WO2023146249A1 - 뇌 신경 모델링 장치 - Google Patents

뇌 신경 모델링 장치 Download PDF

Info

Publication number
WO2023146249A1
WO2023146249A1 PCT/KR2023/001097 KR2023001097W WO2023146249A1 WO 2023146249 A1 WO2023146249 A1 WO 2023146249A1 KR 2023001097 W KR2023001097 W KR 2023001097W WO 2023146249 A1 WO2023146249 A1 WO 2023146249A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
cell culture
nerve
cell
microfluidic chip
Prior art date
Application number
PCT/KR2023/001097
Other languages
English (en)
French (fr)
Inventor
최혁
이재원
윤원기
황민호
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2023146249A1 publication Critical patent/WO2023146249A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/12Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/42Apparatus for the treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/06Plates; Walls; Drawers; Multilayer plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/06Tissue, human, animal or plant cell, or virus culture apparatus with filtration, ultrafiltration, inverse osmosis or dialysis means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons

Definitions

  • the following embodiments relate to a brain neural modeling device and a control technology therefor.
  • Brain neural modeling apparatus simulating the microenvironment of the brain according to an embodiment applies an electrical stimulation signal to at least one of a plurality of cell culture channels and the cell culture channels, or nerve cells cultured in the cell culture channels
  • a microfluidic chip including electrodes for measuring the activation signal of; a control unit that determines an electrical stimulation signal to be provided through the electrodes and processes the measured active signal; and a micropump providing a culture solution to the cell culture channels, wherein the cell culture channels include a first blood-brain barrier mimicking channel, a glial cell channel, a first nerve cell channel, an axon guidance channel, and a second nerve cell channel and a second cerebrovascular gate mimic channel.
  • the nerve axons of the nerve cells cultured in the first nerve cell channel are cultured in a serial form through the axon guidance channel, and may form a synapse with the second nerve cell channel.
  • the microfluidic chip may include posts forming an interface between the plurality of cell culture channels, and a distance between the posts may be smaller than a height of the plurality of cell culture channels.
  • the microfluidic chip forms an interface based on the posts arranged at regular intervals, and the movement of fluid is prevented at the interface, and biochemical substance exchange between the cell culture channels can occur.
  • the microfluidic chip may further include a cover slip on which the electrodes are patterned, the electrodes may be connected to the control unit through a connector, and an activity signal of neurons cultured in the cell culture channels may be measured.
  • the cover slip is disposed under the microfluidic chip, and cells may be cultured by attaching to the cover slip.
  • the control unit may include a power supply unit supplying power to the control unit; an amplifier for amplifying the measured active signal; and a controller unit controlling at least one of the power supply unit and the amplification unit.
  • the micropump may circulate the culture solution in a single direction through the first channel that simulates the blood-brain barrier and the channel that simulates the second blood-brain barrier.
  • the micro pump may circulate the culture medium through the first blood-brain barrier simulated channel and the second blood-brain barrier simulated channel through an open-loop circulation method or a closed-loop circulation method.
  • Each of the cell culture channels includes an inlet for injecting nerve cells; and an outlet, wherein the inlet and the outlet are formed by perforating the microfluidic chip, and the culture solution may be circulated through the inlet and the outlet.
  • the microfluidic chip may independently co-culture nerve cells in each of the cell culture channels.
  • a microfluidic chip simulating a microenvironment of the brain includes a plurality of cell culture channels; and electrodes for applying an electrical stimulation signal to at least one of the cell culture channels or measuring an activation signal of a nerve cell cultured in the cell culture channels, the cell culture channels comprising a first blood-brain barrier It may include a simulated channel, a glial cell channel, a first nerve cell channel, an axon guidance channel, a second nerve cell channel, and a second blood-brain barrier simulated channel.
  • FIG. 1 and 2 are diagrams illustrating the structure of a microfluidic chip according to an embodiment.
  • FIG. 3 is a diagram for explaining cell culture channels of a microfluidic chip simulating a human body according to an embodiment.
  • FIG. 4 is a diagram for explaining synapses formed between nerve cell channels according to an embodiment.
  • 5 and 6 are views for explaining a microfluidic chip and a substrate according to an exemplary embodiment.
  • FIG. 7 is a diagram showing the configuration of a cranial nerve modeling apparatus according to an embodiment.
  • first or second may be used to describe various components, such terms should only be construed for the purpose of distinguishing one component from another.
  • a first element may be termed a second element, and similarly, a second element may be termed a first element.
  • the brain neural modeling apparatus described herein may be intended to solve the limitations of conventional animal experiments and brain-simulating chips.
  • the brain neural modeling device can simulate neurodegenerative diseases and can be a platform for more accurate research and evaluation of in vivo mechanisms using co-culture technology and microelectrodes.
  • the brain neural modeling apparatus described herein simulates the human brain microenvironment and can effectively evaluate interactions between nerve cells for various experiments in an environment similar to the brain microenvironment.
  • the cranial nerve modeling apparatus may generate a cranial nerve model modeling cranial nerves based on microfluidic technology.
  • the cranial nerve model can use microscopic electrodes as a real-time biosensor.
  • the electrode can measure the permeability of the blood-brain barrier (BBB) using the TEER (Trans-epithelial electrical resistance) measurement method, measure the activation signal of nerve cells, or apply an electrical stimulation signal can do.
  • the TEER measurement method may be a measurement method for measuring how much tight junctions are formed. That is, the TEER measurement method may be a measurement method for measuring the degree of tight junction formation.
  • the brain neural modeling apparatus described herein may include a microfluidic chip, a controller, and a micro pump.
  • the controller may determine an electrical stimulation signal to be provided through the electrodes of the microfluidic chip and process the measured activation signal.
  • the micropump can provide culture medium to the cell culture channels. A description of the control unit and the micro pump may be described in more detail in FIG. 7 .
  • the microfluidic chip may include a plurality of cell culture channels and electrodes for applying an electrical stimulation signal to at least one of the cell culture channels or measuring an activation signal of a cell cultured in the cell culture channels.
  • the microfluidic chip can independently co-culture neurons in each of the cell culture channels.
  • a microfluidic chip 120 may include an electrode 110 and a plurality of cell culture channels.
  • the cell culture channels included in the microfluidic chip 120 include a first blood-brain barrier simulating channel 130, a neuroglial cell channel 150, a first nerve cell channel 160, an axon guidance channel 170, and a second It may include a nerve cell channel 180 and a second blood-brain barrier simulating channel 190.
  • the microfluidic chip 120 may also include posts 140 forming interfaces between the plurality of cell culture channels.
  • the spacing between the posts 140 may be less than the height of the plurality of cell culture channels to prevent fluid movement between the cell culture channels.
  • the microfluidic chip 120 may form a boundary surface based on the posts 140 disposed at regular intervals.
  • each cell culture channel may have a width of 1000 um and a height of 250 um, and a boundary surface may be formed between each cell culture channel based on posts 140 at intervals of 100 um. At the interface, fluid movement is prevented, and biochemical material exchange between cell culture channels may occur.
  • the glial cell channel 150 may include a glial cell.
  • Glial cells are 1/10 the size of nerve cells, but exist at about 10 times the number, and can perform nerve cell recovery, insulation, immune action, nutrient supply, and regulation of extracellular fluid.
  • the first nerve cell channel 160 may culture nerve cells.
  • the nerve axons of the nerve cells cultured in the first nerve cell channel 160 are cultured in a serial form through the axon guidance channel 170 and may form synapses with the second nerve cell channel 180 .
  • the microfluidic chip 120 can grow nerve axons in an aligned form.
  • the microfluidic chip 120 can physically or chemically mimic neurodegenerative diseases, and the first blood-brain barrier simulated channel and the second blood-brain barrier simulated channel at least one blood-brain barrier or neuroglial glial cell channel. By regulating cells, it is possible to study various conditions.
  • the microfluidic chip may further include a cover slip patterned with electrodes 210 , 215 , 220 , and 225 .
  • the electrodes 210 and 215 may be connected to the controller through a connector.
  • the electrodes 220 and 225 may be disposed in the first nerve cell channel and the second nerve cell channel to apply electrical stimulation signals or to measure activation signals of nerve cells cultured in the cell culture channels. Also, the electrodes 220 and 225 may apply or measure various signals.
  • the material of the electrodes 210, 215, 220, and 225 may be a material having excellent biocompatibility, and may be, for example, TiN (titanium nitride) or ITO (indium tin oxide).
  • the size of the electrodes 210, 215, 220, and 225 may be, for example, about 30 um in diameter and 200 um in interval in order to enable stimulation and activity measurement in units of nerve cells.
  • each of the cell culture channels may include an inlet 230 and an outlet 240 for injecting nerve cells.
  • the inlet 230 and the outlet 240 may be formed by perforating the microfluidic chip.
  • the culture solution may be circulated through the inlet 230 and the outlet 240 .
  • nerve cells injected through the inlet 230 may be circulated in the direction of the outlet 240 .
  • each of the cell culture channels may include an inlet 240 and an outlet 230 .
  • the culture medium may be circulated through the inlet 240 and the outlet 230 .
  • nerve cells injected through the inlet 240 may be circulated in the direction of the outlet 230 .
  • FIG. 3 is a diagram for explaining cell culture channels of a microfluidic chip simulating a human body according to an embodiment.
  • the microfluidic chip can simulate the microenvironment of the brain.
  • the microfluidic chip may include a plurality of cell culture channels, and among the cell culture channels, a blood-brain barrier-simulating channel may include vascular endothelial cells simulating human blood vessels.
  • the glial cell channel may include a glial cell 320 that mimics a human glial cell
  • the nerve cell channel may include a nerve cell 330 that mimics a human nerve cell.
  • FIG. 4 is a diagram for explaining synapses formed between nerve cell channels according to an embodiment.
  • step 410 shows the form of a neuronal axon 440 cultured in a first neuronal cell channel 450 before forming a synapse with a second neuronal cell channel 470 and step 420 A form after the nerve axon 442 cultured in the first nerve cell channel 450 forms a synapse with the second nerve cell channel 470 may be shown.
  • the first nerve cell channel 450 and the second nerve cell channel 470 may include nerve cells, and the first nerve cell channel 450 and the second nerve cell channel 470 ), the electrode 430 may be disposed. In step 410, even if an electrical stimulation signal is applied to the first nerve cell channel 450 by the electrode 430, the electrical stimulation signal may not be measured in the second nerve cell channel 470. If the nerve axon 440 is cultured along the axon guidance channel 460 in step 410, the nerve axon 442 can be connected to the nerve cell included in the second nerve cell channel 470 in step 420.
  • the electrical stimulation signal applied by the electrode 430 of the first nerve cell channel 450 may also be transmitted to the electrode 480 disposed in the second nerve cell channel 470 along the nerve axon, and the second An electrical stimulation signal may also be measured in a nerve cell channel included in the nerve cell channel 470 .
  • 5 and 6 are views for explaining a microfluidic chip and a substrate according to an exemplary embodiment.
  • the microfluidic chip 520 may include a cover slip on which electrodes are patterned.
  • a cover slip may be placed under the microfluidic chip 520, and the microfluidic chip 520 may be combined with the substrate 510 to complete the platform.
  • the microfluidic chip 520 may include, for example, a silicon wafer master fabricated through a photolithography or soft-lithography process.
  • the microfluidic chip 520 may be made of a material such as polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA), polyacrylate, or glass, but is not limited thereto.
  • the cover slip may be formed of a transparent material such as glass.
  • cells may be cultured by attaching to a cover slip 630 .
  • the cells may be attached to the bottom of the cover slip 630 and cultured so that the application of the electrical stimulation signal to the nerve cells and the measurement of the activation signal of the nerve cells are smooth.
  • Electrodes 640 may be patterned on the cover slip 630 , and the microfluidic chip may include an inlet 610 and an outlet 620 formed by perforating the microfluidic chip.
  • the culture solution may be circulated through the inlet 610 and the outlet 620 and provided to the nerve cells.
  • FIG. 7 is a diagram showing the configuration of a cranial nerve modeling apparatus according to an embodiment.
  • the brain neural modeling apparatus may include a controller 710, a connector 750, a microfluidic chip 760, and a micro pump 770.
  • the microfluidic chip 760 is an electrode for applying an electrical stimulation signal to at least one of a plurality of cell culture channels and the cell culture channels or measuring an activation signal of a nerve cell cultured in the cell culture channels.
  • the microfluidic chip 760 may further include a cover slip patterned with electrodes. The electrodes are connected to the control unit 710 through the connector 750 and can measure the activity of neurons cultured in the cell culture channels.
  • the controller 710 may determine electrical stimulation signals to be provided through the electrodes, and control the electrodes to measure or sense the activation signals of nerve cells.
  • the controller 710 may process the measured active signal.
  • the control unit 710 may include a power supply unit 730, an amplification unit 720, and a controller unit 740.
  • the power supply unit 730 may provide power to the control unit 710 .
  • the amplifier 720 may amplify the measured active signal.
  • the controller unit 740 may control at least one of the power supply unit 730 and the amplification unit 720 .
  • the controller unit 740 may also be referred to as a microcontroller unit or a microcontroller unit (MCU).
  • a micro pump 770 may provide culture fluid to the cell culture channels.
  • the micropump 770 may circulate the culture medium in a single direction in the first channel that simulates the blood-brain barrier and the second channel that simulates the blood-brain barrier.
  • the micropump 770 may circulate the culture medium to the first blood-brain barrier simulating channel and the second blood-brain barrier simulating channel through an open-loop circulation method or a closed-loop circulation method.
  • the circulation of the culture medium can be determined based on the experimental design.
  • the micro pump 770 may simulate cerebral blood flow by circulating the culture medium at a low flow rate of 0.1 dyn/cm, for example.
  • the hardware device described above may be configured to operate as one or a plurality of software modules to perform the operations of the embodiments, and vice versa.
  • cells are differently co-cultured for each culture channel using microfluidic technology, and through this, a microenvironment simulating a human brain microenvironment can be constructed.
  • cerebral blood flow at a low flow rate circulating in a single direction can be simulated through dynamic culture using a micro pump.
  • neurodegenerative diseases can be simulated more intuitively through a plurality of differentiated nerve cell culture channels and a structure of a nerve axon channel connecting them.
  • electrical stimulation can be applied and sensed through microelectrodes
  • electrical stimulation treatment evaluation activity signal measurement of nerve cells, or synapses between cells can be evaluated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Neurology (AREA)
  • Analytical Chemistry (AREA)
  • Virology (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Clinical Laboratory Science (AREA)
  • Neurosurgery (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

일 실시예에 따른 뇌의 미세 환경을 모사한 뇌 신경 모델링 장치가 개시된다. 뇌 신경 모델링 장치는 복수의 세포 배양 채널들 및 세포 배양 채널들 중 적어도 하나에 전기 자극 신호를 가하거나 또는 세포 배양 채널들에 배양된 신경 세포의 활성 신호를 측정하기 위한 전극들을 포함하는 미세유체 칩, 전극들을 통해 제공될 전기 자극 신호를 결정하고, 측정된 활성 신호를 처리하는 제어부 및 세포 배양 채널들에 배양액을 제공하는 마이크로 펌프를 포함하고, 세포 배양 채널들은 제1 뇌혈관문 모사 채널, 신경 아교 세포 채널, 제1 신경 세포 채널, 축삭 가이던스 채널, 제2 신경 세포 채널 및 제2 뇌혈관문 모사 채널을 포함할 수 있다.

Description

뇌 신경 모델링 장치
아래 실시예들은 뇌 신경 모델링 장치 및 이에 대한 제어 기술에 관한 것이다.
미세유체 기술을 이용한 세포 배양기술은 인체를 모사하여 세포에 적합한 미세환경을 제공하고, 그 기능과 특성을 구현함으로써, 실제 생체 내 기전을 보다 정확하게 반영할 수 있다는 점에서 다양한 분야에서 각광받고 있다. 최근 신경과학 분야에서 미세유체 기술을 이용한 랩온어칩(lab on a chip) 기술이 이용되고 있다. 랩온어칩 기술은 인체 유래 세포를 사용함으로써 기존 동물실험으로 진행되던 신경 장애 발달 및 진행에 대한 연구들의 한계를 보완할 수 있다. 랩온어칩 기술에서 실제 인체 내의 조직 또는 세포 간의 산소 및 영양분의 이동과 흡수, 신호전달과정이 중요하므로, 신경 세포, 신경 아교 세포, 내피세포, 상피세포 등의 다양한 세포로 이루어진 뇌 조직층을 모사하여 복수의 세포가 공동 배양되도록 할 수 있다. 그러나, 현재 기술로는 인체의 복잡한 시스템을 모두 모방하기엔 한계가 있으므로, 특정 세포들의 기전을 파악하기 위한 종합적인 플랫폼이 필요하다.
일 실시예에 따른 뇌의 미세 환경을 모사한 뇌 신경 모델링 장치는 복수의 세포 배양 채널들 및 상기 세포 배양 채널들 중 적어도 하나에 전기 자극 신호를 가하거나 또는 상기 세포 배양 채널들에 배양된 신경 세포의 활성 신호를 측정하기 위한 전극들을 포함하는 미세유체 칩; 상기 전극들을 통해 제공될 전기 자극 신호를 결정하고, 상기 측정된 활성 신호를 처리하는 제어부; 및 상기 세포 배양 채널들에 배양액을 제공하는 마이크로 펌프를 포함하고, 상기 세포 배양 채널들은, 제1 뇌혈관문 모사 채널, 신경 아교 세포 채널, 제1 신경 세포 채널, 축삭 가이던스 채널, 제2 신경 세포 채널 및 제2 뇌혈관문 모사 채널을 포함할 수 있다.
상기 제1 신경 세포 채널에서 배양된 신경 세포의 신경축삭은, 상기 축삭 가이던스 채널을 통해 직렬 형태로 배양되고, 상기 제2 신경 세포 채널과 시냅스를 형성할 수 있다.
상기 미세유체 칩은, 상기 복수의 세포 배양 채널들 사이에 경계면을 형성하는 포스트들을 포함하고, 상기 포스트들 간의 간격은, 상기 복수의 세포 배양 채널들의 높이보다 작을 수 있다.
상기 미세유체 칩은, 일정한 간격으로 배치된 상기 포스트들을 기준으로 경계면을 형성하고, 상기 경계면에서, 유체의 이동이 방지되고, 상기 세포 배양 채널들 간의 생화학적 물질 교환이 발생될 수 있다.
상기 미세유체 칩은, 상기 전극들이 패터닝된 커버 슬립을 더 포함하고, 상기 전극들은 커넥터를 통해 상기 제어부와 연결되고, 상기 세포 배양 채널들에서 배양된 신경 세포의 활성 신호를 측정할 수 있다.
상기 커버 슬립은 상기 미세유체 칩의 아래에 배치되고, 세포는 상기 커버 슬립에 붙어서 배양될 수 있다.
상기 제어부는, 상기 제어부에 전원을 제공하는 전원부; 상기 측정된 활성 신호를 증폭하는 증폭부; 및 상기 전원부 및 상기 증폭부 중 적어도 하나를 제어하는 콘트롤러 유닛(controller unit)을 포함할 수 있다.
상기 마이크로 펌프는, 상기 제1 뇌혈관문 모사 채널 및 상기 제2 뇌혈관문 모사 채널에 단일 방향으로 배양액을 순환시킬 수 있다.
상기 마이크로 펌프는, 개방 루프 순환 방식 또는 폐쇄 루프 순환 방식을 통해 상기 배양액을 상기 제1 뇌혈관문 모사 채널 및 상기 제2 뇌혈관문 모사 채널에 순환시킬 수 있다.
상기 세포 배양 채널들 각각은 신경 세포를 주입시키기 위한 주입구; 및 유출구를 포함하고, 상기 주입구 및 상기 유출구는, 상기 미세유체 칩이 타공되어 형성되고, 상기 주입구와 유출구를 통해 상기 배양액이 순환될 수 있다.
상기 미세유체 칩은, 상기 세포 배양 채널들 각각에서 독립적으로 신경 세포를 공배양(co-culture)할 수 있다.
일 실시예에 따른 뇌의 미세 환경을 모사한 미세유체 칩은, 복수의 세포 배양 채널들; 및 상기 세포 배양 채널들 중 적어도 하나에 전기 자극 신호를 가하거나 또는 상기 세포 배양 채널들에 배양된 신경 세포의 활성 신호를 측정하기 위한 전극들을 포함하고, 상기 세포 배양 채널들은, 제1 뇌혈관문 모사 채널, 신경 아교 세포 채널, 제1 신경 세포 채널, 축삭 가이던스 채널, 제2 신경 세포 채널 및 제2 뇌혈관문 모사 채널을 포함할 수 있다.
도 1 및 도 2는 일 실시예에 따른 미세유체 칩의 구조를 도시하는 도면들이다.
도 3은 일 실시예에 따른 인체를 모사하는 미세유체 칩의 세포 배양 채널들을 설명하기 위한 도면이다.
도 4는 일 실시예에 따른 신경 세포 채널들 간에 형성된 시냅스를 설명하기 위한 도면이다.
도 5 및 도 6은 일 실시예에 따른 미세유체 칩과 기판을 설명하기 위한 도면들이다.
도 7은 일 실시예에 따른 뇌 신경 모델링 장치의 구성을 도시하는 도면이다.
실시예들에 대한 특정한 구조적 또는 기능적 설명들은 단지 예시를 위한 목적으로 개시된 것으로서, 다양한 형태로 변경되어 구현될 수 있다. 따라서, 실제 구현되는 형태는 개시된 특정 실시예로만 한정되는 것이 아니며, 본 명세서의 범위는 실시예들로 설명한 기술적 사상에 포함되는 변경, 균등물, 또는 대체물을 포함한다.
제1 또는 제2 등의 용어를 다양한 구성요소들을 설명하는데 사용될 수 있지만, 이런 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 해석되어야 한다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로도 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설명된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함으로 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 해당 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 실시예들을 첨부된 도면들을 참조하여 상세하게 설명한다. 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조 부호를 부여하고, 이에 대한 중복되는 설명은 생략하기로 한다.
본 명세서에서 설명하는 뇌 신경 모델링 장치는 종래의 동물실험 및 뇌를 모사한 칩의 한계점을 해결하기 위한 것일 수 있다. 뇌 신경 모델링 장치는 퇴행성 신경질환을 모사할 수 있고, 공배양 기술과 마이크로 전극을 이용해 생체 내 기전을 보다 정확하게 연구하고 평가하기 위한 플랫폼일 수 있다.
최근 신경 아교 세포가 신경퇴행성질환에서의 역할에 대한 중요성이 대두되면서, 공배양된 세포 간 상호작용에 의한 신경 세포의 반응성, 약물의 효능 및 독성을 평가하는 방법이 연구되고 있다.
본 명세서에서 설명하는 뇌 신경 모델링 장치는 인체의 뇌 미세 환경을 모사하여 뇌 미세 환경과 유사한 환경에서 여러가지 실험에 대한 신경 세포들 간의 상호작용을 효과적으로 평가할 수 있다.
뇌 신경 모델링 장치는 미세유체 기술에 기반하여 뇌 신경을 모델링한 뇌 신경 모델을 생성할 수 있다. 뇌 신경 모델은 미세한 크기의 전극을 실시간 생체 센서로써 사용할 수 있다. 예를 들어 전극은 TEER(Trans-epithelial electrical resistance) 측정법을 이용하여 뇌혈관문(Blood -brain barrier; BBB)의 침투성을 측정할 수 있고, 신경 세포의 활성 신호를 측정하거나 또는 전기 자극 신호를 인가할 수 있다. TEER 측정법은 밀착 연접(Tight junction)이 얼마나 형성되었는지 측정하는 측정 방법일 수 있다. 즉, TEER 측정법은 밀착 연접이 형성된 정도를 측정하는 측정 방법일 수 있다.
본 명세서에서 설명하는 뇌 신경 모델링 장치는 미세유체 칩, 제어부 및 마이크로 펌프를 포함할 수 있다. 제어부는 미세유체 칩의 전극들을 통해 제공될 전기 자극 신호를 결정하고, 측정된 활성 신호를 처리할 수 있다. 또한, 마이크로 펌프는 세포 배양 채널들에 배양액을 제공할 수 있다. 제어부와 마이크로 펌프에 대한 설명은 도 7에서 보다 자세히 설명될 수 있다.
미세유체 칩은 복수의 세포 배양 채널들 및 세포 배양 채널들 중 적어도 하나에 전기 자극 신호를 가하거나 또는 세포 배양 채널들에 배양된 세포의 활성 신호를 측정하기 위한 전극들을 포함할 수 있다. 미세유체 칩은 세포 배양 채널들 각각에서 독립적으로 신경 세포를 공배양(co-culture)할 수 있다.
도 1 및 도 2는 일 실시예에 따른 미세유체 칩의 구조를 도시하는 도면들이다. 도 1을 참조하면, 미세유체 칩(120)은 전극(110) 및 복수의 세포 배양 채널들을 포함할 수 있다. 미세유체 칩(120)에 포함된 세포 배양 채널들은 제1 뇌혈관문 모사 채널(130), 신경 아교 세포 채널(150), 제1 신경 세포 채널(160), 축삭 가이던스 채널(170), 제2 신경 세포 채널(180) 및 제2 뇌혈관문 모사 채널(190)을 포함할 수 있다.
미세유체 칩(120)은 복수의 세포 배양 채널들 사이에 경계면을 형성하는 포스트들(140)도 포함할 수 있다. 포스트들(140) 간의 간격은, 세포 배양 채널들 간의 유체 이동을 방지하기 위해 복수의 세포 배양 채널들의 높이보다 작을 수 있다. 미세유체 칩(120)은 일정한 간격으로 배치된 포스트들(140)을 기준으로 경계면을 형성할 수 있다. 예를 들어, 각 세포 배양 채널들은 너비 1000um, 높이 250um로 이루어져 있을 수 있고, 각 세포 배양 채널들 사이에 100um 간격의 포스트들(140)을 기준으로 경계면이 형성될 수 있다. 경계면에서는 유체의 이동이 방지되고, 세포 배양 채널들 간의 생화학적 물질 교환이 발생될 수 있다.
신경 아교 세포 채널(150)은 신경 아교 세포를 포함할 수 있다. 신경 아교 세포는 신경 세포의 10분의 1 크기이지만 개수는 약 10배 정도로 존재하며, 신경 세포의 회복, 절연, 면역 작용, 영양공급 및 세포외액의 조절 등을 수행할 수 있다.
제1 신경 세포 채널(160)은 신경 세포를 배양할 수 있다. 제1 신경 세포 채널(160)에서 배양된 신경 세포의 신경축삭은 축삭 가이던스 채널(170)을 통해 직렬 형태로 배양되고, 제2 신경 세포 채널(180)과 시냅스를 형성할 수 있다. 이를 통해 미세유체 칩(120)은 신경축삭을 정렬된 형태로 성장시킬 수 있다.
미세유체 칩(120)은 퇴행성 신경질환을 물리적 또는 화학적으로 모사할 수 있고, 제1 뇌혈관문 모사 채널 및 제2 뇌혈관문 모사 채널 중 적어도 하나의 뇌혈관문 또는 신경 아교 세포 채널의 신경 아교 세포를 조절함으로써 다양한 조건의 연구가 가능하도록 할 수 있다.
도 2를 참조하면, 미세유체 칩은 전극들(210, 215, 220, 225)이 패터닝된 커버 슬립을 더 포함할 수 있다. 전극들 중 전극들(210, 215)은 커넥터를 통해 제어부와 연결될 수 있다. 또한, 전극들(220, 225)은 제1 신경 세포 채널 및 제2 신경 세포 채널에 배치되어, 전기 자극 신호를 인가하거나, 세포 배양 채널들에서 배양된 신경 세포의 활성 신호를 측정할 수 있다. 또한 전극들(220, 225)은 다양한 신호를 인가하거나 측정할 수도 있다. 전극들(210, 215, 220, 225)의 재질은 생체적합성이 우수한 물질이 사용될 수 있고, 예를 들어, TiN(Titanium nitride) 또는 ITO(Indium tin oxide)일 수 있다. 전극들(210, 215, 220, 225)의 크기는, 신경 세포 단위의 자극 및 활성 측정이 가능하도록 하기 위해, 예를 들어, 약 지름 30um, 간격 200um로 이루어질 수 있다.
일 실시예에서 세포 배양 채널들 각각은 신경 세포를 주입시키기 위한 주입구(230)와, 유출구(240)를 포함할 수 있다. 주입구(230)와 유출구(240)는 미세유체 칩이 타공되어 형성될 수 있다. 주입구(230)와 유출구(240)를 통해 배양액이 순환될 수 있다. 이 실시예에서 주입구(230)를 통해 주입된 신경 세포는 유출구(240)의 방향으로 순환될 수 있다.
다른 실시예에서 세포 배양 채널들 각각은 주입구(240) 및 유출구(230)를 포함할 수 있다. 주입구(240)와 유출구(230)를 통해 배양액이 순환될 수 있다. 이 실시예에서 주입구(240)를 통해 주입된 신경 세포는 유출구(230)의 방향으로 순환될 수 있다.
도 3은 일 실시예에 따른 인체를 모사하는 미세유체 칩의 세포 배양 채널들을 설명하기 위한 도면이다.
도 3을 참조하면, 미세유체 칩은 뇌의 미세 환경을 모사할 수 있다. 미세유체 칩 복수의 세포 배양 채널들을 포함할 수 있고, 세포 배양 채널들 중 뇌혈관문 모사 채널은 인체의 혈관을 모사한 혈관내피세포를 포함할 수 있다. 또한, 신경 아교 세포 채널은 인체의 신경 아교 세포를 모사한 신경 아교 세포(320)를 포함할 수 있고, 신경 세포 채널은 인체의 신경 세포를 모사한 신경 세포(330)를 포함할 수 있다.
도 4는 일 실시예에 따른 신경 세포 채널들 간에 형성된 시냅스를 설명하기 위한 도면이다.
도 4를 참조하면, 단계(410)은 제1 신경 세포 채널(450)에서 배양된 신경축삭(440)이 제2 신경 세포 채널(470)과 시냅스를 형성하기 전의 형태를 나타내고 단계(420)은 제1 신경 세포 채널(450)에서 배양된 신경축삭(442)이 제2 신경 세포 채널(470)과 시냅스를 형성한 후의 형태를 나타낼 수 있다.
단계(410)을 참조하면, 제1 신경 세포 채널(450) 및 제2 신경 세포 채널(470)은 신경 세포를 포함할 수 있고, 제1 신경 세포 채널(450) 및 제2 신경 세포 채널(470)에 전극(430)이 배치되어 있을 수 있다. 단계(410)에서는 전극(430)에 의해 제1 신경 세포 채널(450)에 전기 자극 신호가 인가되어도 제2 신경 세포 채널(470)에는 전기 자극 신호가 측정되지 않을 수 있다. 단계(410)에서 신경축삭(440)이 축삭 가이던스 채널(460)을 따라서 배양되면 단계(420)에서 신경축삭(442)이 제2 신경 세포 채널(470)에 포함된 신경 세포와 연결될 수 있다. 이때, 제1 신경 세포 채널(450)의 전극(430)에 의해 인가된 전기 자극 신호는 신경축삭을 따라 제2 신경 세포 채널(470)에 배치된 전극(480)에도 전달될 수 있고, 제2 신경 세포 채널(470)에 포함된 신경 세포 채널도 전기 자극 신호가 측정될 수 있다.
도 5 및 도 6은 일 실시예에 따른 미세유체 칩과 기판을 설명하기 위한 도면들이다.
도 5를 참조하면, 미세유체 칩(520)은 전극들이 패터닝된 커버 슬립을 포함할 수 있다. 커버 슬립은 미세유체 칩(520)의 아래에 배치될 수 있고, 미세유체 칩(520)은 기판(510)과 결합되어 플랫폼을 완성할 수 있다. 미세유체 칩(520)은 예를 들어, 포토리소그래피(photolithography) 또는 소프트리소그래피(soft-lithography) 공정으로 제작된 실리콘웨이퍼 마스터로 구성될 수 있다. 또한, 미세유체 칩(520)은 폴리디메틸실록산(Polydimethylsiloxane; PDMS), 폴리메틸메타크릴레이트(polymethyl methacrylate; PMMA), 폴리아크릴레이트, 유리 등의 소재로 구성될 수도 있고, 이에 한정되지 않는다. 또한, 커버 슬립은 예를 들어 유리와 같은 투명한 재질의 소자로 형성될 수 있다.
도 6을 참조하면, 세포는 커버 슬립(630)에 붙어서 배양될 수 있다. 신경 세포에 전기 자극 신호를 인가하는 것과 신경 세포의 활성 신호를 측정하는 것이 원활하도록 세포는 커버 슬립(630)인 바닥에 붙어서 배양될 수 있다. 커버 슬립(630)에는 전극들(640)이 패터닝되어 있을 수 있고 미세유체 칩은 미세유체 칩이 타공되어 형성된 주입구(610)와 유출구(620)를 포함할 수 있다. 배양액은 주입구(610)와 유출구(620)를 통해 순환되어 신경 세포에 제공될 수 있다.
도 7은 일 실시예에 따른 뇌 신경 모델링 장치의 구성을 도시하는 도면이다.
도 7을 참조하면, 뇌 신경 모델링 장치는 제어부(710), 커넥터(750), 미세유체 칩(760) 및 마이크로 펌프(770)를 포함할 수 있다.
일 실시예에서 미세유체 칩(760)은 복수의 세포 배양 채널들 및 세포 배양 채널들 중 적어도 하나에 전기 자극 신호를 가하거나 또는 세포 배양 채널들에 배양된 신경 세포의 활성 신호를 측정하기 위한 전극들을 포함할 수 있다. 미세유체 칩(760)은 전극들이 패터닝된 커버 슬립을 더 포함할 수 있다. 전극들은 커넥터(750)를 통해 제어부(710)와 연결되고, 세포 배양 채널들에서 배양된 신경 세포의 활성을 측정할 수 있다.
제어부(710)는 전극들을 통해 제공될 전기 자극 신호를 결정하고, 전극이 신경 세포의 활성 신호를 측정하거나 또는 센싱하는 것을 제어할 수 있다. 제어부(710)는 측정된 활성 신호를 처리할 수 있다. 제어부(710)는 전원부(730), 증폭부(720) 및 콘트롤러 유닛(controller unit)(740)을 포함할 수 있다. 전원부(730)는 제어부(710)에 전원을 제공할 수 있다. 증폭부(720)는 측정된 활성 신호를 증폭할 수 있다. 콘트롤러 유닛(740)은 전원부(730) 및 증폭부(720) 중 적어도 하나를 제어할 수 있다. 콘트롤러 유닛(740)은 마이크로 콘트롤러 유닛 또는 MCU((micro controller unit)이라고 지칭될 수도 있다.
마이크로 펌프(770)는 세포 배양 채널들에 배양액을 제공할 수 있다. 마이크로 펌프(770)는 제1 뇌혈관문 모사 채널 및 제2 뇌혈관문 모사 채널에 단일 방향으로 배양액을 순환시킬 수 있다. 또한, 마이크로 펌프(770)는 개방 루프 순환 방식 또는 폐쇄 루프 순환 방식을 통해 배양액을 제1 뇌혈관문 모사 채널 및 제2 뇌혈관문 모사 채널에 순환시킬 수 있다. 배양액의 순환 방식은 실험 디자인에 기초하여 결정될 수 있다. 마이크로 펌프(770)는 예를 들어, 배양액을 0.1 dyn/cm의 낮은 유속으로 순환시킴으로써 뇌 혈류를 모사할 수 있다.
위에서 설명한 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 또는 복수의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
일 실시예에 따르면 종래의 동물 실험 및 뇌를 모사한 칩의 한계점을 극복할 수 있다.
일 실시예에 따르면 미세유체 기술을 이용하여 각 배양 채널마다 세포를 다르게 공배양하고, 이를 통해 인체의 뇌 미세환경을 모사한 미세환경을 구축할 수 있다.
일 실시예에 따르면 마이크로 펌프를 이용한 동적배양을 통해 단일 방향으로 순환되는 낮은 유속의 뇌 혈류를 모사할 수 있다.
일 실시예에 따르면 다양한 공배양 조건을 비롯해 약물 및 전기시험이 가능하므로 각 시험에 대한 세포 간 상호작용을 효과적으로 평가할 수 있다.
일 실시예에 따르면 구분된 복수의 신경 세포 배양 채널과 이들을 잇는 신경축삭 채널 구조를 통해 퇴행성 신경질환을 보다 직관적으로 모사할 수 있다.
일 실시예에 따르면 마이크로 전극을 통해 전기 자극의 인가 및 센싱이 가능해 전기 자극 치료 평가, 신경 세포의 활성 신호 측정 또는 세포 간 시냅스를 평가할 수 있다.
일 실시예에 따르면 투명한 칩 구조를 가지므로 모사된 미세환경에서의 형질학적 변화를 실시간으로 관찰이 가능하다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 이를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (13)

  1. 뇌의 미세 환경을 모사한 뇌 신경 모델링 장치에 있어서,
    복수의 세포 배양 채널들 및 상기 세포 배양 채널들 중 적어도 하나에 전기 자극 신호를 가하거나 또는 상기 세포 배양 채널들에 배양된 신경 세포의 활성 신호를 측정하기 위한 전극들을 포함하는 미세유체 칩;
    상기 전극들을 통해 제공될 전기 자극 신호를 결정하고, 상기 측정된 활성 신호를 처리하는 제어부; 및
    상기 세포 배양 채널들에 배양액을 제공하는 마이크로 펌프를 포함하고,
    상기 세포 배양 채널들은,
    제1 뇌혈관문 모사 채널, 신경 아교 세포 채널, 제1 신경 세포 채널, 축삭 가이던스 채널, 제2 신경 세포 채널 및 제2 뇌혈관문 모사 채널을 포함하는,
    뇌 신경 모델링 장치.
  2. 제1항에 있어서,
    상기 제1 신경 세포 채널에서 배양된 신경 세포의 신경축삭은,
    상기 축삭 가이던스 채널을 통해 직렬 형태로 배양되고, 상기 제2 신경 세포 채널과 시냅스를 형성하는,
    뇌 신경 모델링 장치.
  3. 제1항에 있어서,
    상기 미세유체 칩은,
    상기 복수의 세포 배양 채널들 사이에 경계면을 형성하는 포스트들을 포함하고,
    상기 포스트들 간의 간격은,
    상기 복수의 세포 배양 채널들의 높이보다 작은,
    뇌 신경 모델링 장치.
  4. 제3항에 있어서,
    상기 미세유체 칩은, 일정한 간격으로 배치된 상기 포스트들을 기준으로 경계면을 형성하고,
    상기 경계면에서, 유체의 이동이 방지되고, 상기 세포 배양 채널들 간의 생화학적 물질 교환이 발생되는,
    뇌 신경 모델링 장치.
  5. 제1항에 있어서,
    상기 미세유체 칩은,
    상기 전극들이 패터닝된 커버 슬립을 더 포함하고,
    상기 전극들은,
    커넥터를 통해 상기 제어부와 연결되고, 상기 세포 배양 채널들에서 배양된 신경 세포의 활성 신호를 측정하는,
    뇌 신경 모델링 장치.
  6. 제5항에 있어서,
    상기 커버 슬립은 상기 미세유체 칩의 아래에 배치되고,
    세포는 상기 커버 슬립에 붙어서 배양되는,
    뇌 신경 모델링 장치.
  7. 제1항에 있어서,
    상기 제어부는,
    상기 제어부에 전원을 제공하는 전원부;
    상기 측정된 활성 신호를 증폭하는 증폭부; 및
    상기 전원부 및 상기 증폭부 중 적어도 하나를 제어하는 콘트롤러 유닛(controller unit)
    을 포함하는,
    뇌 신경 모델링 장치.
  8. 제1항에 있어서,
    상기 마이크로 펌프는,
    상기 제1 뇌혈관문 모사 채널 및 상기 제2 뇌혈관문 모사 채널에 단일 방향으로 배양액을 순환시키는,
    뇌 신경 모델링 장치.
  9. 제8항에 있어서,
    상기 마이크로 펌프는,
    개방 루프 순환 방식 또는 폐쇄 루프 순환 방식을 통해 상기 배양액을 상기 제1 뇌혈관문 모사 채널 및 상기 제2 뇌혈관문 모사 채널에 순환시키는,
    뇌 신경 모델링 장치.
  10. 제1항에 있어서,
    상기 세포 배양 채널들 각각은,
    신경 세포를 주입시키기 위한 주입구; 및
    유출구
    를 포함하고,
    상기 주입구 및 상기 유출구는,
    상기 미세유체 칩이 타공되어 형성되고,
    상기 주입구와 유출구를 통해 상기 배양액이 순환되는,
    뇌 신경 모델링 장치.
  11. 제1항에 있어서,
    상기 미세유체 칩은,
    상기 세포 배양 채널들 각각에서 독립적으로 신경 세포를 공배양(co-culture)하는,
    뇌 신경 모델링 장치.
  12. 뇌의 미세 환경을 모사한 미세유체 칩에 있어서,
    복수의 세포 배양 채널들; 및
    상기 세포 배양 채널들 중 적어도 하나에 전기 자극 신호를 가하거나 또는 상기 세포 배양 채널들에 배양된 신경 세포의 활성 신호를 측정하기 위한 전극들을 포함하고,
    상기 세포 배양 채널들은,
    제1 뇌혈관문 모사 채널, 신경 아교 세포 채널, 제1 신경 세포 채널, 축삭 가이던스 채널, 제2 신경 세포 채널 및 제2 뇌혈관문 모사 채널을 포함하는,
    미세유체 칩.
  13. 제12항에 있어서,
    상기 제1 신경 세포 채널에서 배양된 신경 세포의 신경축삭은,
    상기 축삭 가이던스 채널을 통해 직렬 형태로 배양되고, 상기 제2 신경 세포 채널과 시냅스를 형성하는,
    미세유체 칩.
PCT/KR2023/001097 2022-01-28 2023-01-25 뇌 신경 모델링 장치 WO2023146249A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220013560A KR20230116524A (ko) 2022-01-28 2022-01-28 뇌 신경 모델링 장치
KR10-2022-0013560 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023146249A1 true WO2023146249A1 (ko) 2023-08-03

Family

ID=87471937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/001097 WO2023146249A1 (ko) 2022-01-28 2023-01-25 뇌 신경 모델링 장치

Country Status (2)

Country Link
KR (1) KR20230116524A (ko)
WO (1) WO2023146249A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9261496B2 (en) * 2010-09-29 2016-02-16 Massachusetts Institute Of Technology Device for high throughput investigations of multi-cellular interactions
KR20180080670A (ko) * 2017-01-04 2018-07-12 고려대학교 산학협력단 추간판 통증기전 연구용 추간판세포 공동배양장치
WO2021077064A1 (en) * 2019-10-18 2021-04-22 EMULATE, Inc. Brain-chip modeling neurodegeneration and neuroinflammation in parkinson's disease

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9261496B2 (en) * 2010-09-29 2016-02-16 Massachusetts Institute Of Technology Device for high throughput investigations of multi-cellular interactions
KR20180080670A (ko) * 2017-01-04 2018-07-12 고려대학교 산학협력단 추간판 통증기전 연구용 추간판세포 공동배양장치
WO2021077064A1 (en) * 2019-10-18 2021-04-22 EMULATE, Inc. Brain-chip modeling neurodegeneration and neuroinflammation in parkinson's disease

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AHN SONG IH, SEI YOSHITAKA J., PARK HYUN-JI, KIM JINHWAN, RYU YUJUNG, CHOI JEONGMOON J., SUNG HAK-JOON, MACDONALD TOBEY J., LEVEY : "Microengineered human blood–brain barrier platform for understanding nanoparticle transport mechanisms", NATURE COMMUNICATIONS, vol. 11, no. 1, XP093081916, DOI: 10.1038/s41467-019-13896-7 *
DE JONGH RIANNE, SPIJKERS XANDOR M., PASTEUNING‐VUHMAN SVETLANA, VULTO PAUL, PASTERKAMP R. JEROEN: "Neuromuscular junction‐on‐a‐chip: ALS disease modeling and read‐out development in microfluidic devices", JOURNAL OF NEUROCHEMISTRY, WILEY-BLACKWELL PUBLISHING LTD., GB, vol. 157, no. 3, 1 May 2021 (2021-05-01), GB , pages 393 - 412, XP093081914, ISSN: 0022-3042, DOI: 10.1111/jnc.15289 *
VYSOKOV NICKOLAI, MCMAHON STEPHEN B., RAOUF RAMIN: "The role of NaV channels in synaptic transmission after axotomy in a microfluidic culture platform", SCIENTIFIC REPORTS, vol. 9, no. 1, XP093081928, DOI: 10.1038/s41598-019-49214-w *
WAN JIANDI, ZHOU SITONG, MEA HING JII, GUO YAOJUN, KU HANSOL, URBINA BRIANNA M.: "Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering", CHEMICAL REVIEWS, AMERICAN CHEMICAL SOCIETY, US, vol. 122, no. 7, 13 April 2022 (2022-04-13), US , pages 7142 - 7181, XP093081920, ISSN: 0009-2665, DOI: 10.1021/acs.chemrev.1c00480 *

Also Published As

Publication number Publication date
KR20230116524A (ko) 2023-08-04

Similar Documents

Publication Publication Date Title
US8912006B2 (en) Microfluidic device for generating neural cells to simulate post-stroke conditions
EP2377572A1 (en) A bio-hybrid implant for connecting a neural interface with a host nervous system
US20180120294A1 (en) Microfluidic Devices for Cells or Organ based Multimodal Activation and Monitoring system
Denyer et al. Preliminary study on the suitability of a pharmacological bio-assay based on cardiac myocytes cultured over microfabricated microelectrode arrays
CN101421615A (zh) 高通量电生理学系统
US11865538B2 (en) Biological detection chip, biological detection device, and detection method thereof
EP3494877A1 (en) Device for the examination of neurons
WO2011105818A2 (en) Cell culture unit and cell culture device including the same
CN103981085A (zh) 一种自设度梯度药物筛选器官芯片及其制备方法
WO2023146249A1 (ko) 뇌 신경 모델링 장치
Li et al. Integrated brain on a chip and automated organ‐on‐chips systems
US20170370908A1 (en) Brain in vitro models, devices, systems, and methods of use thereof
CN116103152B (zh) 一种用于药物测试的类器官芯片模型
US10793820B2 (en) Miniaturized, automated in-vitro tissue bioreactor
WO2022139389A1 (ko) 세포 배양 플레이트 적층 배열체
Sargent et al. Design and validation of the transparent oxygen sensor array
CN107955782B (zh) 基于微流控芯片的模拟体内代谢过程的肝-血脑屏障体系
CN212077076U (zh) 一种微流控实验板
Zhang Modular multi-organ-on-chips platform with physicochemical sensor integration
CN113528334A (zh) 一种微流控实验板及细胞培养方法
Seker et al. Solving medical problems with BioMEMS
Chapin et al. A hybrid biomonitoring system for gut-neuron communication
Frega Neuronal network dynamics in 2D and 3D in vitro neuroengineered systems
CN115350736B (zh) 一种皮肤炎症因子的检测装置和检测方法
WO2022260436A1 (ko) 종양 스페로이드를 포함하는 미세유체칩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747290

Country of ref document: EP

Kind code of ref document: A1