WO2023148806A1 - 情報処理プログラム、情報処理方法、および情報処理装置 - Google Patents
情報処理プログラム、情報処理方法、および情報処理装置 Download PDFInfo
- Publication number
- WO2023148806A1 WO2023148806A1 PCT/JP2022/003792 JP2022003792W WO2023148806A1 WO 2023148806 A1 WO2023148806 A1 WO 2023148806A1 JP 2022003792 W JP2022003792 W JP 2022003792W WO 2023148806 A1 WO2023148806 A1 WO 2023148806A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- quantum
- rotation angle
- rotation
- quantum circuit
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 30
- 238000003672 processing method Methods 0.000 title claims description 8
- 238000004364 calculation method Methods 0.000 claims abstract description 49
- 230000005428 wave function Effects 0.000 claims abstract description 15
- 230000005284 excitation Effects 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 45
- 238000012545 processing Methods 0.000 claims description 45
- 238000005457 optimization Methods 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 21
- 230000008859 change Effects 0.000 claims description 4
- 238000003077 quantum chemistry computational method Methods 0.000 description 37
- 238000010586 diagram Methods 0.000 description 29
- 239000002096 quantum dot Substances 0.000 description 28
- 238000006243 chemical reaction Methods 0.000 description 20
- 230000010354 integration Effects 0.000 description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 17
- 230000006870 function Effects 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 9
- 230000007704 transition Effects 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000004776 molecular orbital Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005274 electronic transitions Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
- G06N10/60—Quantum algorithms, e.g. based on quantum optimisation, quantum Fourier or Hadamard transforms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
- G06N10/20—Models of quantum computing, e.g. quantum circuits or universal quantum computers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
- G06N10/40—Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
Definitions
- the present invention relates to an information processing program, an information processing method, and an information processing apparatus.
- NISQ Noisy Intermediate-Scale Quantum computer
- NISQ is a medium-sized quantum computer without error correction.
- One of the uses of NISQ is calculation by the variational quantum eigenvalue method (VQE: Variational Quantum Eigensolver).
- VQE is a variational algorithm for finding the ground state of a quantum many-body system.
- VQE can be used, for example, to perform quantum chemical calculations in NISQ.
- Quantum chemical calculations are calculations for obtaining molecular state and physical property information by solving the Schrödinger equation.
- various researches are underway toward practical application of calculations using VQE.
- VQE As a technology related to VQE, for example, a method to improve the efficiency of VQE has been proposed. Techniques have also been proposed for improving the efficiency of calculations for finding the excited state of the Hamiltonian.
- the time required for gate processing is several ns to several hundred ns, and the calculation time increases as the circuit depth increases.
- one quantum computation (initialization of qubits, gate operation, measurement) is required to be completed within the duration of the qubit (coherence time). If the circuit depth is too large, the calculation cannot be completed within the coherence time, and the calculation result cannot be obtained.
- quantum computation an error occurs stochastically for one gate operation. If the circuit depth is large (the number of gate operations is large), errors accumulate in the quantum computation process, and the effect of the errors on the computation results becomes large.
- the present invention aims at reducing the circuit depth of quantum circuits.
- One proposal provides an information processing program that causes a computer to execute the following processes.
- the computer uses a variational quantum eigenvalue method, including a first quantum circuit for creating a wave function representing the electron orbit of a molecule to be calculated, and a second quantum circuit for converting the basis of the wave function.
- a quantum circuit for performing quantum chemical calculations.
- the computer modifies a first rotation angle applied to the rotation operation within the first quantum circuit according to a second rotation angle applied to the partial circuit representing the rotation operation within the second quantum circuit.
- the computer then removes the subcircuit from the quantum circuit.
- the circuit depth of the quantum circuit can be reduced.
- FIG. 1 is a diagram showing an example of classical computer hardware
- FIG. 1 is a block diagram showing an example of the functionality of a classical computer for quantum chemistry calculations with VQE
- FIG. 2 is a diagram showing an example of a VQE quantum circuit
- FIG. 2 is a diagram showing an example of an Ansatz circuit by Jastrow factor Ansatz
- It is a figure which shows an example of a basis conversion circuit.
- It is a figure which shows an example of the partial circuit of the 1st two-electron excitation operation.
- FIG. 4 is a flow chart showing an example of a procedure for quantum chemical calculation by VQE; It is a figure which shows an example of the calculation method of rotation angle (alpha).
- FIG. 4 is a diagram showing an example of a method of calculating a parameter ⁇ ';
- FIG. 11 is a diagram showing an example of a method of calculating a rotation angle ⁇ ′ after integration;
- FIG. 5 is a diagram showing an example of optimization of the rotation angle ⁇ ';
- FIG. 10 is a diagram showing a first example of rotation integration;
- 10 is a diagram showing a second example of rotation integration
- 10 is a flowchart illustrating an example of a procedure for quantum circuit generation processing
- FIG. 12 illustrates an example of a connection management table
- FIG. 4 is a flow chart showing an example of a procedure of base energy calculation processing
- It is a figure which shows an example of the quantum chemical calculation of a hydrogen molecule.
- It is a figure which shows an example of the quantum circuit for calculating
- requiring the Hamiltonian of the 2nd term of a hydrogen molecule It is a figure which shows an example of the comparison result of the circuit depth.
- the first embodiment is an information processing method for reducing the circuit depth of a quantum circuit for performing quantum chemical calculations by VQE.
- FIG. 1 is a diagram showing an example of an information processing method according to the first embodiment.
- FIG. 1 shows an information processing apparatus 10 for carrying out the information processing method according to the first embodiment.
- the information processing apparatus 10 can implement the information processing method according to the first embodiment by executing an information processing program in which a predetermined processing procedure is described, for example.
- the information processing device 10 has a storage unit 11 and a processing unit 12 .
- the storage unit 11 is, for example, a memory or a storage device that the information processing device 10 has.
- the processing unit 12 is, for example, a processor or an arithmetic circuit included in the information processing device 10 .
- the storage unit 11 stores information on molecules to be calculated, the quantum circuit 1, and the like.
- the processing unit 12 uses a quantum computer to generate a quantum circuit 1 for performing quantum chemical calculations by VQE. For example, the processing unit 12 acquires the quantum circuit 1 for performing quantum chemical calculations by VQE. If the quantum circuit 1 is already stored in the storage unit 11 , the processing unit 12 acquires the quantum circuit 1 from the storage unit 11 .
- the processing unit 12 may also generate the quantum circuit 1 based on information about molecules to be calculated.
- the quantum circuit 1 includes a first quantum circuit 2 for creating a wave function that expresses the electron orbit of a molecule to be calculated, and a second quantum circuit 3 for converting the basis of the wave function.
- the first quantum circuit 2 includes, for example, a plurality of partial circuits 2a, 2b, . . . with different applied rotation angles.
- the first rotation angle applied to the first quantum circuit 2 is, for example, the rotation angle applied to the rotation operation of the Givens rotation.
- the second quantum circuit 3 also includes a plurality of partial circuits 3a, 3b, . . . that indicate rotation operations.
- the processing unit 12 converts the first rotation angles ⁇ 1 , ⁇ 2 , . is changed according to the second rotation angles ⁇ 1 , ⁇ 2 , .
- the first rotation angles ⁇ 1 , ⁇ 2 , . . . is changed to
- the processing unit 12 deletes the partial circuit to be deleted from the quantum circuit 1 to generate the quantum circuit 1a.
- the quantum circuit 1a is generated by deleting the partial circuit 3a from the quantum circuit 1.
- FIG. The processing unit 12 stores the generated quantum circuit 1a in the storage unit 11, for example.
- the partial circuit 3a that is executed first in the second quantum circuit 3 is integrated into the first quantum circuit 2.
- the partial circuit 3a is deleted from the integrated quantum circuit 1a.
- the circuit depth of the quantum circuit 1a is reduced.
- the processing unit 12 can target a plurality of partial circuits among the partial circuits 3a, 3b, . . . included in the second quantum circuit 3 to be deleted. In that case, the processing unit 12 selects, for example, a plurality of partial circuits 3a, 3b, . Each time a partial circuit is selected, the processing unit 12 changes the first rotation angle according to the second rotation angle applied to the selected partial circuit, and deletes the selected partial circuit. Thereby, the circuit depth of the quantum circuit 1a after integration can be further reduced.
- the processing unit 12 calculates the changed first rotation angles ⁇ 1 ', ⁇ 2 ', . can be calculated.
- the third rotation angle indirectly expresses the electronic transition intensity, which indicates the ease of transition between electronic states, by using an angle.
- the processing unit 12 inputs the value of the first rotation angle before change to the inverse function of the functional expression for obtaining the second rotation angle from the third rotation angle, and obtains the value of the inverse function at that time.
- the processing unit 12 subtracts the value of the obtained inverse function from the value of the second rotation angle.
- the processing unit 12 inputs the result of the subtraction to the above functional expression to obtain the value of the functional expression.
- the processing unit 12 determines the finally obtained value of the functional expression as the changed first rotation angle.
- the second embodiment is a computer system that uses a quantum computer to perform quantum chemical calculations by VQE.
- FIG. 2 is a diagram showing an example of the system configuration of the second embodiment.
- a classical computer 100 and a quantum computer 200 are connected.
- the classical computer 100 is a von Neumann computer, and performs processes such as generation of quantum circuits and optimization of parameters used for calculation of the quantum circuits.
- the quantum computer 200 is a computer that performs quantum chemical calculations by performing quantum gate-based operations on quantum bits.
- the quantum computer 200 performs quantum chemical calculations of the VQE algorithm according to the quantum circuit and parameters generated by the classical computer 100 to calculate expected energy values.
- FIG. 3 is a diagram showing an example of the hardware of a classical computer.
- a classical computer 100 is entirely controlled by a processor 101 .
- a memory 102 and a plurality of peripheral devices are connected to the processor 101 via a bus 109 .
- Processor 101 may be a multiprocessor.
- the processor 101 is, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or a DSP (Digital Signal Processor).
- processor 101 executing a program may be realized by an electronic circuit such as ASIC (Application Specific Integrated Circuit) or PLD (Programmable Logic Device).
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- the memory 102 is used as the main storage device of the classical computer 100.
- the memory 102 temporarily stores at least part of an OS (Operating System) program and application programs to be executed by the processor 101 .
- the memory 102 stores various data used for processing by the processor 101 .
- a volatile semiconductor memory device such as RAM (Random Access Memory) is used.
- Peripheral devices connected to the bus 109 include a storage device 103 , a GPU (Graphics Processing Unit) 104 , an input interface 105 , an optical drive device 106 , a device connection interface 107 and a network interface 108 .
- a storage device 103 a storage device 103 , a GPU (Graphics Processing Unit) 104 , an input interface 105 , an optical drive device 106 , a device connection interface 107 and a network interface 108 .
- GPU Graphics Processing Unit
- the storage device 103 electrically or magnetically writes data to and reads data from a built-in recording medium.
- the storage device 103 is used as an auxiliary storage device for the classical computer 100 .
- the storage device 103 stores an OS program, application programs, and various data.
- an HDD Hard Disk Drive
- an SSD Solid State Drive
- the GPU 104 is an arithmetic unit that performs image processing, and is also called a graphics controller.
- a monitor 21 is connected to the GPU 104 .
- the GPU 104 displays an image on the screen of the monitor 21 according to instructions from the processor 101 .
- Examples of the monitor 21 include a display device using an organic EL (Electro Luminescence), a liquid crystal display device, and the like.
- a keyboard 22 and a mouse 23 are connected to the input interface 105 .
- the input interface 105 transmits signals sent from the keyboard 22 and mouse 23 to the processor 101 .
- the mouse 23 is an example of a pointing device, and other pointing devices can also be used.
- Other pointing devices include touch panels, tablets, touchpads, trackballs, and the like.
- the optical drive device 106 reads data recorded on the optical disc 24 or writes data to the optical disc 24 using laser light or the like.
- the optical disc 24 is a portable recording medium on which data is recorded so as to be readable by light reflection.
- the optical disc 24 includes DVD (Digital Versatile Disc), DVD-RAM, CD-ROM (Compact Disc Read Only Memory), CD-R (Recordable)/RW (ReWritable), and the like.
- the device connection interface 107 is a communication interface for connecting peripheral devices to the classical computer 100 .
- the device connection interface 107 can be connected to the memory device 25 and the memory reader/writer 26 .
- the memory device 25 is a recording medium equipped with a communication function with the device connection interface 107 .
- the memory reader/writer 26 is a device that writes data to the memory card 27 or reads data from the memory card 27 .
- the memory card 27 is a card-type recording medium.
- the network interface 108 is connected to the quantum computer 200.
- the network interface 108 transmits and receives data to and from the quantum computer 200 .
- the classical computer 100 can implement the processing functions of the second embodiment with the above hardware.
- the apparatus shown in the first embodiment can also be realized by hardware similar to the classical computer 100 shown in FIG.
- the classical computer 100 implements the processing functions of the second embodiment, for example, by executing a program recorded on a computer-readable recording medium.
- a program describing the processing content to be executed by the classical computer 100 can be recorded in various recording media.
- a program to be executed by the classical computer 100 can be stored in the storage device 103 .
- the processor 101 loads at least part of the program in the storage device 103 into the memory 102 and executes the program.
- the program to be executed by the classical computer 100 can also be recorded in a portable recording medium such as the optical disk 24, memory device 25, memory card 27, or the like.
- a program stored in a portable recording medium can be executed after being installed in the storage device 103 under the control of the processor 101, for example.
- the processor 101 can read and execute the program directly from the portable recording medium.
- the classical computer 100 can perform quantum chemical calculation by VQE in cooperation with the quantum computer 200 by the hardware shown in FIG.
- FIG. 4 is a block diagram showing an example of the functionality of a classical computer for quantum chemical calculations by VQE.
- the classical computer 100 has a quantum circuit generator 110 , a quantum computation manager 120 and an optimization computation unit 130 .
- the quantum circuit generation unit 110 generates a quantum circuit for calculating the energy of quantum many-body systems such as molecules. For example, the quantum circuit generation unit 110 generates a quantum circuit using the VQE algorithm and performs processing to reduce the circuit depth of the quantum circuit. The quantum circuit generation unit 110 transmits the quantum circuit with reduced circuit depth to the quantum computation management unit 120 .
- the quantum computation management unit 120 instructs the quantum computer 200 to perform energy computation based on the generated quantum circuit. For example, the quantum computation manager 120 sets a plurality of parameters ⁇ related to gate operations in quantum gates in the quantum circuit. Quantum computation management unit 120 sets initial values for the values of a plurality of parameters ⁇ before the first quantum computation. The quantum computation manager 120 acquires from the quantum computer 200 energy computation results based on a quantum circuit parameterized by a plurality of parameters ⁇ . After acquiring the energy calculation result, the quantum computation management unit 120 determines whether or not the energy has converged. If the energy has not converged, the quantum computation manager 120 instructs the optimization calculator 130 to optimize the parameters.
- the optimization calculation unit 130 updates the values of all or part of the multiple parameters ⁇ in the direction of decreasing the energy value for each quantum calculation. After completing the optimization calculation, the optimization calculation unit 130 notifies the quantum calculation management unit 120 of the updated values of the plurality of parameters ⁇ .
- each element in the classical computer 100 shown in FIG. 4 can be realized, for example, by causing the computer to execute a program module corresponding to the element.
- a method for calculating the ground energy of a molecule by VQE will be described.
- the energy E obtained in the molecular basis energy calculation by VQE is represented by the following equation (1).
- ⁇ indicates the quantum state.
- H indicates the Hamiltonian.
- the Hamiltonian is a function of the intermolecular distance R.
- ⁇ is the rotation angle used as an optimization variable.
- the ground energy is the lowest energy. Therefore, when the equation (1) is repeatedly calculated while varying the rotation angle ⁇ , the lowest energy among the energies obtained in multiple calculations becomes the base energy E 0 .
- the formula for the ground energy E 0 is:
- FIG. 5 is a diagram illustrating an example of a VQE quantum circuit.
- a quantum circuit 30 for computing the i-th Hamiltonian H i of VQE includes an Ansatz circuit 31 , a basis change circuit 32 and a Z-axis measurement 33 .
- the Ansatz circuit 31 is a quantum circuit part for creating the wave function
- the wave function represented by the Ansatz circuit 31 is a superposition state (
- ⁇ ( ⁇ )> a
- the basis conversion circuit 32 is a quantum circuit part that converts the basis in order to cause the generated wave function
- the matrix M corresponding to the basis conversion circuit 32 By causing the matrix M corresponding to the basis conversion circuit 32 to act on the Hamiltonian H i converted into a diagonal matrix, the Z-axis measurement of the Hamiltonian H i becomes possible.
- Acting on a matrix M is expressed by multiplying the Hermitian conjugate (M ⁇ ) of the matrix M from the left of the operand and multiplying the matrix M from the right of the operand.
- the quantum circuit 30 for quantum chemical calculation by VQE is provided with the Ansatz circuit 31 in the front stage and the basis conversion circuit 32 in the rear stage. Then, after manipulation by the basis conversion circuit 32, the quantum state is measured by the Z-axis measurement 33.
- Jastrow factor ansatz can express chemical one-electron excitation and two-electron excitation. Also, Jastrow factor anthesis has the advantage that the circuit depth can be shallower than other anthesis that can express chemical one-electron excitation and two-electron excitation.
- FIG. 6 is a diagram showing an example of an Ansatz circuit according to Jastrow factor ansatz.
- Ansatz circuit 31 operates four quantum gates. Let the quantum gates to be operated be q0 , q1 , q2 , and q3 .
- the Ansatz circuit 31 of the two-electron excitation representation by Jastrow factor Ansatz is divided into three partial circuits 31a to 31c.
- the partial circuits 31a and 31c both exhibit single-electron excitation due to Givens rotation.
- Subcircuit 31b exhibits phase rotation.
- Subcircuit 31a and subcircuit 31c each include two Givens rotations.
- the Givens rotations G 1 ( ⁇ 1 ), G 2 ( ⁇ 2 ), G 3 ( ⁇ 3 ) contain two ⁇ iswap gates and a rotation gate about the Z axis.
- the Givens rotation G 4 ( ⁇ 4 ) contains two ⁇ iswap gates.
- the partial circuit 31a showing one-electron excitation shows the Givens rotation with respect to the initial state
- phase rotation P( ⁇ 5 ) be the phase rotation indicated by the partial circuit 31b. If the phase rotation P( ⁇ 5 ) is expressed by an equation, it becomes "a
- each rotation gate is set to a rotation angle according to the value of the optimization variable applied.
- the rotation angle of the rotation gate with respect to qubit q 0 in the Givens rotation G 1 ( ⁇ 1 ) is "- ⁇ 1 " and is denoted as "R z (- ⁇ 1 )".
- the rotation angle of the rotation gate with respect to qubit q 1 in the Givens rotation G 1 ( ⁇ 1 ) is "2 ⁇ 2 + ⁇ ” and is represented as "R z (2 ⁇ 2 + ⁇ )”.
- the rotation angle of the rotation gate with respect to qubit q 2 in the Givens rotation G 1 ( ⁇ 1 ) is " ⁇ 1 + ⁇ ” and is represented as "R z ( ⁇ 1 + ⁇ )".
- the rotation angle of the rotation gate for qubit q 3 in the Givens rotation G 1 ( ⁇ 1 ) is "- ⁇ 2 " and is denoted as "R z (- ⁇ 2 )”.
- the rotation angle of the rotation gate for each of the four qubits in the Givens rotation G 2 ( ⁇ 2 ) is '0' and is denoted as 'R z (0)'.
- the rotation angle of the first rotation gate for qubit q 2 at phase rotation P( ⁇ 5 ) is "0" and the rotation angle of the second rotation gate is "- ⁇ /2".
- These rotation gates are denoted as “R z (0)” and “R z (- ⁇ /2)", respectively.
- the rotation angle of the first rotation gate for qubit q 3 at phase rotation P( ⁇ 5 ) is “0”, the rotation angle of the second rotation gate is “ ⁇ /2”, and 3 The rotation angle of the first rotation gate is " ⁇ /2”.
- the rotation angle of the rotation gate with respect to qubit q 0 in the Givens rotation G 3 ( ⁇ 3 ) is “ ⁇ 3 ” and is denoted as “R z ( ⁇ 3 )”.
- the rotation angle of the rotation gate for qubit q 1 in the Givens rotation G 3 ( ⁇ 3 ) is "- ⁇ 4 " and is denoted as "R z (- ⁇ 4 )”.
- the rotation angle of the rotation gate with respect to qubit q 2 in the Givens rotation G 3 ( ⁇ 3 ) is " ⁇ 3 + ⁇ ” and is represented as "R z ( ⁇ 3 + ⁇ )".
- the rotation angle of the rotation gate with respect to qubit q 3 in the Givens rotation G 3 ( ⁇ 3 ) is " ⁇ 4 + ⁇ ” and is represented as "R z ( ⁇ 4 + ⁇ )”.
- the circuit depth of the Ansatz circuit 31 is O(N) (N is the number of qubits) in order notation.
- the circuit depth of the basis conversion circuit 32 is O(N) when commuting pauli grouping is used, and is N when basis rotation is used.
- various circuits have been considered for reducing the circuit depth of quantum circuits for quantum chemical calculations using VQE, but there is a demand for further reduction of the circuit depth.
- FIG. 7 is a diagram showing an example of a basis conversion circuit.
- the basis conversion circuit 32 includes, for example, three partial circuits 32a-32c.
- the partial circuit 32a is a circuit (two-electron excitation circuit) indicating the first two-electron excitation operation.
- the partial circuit 32b is a circuit (one-electron rotation circuit) indicating a one-electron rotation operation.
- the partial circuit 32c is a circuit (two-electron excitation circuit) indicating the second two-electron excitation operation.
- the partial circuits 32a to 32c of the basis conversion circuit 32 are circuits as shown in FIGS. 8 to 10 when performing quantum chemical calculations of hydrogen molecules, for example.
- FIG. 8 is a diagram showing an example of a partial circuit for the first two-electron excitation operation.
- a partial circuit 32a shown in FIG. 8 is composed of a Hadamard gate, a CNOT gate, a CZ gate, and a rotation gate about the Y axis.
- FIG. 9 is an example of a partial circuit showing a one-electron rotation operation.
- a partial circuit 32b shown in FIG. 9 is composed of a ⁇ iswap gate and a rotation gate around the Z-axis.
- FIG. 8 is a diagram showing an example of a partial circuit for the first two-electron excitation operation.
- a partial circuit 32a shown in FIG. 8 is composed of a Hadamard gate, a CNOT gate, a CZ gate, and a rotation gate about the Y axis.
- a partial circuit 32c shown in FIG. 10 is composed of a Hadamard gate, a CNOT gate, a CZ gate, and a rotation gate around the Y axis.
- the quantum circuit generator 110 integrates the partial circuits 32a to 32c shown in FIGS. 7 to 10 into the Ansatz circuit 31 in order from the partial circuit to be executed first.
- the quantum circuit generation unit 110 generates a quantum circuit that integrates an Ansatz circuit 31 parameterized by an optimization variable ⁇ and a basis conversion circuit 32 that performs a rotation operation at a specific rotation angle ⁇ ( ⁇ is a real number).
- f(x) is a function expression for determining the optimization variable ⁇ from the rotation angle, where x is the rotation angle corresponding to the two-electron excitation of the Jastrow factor anthesis.
- the rotation angle corresponding to the two-electron excitation indirectly expresses the easiness of electron transition between states (called electron transition strength or electron excitation strength).
- electron transition strength or electron excitation strength For example, the state before excitation is
- ⁇ > be the state created by the rotation angle ⁇ corresponding to the two-electron excitation. Then, "
- ⁇ > cos ⁇
- the quantum circuit 30 as shown in FIGS. 5 to 10 is the quantum circuit before the circuit depth reduction process is applied. Generating a quantum circuit with a reduced circuit depth and calculating a base value of energy based on the quantum circuit will be described in detail below.
- FIG. 11 is a flow chart showing an example of a procedure for quantum chemical calculation by VQE. The processing shown in FIG. 11 will be described below along with the step numbers.
- the quantum circuit generator 110 defines a computation target and a Hamiltonian. For example, the calculation target is designated by the user. For example, if the calculation target is a hydrogen molecule, the quantum circuit generation unit 110 acquires a predefined Hamiltonian of the hydrogen molecule.
- the quantum circuit generator 110 calculates the rotation angle ⁇ and the parameter ⁇ '.
- the quantum circuit generation unit 110 generates a quantum circuit whose circuit depth is reduced by integrating a plurality of partial circuits representing rotation operations. Details of the quantum circuit generation process will be described later (see FIG. 18).
- Step S104 The quantum computation management unit 120 controls the quantum computer 200 to compute the basis energy.
- VQE is used to calculate the basis energy, and the optimization calculation unit 130 optimizes the optimization variable ⁇ . Details of the base energy calculation process will be described later (see FIG. 20).
- Step S105 The quantum computation management unit 120 outputs the finally found optimal solution (the state where the energy is the minimum value). Quantum chemical calculation by VQE is performed in such a procedure. Each process of the quantum chemical calculation will be described in detail below.
- FIG. 12 is a diagram showing an example of a method of calculating the rotation angle ⁇ .
- H i ' be a matrix obtained by diagonalizing the divided Hamiltonian H i .
- a basis conversion circuit (unitary matrix) M for diagonalizing the Hamiltonian H i can be represented by a set of unitary rotation operations.
- Each of the plurality of unitary rotation operations is represented by a subcircuit 41, 42, . . . , 4n.
- FIG. 13 is a diagram showing an example of a method of calculating the parameter ⁇ '.
- optimization variables ⁇ ⁇ 1 , ⁇ 2 , . . . ⁇ to be applied to the partial circuits 51, 52, .
- the number (m) of the partial circuits 51, 52, . . . The number (n) of the partial circuits 41, 42, . . . That is, the circuit depth is shortened.
- FIG. 14 is a diagram showing an example of a method of calculating the rotation angle ⁇ ' after integration.
- a graph 60 shown in FIG. 14 shows the relationship between the rotation angle x (representing electron transition intensity) corresponding to two-electron excitation and the rotation angle ⁇ applied to the Jastrow factor anthesis.
- the horizontal axis of the graph 60 is the rotation angle x corresponding to the two-electron excitation, and the vertical axis is the rotation angle ⁇ applied to the Jastrow factor anthesis.
- the rotation angle applied to the Jastrow factor anthesis is determined according to the electron transition intensity in the molecule to be calculated.
- the electron transition intensity is represented by the rotation angle x corresponding to the two-electron excitation
- the integrated rotation angle ⁇ ' is calculated based on the rotation angle ⁇ and the rotation angle ⁇ . That is, the quantum circuit is parameterized using the rotation angle ⁇ '.
- the rotation angle ⁇ is repeatedly updated by optimization calculations.
- the rotation angle ⁇ has a different value for each quantum circuit. Therefore, the rotation angle .theta.' is calculated for each quantum circuit used in the quantum chemical calculation by VQE each time the rotation angle .theta. is updated.
- FIG. 15 is a diagram showing an example of optimization of the rotation angle ⁇ '.
- a plurality of divided Hamiltonians H 1 , H 2 , . . . , H N
- a plurality of calculated Hamiltonians are added by an adder 210 to obtain an expected value of the energy of the entire system.
- the optimization calculator 130 optimizes the rotation angle ⁇ based on the expected energy value. That is, the optimization calculation unit 130 updates the rotation angles ⁇ 1 , ⁇ 2 , .
- the rotation angle ⁇ when the rotation angle ⁇ is updated by the optimization process, the rotation angle ⁇ ′ corresponding to the value of the updated rotation angle ⁇ of the quantum circuit for each of the plurality of quantum circuits 201, 202, .
- the rotation angle ⁇ ' of the quantum circuit 201 is "f( ⁇ , ⁇ 1 )".
- FIG. 16 is a diagram showing a first example of rotation integration. It is assumed that the quantum circuit 61 before integration shown in FIG. 16 represents, for example, electron transition from the first quantum bit of four quantum bits to the third quantum bit.
- the second rotation operation is performed on the same quantum bit as the first rotation operation.
- the two rotation operations can be integrated by adding the rotation angles of the two rotation operations. For example, the rotation angle of the first rotation operation of the quantum circuit 61 is ⁇ 1 , and the rotation angle of the second rotation operation is ⁇ 2 .
- these two rotation operations are integrated, they can be integrated into a quantum circuit 62 representing a rotation operation resulting in a rotation of ⁇ 1 + ⁇ 2 .
- FIG. 17 is a diagram showing a second example of rotation integration. It is assumed that the quantum circuit 63 before integration shown in FIG. 17 represents, for example, electron transition from the first quantum bit of four quantum bits to the third quantum bit.
- the third rotation operation is performed on the same quantum bit as the first rotation operation.
- the second rotation operation of quantum circuit 63 is a rotation operation on a quantum bit different from the first and third rotation operations.
- the three rotation operations can be integrated.
- the rotation angle of the first rotation operation of the quantum circuit 63 is ⁇ 1
- the rotation angle of the third rotation operation is ⁇ 3 .
- FIG. 18 is a flowchart illustrating an example of the procedure of quantum circuit generation processing. The processing shown in FIG. 18 will be described below along with the step numbers.
- the quantum circuit generator 110 generates an Ansatz circuit of Jastrow factor ansatz.
- the quantum circuit generator 110 generates a basis conversion circuit.
- the quantum circuit generator 110 reads the connection flag.
- the combination flag is a flag indicating whether or not to perform calculation for each combination of qubits.
- the connection flag is indicated, for example, in the connection management table.
- FIG. 19 is a diagram showing an example of a join management table.
- the combination management table 111 registers a record for each combination of four qubits among qubits that can be used in the quantum computer 200 .
- Each record contains the first excitation source (excitation source 1), the second excitation source (excitation source 2), the first excitation destination (excitation destination) in association with the pair number of the generated pair. 1), the number of the quantum bit corresponding to each of the second excitation destination (excitation destination 2) is set. Further, each record is set with a connection flag indicating whether or not to perform quantum chemical calculation by VQE for the set combination of quantum bit numbers. For example, if the connection flag is "Yes", it indicates that the calculation is to be performed, and if the connection flag is "No", it indicates that the calculation is not to be performed.
- the connection management table 111 is stored in the memory 102 or the storage device 103, for example.
- the quantum circuit generator 110 can read the connection flag from the connection management table 111 .
- values are set when the number of qubits is 10.
- qubits 0 to 3 are used as excitation sources.
- the 4th to 9th qubits are used as excitation destinations.
- the quantum circuit generator 110 selects a set of four quantum bits. For example, the quantum circuit generation unit 110 selects a set of quantum bits set in the record in order from the top record in the connection management table 111 .
- the quantum circuit generation unit 110 integrates the first two-electron excitation circuit in the basis conversion circuit into the Ansatz circuit for the quantum circuit for quantum chemical calculation by VQE corresponding to the selected set of qubits. .
- the quantum circuit generation unit 110 integrates the one-electron rotation circuit in the basis conversion circuit into the Ansatz circuit for the quantum circuit of the quantum chemical calculation by VQE corresponding to the selected set of quantum bits.
- the quantum circuit generation unit 110 integrates the second two-electron excitation circuit in the basis conversion circuit into the Ansatz circuit for the quantum circuit for quantum chemical calculation by VQE corresponding to the selected set of qubits. .
- the second two-electron excitation circuit cannot be integrated into the Ansatz circuit.
- a second two-electron excitation circuit can be integrated if the molecular orbitals have symmetry. If the integration is not possible, the integration processing of the second two-electron excitation circuit is skipped.
- Step S208 The quantum circuit generation unit 110 determines whether or not all pairs of quantum bits have been selected. If all pairs have been selected, quantum circuit generation section 110 ends the quantum circuit generation process. If there is an unselected qubit pair, quantum circuit generator 110 advances the process to step S204.
- FIG. 20 is a flowchart illustrating an example of a procedure for base energy calculation processing. The processing shown in FIG. 20 will be described below along with the step numbers.
- the quantum computation management unit 120 instructs the quantum computer 200 to execute energy computation by designating the quantum circuit corresponding to the set of quantum bits whose connection flag is YES as the computation target.
- Step S302 The quantum computer 200 executes in parallel calculations based on each quantum circuit designated as a calculation target. This gives the value of the Hamiltonian for each quantum circuit.
- the quantum computer 200 calculates the expected value of the overall energy by totaling the Hamiltonian values for each quantum circuit.
- the quantum computer 200 transmits the calculated expected value of energy to the quantum computation manager 120 .
- Step S304 The quantum computation management unit 120 determines whether or not to terminate the optimization process of the rotation angle ⁇ under the current computation conditions. For example, the quantum computation management unit 120 determines to terminate the optimization process of the rotation angle ⁇ when the difference between the energy value calculated immediately before and the energy value of this time is equal to or less than a predetermined value. If the quantum computation management unit 120 determines to terminate the optimization process of the rotation angle ⁇ , the process proceeds to step S307. If the quantum computation management unit 120 determines to continue the optimization process of the rotation angle ⁇ , the process proceeds to step S305.
- the optimization calculation unit 130 performs optimization calculation of ⁇ using a predetermined algorithm.
- updated values of the rotation angles ⁇ ( ⁇ 1 , ⁇ 2 , . . . ) are calculated so that the expected value of energy is reduced.
- Step S306 The quantum computation management unit 120 optimizes the rotation angle ⁇ ' for each quantum circuit based on the rotation angle ⁇ updated by the optimization process and the value of ⁇ for each quantum circuit. After that, the quantum computation management unit 120 advances the process to step S301.
- the quantum computation management unit 120 acquires the last calculated expected value of energy as the base energy corresponding to the current state of the connection flag. [Step S308] The quantum computation management unit 120 determines whether or not the difference between the acquired base energy and the base energy before updating the connection flag is ⁇ E (preset value) or less. If the difference is ⁇ E or less, the quantum computation management unit 120 terminates the basis energy computation process. If the difference is greater than ⁇ E, quantum computation manager 120 advances the process to step S309.
- Step S309 The quantum computation management unit 120 updates the connection flag. For example, the quantum computation management unit 120 changes the values of the connection flags of some records in the connection management table 111 . After that, the quantum computation management unit 120 advances the process to step S301.
- the ground energy finally obtained in this way is the ground energy obtained by quantum chemical calculation by VQE.
- the quantum circuit executed by the quantum computer 200 in the basis energy calculation has a reduced circuit depth due to the integration of partial circuits representing rotation operations. As a result, the computation can be completed within the coherence time in the quantum computer 200, and the probability of error occurrence can be reduced.
- FIG. FIG. 21 is a diagram showing an example of quantum chemical calculation of a hydrogen molecule.
- a hydrogen molecule has one occupied orbital and one unoccupied orbital. For each orbit, there are an upward spin (up spin) and a downward spin (down spin) as electron spin directions.
- up spin up spin
- down spin downward spin
- a quantum bit is assigned for each spin direction of each orbital.
- four qubits are used to determine the ground energy.
- the Hamiltonian 70 of the hydrogen molecule is divided into the first term (H 1 ) and the second term (H 2 ).
- the observables shown in the observable group 71 are measured.
- the observables shown in the observable group 71 need only be measured along the Z axis, so processing such as integration of partial circuits is unnecessary.
- the observables shown in the observable group 72 are measured.
- the quantum circuit for measuring the observables shown in the observable group 72 can reduce the circuit depth by integrating the partial circuits showing the rotation operation.
- FIG. 22 is a diagram showing an example of a quantum circuit for obtaining the Hamiltonian of the first term of the hydrogen molecule.
- a quantum circuit 80 for obtaining the Hamiltonian of the first term includes partial circuits 81 to 83 similar to the Ansatz circuit 31 and the partial circuits 31a to 31c, respectively, shown in FIG.
- For this quantum circuit 80 no integration of sub-circuits indicating rotation operations is performed. Therefore, the rotation angles applied to the Givens rotations included in the partial circuits 81 to 83 in the quantum circuit 80 are not changed, and ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 and ⁇ 5 are applied as they are.
- FIG. 23 is a diagram showing an example of a quantum circuit for obtaining the Hamiltonian of the second term of the hydrogen molecule.
- Quantum circuit 90 for obtaining the Hamiltonian of the second term includes partial circuits 91-93 similar to Ansatz circuit 31 and partial circuits 31a-31c, respectively, shown in FIG.
- ⁇ 5 is fixed at “ ⁇ /2”.
- " ⁇ 1 ', ⁇ 2 ', ⁇ 3 ', ⁇ 4 '" are obtained in order to integrate the partial circuit 32a.
- the calculation formula is as follows.
- a partial circuit 32a in the basis conversion circuit 32 can be integrated. That is, the partial circuit 32a can be deleted from the quantum circuit for quantum chemical calculation by VQE.
- the one-electron rotation operation subcircuit 32b (see FIG. 9) of the basis conversion circuit 32 has a rotation angle ⁇ 1 and a rotation angle ⁇ 2 .
- the two rotation angles ( ⁇ 3 , ⁇ 4 ) that apply to the Givens rotation in subcircuit 31c representing the last one-electron excitation operation of Ansatz circuit 31 are updated in subcircuit 32a. Rotation angles ⁇ 1 and ⁇ 2 are added to these values.
- the calculation formula is as follows.
- the partial circuit 32b in the basis conversion circuit 32 can be integrated. That is, the partial circuit 32b can be deleted from the quantum circuit for quantum chemical calculation by VQE.
- the second two-electron excitation operation partial circuit 32c (see FIG. 10) of the basis conversion circuit 32 can be integrated only when certain conditions are met.
- the condition is that the molecular orbitals have symmetry.
- Hydrogen molecules can be integrated because their molecular orbitals have symmetry.
- sub-circuit 32c When sub-circuit 32c is integrated, sub-circuit 32c can be deleted from the quantum circuit without changing the rotation angle applied to the Givens rotation in the Ansatz circuit. As a result, a quantum circuit 90 as shown in FIG. 23 is generated.
- E 1 be the energy value calculated using the quantum circuit 80 shown in FIG.
- the energy value calculated using the quantum circuit 90 shown in FIG. 23 be E 2 .
- ⁇ 1 ' ⁇ 3 '> 1.361165
- the exact solution for the ground energy of the hydrogen molecule is "-1.137270". From this, it can be seen that the calculation can be performed with sufficient accuracy even if the calculation is performed by the quantum circuit in which the partial circuits indicating the rotation operation are integrated.
- FIG. 24 is a diagram showing an example of circuit depth comparison results.
- the example of FIG. 24 shows the comparison result of the circuit depth when the quantum chemical calculation by VQE of the ground energy of the hydrogen molecule is performed.
- As an index of circuit depth the number of 2-qubit gates is used.
- the circuit depth of the partial circuits for one-electron excitation shown in FIGS. 22 and 23 is "1".
- the phase rotation subcircuit includes four 2-qubit gates, and the circuit depth is "4". Therefore, the circuit depth is "6" when the circuit integration shown in the second embodiment is applied. This circuit depth remains the circuit depth of the Ansatz circuit, and the circuit to be additionally implemented is "0".
- the circuit depth of the quantum circuit of "Basis rotation” is "9". This circuit depth means that a circuit with a circuit depth of "3" is added to the circuit depth of the Ansatz circuit.
- circuit depth of the quantum circuit of "Stabilizer formalism" is "12". This circuit depth means that a circuit with a circuit depth of "6" is added to the circuit depth of the Ansatz circuit.
- the circuit depth is greatly reduced by integrating the partial circuits representing the rotation operation.
- the second embodiment shows an example of calculating the ground energy of hydrogen molecules, the processing shown in the second embodiment can also be applied to other quantum chemical calculations.
- Reference Signs List 1 1a quantum circuit 2 first quantum circuit 2a, 2b, ... partial circuit 3 second quantum circuit 3a, 3b, ... partial circuit 10 information processing device 11 storage unit 12 processing unit
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mathematical Analysis (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computational Mathematics (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
コンピュータは、計算対象となる分子の電子軌道を表現する波動関数を作成するための第1量子回路と、波動関数の基底を変換するための第2量子回路とを含む、変分量子固有値法による量子化学計算を行うための量子回路を取得する。コンピュータは、第1量子回路内での回転操作に適用される第1回転角を、第2量子回路内での回転操作を示す部分回路に適用される第2回転角に応じて変更する。そしてコンピュータは、部分回路を量子回路から削除する。
本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
〔第1の実施の形態〕
第1の実施の形態は、VQEによる量子化学計算を行うための量子回路の回路深さを低減する情報処理方法である。
処理部12は、量子コンピュータを利用してVQEによる量子化学計算を実施するための量子回路1を生成する。例えば処理部12は、VQEによる量子化学計算を行うための量子回路1を取得する。量子回路1が既に記憶部11に格納されている場合、処理部12は、記憶部11から量子回路1を取得する。また処理部12は、計算対象となる分子に関する情報に基づいて、量子回路1を生成してもよい。
第2の実施の形態は、量子コンピュータを利用してVQEによる量子化学計算を行うコンピュータシステムである。
図4は、VQEによる量子化学計算のための古典コンピュータの機能の一例を示すブロック図である。古典コンピュータ100は、量子回路生成部110と量子計算管理部120と最適化計算部130とを有する。
次にVQEによる分子の基底エネルギーの計算方法について説明する。VQEによる分子の基底エネルギー計算において求めるエネルギーEは以下の式(1)で表される。
位相の回転P(θ5)における量子ビットq2に対する1つ目の回転ゲートの回転角は「0」であり、2つ目の回転ゲートの回転角は「-π/2」である。これらの回転ゲートは、それぞれ「Rz(0)」、「Rz(-π/2)」と表される。位相の回転P(θ5)における量子ビットq3に対する1つ目の回転ゲートの回転角は「0」であり、2つ目の回転ゲートの回転角は「-π/2」であり、3つ目の回転ゲートの回転角は「π/2」である。これらの回転ゲートは、それぞれ「Rz(0)」、「Rz(-π/2)」、「Rz(π/2)」と表される。
例えば量子回路生成部110は、最適化変数θでパラメタライズされたAnsatz回路31と特定の回転角α(αは実数)で回転操作を行う基底変換回路32を統合した量子回路を生成する。ここで統合された回路のパラメータθ’は、例えば「θ’=f(θ,α)=f(α-f-1(θ))」で表すことができる。f(x)は、Jastrow factor ansatzの2電子励起に対応する回転角をxとしたときに、回転角から最適化変数θを求める関数式である。
[ステップS101]量子回路生成部110は、計算対象とハミルトニアンを定義する。例えば計算対象は、ユーザから指定される。例えば計算対象が水素分子であれば、量子回路生成部110は、予め定義されている水素分子のハミルトニアンを取得する。
[ステップS103]量子回路生成部110は、回転操作を示す複数の部分回路を統合することで回路深さの低減を図った量子回路を生成する。量子回路生成処理の詳細は後述する(図18参照)。
このような手順でVQEによる量子化学計算が行われる。以下、量子化学計算の各処理を詳細に説明する。
図18は、量子回路生成処理の手順の一例を示すフローチャートである。以下、図18に示す処理をステップ番号に沿って説明する。
[ステップS202]量子回路生成部110は、基底変換回路を生成する。
[ステップS204]量子回路生成部110は、4つの量子ビットの組を選択する。例えば量子回路生成部110は、結合管理テーブル111の上位のレコードから順に、そのレコードに設定されている量子ビットの組を選択する。
図20は、基底エネルギー計算処理の手順の一例を示すフローチャートである。以下、図20に示す処理をステップ番号に沿って説明する。
[ステップS308]量子計算管理部120は、取得した基底エネルギーについて、結合フラグ更新前の基底エネルギーとの差がΔE(予め設定された値)以下か否かを判断する。量子計算管理部120は、差がΔE以下であれば基底エネルギー計算処理を終了する。また量子計算管理部120は、差がΔEより大きければ、処理をステップS309に進める。
図21は、水素分子の量子化学計算の一例を示す図である。水素分子には1つの占有軌道と1つの非占有軌道とがある。各軌道について、電子のスピン方向として上向きのスピン(up spin)と下向きのスピン(down spin)とがある。VQEによる量子化学計算を実行する場合、各軌道のスピン方向ごとに量子ビットが割り当てられる。その結果、水素分子に関しては、基底エネルギーを求めるために4つの量子ビットが用いられる。
・θ1’=f(α-f-1(θ1))
・θ2’=f(α-f-1(θ1))
・θ3’=g(α-g-1(θ3))
・θ4’=g(α-g-1(θ3))
Ansatz回路31内のギブンス回転に適用する回転角「θ1,θ2,θ3,θ4」それぞれを「θ1’,θ2’,θ3’,θ4’」に更新することで、基底変換回路32内の部分回路32aが統合できる。すなわちVQEによる量子化学計算用の量子回路から部分回路32aを削除できる。
・θ3’=g(α-g-1(θ3))+α1
・θ4’=g(α-g-1(θ3))+α2
部分回路31c内のギブンス回転に適用する2つの回転角を更新することで、基底変換回路32内の部分回路32bが統合できる。すなわちVQEによる量子化学計算用の量子回路から部分回路32bを削除できる。
・E1=<θ1,θ3|H1|θ1,θ3>=-2.486508
・E2=<θ1’θ3’|H2’|θ1’θ3’>=1.361165
全体の基底エネルギーEは以下の通りである。
・E=E1+E2=-1.125343
水素分子の基底エネルギーの厳密解は「-1.137270」である。このことから、回転操作を示す部分回路の統合を行った量子回路で計算を行っても、十分な精度で計算できていることが分かる。
〔その他の実施の形態〕
第2の実施の形態では水素分子の基底エネルギーを算出する場合の例を示したが、第2の実施の形態に示した処理は他の量子化学計算にも適用可能である。
2 第1量子回路
2a,2b,・・・ 部分回路
3 第2量子回路
3a,3b,・・・ 部分回路
10 情報処理装置
11 記憶部
12 処理部
Claims (8)
- 計算対象となる分子の電子軌道を表現する波動関数を作成するための第1量子回路と、前記波動関数の基底を変換するための第2量子回路とを含む、変分量子固有値法による量子化学計算を行うための量子回路を取得し、
前記第1量子回路内での回転操作に適用される第1回転角を、前記第2量子回路内での回転操作を示す部分回路に適用される第2回転角に応じて変更し、
前記部分回路を前記量子回路から削除する、
処理をコンピュータに実行させる情報処理プログラム。 - 前記第1回転角は、ギブンス回転の回転操作に適用する回転角である、
請求項1記載の情報処理プログラム。 - 2電子励起に対応する第3回転角と前記第2回転角との関係を示す関数式に基づいて、前記第1回転角の変更後の値を計算する、
請求項1または2記載の情報処理プログラム。 - 前記第3回転角から前記第1回転角を求める前記関数式の逆関数に前記第1回転角の変更前の値を入力した場合の前記逆関数の値を求め、得られた前記逆関数の値を前記第2回転角の値から減算し、減算した結果を前記関数式に入力することで得られる前記関数式の値を、変更後の前記第1回転角に決定する、
請求項3記載の情報処理プログラム。 - 前記第2量子回路内の複数の部分回路を、実行順が早い方から順に、削除対象の前記部分回路として選択し、前記部分回路を選択するごとに、選択された前記部分回路に適用する前記第2回転角に応じた前記第1回転角の変更、および選択された前記部分回路の削除処理を実行する、
請求項1から4までのいずれかに記載の情報処理プログラム。 - 前記部分回路を削除した後の前記量子回路に基づいて、前記変分量子固有値法により量子コンピュータにエネルギー値を計算させ、
前記変分量子固有値法における前記第1回転角の最適化処理により前記第1回転角の値が更新されるごとに、前記第1回転角の最適化処理による更新後の値と前記第2回転角に基づいて、次回の前記量子回路に基づくエネルギー計算に適用する前記第1回転角を計算する、
処理をさらに実行させる請求項1から5までのいずれかに記載の情報処理プログラム。 - 計算対象となる分子の電子軌道を表現する波動関数を作成するための第1量子回路と、前記波動関数の基底を変換するための第2量子回路とを含む、変分量子固有値法による量子化学計算を行うための量子回路を取得し、
前記第1量子回路内での回転操作に適用される第1回転角を、前記第2量子回路内での回転操作を示す部分回路に適用される第2回転角に応じて変更し、
前記部分回路を前記量子回路から削除する、
処理をコンピュータが実行する情報処理方法。 - 計算対象となる分子の電子軌道を表現する波動関数を作成するための第1量子回路と、前記波動関数の基底を変換するための第2量子回路とを含む、変分量子固有値法による量子化学計算を行うための量子回路を取得し、
前記第1量子回路内での回転操作に適用される第1回転角を、前記第2量子回路内での回転操作を示す部分回路に適用される第2回転角に応じて変更し、
前記部分回路を前記量子回路から削除する処理部、
を有する情報処理装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/003792 WO2023148806A1 (ja) | 2022-02-01 | 2022-02-01 | 情報処理プログラム、情報処理方法、および情報処理装置 |
JP2023578211A JPWO2023148806A1 (ja) | 2022-02-01 | 2022-02-01 | |
US18/764,751 US20240362516A1 (en) | 2022-02-01 | 2024-07-05 | Computer-readable recording medium storing information processing program, information processing method, and information processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/003792 WO2023148806A1 (ja) | 2022-02-01 | 2022-02-01 | 情報処理プログラム、情報処理方法、および情報処理装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/764,751 Continuation US20240362516A1 (en) | 2022-02-01 | 2024-07-05 | Computer-readable recording medium storing information processing program, information processing method, and information processing device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023148806A1 true WO2023148806A1 (ja) | 2023-08-10 |
Family
ID=87553316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/003792 WO2023148806A1 (ja) | 2022-02-01 | 2022-02-01 | 情報処理プログラム、情報処理方法、および情報処理装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240362516A1 (ja) |
JP (1) | JPWO2023148806A1 (ja) |
WO (1) | WO2023148806A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020090559A1 (ja) | 2018-11-04 | 2020-05-07 | 株式会社QunaSys | ハミルトニアンの励起状態を求めるための方法及びそのためのプログラム |
JP2020144400A (ja) | 2019-01-24 | 2020-09-10 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | エンタングルした測定を用いたパウリ文字列のグループ化 |
US20210287761A1 (en) * | 2020-03-12 | 2021-09-16 | River Lane Research Ltd. | Symmetry-based quantum computational chemistry |
-
2022
- 2022-02-01 WO PCT/JP2022/003792 patent/WO2023148806A1/ja active Application Filing
- 2022-02-01 JP JP2023578211A patent/JPWO2023148806A1/ja active Pending
-
2024
- 2024-07-05 US US18/764,751 patent/US20240362516A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020090559A1 (ja) | 2018-11-04 | 2020-05-07 | 株式会社QunaSys | ハミルトニアンの励起状態を求めるための方法及びそのためのプログラム |
JP2020144400A (ja) | 2019-01-24 | 2020-09-10 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | エンタングルした測定を用いたパウリ文字列のグループ化 |
US20210287761A1 (en) * | 2020-03-12 | 2021-09-16 | River Lane Research Ltd. | Symmetry-based quantum computational chemistry |
Non-Patent Citations (1)
Title |
---|
FAN YI, CHANGSU CAO, XUSHENG XU, ZHENYU LI, DINGSHUN LV, AND MAN-HONG YUNG: "Circuit-Depth Reduction of Unitary-Coupled-Cluster Ansatz by Energy Sorting", 29 June 2021 (2021-06-29), pages 1 - 10, XP093062385, Retrieved from the Internet <URL:https://arxiv.org/pdf/2106.15210v1.pdf> [retrieved on 20230710] * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023148806A1 (ja) | 2023-08-10 |
US20240362516A1 (en) | 2024-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Javadi-Abhari et al. | Quantum computing with Qiskit | |
Gokhale et al. | Optimized quantum compilation for near-term algorithms with openpulse | |
Cerezo et al. | Higher order derivatives of quantum neural networks with barren plateaus | |
US20200364601A1 (en) | Methods and systems for quantum computing enabled molecular ab initio simulations using quantum-classical computing hardware | |
US20210034998A1 (en) | Quantum System and Method for Solving Bayesian Phase Estimation Problems | |
Patel et al. | Quest: systematically approximating quantum circuits for higher output fidelity | |
WO2020037301A1 (en) | Hybrid quantum-classical computer system and method for performing function inversion | |
CN115427981A (zh) | 用于分子和旋转系统的量子模拟的方法和系统 | |
Yamasaki et al. | Time-efficient constant-space-overhead fault-tolerant quantum computation | |
WO2020246073A1 (en) | Information processing device, pubo solver, information processing method and non-transitory storage medium | |
US12067458B2 (en) | Parameter initialization on quantum computers through domain decomposition | |
WO2021078827A1 (en) | Precision-preserving qubit reduction based on spatial symmetries in fermionic systems | |
Tamiya et al. | Calculating nonadiabatic couplings and Berry's phase by variational quantum eigensolvers | |
Patel et al. | Robust and resource-efficient quantum circuit approximation | |
LeCompte et al. | Machine learning-based qubit allocation for error reduction in quantum circuits | |
WO2023148806A1 (ja) | 情報処理プログラム、情報処理方法、および情報処理装置 | |
Rodero et al. | Calibration of cohorts of virtual patient heart models using Bayesian history matching | |
Viszlai et al. | Matching generalized-bicycle codes to neutral atoms for low-overhead fault-tolerance | |
Patel et al. | Charter: Identifying the most-critical gate operations in quantum circuits via amplified gate reversibility | |
Miyamoto et al. | Extracting a function encoded in amplitudes of a quantum state by tensor network and orthogonal function expansion | |
Wang et al. | Enabling scalable vqe simulation on leading hpc systems | |
JP2021060714A (ja) | 次数変換装置、次数変換方法、および次数変換プログラム | |
Linn et al. | Resource analysis of quantum algorithms for coarse-grained protein folding models | |
Hobday et al. | Variance minimisation on a quantum computer of the Lipkin-Meshkov-Glick model with three particles | |
Sumeet et al. | Assessing the Precision of Quantum Simulation of Many-Body Effects in Atomic Systems Using the Variational Quantum Eigensolver Algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22924719 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023578211 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022924719 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022924719 Country of ref document: EP Effective date: 20240902 |