WO2023145813A1 - グルコセレブロシダーゼ活性を有するタンパク質およびその製造方法 - Google Patents

グルコセレブロシダーゼ活性を有するタンパク質およびその製造方法 Download PDF

Info

Publication number
WO2023145813A1
WO2023145813A1 PCT/JP2023/002410 JP2023002410W WO2023145813A1 WO 2023145813 A1 WO2023145813 A1 WO 2023145813A1 JP 2023002410 W JP2023002410 W JP 2023002410W WO 2023145813 A1 WO2023145813 A1 WO 2023145813A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
protein
position corresponding
substitution
Prior art date
Application number
PCT/JP2023/002410
Other languages
English (en)
French (fr)
Inventor
大祐 立岩
勇樹 牧野
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Publication of WO2023145813A1 publication Critical patent/WO2023145813A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to a protein having glucocerebrosidase activity and a method for producing the same.
  • Lysosomal disease is a hereditary disease caused by decreased activity or deficiency of lysosomal enzymes and their related factors, resulting in the accumulation of substances that act as substrates for these enzymes in the body.
  • glucocerebrosidase ⁇ -glucosidase
  • GBA glucocerebrosidase
  • GBA ⁇ -glucosidase
  • Symptoms and findings such as anemia, thrombocytopenia, bone changes, and increased blood acid phosphatase and angiotensin-converting enzyme levels associated with hyperfunction are observed (Non-Patent Document 1).
  • enzyme replacement therapy is often used as a treatment method for such lysosomal diseases.
  • a recombinant cDNA encoding human glucocerebrosidase expressed in a Chinese hamster ovary (CHO) cell line was glycoengineered to facilitate uptake into target cell macrophages.
  • CHO Chinese hamster ovary
  • glucocerebrosidase GAA
  • a technique for producing recombinant glucocerebrosidase (GBA) using cells derived from prokaryotes such as E. coli as hosts is also known.
  • GAA glucocerebrosidase
  • Such a technique does not pose the problems of infection risk, productivity, and production cost that occur when eukaryotes are used as hosts as described above.
  • prokaryotes do not carry out glycosylation, which is a post-translational modification of proteins, the problem of antigenicity derived from added sugar chains does not occur.
  • Non-Patent Document 2 describes that binding of a sugar chain to at least one glycosylation site (sugar chain-binding site) is necessary for the formation of an active GBA protein.
  • Patent Document 1 describes that the recombinant GBA protein expressed in E. coli does not have enzymatic activity.
  • the object of the present invention is to provide a protein that has glucocerebrosidase activity even if sugar chains are not added by post-translational modification.
  • X to Y includes X and Y and means "X or more and Y or less”. Unless otherwise specified, measurements of operations and physical properties are performed under the conditions of room temperature (20 to 25° C.)/relative humidity of 40 to 50% RH.
  • glucocerebrosidase activity means activity to hydrolyze glucocerebroside.
  • the presence or absence of glucocerebrosidase activity is determined based on the presence or absence of enzymatic reactivity with respect to the synthetic substrate (p-nitrophenyl- ⁇ -D-glucopyranoside) described in the Examples section below.
  • the specific activity of the protein after refolding treatment according to the present invention is, for example, 0.5 U/mg or more, preferably 0.6 U/mg or more, and more preferably 1.2 U/mg or more.
  • the mature protein of glucocerebrosidase is a polypeptide consisting of 497 amino acid residues produced by cleaving the propeptide from the precursor protein consisting of 536 amino acid residues.
  • Glucocerebrosidase biopharmaceuticals marketed for Gaucher disease include Cerezyme® (produced by Chinese Hamster Ovary (CHO) cells), VPRIV® (human fiber sarcoma cells (HT1080)), Elelyso® (produced by plant (carrot) cells).
  • One embodiment of the present invention is the amino acid sequence set forth in SEQ ID NO: 1 (corresponding to the amino acid sequence of selezyme; the amino acid at the position corresponding to position 495 is histidine (H), unlike the human wild-type GBA protein). It is a protein that contains no sugar chain and has glucocerebrosidase activity.
  • the amino acid sequence is shown below, and the base sequence (including the termination codon) of the gene (cDNA) encoding the amino acid sequence is SEQ ID NO: 134 shown in In this specification, the gene encoding the amino acid sequence of SEQ ID NO: 1 is also simply referred to as "GBA gene".
  • amino acid sequence set forth in SEQ ID NO: 1 instead of the amino acid sequence set forth in SEQ ID NO: 1, the amino acid sequence set forth in SEQ ID NO: 2 below (corresponding to the amino acid sequence of biprib; the amino acid at the position corresponding to position 495 is human wild type
  • proteins containing arginine (R) unlike the GBA protein.
  • One embodiment of the present invention further includes, in place of the amino acid sequence set forth in SEQ ID NO: 1 or 2, having 90% or more identity with them (more preferably the amino acid sequence of SEQ ID NO: 1) (herein, "homology (synonymous with ").
  • the identity of SEQ ID NO: 1 with the amino acid sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 2 is more preferably 95% or more, and still more preferably 99% or more.
  • a protein having glucocerebrosidase activity is provided even if sugar chains are not added by post-translational modification.
  • amino acid sequences can be determined using analysis programs such as BLAST, FASTA, and CLUSTAL W. When using BLAST, use the program's default parameters.
  • the "identity" of the amino acid sequences refers to aligning the two amino acid sequences so that the amino acid residues of the two amino acid sequences to be compared are matched as much as possible, and then determining the number of matched amino acid residues. is divided by the total number of amino acid residues and expressed as a percentage. In the above alignment, if necessary, gaps are inserted into one or both of the two sequences to be compared, and one inserted gap is counted as one amino acid residue to obtain the total number of amino acid residues. If the total number of amino acid residues determined in this way differs between the two sequences being compared, then the percent sequence identity is the total number of amino acid residues in the longer sequence and the number of matching amino acid residues. Calculated by dividing numbers.
  • a preferred embodiment of the present invention is a protein comprising an amino acid sequence having at least one of the following amino acid substitutions in the amino acid sequence of SEQ ID NO: 1 or 2, from the viewpoint that glucocerebrosidase activity can be further improved: (1) substitution of the amino acid at the position corresponding to position 26 with leucine (F26L); (2) substitution of isoleucine for the amino acid at the position corresponding to position 26 (F26I); (3) substitution of the amino acid at the position corresponding to position 126 with threonine (C126T); (4) substituting serine for the amino acid at the position corresponding to position 126 (C126S) and substituting serine for the amino acid at the position corresponding to position 342 of SEQ ID NO: 1 or 2 (C342S); (5) substitution of the amino acid at the position corresponding to position 57 with cysteine (Q57C); (6) substitution of the amino acid at the position corresponding to position 60 with cysteine (H60C); (7) substitution of the amino acid at the position corresponding
  • the protein of the present invention is more preferably a protein comprising an amino acid sequence having at least one of the following amino acid substitutions in the amino acid sequence of SEQ ID NO: 1 or 2: (a-1) (1) F26L (a-2) (3) C126T (a-3) (2) F26I and (3) C126T (a-4) (1) F26L and (3) C126T (a-5) (4) C126S and C342S (a-6) (3) C126T and (5) Q57C (a-7) (3) C126T and (6) H60C (a-8) (3) C126T and (7) T63C (a-9) (3) C126T and (8) Q143C (a-10) (3) C126T and (9) H145C (a-11) (3) C126T and (10) K224C (a-12) (3) C126T and (11) K321C.
  • amino acids at the following positions are not substituted: In (a-2), the amino acid at the position corresponding to position 142 in (a-2), the amino acid at the position corresponding to position 144 in (a-2), the amino acid at the position corresponding to position 147 (a-2) In the amino acid (a-2) at the position corresponding to position 171, at the amino acid (a-2) at the position corresponding to position 347, at the amino acid (a-4) at the position corresponding to position 407, at position 248 In the amino acid at the corresponding position (a-9), the amino acid at the position corresponding to position 77 in (a-9), the amino acid at the position corresponding to position 290 in (a-9), the amino acid at the position corresponding to position 293 The amino acid at the position corresponding to position 333 in (a-9) The amino acid at the position corresponding to position 466 in (a-9).
  • amino acid sequences having at least one of the above amino acid substitutions include the amino acid sequences set forth in SEQ ID NOs: 3-5, 7, 9-30, 32, 33, 35, 37-39, 41-51.
  • the protein according to the present invention has the amino acids set forth in including at least one selected from a sequence
  • a preferred embodiment of the present invention is a protein having at least one of the following amino acid substitutions in the amino acid sequence of SEQ ID NO: 1 or 2, from the viewpoint that the stability can be further improved: (12) Substitution of the amino acid at the position corresponding to position 248 with serine (C248S) and substitution of the amino acid at the position corresponding to position 342 with serine (C342S); (13) Substitution of the amino acid at the position corresponding to position 126 with threonine (C126T) and substitution of the amino acid at the position corresponding to position 342 with serine (C342S); (14) Substitution of the amino acid at the position corresponding to position 126 with serine (C126S), substitution of the amino acid at the position corresponding to position 248 with serine (C248S) and substitution of the amino acid at the position corresponding to position 342 with serine (C342S) and (15) substitution of the amino acid at the position corresponding to position 126 with threonine (C126T), the amino acid at the
  • the protein of the present invention comprises at least one selected from the amino acid sequences set forth in SEQ ID NOs: 14, 17, 18 and 51.
  • a preferred embodiment of the present invention is the amino acid sequence of SEQ ID NO: 1 or 2, or the amino acid sequence of SEQ ID NO: 1 or 2 having any one of the substitutions (1) to (15) above, at least the following amino acid substitutions:
  • a protein that further has one: (16) substitution of the amino acid at the position corresponding to position 61 with cysteine (T61C); (17) substitution of the amino acid at the position corresponding to position 98 with cysteine (P98C); (18) substitution of the amino acid at the position corresponding to position 143 with cysteine (Q143C); (19) substitution of the amino acid at the position corresponding to position 224 with cysteine (K224C); (20) substitution of the amino acid at the position corresponding to position 321 with cysteine (K321C); and (21) substitution of the amino acid at the position corresponding to position 407 with cysteine (T407C).
  • the protein of the present invention comprises at least one selected from the amino acid sequences set forth in SEQ ID NOs: 16, 24, 28, 30, 37, 39, 41, 43-49.
  • the protein according to the present invention may consist of the amino acid sequences described above.
  • the method for producing a peptide chain as a protein raw material according to the present invention is not particularly limited as long as a sugar chain is not added to the peptide chain.
  • the protein according to the present invention can preferably be derived from peptide chains produced by prokaryotes.
  • the protein of the present invention is produced by a prokaryote.
  • prokaryotes examples include E. coli such as Escherichia coli, Bacillus such as Bacillus subtilis, Pseudomonas such as Pseudomonas putida, and Rhizobium such as Rhizobium meliloti. Bacteria belonging to.
  • the prokaryote used in the present invention is preferably E. coli.
  • a method for producing a protein according to the present invention comprises introducing a vector containing a nucleic acid encoding a protein according to the present invention into a prokaryote to produce a protein raw material in the prokaryote, and subjecting the protein material to a folding treatment.
  • a vector containing a nucleic acid encoding the protein of the present invention is introduced into a prokaryote to produce a raw protein material. This makes it possible to obtain a raw protein material to which sugar chains have not been added.
  • the method for producing the nucleic acid encoding the protein of the present invention and the vector containing it is not particularly limited, and conventionally known methods can be used.
  • vectors known vectors such as T vectors such as pTAKN-2 and plasmid vectors such as pET-21b(+) can be used.
  • the method for introducing the vector into prokaryotes is not particularly limited, and conventionally known methods can be used as appropriate.
  • Methods of introduction include a competent cell method, a conjugative transfer method, a calcium phosphate method, a lipofection method, an electroporation method and the like.
  • the prokaryotic organism By culturing the prokaryotic organism into which the vector has been introduced, the prokaryotic organism can be made to produce a protein raw material. Cultivation of prokaryotes can be performed according to conventional methods used for the selected prokaryote.
  • Prokaryotes are cultured under aerobic or anaerobic conditions, depending on the type of prokaryotes used.
  • the prokaryotic culture may be subjected to shaking, aeration, or the like.
  • the culture conditions (culture temperature, culture time, medium pH, etc.) are appropriately selected depending on the composition of the medium and the culture method, and are not particularly limited as long as the conditions allow prokaryotes to proliferate. can be selected as appropriate.
  • the protein according to the present invention does not have a sugar chain added by post-translational modification, it is desirable that it is not post-translationally modified.
  • prokaryotes are collected from the resulting culture by methods such as centrifugation and filtration, and the collected prokaryotes are subjected to mechanical methods such as beads or enzymatic methods. crush. After crushing, the insoluble fraction is collected and treated with a buffer containing a surfactant to recover the protein raw material.
  • the collected protein raw material is subjected to folding treatment (refolding treatment including prior denaturation treatment is also acceptable).
  • a buffer containing an oxidizing agent and a reducing agent oxidized glutathione/reduced glutathione, cystine/cysteine, cysteamine/cystamine, etc.
  • oxidized glutathione/reduced glutathione, cystine/cysteine, cysteamine/cystamine, etc. is added to a liquid containing the recovered protein raw material, and the mixture is heated at about 20°C to about 20°C. It can be carried out by standing at about 30° C. for about 1 to 7 days. Further additives such as sucrose and glycerol can be added to the buffer.
  • the recovered protein raw material may be subjected to denaturation (solubilization) treatment before folding treatment, if necessary.
  • the denaturation treatment can be performed using a denaturant such as 6M guanidine hydrochloride and 8M urea. By applying the denaturation treatment, the recovered protein raw material can be brought into an unfolded state.
  • the method for producing a protein according to the present invention includes subjecting a protein raw material, which contains an unfolded amino acid sequence constituting the protein according to the present invention and to which a sugar chain has not been added, to a folding treatment.
  • a method for producing a protein having glucocerebrosidase activity comprising:
  • the protein of the present invention is produced by refolding a protein produced by a prokaryote. Proteins produced by prokaryotes may be subjected to denaturation (solubilization) treatment as necessary.
  • the protein according to the present invention is expected to reduce the risk of viral infection and reduce antigenicity to mammals.
  • the protein according to the present invention is suitable for the following uses.
  • An active recombinant GBA protein can be provided even when a recombinant GBA protein produced by a prokaryote is used as a raw material. Therefore, the protein according to the present invention can be suitably used in the treatment of lysosomal diseases such as Gaucher's disease.
  • the protein according to the present invention can be used to degrade plant-derived glucosylceramide to produce ceramide.
  • the protein according to the present invention can be used to obtain GBA antibodies.
  • the plasmid number and recombinant protein number are assigned the same number.
  • GBA Glucocerebrosidase
  • SEQ ID NO: 135 adds an initiation codon (atg) to the 5′-end of the codon encoding the mature GBA protein from which the signal peptide has been removed, and Modifications were made so that the sequence was optimized for the codon usage of E. coli (strain K-12).
  • the synthesis of the GBA gene represented by SEQ ID NO: 135 was outsourced to Eurofins Genomics, Inc., and delivered in a state of being inserted into pTAKN-2 containing the ampicillin resistance gene.
  • GBA gene-inserted plasmid In order to examine expression in E. coli, the GBA gene obtained above was inserted between the NdeI site and the His tag of the pET-21b(+) plasmid vector (Novagen). subcloned into. Specifically, PCR was performed using either pET-21b (+) or pTAKN-2 into which the GBA gene was inserted as a template, and linearized pET-21b (+) and the GBA gene (excluding the stop codon) were ) were obtained respectively.
  • the PCR amplification product obtained above was treated using the In-Fusion HD Cloning Kit (Takara Bio Inc.) (cleavage and ligation with restriction enzyme DpnI), and the pET-21b(+) plasmid into which the GBA gene was inserted A vector (referred to herein as "H495 type") was obtained.
  • the GBA gene inserted into the plasmid vector encodes the amino acid sequence set forth in SEQ ID NO:1.
  • the resulting PCR amplified product (linearized plasmid) was fused with T4 Polynucleotide Kinase (Toyobo Co., Ltd.) and Ligation high Ver. 2 (Toyobo Co., Ltd.) by self-ligation to obtain a plasmid into which the modified GBA gene was inserted (Table 5).
  • T4 Polynucleotide Kinase Toyobo Co., Ltd.
  • Ligation high Ver. 2 Toyobo Co., Ltd.
  • E. coli competent cells ECOS competent E. coli BL21 (DE3) (Nippon Gene Co., Ltd.)
  • Various recombinant E. coli strains were constructed that were transformed and carried plasmid vectors into which the GBA gene or modified GBA gene had been inserted.
  • a single colony grown on LB agar medium (containing ampicillin at a concentration of 100 mg/L) was added to 4 mL of LB liquid medium (containing ampicillin at a concentration of 100 mg/L) in a test tube.
  • the cells were inoculated and cultured with shaking at 300 rpm and 30° C. overnight to obtain a preculture solution.
  • the culture medium is centrifuged at 6,000 x g for 10 minutes at 4°C, the supernatant is discarded, and the precipitate is suspended using buffer A (see Table 4 below for composition). let me After that, the mixture was centrifuged again at 6,000 ⁇ g and 4° C. for 10 minutes, and after discarding the supernatant, a precipitate of recombinant E. coli was obtained (then it was frozen and stored at ⁇ 80° C.).
  • the denominator of 1.7 is the extinction coefficient calculated based on the amino acid sequence information.
  • Incubation was started by standing at 25°C from the time of dilution, samples were collected 7 days after the start of incubation, and enzyme activity was measured by the following method.
  • GBA Glucocerebrosidase
  • Glc-Cer glucocerebroside; glycolipid
  • pNPG synthetic substrate p-nitrophenyl- ⁇ -D-glucopyranoside
  • the GBA protein having the amino acid sequence of SEQ ID NO: 1 (herein referred to as "H495 type protein") produced in E.
  • C342 is an amino acid residue necessary for enzymatic activity (THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 281, NO. 7, pp. 4242-4253, February 17, 2006). However, it was found that the activity was maintained when the serine was substituted.
  • Liquid A Buffer C (see Table 8 below for the composition) and Liquid B: ethanol were used as solutions, and the active fraction eluted at 40% B was collected.
  • the recovered solution was concentrated with Amicon Ultra-15, 3 kDa (Merck) and then lyophilized.
  • Cerezyme registered trademark
  • purified recombinant GBA proteins No. 167 and No. 178
  • Table 10 shows the results.
  • a denatured protein solution of H495 protein was prepared from the obtained insoluble H495 protein by the method described in "2-3. Denaturation (solubilization) treatment".
  • This solution was diluted with 20 mM potassium phosphate buffer (pH 8) containing 6 M guanidine hydrochloride and 0.014 w/v% Tween 80, based on the protein concentration calculated from the absorbance (280 nm) of the solution. was about 1 mg/mL. Then, it was diluted 50-fold with the refolding solution (at the start of refolding: 20 mg/L protein).
  • the composition of the refolding solution is 1 M sucrose, 0-3 mM reduced glutathione (GSSG), 0-30 mM oxidized glutathione (GSH), and 0.014 w/v% Tween against 20 mM potassium phosphate buffer (pH 8). 80 is added. At this time, the concentration of GSSG was varied between 0 and 3 mM, and the concentration of GSH was varied between 0 and 30 mM. Table 11 shows the results. These results confirmed that the highest enzymatic activity was achieved when 3 mM GSSG and 6 mM GSH were used together as additives.
  • composition of the refolding solution is 20 mM potassium phosphate buffer (pH 8) with glycerol, 3 mM reduced glutathione (GSSG), 6 mM oxidized glutathione (GSH), and 0.014 w/v% Tween 80 added. is. At this time, the concentration of glycerol was varied between 0 and 80 w/v% (see Table 13 below).
  • a solution was obtained by diluting an insoluble protein with a potassium phosphate buffer by the method described in "4-1. Examination of additives (oxidized glutathione, reduced glutathione)" above.
  • the protein concentration after dilution was set to 1.0 mg/mL.
  • it was diluted 50-fold with the refolding solution (at the start of refolding: 20 mg/L protein).
  • 0.25 w/v% or 0.5 w/v% Tween was used based on 20 mM potassium phosphate buffer (pH 8) to which 40 w/v% glycerol, 3 mM GSSG, and 6 mM GSH were added. Those to which 80, 20, 40 or 60 were added were used.
  • a solution was obtained by diluting an insoluble protein with a potassium phosphate buffer by the method described in "4-1. Examination of additives (oxidized glutathione, reduced glutathione)" above.
  • the protein concentration after dilution was set to 1.0 mg/mL.
  • it was diluted 50-fold with the refolding solution (at the start of refolding: 20 mg/L protein).
  • As the refolding solution 0.25 w/v% Tween 80, or 0.1 Those to which ⁇ 0.4 w/v% Tween 40 was added were used. Table 15 shows the results.
  • a solution was obtained by diluting an insoluble protein with a potassium phosphate buffer by the method described in "4-1. Examination of additives (oxidized glutathione, reduced glutathione)" above.
  • the protein concentration after dilution was set to 1.0 mg/mL.
  • it was diluted 50-fold with the refolding solution (at the start of refolding: 20 mg/L protein).
  • the refolding solution was based on 20 mM potassium phosphate buffer (pH 8) containing 40 w/v% glycerol and 0.25 w/v% Tween 80. 16 was adopted. The results are shown in Table 16.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明は、ウイルス感染を防止することができ、かつグルコセレブロシダーゼ活性を有するタンパク質を提供する。(a)配列番号1もしくは2に記載のアミノ酸配列またはそれらと90%以上の同一性を有するアミノ酸配列を含み、(b)糖鎖が付加されておらず、(c)グルコセレブロシダーゼ活性を有する、タンパク質。

Description

グルコセレブロシダーゼ活性を有するタンパク質およびその製造方法
 本発明は、グルコセレブロシダーゼ活性を有するタンパク質およびその製造方法に関する。
 リソソーム病は、リソソーム酵素およびその関連因子の活性低下又は欠損が原因となり、当該酵素の基質となる物質が体内に蓄積することにより生じる遺伝病である。例えば、リソソーム病の一つであるゴーシェ病では、グルコセレブロシダーゼ(β-グルコシダーゼ;GBA)の活性低下により、細網内皮系組織のマクロファージなどの細胞にグルコセレブロシドが蓄積して、肝脾腫、脾機能亢進に伴う貧血や血小板減少、骨変化、血中酸性フォスファターゼおよびアンギオテンシン変換酵素値の上昇等の症状や所見が見られる(非特許文献1)。
 このようなリソソーム病の治療方法としては、従来、酵素補充療法がよく採用されている。例えば、ゴーシェ病では、ヒトのグルコセレブロシダーゼをコードするcDNAをチャイニーズハムスター卵巣(CHO)細胞株で発現させた組換え酵素が、標的細胞マクロファージへの取り込みが容易となるように糖鎖改変された形(例えば、酵素の糖鎖の非還元末端にマンノース残基を有するタイプとし、標的細胞マクロファージの表面に存在するマンノース受容体に認識され易くしたもの)で用いられている。
 しかしながら、上述のCHO細胞株のような哺乳動物培養細胞を宿主とした組換え酵素の生産には、培養液が高価である、人畜共通感染ウイルスによる感染リスクがある、細胞の増殖が遅い、といった問題がある。また、植物に由来する細胞を宿主として用いてグルコセレブロシダーゼ(GBA)の組換え体を生産する技術も提案されている(特許文献1)。しかしながら、真核生物のうち植物や出芽酵母を宿主として用いて生産された組換え酵素においては、翻訳後修飾によって当該酵素に付加している糖鎖の構造が哺乳細胞とは大きく異なるため、哺乳動物に対して抗原性を示すという問題がある。したがって、野生型の植物や出芽酵母に由来する細胞を宿主として用いて生産された組換え酵素をバイオ医薬品として用いることには難点がある。
 一方、大腸菌のような原核生物に由来する細胞を宿主として用いて組換えグルコセレブロシダーゼ(GBA)を生産する技術も知られている。このような技術によれば、上述したような真核生物を宿主とした場合のような感染リスクや生産性、生産コストの問題は生じない。また、原核生物はタンパク質の翻訳後修飾である糖鎖付加を行わないため、付加された糖鎖に由来する抗原性の問題も生じない。
 しかしながら、非特許文献2には、少なくとも1つのグリコシル化部位(糖鎖結合部位)への糖鎖の結合が、活性を有するGBAタンパク質の形成に必要であることが記載されている。また、特許文献1には、大腸菌で発現させた組換えGBAタンパク質は酵素活性を有さないことが記載されている。このように、原核生物が産生した組換えGBAタンパク質は翻訳後修飾による糖鎖の付加がなされていないために所望の活性を有していないというのが本技術分野における当業者の共通の認識である。
特表2006-524506号公報
Bou-Gharios G. et al., Histochem J. (1993) 25, 593-605 Marie E. et al., Biochem. Biophys. Res. Commun. (1990) Vol.168, No. 2, 771-777
 そこで本発明は、翻訳後修飾による糖鎖の付加がなされていなくともグルコセレブロシダーゼ活性を有するタンパク質を提供すること、を目的とする。
 本発明者らは、上記の課題に鑑み鋭意検討を行った。その結果、以下のタンパク質等により、上記課題が解決されることを見出し、本発明を完成させるに至った:
 (a)配列番号1もしくは2に記載のアミノ酸配列またはそれらと90%以上の同一性を有するアミノ酸配列を含み、
 (b)糖鎖が付加されておらず、
 (c)グルコセレブロシダーゼ活性を有する、タンパク質。
 以下、本発明に係る実施の形態を詳細に説明する。但し以下の記載は本発明を説明するための例示であり、本発明をこの記載範囲にのみ特別限定する趣旨ではない。
 本明細書において、範囲を示す「X~Y」は、XおよびYを含み、「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。
 本明細書において、「グルコセレブロシダーゼ活性」とは、グルコセレブロシドを加水分解する活性を意味する。そして、グルコセレブロシダーゼ活性の有無は、後述する実施例の欄に記載の合成基質(p-ニトロフェニル-β-D-グルコピラノシド)に対する酵素反応性の有無に基づき判定するものとする。本発明に係るリフォールディング処理後のタンパク質の比活性は、例えば0.5U/mg以上であり、好ましくは0.6U/mg以上であり、より好ましくは1.2U/mg以上である。
 グルコセレブロシダーゼの成熟型タンパク質は、536のアミノ酸残基からなる前駆体タンパク質からプロペプチドが切断されて生じる497のアミノ酸残基からなるポリペプチドである。ゴーシェ病を適応症として上市されているグルコセレブロシダーゼのバイオ医薬品としては、セレザイム(Cerezyme(登録商標))(チャイニーズハムスター卵巣(CHO)細胞により産生)、ビプリブ(VPRIV(登録商標))(ヒト繊維肉腫細胞(HT1080)により産生)、エレライソ(Elelyso(登録商標))(植物(ニンジン)細胞により産生)がある。
 本発明の一実施形態は、配列番号1に記載のアミノ酸配列(セレザイムのアミノ酸配列に相当;495位に相当する位置のアミノ酸がヒト野生型GBAタンパク質と異なってヒスチジン(H)になっている)を含み、糖鎖が付加されておらず、かつ、グルコセレブロシダーゼ活性を有するタンパク質である。当該アミノ酸配列を以下に示し、其のアミノ酸配列をコードする遺伝子(cDNA)の塩基配列(終止コドンを含む)を配列番号134
に示す。本明細書中、配列番号1に記載のアミノ酸配列をコードする遺伝子を単に「GBA遺伝子」とも称する。
 本発明の一実施形態には、配列番号1に記載のアミノ酸配列に代え、下記の配列番号2に記載のアミノ酸配列(ビプリブのアミノ酸配列に相当;495位に相当する位置のアミノ酸がヒト野生型GBAタンパク質と異なってアルギニン(R)になっている)を含むタンパク質も挙げられる。
 本発明の一実施形態には更に、配列番号1又は2に記載のアミノ酸配列に代え、それら(より好ましくは配列番号1のアミノ酸配列)と90%以上の同一性(本明細書において“相同性”と同義)を有するアミノ酸配列を含むタンパク質が挙げられる。配列番号1または配列番号2に記載のアミノ酸配列と配列番号1の同一性は、より好ましくは95%以上であり、更により好ましくは99%以上である。
 本発明によれば、翻訳後修飾による糖鎖の付加がなされていなくともグルコセレブロシダーゼ活性を有するタンパク質が提供される。
 本明細書において、アミノ酸配列の同一性は、BLAST、FASTA、CLUSTAL W等の解析プログラムを用いて決定できる。BLASTを用いる場合は、プログラムのデフォルトパラメーターを用いる。
 ここで、アミノ酸配列の「同一性」とは、比較対象である2つのアミノ酸配列のアミノ酸残基が可能な限り多く一致するように両アミノ酸配列を並列させた上、そこで一致したアミノ酸残基数を全アミノ酸残基数で除したものを百分率で表したものである。上記整列の際には、必要に応じ、比較する2つの配列の一方又は双方に適宜ギャップを挿入し、挿入した1つのギャップは1つのアミノ酸残基として数えて全アミノ酸残基数を求める。このようにして求めた全アミノ酸残基数が、比較する2つの配列間で異なる場合には、配列同一性(%)は、長い方の配列の全アミノ酸残基数で、一致したアミノ酸残基数を除して算出される。
 本発明の好ましい実施形態は、グルコセレブロシダーゼ活性をより向上できるとの観点から、配列番号1または2のアミノ酸配列において、以下のアミノ酸置換の少なくとも1つを有するアミノ酸配列を含むタンパク質である:
 (1)26位に相当する位置のアミノ酸をロイシンに置換(F26L);
 (2)26位に相当する位置のアミノ酸をイソロイシンに置換(F26I);
 (3)126位に相当する位置のアミノ酸をトレオニンに置換(C126T);
 (4)126位に相当する位置のアミノ酸をセリンに置換(C126S)および配列番号1または2の342位に相当する位置のアミノ酸をセリンに置換(C342S);
 (5)57位に相当する位置のアミノ酸をシステインに置換(Q57C);
 (6)60位に相当する位置のアミノ酸をシステインに置換(H60C);
 (7)63位に相当する位置のアミノ酸をシステインに置換(T63C);
 (8)143位に相当する位置のアミノ酸をシステインに置換(Q143C);
 (9)145位に相当する位置のアミノ酸をシステインに置換(H145C);
 (10)224位に相当する位置のアミノ酸をシステインに置換(K224C);ならびに
 (11)321位に相当する位置のアミノ酸をシステインに置換(K321C)。
 また、本発明に係るタンパク質は、より好ましくは配列番号1または2のアミノ酸配列において、以下のアミノ酸置換の少なくとも1つを有するアミノ酸配列を含むタンパク質である:
 (a-1)(1)F26L
 (a-2)(3)C126T
 (a-3)(2)F26Iおよび(3)C126T
 (a-4)(1)F26Lおよび(3)C126T
 (a-5)(4)C126SおよびC342S
 (a-6)(3)C126Tおよび(5)Q57C
 (a-7)(3)C126Tおよび(6)H60C
 (a-8)(3)C126Tおよび(7)T63C
 (a-9)(3)C126Tおよび(8)Q143C
 (a-10)(3)C126Tおよび(9)H145C
 (a-11)(3)C126Tおよび(10)K224C
 (a-12)(3)C126Tおよび(11)K321C。
 ただし、(a-1)~(a-12)において、以下の位置のアミノ酸は、置換されていない:
 (a-2)において、142位に相当する位置のアミノ酸
 (a-2)において、144位に相当する位置のアミノ酸
 (a-2)において、147位に相当する位置のアミノ酸
 (a-2)において、171位に相当する位置のアミノ酸
 (a-2)において、347位に相当する位置のアミノ酸
 (a-2)において、407位に相当する位置のアミノ酸
 (a-4)において、248位に相当する位置のアミノ酸
 (a-9)において、77位に相当する位置のアミノ酸
 (a-9)において、290位に相当する位置のアミノ酸
 (a-9)において、293位に相当する位置のアミノ酸
 (a-9)において、333位に相当する位置のアミノ酸
 (a-9)において、466位に相当する位置のアミノ酸。
 上記アミノ酸置換の少なくとも1つを有するアミノ酸配列としては、例えば配列番号3~5、7、9~30、32、33、35、37~39、41~51に記載のアミノ酸配列が挙げられる。
 さらに好ましくは、本発明に係るタンパク質は、配列番号3、5、7、9、10、12~16、18~28、30、32、33、35、37~39、42、47に記載のアミノ酸配列から選択される少なくとも1つを含む。
 本発明の好ましい実施形態は、安定性をより向上できるとの観点から、配列番号1または2のアミノ酸配列において、以下のアミノ酸置換の少なくとも1つを有する、タンパク質が望ましい:
 (12)248位に相当する位置のアミノ酸をセリンに置換(C248S)および342位に相当する位置のアミノ酸をセリンに置換(C342S);
 (13)126位に相当する位置のアミノ酸をトレオニンに置換(C126T)および342位に相当する位置のアミノ酸をセリンに置換(C342S);
 (14)126位に相当する位置のアミノ酸をセリンに置換(C126S)、248位に相当する位置のアミノ酸をセリンに置換(C248S)および342位に相当する位置のアミノ酸をセリンに置換(C342S);ならびに
 (15)126位に相当する位置のアミノ酸をトレオニンに置換(C126T)、248位に相当する位置のアミノ酸をセリンに置換(C248S)および342位に相当する位置のアミノ酸をセリンに置換(C342S)。
 より望ましくは、本発明に係るタンパク質は、配列番号14、17、18および51に記載のアミノ酸配列から選択される少なくとも1つを含む。
 本発明の好ましい実施形態は、配列番号1もしくは2のアミノ酸配列、または上記(1)~(15)のいずれか1つの置換を有する配列番号1もしくは2のアミノ酸配列において、以下のアミノ酸置換の少なくとも1つをさらに有する、タンパク質である:
 (16)61位に相当する位置のアミノ酸をシステインに置換(T61C);
 (17)98位に相当する位置のアミノ酸をシステインに置換(P98C);
 (18)143位に相当する位置のアミノ酸をシステインに置換(Q143C);
 (19)224位に相当する位置のアミノ酸をシステインに置換(K224C);
 (20)321位に相当する位置のアミノ酸をシステインに置換(K321C);および
 (21)407位に相当する位置のアミノ酸をシステインに置換(T407C)。
 より好ましくは、本発明に係るタンパク質は、配列番号16、24、28、30、37、39、41、43~49に記載のアミノ酸配列から選択される少なくとも1つを含む。
 本発明に係るタンパク質は上記で説明されるアミノ酸配列からなるものであっても良い。
 本発明に係るタンパク質の製造方法の一例を以下に記載する。
 本発明に係るタンパク質原料としてのペプチド鎖の製造方法は、ペプチド鎖に糖鎖が付加されない限り特に制限されず、原核生物によって産生されたペプチド鎖であっても、有機合成により合成されたペプチド鎖であってもよい。本発明に係るタンパク質は、高い生産性と低コストとの観点から、好ましくは原核生物によって産生されたペプチド鎖を原料とすることが可能である。
 すなわち、一実施形態において、本発明に係るタンパク質は、原核生物によって産生されたものである。
 原核生物としては、例えば大腸菌(Escherichia coli)等の大腸菌属、枯草菌(Bacillus subtilis)等のバシラス属、シュードモナスプチダ(Pseudomonas putida)等のシュードモナス属、リゾビウムメリロティ(Rhizobium meliloti)等のリゾビウム属に属する細菌が挙げられる。本発明で使用される原核生物は、好ましくは大腸菌である。
 一実施形態において、本発明に係るタンパク質の製造方法は、本発明に係るタンパク質をコードする核酸を含むベクターを原核生物に導入して、前記原核生物にタンパク質原料を産生させることと、回収した前記タンパク質原料に対してフォールディング処理を施すことと、を含む。
 まず、本発明に係るタンパク質をコードする核酸を含むベクターを原核生物に導入して、前記原核生物にタンパク質原料を産生させる。これにより、糖鎖が付加されていないタンパク質原料を得ることができる。
 本発明に係るタンパク質をコードする核酸およびそれを含むベクターの製造方法は、特に制限されず、従来公知の手法を用いることができる。
 ベクターは、公知のベクター、例えばpTAKN-2などのTベクター、pET-21b(+)などのプラスミドベクターを使用することができる。
 原核生物へのベクターの導入方法は、特に制限されず、従来公知の方法を適宜使用することができる。導入方法としては、コンピテントセル法、接合伝達法、リン酸カルシウム法、リポフェクション法、エレクトロポレーション法などが挙げられる。
 ベクターを導入した原核生物を培養することにより、前記原核生物にタンパク質原料を産生させることができる。原核生物の培養は、選択した原核生物に用いられる通常の方法に従って行うことができる。
 使用する原核生物の種類によって、好気的条件下または嫌気的条件下で、原核生物を培養する。前者の場合には、原核生物の培養は、振とうあるいは通気攪拌などが行われてもよい。また、培養の条件(培養温度、培養時間、培地のpHなど)は、培地の組成や培養法によって適宜選択され、原核生物が増殖できる条件であれば特に制限されず、培養する原核生物の種類に応じて適宜選択できる。
 本発明に係るタンパク質は翻訳後修飾による糖鎖が付加されていないものであるから、即ち翻訳後修飾を受けていないことが望まれる。
 原核生物が産生したタンパク質原料を回収する方法としては、従来公知の方法を適宜使用することができる。例えばタンパク質原料が原核生物内に存在する場合は、得られた培養物から遠心分離、ろ過などの方法により原核生物を集菌し、採取した原核生物をビーズなどによる機械的方法、酵素的方法により破砕する。破砕後、不溶性画分を回収し、界面活性剤を含むバッファーで処理することで、タンパク質原料を回収することができる。
 次に、回収したタンパク質原料に対してフォールディング処理(変性処理を事前に行うことも含むリフォールディング処理であっても良い)を施す。
 フォールディング処理としては、例えば回収したタンパク質原料を含む液に、酸化剤と還元剤とを含むバッファー(酸化型グルタチオン/還元型グルタチオン、シスチン/システイン、システアミン/シスタミンなど)を添加し、約20℃~約30℃にて約1日~7日静置することによって、行うことができる。当該バッファーにはスクロースやグリセロールといった添加剤を更に添加することが可能である。
 回収したタンパク質原料は、フォールディング処理の前に、必要に応じて変性(可溶化)処理を施してもよい。変性処理は、6Mのグアニジン塩酸塩、8Mの尿素などの変性剤を用いて行うことができる。変性処理を施すことで、回収したタンパク質原料をフォールディングされていない状態にすることができる。
 一実施形態において、本発明に係るタンパク質の製造方法は、フォールディングされていない、本発明に係るタンパク質を構成するアミノ酸配列を含み、糖鎖が付加されていないタンパク質原料に対してフォールディング処理を施すことを含む、グルコセレブロシダーゼ活性を有するタンパク質の製造方法である。
 一実施形態において、本発明に係るタンパク質は、原核生物によって産生されたタンパク質をリフォールディングすることによって製造されたものである。原核生物によって産生されたタンパク質は、必要に応じて変性(可溶化)処理を施してもよい。
 本発明に係るタンパク質は、従来の動物細胞および植物細胞を用いた組換えGBAタンパク質とは異なり、ウイルス感染リスクを抑えることができ、また哺乳動物に対する抗原性を抑えることも期待される。
 また、本発明に係るタンパク質は、以下の用途に好適である。
 原核生物が産生した組換えGBAタンパク質を原料とした場合であっても、活性を有する組換えGBAタンパク質を提供することができる。よって、本発明に係るタンパク質は、ゴーシェ病などのリソソーム病の治療において好適に使用できる。
 本発明に係るタンパク質は、植物由来などのグルコシルセラミドを分解し、セラミドを生成するのに利用することができる。
 本発明に係るタンパク質は、GBA抗体を取得するのに利用することができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。特に、GBAタンパク質及び組換えGBAタンパク質を生産する細菌株の構築及び培養・細胞の破砕に関する部分(1-1~2-2)は、一般に知られている他の手段を適宜用いることが可能である。
 実施例において、プラスミド番号と組換えタンパク質番号とは同一の番号を付す。
 [GBA遺伝子およびその改変遺伝子導入組換え大腸菌の構築]
 1-1.グルコセレブロシダーゼ(GBA)遺伝子の合成
 配列番号135で示されるGBA遺伝子は、シグナルペプチドが除去された成熟型のGBAタンパク質をコードするコドンの5’-末端に開始コドン(atg)を付加し、また大腸菌(E.coli K-12株)のコドン使用頻度に対して最適化された配列になるような変更を加えたものである。当該配列番号135で示されるGBA遺伝子の合成を、ユーロフィンジェノミクス株式会社に外部委託し、アンピシリン耐性遺伝子を含むpTAKN-2に挿入された状態で納入された。
 1-2.GBA遺伝子が挿入されたプラスミドの調製
 大腸菌(E.coli)での発現検討を行うため、上記で取得したGBA遺伝子をpET-21b(+)プラスミドベクター(Novagen)のNdeIサイトとHisタグとの間にサブクローニングした。具体的には、pET-21b(+)またはGBA遺伝子が挿入されたpTAKN-2のいずれかをテンプレートとするPCRをそれぞれ行い、線状化pET-21b(+)およびGBA遺伝子(終止コドンを除く)の増幅産物をそれぞれ得た。
 上記で得られたPCR増幅産物を、In-Fusion HD Cloning Kit(タカラバイオ株式会社)を用いて処理(制限酵素DpnIによる切断及びライゲーション)し、GBA遺伝子が挿入されたpET-21b(+)プラスミドベクター(本明細書において、「H495型」と呼ぶ)を得た。当該プラスミドベクターに挿入されたGBA遺伝子は、配列番号1に記載のアミノ酸配列をコードしている。
 1-3.改変GBA遺伝子が挿入されたプラスミドの調製
 上記1-2.で調製したGBA遺伝子が挿入されたプラスミドをテンプレートとして、下記表1に記載の変異導入用プライマー(GBA遺伝子がコードするアミノ酸を別のアミノ酸に置換させることが目的のもの)を用いてPCRを行うことで、GBA遺伝子(終止コドンを除く)に変異が導入されたプラスミド(線状化されたもの)を各種増幅した。当該各種の改変GBA遺伝子におけるアミノ酸配列の置換箇所及び置換後のアミノ酸に対応するコドンは表2の通りである。得られたPCR増幅産物(線状化プラスミド)をマニュアルに従い、T4 Polynucleotide Kinase(東洋紡株式会社)およびLigation high Ver.2(東洋紡株式会社)によりセルフライゲーションして環状化させることで、改変GBA遺伝子が挿入されたプラスミドを得た(表5)。複数の変異を導入する際には、上記と同様の方法を繰り返すことで変異を追加していった。
 1-4.組換え大腸菌株の構築
 1-2および1-3で構築した各プラスミドの其々につき、マニュアルに従って大腸菌のコンピテントセル(ECOS コンピテントE.coli BL21(DE3)(株式会社ニッポンジーン))に対して形質転換し、GBA遺伝子または改変GBA遺伝子が挿入されたプラスミドベクターを保持する各種組換え大腸菌株を構築した。
 [組換え大腸菌によるタンパク質の合成方法・比較評価方法・比較評価結果]
 2-1.組換え大腸菌によるGBAタンパク質の合成
 上記1-4.で構築した組換え大腸菌を用いて、GBAタンパク質または組換えGBAタンパク質を合成した。
 具体的には、まず、試験管内のLB液体培地4mL(100mg/Lの濃度でアンピシリンを含有)に、LB寒天培地(100mg/Lの濃度でアンピシリンを含有)上に生育した単一のコロニーを植菌し、300rpm、30℃にて一晩振とう培養して、前培養液を得た。
 前培養液2mLを、坂口フラスコ内の本培養用培地(組成は下記の表3参照)50mLに植菌し、120rpm、30℃にて72時間振とう培養して本培養を行った。
 本培養後の培養液を、6,000×g、4℃にて10分間遠心分離して、上清を廃棄後、バッファーA(組成は下記の表4参照)を用いて沈殿物を懸濁させた。その後、6,000×g、4℃にて再度10分間遠心分離し、上清を廃棄後、組換え大腸菌の沈殿物を得た(其の後、-80℃にて凍結保存した)。
 2-2.菌体の破砕処理
 上記2-1で得られた組換え大腸菌を、バッファーAに懸濁し、濁度(OD660)を測定した後、OD660=10となるようにバッファーAで希釈した。次いで、この懸濁液にジルコニアシリカビーズ(0.6mm)を添加し、氷上で冷却したアルミブロックを用いて冷却しながら、ビーズ式細胞破砕装置(株式会社バイオメディカルサイエンス製、シェイクマスターネオver1.0)により1300rpmで5分間振盪し、その後さらにアルミブロックで5分間冷却した。この操作を計6回繰り返して菌体の細胞に対して破砕処理を施した。
 次いで、6,000×g、4℃にて15分間遠心分離し、沈殿物(不溶性画分)を回収した。そして、回収された不溶性画分に対し、以下の(1)~(4)の溶液(200μL)の其々につき順次、懸濁後に6000×gにて2分間の遠心分離処理することを2回ずつ行って、不溶性タンパク質を得た:
 (1)バッファーA
 (2)0.05w/v%デオキシコール酸ナトリウム(DOC・Na)添加バッファーA
 (3)1w/v% TritonX-100添加バッファーA
 (4)バッファーA(pH6)。
 2-3.変性(可溶化)処理
 続いて、上記遠心分離処理により得られた不溶性タンパク質を、6Mグアニジン塩酸塩、0.014w/v% Tween 80および40mMジチオスレイトール(DTT)が添加された20mMリン酸カリウムバッファー(pH8)により懸濁した後、25℃にて2時間静置してインキュベートを行った(変性(可溶化)処理)。
 次いで、6,000×g、4℃にて10分間遠心分離し、上清を回収することにより不溶性成分を除去した。そして、分光光度計を用いて、溶液の吸光度(280nm)を測定し、得られた値(A280)から、タンパク質濃度(mg/mL)=A280/1.7の数式に従ってタンパク質を定量した。なお、分母の1.7は、アミノ酸配列情報をもとに算出した吸光係数である。
 2-4.リフォールディング処理
 その後、タンパク質濃度が1mg/mLになるように6Mグアニジン塩酸塩および0.014w/v% Tween 80が添加された20mMリン酸カリウムバッファー(pH8)を用いて調製後、40w/v%グリセロール、0.25w/v% Tween 80、3mM酸化型グルタチオン(GSSG)および6mM還元型グルタチオン(GSH)が添加された添加20mMリン酸カリウムバッファー(pH8)にて50倍に希釈した。
 希釈の時点から25℃にて静置することによりインキュベートを開始し、インキュベートの開始から7日後にサンプルを回収して、以下の手法により酵素活性を測定した。
 2-5.酵素活性の測定
 グルコセレブロシダーゼ(GBA)は、Glc-Cer(グルコセレブロシド;糖脂質)の糖と脂質との脱水縮合部位を加水分解する反応を触媒する酵素である。ここでは、合成基質であるp-ニトロフェニル-β-D-グルコピラノシド(pNPG)を基質として用いて、上記で得られた組換えGBAタンパク質の酵素活性を測定した。
 具体的には、まず、1w/v% TritonX-100添加バッファーA 90μLおよびサンプル(7日後) 30μLおよび50mM pNPG添加バッファーA 30μLを混合し、サーモミキサーコンフォート(Eppendorf)を用いて700rpm、37℃にて1時間インキュベートした。次いで、0.2N NaOH溶液を150μL添加し、ボルテックスした後、数千rpm程度、室温にて数秒間遠心分離した。
 上清200μLをマイクロプレートに移し、反応生成物(4-ニトロフェノール)に対応する吸光度(400nm)を測定した。そして、予め作成しておいた4-ニトロフェノールの検量線に基づき、組換えGBAタンパク質の容量活性(U/mL)を算出した。また、仕掛けたタンパク質濃度(20mg/L)で容量活性の値を叙することにより、組換えGBAタンパク質の比活性(U/mg)を算出した。なお、1Uは、pNPGを1分間に1μmol分解する活性の単位である。また、上記1-2.で調製したGBA遺伝子が挿入されたプラスミドを用いて上記と同様にして大腸菌に産生させた、配列番号1のアミノ酸配列を有するGBAタンパク質(本明細書において「H495型タンパク質」と呼ぶ)についても上記と同様にしてリフォールディング処理および酵素活性の測定を実施した。なお、H495型タンパク質の比活性は、1.2U/mgであった。
 酵素活性測定の結果を下記の表5に示す。ここで、表5に示す値は、H495型タンパク質の比活性の値を100%としたときの相対値(%)である。
 尚、本明細書における酵素活性の測定は、特記されない限り、上記の方法に準じて行われている。
 (考察)
 H495型タンパク質において、糖鎖の修飾がされていないにも関わらず、酵素活性を有することが新たに見出された。
 H495型タンパク質とNo.142との比較、No.145とNo.159との比較、およびNo.147とNo.149との比較から、F26Lの活性向上効果が見出された。
 No.145とNo.165との比較から、F26Iの活性向上効果が見出された。
 No.18とNo.145との比較、No.27とNo.125との比較、No.184とNo.185との比較、およびNo.37とNo.167との比較から、C126Tの活性向上効果が見出された。
 No.3とNo.18とNo.27との比較から、C342SおよびC126Sの活性向上効果が見出された。
 No.167とNo.168とNo.186-193との比較から、Q57C、H60C、およびT63Cの活性向上効果が見出された。
 No.167とNo.171-176との比較から、Q143CおよびH145Cの活性向上効果が見出された。
 No.167とNo.194-198とNo.200とNo.201とNo.215との比較、およびNo.178とNo.243とNo.252とNo.254とNo.257とNo.259とNo.263との比較から、K224CおよびK321Cの活性向上効果が見出された。
 C342は酵素活性に必要なアミノ酸残基であることが報告されていた(THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 281, NO. 7, pp. 4242-4253, February 17, 2006)。しかし、セリンに置換した場合には活性が維持されることが見出された。
 [安定性評価]
 ・糖鎖が付加されていない、グルコセレブロシダーゼ改変体の合成
 上記1-3と同様の方法で、C248SまたはC248SおよびC342Sの変異を含む組換えGBA遺伝子が挿入されたプラスミドを追加で得た(No.19および42)。その後、当該プラスミドを保持する組換え大腸菌株についても上記1-4と同様の方法で追加で用意した。
 表6記載のプラスミドを保持する各組換え大腸菌株から、上記2-1~2-3と同様の方法によって、H495型タンパク質及び各組換えGBAタンパク質を得た。
 3-1.リフォールディング溶液中の安定性評価
 上記で得られたH495型タンパク質および下記表6の7種の組換えGBAタンパク質について、上記2-4.リフォールディング処理を行った後、7日間経過した溶液(サンプル)を37℃に移し、残存活性の推移を測定した。結果を表6に示す。
 表6に示すように、H495型タンパク質と比べて、Cys残基を置換することで安定性が向上し、さらに複数のCys残基を置換することで、より安定性が向上することを確認した。
 3-2.バッファー中での安定性評価1
 下記表9の組換えGBAタンパク質について、上記2-4.リフォールディング処理を行った後、7日間経過した溶液(サンプル)に1Mクエン酸溶液を添加し、pHを4.5に調整した。次に、ろ過滅菌フィルター(Nalgen製,0.2μm,PES)によりろ過した後、Pellicon 2, Biomax,10 kDa,0.1 m,V-スクリーン(Merck)にて、脱塩、濃縮(それぞれ約10倍)した。得られた濃縮液をHiTrap SP HP,5 mL(GEヘルスケア)にて、精製した。溶液としてA液:バッファーB(組成は下記表7参照)およびB液:1M NaCl添加バッファーAを用い、B 25%で溶出される活性フラクションを回収した。次に、HiTrap Phenyl HP,5mL(GEヘルスケア)にて、精製した。溶液としてA液:バッファーC(組成は下記表8参照)及びB液:エタノールを用い、B 40%で溶出される活性フラクションを回収した。回収した溶液をAmicon Ultra-15,3 kDa(Merck)にて濃縮後、凍結乾燥した。
 Cerezyme(登録商標)および精製済みの組換えGBAタンパク質(No.176)を0.015w/v% Tween 80添加20mMリン酸カリウムバッファー(pH7)により、0.05mg/mLになるように希釈し、37℃でインキュベートして、残存活性の推移を測定した。結果を表9に示す。
 表9に示すように、組換えGBAタンパク質(No.176)は、Cerezymeに対して、安定性が向上していることを確認した。
 3-3.バッファー中での安定性評価2
 上記バッファー中での安定性評価1と同様の方法で、組換えGBAタンパク質(No.167およびNo.178)を精製した。
 Cerezyme(登録商標)および精製済みの組換えGBAタンパク質(No.167およびNo.178)を0.1w/v% Tween 80添加50mMリン酸カリウムバッファー(pH7)により、0.01mg/mLになるように希釈し、37℃でインキュベートして、残存活性の推移を測定した。結果を表10に示す。
 表10に示すように、組換えGBAタンパク質(No.167およびNo.178)は、Cerezymeに対して、安定性が向上していることを確認した。
 [組換えGBAタンパク質を対象としたリフォールディング条件の検討]
 4-1.添加剤の検討(酸化型グルタチオン、還元型グルタチオン)
 上記1-2.で調製した野生型プラスミドを用いて上記と同様にして大腸菌に産生させた配列番号1のアミノ酸配列を有するGBAタンパク質(H495型タンパク質)について、上記「2-2.菌体の破砕処理」に記載の手法により、不溶性タンパク質を調製した。
 次いで、得られたH495型タンパク質の不溶性タンパク質を「2-3.変性(可溶化)処理」に記載の手法により、H495型タンパク質の変性タンパク質溶液を調製した。この溶液について、溶液の吸光度(280nm)より算出したタンパク質濃度に基づき、6Mグアニジン塩酸塩、0.014w/v% Tween 80が添加された20mMリン酸カリウムバッファー(pH8)にて希釈し、タンパク質濃度を約1mg/mLとした。その後、リフォールディング溶液を用いて50倍に希釈した(リフォールディング開始時:20mg/Lタンパク質)。なお、リフォールディング溶液の組成は、20mMリン酸カリウムバッファー(pH8)に対して1Mスクロース、0~3mM還元型グルタチオン(GSSG)、0~30mM酸化型グルタチオン(GSH)、0.014w/v% Tween 80を添加したものである。この際、GSSGについては0~3mMの間で濃度を変化させ、また、GSHについては0~30mMの間で濃度を変化させた。結果を表11に示す。これらの結果から、3mMのGSSGおよび6mMのGSHを添加剤として併用した場合に最も高い酵素活性が達成されることが確認された。
 4-2.添加剤の検討(スクロース対グリセロール)
 リフォールディング溶液として、下記の(1)または(2)のいずれかを用いたこと以外は、上記「4-1.添加剤の検討(酸化型グルタチオン、還元型グルタチオン)」に記載の手法によりリフォールディング処理を行い、酵素活性を測定した。
 (1)1Mスクロース、3mM GSSG、6mM GSH、0.014w/v% Tween 80が添加された20mMリン酸カリウムバッファー(pH8)
 (2)30w/v%グリセロール、3mM GSSG、6mM GSH、0.014w/v% Tween 80が添加された20mMリン酸カリウムバッファー(pH8)。
 結果を表12に示す。これらの結果から、リフォールディング溶液の添加剤の主剤をスクロースからグリセロールに変更することで、活性が2倍程度向上することが判明した。
 4-3.リフォールディング溶液中のグリセロール濃度の影響の検討
 上記「4-1.添加剤の検討(酸化型グルタチオン、還元型グルタチオン)」に記載の手法により、不溶性タンパク質をリン酸カリウムバッファーで希釈した溶液を得た。ただし、希釈後のタンパク質濃度を約0.8mg/mLとした。その後、リフォールディング溶液を用いて50倍に希釈した(リフォールディング開始時:16mg/Lタンパク質)。なお、リフォールディング溶液の組成は、20mMリン酸カリウムバッファー(pH8)に対してグリセロール、3mM還元型グルタチオン(GSSG)、6mM酸化型グルタチオン(GSH)、0.014w/v% Tween 80を添加したものである。この際、グリセロールについては0~80w/v%の間で濃度を変化させた(下記の表13を参照)。
 結果を表13に示す。これらの結果から、グリセロール濃度が40w/v%のときに最も高い酵素活性が達成されることが判明された。
 4-4.リフォールディング溶液への添加剤としてのTween 20、40、60、80の比較検討
 上記での検討において用いたリフォールディング溶液中の界面活性剤(Tween 80)のほか、Tween系の非イオン性界面活性剤であるTween 20、40、60をそれぞれ用いてリフォールディングの検討を行った(各非イオン性界面活性剤の構造は下記の通り)。
 具体的には、まず、上記「4-1.添加剤の検討(酸化型グルタチオン、還元型グルタチオン)」に記載の手法により、不溶性タンパク質をリン酸カリウムバッファーで希釈した溶液を得た。ここで、希釈後のタンパク質濃度を1.0mg/mLとした。その後、リフォールディング溶液を用いて50倍に希釈した(リフォールディング開始時:20mg/Lタンパク質)。なお、リフォールディング溶液としては、40w/v%グリセロール、3mM GSSG、6mM GSHが添加された20mMリン酸カリウムバッファー(pH8)をベースとして、0.25w/v%または0.5w/v%のTween 80、20、40または60をそれぞれ添加したものを用いた。
 結果を表14に示す。
 これらの結果から、Tween 80と比較して、Tween 60やTween 40を用いた方がより良好な結果が得られた。
 4-5.界面活性剤Tween 40の濃度のリフォールディングへの影響の評価
 上記4-4.の結果を受けて、リフォールディング溶液中の界面活性剤としてTween 40を用い、その濃度を変化させた場合の影響を検討した。
 具体的には、まず、上記「4-1.添加剤の検討(酸化型グルタチオン、還元型グルタチオン)」に記載の手法により、不溶性タンパク質をリン酸カリウムバッファーで希釈した溶液を得た。ここで、希釈後のタンパク質濃度を1.0mg/mLとした。その後、リフォールディング溶液を用いて50倍に希釈した(リフォールディング開始時:20mg/Lタンパク質)。なお、リフォールディング溶液としては、40w/v%グリセロール、3mM GSSG、6mM GSHが添加された20mMリン酸カリウムバッファー(pH8)をベースとして、0.25w/v%のTween 80、あるいは、0.1~0.4w/v%のTween 40をそれぞれ添加したものを用いた。結果を表15に示す。
 これらの結果から、0.3w/v%の濃度のTween 40を用いた場合に最も良好な結果が得られた。
 4-6.リフォールディング時の酸化還元剤の影響の評価
 リフォールディング溶液中の酸化還元剤の種類および濃度を変化させた場合の影響を検討した。
 具体的には、まず、上記「4-1.添加剤の検討(酸化型グルタチオン、還元型グルタチオン)」に記載の手法により、不溶性タンパク質をリン酸カリウムバッファーで希釈した溶液を得た。ここで、希釈後のタンパク質濃度を1.0mg/mLとした。その後、リフォールディング溶液を用いて50倍に希釈した(リフォールディング開始時:20mg/Lタンパク質)。なお、リフォールディング溶液としては、40w/v%グリセロール、0.25w/v% Tween 80が添加された20mMリン酸カリウムバッファー(pH8)をベースとして、酸化還元剤の種類および濃度としては下記の表16に示すものを採用した。結果を表16に示す。
 これらの結果から、上記の検討において最適な条件であると考えられていた「3mM GSSG、6mM GSH」という条件と比較して、「1mM シスチン(Cys-Cys)、2mM システイン(Cys)」という条件の方がより良好な結果を示した。
 4-7.リフォールディング時のシスチン/システイン濃度の最適化検討
 上記4-6.の結果を受けて、リフォールディング溶液として、40w/v%グリセロール、0.25w/v% Tween 80、0.3w/v% Tween 40が添加された20mMリン酸カリウムバッファー(pH8)をベースとして、下記の表17に示す濃度の組み合わせでシスチン(Cys-Cys)およびシステイン(Cys)をそれぞれ添加したものを用いて、リフォールディングの検討を行った。結果を表17に示す。
 これらの結果から、酸化還元剤として、2mMシスチン(Cys-Cys)および6mMシステイン(Cys)が添加されたリフォールディング溶液を用いてリフォールディング処理を施した場合に最大の容量活性が達成されることが判明した。
 本出願は、2022年1月31日に出願された日本特許出願番号2022-013052号に基づいており、その開示内容は、参照され、全体として、組み入れられている。

Claims (8)

  1.  (a)配列番号1もしくは2に記載のアミノ酸配列またはそれらと90%以上の同一性を有するアミノ酸配列を含み、
     (b)糖鎖が付加されておらず、
     (c)グルコセレブロシダーゼ活性を有する、タンパク質。
  2.  配列番号1または2のアミノ酸配列において、以下のアミノ酸置換の少なくとも1つを有する、請求項1に記載のタンパク質:
     (1)配列番号1または2の26位に相当する位置のアミノ酸をロイシンに置換(F26L);
     (2)配列番号1または2の26位に相当する位置のアミノ酸をイソロイシンに置換(F26I);
     (3)配列番号1または2の126位に相当する位置のアミノ酸をトレオニンに置換(C126T);
     (4)配列番号1または2の126位に相当する位置のアミノ酸をセリンに置換(C126S)および配列番号1または2の342位に相当する位置のアミノ酸をセリンに置換(C342S);
     (5)配列番号1または2の57位に相当する位置のアミノ酸をシステインに置換(Q57C);
     (6)配列番号1または2の60位に相当する位置のアミノ酸をシステインに置換(H60C);
     (7)配列番号1または2の63位に相当する位置のアミノ酸をシステインに置換(T63C);
     (8)配列番号1または2の143位に相当する位置のアミノ酸をシステインに置換(Q143C);
     (9)配列番号1または2の145位に相当する位置のアミノ酸をシステインに置換(H145C);
     (10)配列番号1または2の224位に相当する位置のアミノ酸をシステインに置換(K224C);ならびに
     (11)配列番号1または2の321位に相当する位置のアミノ酸をシステインに置換(K321C)。
  3.  配列番号1または2のアミノ酸配列において、以下のアミノ酸置換の少なくとも1つを有する、請求項1に記載のタンパク質:
     (12)配列番号1または2の248位に相当する位置のアミノ酸をセリンに置換(C248S)および配列番号1または2の342位に相当する位置のアミノ酸をセリンに置換(C342S);
     (13)配列番号1または2の126位に相当する位置のアミノ酸をトレオニンに置換(C126T)および配列番号1または2の342位に相当する位置のアミノ酸をセリンに置換(C342S);
     (14)配列番号1または2の126位に相当する位置のアミノ酸をセリンに置換(C126S)、配列番号1または2の248位に相当する位置のアミノ酸をセリンに置換(C248S)および配列番号1または2の342位に相当する位置のアミノ酸をセリンに置換(C342S);ならびに
     (15)配列番号1または2の126位に相当する位置のアミノ酸をトレオニンに置換(C126T)、配列番号1または2の248位に相当する位置のアミノ酸をセリンに置換(C248S)および配列番号1または2の342位に相当する位置のアミノ酸をセリンに置換(C342S)。
  4.  配列番号1または2のアミノ酸配列において、以下のアミノ酸置換の少なくとも1つを有する、請求項1~3のいずれか1項に記載のタンパク質:
     (16)配列番号1または2の61位に相当する位置のアミノ酸をシステインに置換(T61C);
     (17)配列番号1または2の98位に相当する位置のアミノ酸をシステインに置換(P98C);
     (18)配列番号1または2の143位に相当する位置のアミノ酸をシステインに置換(Q143C);
     (19)配列番号1または2の224位に相当する位置のアミノ酸をシステインに置換(K224C);
     (20)配列番号1または2の321位に相当する位置のアミノ酸をシステインに置換(K321C);および
     (21)配列番号1または2の407位に相当する位置のアミノ酸をシステインに置換(T407C)。
  5.  原核生物によって産生されたものである、請求項1~4のいずれか1項に記載のタンパク質。
  6.  フォールディングされていない、請求項1~5のいずれか1項に記載のタンパク質に対してフォールディング処理を施すことを含む、グルコセレブロシダーゼ活性を有するタンパク質の製造方法。
  7.  請求項1~5のいずれか1項に記載のタンパク質をコードする核酸を含むベクターを原核生物に導入して、前記原核生物にタンパク質を産生させることと、
     回収した前記原核生物により産生されたタンパク質に対してフォールディング処理を施すことと、
    を含む、請求項6に記載のグルコセレブロシダーゼ活性を有するタンパク質の製造方法。
  8.  請求項5に記載のタンパク質をリフォールディングすることによって製造された、グルコセレブロシダーゼ活性を有するタンパク質。
PCT/JP2023/002410 2022-01-31 2023-01-26 グルコセレブロシダーゼ活性を有するタンパク質およびその製造方法 WO2023145813A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022013052 2022-01-31
JP2022-013052 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145813A1 true WO2023145813A1 (ja) 2023-08-03

Family

ID=87471546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002410 WO2023145813A1 (ja) 2022-01-31 2023-01-26 グルコセレブロシダーゼ活性を有するタンパク質およびその製造方法

Country Status (1)

Country Link
WO (1) WO2023145813A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014500722A (ja) * 2010-11-08 2014-01-16 カリダス・バイオファーマ,インコーポレーテッド 増加した安定性および増加した保持触媒活性を有する変異型組換えβ−グルコセレブロシダーゼタンパク質

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014500722A (ja) * 2010-11-08 2014-01-16 カリダス・バイオファーマ,インコーポレーテッド 増加した安定性および増加した保持触媒活性を有する変異型組換えβ−グルコセレブロシダーゼタンパク質

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BERG-FUSSMAN A ET AL: "Human acid beta-glucosidase. N-glycosylation site occupancy and the effect of glycosylation on enzymatic activity.", JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, US, vol. 268, no. 20, 15 July 1993 (1993-07-15), US , pages 14861 - 14866, XP002436428, ISSN: 0021-9258 *
GRACE, M.E. ; GRABOWSKI, G.A.: "Human acid ^2-glucosidase: Glycosylation is required for catalytic activity", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, ELSEVIER, AMSTERDAM NL, vol. 168, no. 2, 30 April 1990 (1990-04-30), Amsterdam NL , pages 771 - 777, XP026787120, ISSN: 0006-291X, DOI: 10.1016/0006-291X(90)92388-G *
NOVO JULIANA BRANCO, MORGANTI LIGIA, MORO ANA MARIA, PAES LEME ADRIANA FRANCO, SERRANO SOLANGE MARIA DE TOLEDO, RAW ISAIAS, HO PAU: "Generation of a Chinese Hamster Ovary Cell Line Producing Recombinant Human Glucocerebrosidase", JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, vol. 2012, 1 January 2012 (2012-01-01), pages 1 - 10, XP093082738, ISSN: 1110-7243, DOI: 10.1155/2012/875383 *
POL-FACHIN LAERCIO; SIEBERT MARINA; VERLI HUGO; SARAIVA-PEREIRA MARIA LUIZA: "Glycosylation is crucial for a proper catalytic site organization in human glucocerebrosidase", GLYCOCONJUGATE JOURNAL, CHAPMAN & HALL, BOSTON, vol. 33, no. 2, 29 March 2016 (2016-03-29), Boston , pages 237 - 244, XP035909603, ISSN: 0282-0080, DOI: 10.1007/s10719-016-9661-7 *
TEKOAH YORAM, TZABAN SALIT, KIZHNER TALI, HAINRICHSON MARIANA, GANTMAN ANNA, GOLEMBO MYRIAM, AVIEZER DAVID, SHAALTIEL YOSEPH: "Glycosylation and functionality of recombinant β-glucocerebrosidase from various production systems", CELL DEATH AND DISEASE, vol. 33, no. 5, 1 October 2013 (2013-10-01), pages 771 - 781+Supp, XP093082752, ISSN: 0144-8463, DOI: 10.1042/BSR20130081 *

Similar Documents

Publication Publication Date Title
Singh et al. Extracellular L-asparaginase from a protease-deficient Bacillus aryabhattai ITBHU02: purification, biochemical characterization, and evaluation of antineoplastic activity in vitro
Maksimainen et al. The crystal structure of acidic β-galactosidase from Aspergillus oryzae
US20180362949A1 (en) Bacterial hyaluronidase and process for its production
Chen et al. High-level expression and characterization of a highly thermostable chitosanase from Aspergillus fumigatus in Pichia pastoris
Kim et al. Identification and functional characterization of the NanH extracellular sialidase from Corynebacterium diphtheriae
US8790639B2 (en) Enhanced antimicrobial lytic activity of a chimeric Ply187 endolysin
Durban et al. High level expression of a recombinant phospholipase C from Bacillus cereus in Bacillus subtilis
Zhang et al. Cloning, characterization, and production of a novel lysozyme by different expression hosts
WO2019142773A1 (ja) M23aファミリープロテアーゼの製造方法
JP6282270B2 (ja) 組み換えにより生成されたパエニバシラス・ポリミキサに由来する中性プロテアーゼ
JP6515032B2 (ja) 改変型β−ガラクトシダーゼ
Guo et al. Biochemical characterization and functional analysis of invertase Bmsuc1 from silkworm, Bombyx mori
JPWO2014097733A1 (ja) ヒト上皮細胞増殖因子の製造方法
He et al. High-level expression of human extracellular superoxide dismutase in Escherichia coli and insect cells
EP3013949B1 (en) Codon modified amylase from bacillus akibai
Rungsa et al. Heterologous expression and mutagenesis of recombinant Vespa affinis hyaluronidase protein (rVesA2)
Cheng et al. Functional expression of recombinant human trefoil factor 1 by Escherichia coli and Brevibacillus choshinensis
WO2023145813A1 (ja) グルコセレブロシダーゼ活性を有するタンパク質およびその製造方法
US9322008B2 (en) Mutants of L-asparaginase
WO2023145814A1 (ja) 向上した酵素活性または向上した安定性を有する組換えグルコセレブロシダーゼタンパク質
Cheng et al. The effect of disulfide bond on the conformational stability and catalytic activity of beta-propeller phytase
JP6813478B2 (ja) 耐熱性を有するキシラナーゼ
Abdollahi et al. Evaluating Five Escherichia coli Derivative Strains as a Platform for Arginine Deiminase Overproduction
WO2023145812A1 (ja) グルコセレブロシダーゼ活性を有する糖鎖付加タンパク質
Abady et al. Molecular cloning, heterologous expression, and in silico sequence analysis of Enterobacter GH19 class I chitinase (chiRAM gene)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747023

Country of ref document: EP

Kind code of ref document: A1