WO2021157008A1 - 最適化関数生成装置、最適化関数生成方法、プログラム - Google Patents
最適化関数生成装置、最適化関数生成方法、プログラム Download PDFInfo
- Publication number
- WO2021157008A1 WO2021157008A1 PCT/JP2020/004544 JP2020004544W WO2021157008A1 WO 2021157008 A1 WO2021157008 A1 WO 2021157008A1 JP 2020004544 W JP2020004544 W JP 2020004544W WO 2021157008 A1 WO2021157008 A1 WO 2021157008A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- function
- optimization
- bandwidth
- optimization function
- path
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
- G06N10/60—Quantum algorithms, e.g. based on quantum optimisation, quantum Fourier or Hadamard transforms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/006—Quality of the received signal, e.g. BER, SNR, water filling
Definitions
- the present invention relates to a technique for generating an optimization function for solving a combinatorial optimization problem with a quantum computer.
- Non-Patent Documents 1, 2, 3, and 4 a method of designing a graph division problem, a graph creek problem, and a graph isomorphism problem as a QUBO objective function or an Ising Hamiltonian has been devised (see Non-Patent Documents 1, 2, 3, and 4).
- Non-Patent Documents 1 to 4 only disclose QUBO's objective function and Ising Hamiltonian for solving a specific problem related to graphs, and regarding QUBO's objective function and Ising Hamiltonian related to the band allocation planning problem. Is not known.
- the present invention provides a technique for generating an optimization function for a variable representing a quantum state for solving a bandwidth allocation planning problem for finding a bandwidth to be allocated to each route under various restrictions on the route to allocate the bandwidth. The purpose.
- One aspect of the present invention is a set of paths including a set of paths Path, a set of edges Edge, a maximum bandwidth Max, a bandwidth p.bandwidth required by the path p ( ⁇ Path), and an edge e ( ⁇ Edge).
- An input setting unit that is set as an input of a bandwidth allocation planning problem that generates a bandwidth allocation plan, and an optimization that uses the input to generate an optimization function for a variable representing a quantum state for solving the bandwidth allocation planning problem. Includes a function generator and.
- It is a figure which shows an example of the input of a bandwidth allocation planning problem. It is a figure which shows an example of the relationship between a path and an edge. It is a figure which shows an example of the output of a bandwidth allocation planning problem. It is a figure which shows the state of x p, b -x p, bp . bandwidth when p. bandwidth 2. It is a block diagram which shows the structure of the optimization function generation apparatus 100. It is a flowchart which shows the operation of the optimization function generation apparatus 100. It is a figure which shows an example of the functional structure of the computer which realizes each apparatus in embodiment of this invention.
- ⁇ (Caret) represents a superscript.
- x y ⁇ z means that y z is a superscript for x
- x y ⁇ z means that y z is a subscript for x
- _ (underscore) represents a subscript.
- x y_z means that y z is a superscript for x
- x y_z means that y z is a subscript for x.
- the combinatorial optimization problem dealt with in the embodiment of the present invention is to the route so as to satisfy the condition of minimizing the bandwidth allocated to the route as a whole (hereinafter referred to as the optimization condition) under a predetermined constraint condition.
- the predetermined constraint condition is "edge duplication constraint”.
- the “edge duplication constraint” will be described below.
- the input of the bandwidth allocation planning problem is as follows. -A set of routes for which a plan is to be generated Path (hereinafter referred to as a route set) -A set of edges that make up the path Edge (hereinafter referred to as an edge set) -Value Max that the upper limit of the bandwidth allocated to the route (allocated bandwidth) must not be exceeded (hereinafter referred to as the maximum bandwidth. Max is a predetermined constant.)
- the following values are input for each path p ⁇ Path.
- bottom (p) shall satisfy the following conditions (a), (b), (c).
- (a) Restriction of allocated bandwidth The constraint of allocated bandwidth is a condition that the upper limit of the bandwidth allocated to each route does not exceed the maximum bandwidth Max, and can be expressed as follows. bottom (p) + p.bandwidth-1 ⁇ Max
- optimization condition is a condition that minimizes the bandwidth allocated to the path of the set path as a whole, and can be expressed as follows. minimize (
- FIG. 1 shows an example of the input of the bandwidth allocation planning problem.
- FIG. 2 shows the relationship between the path and the edge of FIG.
- FIG. 3 shows an example of the output of the bandwidth allocation planning problem.
- a qubit is a variable that represents a quantum state and takes 1 or 0 as a value. That is, in the bandwidth allocation planning problem targeted by the present invention, the qubits x p and b are defined as follows.
- x p, b “1” indicates that the band b is equal to or greater than the lower limit of the band (allocated band) allocated to the route p, and “0” indicates that the band b is not.
- p ⁇ Path, 1 ⁇ b ⁇ Max-p.bandwidth, and for b> Max-p.bandwidth, the constant "1".
- an expression representing a certain constraint represents a state in which the constraint is satisfied when the value of the expression becomes 0, and represents a state in which the constraint is not satisfied when the value of the expression becomes a value larger than 0.
- QUBO's objective function FlexGrid can be defined by the following equation.
- Restriction is an expression that expresses a condition other than the minimization condition
- Optimization is an expression that expresses the minimization condition
- Penalty is a constant that expresses the weight of the expression Restriction.
- OverBottom is an expression that expresses the constraint to define the meaning of qubits x p and b
- Conflict is an expression that expresses the constraint of edge duplication.
- Penalty may be, for example, 10000. Assuming that the Penalty value is extremely large compared to the value that the expression Optimization that expresses the minimization condition can take, the QUBO objective function FlexGrid is tuned so as to preferentially satisfy the expression Restriction.
- Equation (3) will be described.
- x p, b (1-x p, b + 1 )
- x p, b is the band b
- 1-x p, b + 1 is the band b +.
- Expression Conflict is an expression that expresses the constraint of edge duplication.
- Count (e, b) (Count (e, b) -1) is the value of Count (e, b) because it is "0" when the value of Count (e, b) is 0 or 1. If is 2 or more, it is a constraint violation. Therefore, the expression Conflict represents the constraint of edge duplication.
- the formula Optimization is a formula that expresses "the total value of the bands to which one or more routes are assigned".
- a b is an auxiliary qubit used only in the equation Optimization.
- Auxiliary qubit a b formula a b + ⁇ (1-a b) x p, b a are those taking a value to a minimum, wherein a b + ⁇ (1-a b) x p, b is If there is an assigned route, it will be “1", otherwise it will be "0".
- the function OverBottom of Eq. (3) uses the quantum bits x p, b , which are variables that represent one state as 1 and the other state as 0.
- the function Conflict in equation (4) is defined as a function that takes 0 as a value when the constraints represented by each equation are satisfied, and takes a value greater than 0 in other cases
- the function in equation (6) is defined as a function in which the smaller the total value of the bands to which one or more routes are assigned, the smaller the value.
- QUBO's objective function FlexGrid is a function designed to take the minimum value when the constraint expressed by the expression OverBottom and the constraint expressed by the expression Conflict are satisfied and the expression Optimization takes the minimum value. ..
- the objective function FlexGrid of this QUBO is a function that can be solved by a quantum annealing machine or an Ising machine.
- the optimization function generator 100 generates an optimization function for a variable representing a quantum state for solving a bandwidth allocation planning problem.
- the bandwidth allocation planning problem is a route to a route that satisfies the condition of minimizing the bandwidth allocated to the route of the set path as a whole (hereinafter referred to as an optimization condition) under a predetermined constraint condition. It is a problem of generating a bandwidth allocation plan.
- the predetermined constraint condition is the constraint of edge duplication explained in the technical background, that is, for each band b and edge e ⁇ Edge up to the maximum band Max,
- bottom (p) represents the lower limit of the bandwidth allocated to the route p) (hereinafter referred to as the first constraint condition).
- ⁇ 1 (however, bottom (p) represents the lower limit of the bandwidth allocated to the route p) (hereinafter referred to as the first constraint condition).
- a variable representing a quantum state a qubit that represents a certain state as 1 and a other state as 0 is used.
- FIG. 5 is a block diagram showing the configuration of the optimization function generation device 100.
- FIG. 6 is a flowchart showing the operation of the optimization function generation device 100.
- the optimization function generation device 100 includes an input setting unit 110, an optimization function generation unit 120, and a recording unit 190.
- the recording unit 190 is a component unit that appropriately records information necessary for processing of the optimization function generation device 100.
- the input setting unit 110 includes a path set Path, an edge set Edge, a maximum bandwidth Max, a bandwidth p.bandwidth required by the route p ( ⁇ Path), and a route including the edge e ( ⁇ Edge).
- the set e.paths ( ⁇ Path) of is input, and these data are set as the input of the bandwidth allocation planning problem.
- the optimization function generation unit 120 takes the input of the bandwidth allocation planning problem set in S110 as an input, and uses the input to generate and output the optimization function for solving the bandwidth allocation planning problem.
- the optimization function is a function defined using qubits x p, b , and specifically, a function expressing the meaning of qubits x p, b and the first constraint condition are expressed. It is the objective function of QUBO defined based on the function and the function expressing the optimization condition.
- the objective function of QUBO is the function FlexGrid of equation (1).
- the function expressing the meaning of the quantum bits x p and b , the function expressing the first constraint condition, and the function expressing the optimization condition are the function OverBottom in Eq. (3) and the function OverBottom in Eq. (3a), respectively. It is the function Conflict of Eq. (4) and the function Optimization of Eq. (6).
- the function representing the meaning of the qubit x p, b a function defined as the value is the smallest when the qubit x p, the meaning of b is correctly represented, more specifically, It is a function that takes 0 as a value when the meaning of the qubit x p, b is correctly expressed, and takes a value larger than 0 in other cases.
- the function expressing the first constraint condition is a function defined so that the value becomes the smallest when the first constraint condition is satisfied, and more specifically, when the first constraint condition is satisfied. It is a function that takes 0 as a value and otherwise takes a value greater than 0.
- the function expressing the optimization condition is a function defined so that the smaller the total value of the bands to which one or more routes are assigned, the smaller the value.
- the objective function FlexGrid of QUBO which is an optimization function, is a function designed to take the minimum value when the first constraint condition is satisfied.
- the objective function FlexGrid of QUBO is a function defined based on the function Restriciton of Eq. (2) (that is, the function Overbottom expressing the meaning of the quantum bits x p and b and the function Conflict expressing the first constraint condition). It is defined as a weighted sum of the function Optimization that expresses Restriction) and optimization conditions. By making this weight Penalty a value larger than the value that the function Optimization can take, it is prioritized that the meaning of the qubits x p, b is correctly expressed and that the constraint of edge duplication is satisfied.
- the objective function FlexGrid can be tuned.
- the Ising Hamiltonian using spin may be used instead of using the QUBO objective function using qubits.
- spin is a variable representing a quantum state that takes 1 or -1 as a value.
- the spin s and the qubit x can be converted to each other by Eqs. (7) and (8).
- the spin value is 1, and when the qubit value is 0, the spin value is -1.
- a spin representing a certain state by 1 and another state by -1 is used as a variable representing a quantum state.
- spins p and b defined so that the state in which the band b is equal to or greater than the lower limit of the band allocated to the path p is represented by the value 1 and the other states are represented by the value -1 are used.
- the optimization function is a function defined using spins p, b , and specifically, a function expressing the meaning of spins p, b and a function expressing the first constraint condition.
- the Ising Hamiltonian is a function obtained by applying the above change of variables to the function FlexGrid of equation (1).
- the function expressing the meanings of spins p and b , the function expressing the first constraint condition, and the function expressing the optimization condition are the function OverBottom in Eq. (3) and the function OverBottom in Eq. (3a), respectively.
- the function representing the meaning of b a function defined as the value is the smallest when the spin s p, the meaning of b is correctly represented, more specifically, the spin s It is a function that takes 0 as a value when the meanings of p and b are correctly expressed, and takes a value larger than 0 in other cases.
- the function expressing the first constraint condition is a function defined so that the value becomes the smallest when the first constraint condition is satisfied, and more specifically, when the first constraint condition is satisfied. It is a function that takes 0 as a value and otherwise takes a value greater than 0.
- the function expressing the optimization condition is a function defined so that the smaller the total value of the bands to which one or more routes are assigned, the smaller the value.
- the Ising Hamiltonian which is an optimization function, is a function designed to take the minimum value when the first constraint condition is satisfied.
- the optimization function which is the output of the optimization function generator 100, is, for example, an input of a quantum annealing machine or an Ising machine, and can be processed by these machines to obtain a solution to the band allocation planning problem. ..
- FIG. 7 is a diagram showing an example of a functional configuration of a computer that realizes each of the above-mentioned devices.
- the processing in each of the above-mentioned devices can be carried out by causing the recording unit 2020 to read a program for causing the computer to function as each of the above-mentioned devices, and operating the control unit 2010, the input unit 2030, the output unit 2040, and the like.
- the device of the present invention is, for example, as a single hardware entity, an input unit to which a keyboard or the like can be connected, an output unit to which a liquid crystal display or the like can be connected, and a communication device (for example, a communication cable) capable of communicating outside the hardware entity.
- Communication unit CPU (Central Processing Unit, cache memory, registers, etc.) to which can be connected, RAM and ROM as memory, external storage device as hard hardware, and input, output, and communication units of these.
- CPU, RAM, ROM has a connecting bus so that data can be exchanged between external storage devices.
- a device (drive) or the like capable of reading and writing a recording medium such as a CD-ROM may be provided in the hardware entity.
- a physical entity equipped with such hardware resources includes a general-purpose computer and the like.
- the external storage device of the hardware entity stores the program required to realize the above-mentioned functions and the data required for processing this program (not limited to the external storage device, for example, reading a program). It may be stored in a ROM, which is a dedicated storage device). Further, the data obtained by the processing of these programs is appropriately stored in a RAM, an external storage device, or the like.
- each program stored in the external storage device (or ROM, etc.) and the data necessary for processing each program are read into the memory as needed, and are appropriately interpreted, executed, and processed by the CPU. ..
- the CPU realizes a predetermined function (each component represented by the above, ..., ... Means, etc.).
- the present invention is not limited to the above-described embodiment, and can be appropriately modified without departing from the spirit of the present invention. Further, the processes described in the above-described embodiment are not only executed in chronological order according to the order described, but may also be executed in parallel or individually as required by the processing capacity of the device that executes the processes. ..
- the processing function in the hardware entity (device of the present invention) described in the above embodiment is realized by a computer
- the processing content of the function that the hardware entity should have is described by a program.
- the processing function in the above hardware entity is realized on the computer.
- the program that describes this processing content can be recorded on a computer-readable recording medium.
- the computer-readable recording medium may be, for example, a magnetic recording device, an optical disk, a photomagnetic recording medium, a semiconductor memory, or the like.
- a hard disk device, a flexible disk, a magnetic tape, or the like as a magnetic recording device is used as an optical disk
- a DVD (Digital Versatile Disc), a DVD-RAM (Random Access Memory), or a CD-ROM (Compact Disc Read Only) is used as an optical disk.
- Memory CD-R (Recordable) / RW (ReWritable), etc.
- MO Magnetto-Optical disc
- EP-ROM Electroically Erasable and Programmable-Read Only Memory
- semiconductor memory can be used.
- the distribution of this program is carried out, for example, by selling, transferring, renting, etc., a portable recording medium such as a DVD or CD-ROM on which the program is recorded. Further, the program may be stored in the storage device of the server computer, and the program may be distributed by transferring the program from the server computer to another computer via a network.
- a computer that executes such a program first stores, for example, a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device. Then, when the process is executed, the computer reads the program stored in its own storage device and executes the process according to the read program. Further, as another execution form of this program, a computer may read the program directly from a portable recording medium and execute processing according to the program, and further, the program is transferred from the server computer to this computer. Each time, the processing according to the received program may be executed sequentially. In addition, the above processing is executed by a so-called ASP (Application Service Provider) type service that realizes the processing function only by the execution instruction and result acquisition without transferring the program from the server computer to this computer. May be.
- the program in this embodiment includes information to be used for processing by a computer and equivalent to the program (data that is not a direct command to the computer but has a property of defining the processing of the computer, etc.).
- the hardware entity is configured by executing a predetermined program on the computer, but at least a part of these processing contents may be realized in terms of hardware.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mathematical Analysis (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computational Mathematics (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Quality & Reliability (AREA)
- Complex Calculations (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明の実施形態で扱う組合せ最適化問題は、所定の制約条件のもと、経路に割り当てられる帯域を全体として最小化するという条件(以下、最適化条件という)を満たすような、経路への帯域割当計画を生成する帯域割当計画問題である。ここで、所定の制約条件とは、“エッジ重複の制約”のことである。以下、“エッジ重複の制約”について説明する。
(1)エッジ重複の制約
エッジ重複の制約とは、同一のエッジを含む経路同士は、同じ帯域を共有しないという条件である。
(1)入力
帯域割当計画問題の入力は、以下の通りである。
・計画生成対象となる経路の集合Path(以下、経路集合という。)
・経路を構成するエッジの集合Edge(以下、エッジ集合という。)
・経路に割り当てられる帯域(割当帯域)の上限が超えてはならない値Max(以下、最大帯域という。なお、Maxは所定の定数である。)
また、各経路p∈Pathに対して、以下の値が入力される。
・経路pが要求する帯域(要求帯域)p.bandwidth∈N(ただし、Nは自然数の集合を表す。)
また、各エッジe∈Edgeに対して、以下の値が入力される。
・エッジeを含む経路の集合e.paths⊆Path
最大帯域Maxは、例えば、経路集合Pathに含まれるすべての経路の要求帯域の合計値とすればよい。このようにすると、帯域割当計画問題の解が存在しないということを防ぐことができる。
(2)出力
帯域割当計画問題の出力は、以下の通りである。
・各経路p∈Pathの割当帯域の下限bottom(p)
なお、各経路pに対して要求帯域p.bandwidthが与えられていることから、割当帯域の上限はbottom(p)+ p.bandwidth-1として求めることができる。
(a)割当帯域の制約
割当帯域の制約とは、各経路に割り当てられる帯域の上限は最大帯域Maxを超えないという条件であり、以下のように表現することができる。
bottom(p)+p.bandwidth-1≦Max
エッジ重複の制約とは、上述した通り、同一のエッジを含む経路同士は、同じ帯域を共有しないという条件であり、以下のように表現することができる。
1≦b≦Maxならば、|{p∈e.paths|bottom(p)≦b<bottom(p)+p.bandwidth}|≦1
(ただし、|S|は集合Sの要素の個数を表す)
最適化条件とは、上述した通り、集合Pathの経路に割り当てられる帯域を全体として最小化するという条件であり、以下のように表現することができる。
minimize(|{b∈N|帯域bに対して、bottom(p)≦b<bottom(p)+p.bandwidthを満たす経路p∈Pathが存在する。}|)
・xp,b-xp,b-p.bandwidth=1⇔帯域bが経路pの割当帯域範囲に含まれる。
となる。
式(3)のOverBottomは、制約に違反する箇所、つまり、量子ビットxp,bが”1”から”0”に変化する箇所の個数のみでペナルティが決定されるため、制約違反とならないように誘導することができない。そこで、次式のように、式xp,b(1-xp,b+1)を重み付けすることで、式OverBottomを”制約違反なし”に近いほどペナルティを小さくするようにしてもよい。
最適化関数生成装置100は、帯域割当計画問題を解くための、量子状態を表す変数に関する最適化関数を生成する。ここで、帯域割当計画問題とは、所定の制約条件のもと、集合Pathの経路に割り当てられる帯域を全体として最小化するという条件(以下、最適化条件という)を満たすような、経路への帯域割当計画を生成する問題のことである。また、所定の制約条件とは、技術的背景において説明したエッジ重複の制約、すなわち、最大帯域Maxまでの各帯域b、エッジe∈Edgeに対して、|{p∈e.paths|bottom(p)≦b<bottom(p)+p.bandwidth}|≦1(ただし、bottom(p)は経路pに割り当てられる帯域の下限を表す)を満たすという条件(以下、第1制約条件という)のことである。また、ここでは、量子状態を表す変数として、ある状態であることを1、それ以外の状態であることを0で表す量子ビットを用いる。具体的には、帯域bが経路pに割り当てられる帯域の下限以上であるという状態を値1、それ以外の状態を値0で表すように定義される量子ビットxp,bを用いる。
最適化関数として、量子ビットを用いたQUBOの目的関数を用いる代わりに、スピンを用いたイジングハミルトニアンを用いてもよい。ここで、スピンとは、1か-1を値として取る、量子状態を表す変数である。スピンsと量子ビットxは、式(7)、式(8)により相互に変換することができる。
図7は、上述の各装置を実現するコンピュータの機能構成の一例を示す図である。上述の各装置における処理は、記録部2020に、コンピュータを上述の各装置として機能させるためのプログラムを読み込ませ、制御部2010、入力部2030、出力部2040などに動作させることで実施できる。
Claims (7)
- 経路の集合Pathと、エッジの集合Edgeと、最大帯域Maxと、経路p(∈Path)が要求する帯域p.bandwidthと、エッジe(∈Edge)を含む経路の集合e.paths(⊆Path)とを、所定の制約条件のもと、集合Pathの経路に割り当てられる帯域を全体として最小化するという条件(以下、最適化条件という)を満たすような、経路への帯域割当計画を生成する帯域割当計画問題の入力として設定する入力設定部と、
前記入力を用いて、前記帯域割当計画問題を解くための、量子状態を表す変数に関する最適化関数を生成する最適化関数生成部と、
を含む最適化関数生成装置。 - 請求項1に記載の最適化関数生成装置であって、
前記制約条件は、最大帯域Maxまでの各帯域b、エッジe∈Edgeに対して、|{p∈e.paths|bottom(p)≦b<bottom(p)+p.bandwidth}|≦1(ただし、bottom(p)は経路pに割り当てられる帯域の下限を表す)を満たすという条件(以下、第1制約条件という)であり、
前記最適化関数は、前記第1制約条件を満たす場合に最小値を取るように設計された関数である
ことを特徴とする最適化関数生成装置。 - 請求項2に記載の最適化関数生成装置であって、
前記量子状態を表す変数は、ある状態であることを1、それ以外の状態であることを0で表す量子ビットであり、
前記最適化関数は、前記第1制約条件を表現した関数と前記最適化条件を表現した関数とに基づいて定義されるQUBOの目的関数であり、
前記第1制約条件を表現した関数は、前記第1制約条件が満たされる場合に0を値として取り、それ以外の場合に0より大きい値を取る関数であり、
前記最適化条件を表現した関数は、1つ以上の経路が割り当てられている帯域の合計値が小さいほど値が小さくなるように定義された関数である
ことを特徴とする最適化関数生成装置。 - 請求項2に記載の最適化関数生成装置であって、
前記量子状態を表す変数は、ある状態であることを1、それ以外の状態であることを-1で表すスピンであり、
前記最適化関数は、前記第1制約条件を表現した関数と前記最適化条件を表現した関数とに基づいて定義されるイジングハミルトニアンであり、
前記第1制約条件を表現した関数は、前記第1制約条件が満たされる場合に0を値として取り、それ以外の場合に0より大きい値を取る関数であり、
前記最適化条件を表現した関数は、1つ以上の経路が割り当てられている帯域の合計値が小さいほど値が小さくなるように定義された関数である
ことを特徴とする最適化関数生成装置。 - 請求項3または4に記載の最適化関数生成装置であって、
前記量子状態を表す変数は、帯域bが経路pに割り当てられる帯域の下限以上であるという状態を値1で表すように定義される変数である
ことを特徴とする最適化関数生成装置。 - 最適化関数生成装置が、経路の集合Pathと、エッジの集合Edgeと、最大帯域Maxと、経路p(∈Path)が要求する帯域p.bandwidthと、エッジe(∈Edge)を含む経路の集合e.paths(⊆Path)とを、所定の制約条件のもと、集合Pathの経路に割り当てられる帯域を全体として最小化するという条件(以下、最適化条件という)を満たすような、経路への帯域割当計画を生成する帯域割当計画問題の入力として設定する入力設定ステップと、
前記最適化関数生成装置が、前記入力を用いて、前記帯域割当計画問題を解くための、量子状態を表す変数に関する最適化関数を生成する最適化関数生成ステップと、
を含む最適化関数生成方法。 - 請求項1ないし5のいずれか1項に記載の最適化関数生成装置としてコンピュータを機能させるためのプログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/004544 WO2021157008A1 (ja) | 2020-02-06 | 2020-02-06 | 最適化関数生成装置、最適化関数生成方法、プログラム |
US17/797,077 US12244524B2 (en) | 2020-02-06 | 2020-02-06 | Optimization function generation apparatus, optimization function generation method, and program |
JP2021575185A JP7400841B2 (ja) | 2020-02-06 | 2020-02-06 | 最適化関数生成装置、最適化関数生成方法、プログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/004544 WO2021157008A1 (ja) | 2020-02-06 | 2020-02-06 | 最適化関数生成装置、最適化関数生成方法、プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021157008A1 true WO2021157008A1 (ja) | 2021-08-12 |
Family
ID=77200829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/004544 WO2021157008A1 (ja) | 2020-02-06 | 2020-02-06 | 最適化関数生成装置、最適化関数生成方法、プログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US12244524B2 (ja) |
JP (1) | JP7400841B2 (ja) |
WO (1) | WO2021157008A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2024517497A (ja) * | 2021-09-20 | 2024-04-22 | フジツウ テクノロジー ソリューションズ ゲーエムベーハー | 通信ネットワークにおけるルーティングを最適化するための方法 |
JP2024517981A (ja) * | 2021-09-20 | 2024-04-23 | フジツウ テクノロジー ソリューションズ ゲーエムベーハー | 通信ネットワークにおける使用率分布を最適化するための方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7698469B2 (ja) | 2021-05-24 | 2025-06-25 | 日本放送協会 | 配信ビットレート決定装置およびそのプログラム |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006527541A (ja) * | 2003-06-06 | 2006-11-30 | 松下電器産業株式会社 | 静的高密度マルチキャスト経路及び帯域管理 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6912232B1 (en) * | 1998-10-19 | 2005-06-28 | At&T Corp. | Virtual private network |
AU2002351589A1 (en) * | 2001-06-27 | 2003-03-03 | Brilliant Optical Networks | Distributed information management schemes for dynamic allocation and de-allocation of bandwidth |
CN111095886A (zh) * | 2017-09-28 | 2020-05-01 | 英特尔Ip公司 | 用于控制用于处理基带发送信号的带宽的方法和装置、用于无线通信系统的接收器以及用于接收器的方法 |
US10452990B2 (en) * | 2017-11-28 | 2019-10-22 | International Business Machines Corporation | Cost function deformation in quantum approximate optimization |
-
2020
- 2020-02-06 WO PCT/JP2020/004544 patent/WO2021157008A1/ja active IP Right Grant
- 2020-02-06 US US17/797,077 patent/US12244524B2/en active Active
- 2020-02-06 JP JP2021575185A patent/JP7400841B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006527541A (ja) * | 2003-06-06 | 2006-11-30 | 松下電器産業株式会社 | 静的高密度マルチキャスト経路及び帯域管理 |
Non-Patent Citations (2)
Title |
---|
KIMURA, TAKUMI ET AL.: "A New Traffic Control Paradigm using Overlay Networks", IEICE TECHNICAL REPORT, vol. 104, no. 182, 9 July 2004 (2004-07-09), Japanese, pages 7 - 12, XP002998446, ISSN: 0913-5685 * |
QIAN, FEI ET AL.: "A New Distributed QoS Routing Algorithm using Mean Field Approximation Method", IEEJ TRANSACTIONS ON ELECTRONICS, INFORMATION AND SYSTEMS, vol. 127, no. 1, 1 January 2007 (2007-01-01), Japanese, pages 59 - 67, ISSN: 0385-4221 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2024517497A (ja) * | 2021-09-20 | 2024-04-22 | フジツウ テクノロジー ソリューションズ ゲーエムベーハー | 通信ネットワークにおけるルーティングを最適化するための方法 |
JP2024517981A (ja) * | 2021-09-20 | 2024-04-23 | フジツウ テクノロジー ソリューションズ ゲーエムベーハー | 通信ネットワークにおける使用率分布を最適化するための方法 |
US12237993B2 (en) | 2021-09-20 | 2025-02-25 | Fujitsu Technology Solutions Gmbh | Method of optimizing a routing in a communications network |
US12250140B2 (en) | 2021-09-20 | 2025-03-11 | Fujitsu Technology Solutions Gmbh | Method of optimizing a usage distribution in a communications network |
JP7697048B2 (ja) | 2021-09-20 | 2025-06-23 | フジツウ テクノロジー ソリューションズ ゲーエムベーハー | 通信ネットワークにおけるルーティングを最適化するための方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021157008A1 (ja) | 2021-08-12 |
US12244524B2 (en) | 2025-03-04 |
JP7400841B2 (ja) | 2023-12-19 |
US20230049956A1 (en) | 2023-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Muñoz et al. | A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling | |
WO2021157008A1 (ja) | 最適化関数生成装置、最適化関数生成方法、プログラム | |
Albareti et al. | A structured survey of quantum computing for the financial industry | |
Mukhopadhyay et al. | Synthesizing efficient circuits for Hamiltonian simulation | |
Sarkar et al. | An investigation of the effects of missing data handling using ‘r’-packages | |
Quinton et al. | Quantum annealing applications, challenges and limitations for optimisation problems compared to classical solvers | |
Sherbert et al. | Quantum algorithm for electronic band structures with local tight-binding orbitals | |
Wu et al. | X-architecture Steiner minimal tree construction based on discrete differential evolution | |
Rosa-Remedios et al. | Optimizing quantum machine learning for proactive cybersecurity | |
JP7409478B2 (ja) | 最適化関数生成装置、最適化関数生成方法、プログラム | |
JPWO2019059042A1 (ja) | 秘密読み込み装置、秘密書き込み装置、それらの方法、およびプログラム | |
US20240377810A1 (en) | Regression-optimization control of production process with dynamic inputs | |
Ayodele et al. | A study of scalarisation techniques for multi-objective QUBO solving | |
WO2021157007A1 (ja) | 最適化関数生成装置、最適化関数生成方法、プログラム | |
JP7571869B2 (ja) | 関数変換装置、関数変換方法、およびプログラム | |
Bellamkonda Sathyanarayanan et al. | A novel oppositional chaotic flower pollination optimization algorithm for automatic tuning of Hadoop configuration parameters | |
WO2021176548A1 (ja) | 最適化関数生成装置、最適化関数生成方法、プログラム | |
JP7544272B2 (ja) | 分散学習方法、分散学習システム、サーバ、プログラム | |
Feyzbakhsh Rankooh et al. | Efficient computation of answer sets via SAT modulo acyclicity and vertex elimination | |
WO2022219770A1 (ja) | 関数変換装置、関数変換方法、およびプログラム | |
JP7613562B2 (ja) | 多項式変換装置、多項式変換方法、およびプログラム | |
Taminana et al. | Secure Cloud Auditability for Virtual Machines by Adaptive Characterization Using Machine Learning Methods | |
US20250157608A1 (en) | Identifying potential treatment paths using harmonic homology for disentangling multiway data interactions | |
Khalid et al. | Optimal Task Scheduling in 6G Networks: A Variational Quantum Computing Approach | |
Jiang et al. | Transformed search based software engineering: a new paradigm of sbse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20918049 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021575185 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20918049 Country of ref document: EP Kind code of ref document: A1 |
|
WWG | Wipo information: grant in national office |
Ref document number: 17797077 Country of ref document: US |