WO2023148448A1 - Aube composite pour soufflante de turbomachine d'aéronef comportant des moyens de mesure des déformations internes - Google Patents

Aube composite pour soufflante de turbomachine d'aéronef comportant des moyens de mesure des déformations internes Download PDF

Info

Publication number
WO2023148448A1
WO2023148448A1 PCT/FR2023/050123 FR2023050123W WO2023148448A1 WO 2023148448 A1 WO2023148448 A1 WO 2023148448A1 FR 2023050123 W FR2023050123 W FR 2023050123W WO 2023148448 A1 WO2023148448 A1 WO 2023148448A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
measuring
storage
composite material
turbomachine
Prior art date
Application number
PCT/FR2023/050123
Other languages
English (en)
Inventor
Mattéo MINERVINO
Damien Bruno Lamouche
Julie Valérie Clara LAVIGNE
Tony Alain Roger Joël LHOMMEAU
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Publication of WO2023148448A1 publication Critical patent/WO2023148448A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/331Mechanical loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05D2270/808Strain gauges; Load cells

Definitions

  • TITLE Composite blade for an aircraft turbomachine fan comprising means for measuring internal deformations
  • the present invention relates to the field of turbomachines used for the propulsion of an aircraft and, more particularly, to a blade for an aircraft turbomachine fan.
  • a turbomachine is intended to provide the thrust necessary for the propulsion of an aircraft. It conventionally comprises at least one compressor, one combustion chamber and at least one turbine for driving the compressor in rotation.
  • the turbine engine comprises, upstream, considering the direction of an air flow admitted at the inlet of the turbine engine, a fan making it possible to accelerate the flow of air from upstream to downstream in the turbine engine and comprising vanes generally extending in the same plane transverse to the axis of the turbomachine.
  • the blades are generally made of composite material and constitute parts for which it is necessary to carry out periodic inspection operations by ground maintenance operators.
  • control operations can be carried out by conventional non-destructive methods, such as visual observation, by acoustic or thermal measurement or by X-ray tomography.
  • visual observation is limited to detectable defects located on the surface of the the room.
  • the object of the invention and therefore to overcome this drawback and to propose a blade for an aircraft turbomachine fan, which makes it possible to know the mechanical stresses which are exerted on the blade during the flight in order, if necessary, to achieve adequate control operations by ground maintenance operators.
  • the object of the invention is therefore, according to a first object, a blade for an aircraft turbomachine fan, said blade being made of a composite material.
  • This blade comprises means for measuring internal deformations of the blade and means for storing and remotely transmitting signals for measuring deformations of the blade connected to said measuring means, said measuring means and said storage means and distance transmission being located in the composite material.
  • the measurement means are configured to measure the deformations along predetermined measurement axes.
  • the measuring means comprise piezoelectric elements extending along respective predetermined directions.
  • the means for measuring the internal deformations of the blade and the means for storing and remotely transmitting the deformation measurement signals it is possible to know the mechanical stresses which are exerted on the dawn during the flight, at the heart of the dawn, and this, in a non-intrusive way, that is to say without impact on the performance of the part and the engine.
  • the blade being made of composite material, the measuring means and the means of storage and remote transmission can be simply integrated into the blade, have a low mass and be autonomous in energy, while being capable of withstand the stresses exerted on the blade in flight, as well as production and repair constraints.
  • the measurement means are configured to supply said remote storage and transmission means.
  • the storage and transmission means comprise an RFID type transponder.
  • the storage and transmission means comprise means for processing the signals received from the measurement means, said processing means being configured to compare the maximum values of the voltage of the measurement signals with threshold values and to determine if the maximum value of the voltage of the measurement signals is included in an interval of predetermined voltage levels for a predefined duration.
  • the storage and transmission means can be configured remotely so as to adjust said predetermined voltage levels.
  • the composite material comprises woven fibers embedded in a resin.
  • the invention also relates to a method for manufacturing a composite material blade for an aircraft turbomachine fan, comprising steps of weaving a fiber preform, injecting a resin into the preform and hardening the the resin injected into the preform.
  • This method comprises a step of inserting means for measuring the internal deformations of the blade and means for the storage and remote transmission of signals for measuring the deformations of the blade connected to said means for measuring, said means for measuring and said remote storage and transmission means being located in the composite material.
  • said measurement means and said storage and transmission means are inserted on the external surface of the preform, before the step of injecting the resin.
  • Said measuring means and said storage and transmission means can also be inserted before the hardening step, during a lamination phase.
  • Another subject of the invention is a turbine engine for an aircraft, comprising a fan comprising at least one blade as defined above.
  • FIG 1 is a schematic representation in longitudinal section of a turbine engine equipped with a fan provided with a blade according to the invention
  • FIG 2 is a schematic profile view of a composite blade showing the integration of the measurement means and the storage and transmission means;
  • FIG 3 illustrates the constituent elements of an RFID transponder forming part of the means for storing and transmitting measurement signals
  • FIG 4 is a perspective view showing an example of implementation of a method of manufacturing a blade according to the invention.
  • FIG 5 shows a variant of integration of the measuring means in a blade according to the invention.
  • FIG. 1 illustrates the general architecture of a turbomachine provided with a fan provided with a blade in accordance with the invention.
  • the turbomachine designated by the general reference numeral 1, being along a turbomachine axis X and makes it possible to propel an aircraft from a flow of air entering the turbomachine 1 and circulating from upstream to downstream, the terms upstream and downstream being defined relative to the turbomachine axis X, considering the direction of the air flow in the turbomachine.
  • the turbomachine 1 comprises a compressor, a combustion chamber and a turbine to drive the compressor in rotation.
  • the turbomachine 1 includes a fan 2 upstream which accelerates the flow of air from upstream to downstream.
  • the fan 2 comprises a disk 3, integral in rotation with a shaft of the compressor, comprising housings, distributed at the periphery of disc 3, in which vanes 4 are respectively mounted by axial insertion along the axis of the turbomachine X, from upstream to downstream.
  • the vanes extend in the same plane transverse to the axis of the turbomachine X.
  • the turbomachine one comprises a cone 5 which is mounted upstream of the disc 3.
  • a single vane 4 will now be described. However, the description applies to all of the blades of the turbomachine.
  • each blade 4 extends along a radial axis R and successively comprises a blade root 6 configured to be mounted axially along the axis of the turbomachine X in a housing of the disc 3 of the fan 2 and a blade 7 secured to the blade root 6 and extending radially along the radial axis R, with respect to the turbomachine axis X.
  • the blade 4, and more particularly the blade 7, is made of a composite material from a fiber preform, by injection of a resin into the preform and hardening of the resin injected into the preform.
  • the means 8 for measuring the internal deformations of the blade are configured to determine the mechanical stresses which are exerted on the blade during flight, such as the deformations and the frequency of the excitations, along specific axes.
  • these measurement means 8 comprise piezoelectric elements 10 and 11 arranged perpendicularly with respect to each other.
  • a first piezoelectric element 10 extends radially, along the radial axis R of the blade 4, while the other piezoelectric element 11 extends perpendicularly, that is to say along the axis of turbomachine X.
  • the blade comprises two piezoelectric elements 10 and 11 arranged radially and axially respectively.
  • the invention does not depart from the scope when the blade comprises elements piezoelectric elements extending in other directions or comprises any number of such elements.
  • the blade comprises piezoelectric elements which are each oriented along a main direction of the stresses which are exerted on the blade during flight.
  • the thickness of the piezoelectric elements must not be too great so that they can be inserted into the blade. Piezoelectric elements having a thickness of between 0.05 mm and 2 mm will preferably be chosen.
  • the blade is made using a vacuum resin transfer molding process known as VA-RTM molding, by injecting liquid resin into a mold on a fiber preform followed by crosslinking. resin.
  • VA-RTM molding a vacuum resin transfer molding process
  • the constituent material of the piezoelectric element is chosen so as to be able to withstand the temperatures implemented during the VA-RTM molding, which can typically reach 250° C.
  • the material of the piezoelectric elements must be compatible with the resin material of the RTM composite, ideally from the same family or compatible with this matrix.
  • the matrix is an epoxy base, preference will be given to an epoxy resin or one compatible with epoxy.
  • the composite blade can also be manufactured using other techniques, in particular by resin infusion, thermocompression, cooking in an autoclave or under a press.
  • the resonant frequency of the piezoelectric elements must be set to a different value and higher than that of the resonant frequency of the blade.
  • the piezoelectric elements are connected to the means 9 for storage and remote transmission of the deformation measurement signals by wire connection, so that the piezoelectric elements are capable of supplying the means 9 for storage and transmission.
  • these comprise a RFID type transponder 12 and 13, for each piezoelectric element 10 and 11.
  • Each transponder 12 and 13 includes a memory 14 for storing the measurement signals from a piezoelectric element 10 or 11, a data processing circuit 15 which measures the signals from the piezoelectric element, in particular by determining the frequency of the voltage of the measurement signal coming from the piezoelectric element, the voltage peak and the average voltage, and which performs logical operations on the data extracted from the measurement signals.
  • each transponder 12 and 13 comprises an antenna 16 associated with a communication circuit 17 to communicate remotely with external devices, for example a reader accessible by maintenance operators, as well as a circuit 18 for managing the power supplied by the piezoelectric elements.
  • each RFID transponder must also be limited in order to be able to be inserted into the blade. It is advantageously between 0.05 mm and 2 mm.
  • the communication circuit 17 preferably integrates a UHF type RFID function, that is to say in a frequency range between 860 MHz and 960 MHz.
  • a UHF RFID function makes it possible to communicate with an external reader according to standard protocols in force.
  • memory 14 has a capacity of between 512 bytes and 62,000 bytes.
  • the power management module 18 provides power management by radio induction.
  • such a blade is made of a composite material from a preform of woven fibers, for example from carbon multi-filament strands.
  • the piezoelectric elements are integrated into the blade during its manufacture, which ensures that the measurement means are held in place perfectly. They can be placed in the core of the composite material or on the surface.
  • the piezoelectric elements are in this respect positioned along the axis whose deformation is to be monitored. As visible in FIG. 4, the piezoelectric elements are integrated during the three-dimensional weaving of the preform (3D composite). Alternatively, as illustrated in FIG. 5, the piezoelectric elements can be integrated between two plies 19 and 20 of a laminated composite (2D composite).
  • an unbinding zone In the case of the insertion of the piezoelectric elements during the three-dimensional weaving of the preform, an unbinding zone must be provided in order to facilitate the subsequent positioning of the elements necessary for the storage and remote transmission of information.
  • the woven preform is opened at the location of the unbinding zone.
  • the storage and transmission means are then positioned and the connection of these means to the deformation measuring means is carried out.
  • the positioning of the communication circuits is facilitated since it can be carried out during the formation of the composite plies.
  • a resin is injected and then a hardening step by heat treatment is implemented.
  • This may be, for example, infusion, cooking in an autoclave or press.
  • the data processing circuit 15 ensures, on the one hand, the measurement of the signals coming from the piezoelectric elements and, on the other hand, the processing of the data received.
  • the piezoelectric element or elements concerned generate a voltage which is supplied to the means 9 of storage and transmission. This tension is representative of the deformation undergone by the blade.
  • the maximum value of the voltage of the measurement signals represents the amplitude of the mechanical deformation of the blade.
  • the frequency of the voltage represents the frequency of mechanical excitation and the average voltage corresponds to the average level of strain.
  • the maximum voltage value, the average voltage value for a predetermined time and the excitation frequency are stored in memory 14.
  • the processing and storage of information in the memory is carried out, for example, according to the following protocol.
  • the maximum voltage U is between two minimum and maximum threshold values m and n for a duration t between two minimum and maximum values tl and t2
  • the maximum value, the average value during this duration t, the excitation frequency as well as the instant of the event are stored.
  • the transponder concerned sends the information via its REID antenna to inform that an event for which a voltage peak between the minimum value m and maximum n for a duration greater than the maximum threshold value t2 is currently in progress.
  • the maximum value of the voltage, the average value of the voltage during the duration of the event and the excitation frequency during the duration of the event are stored.
  • the transponder concerned sends the information remotely via its REID antenna to indicate that an event for which the value maximum U of the measurement voltage is greater than the maximum threshold value is currently current.
  • the voltage threshold values as well as the duration threshold values can be parameterized remotely, the external reader being able to modify the values of these threshold values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

Cette aube (4) en matériau composite pour soufflante de turbomachine d'aéronef comporte des moyens (8) de mesure des déformations internes de l'aube et des moyens (9) de stockage et de transmission à distance de signaux de mesure de déformation de l'aube raccordés auxdits moyens de mesure, lesdits moyens de mesure et lesdits moyens de stockage et de transmission à distance étant localisés dans le matériau composite.

Description

DESCRIPTION
TITRE : Aube composite pour soufflante de turbomachine d'aéronef comportant des moyens de mesure des déformations internes
Domaine technique
La présente invention concerne le domaine des turbomachines utilisées pour la propulsion d'un aéronef et, plus particulièrement, une aube pour soufflante de turbomachine d'aéronef.
Techniques antérieures
De manière connue, une turbomachine est destinée à fournir la poussée nécessaire à la propulsion d'un aéronef. Elle comprend classiquement au moins un compresseur, une chambre de combustion et au moins une turbine pour entraîner en rotation le compresseur.
La turbomachine comporte, en amont, en considérant la direction d'un flux d'air admis en entrée de la turbomachine, une soufflante permettant d'accélérer le flux d'air de l'amont vers l'aval dans la turbomachine et comprenant des aubes s'étendant généralement dans un même plan transversal à l'axe de la turbomachine.
Les aubes sont généralement réalisées en matériau composite et constituent des pièces pour lesquelles il est nécessaire de réaliser périodiquement des opérations de contrôle par des opérateurs de maintenance au sol.
Ces opérations de contrôle peuvent être réalisées par des méthodes conventionnelles non destructives, tels que l'observation visuelle, par mesure acoustique, thermique ou par tomographie à rayons X. Toutefois, l'observation visuelle est limitée aux défauts détectables et situés à la surface de la pièce.
Ces méthodes conventionnelles ont l'inconvénient d'être longues à mettre en œuvre, pouvant notamment nécessiter plusieurs heures d'intervention pour une seule pièce. En outre, ces méthodes peuvent nécessiter de recourir à des appareils spécifiques et/ou sont difficiles à mettre en œuvre lorsque la pièce est montée sur le moteur.
Exposé de l’invention Le but de l'invention et donc de pallier cet inconvénient et de proposer une aube pour soufflante de turbomachine d'aéronef, qui permette de connaître les contraintes mécaniques qui s'exercent sur l'aube durant le vol afin, si besoin, de réaliser les opérations de contrôle adéquates par les opérateurs de maintenance au sol.
L'invention a donc pour objet, selon un premier objet, une aube pour soufflante de turbomachine d'aéronef, ladite aube étant réalisée en matériau composite.
Cette aube comporte des moyens de mesure de déformations internes de l'aube et des moyens de stockage et de transmission à distance de signaux de mesure de déformations de l'aube raccordés auxdits moyens de mesure, lesdits moyens de mesure et lesdits moyens de stockage et de transmission à distance étant localisés dans le matériau composite.
Selon une autre caractéristique, les moyens de mesure sont configurés pour mesurer les déformations selon des axes de mesure prédéterminés.
Dans un mode de réalisation, les moyens de mesure comprennent des éléments piézoélectriques s'étendant selon des directions respectives prédéterminées.
Ainsi, grâce à l'utilisation des moyens de mesure de déformations internes de l'aube et des moyens de stockage et de transmission à distance des signaux de mesure de déformation, il est possible de connaître les contraintes mécaniques qui s'exercent sur l'aube au cours du vol, au cœur de l'aube, et ce, de manière non intrusive, c'est-à-dire sans impact sur les performances de la pièce et du moteur. En outre, l'aube étant réalisée en matériau composite, les moyens de mesure et les moyens de stockage et de transmission à distance peuvent être simplement intégrés dans l’ aube, avoir une faible masse et être autonomes en énergie, tout en étant capables de résister aux sollicitations qui s'exercent sur l'aube en vol, ainsi qu'aux contraintes de production et de réparation.
Avantageusement, les moyens de mesure sont configurés pour alimenter lesdits moyens de stockage et de transmission à distance. Avantageusement, les moyens de stockage et de transmission comportent un transpondeur de type RFID.
De préférence, les moyens de stockage et de transmission comprennent des moyens de traitement des signaux reçus issus des moyens de mesure, lesdits moyens de traitement étant configurés pour comparer les valeurs maximales de la tension des signaux de mesure avec des valeurs de seuil et pour déterminer si la valeur maximale de la tension des signaux de mesure est comprise dans un intervalle de niveaux de tension prédéterminés pendant une durée prédéfinie.
Avantageusement, les moyens de stockage et de transmission sont paramétrables à distance de manière à régler lesdits niveaux de tension prédéterminés.
Dans un mode de mise en œuvre, le matériau composite comprend des fibres tissées noyées dans une résine.
L'invention a également pour objet un procédé de fabrication d'une aube en matériau composite pour soufflante de turbomachine d'aéronef, comprenant des étapes de tissage d'une préforme de fibres, injection d'une résine dans la préforme et de durcissement de la résine injectée dans la préforme.
Ce procédé comporte une étape d'insertion de moyens de mesure de déformations internes de l'aube et des moyens de stockage et de transmission à distance de signaux de mesure de déformations de l'aube raccordés auxdits moyens de mesure, lesdits moyens de mesure et lesdits moyens de stockage et de transmission à distance étant localisés dans le matériau composite.
Dans un mode de mise en œuvre, lesdits moyens de mesure et lesdits moyens de stockage et de transmission sont insérés sur la surface externe de la préforme, avant l'étape d'injection de la résine.
Lesdits moyens de mesure et lesdits moyens de stockage et de transmission peuvent également être insérés avant l'étape de durcissement, lors d'une phase de stratification.
L'invention a encore pour objet une turbomachine pour aéronef, comprenant une soufflante comprenant au moins une aube telle que définie ci-dessus.
Brève description des dessins D’ autres buts, caractéristiques et avantages de l’ invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d’ exemple non limitatif, et faite en référence aux dessins annexés sur lesquels :
[Fig 1 ] est une représentation schématique en coupe longitudinale d'une turbomachine équipée d'une soufflante pourvue d'une aube conforme à l'invention ;
[Fig 2] est une vue schématique de profil d'une aube composite montrant l'intégration des moyens de mesure et des moyens de stockage et de transmission ;
[Fig 3] illustre les éléments constitutifs d’un transpondeur RFID entrant dans la constitution des moyens de stockage et de transmission des signaux de mesure ;
[Fig 4] est une vue en perspective montrant un exemple de mise en œuvre d'un procédé de fabrication d'une aube conforme à l'invention ; et
[Fig 5] montre une variante d'intégration des moyens de mesure dans une aube conforme à l'invention.
Exposé détaillé d’au moins un mode de réalisation
On se référera tout d'abord à la figure 1 , qui illustre l'architecture générale d'une turbomachine dotée d'une soufflante pourvue d'une aube conforme à l'invention.
Tel que représentée, la turbomachine, désignée par la référence numérique générale 1 , s'étant selon un axe de turbomachine X et permet de propulser un aéronef à partir d'un flux d'air entrant dans la turbomachine 1 et circulant d'amont en aval, les termes amont et aval étant définis par rapport à l'axe de turbomachine X, en considérant la direction du flux d’ air dans la turbomachine.
De manière connue, la turbomachine 1 comprend un compresseur, une chambre de combustion et une turbine pour entraîner en rotation le compresseur. La turbomachine 1 comporte en amont une soufflante 2 qui permet d'accélérer le flux d'air de l'amont vers l'aval.
La soufflante 2 comprend un disque 3, solidaire en rotation d'un arbre du compresseur, comprenant des logements, répartis à la périphérie du disque 3 , dans lesquels sont respectivement montées des aubes 4 par insertion axiale selon l'axe de turbomachine X, d'amont vers l'aval. Les aubes s’étendent dans un même plan transversal à l'axe de turbomachine X. Dans cet exemple, la turbomachine un comporte un cône 5 qui est monté en amont du disque 3. Par souci de clarté et de concision, une seule aube 4 va dorénavant être décrite. Toutefois, la description s’ applique à l’ ensemble des aubes de la turbomachine.
En se référant également à la figure 2, chaque aube 4 s'étend selon un axe radial R et comprend successivement un pied d'aube 6 configuré pour être monté axialement selon l'axe de turbomachine X dans un logement du disque 3 de la soufflante 2 et une pale 7 solidarisée au pied d'aube 6 et s’ étendant radialement selon l'axe radial R, par rapport à l'axe de turbomachine X.
L’ aube 4, et plus particulièrement la pale 7, est réalisée en matériau composite à partir d'une préforme de fibres, par injection d'une résine dans la préforme et durcissement de la résine injectée dans la préforme.
Elle incorpore des moyens 8 de mesure de déformations internes de l'aube et des moyens 9 de stockage et de transmission à distance des signaux de mesure délivrés par les moyens 8 de mesure.
Les moyens 8 de mesure des déformations internes de l'aube sont configurés pour déterminer les contraintes mécaniques qui s'exercent sur l'aube au cours du vol, tels que les déformations et la fréquence des excitations, selon des axes spécifiques.
Dans un mode de réalisation, ces moyens 8 de mesure comprennent des éléments piézoélectriques 10 et 1 1 disposés perpendiculairement l'un par rapport à l'autre.
Par exemple, un premier élément piézoélectrique 10 s’ étend radialement, selon l'axe radial R de l'aube 4, tandis que l'autre élément piézoélectrique 1 1 s’ étend perpendiculairement, c'est-à-dire selon l'axe de turbomachine X.
Dans l'exemple de réalisation illustré à la figure 2, l'aube comporte deux éléments piézoélectriques 10 et 1 1 disposés respectivement radialement et axialement. Bien entendu, on ne sort pas du cadre dans l'invention lorsque l'aube comporte des éléments piézoélectriques s'étendant selon d'autres directions ou comporte un nombre quelconque de tels éléments. Toutefois, de préférence, l'aube comporte des éléments piézoélectriques qui sont orientés chacun selon une direction principale des contraintes qui s'exercent sur la pale lors d'un vol.
On notera que l'épaisseur des éléments piézoélectriques ne doit pas être trop grande afin qu’ ils puissent être insérés dans l'aube. On choisira de préférence des éléments piézoélectriques ayant une épaisseur comprise entre 0,05 mm et 2 mm.
Dans un mode de mise en œuvre, l'aube est réalisée selon un procédé de moulage par transfert de résine sous vide connu sous l’ appellation de moulage VA-RTM, par injection de résine liquide dans un moule sur une préforme de fibres puis réticulation de la résine. Ainsi, le matériau constitutif de l'élément piézoélectrique est choisi de manière à pouvoir résister aux températures mises en œuvre lors du moulage VA- RTM, pouvant typiquement atteindre 250°C.
De même, lorsque l'aube est réalisée par transfert de résine sous vide à partir d'une résine RTM, le matériau des éléments piézoélectriques doit être compatible avec le matériau de la résine du composite RTM, idéalement de la même famille ou compatible avec cette matrice. Par exemple, si la matrice est une base époxy, on privilégiera une résine époxy ou compatible avec l'époxy.
On notera toutefois que l’ aube composite peut également être fabriquée selon d’ autres techniques, notamment par infusion de résine, thermocompression, cuisson en autoclave ou sous presse.
Par ailleurs, la fréquence de résonance des éléments piézoélectriques doit être définie sur une valeur différente et supérieure à celle de la fréquence de résonance de l'aube.
Enfin, les éléments piézoélectriques sont raccordés aux moyens 9 de stockage et de transmission à distance des signaux de mesure de déformation par liaison filaire, de sorte que les éléments piézoélectriques soient capables d'alimenter les moyens 9 de stockage et de transmission.
En ce qui concerne les moyens 9 de stockage et de transmission des signaux de mesure de déformation, ceux-ci comportent un transpondeur de type RFID 12 et 13, pour chaque élément piézoélectrique 10 et 1 1.
Chaque transpondeur 12 et 13 comporte une mémoire 14 pour le stockage des signaux de mesure issus d’un élément piézoélectrique 10 ou 1 1 , un circuit de traitement de données 15 qui assure une mesure des signaux issus de l’ élément piézoélectrique, notamment en déterminant la fréquence de la tension du signal de mesure issu de l’ élément piézoélectrique, le pic de tension et la tension moyenne, et qui réalise des opérations logiques sur les données extraites des signaux de mesure.
Par ailleurs, chaque transpondeur 12 et 13 comporte une antenne 16 associée à un circuit de communication 17 pour communiquer à distance avec des dispositifs externes, par exemple un lecteur accessible par des opérateurs de maintenance, ainsi qu'un circuit 18 de gestion de l'alimentation fournie par les éléments piézoélectriques.
On notera que l'antenne 16 est conçue de manière à fonctionner dans le matériau non conducteur spécifique de la zone où elle est localisée. L'épaisseur de chaque transpondeur RFID doit également être limitée afin de pouvoir être inséré dans l'aube. Elle est avantageusement comprise entre 0,05 mm et 2 mm.
Le circuit de communication 17 intègre de préférence une fonction RFID de type UHF, c'est-à-dire dans une gamme de fréquence comprise entre 860 MHz et 960 MHz. Une telle fonction RFID UHF permet de communiquer avec un lecteur externe suivant des protocoles standards en vigueur. Par exemple, la mémoire 14 comprend une capacité comprise entre 512 octets et 62000 octets.
De préférence, le module de gestion d'alimentation 18 assure une gestion d'alimentation par induction radio .
On va maintenant décrire en référence aux figures 4 et 5 un exemple de mise en œuvre d'un procédé de fabrication d'une aube selon l'invention, intégrant des moyens de mesure de déformations internes et des moyens de stockage et de transmission à distance des signaux de mesure.
Tel qu'indiqué précédemment, une telle aube est réalisée en matériau composite à partir d'une préforme de fibres tissées, par exemple à partir de torons multi-filaments en carbone. En se référant tout d'abord à la figure 4, les éléments piézoélectriques sont intégrés dans l'aube au cours de sa fabrication, ce qui assure un parfait maintien des moyens de mesure. Ils peuvent être placés dans le cœur du matériau composite ou en surface.
Les éléments piézoélectriques sont à cet égard positionnés selon l'axe dont on souhaite suivre la déformation. Comme visible sur la figure 4, les éléments piézoélectriques sont intégrés lors du tissage tridimensionnel de la préforme (composite 3D) . En variante, tel qu'illustré sur la figure 5 , les éléments piézoélectriques peuvent être intégrés entre deux plis 19 et 20 d'un composite stratifié (composite 2D) .
Dans le cas de l'insertion des éléments piézoélectriques lors du tissage tridimensionnel de la préforme, une zone de déliage doit être prévue afin de faciliter le positionnement ultérieur des éléments nécessaires au stockage et à la transmission à distance des informations.
Ainsi, lors de l'étape suivante, la préforme tissée est ouverte à l'endroit de la zone de déliage. Les moyens de stockage et de transmissions sont alors positionnés et le raccordement de ces moyens aux moyens de mesure de déformation est réalisé.
Ces éléments sont ensuite protégés en utilisant du carbone par l'intermédiaire de deux plis de fibre sèche de verre afin d'isoler les circuits de communication des fibres de carbone et d'augmenter ainsi la distance de détection des signaux.
En ce qui concerne les aubes réalisées par composite stratifié (figure 5), le positionnement des circuits de communication est facilité puisqu'il peut être réalisé lors de la formation des plis de composite. Toutefois, il est également nécessaire d'introduire localement une protection avec un tissu sec de verre pour isoler les circuits de communication des fibres de carbone.
A l’ issue de cette étape, une résine est injectée puis une étape de durcissement par traitement thermique est mise en œuvre. Il peut s'agir, par exemple, d'une infusion, d'une cuisson en autoclave ou presse.
Comme indiqué précédemment, le circuit de traitement de données 15 assure d'une part la mesure des signaux issus des éléments piézoélectriques et, d’ autre part, le traitement des données reçues. En fonctionnement, si l’ aube subit une déformation, ou un cycle de déformation, le ou les éléments piézoélectriques concernés génèrent une tension qui est fournie aux moyens 9 de stockage et de transmission. Cette tension est représentative de la déformation subie par l’ aube.
La valeur maximale de la tension des signaux de mesure représente l'amplitude de la déformation mécanique de l'aube. La fréquence de la tension représente la fréquence d'excitation mécanique et la tension moyenne correspond au niveau moyen de déformation. La valeur maximale de la tension, la valeur moyenne de la tension pendant une durée prédéterminée et la fréquence d'excitation sont stockées dans la mémoire 14.
Le traitement et le stockage des informations dans la mémoire s'effectuent, par exemple, selon le protocole suivant.
Si la tension maximale U est comprise entre deux valeurs de seuil minimal et maximal m et n pendant une durée t comprise entre deux valeurs minimales et maximales tl et t2 , la valeur maximale, la valeur moyenne pendant cette durée t, la fréquence d'excitation ainsi que l’ instant de l'événement sont mémorisés.
Si la valeur maximale U de la tension est comprise entre les deux valeurs de seuil m et n pendant une durée t supérieure à la durée maximale t2 , la valeur maximale de la tension, la valeur moyenne de la tension pendant cette durée t, la fréquence d'excitation pendant ce temps t ainsi que l’instant de l'événement sont stockés dans la mémoire 14. En outre, le transpondeur concerné envoie l'information par l'intermédiaire de son antenne REID pour informer qu'un événement pour lequel un pic de tension compris entre la valeur minimale m et maximale n pendant une durée supérieure à la valeur maximale de seuil t2 est actuellement en cours.
Enfin, si la tension maximale est supérieure à la valeur de seuil maximal n, la valeur maximale de la tension, la valeur moyenne de la tension pendant la durée de l'événement et la fréquence d'excitation pendant la durée de l'événement sont mémorisées. Le transpondeur concerné envoie à distance l'information par l'intermédiaire de son antenne REID pour indiquer qu'un événement pour lequel la valeur maximale U de la tension de mesure est supérieure à la valeur maximale de seuil est actuellement en cours.
On notera que les valeurs de seuil de tension ainsi que les valeurs de seuil de durée sont paramétrables à distance, le lecteur externe pouvant modifier les valeurs de ces valeurs de seuil.

Claims

REVENDICATIONS
1. Aube pour soufflante de turbomachine d'aéronef, ladite aube étant réalisée en matériau composite, caractérisée en ce qu'elle comporte des moyens (8) de mesure des déformations internes de l'aube et des moyens (9) de stockage et de transmission à distance de signaux de mesure de déformation de l'aube raccordés auxdits moyens de mesure, lesdits moyens de mesure et lesdits moyens de stockage et de transmission à distance étant localisés dans le matériau composite.
2. Aube selon la revendication 1 , dans laquelle les moyens (8) de mesure sont configurés pour mesurer les déformations selon des axes de mesure prédéterminés.
3. Aube selon l'une des revendications 1 et 2, dans laquelle les moyens (8) de mesure comprennent des éléments piézoélectriques ( 10, 1 1 ) s'étendant selon des directions respectives prédéterminées.
4. Aube selon l'une quelconque des revendications 1 à 3, dans laquelle les moyens (8) de mesure sont configurés pour alimenter lesdits moyens (9) de stockage et de transmission à distance.
5. Aube selon l'une quelconque des revendications 1 à 4, dans laquelle les moyens de stockage et de transmission comportent un transpondeur ( 12, 13) de type RFID.
6. Aube selon l'une quelconque des revendications 1 à 5, dans laquelle les moyens (9) de stockage et de transmission comprennent des moyens de traitement ( 15) des signaux reçus issus des moyens de mesure, lesdits moyens de traitement étant configurés pour comparer les valeurs maximales de la tension des signaux de mesure avec des valeurs de seuil et pour déterminer si la valeur maximale de la tension des signaux de mesure est comprise dans un intervalle de niveaux de tension prédéterminés pendant une durée prédéfinie.
7. Aube selon la revendication 6, dans laquelle les moyens de stockage et de transmission sont paramétrables à distance de manière à régler lesdits niveaux de tension prédéterminés.
8. Aube selon l'une quelconque des revendications 1 à 7, dans laquelle le matériau composite comprend des fibres tissées noyées dans une résine.
9. Procédé de fabrication d'une aube en matériau composite pour soufflante de turbomachine d’ aéronef, comprenant des étapes de tissage d'une préforme de fibres, injection d'une résine dans la préforme et de durcissement de la résine injectée dans la préforme, caractérisé en ce qu'il comporte une étape d'insertion de moyens (8) de mesure de déformations internes de l'aube et des moyens (9) de stockage et de transmission à distance de signaux de mesure de déformation de l'aube raccordés auxdits moyens de mesure, lesdits moyens de mesure et lesdits moyens de stockage et de transmission à distance étant localisés dans le matériau composite.
10. Procédé selon la revendication 9, dans lequel lesdits moyens de mesure et lesdits moyens de stockage et de transmission sont insérés sur la surface externe de la préforme avant l'étape d'injection de la résine.
1 1. Procédé selon la revendication 9, dans lequel lesdits moyens de mesure et lesdits moyens de stockage et de transmission sont insérés avant l'étape de durcissement lors d'une phase de stratification.
12. Turbomachine pour aéronef, caractérisée en ce qu'elle comporte une soufflante comprenant au moins une aube selon l'une quelconque des revendications 1 à 8.
13. Aéronef comprenant une turbomachine selon la revendication
PCT/FR2023/050123 2022-02-03 2023-01-31 Aube composite pour soufflante de turbomachine d'aéronef comportant des moyens de mesure des déformations internes WO2023148448A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2200954 2022-02-03
FR2200954A FR3132322B1 (fr) 2022-02-03 2022-02-03 Aube composite pour soufflante de turbomachine d'aéronef comportant des moyens de mesure des déformations internes

Publications (1)

Publication Number Publication Date
WO2023148448A1 true WO2023148448A1 (fr) 2023-08-10

Family

ID=81448429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/050123 WO2023148448A1 (fr) 2022-02-03 2023-01-31 Aube composite pour soufflante de turbomachine d'aéronef comportant des moyens de mesure des déformations internes

Country Status (2)

Country Link
FR (1) FR3132322B1 (fr)
WO (1) WO2023148448A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004748A1 (fr) * 2013-04-19 2014-10-24 Snecma Aube ou pale de moteur d'aeronef et procede et systeme de controle de defauts dans des composites par des particules ayant des proprietes ferromagnetiques
US20170373612A1 (en) * 2016-06-22 2017-12-28 General Electric Company Harvesting energy from composite aircraft engine components
EP3498986A1 (fr) * 2017-12-18 2019-06-19 United Technologies Corporation Ensemble capteur pour moteurs à turbine à gaz
EP3643880A2 (fr) * 2018-10-18 2020-04-29 United Technologies Corporation Ensemble de rotor avec amortissement actif pour moteurs à turbine à gaz
FR3098848A1 (fr) * 2019-07-16 2021-01-22 Safran Aircraft Engines Aube pour soufflante de turbomachine comportant un support d’identification et procédé de lecture d’un tel support d’identification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004748A1 (fr) * 2013-04-19 2014-10-24 Snecma Aube ou pale de moteur d'aeronef et procede et systeme de controle de defauts dans des composites par des particules ayant des proprietes ferromagnetiques
US20170373612A1 (en) * 2016-06-22 2017-12-28 General Electric Company Harvesting energy from composite aircraft engine components
EP3498986A1 (fr) * 2017-12-18 2019-06-19 United Technologies Corporation Ensemble capteur pour moteurs à turbine à gaz
EP3643880A2 (fr) * 2018-10-18 2020-04-29 United Technologies Corporation Ensemble de rotor avec amortissement actif pour moteurs à turbine à gaz
FR3098848A1 (fr) * 2019-07-16 2021-01-22 Safran Aircraft Engines Aube pour soufflante de turbomachine comportant un support d’identification et procédé de lecture d’un tel support d’identification

Also Published As

Publication number Publication date
FR3132322B1 (fr) 2023-12-22
FR3132322A1 (fr) 2023-08-04

Similar Documents

Publication Publication Date Title
CA2867831C (fr) Detection et suivi d'un endommagement ou d'un impact d'objet etranger sur une soufflante d'un moteur d'aeronef
EP2869985B1 (fr) Procédé de fixation d'un renfort métallique structurel sur une partie d'une aube de turbine à gaz en matériau composite et moule d'injection pour la mise en oeuvre d'un tel procédé
CA2557109A1 (fr) Ensemble et procede pour le montage du pied d'une aube de turbomachine soufflante, compresseur et turbomachine comportant un tel ensemble
EP3464829B1 (fr) Procédé de fabrication d'un carter à revêtement abradable de turbomachine
FR3111659A1 (fr) Aube de turbomachine a bord d’attaque metallique
EP3930991A1 (fr) Reparation ou reprise de fabrication d' une piece en materiau composite
WO2023148448A1 (fr) Aube composite pour soufflante de turbomachine d'aéronef comportant des moyens de mesure des déformations internes
EP3983653B1 (fr) Aube pour soufflante de turbomachine comportant un support d'identification et procédé de lecture d'un tel support d'identification
EP3013685B1 (fr) Systeme de liaison a distance pour aeronef
EP3464830B1 (fr) Procédé de fabrication d'un carter annulaire équipé de turbomachine
EP4196666A1 (fr) Aube composite de turbomachine d'aeronef
EP3847006B1 (fr) Carter en materiau composite avec raidisseur integre
FR3004748A1 (fr) Aube ou pale de moteur d'aeronef et procede et systeme de controle de defauts dans des composites par des particules ayant des proprietes ferromagnetiques
FR3134138A1 (fr) Pièce composite, notamment pour une turbomachine d’aéronef
FR3071919B1 (fr) Systeme et procede de mesure de decalage
EP4248067A1 (fr) Pièce composite, notamment pour une turbomachine d'aéronef
FR3129176A1 (fr) Procédé et système de détection d’humidité à l’intérieur d’une pièce composite, turbomachine correspondante et aéronef équipé d’une telle turbomachine
FR3117156A1 (fr) Aube pour soufflante de turbomachine d’aéronef comportant un moyen de transmission d’une pluralité de données à distance
FR3136281A1 (fr) Eprouvette de caracterisation pour une piece de turbomachine et procede de fabrication correspondant
FR3117158A1 (fr) Plateforme de soufflante pour turbomachine d’aéronef comprenant un moyen de transmission
FR3117159A1 (fr) Aube directrice pour soufflante de turbomachine comprenant un capteur sans fil.
FR3135647A1 (fr) Procédé de fabrication d’une pièce en matériau composite avec marquage intégré et pièce composite ainsi obtenue
FR3117150A1 (fr) Carter pour soufflante de turbomachine d’aéronef comportant un moyen de transmission d’une pluralité de données
WO2023047030A1 (fr) Procede de preparation d'un pied d'une aube de turbomachine
EP3983654A1 (fr) Cône d'entrée pour une turbomachine d'aéronef et turbomachine d'aéronef associée

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23706416

Country of ref document: EP

Kind code of ref document: A1