electron excitation circuit is skipped.
  • Step S208 The quantum circuit generation unit 110 determines whether or not all pairs of quantum bits have been selected. If all pairs have been selected, quantum circuit generation section 110 ends the quantum circuit generation process. If there is an unselected qubit pair, quantum circuit generator 110 advances the process to step S204.
  • FIG. 20 is a flowchart illustrating an example of a procedure for base energy calculation processing. The processing shown in FIG. 20 will be described below along with the step numbers.
  • the quantum computation management unit 120 instructs the quantum computer 200 to execute energy computation by designating the quantum circuit corresponding to the set of quantum bits whose connection flag is YES as the computation target.
  • Step S302 The quantum computer 200 executes in parallel calculations based on each quantum circuit designated as a calculation target. This gives the value of the Hamiltonian for each quantum circuit.
  • the quantum computer 200 calculates the expected value of the overall energy by totaling the Hamiltonian values for each quantum circuit.
  • the quantum computer 200 transmits the calculated expected value of energy to the quantum computation manager 120 .
  • Step S304 The quantum computation management unit 120 determines whether or not to terminate the optimization process of the rotation angle ⁇ under the current computation conditions. For example, the quantum computation management unit 120 determines to terminate the optimization process of the rotation angle ⁇ when the difference between the energy value calculated immediately before and the energy value of this time is equal to or less than a predetermined value. If the quantum computation management unit 120 determines to terminate the optimization process of the rotation angle ⁇ , the process proceeds to step S307. If the quantum computation management unit 120 determines to continue the optimization process of the rotation angle ⁇ , the process proceeds to step S305.
  • the optimization calculation unit 130 performs optimization calculation of ⁇ using a predetermined algorithm.
  • updated values of the rotation angles ⁇ ( ⁇ 1 , ⁇ 2 , . . . ) are calculated so that the expected value of energy is reduced.
  • Step S306 The quantum computation management unit 120 optimizes the rotation angle ⁇ ' for each quantum circuit based on the rotation angle ⁇ updated by the optimization process and the value of ⁇ for each quantum circuit. After that, the quantum computation management unit 120 advances the process to step S301.
  • the quantum computation management unit 120 acquires the last calculated expected value of energy as the base energy corresponding to the current state of the connection flag. [Step S308] The quantum computation management unit 120 determines whether or not the difference between the acquired base energy and the base energy before updating the connection flag is ⁇ E (preset value) or less. If the difference is ⁇ E or less, the quantum computation management unit 120 terminates the basis energy computation process. If the difference is greater than ⁇ E, quantum computation manager 120 advances the process to step S309.
  • Step S309 The quantum computation management unit 120 updates the connection flag. For example, the quantum computation management unit 120 changes the values of the connection flags of some records in the connection management table 111 . After that, the quantum computation management unit 120 advances the process to step S301.
  • the ground energy finally obtained in this way is the ground energy obtained by quantum chemical calculation by VQE.
  • the quantum circuit executed by the quantum computer 200 in the basis energy calculation has a reduced circuit depth due to the integration of partial circuits representing rotation operations. As a result, the computation can be completed within the coherence time in the quantum computer 200, and the probability of error occurrence can be reduced.
  • FIG. FIG. 21 is a diagram showing an example of quantum chemical calculation of a hydrogen molecule.
  • a hydrogen molecule has one occupied orbital and one unoccupied orbital. For each orbit, there are an upward spin (up spin) and a downward spin (down spin) as electron spin directions.
  • up spin up spin
  • down spin downward spin
  • a quantum bit is assigned for each spin direction of each orbital.
  • four qubits are used to determine the ground energy.
  • the Hamiltonian 70 of the hydrogen molecule is divided into the first term (H 1 ) and the second term (H 2 ).
  • the observables shown in the observable group 71 are measured.
  • the observables shown in the observable group 71 need only be measured along the Z axis, so processing such as integration of partial circuits is unnecessary.
  • the observables shown in the observable group 72 are measured.
  • the quantum circuit for measuring the observables shown in the observable group 72 can reduce the circuit depth by integrating the partial circuits showing the rotation operation.
  • FIG. 22 is a diagram showing an example of a quantum circuit for obtaining the Hamiltonian of the first term of the hydrogen molecule.
  • a quantum circuit 80 for obtaining the Hamiltonian of the first term includes partial circuits 81 to 83 similar to the Ansatz circuit 31 and the partial circuits 31a to 31c, respectively, shown in FIG.
  • For this quantum circuit 80 no integration of sub-circuits indicating rotation operations is performed. Therefore, the rotation angles applied to the Givens rotations included in the partial circuits 81 to 83 in the quantum circuit 80 are not changed, and ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 and ⁇ 5 are applied as they are.
  • FIG. 23 is a diagram showing an example of a quantum circuit for obtaining the Hamiltonian of the second term of the hydrogen molecule.
  • Quantum circuit 90 for obtaining the Hamiltonian of the second term includes partial circuits 91-93 similar to Ansatz circuit 31 and partial circuits 31a-31c, respectively, shown in FIG.
  • ⁇ 5 is fixed at “ ⁇ /2”.
  • " ⁇ 1 ', ⁇ 2 ', ⁇ 3 ', ⁇ 4 '" are obtained in order to integrate the partial circuit 32a.
  • the calculation formula is as follows.
  • a partial circuit 32a in the basis conversion circuit 32 can be integrated. That is, the partial circuit 32a can be deleted from the quantum circuit for quantum chemical calculation by VQE.
  • the one-electron rotation operation subcircuit 32b (see FIG. 9) of the basis conversion circuit 32 has a rotation angle ⁇ 1 and a rotation angle ⁇ 2 .
  • the two rotation angles ( ⁇ 3 , ⁇ 4 ) that apply to the Givens rotation in subcircuit 31c representing the last one-electron excitation operation of Ansatz circuit 31 are updated in subcircuit 32a. Rotation angles ⁇ 1 and ⁇ 2 are added to these values.
  • the calculation formula is as follows.
  • the partial circuit 32b in the basis conversion circuit 32 can be integrated. That is, the partial circuit 32b can be deleted from the quantum circuit for quantum chemical calculation by VQE.
  • the second two-electron excitation operation partial circuit 32c (see FIG. 10) of the basis conversion circuit 32 can be integrated only when certain conditions are met.
  • the condition is that the molecular orbitals have symmetry.
  • Hydrogen molecules can be integrated because their molecular orbitals have symmetry.
  • sub-circuit 32c When sub-circuit 32c is integrated, sub-circuit 32c can be deleted from the quantum circuit without changing the rotation angle applied to the Givens rotation in the Ansatz circuit. As a result, a quantum circuit 90 as shown in FIG. 23 is generated.
  • E 1 be the energy value calculated using the quantum circuit 80 shown in FIG.
  • the energy value calculated using the quantum circuit 90 shown in FIG. 23 be E 2 .
  • ⁇ 1 ' ⁇ 3 '> 1.361165
  • the exact solution for the ground energy of the hydrogen molecule is "-1.137270". From this, it can be seen that the calculation can be performed with sufficient accuracy even if the calculation is performed by the quantum circuit in which the partial circuits indicating the rotation operation are integrated.
  • FIG. 24 is a diagram showing an example of circuit depth comparison results.
  • the example of FIG. 24 shows the comparison result of the circuit depth when the quantum chemical calculation by VQE of the ground energy of the hydrogen molecule is performed.
  • As an index of circuit depth the number of 2-qubit gates is used.
  • the circuit depth of the partial circuits for one-electron excitation shown in FIGS. 22 and 23 is "1".
  • the phase rotation subcircuit includes four 2-qubit gates, and the circuit depth is "4". Therefore, the circuit depth is "6" when the circuit integration shown in the second embodiment is applied. This circuit depth remains the circuit depth of the Ansatz circuit, and the circuit to be additionally implemented is "0".
  • the circuit depth of the quantum circuit of "Basis rotation” is "9". This circuit depth means that a circuit with a circuit depth of "3" is added to the circuit depth of the Ansatz circuit.
  • circuit depth of the quantum circuit of "Stabilizer formalism" is "12". This circuit depth means that a circuit with a circuit depth of "6" is added to the circuit depth of the Ansatz circuit.
  • the circuit depth is greatly reduced by integrating the partial circuits representing the rotation operation.
  • the second embodiment shows an example of calculating the ground energy of hydrogen molecules, the processing shown in the second embodiment can also be applied to other quantum chemical calculations.
  • Reference Signs List 1 1a quantum circuit 2 first quantum circuit 2a, 2b, ... partial circuit 3 second quantum circuit 3a, 3b, ... partial circuit 10 information processing device 11 storage unit 12 processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

量子回路の回路深さを低減する。 情報処理装置(10)は、計算対象となる分子の電子軌道を表現する波動関数を作成するための第1量子回路(2)と、波動関数の基底を変換するための第2量子回路(3)とを含む、変分量子固有値法による量子化学計算を行うための量子回路(1)を取得する。次に情報処理装置(10)は、第1量子回路(2)内での回転操作に適用される第1回転角を、第2量子回路(3)内での回転操作を示す部分回路に適用される第2回転角に応じて変更する。そして情報処理装置(10)は、部分回路を量子回路(1)から削除する。

Description

情報処理プログラム、情報処理方法、および情報処理装置
 本発明は、情報処理プログラム、情報処理方法、および情報処理装置に関する。
 量子コンピュータの分野において、NISQ(Noisy Intermediate-Scale Quantum computer)の実用化が期待されている。NISQは、エラー訂正機能のない中規模の量子コンピュータである。NISQの用途の一つとして変分量子固有値法(VQE:Variational Quantum Eigensolver)による計算がある。VQEは、量子多体系の基底状態を求める変分アルゴリズムである。VQEは、例えばNISQにおいて量子化学計算を行うのに利用できる。量子化学計算は、シュレディンガー方程式を解くことにより、分子状態や物性情報を得るための計算である。現在、VQEを用いた計算の実用化に向け様々な研究が進められている。
 VQEに関する技術としては、例えばVQEを効率化する方法が提案されている。また、ハミルトニアンの励起状態を求めるための計算の効率化を図る技術も提案されている。
特開2020-144400号公報 国際公開第2020/090559号
 VQEによる量子化学計算の実用化に向けた問題点の一つとして、ゲート操作数が多いことがある。ゲート操作数は、回路深さで表される。計算に用いる量子回路の回路深さが大きいと、様々な問題が生じる。
 例えば、ゲート処理にかかる時間は数ns~数百nsであり、回路深さが大きいと計算時間が増大する。また1回の量子計算(量子ビットの初期化、ゲート操作、測定)は、量子ビットの持続時間(コヒーレンス時間)内に終わらせることが求められる。回路深さが大きすぎるとコヒーレンス時間内に計算が完了せず、計算結果を得ることができない。さらに量子計算では、1回のゲート操作に対し確率的にエラーが発生する。回路深さが大きい(ゲート操作回数が多い)と量子計算過程でエラーが積み上がり、計算結果に与えるエラーの影響が大きくなる。
 1つの側面では、本件は、量子回路の回路深さを低減することを目的とする。
 1つの案では、以下の処理をコンピュータに実行させる情報処理プログラムが提供される。
 コンピュータは、計算対象となる分子の電子軌道を表現する波動関数を作成するための第1量子回路と、波動関数の基底を変換するための第2量子回路とを含む、変分量子固有値法による量子化学計算を行うための量子回路を取得する。コンピュータは、第1量子回路内での回転操作に適用される第1回転角を、第2量子回路内での回転操作を示す部分回路に適用される第2回転角に応じて変更する。そしてコンピュータは、部分回路を量子回路から削除する。
 1態様によれば、量子回路の回路深さを低減することができる。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
第1の実施の形態に係る情報処理方法の一例を示す図である。 第2の実施の形態のシステム構成の一例を示す図である。 古典コンピュータのハードウェアの一例を示す図である。 VQEによる量子化学計算のための古典コンピュータの機能の一例を示すブロック図である。 VQEの量子回路の一例を示す図である。 Jastrow factor ansatzによるAnsatz回路の一例を示す図である。 基底変換回路の一例を示す図である。 1回目の2電子励起操作の部分回路の一例を示す図である。 1電子回転操作を示す部分回路の一例である。 2回目の2電子励起操作の部分回路の一例を示す図である。 VQEによる量子化学計算の手順の一例を示すフローチャートである。 回転角αの計算方法の一例を示す図である。 パラメータθ’の算出方法の一例を示す図である。 統合後の回転角θ’の算出方法の一例を示す図である。 回転角θ’の最適化の一例を示す図である。 回転の統合の第1の例を示す図である。 回転の統合の第2の例を示す図である。 量子回路生成処理の手順の一例を示すフローチャートである。 結合管理テーブルの一例を示す図である。 基底エネルギー計算処理の手順の一例を示すフローチャートである。 水素分子の量子化学計算の一例を示す図である。 水素分子の第1項のハミルトニアンを求めるための量子回路の一例を示す図である。 水素分子の第2項のハミルトニアンを求めるための量子回路の一例を示す図である。 回路深さの比較結果の一例を示す図である。
 以下、本実施の形態について図面を参照して説明する。なお各実施の形態は、矛盾のない範囲で複数の実施の形態を組み合わせて実施することができる。
 〔第1の実施の形態〕
 第1の実施の形態は、VQEによる量子化学計算を行うための量子回路の回路深さを低減する情報処理方法である。
 図1は、第1の実施の形態に係る情報処理方法の一例を示す図である。図1には、第1の実施の形態に係る情報処理方法を実施するための情報処理装置10が示されている。情報処理装置10は、例えば所定の処理手順が記述された情報処理プログラムを実行することにより、第1の実施の形態に係る情報処理方法を実施することができる。
 情報処理装置10は、記憶部11と処理部12とを有する。記憶部11は、例えば情報処理装置10が有するメモリまたはストレージ装置である。処理部12は、例えば情報処理装置10が有するプロセッサまたは演算回路である。
 記憶部11は、計算対象となる分子の情報、量子回路1などを記憶する。
 処理部12は、量子コンピュータを利用してVQEによる量子化学計算を実施するための量子回路1を生成する。例えば処理部12は、VQEによる量子化学計算を行うための量子回路1を取得する。量子回路1が既に記憶部11に格納されている場合、処理部12は、記憶部11から量子回路1を取得する。また処理部12は、計算対象となる分子に関する情報に基づいて、量子回路1を生成してもよい。
 量子回路1には、計算対象となる分子の電子軌道を表現する波動関数を作成するための第1量子回路2と、波動関数の基底を変換するための第2量子回路3とが含まれる。第1量子回路2には、例えば適用される回転角が異なる複数の部分回路2a,2b,・・・が含まれる。第1量子回路2に適用される第1回転角は、例えばギブンス回転の回転操作に適用する回転角である。また第2量子回路3には、回転操作を示す複数の部分回路3a,3b,・・・が含まれる。
 処理部12は、第1量子回路2内での回転操作に適用される第1回転角θ1,θ2,・・・を、第2量子回路3内の部分回路3a,3b,・・・に適用される第2回転角α1,α2,・・・に応じて変更する。例えば削除対象が部分回路3aの場合、部分回路3aに適用される第2回転角α1に基づいて、第1回転角θ1,θ2,・・・が、θ1’,θ2’,・・・に変更される。第2回転角α1に応じた第1回転角θ1の変更後の回転角θ1’は、「θ1’=f(θ1,α1)」と表すことができる。同様に、第2回転角α1に応じた第1回転角θ2の変更後の回転角θ2’は、「θ2’=g(θ2,α1)」と表すことができる。
 そして処理部12は、削除対象の部分回路を量子回路1から削除し、量子回路1aを生成する。削除対象が部分回路3aの場合、量子回路1から部分回路3aを削除した量子回路1aが生成される。処理部12は、生成した量子回路1aを、例えば記憶部11に格納する。
 このようにして、第2量子回路3内の部分回路3a,3b,・・・の少なくとも一部を第1量子回路2に統合し、該当の部分回路を削除した量子回路1aを生成することができる。図1の例では、第2量子回路3で最初に実行される部分回路3aが第1量子回路2に統合されている。その結果、統合後の量子回路1aからは部分回路3aが削除されている。その結果、量子回路1aの回路深さが低減される。
 なお処理部12は、第2量子回路3に含まれる部分回路3a,3b,・・・のうちの複数の部分回路を削除対象とすることができる。その場合、処理部12は、例えば第2量子回路3内の複数の部分回路3a,3b,・・・を、実行順が早い方から順に、削除対象の部分回路として選択する。そして処理部12は、部分回路を選択するごとに、選択された部分回路に適用する第2回転角に応じた第1回転角の変更、および選択された部分回路の削除処理を実行する。これにより、統合後の量子回路1aの回路深さをさらに低減させることができる。
 処理部12は、変更後の第1回転角θ1’,θ2’,・・・について、2電子励起に対応する第3回転角と第1回転角との関係を示す関数式に基づいて計算することができる。なお第3回転角は、電子の状態間の遷移しやすさを示す電子遷移強度を、角度によって間接的に表している。例えば処理部12は、第3回転角から第2回転角を求める関数式の逆関数に変更前の第1回転角の値を入力し、そのときの逆関数の値を求める。次に処理部12は、得られた逆関数の値を第2回転角の値から減算する。そして処理部12は、減算した結果を上記関数式に入力して、その関数式の値を得る。処理部12は、最終的に得られた関数式の値を、変更後の第1回転角に決定する。このように第1回転角を変更することで、第2量子回路3内の部分回路を第1量子回路2に統合することによる量子化学計算の計算精度の劣化を抑止できる。
 〔第2の実施の形態〕
 第2の実施の形態は、量子コンピュータを利用してVQEによる量子化学計算を行うコンピュータシステムである。
 図2は、第2の実施の形態のシステム構成の一例を示す図である。第2の実施の形態では、古典コンピュータ100と量子コンピュータ200とが接続されている。古典コンピュータ100は、ノイマン型コンピュータであり、量子回路の生成、量子回路の計算に使用するパラメータの最適化などの処理を行う。量子コンピュータ200は、量子ビットに対して量子ゲートに基づく操作を行うことで量子化学計算を行うコンピュータである。量子コンピュータ200は、古典コンピュータ100で生成された量子回路およびパラメータに従って、VQEアルゴリズムの量子化学計算を行い、エネルギー期待値を算出する。
 図3は、古典コンピュータのハードウェアの一例を示す図である。古典コンピュータ100は、プロセッサ101によって装置全体が制御されている。プロセッサ101には、バス109を介してメモリ102と複数の周辺機器が接続されている。プロセッサ101は、マルチプロセッサであってもよい。プロセッサ101は、例えばCPU(Central Processing Unit)、MPU(Micro Processing Unit)、またはDSP(Digital Signal Processor)である。プロセッサ101がプログラムを実行することで実現する機能の少なくとも一部を、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)などの電子回路で実現してもよい。
 メモリ102は、古典コンピュータ100の主記憶装置として使用される。メモリ102には、プロセッサ101に実行させるOS(Operating System)のプログラムやアプリケーションプログラムの少なくとも一部が一時的に格納される。また、メモリ102には、プロセッサ101による処理に利用する各種データが格納される。メモリ102としては、例えばRAM(Random Access Memory)などの揮発性の半導体記憶装置が使用される。
 バス109に接続されている周辺機器としては、ストレージ装置103、GPU(Graphics Processing Unit)104、入力インタフェース105、光学ドライブ装置106、機器接続インタフェース107およびネットワークインタフェース108がある。
 ストレージ装置103は、内蔵した記録媒体に対して、電気的または磁気的にデータの書き込みおよび読み出しを行う。ストレージ装置103は、古典コンピュータ100の補助記憶装置として使用される。ストレージ装置103には、OSのプログラム、アプリケーションプログラム、および各種データが格納される。なお、ストレージ装置103としては、例えばHDD(Hard Disk Drive)やSSD(Solid State Drive)を使用することができる。
 GPU104は画像処理を行う演算装置であり、グラフィックコントローラとも呼ばれる。GPU104には、モニタ21が接続されている。GPU104は、プロセッサ101からの命令に従って、画像をモニタ21の画面に表示させる。モニタ21としては、有機EL(Electro Luminescence)を用いた表示装置や液晶表示装置などがある。
 入力インタフェース105には、キーボード22とマウス23とが接続されている。入力インタフェース105は、キーボード22やマウス23から送られてくる信号をプロセッサ101に送信する。なお、マウス23は、ポインティングデバイスの一例であり、他のポインティングデバイスを使用することもできる。他のポインティングデバイスとしては、タッチパネル、タブレット、タッチパッド、トラックボールなどがある。
 光学ドライブ装置106は、レーザ光などを利用して、光ディスク24に記録されたデータの読み取り、または光ディスク24へのデータの書き込みを行う。光ディスク24は、光の反射によって読み取り可能なようにデータが記録された可搬型の記録媒体である。光ディスク24には、DVD(Digital Versatile Disc)、DVD-RAM、CD-ROM(Compact Disc Read Only Memory)、CD-R(Recordable)/RW(ReWritable)などがある。
 機器接続インタフェース107は、古典コンピュータ100に周辺機器を接続するための通信インタフェースである。例えば機器接続インタフェース107には、メモリ装置25やメモリリーダライタ26を接続することができる。メモリ装置25は、機器接続インタフェース107との通信機能を搭載した記録媒体である。メモリリーダライタ26は、メモリカード27へのデータの書き込み、またはメモリカード27からのデータの読み出しを行う装置である。メモリカード27は、カード型の記録媒体である。
 ネットワークインタフェース108は、量子コンピュータ200に接続されている。ネットワークインタフェース108は、量子コンピュータ200との間でデータの送受信を行う。
 古典コンピュータ100は、以上のようなハードウェアによって、第2の実施の形態の処理機能を実現することができる。なお、第1の実施の形態に示した装置も、図3に示した古典コンピュータ100と同様のハードウェアにより実現することができる。
 古典コンピュータ100は、例えばコンピュータ読み取り可能な記録媒体に記録されたプログラムを実行することにより、第2の実施の形態の処理機能を実現する。古典コンピュータ100に実行させる処理内容を記述したプログラムは、様々な記録媒体に記録しておくことができる。例えば、古典コンピュータ100に実行させるプログラムをストレージ装置103に格納しておくことができる。プロセッサ101は、ストレージ装置103内のプログラムの少なくとも一部をメモリ102にロードし、プログラムを実行する。また古典コンピュータ100に実行させるプログラムを、光ディスク24、メモリ装置25、メモリカード27などの可搬型記録媒体に記録しておくこともできる。可搬型記録媒体に格納されたプログラムは、例えばプロセッサ101からの制御により、ストレージ装置103にインストールされた後、実行可能となる。またプロセッサ101が、可搬型記録媒体から直接プログラムを読み出して実行することもできる。
 古典コンピュータ100は、図4に示したハードウェアにより、量子コンピュータ200と連係してVQEによる量子化学計算を行うことができる。
 図4は、VQEによる量子化学計算のための古典コンピュータの機能の一例を示すブロック図である。古典コンピュータ100は、量子回路生成部110と量子計算管理部120と最適化計算部130とを有する。
 量子回路生成部110は、分子などの量子多体系のエネルギーを計算するための量子回路を生成する。例えば量子回路生成部110は、VQEアルゴリズムによる量子回路を生成し、その量子回路の回路深さを低減する処理を行う。量子回路生成部110は、回路深さを低減した量子回路を量子計算管理部120に送信する。
 量子計算管理部120は、生成された量子回路に基づくエネルギー計算を量子コンピュータ200に指示する。例えば量子計算管理部120は、量子回路における量子ゲートでのゲート操作に関する複数のパラメータθを設定する。量子計算管理部120は、最初の量子計算の前に、複数のパラメータθの値に初期値を設定する。量子計算管理部120は、複数のパラメータθでパラメタライズされた量子回路に基づくエネルギーの計算結果を量子コンピュータ200から取得する。エネルギーの計算結果を取得すると、量子計算管理部120は、エネルギーが収束したか否かを判定する。量子計算管理部120は、エネルギーが収束していなければ、最適化計算部130にパラメータの最適化を指示する。
 最適化計算部130は、量子計算ごとに、エネルギー値が小さくなる方向へ、複数のパラメータθの全部または一部の値を更新する。最適化計算部130は、最適化の計算が終了すると、更新された複数のパラメータθの値を量子計算管理部120に通知する。
 なお図4に示した古典コンピュータ100内の各要素の機能は、例えば、その要素に対応するプログラムモジュールをコンピュータに実行させることで実現することができる。
 次にVQEによる分子の基底エネルギーの計算方法について説明する。VQEによる分子の基底エネルギー計算において求めるエネルギーEは以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 φは量子状態を示す。Hは、ハミルトニアンを示す。ハミルトニアンは、分子間距離Rの関数である。θは、最適化変数として用いられる回転角である。基底エネルギーは最も低いエネルギーである。そのため、回転角θを変動させて式(1)を繰り返し計算したときに、複数回の計算で得られたエネルギーの中の最低エネルギーが基底エネルギーE0となる。基底エネルギーE0を表す式は以下の通りである。
Figure JPOXMLDOC01-appb-M000002
 実際の計算ではハミルトニアンが和の形(H=H1+H2+…)に分解され、分解されたハミルトニアンそれぞれが計算される。すなわち量子回路生成部110は、分解されたハミルトニアンごとに、VQEによる量子化学計算を行うための量子回路を生成する。
 図5は、VQEの量子回路の一例を示す図である。VQEのi番目のハミルトニアンHiを計算するための量子回路30には、Ansatz回路31、基底変換回路32、およびZ軸測定33が含まれる。
 Ansatz回路31は、計算対象となる分子の電子軌道を表現する波動関数|ψ>を作成するための量子回路部分である。Ansatz回路31で表される波動関数は、変数θで表される重ね合わせ状態(|ψ(θ)>=a|ψ0>+b|ψ1>+c|ψ2>+・・・)である。量子回路30で操作する量子ビット数が4であれば、重ね合わせ状態は、「|0000>→a|0000>+b|0001>+c|0010>+d|0010>+e|0011>+・・・」と表される。
 基底変換回路32は、作成した波動関数|ψ>を計算対象となる行列(全体のハミルトニアンを分解して得られるハミルトニアンHi)と作用させるために基底を変換する量子回路部分である。基底変換回路32に相当する行列Mを、対角行列に変換したハミルトニアンHiに作用させることで、ハミルトニアンHiのZ軸測定が可能となる。行列Mを作用させることは、作用対象の左から行列Mのエルミート共役(M)を掛け、作用対象の右から行列Mを掛ける式で表される。
 このようにVQEによる量子化学計算の量子回路30では、前段にAnsatz回路31が設けられ、後段に基底変換回路32が設けられる。そして基底変換回路32による操作後、Z軸測定33によって量子状態が測定される。
 ここで量子化学計算におけるAnsatz回路には様々な種類がある。その中でギブンス回転(Givens rotation)を含むAnsatz回路がある。ギブンス回転は、行列による線形変換である。ギブンス回転を含むAnsatz回路の1つにJastrow factor ansatzがある。Jastrow factor ansatzは、化学的な1電子励起と2電子励起が表現できる。またJastrow factor ansatzは、化学的な1電子励起と2電子励起が表現できる他のansatzに比べて回路深さが浅くて済むという利点がある。
 図6は、Jastrow factor ansatzによるAnsatz回路の一例を示す図である。Ansatz回路31は、4つの量子ゲートを操作する。操作対象の量子ゲートをq0,q1,q2,q3とする。
 Jastrow factor ansatzによる2電子励起表現のAnsatz回路31は、3つの部分回路31a~31cに分けられる。部分回路31aと部分回路31cとは、共にギブンス回転による1電子励起を示す。部分回路31bは、位相の回転を示す。
 部分回路31aと部分回路31cは、それぞれ2回のギブンス回転を含んでいる。部分回路31aの2つのギブンス回転には同じ値の最適化変数が適用される。そのため部分回路31aのギブンス回転G1(θ1)およびG2(θ2)の回転角はθ1=θ2となる。また部分回路31cの2つのギブンス回転には同じ値の最適化変数が適用される。そのため部分回路31cのギブンス回転G3(θ3)およびG4(θ4)の回転角はθ3=θ4となる。ギブンス回転G1(θ1)、G2(θ2)、G3(θ3)は、2つずつの√iswapゲートとZ軸周りの回転ゲートとを含む。ギブンス回転G4(θ4)は2つの√iswapゲートを含む。
 例えば1電子励起を示す部分回路31aは、初期状態|0011>に対するギブンス回転を示す。ギブンス回転G1(θ1)を式で表すと「G1(θ1)|0011>→cosθ1|0011>+sinθ1|0110>」となる。ギブンス回転G2(θ2)を式で表すと「G2(θ2)|0011>→cosθ1|0011>+sinθ1|1001>」となる。
 部分回路31bで示される位相の回転をP(θ5)とする。位相の回転P(θ5)を式で表すと「a|0011>+b|1100>→a|0011>+bi|1100>」となる(a,bは複素数)。
 初期状態|0011>に対するAnsatz回路31を作用させることを式で表すと、「G43PG21|0011>=cosΦ|0011>+sinΦ|1100>」となる。
 なお、図6のZ軸周りの回転ゲートには、初期状態での回転角が示されている。回転角θ1、θ2、θ3、θ4、θ5の値が算出されると、各回転ゲートは、適用される最適化変数の値に応じた回転角に設定される。
 ギブンス回転G1(θ1)における量子ビットq0に対する回転ゲートの回転角は「-θ1」であり、「Rz(-θ1)」と表される。ギブンス回転G1(θ1)における量子ビットq1に対する回転ゲートの回転角は「2θ2+π」であり、「Rz(2θ2+π)」と表される。ギブンス回転G1(θ1)における量子ビットq2に対する回転ゲートの回転角は「θ1+π」であり、「Rz(θ1+π)」と表される。ギブンス回転G1(θ1)における量子ビットq3に対する回転ゲートの回転角は「-θ2」であり、「Rz(-θ2)」と表される。
 ギブンス回転G2(θ2)における4つの量子ビットそれぞれに対する回転ゲートの回転角は「0」であり、「Rz(0)」と表される。
 位相の回転P(θ5)における量子ビットq2に対する1つ目の回転ゲートの回転角は「0」であり、2つ目の回転ゲートの回転角は「-π/2」である。これらの回転ゲートは、それぞれ「Rz(0)」、「Rz(-π/2)」と表される。位相の回転P(θ5)における量子ビットq3に対する1つ目の回転ゲートの回転角は「0」であり、2つ目の回転ゲートの回転角は「-π/2」であり、3つ目の回転ゲートの回転角は「π/2」である。これらの回転ゲートは、それぞれ「Rz(0)」、「Rz(-π/2)」、「Rz(π/2)」と表される。
 ギブンス回転G3(θ3)における量子ビットq0に対する回転ゲートの回転角は「-θ3」であり、「Rz(-θ3)」と表される。ギブンス回転G3(θ3)における量子ビットq1に対する回転ゲートの回転角は「-θ4」であり、「Rz(-θ4)」と表される。ギブンス回転G3(θ3)における量子ビットq2に対する回転ゲートの回転角は「θ3+π」であり、「Rz(θ3+π)」と表される。ギブンス回転G3(θ3)における量子ビットq3に対する回転ゲートの回転角は「θ4+π」であり、「Rz(θ4+π)」と表される。
 Ansatz回路31の回路深さは、オーダー表記でO(N)(Nは量子ビット数)となる。基底変換回路32の回路深さは、commuting pauli groupingを用いた場合にはO(N)、basis rotationを用いた場合はNとなる。従来、VQEによる量子化学計算のための量子回路の回路深さを小さくする様々な回路が考えられているが、さらなる回路深さ削減が求められている。
 図7は、基底変換回路の一例を示す図である。基底変換回路32は、例えば3つの部分回路32a~32cを含む。部分回路32aは、1回目の2電子励起操作を示す回路(2電子励起回路)である。部分回路32bは、1電子回転操作を示す回路(1電子回転回路)である。部分回路32cは、2回目の2電子励起操作を示す回路(2電子励起回路)である。
 基底変換回路32の部分回路32a~32cは、例えば水素分子の量子化学計算を行う場合、図8~図10に示すような回路となる。図8は、1回目の2電子励起操作の部分回路の一例を示す図である。図8に示す部分回路32aは、アダマールゲート、CNOTゲート、CZゲート、およびY軸周りの回転ゲートで構成されている。図9は、1電子回転操作を示す部分回路の一例である。図9に示す部分回路32bは、√iswapゲートとZ軸周りの回転ゲートとで構成されている。図10は、2回目の2電子励起操作の部分回路の一例を示す図である。図10に示す部分回路32cは、アダマールゲート、CNOTゲート、CZゲート、およびY軸周りの回転ゲートで構成されている。
 量子回路生成部110は、図7~図10に示した部分回路32a~32cについて、先に実行される部分回路から順にAnsatz回路31に統合する。
 例えば量子回路生成部110は、最適化変数θでパラメタライズされたAnsatz回路31と特定の回転角α(αは実数)で回転操作を行う基底変換回路32を統合した量子回路を生成する。ここで統合された回路のパラメータθ’は、例えば「θ’=f(θ,α)=f(α-f-1(θ))」で表すことができる。f(x)は、Jastrow factor ansatzの2電子励起に対応する回転角をxとしたときに、回転角から最適化変数θを求める関数式である。
 2電子励起に対応する回転角は、電子の状態間の遷移しやすさ(電子遷移強度または電子励起強度と呼ばれる)を間接的に表している。例えば励起前の状態を|ψ0>とし、2電子励起後の状態を|ψ1>とする。そして2電子励起に対応する回転角θにより作られる状態を|ψ>とする。すると「|ψ>=cosθ|ψ0>+sinθ|ψ1>」となる。
 f(x)を用いたパラメータθ’の算出方法の詳細は後述する。回路を統合することにより、回路深さを削減することができる。なお、回転角αは問題として与えられたハミルトニアンHによって定まる。
 図5~図10に示したような量子回路30が、回路深さの低減処理を施す前の量子回路である。以下、回路深さを低減した量子回路の生成と、その量子回路に基づくエネルギーの基底値の計算処理について詳細に説明する。
 図11は、VQEによる量子化学計算の手順の一例を示すフローチャートである。以下、図11に示す処理をステップ番号に沿って説明する。
 [ステップS101]量子回路生成部110は、計算対象とハミルトニアンを定義する。例えば計算対象は、ユーザから指定される。例えば計算対象が水素分子であれば、量子回路生成部110は、予め定義されている水素分子のハミルトニアンを取得する。
 [ステップS102]量子回路生成部110は、回転角αとパラメータθ’を計算する。
 [ステップS103]量子回路生成部110は、回転操作を示す複数の部分回路を統合することで回路深さの低減を図った量子回路を生成する。量子回路生成処理の詳細は後述する(図18参照)。
 [ステップS104]量子計算管理部120は、量子コンピュータ200を制御して、基底エネルギーを計算する。基底エネルギーの計算にはVQEが用いられ、最適化計算部130により最適化変数θの最適化が行われる。基底エネルギー計算処理の詳細は後述する(図20参照)。
 [ステップS105]量子計算管理部120は、最終的に求められた最適解(エネルギーが最小値となる状態)を出力する。
 このような手順でVQEによる量子化学計算が行われる。以下、量子化学計算の各処理を詳細に説明する。
 図12は、回転角αの計算方法の一例を示す図である。分割後のハミルトニアンHiに対して、対角化した行列をHi’とする。ハミルトニアンHiを対角化するための基底変換回路(ユニタリ行列)Mは、ユニタリな回転操作の集合で表すことができる。複数のユニタリな回転操作それぞれは、部分回路41,42,・・・,4nで表される。これにより、各部分回路41,42,・・・,4nにおける回転角α1,α2,・・・,αnが得られる。
 図13は、パラメータθ’の算出方法の一例を示す図である。例えばAnsatz回路31における回転操作を示す部分回路51,52,・・・,5kに対して、基底変換回路32の部分回路41,42,・・・,4nを統合する。その際、部分回路51,52,・・・,5kに適用する最適化変数θ={θ1,θ2,・・・}が求められている。Ansatz回路31の部分回路51,52,・・・,5kに部分回路41,42,・・・,4nを統合する際には、統合後の回転角をθ’=f(θ,α)とする。
 統合後の量子回路における回転操作の部分回路51,52,・・・の数(m)は、統合前のAnsatz回路31の部分回路51,52,・・・,5kの数(k)と基底変換回路32の部分回路41,42,・・・,4nの数(n)よりも少なくなる。すなわち回路深さが短くなる。
 図14は、統合後の回転角θ’の算出方法の一例を示す図である。図14に示すグラフ60は、2電子励起に対応する回転角x(電子遷移強度を表す)とJastrow factor ansatzに適用する回転角θとの関係を示している。グラフ60の横軸が2電子励起に対応する回転角xであり、縦軸がJastrow factor ansatzに適用する回転角θである。Jastrow factor ansatzに適用する回転角は、計算対象となる分子における電子遷移強度に応じて決まる。ここで電子遷移強度を2電子励起に対応する回転角xで表し、2電子励起に対応する回転角xに応じた回転角θ1の値の変化を示す曲線を多項式θ=f(x)で表す。また2電子励起に対応する回転角xに応じた回転角θ3の値の変化を示す曲線を多項式θ=g(x)で表す。
 θ1が得られたとき、「f-1(θ1)」で得られた値と回転角αとの差を「f(x)」のxに代入することで、θ1’が得られる。同様にθ3が得られたとき、「g-1(θ3)」で得られた値と回転角αとの差を「g(x)」のxに代入することで、θ3’が得られる。
 このように統合後の回転角θ’は、回転角θと回転角αとに基づいて算出される。すなわち量子回路は、回転角θ’を用いてパラメタライズされる。VQEによる量子化学計算において、回転角θは最適化計算によって繰り返し更新される。また回転角αは、量子回路ごとに異なる値となる。そのため回転角θ’は、回転角θが更新されるごとに、VQEによる量子化学計算に用いる量子回路それぞれについて算出される。
 図15は、回転角θ’の最適化の一例を示す図である。VQEによる量子化学計算においては分割された複数のハミルトニアン(H1,H2,・・・,HN)それぞれが、複数の量子回路201,202,・・・,20Nそれぞれで算出される。算出された複数のハミルトニアンは加算器210で加算され、系全体のエネルギーの期待値となる。すると最適化計算部130が、エネルギーの期待値に基づいて回転角θの最適化を行う。すなわち最適化計算部130は、エネルギーの期待値が小さくなる方向に回転角θ1,θ2,・・・を更新する。
 また複数の量子回路201,202,・・・,20Nは、それぞれ独立した回転角α1,α2,・・・,αNを有する。そこで回転角θが最適化処理によって更新されると、複数の量子回路201,202,・・・,20Nそれぞれについて、更新後のその量子回路の回転角αの値に応じた回転角θ’が算出される。例えば量子回路201の回転角θ’は、「f(θ,α1)」となる。
 図16は、回転の統合の第1の例を示す図である。図16に示す統合前の量子回路61は、例えば4つの量子ビットのうちの1ビット目の量子ビットから3ビット目の量子ビットへの電子の遷移を表しているものとする。量子回路61では、1回目の回転操作と同じ量子ビットを対象として、2回目の回転操作が行われている。この場合、2回の回転操作の回転角を足し合わせることで、2回の回転操作を統合することができる。例えば量子回路61の1回目の回転操作の回転角はθ1であり、2回目の回転操作の回転角はθ2である。この2つの回転操作を統合する場合、θ1+θ2の回転となる回転操作を示す量子回路62に統合できる。
 図17は、回転の統合の第2の例を示す図である。図17に示す統合前の量子回路63は、例えば4つの量子ビットのうちの1ビット目の量子ビットから3ビット目の量子ビットへの電子の遷移を表しているものとする。量子回路63では、1回目の回転操作と同じ量子ビットを対象として、3回目の回転操作が行われている。量子回路63の2回目の回転操作は、1回目および3回目とは別の量子ビットに対する回転操作である。この場合、1回目と3回目の回転操作の回転角を足し合わせることで、3回の回転操作を統合することができる。例えば量子回路63の1回目の回転操作の回転角はθ1であり、3回目の回転操作の回転角はθ3である。この2つの回転操作を統合する場合、θ1+θ3の回転となる回転操作に統合され、統合後の量子回路64が生成される。
 図17に示すように、操作対象の量子ビットが異なる回転操作が挟まる場合、統合することで計算精度が落ちる可能性がある。そのため、要求される制度などの状況に応じて、図17に示すような場合に統合するかしないかを設定しておいてもよい。
 次に、統合した量子回路の生成処理の詳細について説明する。
 図18は、量子回路生成処理の手順の一例を示すフローチャートである。以下、図18に示す処理をステップ番号に沿って説明する。
 [ステップS201]量子回路生成部110は、Jastrow factor ansatzのAnsatz回路を生成する。
 [ステップS202]量子回路生成部110は、基底変換回路を生成する。
 [ステップS203]量子回路生成部110は、結合フラグを読み込む。結合フラグは、量子ビットの組み合わせごとに、その組み合わせについての計算を行うか否かを示すフラグである。結合フラグは、例えば結合管理テーブルに示されている。
 図19は、結合管理テーブルの一例を示す図である。結合管理テーブル111には、量子コンピュータ200において使用可能な量子ビットのうちの4つの量子ビットの組み合わせごとのレコードが登録されている。
 励起元の量子ビット(量子ビット番号0~k)、励起先の量子ビット(量子ビット番号k+1~n-1)が問題として与えられたものとする(kは自然数、nは量子ビット数を示す自然数)。この場合、量子ビット番号0~kの量子ビットから励起元として2つ選んだ組み合わせと、量子ビット番号k+1~n-1の量子ビットから励起先として2つ選んだ組み合わせの、合計4つの量子ビットの組が生成される。
 各レコードには、生成された組の組番号に対応付けて、1つ目の励起元(励起元1)、2つ目の励起元(励起元2)、1つ目の励起先(励起先1)、2つ目の励起先(励起先2)それぞれに対応する量子ビットの番号が設定されている。さらに各レコードには、設定された量子ビットの番号の組み合わせについてVQEによる量子化学計算を行うか否かを示す結合フラグが設定されている。例えば結合フラグが「Yes」であれば計算することを示し、結合フラグが「No」であれば計算しないことを示す。結合管理テーブル111は、例えばメモリ102またはストレージ装置103に格納されている。量子回路生成部110は、結合管理テーブル111から結合フラグを読み込むことができる。
 なお図19の結合管理テーブル111には、量子ビット数が10の場合の値が設定されている。これらの量子ビットのうち、0番から3番の量子ビットが励起元として使用される。また4番から9番の量子ビットが励起先として使用される。
 以下、図18の説明に戻る。
 [ステップS204]量子回路生成部110は、4つの量子ビットの組を選択する。例えば量子回路生成部110は、結合管理テーブル111の上位のレコードから順に、そのレコードに設定されている量子ビットの組を選択する。
 [ステップS205]量子回路生成部110は、選択した量子ビットの組に対応するVQEによる量子化学計算の量子回路について、基底変換回路内の1つ目の2電子励起回路を、Ansatz回路に統合する。
 [ステップS206]量子回路生成部110は、選択した量子ビットの組に対応するVQEによる量子化学計算の量子回路について、基底変換回路内の1電子回転回路を、Ansatz回路に統合する。
 [ステップS207]量子回路生成部110は、選択した量子ビットの組に対応するVQEによる量子化学計算の量子回路について、基底変換回路内の2つ目の2電子励起回路を、Ansatz回路に統合する。なお、2つ目の2電子励起回路についてはAnsatz回路に統合できない場合もある。2つ目の2電子励起回路について統合できるのは、分子軌道が対称性を有する場合である。統合できない場合、2つ目の2電子励起回路の統合処理はスキップされる。
 [ステップS208]量子回路生成部110は、量子ビットのすべての組について、選択済みか否かを判断する。量子回路生成部110は、すべての組が選択済みであれば、量子回路生成処理を終了する。また量子回路生成部110は、未選択の量子ビットの組があれば、処理をステップS204に進める。
 このようにして量子回路が生成される。そして生成された量子回路に基づいて基底エネルギーの計算が行われる。
 図20は、基底エネルギー計算処理の手順の一例を示すフローチャートである。以下、図20に示す処理をステップ番号に沿って説明する。
 [ステップS301]量子計算管理部120は、量子コンピュータ200へ、結合フラグがYESとなっている量子ビットの組に対応する量子回路を計算対象に指定して、エネルギー計算の実行を指示する。
 [ステップS302]量子コンピュータ200は、計算対象に指定された量子回路それぞれに基づく計算を、並列で実行する。これにより、量子回路ごとのハミルトニアンの値が得られる。
 [ステップS303]量子コンピュータ200は、量子回路ごとのハミルトニアンの値を合計することで、全体のエネルギーの期待値を計算する。量子コンピュータ200は、計算したエネルギーの期待値を量子計算管理部120に送信する。
 [ステップS304]量子計算管理部120は、現在の計算条件における回転角θの最適化処理を終了させるか否かを判断する。例えば量子計算管理部120は、直前に計算したエネルギー値と今回のエネルギー値との差分が所定値以下になった場合、回転角θの最適化処理を終了させると判断する。量子計算管理部120は、回転角θの最適化処理を終了させると判断した場合、処理をステップS307に進める。また量子計算管理部120は、回転角θの最適化処理を続行すると判断した場合、処理をステップS305に進める。
 [ステップS305]最適化計算部130は、所定のアルゴリズムでθの最適化計算を実行する。最適化計算では、エネルギーの期待値が低下するように、回転角θ(θ1,θ2,・・・)それぞれの更新後の値が算出される。
 [ステップS306]量子計算管理部120は、最適化処理によって更新された回転角θと量子回路ごとのαの値に基づいて、量子回路ごとの回転角θ’の最適化を行う。その後、量子計算管理部120は処理をステップS301に進める。
 [ステップS307]量子計算管理部120は、最後に算出されたエネルギーの期待値を、現在の結合フラグの状態に応じた基底エネルギーとして取得する。
 [ステップS308]量子計算管理部120は、取得した基底エネルギーについて、結合フラグ更新前の基底エネルギーとの差がΔE(予め設定された値)以下か否かを判断する。量子計算管理部120は、差がΔE以下であれば基底エネルギー計算処理を終了する。また量子計算管理部120は、差がΔEより大きければ、処理をステップS309に進める。
 [ステップS309]量子計算管理部120は、結合フラグを更新する。例えば量子計算管理部120は、結合管理テーブル111の一部のレコードの結合フラグの値を変更する。その後、量子計算管理部120は処理をステップS301に進める。
 このようにして最後に得られた基底エネルギーがVQEによる量子化学計算によって得られる基底エネルギーである。基底エネルギー計算において量子コンピュータ200に実行させる量子回路は、回転操作を示す部分回路の統合により、回路深さが低減されている。その結果、量子コンピュータ200においてコヒーレンス時間内に計算を終了できると共に、エラーの発生確率を低下させることができる。
 以下、図21~図23を参照し、水素分子の基底エネルギーを求める場合の量子回路の統合例について説明する。
 図21は、水素分子の量子化学計算の一例を示す図である。水素分子には1つの占有軌道と1つの非占有軌道とがある。各軌道について、電子のスピン方向として上向きのスピン(up spin)と下向きのスピン(down spin)とがある。VQEによる量子化学計算を実行する場合、各軌道のスピン方向ごとに量子ビットが割り当てられる。その結果、水素分子に関しては、基底エネルギーを求めるために4つの量子ビットが用いられる。
 水素分子のハミルトニアン70は、第1項(H1)と第2項(H2)とに分かれる。第1項のハミルトニアンH1を求めるためには、オブザーバブル群71に示すオブザーバブルを測定することとなる。オブザーバブル群71に示すオブザーバブルは、Z軸の測定で済むため、部分回路の統合などの処理は不要である。第2項のハミルトニアンH2を求めるためには、オブザーバブル群72に示すオブザーバブルを測定することとなる。オブザーバブル群72に示すオブザーバブルを測定するための量子回路は、回転操作を示す部分回路を統合することで回路深さを低減できる。
 図22は、水素分子の第1項のハミルトニアンを求めるための量子回路の一例を示す図である。第1項のハミルトニアンを求めるための量子回路80は、図6に示したAnsatz回路31と部分回路31a~31cそれぞれと同様の部分回路81~83を含む。この量子回路80に対しては回転操作を示す部分回路の統合は行われない。そのため、量子回路80内の部分回路81~83に含まれるギブンス回転に適用する回転角も変更されず、θ1,θ2,θ3,θ4,θ5がそのまま適用される。
 図23は、水素分子の第2項のハミルトニアンを求めるための量子回路の一例を示す図である。第2項のハミルトニアンを求めるための量子回路90は、図6に示したAnsatz回路31と部分回路31a~31cそれぞれと同様の部分回路91~93を含む。
 例えば基底変換回路32の最初の2電子励起操作の部分回路32a(図8参照)は、回転角α(α=0.817)を持つものとする。ここでAnsatz回路31の各ギブンス回転の回転角は「θ1,θ2,θ3,θ4,θ5」である(θ1=θ2、θ3=θ4)。θ5は「π/2」固定である。この場合、部分回路32aを統合するために、「θ1’,θ2’,θ3’,θ4’」が求められる。計算式は以下の通りである。
・θ1’=f(α-f-1(θ1))
・θ2’=f(α-f-1(θ1))
・θ3’=g(α-g-1(θ3))
・θ4’=g(α-g-1(θ3))
 Ansatz回路31内のギブンス回転に適用する回転角「θ1,θ2,θ3,θ4」それぞれを「θ1’,θ2’,θ3’,θ4’」に更新することで、基底変換回路32内の部分回路32aが統合できる。すなわちVQEによる量子化学計算用の量子回路から部分回路32aを削除できる。
 基底変換回路32の1電子回転操作の部分回路32b(図9参照)は、回転角α1と回転角α2を有するものとする。部分回路32bを統合するために、Ansatz回路31の最後の1電子励起操作を示す部分回路31c内のギブンス回転に適用する2つの回転角(θ3,θ4)について、部分回路32aで更新された値にそれぞれ回転角α1、α2が加算される。計算式は以下の通りである。
・θ3’=g(α-g-1(θ3))+α1
・θ4’=g(α-g-1(θ3))+α2
 部分回路31c内のギブンス回転に適用する2つの回転角を更新することで、基底変換回路32内の部分回路32bが統合できる。すなわちVQEによる量子化学計算用の量子回路から部分回路32bを削除できる。
 基底変換回路32の2つ目の2電子励起操作の部分回路32c(図10参照)は、一定の条件を満たす場合にのみ統合できる。条件とは、分子軌道が対称性を有する場合である。水素分子は分子軌道が対称性を有しているため統合可能である。部分回路32cを統合する場合、Ansatz回路内のギブンス回転に適用する回転角を変更せずに、量子回路から部分回路32cを削除することができる。その結果、図23に示すような量子回路90が生成される。
 図22に示した量子回路80を用いて算出したエネルギー値をE1とする。図23に示した量子回路90を用いて算出したエネルギー値をE2とする。これらのエネルギー値を計算した結果は以下の通りである。
・E1=<θ1,θ3|H1|θ1,θ3>=-2.486508
・E2=<θ1’θ3’|H2’|θ1’θ3’>=1.361165
 全体の基底エネルギーEは以下の通りである。
・E=E1+E2=-1.125343
 水素分子の基底エネルギーの厳密解は「-1.137270」である。このことから、回転操作を示す部分回路の統合を行った量子回路で計算を行っても、十分な精度で計算できていることが分かる。
 図24は、回路深さの比較結果の一例を示す図である。図24の例では、水素分子の基底エネルギーのVQEによる量子化学計算を実施した場合における、回路深さの比較結果を示している。回路深さの指標としては、2量子ビットゲートの数を用いている。
 例えば図22,図23に示した1電子励起の部分回路の回路深さは「1」となる。位相の回転の部分回路には2量子ビットゲートが4つ含まれており、回路深さは「4」となる。そのため第2の実施の形態で示した回路統合を適用した場合の回路深さは「6」である。この回路深さは、Ansatz回路の回路深さのままであり、追加で実装する回路は「0」である。
 それに対して「Basis rotation」(比較例)の量子回路の回路深さは「9」である。この回路深さは、Ansatz回路の回路深さに対して、さらに回路深さ「3」の回路が追加されていることを意味する。
 また「Stabilizer formalism」(比較例)の量子回路の回路深さは「12」である。この回路深さは、Ansatz回路の回路深さに対して、さらに回路深さ「6」の回路が追加されていることを意味する。
 このように、回転操作を示す部分回路を統合することで、回路深さが大きく低減されている。
 〔その他の実施の形態〕
 第2の実施の形態では水素分子の基底エネルギーを算出する場合の例を示したが、第2の実施の形態に示した処理は他の量子化学計算にも適用可能である。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 1,1a 量子回路
 2 第1量子回路
 2a,2b,・・・ 部分回路
 3 第2量子回路
 3a,3b,・・・ 部分回路
 10 情報処理装置
 11 記憶部
 12 処理部

Claims (8)

  1.  計算対象となる分子の電子軌道を表現する波動関数を作成するための第1量子回路と、前記波動関数の基底を変換するための第2量子回路とを含む、変分量子固有値法による量子化学計算を行うための量子回路を取得し、
     前記第1量子回路内での回転操作に適用される第1回転角を、前記第2量子回路内での回転操作を示す部分回路に適用される第2回転角に応じて変更し、
     前記部分回路を前記量子回路から削除する、
     処理をコンピュータに実行させる情報処理プログラム。
  2.  前記第1回転角は、ギブンス回転の回転操作に適用する回転角である、
     請求項1記載の情報処理プログラム。
  3.  2電子励起に対応する第3回転角と前記第2回転角との関係を示す関数式に基づいて、前記第1回転角の変更後の値を計算する、
     請求項1または2記載の情報処理プログラム。
  4.  前記第3回転角から前記第1回転角を求める前記関数式の逆関数に前記第1回転角の変更前の値を入力した場合の前記逆関数の値を求め、得られた前記逆関数の値を前記第2回転角の値から減算し、減算した結果を前記関数式に入力することで得られる前記関数式の値を、変更後の前記第1回転角に決定する、
     請求項3記載の情報処理プログラム。
  5.  前記第2量子回路内の複数の部分回路を、実行順が早い方から順に、削除対象の前記部分回路として選択し、前記部分回路を選択するごとに、選択された前記部分回路に適用する前記第2回転角に応じた前記第1回転角の変更、および選択された前記部分回路の削除処理を実行する、
     請求項1から4までのいずれかに記載の情報処理プログラム。
  6.  前記部分回路を削除した後の前記量子回路に基づいて、前記変分量子固有値法により量子コンピュータにエネルギー値を計算させ、
     前記変分量子固有値法における前記第1回転角の最適化処理により前記第1回転角の値が更新されるごとに、前記第1回転角の最適化処理による更新後の値と前記第2回転角に基づいて、次回の前記量子回路に基づくエネルギー計算に適用する前記第1回転角を計算する、
     処理をさらに実行させる請求項1から5までのいずれかに記載の情報処理プログラム。
  7.  計算対象となる分子の電子軌道を表現する波動関数を作成するための第1量子回路と、前記波動関数の基底を変換するための第2量子回路とを含む、変分量子固有値法による量子化学計算を行うための量子回路を取得し、
     前記第1量子回路内での回転操作に適用される第1回転角を、前記第2量子回路内での回転操作を示す部分回路に適用される第2回転角に応じて変更し、
     前記部分回路を前記量子回路から削除する、
     処理をコンピュータが実行する情報処理方法。
  8.  計算対象となる分子の電子軌道を表現する波動関数を作成するための第1量子回路と、前記波動関数の基底を変換するための第2量子回路とを含む、変分量子固有値法による量子化学計算を行うための量子回路を取得し、
     前記第1量子回路内での回転操作に適用される第1回転角を、前記第2量子回路内での回転操作を示す部分回路に適用される第2回転角に応じて変更し、
     前記部分回路を前記量子回路から削除する処理部、
     を有する情報処理装置。
PCT/JP2022/003792 2022-02-01 2022-02-01 情報処理プログラム、情報処理方法、および情報処理装置 WO2023148806A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2022/003792 WO2023148806A1 (ja) 2022-02-01 2022-02-01 情報処理プログラム、情報処理方法、および情報処理装置
JP2023578211A JPWO2023148806A1 (ja) 2022-02-01 2022-02-01
US18/764,751 US20240362516A1 (en) 2022-02-01 2024-07-05 Computer-readable recording medium storing information processing program, information processing method, and information processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003792 WO2023148806A1 (ja) 2022-02-01 2022-02-01 情報処理プログラム、情報処理方法、および情報処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/764,751 Continuation US20240362516A1 (en) 2022-02-01 2024-07-05 Computer-readable recording medium storing information processing program, information processing method, and information processing device

Publications (1)

Publication Number Publication Date
WO2023148806A1 true WO2023148806A1 (ja) 2023-08-10

Family

ID=87553316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003792 WO2023148806A1 (ja) 2022-02-01 2022-02-01 情報処理プログラム、情報処理方法、および情報処理装置

Country Status (3)

Country Link
US (1) US20240362516A1 (ja)
JP (1) JPWO2023148806A1 (ja)
WO (1) WO2023148806A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090559A1 (ja) 2018-11-04 2020-05-07 株式会社QunaSys ハミルトニアンの励起状態を求めるための方法及びそのためのプログラム
JP2020144400A (ja) 2019-01-24 2020-09-10 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation エンタングルした測定を用いたパウリ文字列のグループ化
US20210287761A1 (en) * 2020-03-12 2021-09-16 River Lane Research Ltd. Symmetry-based quantum computational chemistry

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090559A1 (ja) 2018-11-04 2020-05-07 株式会社QunaSys ハミルトニアンの励起状態を求めるための方法及びそのためのプログラム
JP2020144400A (ja) 2019-01-24 2020-09-10 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation エンタングルした測定を用いたパウリ文字列のグループ化
US20210287761A1 (en) * 2020-03-12 2021-09-16 River Lane Research Ltd. Symmetry-based quantum computational chemistry

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAN YI, CHANGSU CAO, XUSHENG XU, ZHENYU LI, DINGSHUN LV, AND MAN-HONG YUNG: "Circuit-Depth Reduction of Unitary-Coupled-Cluster Ansatz by Energy Sorting", 29 June 2021 (2021-06-29), pages 1 - 10, XP093062385, Retrieved from the Internet <URL:https://arxiv.org/pdf/2106.15210v1.pdf> [retrieved on 20230710] *

Also Published As

Publication number Publication date
JPWO2023148806A1 (ja) 2023-08-10
US20240362516A1 (en) 2024-10-31

Similar Documents

Publication Publication Date Title
Javadi-Abhari et al. Quantum computing with Qiskit
Gokhale et al. Optimized quantum compilation for near-term algorithms with openpulse
Cerezo et al. Higher order derivatives of quantum neural networks with barren plateaus
US20200364601A1 (en) Methods and systems for quantum computing enabled molecular ab initio simulations using quantum-classical computing hardware
US20210034998A1 (en) Quantum System and Method for Solving Bayesian Phase Estimation Problems
Patel et al. Quest: systematically approximating quantum circuits for higher output fidelity
WO2020037301A1 (en) Hybrid quantum-classical computer system and method for performing function inversion
CN115427981A (zh) 用于分子和旋转系统的量子模拟的方法和系统
Yamasaki et al. Time-efficient constant-space-overhead fault-tolerant quantum computation
WO2020246073A1 (en) Information processing device, pubo solver, information processing method and non-transitory storage medium
US12067458B2 (en) Parameter initialization on quantum computers through domain decomposition
WO2021078827A1 (en) Precision-preserving qubit reduction based on spatial symmetries in fermionic systems
Tamiya et al. Calculating nonadiabatic couplings and Berry's phase by variational quantum eigensolvers
Patel et al. Robust and resource-efficient quantum circuit approximation
LeCompte et al. Machine learning-based qubit allocation for error reduction in quantum circuits
WO2023148806A1 (ja) 情報処理プログラム、情報処理方法、および情報処理装置
Rodero et al. Calibration of cohorts of virtual patient heart models using Bayesian history matching
Viszlai et al. Matching generalized-bicycle codes to neutral atoms for low-overhead fault-tolerance
Patel et al. Charter: Identifying the most-critical gate operations in quantum circuits via amplified gate reversibility
Miyamoto et al. Extracting a function encoded in amplitudes of a quantum state by tensor network and orthogonal function expansion
Wang et al. Enabling scalable vqe simulation on leading hpc systems
JP2021060714A (ja) 次数変換装置、次数変換方法、および次数変換プログラム
Linn et al. Resource analysis of quantum algorithms for coarse-grained protein folding models
Hobday et al. Variance minimisation on a quantum computer of the Lipkin-Meshkov-Glick model with three particles
Sumeet et al. Assessing the Precision of Quantum Simulation of Many-Body Effects in Atomic Systems Using the Variational Quantum Eigensolver Algorithm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924719

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023578211

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022924719

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022924719

Country of ref document: EP

Effective date: 20240902