WO2023145515A1 - 情報処理システム、情報処理方法、及び情報処理プログラム - Google Patents

情報処理システム、情報処理方法、及び情報処理プログラム Download PDF

Info

Publication number
WO2023145515A1
WO2023145515A1 PCT/JP2023/001010 JP2023001010W WO2023145515A1 WO 2023145515 A1 WO2023145515 A1 WO 2023145515A1 JP 2023001010 W JP2023001010 W JP 2023001010W WO 2023145515 A1 WO2023145515 A1 WO 2023145515A1
Authority
WO
WIPO (PCT)
Prior art keywords
estimated
candidate
propagation path
information processing
target
Prior art date
Application number
PCT/JP2023/001010
Other languages
English (en)
French (fr)
Inventor
卓美 尾形
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023145515A1 publication Critical patent/WO2023145515A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present disclosure relates to an information processing system, an information processing method, and an information processing program.
  • wireless system design which is carried out when introducing a wireless system such as a wireless LAN (Local Area Network) system or a local 5G (5th Generation) system, for example, requirements organization, desktop simulation, preliminary radio wave measurement, radio wave design, Then work is done in the order of post-measurement of radio waves.
  • a wireless system such as a wireless LAN (Local Area Network) system or a local 5G (5th Generation) system
  • 5G (5th Generation) system for example, requirements organization, desktop simulation, preliminary radio wave measurement, radio wave design, Then work is done in the order of post-measurement of radio waves.
  • the number of users and the desired communication performance in the target area (communication area) where the wireless system is to be constructed are decided.
  • desktop simulations hereinafter simply referred to as "simulations"
  • radio wave propagation simulations are used for design in order to study the placement of wireless stations.
  • the preliminary radio wave measurement it is confirmed whether the desired performance is satisfied based on the simulation.
  • the radio wave design the radio wave intensity is adjusted and the arrangement of radio stations is adjusted. After that, the design is completed after final confirmation by post-facto radio wave measurement.
  • an electromagnetic wave measurement means for obtaining an electromagnetic wave measurement value, and an electromagnetic wave between the electromagnetic wave transmission means and the electromagnetic wave measurement means using three-dimensional structure information including the electrical characteristics and three-dimensional shape information of the structure
  • a propagation state estimating unit that obtains an estimated electromagnetic wave by estimating the propagation state of the electromagnetic wave, compares the measured electromagnetic wave with the estimated electromagnetic wave at each time, determines the time zone in which the error value is larger than the reference value,
  • An estimation error mapping unit that obtains a path until a radio signal from a transmitting means is received by an electromagnetic wave measuring means as an electromagnetic wave path;
  • a radio wave propagation environment measurement device comprising a question generation unit that obtains correction information for three-dimensional structure information with a smaller error value by comparing the electromagnetic wave measurement value obtained again with the electromagnetic wave estimated value obtained again. ing.
  • the information processing system has at least one processor.
  • the at least one processor determines a difference between an estimated reception quality value estimated by simulation and a measured reception quality value obtained by actual measurement from among a plurality of reception points in a target area for constructing a wireless system. Based on the above identification procedure for identifying the target reception point, and the estimated propagation path of the radio wave from the transmission point of the radio wave to the target reception point, which is estimated by simulation, on the estimated propagation path an extraction procedure for extracting a candidate structure that is a factor of the difference from among the structures in the above by statistical processing; and a correction procedure for correcting the simulation model of the extracted candidate structure.
  • the information processing method is a method executed by an information processing system.
  • the difference between the estimated reception quality value estimated by simulation and the measured reception quality value obtained by actual measurement from among a plurality of reception points in a target area for constructing a wireless system is equal to or greater than a predetermined value.
  • the method includes an extraction step of extracting a candidate structure that causes the difference from a certain structure by statistical processing, and a correction step of correcting the simulation model of the extracted candidate structure.
  • An information processing program provides an information processing system with an estimated reception quality value estimated by simulation and an actual measurement obtained from a plurality of reception points in a target area for constructing a wireless system.
  • FIG. 1 is a diagram illustrating a configuration example of an information processing system according to an embodiment
  • FIG. It is a figure which shows an example of the target area which concerns on embodiment.
  • FIG. 4 is a diagram showing an example of an estimated received power value as an estimated received quality value according to the embodiment
  • FIG. 10 is a diagram showing an example of a measured received power value as a measured received quality value according to the embodiment
  • FIG. 4 is a diagram showing an example of a difference between an estimated received power value and an actually measured received power value at each reception point according to the embodiment
  • FIG. 4 is a diagram showing an example of estimated propagation paths from a transmission point to each target reception point according to the embodiment; It is a figure which shows the example of a screen display in the display part which concerns on embodiment. It is a figure which shows an example of extraction of the candidate structure which concerns on embodiment. It is a figure which shows the example of a display of the correction candidate location information which concerns on embodiment. It is a figure which shows an example of the shape correction process which concerns on embodiment. It is a figure which shows an example of the material correction process which concerns on embodiment. It is a figure which shows the example of a display of the correction content which concerns on embodiment. It is a figure which shows an example of the operation
  • Patent Document 1 The technique described in Patent Document 1 is considered to be able to correct the simulation model (for example, the shape and material data of structures, etc.) based on the error between the electromagnetic wave estimated value (simulation result) and the electromagnetic wave measured value (actual measurement result).
  • the simulation model for example, the shape and material data of structures, etc.
  • Patent Document 1 assumes that there is only one reception point in the target area (target site), and it is difficult to achieve a good reception environment over the entire target area.
  • a simulation model is created for all structures on the estimated propagation path for a time period in which the difference between the simulation value and the actual measurement value of the reception quality at the one point is large. fix it. Therefore, a large processing load and long processing time may be required to modify the simulation model of many structures.
  • an object of the present disclosure is to enable effective and efficient modification of simulation models in radio system design.
  • FIG. 1 is a diagram showing an outline of an embodiment.
  • An information processing system according to an embodiment has at least one processor.
  • the processor determines that a difference between an estimated reception quality value estimated by simulation and a measured reception quality value obtained by actual measurement from among a plurality of reception points in a target area for constructing a wireless system is equal to or greater than a predetermined value.
  • Extraction procedure S2 for extracting candidate structures that cause differences from among structures on the estimated propagation path by statistical processing, and modifying the simulation model of the candidate structures extracted in extraction procedure S2 based on and the correction procedure S3.
  • the identification procedure S1 by identifying target reception points where the difference between the estimated reception quality value and the actually measured reception quality value is equal to or greater than a predetermined value from among a plurality of reception points in the target area, It becomes easier to achieve a good reception environment over the entire target area compared to the case where only one point within the target area is targeted.
  • the simulation model of the extracted candidate structures can be efficiently corrected. become. Specifically, instead of uniformly correcting the simulation models of all structures on the estimated propagation path, it becomes possible to preferentially correct the simulation models of the extracted candidate structures and correct the simulation models. The processing load and processing time for processing can be reduced.
  • a wireless system is a system that performs wireless communication.
  • a wireless LAN system, a local 5G system, or the like corresponds to the wireless system.
  • the target area is the area where the wireless system is built.
  • buildings, factories, offices, residences, etc. correspond to target areas.
  • a reception quality value is a value that indicates the quality of the reception state of a radio signal.
  • a received power for example, RSSI
  • SNR desired wave-to-noise ratio
  • SIR desired wave-to-interference ratio
  • a structure is a tangible object in the target area that affects the propagation of radio waves.
  • walls, pillars, floors, ceilings, windows, fixtures, fixtures, etc. correspond to structures.
  • a simulation model is a model that is virtually constructed in computer space and simulates the real world.
  • the simulation model includes, for example, three-dimensional shape data and material data (specifically, material property information such as permittivity, magnetic permeability, and conductivity) of each structure in the target area.
  • the simulation model may be manually created based on a layout diagram of the target area or the like. Also, the simulation model may be automatically created from a CAD drawing, an image sensor, or the like.
  • FIG. 2 is a diagram showing a configuration example of the information processing system 1 according to the embodiment.
  • the information processing system 1 has a processing unit 100 , an input unit 200 , a storage unit 300 and a display unit 400 . At least one of the input unit 200 , the storage unit 300 , and the display unit 400 may be configured separately from the processing unit 100 .
  • the input unit 200 and the display unit 400 may be provided on the terminal side, and the processing unit 100 and the storage unit 300 may be provided on the server side.
  • all of the processing unit 100, the input unit 200, the storage unit 300, and the display unit 400 may be provided on the terminal side.
  • the processing unit 100 is a device that performs arithmetic processing and includes at least one processor.
  • the processing unit 100 includes at least one of, for example, a CPU (Central Processing Unit), SoC (System-on-Chip), MCU (Micro Control Unit), FPGA (Field-Programmable Gate Array), and a coprocessor. .
  • the processing unit 100 also includes a GPU (Graphics Processing Unit), a VRAM (Video RAM), and the like.
  • the processing unit 100 causes the display unit 400 to perform drawing.
  • the processing unit 100 executes various types of processing and control. For example, the processing unit 100 executes various processes and controls based on the operation input detected by the input unit 200 .
  • the input unit 200 is a device that receives input from the user.
  • the input unit 200 includes at least one of a keyboard, mouse, touchpad, and touch panel.
  • the input unit 200 outputs information indicating the detected operation input to the processing unit 100 .
  • the input unit 200 may output information indicating the detected operation input to the storage unit 300 .
  • the storage unit 300 is a device that stores various types of information and data.
  • Storage unit 300 includes at least one memory that stores programs and data.
  • the storage unit 300 is also used as a work area for temporarily storing the processing results of the processing unit 100 .
  • the storage unit 300 may include arbitrary non-transitory storage media such as semiconductor storage media and magnetic storage media.
  • the storage unit 300 may include multiple types of storage media.
  • the storage unit 300 may include a combination of a portable storage medium such as a memory card, an optical disk, or a magneto-optical disk and a reading device for the storage medium.
  • the storage unit 300 may include a storage device such as RAM (Random Access Memory) that is used as a temporary storage area.
  • the storage unit 300 stores a simulation model of the target area.
  • the display unit 400 outputs video under the control of the processing unit 100 .
  • the display unit 400 includes, for example, a liquid crystal display or an organic EL (Electro Luminescence) display.
  • the display unit 400 may be integrated with the input unit 200 as a touch panel display.
  • the processing unit 100 obtains, for example, a measured value acquisition unit 110, a radio wave propagation simulator 120, a target point identification unit 130, a candidate structure extraction unit 140, a model Each function with the correction unit 150 is realized.
  • the measured value acquisition unit 110 acquires the measured reception quality values of each of the plurality of reception points in the target area for constructing the wireless system, and outputs the measured reception quality value of each reception point to the target point identification unit 130.
  • the measured value acquisition unit 110 may acquire the measured reception quality value at each reception point from the input unit 200 . Also, the measured value acquisition unit 110 may acquire from the storage unit 300 .
  • the radio wave propagation simulator 120 executes a radio wave propagation simulation using the simulation model and outputs the simulation results. For example, the radio wave propagation simulator 120 executes radio wave propagation simulation using the ray tracing method. Radio wave propagation simulator 120 calculates the estimated reception quality value of each reception point in the target area by simulation, and outputs the estimated reception quality value of each reception point to target point identification section 130 . In addition, the radio wave propagation simulator 120 calculates an estimated propagation path, which is a radio wave propagation path from a radio wave transmission point to each reception point and is estimated by simulation, and obtains information on each estimated propagation path from a candidate structure extraction unit. output to 140.
  • an estimated propagation path which is a radio wave propagation path from a radio wave transmission point to each reception point and is estimated by simulation, and obtains information on each estimated propagation path from a candidate structure extraction unit. output to 140.
  • the target point identification unit 130 selects target reception points where the difference between the estimated reception quality value and the actually measured reception quality value (that is, the simulation error) is equal to or greater than a predetermined value (threshold value) from among a plurality of reception points in the target area. An identification procedure for identification is executed, and information on the identified target reception point is output to the candidate structure extraction unit 140 and the display unit 400 .
  • the predetermined value (threshold) may be a predetermined fixed value.
  • the predetermined value (threshold value) may be a variable value that can be set by the user.
  • the target point identification unit 130 may identify one target reception point. Also, the target point identification unit 130 may identify a plurality of target reception points. The target point identification unit 130 identifies one or more target reception points by comparing the estimated reception quality value and the actually measured reception quality value for each of the plurality of reception points in the target area. As a result, each reception point at which an error occurs in the target area can be identified as the target reception point.
  • the candidate structure extraction unit 140 selects structures on the estimated propagation path based on the estimated propagation path, which is the propagation path of the radio waves from the transmission point of the radio waves to the target reception point, and is estimated by simulation. An extraction procedure is executed for extracting candidate structures that cause differences by statistical processing.
  • the candidate structure extracting unit 140 outputs information about the extracted candidate structures and their correction candidate locations to the model correcting unit 150 and the display unit 400 .
  • a correction candidate part is a part of the extracted candidate structure that intersects with the estimated propagation path.
  • the candidate structure extraction unit 140 may extract, as the first candidate structure, the structure that most intersects the estimated propagation paths from the radio wave transmission point to the target reception point.
  • the estimated propagation path intersects with a structure may mean that the radio wave is reflected by the structure.
  • the phrase “the estimated propagation path intersects with a structure” may mean that the radio waves pass through or diffract the structure.
  • a structure present on the estimated propagation path may be a structure that reflects radio waves.
  • the “structure present on the estimated propagation path” may be a structure that transmits or diffracts radio waves.
  • the candidate structure extraction unit 140 extracts a structure that exists in common on the plurality of estimated propagation paths as a first candidate structure. You may By extracting a structure that exists in common on a plurality of estimated propagation paths as the first candidate structure, it is possible to extract a structure that is highly likely to be the cause of the simulation error (difference).
  • the model correction unit 150 executes a correction procedure for correcting the simulation model of the candidate structure extracted by the candidate structure extraction unit 140, and outputs information on the corrected simulation model to the storage unit 300 and the display unit 400.
  • the model correction unit 150 may correct a correction candidate portion, which is a portion of the candidate structure extracted by the candidate structure extraction unit 140 and intersects with the estimated propagation path.
  • the model modification unit 150 may modify the simulation model of the candidate structure according to the user's operation on the input unit 200 . Also, the model correction unit 150 may automatically or semi-automatically correct the simulation model of the candidate structure.
  • the model correction unit 150 may perform re-simulation by the radio wave propagation simulator 120 using the corrected simulation model, and repeat the correction process until the simulation error at each reception point becomes less than the threshold.
  • the model modification unit 150 may end the modification procedure when the simulation error at each reception point becomes less than the threshold.
  • the model correction section 150 repeats until the simulation errors at all of the plurality of target reception points become less than the threshold. Corrective action may be taken. This facilitates achieving a good reception environment over the entire target area.
  • the model correction unit 150 may perform shape correction processing for correcting the shape of the candidate structure extracted by the candidate structure extraction unit 140, which is selected as a correction candidate position that intersects with the estimated propagation path. good.
  • the shape correction process includes a process of optimizing the propagation direction of the estimated propagation path by changing the normal angle to the surface of the correction candidate location, and a process of correcting the shape of the surface according to the optimization. It's okay. As a result, the surface shape of the correction candidate portion can be appropriately corrected.
  • the model correction unit 150 may execute material correction processing for correcting the material of the candidate structure extracted by the candidate structure extraction unit 140.
  • the material modification process may include a process of selecting or proposing a material after modification according to the environment (attribute) of the target area. For example, if the target area is an office, the model modification unit 150 may select or propose "concrete" as the material after modification. If the target area is a detached house, the model correction unit 150 may select or suggest "wood” as the material after correction.
  • the correspondence relationship between the environment (attribute) of the target area and the material after correction may be determined in advance. Further, the correspondence relationship between the environment (attribute) of the target area and the corrected material may be automatically generated by learning processing based on past correction results (correction history).
  • the candidate structure extraction unit 140 may further extract a second candidate structure other than the first candidate structure.
  • the model modification unit 150 may modify the simulation model of the first candidate structure prior to the simulation model of the second candidate structure. For example, if the simulation error does not become less than the threshold even if the simulation model of the first candidate structure extracted by the candidate structure extraction unit 140 is repeatedly corrected, the model correction unit 150 changes the simulation model of the second candidate structure. You can fix it.
  • the display unit 400 displays various information output from the processing unit 100 .
  • a specific example of the content displayed on the display unit 400 will be described later.
  • FIG. 3 is a diagram illustrating an example of a target area according to the embodiment;
  • FIG. 3 is also an area diagram showing the target area with a plurality of structures.
  • the target area includes six structures a to f, which are prisms such as columns, and four structures A to D, which are wall surfaces or window surfaces, for example.
  • the structures a to f are spaced apart from each other.
  • One transmission point Tx is provided in the target area. It is assumed that, for example, an antenna of a base station is provided at the transmission point Tx.
  • the transmission point Tx is located near the structure C between the structures d and e.
  • reception points Rx1 to Rx8 are provided in the target area. It is assumed that, for example, an antenna of a wireless terminal is provided at each of the reception points Rx1 to Rx8.
  • the reception point Rx1 is located between the structure D and the structure a.
  • the receiving point Rx2 is located between the structure a and the structure b.
  • the receiving point Rx3 is located between the structure b and the structure c.
  • the reception point Rx4 is located between the structure c and the structure B.
  • the reception point Rx5 is located between the structure D and the structure d.
  • a reception point Rx6 is located between structures d and e.
  • a reception point Rx7 is located between structures e and f.
  • the receiving point Rx8 is located between the structure f and the structure B.
  • FIG. 4 is a diagram showing an example of an estimated received power value as an estimated received quality value according to the embodiment.
  • the estimated received power value at the receiving point Rx1 is -110 dBm.
  • the estimated received power value at the receiving point Rx2 is -80 dBm.
  • the estimated received power value at the receiving point Rx3 is -110 dBm.
  • the estimated received power value at the receiving point Rx4 is -120 dBm.
  • the estimated received power value at the receiving point Rx5 is -100 dBm.
  • the estimated received power value at the receiving point Rx6 is -60 dBm.
  • the estimated received power value at the receiving point Rx7 is -100 dBm.
  • the estimated received power value at the receiving point Rx8 is -110 dBm.
  • the measured value acquisition unit 110 acquires the measured reception quality values of the reception points Rx1 to Rx8.
  • FIG. 5 is a diagram showing an example of measured received power values as measured received quality values according to the embodiment.
  • the measured received power value at the receiving point Rx1 is -130 dBm.
  • the measured received power value at the receiving point Rx2 is -82 dBm.
  • the measured received power value at the receiving point Rx3 is -115 dBm.
  • the measured received power value at the receiving point Rx4 is -125 dBm.
  • the measured received power value at the receiving point Rx5 is -120 dBm.
  • the measured received power value at the receiving point Rx6 is -63 dBm.
  • the measured received power value at the receiving point Rx7 is -105 dBm.
  • the measured received power value at the receiving point Rx8 is -115 dBm.
  • the target point identification unit 130 identifies target reception points where the difference between the estimated received power value and the actually measured received power value (that is, the simulation error) is equal to or greater than a predetermined value (threshold value) from among the reception points Rx1 to Rx8.
  • a predetermined value is 10 dB.
  • FIG. 6 is a diagram showing an example of the difference between the estimated received power value and the actually measured received power value at each reception point according to the embodiment.
  • the difference at the reception point Rx1 is 20 dB, which is above the threshold
  • the difference at the reception point Rx5 is 20 dB, which is above the threshold.
  • the target point identification unit 130 identifies the reception points Rx1 and Rx5 as the target reception points.
  • FIG. 6 shows the estimated propagation paths of radio waves (rays) obtained by the radio wave propagation simulator 120 .
  • FIG. 6 shows reflection-only events, propagation paths such as transmission and diffraction may also be tracked and displayed.
  • the target point identification unit 130 identifies each estimated propagation path from the transmission point Tx1 to the target reception points Rx1 and Rx5.
  • FIG. 7 is a diagram showing an example of estimated propagation paths from the transmission point Tx1 to each target reception point according to the embodiment.
  • the target point identifying unit 130 includes an estimated propagation path #1 from the transmission point Tx1 to the target reception point Rx1, an estimated propagation path #2 from the transmission point Tx1 to the target reception point Rx5, and an estimated propagation path #2 from the transmission point Tx1 to the target reception point Rx1.
  • Estimated propagation path #3 to reception point Rx5 is specified.
  • the target point identification unit 130 may cause the display unit 400 to display a layout chart including any of the information shown in FIGS. That is, the identification procedure by the target point identification unit 130 includes a first display process of displaying an area diagram (see FIG. 3) showing the target area together with a plurality of structures on the display unit 400.
  • FIG. The first display processing includes estimated reception quality values of the reception points Rx1 to Rx8 (see FIG. 4), measured reception quality values of the reception points Rx1 to Rx8 (see FIG. 5), and values of the reception points Rx1 to Rx8.
  • the difference value see FIG. 6
  • each estimated propagation path from the transmission point Tx to the reception points Rx1 to Rx8 see FIG.
  • the target point identification unit 130 may display two or more of the information shown in FIGS. 4 to 7 on the same screen.
  • FIG. 8 is a diagram showing a screen display example on the display unit 400 according to the embodiment.
  • the display area at the upper left of the screen displays estimated reception quality values for each of the reception points Rx1 to Rx8.
  • the display area at the lower left of the screen displays the measured reception quality values of each of the reception points Rx1 to Rx8.
  • the display area on the right side of the screen shows the difference between the simulation result and the actual measurement result, the ray propagation path (broken line) calculated by the ray tracing method, and the target reception point where the difference between the simulation result and the actual measurement result is greater than or equal to the threshold. (dashed circle) and .
  • Such collective display allows the user to easily grasp the information collectively based on the screen display.
  • the candidate structure extraction unit 140 extracts estimated propagation paths #1 to #3 from the transmission point Tx to the target reception points Rx1 and Rx5 based on the estimated propagation paths #1 to #3. A candidate structure that is a factor of the difference is extracted from the structures on 3 by statistical processing.
  • FIG. 9 is a diagram illustrating an example of extraction of candidate structures according to the embodiment.
  • the candidate structure extraction unit 140 extracts the candidate structure d from among the structures a, d, and e on the estimated propagation paths #1 to #3 by statistical processing. Specifically, the candidate structure extraction unit 140 extracts structures that intersect the estimated propagation paths #1 to #3 most frequently from the transmission point Tx1 to the target reception points Rx1 and Rx5 as candidate structures.
  • the candidate structure extraction unit 140 extracts "structure d” that exists in common among all (three) estimated propagation paths #1 to #3 as the first candidate structure. Further, the candidate structure extraction unit 140 extracts "structure a” and “structure e” that are common to the two estimated propagation paths #1 and #2 as second candidate structures.
  • Structure d which is the first candidate structure, is the structure that is most likely to be the cause of the simulation error.
  • the second candidate structures “structure a” and “structure e” are the structures with the second highest possibility of causing the simulation error.
  • the candidate structure extraction unit 140 considers that structures existing on more estimated propagation paths are highly likely to be factors of simulation errors, Objects are preferentially extracted as candidate structures. That is, the candidate structure extraction unit 140 gives the highest priority to the structure that intersects the estimated propagation paths #1 to #3 the most.
  • the extraction procedure by the candidate structure extraction unit 140 includes a second display process of displaying an area diagram (see FIG. 3) representing the target area together with a plurality of structures on the display unit 400.
  • FIG. 3 The second display processing includes processing for displaying the extracted structure (here, “structure d”) on the area map in a manner distinguishable from other structures.
  • the candidate structure extraction unit 140 may display the extracted "structure d” in a color different from that of other structures.
  • the candidate structure extraction unit 140 may assign identification information to the extracted “structure d” and display it. This allows the user to easily grasp the candidate structure based on the screen display.
  • the candidate structure extraction unit 140 may switch the display area on the right side of the screen display example shown in FIG. 8 to display content as shown in FIG.
  • the second display process may further include a process of displaying correction candidate location information representing locations where the extracted structure (here, "structure d") intersects the estimated propagation paths #1 to #3.
  • FIG. 10 is a diagram showing a display example of correction candidate part information according to the embodiment.
  • the candidate structure extraction unit 140 assigns identification information to three locations where the estimated propagation paths #1 to #3 intersect in the “structure d” and displays them. As a result, the user can easily grasp the correction candidate part based on the screen display.
  • the model correction unit 150 selects a portion of the candidate structure extracted by the candidate structure extraction unit 140 that intersects the estimated propagation path as a correction candidate portion, and determines the shape of the correction candidate portion. may be executed.
  • FIG. 11 is a diagram illustrating an example of shape correction processing according to the embodiment.
  • the model correction unit 150 firstly optimizes the propagation direction of the estimated propagation path by changing the normal angle to the surface of the correction candidate location.
  • the model modification unit 150 modifies the shape of the surface according to optimization of the propagation direction of the estimated propagation path. As a result, the surface shape of the correction candidate portion can be appropriately corrected.
  • the model correction unit 150 may execute material correction processing for correcting the material of the candidate structure extracted by the candidate structure extraction unit 140.
  • the material modification process may include a process of selecting or proposing a material after modification according to the environment (attribute) of the target area.
  • FIG. 12 is a diagram illustrating an example of material correction processing according to the embodiment.
  • the model correction unit 150 determines the candidate structure (here, "metal”, “wood”, “plastic”, “rubber”, and " Concrete”) is displayed on the display unit 400 by a pull-down menu, and the user is allowed to select one of the materials. Such candidates may be set according to the environment (attribute) of the target area.
  • the model correction unit 150 executes re-simulation by the radio wave propagation simulator 120 using the corrected simulation model.
  • the model correction unit 150 repeats the correction process until the simulation error at each of the reception points Rx1 to Rx8 (especially the target reception points Rx1 and Rx5) becomes less than the threshold. If the simulation error does not become less than the threshold even if the simulation model of the first candidate structure "structure d" is corrected, the model correction unit 150 selects the second candidate structures "structure a" and "structure The simulation model of "thing e" may be modified.
  • the model correction unit 150 ends the correction procedure when the simulation error becomes less than the threshold.
  • the modification procedure by the model modification unit 150 includes a third display process of displaying an area diagram (see FIG. 3) representing the target area together with a plurality of structures on the display unit 400.
  • the third display processing includes processing for displaying at least one of the corrected structure and the corrected portion of the structure on the area map.
  • FIG. 13 is a diagram illustrating a display example of correction content according to the embodiment.
  • the model correction unit 150 causes the display unit 400 to display the shape correction portion and the material correction portion in a identifiable manner.
  • the model correction unit 150 may cause the display unit 400 to display information indicating the material after the correction. As a result, the user can easily comprehend the content of correction based on the screen display.
  • the simulation error at the target reception point Rx1 is reduced to 4 dB, and the simulation error at the target reception point Rx5 is reduced to 6 dB.
  • the accuracy of the simulation model can be improved, so that a more accurate simulation can be realized.
  • FIG. 14 is a diagram showing an example of the operation flow of the information processing system 1 according to the embodiment. In this flow, for convenience of explanation, illustration and explanation of part of the above-described processing are omitted.
  • step S101 the target point identification unit 130 compares the estimated reception quality value (simulation result) and the actually measured reception quality value (actual measurement result) for each reception point in the target area.
  • step S101 the target point identification unit 130 determines whether or not a reception point where the difference between the estimated reception quality value (simulation result) and the actually measured reception quality value (actual measurement result) is equal to or greater than a threshold has been identified.
  • step S102 NO
  • step S103 the target point identification unit 130 determines an estimated propagation route to the reception point (target reception point) identified in step S102. Display on the display unit 400 .
  • step S104 the candidate structure extraction unit 140, based on the estimated propagation path of the radio waves from the transmission point of the radio waves to the target reception point and estimated by the simulation, determines the structure on the estimated propagation path.
  • Statistical processing is used to extract candidate structures that are factors of difference from objects.
  • the candidate structure extraction unit 140 extracts, as the first candidate structure, the structure that most intersects the estimated propagation paths from the radio wave transmission point to the target reception point.
  • step S105 the candidate structure extraction unit 140 causes the display unit 400 to display the candidate structures extracted in step S104 and their correction candidate locations.
  • step S106 the model modification unit 150 modifies the simulation model (shape data and/or material data) of the candidate structure extracted in step S105 so as to optimize it.
  • step S107 the model correction unit 150 executes re-simulation by the radio wave propagation simulator 120 using the simulation model corrected in step S106.
  • step S108 model correction unit 150 determines that the difference between the estimated reception quality value (simulation result) and the measured reception quality value (actual measurement result) at each reception point in the target area is less than the threshold for the re-simulation result in step S107. It is determined whether or not. If the difference is less than the threshold (step S108: YES), this flow ends.
  • step S109 the model correction unit 150 determines whether or not to forcibly terminate this flow. For example, the model correction unit 150 may forcibly terminate this flow in response to the termination operation received by the input unit 200 . Alternatively, the model correction unit 150 may forcibly terminate this flow when the duration of this flow exceeds a certain period of time.
  • step S110 the model correction unit 150 determines whether or not the combination of the optimization data has been completed, that is, whether or not other correction candidates remain. judge. If the combination of optimization data has not been completed (step S110: NO), the model correction unit 150 returns the process to step S106 and adopts the other correction candidates to correct the simulation model.
  • step S111 the model correction unit 150 excludes the candidate structure (for example, the first candidate structure) extracted in step S104.
  • step S112 the model correction unit 150 determines whether there is another candidate structure (for example, a second candidate structure). If there is another candidate structure (step S112: YES), the model correction unit 150 returns the process to step S104 and extracts the other candidate structure. On the other hand, if there is no other candidate structure (step S112: NO), this flow ends.
  • another candidate structure for example, a second candidate structure
  • the candidate structure extraction unit 140 selects the area between the structures where the largest number of estimated propagation paths exist. Identify. Then, the candidate structure extraction unit 140 identifies, as a correction candidate part, a part of the candidate structure that faces the identified area and that intersects with the estimated propagation path.
  • FIG. 15 is a diagram for explaining this modification.
  • the candidate structure extraction unit 140 extracts the area between the structures where the largest number of estimated propagation paths #1 to #3 from the transmission point Tx to the target reception points Rx1 and Rx5 exist. , the area between structure a and structure d is specified. Specifically, two estimated propagation paths #1 and #2 out of estimated propagation paths #1 to #3 exist in the region between structure a and structure d. Therefore, the portion of the candidate structure facing this region can be regarded as likely to be a source of simulation error. Therefore, the candidate structure extracting unit 140 identifies, as correction candidate locations, locations of the candidate structure d that face the specified region and that intersect with the estimated propagation paths #1 and #2.
  • the candidate structure extracting unit 140 does not identify the location of the candidate structure d that intersects the estimated propagation path #3 as a correction candidate location because it does not face the identified area. In this manner, according to this modification, it is possible to efficiently specify the correction candidate portion.
  • the model correction unit 150 executes the correction processing of the simulation model of the first candidate structure and the correction processing of the simulation model of the second candidate structure in parallel, and according to these re-simulation results, may be used to determine the structure to be finally optimized (corrected).
  • the model modification unit 150 modifies the simulation model of the first candidate structure "structure d" and the second candidate structure "structure a". and the re-simulation results obtained by correcting the simulation model of "structure e", and among the first candidate structure and the second candidate structure, the candidate structure with the smaller simulation error (i.e., the re-simulation result is The candidate structure that performs better) may be determined as the final optimized structure.
  • a program that causes a computer to execute each process according to the above-described embodiment may be provided.
  • the program may be recorded on a computer readable medium.
  • a computer readable medium allows the installation of the program on the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM or DVD-ROM.
  • the terms “based on” and “depending on,” unless expressly stated otherwise, “based only on.” does not mean The phrase “based on” means both “based only on” and “based at least in part on.” Similarly, the phrase “depending on” means both “only depending on” and “at least partially depending on.” Also, the terms “include,” “comprise,” and variations thereof are not meant to include only the listed items, but may include only the listed items or may include the listed items. In addition, it means that further items may be included. Also, the term “or” as used in this disclosure is not intended to be an exclusive OR. Furthermore, any references to elements using the "first,” “second,” etc. designations used in this disclosure do not generally limit the quantity or order of those elements.
  • An information processing system having at least one processor, The at least one processor Among the multiple reception points in the target area for constructing the wireless system, select the target reception point where the difference between the estimated reception quality value estimated by simulation and the measured reception quality value obtained by actual measurement is equal to or greater than a predetermined value. a specific procedure to identify; Based on the estimated propagation path, which is the propagation path of the radio wave from the transmission point of the radio wave to the target reception point and is estimated by simulation, a structure on the estimated propagation path becomes the factor of the difference. an extraction procedure for extracting candidate structures by statistical processing; and a modification procedure for modifying the extracted simulation model of the candidate structure.
  • the identification procedure includes a process of identifying the target reception point by comparing the estimated reception quality value and the actually measured reception quality value for each of the plurality of reception points.
  • correction procedure includes a process of correcting a simulation model of a portion of the extracted candidate structure that intersects with the estimated propagation path.
  • the correction procedure is performed until the difference becomes lower than the predetermined value at all of the plurality of target reception points.
  • the extraction procedure includes a process of extracting a structure existing in common on the plurality of estimated propagation paths as a first candidate structure (1) to (5) above.
  • the extraction procedure includes a process of extracting a second candidate structure other than the first candidate structure,
  • the modification procedure includes a shape modification process of modifying the shape of the modification candidate location, with the location of the extracted candidate structure that intersects with the estimated propagation path as a modification candidate location
  • the shape correction processing includes: A process of optimizing the propagation direction of the estimated propagation path by changing the normal angle to the surface of the correction candidate location;
  • the information processing system according to any one of (1) to (8) above, including a process of correcting the shape of the surface according to the optimization.
  • the modification procedure includes a material modification process for modifying the material of the extracted candidate structure,
  • the information processing system according to any one of (1) to (9) above, wherein the material correction process includes a process of selecting or proposing a material after correction according to the environment of the target area.
  • the specifying procedure includes a first display process of displaying an area diagram showing the target area together with a plurality of structures on a display unit,
  • the first display processing includes: the estimated reception quality value for each of the plurality of reception points; the measured reception quality value for each of the plurality of reception points; the difference for each of the plurality of reception points; A process of displaying at least one of the estimated propagation path to each of the plurality of reception points, the identified target reception point, and the estimated propagation path from the transmission point to the target reception point on the area map.
  • the extraction procedure includes a second display process for displaying an area diagram showing the target area together with a plurality of structures on a display unit,
  • the information processing according to any one of (1) to (11) above, wherein the second display processing includes processing for displaying the extracted structure on the area map in a manner distinguishable from other structures. system.
  • the correction procedure includes a third display process of displaying an area diagram showing the target area together with a plurality of structures by a display unit,
  • the third display process includes a process of displaying at least one of the corrected structure and a corrected portion of the structure on the area map.
  • An information processing method executed in an information processing system Among the multiple reception points in the target area for constructing the wireless system, select the target reception point where the difference between the estimated reception quality value estimated by simulation and the measured reception quality value obtained by actual measurement is equal to or greater than a predetermined value. to identify; Based on the estimated propagation path, which is the propagation path of the radio wave from the transmission point of the radio wave to the target reception point and is estimated by simulation, a structure on the estimated propagation path becomes the factor of the difference. Extracting candidate structures by statistical processing; modifying a simulation model of the extracted candidate structure.
  • (16) information processing system Among the multiple reception points in the target area for constructing the wireless system, select the target reception point where the difference between the estimated reception quality value estimated by simulation and the measured reception quality value obtained by actual measurement is equal to or greater than a predetermined value. to identify; Based on the estimated propagation path, which is the propagation path of the radio wave from the transmission point of the radio wave to the target reception point and is estimated by simulation, a structure on the estimated propagation path becomes the factor of the difference. Extracting candidate structures by statistical processing; modifying the simulation model of the extracted candidate structure; and an information processing program.
  • Information processing system 100 Processing unit 110: Measured value acquisition unit 120: Radio wave propagation simulator 130: Target point identification unit 140: Candidate structure extraction unit 150: Model correction unit 200: Input unit 300: Storage unit 400: Display unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

情報処理システムは、無線システムを構築する対象エリアにある複数の受信地点の中から、シミュレーション上で推定された推定受信品質値と実測により得られた実測受信品質値との差分が所定値以上である対象受信地点を特定する特定手順S1と、電波の送信地点から対象受信地点(すなわち、特定手順S1で特定された受信地点)までの電波の伝搬経路であってシミュレーション上で推定された推定伝搬経路に基づいて、当該推定伝搬経路上にある構造物の中から差分の要因となる候補構造物を統計処理により抽出する抽出手順S2と、抽出手順S2で抽出された候補構造物のシミュレーションモデルを修正する修正手順S3と、を実行する。

Description

情報処理システム、情報処理方法、及び情報処理プログラム
 本開示は、情報処理システム、情報処理方法、及び情報処理プログラムに関する。
 従来、無線LAN(Local Area Network)システムやローカル5G(5th Generation)システム等の無線システムを導入する際に行われる無線システム設計においては、例えば、要件整理、机上シミュレーション、事前電波測定、電波設計、及び事後電波測定の順で作業が行われる。
 ここで、要件整理では、無線システムを構築する対象エリア(通信エリア)におけるユーザ数や所望の通信性能などを取り決める。机上シミュレーション(以下、単に「シミュレーション」と称する)では、無線局の配置(置局)の検討のために、電波伝搬シミュレーションを用いて設計を行う。事前電波測定では、シミュレーションに基づき、所望の性能が満たされているかを確認する。電波設計では、電波強度の調整や無線局の配置調整を行う。その後、事後電波測定により最終確認を行い設計が完了する。
 このような無線システム設計において、事前電波測定の際に所望の通信性能が満たされていない場合、すなわち、シミュレーションの結果と事前電波測定(実測結果)とに乖離が見られる場合、再度シミュレーション(再設計)を行わなければならない。そのため、効率的な無線システムの設計を行うためには、シミュレーション結果と実測結果との差分が少なくなるような精度の高いシミュレーションを実現する必要がある。ここで、シミュレーション結果と実測結果との差分要因としては、シミュレーションモデル(構造物等の形状及び材質データ)が正しく作成・設定されていないことが挙げられる。
 一方、特許文献1には、電磁波計測値を得る電磁波計測手段と、構造物の電気的特性と3次元形状情報を含む3次元構造物情報を用いて電磁波送信手段と電磁波計測手段の間の電磁波の伝搬状態を推定して電磁波推定値を得る伝搬状態推定部と、電磁波計測値と電磁波推定値を時刻ごとに比較し、その誤差値が基準値より大きい時間帯を求め、この時間帯に電磁波送信手段からの無線信号が電磁波計測手段に受信されるまでの経路を電磁波経路として求める推定誤差マッピング部と、該電磁波経路上に位置する部位の3次元構造物情報を修正して電磁波推定値を再度求め、電磁波計測値と再度求めた電磁波推定値を比較して、より小さい誤差値となる3次元構造物情報の修正情報を得る質問生成部とから構成される電波伝搬環境計測装置が記載されている。
国際公開第2012/172670号
 第1の態様に係る情報処理システムは、少なくとも1つのプロセッサを有する。前記少なくとも1つのプロセッサは、無線システムを構築する対象エリアにある複数の受信地点の中から、シミュレーション上で推定された推定受信品質値と実測により得られた実測受信品質値との差分が所定値以上である対象受信地点を特定する特定手順と、電波の送信地点から前記対象受信地点までの前記電波の伝搬経路であってシミュレーション上で推定された推定伝搬経路に基づいて、前記推定伝搬経路上にある構造物の中から前記差分の要因となる候補構造物を統計処理により抽出する抽出手順と、前記抽出された候補構造物のシミュレーションモデルを修正する修正手順と、を実行する。
 第2の態様に係る情報処理方法は、情報処理システムで実行する方法である。前記情報処理方法は、無線システムを構築する対象エリアにある複数の受信地点の中から、シミュレーション上で推定された推定受信品質値と実測により得られた実測受信品質値との差分が所定値以上である対象受信地点を特定する特定ステップと、電波の送信地点から前記対象受信地点までの前記電波の伝搬経路であってシミュレーション上で推定された推定伝搬経路に基づいて、前記推定伝搬経路上にある構造物の中から前記差分の要因となる候補構造物を統計処理により抽出する抽出ステップと、前記抽出された候補構造物のシミュレーションモデルを修正する修正ステップと、を有する。
 第3の態様に係る情報処理プログラムは、情報処理システムに、無線システムを構築する対象エリアにある複数の受信地点の中から、シミュレーション上で推定された推定受信品質値と実測により得られた実測受信品質値との差分が所定値以上である対象受信地点を特定する特定ステップと、電波の送信地点から前記対象受信地点までの前記電波の伝搬経路であってシミュレーション上で推定された推定伝搬経路に基づいて、前記推定伝搬経路上にある構造物の中から前記差分の要因となる候補構造物を統計処理により抽出する抽出ステップと、前記抽出された候補構造物のシミュレーションモデルを修正する修正ステップと、を実行させる。
実施形態の概要を示す図である。 実施形態に係る情報処理システムの構成例を示す図である。 実施形態に係る対象エリアの一例を示す図である。 実施形態に係る推定受信品質値としての推定受信電力値の一例を示す図である。 実施形態に係る実測受信品質値としての実測受信電力値の一例を示す図である。 実施形態に係る各受信地点における推定受信電力値と実測受信電力値との差分の一例を示す図である。 実施形態に係る送信地点から各対象受信地点までの推定伝搬経路の一例を示す図である。 実施形態に係る表示部における画面表示例を示す図である。 実施形態に係る候補構造物の抽出の一例を示す図である。 実施形態に係る修正候補箇所情報の表示例を示す図である。 実施形態に係る形状修正処理の一例を示す図である。 実施形態に係る材質修正処理の一例を示す図である。 実施形態に係る修正内容の表示例を示す図である。 実施形態に係る情報処理システムの動作フローの一例を示す図である。 変更例を説明するための図である。 その他の実施形態を説明するための図である。
 特許文献1に記載の技術は、電磁波推定値(シミュレーション結果)と電磁波計測値(実測結果)との誤差に基づいてシミュレーションモデル(例えば、構造物等の形状及び材質データ)を修正できると考えられるものの、シミュレーションモデルを効果的かつ効率的に修正する点において改善の余地がある。
 例えば、特許文献1に記載の技術では、対象エリア(対象サイト)内の受信地点が1地点のみであることを想定しており、対象エリアの全体にわたって良好な受信環境を実現することが難しい。また、特許文献1に記載の技術では、当該1地点における受信品質のシミュレーション値と実測値との差分が大きい時間帯について、推定された伝搬経路上にあるすべての構造物を対象としてシミュレーションモデルを修正する。そのため、多くの構造物のシミュレーションモデルを修正するために大きな処理負荷及び長い処理時間が必要になり得る。
 そこで、本開示は、無線システム設計においてシミュレーションモデルを効果的かつ効率的に修正することを可能とすることを目的とする。
 図面を参照して実施形態について説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (実施形態の概要)
 まず、実施形態の概要について説明する。図1は、実施形態の概要を示す図である。実施形態に係る情報処理システムは、少なくとも1つのプロセッサを有する。
 当該プロセッサは、無線システムを構築する対象エリアにある複数の受信地点の中から、シミュレーション上で推定された推定受信品質値と実測により得られた実測受信品質値との差分が所定値以上である対象受信地点を特定する特定手順S1と、電波の送信地点から対象受信地点(すなわち、特定手順S1で特定された受信地点)までの電波の伝搬経路であってシミュレーション上で推定された推定伝搬経路に基づいて、当該推定伝搬経路上にある構造物の中から差分の要因となる候補構造物を統計処理により抽出する抽出手順S2と、抽出手順S2で抽出された候補構造物のシミュレーションモデルを修正する修正手順S3と、を実行する。
 このように、特定手順S1において、対象エリアにある複数の受信地点の中から、推定受信品質値と実測受信品質値との差分が所定値以上である対象受信地点を特定することにより、対象エリア内の1地点のみを対象とする場合に比べて、対象エリアの全体にわたって良好な受信環境を実現することが容易になる。
 また、抽出手順S2において、推定伝搬経路上にある構造物の中から差分の要因となる候補構造物を統計処理により抽出することにより、抽出された候補構造物のシミュレーションモデルを効率的に修正可能になる。具体的には、推定伝搬経路上にあるすべての構造物のシミュレーションモデルを一様に修正するのではなく、抽出された候補構造物のシミュレーションモデルを優先的に修正可能になり、シミュレーションモデルを修正するための処理負荷及び処理時間を削減できる。
 よって、実施形態によれば、無線システム設計においてシミュレーションモデルを効果的かつ効率的に修正することが可能になる。
 なお、無線システムとは、無線通信を行うシステムをいう。例えば、無線LANシステム又はローカル5Gシステム等が無線システムに該当する。
 対象エリアとは、無線システムが構築されるエリアをいう。例えば、ビル、工場、オフィス、又は住宅等が対象エリアに該当する。
 受信品質値とは、無線信号の受信状態の良好さを表す値をいう。例えば、受信電力(例えばRSSI)値、所望波対雑音比(SNR)値、又は所望波対干渉比(SIR)値等が受信品質値に該当する。実施形態では、受信品質値が受信電力値である一例について主として説明する。
 構造物とは、対象エリアにある有体物のうち、電波の伝搬に影響を与えるものをいう。例えば、壁面、柱、床、天井、窓、什器、又は備品等が構造物に該当する。
 シミュレーションモデルとは、計算機空間上に仮想的に構築され、現実世界を模擬したモデルを言う。シミュレーションモデルは、例えば、対象エリアにある各構造物の3次元形状データ及び材質データ(具体的には、誘電率、透磁率、導電率などの材料特性情報)を含む。シミュレーションモデルは、対象エリアのレイアウト図等に基づいて手入力で作成されてもよい。また、当該シミュレーションモデルは、CAD図面又はイメージセンサ等から自動的に作成されてもよい。
 (情報処理システムの構成例)
 次に、実施形態に係る情報処理システムの構成例について説明する。図2は、実施形態に係る情報処理システム1の構成例を示す図である。
 第1に、情報処理システム1のハードウェア構成例について説明する。情報処理システム1は、処理部100と、入力部200と、記憶部300と、表示部400とを有する。入力部200、記憶部300、及び表示部400の少なくとも1つは、処理部100と別体に構成されていてもよい。例えば、入力部200及び表示部400が端末側に設けられ、処理部100及び記憶部300がサーバ側に設けられてもよい。或いは、処理部100、入力部200、記憶部300、及び表示部400のすべてが端末側に設けられてもよい。
 処理部100は、演算処理を行う装置であって、少なくとも1つのプロセッサを含む。処理部100は、例えば、CPU(Central Processing Unit)、SoC(System-on-Chip)、MCU(Micro Control Unit)、FPGA(Field-Programmable Gate Array)、及びコプロセッサのうち、少なくとも1つを含む。また、処理部100は、GPU(Graphics Processing Unit)、VRAM(Video RAM)等を含む。処理部100は、表示部400に描画を実行させる。処理部100は、各種の処理及び制御を実行する。例えば、処理部100は、入力部200が検出した操作入力に基づいて各種の処理及び制御を実行する。
 入力部200は、ユーザからの入力を受け付ける装置である。例えば、入力部200は、キーボード、マウス、タッチパッド、及びタッチパネルの少なくとも1つを含む。入力部200は、検出した操作入力を示す情報を処理部100に出力する。入力部200は、検出した操作入力を示す情報を記憶部300に出力してもよい。
 記憶部300は、各種の情報及びデータを記憶する装置である。記憶部300は、プログラム及びデータを記憶する少なくとも1つのメモリを含む。記憶部300は、処理部100の処理結果を一時的に記憶する作業領域としても利用される。記憶部300は、半導体記憶媒体、及び磁気記憶媒体等の任意の非一過的(non-transitory)な記憶媒体を含んでもよい。記憶部300は、複数の種類の記憶媒体を含んでもよい。記憶部300は、メモリカード、光ディスク、又は光磁気ディスク等の可搬の記憶媒体と、記憶媒体の読み取り装置との組み合わせを含んでもよい。記憶部300は、RAM(Random Access Memory)等の一時的な記憶領域として利用される記憶デバイスを含んでもよい。実施形態において、記憶部300は、対象エリアのシミュレーションモデルを記憶する。
 表示部400は、処理部100の制御下で映像出力を行う。表示部400は、例えば、液晶ディスプレイ又は有機EL(Electro Luminescence)ディスプレイを含む。表示部400は、タッチパネルディスプレイとして入力部200と一体化されていてもよい。
 第2に、情報処理システム1の機能ブロック構成例について説明する。処理部100は、記憶部300に記憶されたプログラムを実行することにより、例えば、実測値取得部110と、電波伝搬シミュレータ120と、対象地点特定部130と、候補構造物抽出部140と、モデル修正部150との各機能を実現する。
 実測値取得部110は、無線システムを構築する対象エリアにある複数の受信地点のそれぞれの実測受信品質値を取得し、各受信地点の実測受信品質値を対象地点特定部130に出力する。実測値取得部110は、各受信地点の実測受信品質値を入力部200から取得してもよい。また、実測値取得部110は、記憶部300から取得してもよい。
 電波伝搬シミュレータ120は、シミュレーションモデルを用いて電波伝搬シミュレーションを実行し、シミュレーション結果を出力する。例えば、電波伝搬シミュレータ120は、レイトレーシング法による電波伝搬シミュレーションを実行する。電波伝搬シミュレータ120は、対象エリアにある各受信地点の推定受信品質値をシミュレーションにより算出し、各受信地点の推定受信品質値を対象地点特定部130に出力する。また、電波伝搬シミュレータ120は、電波の送信地点から各受信地点までの電波の伝搬経路であってシミュレーション上で推定された推定伝搬経路を算出し、各推定伝搬経路の情報を候補構造物抽出部140に出力する。
 対象地点特定部130は、対象エリアにある複数の受信地点の中から、推定受信品質値と実測受信品質値との差分(すなわち、シミュレーション誤差)が所定値(閾値)以上である対象受信地点を特定する特定手順を実行し、特定した対象受信地点に関する情報を候補構造物抽出部140及び表示部400に出力する。ここで、所定値(閾値)は、予め定められた固定値であってもよい。また、当該所定値(閾値)は、ユーザが設定可能な可変値であってもよい。
 対象地点特定部130は、1つの対象受信地点を特定してもよい。また、当該対象地点特定部130は、複数の対象受信地点を特定してもよい。対象地点特定部130は、対象エリアにある複数の受信地点のそれぞれについて推定受信品質値及び実測受信品質値を比較することにより、1つ又は複数の対象受信地点を特定する。これにより、対象エリアにおいて誤差が生じた各受信地点を対象受信地点として特定できる。
 候補構造物抽出部140は、電波の送信地点から対象受信地点までの電波の伝搬経路であってシミュレーション上で推定された推定伝搬経路に基づいて、当該推定伝搬経路上にある構造物の中から差分の要因となる候補構造物を統計処理により抽出する抽出手順を実行する。候補構造物抽出部140は、抽出した候補構造物及びその修正候補箇所に関する情報をモデル修正部150及び表示部400に出力する。修正候補箇所とは、抽出された候補構造物のうち推定伝搬経路と交わる箇所をいう。
 例えば、候補構造物抽出部140は、電波の送信地点から対象受信地点までの推定伝搬経路と最も多く交わる構造物を第1候補構造物として抽出してもよい。ここで、「推定伝搬経路が構造物と交わる」とは、電波が当該構造物で反射することであってもよい。また、当該「推定伝搬経路が構造物と交わる」とは、電波が当該構造物を透過又は回折することであってもよい。同様に、「推定伝搬経路上に存在する構造物」とは、電波を反射する構造物であってもよい。また、当該「推定伝搬経路上に存在する構造物」とは、電波を透過又は回折する構造物であってもよい。各推定伝搬経路と最も多く交わる構造物を第1候補構造物として抽出することにより、シミュレーション誤差(差分)の要因である可能性の高い構造物を抽出できる。
 候補構造物抽出部140は、電波の送信地点から対象受信地点までの推定伝搬経路が複数ある場合において、当該複数の推定伝搬経路上に共通して存在する構造物を第1候補構造物として抽出してもよい。複数の推定伝搬経路上に共通して存在する構造物を第1候補構造物として抽出することにより、シミュレーション誤差(差分)の要因である可能性の高い構造物を抽出できる。
 モデル修正部150は、候補構造物抽出部140により抽出された候補構造物のシミュレーションモデルを修正する修正手順を実行し、修正されたシミュレーションモデルに関する情報を記憶部300及び表示部400に出力する。モデル修正部150は、候補構造物抽出部140により抽出された候補構造物のうち推定伝搬経路と交わる箇所である修正候補箇所について修正を行ってもよい。モデル修正部150は、入力部200に対するユーザ操作に応じて候補構造物のシミュレーションモデルを修正してもよい。また、モデル修正部150は、候補構造物のシミュレーションモデルを自動又は半自動で修正してもよい。
 モデル修正部150は、修正後のシミュレーションモデルを用いて、電波伝搬シミュレータ120による再シミュレーションを実行し、各受信地点におけるシミュレーション誤差が閾値未満になるまで繰り返し修正処理を行ってもよい。モデル修正部150は、各受信地点におけるシミュレーション誤差が閾値未満になったことに応じて修正手順を終了してもよい。モデル修正部150は、シミュレーション誤差が所定値以上である複数の対象受信地点が対象地点特定部130により特定されている場合、当該複数の対象受信地点のすべてにおいてシミュレーション誤差が閾値未満になるまで繰り返し修正処理を行ってもよい。これにより、対象エリアの全体にわたって良好な受信環境を実現することが容易になる。
 モデル修正部150は、候補構造物抽出部140により抽出された候補構造物のうち推定伝搬経路と交わる箇所を修正候補箇所として、当該修正候補箇所の形状を修正する形状修正処理を実行してもよい。形状修正処理は、当該修正候補箇所の表面に対する法線角度を変化させて推定伝搬経路の伝搬方向を最適化する処理と、当該最適化に応じて当該表面の形状を修正する処理と、を含んでもよい。これにより、当該修正候補箇所の表面形状を適切に修正できる。
 モデル修正部150は、候補構造物抽出部140により抽出された候補構造物の材質を修正する材質修正処理を実行してもよい。材質修正処理は、対象エリアの環境(属性)に応じて、修正後の材質を選択又は提案する処理を含んでもよい。例えば、モデル修正部150は、対象エリアがオフィスである場合は修正後の材質として「コンクリート」を選択又は提案してもよい。モデル修正部150は、対象エリアが戸建て住宅である場合は修正後の材質として「木材」を選択又は提案してもよい。モデル修正部150において、対象エリアの環境(属性)と修正後の材質との対応関係は予め定められていてもよい。また、当該対象エリアの環境(属性)と修正後の材質との対応関係は過去の修正実績(修正履歴)に基づく学習処理により当該対応関係を自動で生成してもよい。
 なお、候補構造物抽出部140は、第1候補構造物以外の第2候補構造物をさらに抽出してもよい。モデル修正部150は、第2候補構造物のシミュレーションモデルよりも第1候補構造物のシミュレーションモデルを優先して修正してもよい。例えば、モデル修正部150は、候補構造物抽出部140により抽出された第1候補構造物のシミュレーションモデルを繰り返し修正してもシミュレーション誤差が閾値未満にならない場合、第2候補構造物のシミュレーションモデルを修正してもよい。
 表示部400は、処理部100から出力される各種の情報を表示する。表示部400における表示内容の具体例については後述する。
 (動作具体例)
 次に、実施形態に係る情報処理システム1の動作の具体例について説明する。図3は、実施形態に係る対象エリアの一例を示す図である。図3は、対象エリアを複数の構造物とともに表すエリア図でもある。
 本動作例において、対象エリアは、例えば柱等の角柱である6つの構造物a乃至fと、例えば壁面又は窓面である4つの構造物A乃至Dとを含む。構造物a乃至fは、互いに間隔をおいて設けられている。
 対象エリアには、1つの送信地点Txが設けられている。送信地点Txには、例えば基地局のアンテナが設けられるものとする。送信地点Txは、構造物Cの近傍において、構造物dと構造物eとの間に位置する。
 また、対象エリアには、8つの受信地点Rx1乃至Rx8が設けられている。受信地点Rx1乃至Rx8のそれぞれには、例えば無線端末のアンテナが設けられるものとする。具体的には、受信地点Rx1は構造物Dと構造物aとの間に位置する。受信地点Rx2は構造物aと構造物bとの間に位置する。受信地点Rx3は構造物bと構造物cとの間に位置する。受信地点Rx4は構造物cと構造物Bとの間に位置する。受信地点Rx5は構造物Dと構造物dとの間に位置する。受信地点Rx6は構造物dと構造物eとの間に位置する。受信地点Rx7は構造物eと構造物fとの間に位置する。受信地点Rx8は構造物fと構造物Bとの間に位置する。
 (1)対象受信地点の特定手順
 電波伝搬シミュレータ120は、シミュレーションモデルを用いて電波伝搬シミュレーションを実行し、受信地点Rx1乃至Rx8のそれぞれの推定受信品質値を出力する。図4は、実施形態に係る推定受信品質値としての推定受信電力値の一例を示す図である。本例において、受信地点Rx1の推定受信電力値は-110dBmである。受信地点Rx2の推定受信電力値は-80dBmである。受信地点Rx3の推定受信電力値は-110dBmである。受信地点Rx4の推定受信電力値は-120dBmである。受信地点Rx5の推定受信電力値は-100dBmである。受信地点Rx6の推定受信電力値は-60dBmである。受信地点Rx7の推定受信電力値は-100dBmである。受信地点Rx8の推定受信電力値は-110dBmである。
 実測値取得部110は、受信地点Rx1乃至Rx8のそれぞれの実測受信品質値を取得する。図5は、実施形態に係る実測受信品質値としての実測受信電力値の一例を示す図である。本例において、受信地点Rx1の実測受信電力値は-130dBmである。受信地点Rx2の実測受信電力値は-82dBmである。受信地点Rx3の実測受信電力値は-115dBmである。受信地点Rx4の実測受信電力値は-125dBmである。受信地点Rx5の実測受信電力値は-120dBmである。受信地点Rx6の実測受信電力値は-63dBmである。受信地点Rx7の実測受信電力値は-105dBmである。受信地点Rx8の実測受信電力値は-115dBmである。
 対象地点特定部130は、受信地点Rx1乃至Rx8の中から推定受信電力値と実測受信電力値との差分(すなわち、シミュレーション誤差)が所定値(閾値)以上である対象受信地点を特定する。ここでは、所定値(閾値)が10dBであるものとする。図6は、実施形態に係る各受信地点における推定受信電力値と実測受信電力値との差分の一例を示す図である。本例では、受信地点Rx1における差分が20dBであって閾値以上であり、受信地点Rx5における差分が20dBであって閾値以上である。その他の受信地点Rx2、Rx3、Rx4、Rx6、Rx7、及びRx8については、差分が閾値未満である。そのため、対象地点特定部130は、受信地点Rx1及びRx5を対象受信地点として特定する。
 なお、図6における破線は、電波伝搬シミュレータ120により得られた電波(レイ)の推定伝搬経路を示している。図6では、反射のみの事象を示しているが、透過及び回折などの伝搬経路も追跡及び表示してもよい。
 対象地点特定部130は、送信地点Tx1から対象受信地点Rx1及びRx5までの各推定伝搬経路を特定する。図7は、実施形態に係る送信地点Tx1から各対象受信地点までの推定伝搬経路の一例を示す図である。本例では、対象地点特定部130は、送信地点Tx1から対象受信地点Rx1までの推定伝搬経路#1と、送信地点Tx1から対象受信地点Rx5までの推定伝搬経路#2と、送信地点Tx1から対象受信地点Rx5までの推定伝搬経路#3と、を特定する。
 対象地点特定部130は、図4乃至図7に示すような情報のいずれかを含むレイアウト図を表示部400に表示させてもよい。すなわち、対象地点特定部130による特定手順は、対象エリアを複数の構造物とともに表すエリア図(図3参照)を表示部400により表示する第1表示処理を含む。第1表示処理は、受信地点Rx1乃至Rx8のそれぞれの推定受信品質値(図4参照)、受信地点Rx1乃至Rx8のそれぞれの実測受信品質値(図5参照)、受信地点Rx1乃至Rx8のそれぞれの差分値(図6参照)、送信地点Txから受信地点Rx1乃至Rx8までの各推定伝搬経路(図6参照)、特定された対象受信地点Rx1及びRx5(図6参照)、及び送信地点Txから当該対象受信地点Rx1及びRx5までの各推定伝搬経路(図7参照)のうち、少なくとも1つをエリア図上に表示する処理を含む。これにより、ユーザが画面表示に基づいて情報を容易に把握できるようになる。
 対象地点特定部130は、図4乃至図7に示すような情報のうち2つ以上の情報を同一画面上に表示させてもよい。図8は、実施形態に係る表示部400における画面表示例を示す図である。本例では、画面左上の表示領域は、受信地点Rx1乃至Rx8のそれぞれの推定受信品質値を表示する。また、画面左下の表示領域は、受信地点Rx1乃至Rx8のそれぞれの実測受信品質値を表示する。さらに、画面右側の表示領域は、シミュレーション結果と実測結果との差分と、レイトレーシング法により算出したレイの伝搬経路(破線)と、シミュレーション結果と実測結果との差分が閾値以上である対象受信地点(破線の円)と、を表示する。このような一括表示を行うことにより、ユーザが画面表示に基づいて情報を一括して容易に把握できるようになる。
 (2)候補構造物の抽出手順
 候補構造物抽出部140は、送信地点Txから対象受信地点Rx1及びRx5までの各推定伝搬経路#1乃至#3に基づいて、各推定伝搬経路#1乃至#3上にある構造物の中から差分の要因となる候補構造物を統計処理により抽出する。図9は、実施形態に係る候補構造物の抽出の一例を示す図である。候補構造物抽出部140は、各推定伝搬経路#1乃至#3上にある構造物a、d、及びeの中から候補構造物dを統計処理により抽出する。具体的には、候補構造物抽出部140は、送信地点Tx1から対象受信地点Rx1及びRx5までの推定伝搬経路#1乃至#3と最も多く交わる構造物を候補構造物として抽出する。
 本例では、
・推定伝搬経路#1:
 「送信地点Tx」→「構造物e」→「構造物a」→「構造物d」→「対象受信地点Rx1」
・推定伝搬経路#2:
 「送信地点Tx」→「構造物e」→「構造物a」→「構造物d」→「構造物a」→「対象受信地点Rx2」
・推定伝搬経路#3:
 「送信地点Tx」→「構造物C」→「構造物d」→「構造物C」→「構造物D」→「対象受信地点Rx2」
である。このような場合において、候補構造物抽出部140は、すべての(3つの)推定伝搬経路#1乃至#3に共通して存在する「構造物d」を第1候補構造物として抽出する。また、候補構造物抽出部140は、2つの推定伝搬経路#1及び#2に共通して存在する「構造物a」及び「構造物e」を第2候補構造物として抽出する。第1候補構造物である「構造物d」は、シミュレーション誤差の要因である可能性が最も高い構造物である。第2候補構造物である「構造物a」及び「構造物e」は、シミュレーション誤差の要因である可能性が2番目に高い構造物である。
 このように、候補構造物抽出部140は、より多くの推定伝搬経路上に存在する構造物がシミュレーション誤差の要因である可能性が高いとみなして、より多くの推定伝搬経路上に存在する構造物を優先的に候補構造物として抽出する。すなわち、候補構造物抽出部140は、推定伝搬経路#1乃至#3と最も多く交わる構造物に対して最も高い優先順位を付与する。
 候補構造物抽出部140による抽出手順は、対象エリアを複数の構造物とともに表すエリア図(図3参照)を表示部400により表示する第2表示処理を含む。第2表示処理は、抽出された構造物(ここでは、「構造物d」)を他の構造物と区別可能な態様でエリア図上に表示する処理を含む。例えば、候補構造物抽出部140は、抽出された「構造物d」を他の構造物とは異なる色で表示してもよい。また、例えば、当該候補構造物抽出部140は、抽出された「構造物d」に対して識別情報を付与して表示してもよい。これにより、ユーザが画面表示に基づいて候補構造物を容易に把握できるようになる。例えば、候補構造物抽出部140は、図8に示した画面表示例において、右側の表示領域を図9に示すような表示内容に切り替えてもよい。
 第2表示処理は、抽出された構造物(ここでは、「構造物d」)において推定伝搬経路#1乃至#3と交わる箇所を表す修正候補箇所情報を表示する処理をさらに含んでもよい。図10は、実施形態に係る修正候補箇所情報の表示例を示す図である。候補構造物抽出部140は、「構造物d」において推定伝搬経路#1乃至#3と交わる3つの箇所に識別情報を付与して表示する。これにより、ユーザが画面表示に基づいて修正候補箇所を容易に把握できるようになる。
 (3)シミュレーションモデルの修正及び再シミュレーション手順
 モデル修正部150は、候補構造物抽出部140により抽出された候補構造物のうち推定伝搬経路と交わる箇所を修正候補箇所として、当該修正候補箇所の形状を修正する形状修正処理を実行してもよい。図11は、実施形態に係る形状修正処理の一例を示す図である。形状修正処理において、モデル修正部150は、第1に、修正候補箇所の表面に対する法線角度を変化させて推定伝搬経路の伝搬方向を最適化する。第2に、モデル修正部150は、推定伝搬経路の伝搬方向の最適化に応じて、当該表面の形状を修正する。これにより、当該修正候補箇所の表面形状を適切に修正できる。
 モデル修正部150は、候補構造物抽出部140により抽出された候補構造物の材質を修正する材質修正処理を実行してもよい。材質修正処理は、対象エリアの環境(属性)に応じて、修正後の材質を選択又は提案する処理を含んでもよい。図12は、実施形態に係る材質修正処理の一例を示す図である。本例において、モデル修正部150は、候補構造物である「構造物d」について、修正後の材質の候補(ここでは、「金属」、「木材」、「プラスチック」、「ゴム」、及び「コンクリート」)をプルダウンメニューにより表示部400に表示させ、いずれかの材質をユーザに選択させる。このような候補は、対象エリアの環境(属性)に応じて設定されてもよい。
 モデル修正部150は、修正後のシミュレーションモデルを用いて、電波伝搬シミュレータ120による再シミュレーションを実行する。モデル修正部150は、各受信地点Rx1乃至Rx8(特に、対象受信地点Rx1及びRx5)におけるシミュレーション誤差が閾値未満になるまで繰り返し修正処理を行う。モデル修正部150は、第1候補構造物である「構造物d」のシミュレーションモデルを修正してもシミュレーション誤差が閾値未満にならない場合、第2候補構造物である「構造物a」及び「構造物e」のシミュレーションモデルを修正してもよい。モデル修正部150は、シミュレーション誤差が閾値未満になったことに応じて修正手順を終了する。
 モデル修正部150による修正手順は、対象エリアを複数の構造物とともに表すエリア図(図3参照)を表示部400により表示する第3表示処理を含む。第3表示処理は、修正された構造物及び当該構造物の修正箇所のうち少なくとも1つをエリア図上に表示する処理を含む。図13は、実施形態に係る修正内容の表示例を示す図である。本例では、モデル修正部150は、形状の修正箇所と材質の修正箇所とを識別可能な態様で表示部400に表示させる。モデル修正部150は、当該修正後の材質を示す情報を表示部400に表示させてもよい。これにより、ユーザが画面表示に基づいて修正内容を容易に把握できるようになる。
 なお、図13の例において、対象受信地点Rx1におけるシミュレーション誤差は4dBに低下しており、対象受信地点Rx5におけるシミュレーション誤差は6dBに低下している。このように、実施形態によれば、シミュレーションモデルの精度を向上させることができるため、より精度の高いシミュレーションが実現可能になる。
 (動作フロー例)
 次に、実施形態に係る情報処理システム1の動作フローの一例について説明する。図14は、実施形態に係る情報処理システム1の動作フローの一例を示す図である。本フローでは、説明の便宜上、上述の処理の一部について図示及び説明を省略している。
 ステップS101において、対象地点特定部130は、対象エリアにある各受信地点について推定受信品質値(シミュレーション結果)及び実測受信品質値(実測結果)を比較する。
 ステップS101において、対象地点特定部130は、推定受信品質値(シミュレーション結果)と実測受信品質値(実測結果)との差分が閾値以上の受信地点が特定された否かを判定する。当該差分が閾値以上の地点が特定されない場合(ステップS102:NO)、本フローが終了する。
 当該差分が閾値以上の受信地点が特定された場合(ステップS102:YES)、ステップS103において、対象地点特定部130は、ステップS102で特定された受信地点(対象受信地点)への推定伝搬経路を表示部400に表示させる。
 ステップS104において、候補構造物抽出部140は、電波の送信地点から対象受信地点までの電波の伝搬経路であってシミュレーション上で推定された推定伝搬経路に基づいて、当該推定伝搬経路上にある構造物の中から差分の要因となる候補構造物を統計処理により抽出する。例えば、候補構造物抽出部140は、電波の送信地点から対象受信地点までの推定伝搬経路と最も多く交わる構造物を第1候補構造物として抽出する。
 ステップS105において、候補構造物抽出部140は、ステップS104で抽出した候補構造物及びその修正候補箇所を表示部400に表示させる。
 ステップS106において、モデル修正部150は、ステップS105で抽出された候補構造物のシミュレーションモデル(形状データ及び/又は材質データ)を最適化するように修正する。
 ステップS107において、モデル修正部150は、ステップS106による修正後のシミュレーションモデルを用いて、電波伝搬シミュレータ120による再シミュレーションを実行する。
 ステップS108において、モデル修正部150は、ステップS107での再シミュレーション結果について、対象エリアにある各受信地点における推定受信品質値(シミュレーション結果)と実測受信品質値(実測結果)との差分が閾値未満であるか否かを判定する。当該差分が閾値未満である場合(ステップS108:YES)、本フローが終了する。
 当該差分が閾値以上である場合(ステップS108:NO)、ステップS109において、モデル修正部150は、本フローを強制終了するか否かを判定する。例えば、モデル修正部150は、入力部200が受け付けた終了操作に応じて本フローを強制終了してもよい。或いは、モデル修正部150は、本フローの継続時間が一定時間を超えたことに応じて本フローを強制終了してもよい。
 本フローを強制終了しない場合(ステップS109:NO)、ステップS110において、モデル修正部150は、最適化データの組み合わせが完了しているか否か、すなわち、他の修正の候補が残っているか否かを判定する。最適化データの組み合わせが完了していない場合(ステップS110:NO)、モデル修正部150は、ステップS106に処理を戻し、当該他の修正の候補を採用して当該シミュレーションモデルを修正する。
 最適化データの組み合わせが完了している場合(ステップS110:YES)、ステップS111において、モデル修正部150は、ステップS104で抽出した候補構造物(例えば、第1候補構造物)を除外する。
 そして、ステップS112において、モデル修正部150は、他に候補となる構造物(例えば、第2候補構造物)が有るか否かを判定する。他に候補となる構造物が有る場合(ステップS112:YES)、モデル修正部150は、ステップS104に処理を戻し、当該他の候補構造物を抽出する。一方、他に候補となる構造物が無い場合(ステップS112:NO)、本フローが終了する。
 (変更例)
 次に、上述の実施形態に係る情報処理システム1の動作の変更例について説明する。
 本変更例において、候補構造物抽出部140は、送信地点から対象受信地点までの推定伝搬経路が複数ある場合において、構造物間の領域であって、最も多くの推定伝搬経路が存在する領域を特定する。そして、候補構造物抽出部140は、特定された領域に面する候補構造物の箇所であって、推定伝搬経路と交わる箇所を修正候補箇所として特定する。
 図15は、本変更例を説明するための図である。図15の例において、候補構造物抽出部140は、送信地点Txから対象受信地点Rx1及びRx5までの推定伝搬経路#1乃至#3のうち最も多くの推定伝搬経路が存在する構造物間の領域として、構造物aと構造物dとの間の領域を特定する。具体的には、構造物aと構造物dとの間の領域は、推定伝搬経路#1乃至#3のうち2つの推定伝搬経路#1及び#2が存在している。そのため、この領域に面する候補構造物の箇所は、シミュレーション誤差の要因である可能性が高いとみなすことができる。そこで、候補構造物抽出部140は、特定された領域に面する候補構造物dの箇所であって、推定伝搬経路#1及び#2と交わる箇所を修正候補箇所として特定する。一方、候補構造物抽出部140は、推定伝搬経路#3と交わる候補構造物dの箇所については、特定された領域に面していないため、修正候補箇所として特定しない。このように、本変更例によれば、修正候補箇所を効率的に特定可能になる。
 (その他の実施形態)
 上述の実施形態において、モデル修正部150は、第1候補構造物のシミュレーションモデルの修正処理と第2候補構造物のシミュレーションモデルの修正処理とを並行して実行し、これらの再シミュレーション結果に応じて最終的に最適化(修正)する構造物を決定してもよい。例えば、モデル修正部150は、図16に示すように、第1候補構造物である「構造物d」のシミュレーションモデルを修正した再シミュレーション結果と、第2候補構造物である「構造物a」及び「構造物e」のシミュレーションモデルを修正した再シミュレーション結果とを比較し、第1候補構造物及び第2候補構造物のうち、よりシミュレーション誤差が小さくなる候補構造物(すなわち、再シミュレーション結果がより良好になる候補構造物)を、最終的に最適化する構造物として決定してもよい。
 上述の実施形態における動作(及び動作フロー)は、必ずしも上述の説明の順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、上述の順序と異なる順序で実行されてもよいし、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。
 上述の実施形態に係る各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。
 本開示で使用されている「に基づいて(based on)」、「に応じて(depending on)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。また、「含む(include)」、「備える(comprise)」、及びそれらの変形の用語は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。また、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。さらに、本開示で使用されている「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 以上、図面を参照して実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 本願は、日本国特許出願第2022-013527号(2022年1月31日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。
(付記)
 上述の実施形態に関する特徴について付記する。
(1)
 少なくとも1つのプロセッサを有する情報処理システムであって、
 前記少なくとも1つのプロセッサは、
 無線システムを構築する対象エリアにある複数の受信地点の中から、シミュレーション上で推定された推定受信品質値と実測により得られた実測受信品質値との差分が所定値以上である対象受信地点を特定する特定手順と、
 電波の送信地点から前記対象受信地点までの前記電波の伝搬経路であってシミュレーション上で推定された推定伝搬経路に基づいて、前記推定伝搬経路上にある構造物の中から前記差分の要因となる候補構造物を統計処理により抽出する抽出手順と、
 前記抽出された候補構造物のシミュレーションモデルを修正する修正手順と、を実行する
 情報処理システム。
(2)
 前記特定手順は、前記複数の受信地点のそれぞれについて前記推定受信品質値及び前記実測受信品質値を比較することにより、前記対象受信地点を特定する処理を含む
 上記(1)に記載の情報処理システム。
(3)
 前記修正手順は、前記抽出された候補構造物のうち前記推定伝搬経路と交わる箇所のシミュレーションモデルを修正する処理を含む
 上記(1)又は(2)に記載の情報処理システム。
(4)
 前記修正手順は、前記差分が前記所定値以上である複数の対象受信地点が前記特定手順により特定された場合、前記複数の対象受信地点のすべてにおいて前記差分が前記所定値よりも低くなるまで前記シミュレーションモデルを修正する処理を含む
 上記(1)乃至(3)のいずれかに記載の情報処理システム。
(5)
 前記抽出手順は、前記推定伝搬経路と最も多く交わる構造物を第1候補構造物として抽出する処理を含む
 上記(1)乃至(4)のいずれかに記載の情報処理システム。
(6)
 前記抽出手順は、前記推定伝搬経路が複数ある場合において、前記複数の推定伝搬経路上に共通して存在する構造物を第1候補構造物として抽出する処理を含む
 上記(1)乃至(5)のいずれかに記載の情報処理システム。
(7)
 前記抽出手順は、前記第1候補構造物以外の第2候補構造物を抽出する処理を含み、
 前記修正手順は、前記第2候補構造物のシミュレーションモデルよりも前記第1候補構造物のシミュレーションモデルを優先して修正する処理を含む
 上記(5)又は(6)に記載の情報処理システム。
(8)
 前記抽出手順は、前記推定伝搬経路が複数ある場合において、
 前記構造物間の領域であって、最も多くの推定伝搬経路が存在する領域を特定する処理と、
 前記特定された領域に面する前記候補構造物の箇所であって、前記推定伝搬経路と交わる箇所を修正候補箇所として特定する処理と、を含む
 (1)乃至(7)のいずれかに記載の情報処理システム。
(9)
 前記修正手順は、前記抽出された候補構造物のうち前記推定伝搬経路と交わる箇所を修正候補箇所として、前記修正候補箇所の形状を修正する形状修正処理を含み、
 前記形状修正処理は、
 前記修正候補箇所の表面に対する法線角度を変化させて前記推定伝搬経路の伝搬方向を最適化する処理と、
 前記最適化に応じて前記表面の形状を修正する処理と、を含む
 上記(1)乃至(8)のいずれかに記載の情報処理システム。
(10)
 前記修正手順は、前記抽出された候補構造物の材質を修正する材質修正処理を含み、
 前記材質修正処理は、前記対象エリアの環境に応じて、修正後の材質を選択又は提案する処理を含む
 上記(1)乃至(9)のいずれかに記載の情報処理システム。
(11)
 前記特定手順は、前記対象エリアを複数の構造物とともに表すエリア図を表示部により表示する第1表示処理を含み、
 前記第1表示処理は、前記複数の受信地点のそれぞれの前記推定受信品質値、前記複数の受信地点のそれぞれの前記実測受信品質値、前記複数の受信地点のそれぞれの前記差分、前記送信地点から前記複数の受信地点のそれぞれまでの推定伝搬経路、前記特定された対象受信地点、及び前記送信地点から当該対象受信地点までの推定伝搬経路のうち、少なくとも1つを前記エリア図上に表示する処理を含む
 上記(1)乃至(10)のいずれかに記載の情報処理システム。
(12)
 前記抽出手順は、前記対象エリアを複数の構造物とともに表すエリア図を表示部により表示する第2表示処理を含み、
 前記第2表示処理は、前記抽出された構造物を他の構造物と区別可能な態様で前記エリア図上に表示する処理を含む
 上記(1)乃至(11)のいずれかに記載の情報処理システム。
(13)
 前記第2表示処理は、前記抽出された構造物において前記推定伝搬経路と交わる箇所を表す修正候補箇所情報を表示する処理をさらに含む
 上記(12)に記載の情報処理システム。
(14)
 前記修正手順は、前記対象エリアを複数の構造物とともに表すエリア図を表示部により表示する第3表示処理を含み、
 前記第3表示処理は、前記修正された構造物及び当該構造物の修正箇所のうち少なくとも1つを前記エリア図上に表示する処理を含む
 上記(1)乃至(13)のいずれかに記載の情報処理システム。
(15)
 情報処理システムで実行する情報処理方法であって、
 無線システムを構築する対象エリアにある複数の受信地点の中から、シミュレーション上で推定された推定受信品質値と実測により得られた実測受信品質値との差分が所定値以上である対象受信地点を特定することと、
 電波の送信地点から前記対象受信地点までの前記電波の伝搬経路であってシミュレーション上で推定された推定伝搬経路に基づいて、前記推定伝搬経路上にある構造物の中から前記差分の要因となる候補構造物を統計処理により抽出することと、
 前記抽出された候補構造物のシミュレーションモデルを修正することと、を有する
 情報処理方法。
(16)
 情報処理システムに、
 無線システムを構築する対象エリアにある複数の受信地点の中から、シミュレーション上で推定された推定受信品質値と実測により得られた実測受信品質値との差分が所定値以上である対象受信地点を特定することと、
 電波の送信地点から前記対象受信地点までの前記電波の伝搬経路であってシミュレーション上で推定された推定伝搬経路に基づいて、前記推定伝搬経路上にある構造物の中から前記差分の要因となる候補構造物を統計処理により抽出することと、
 前記抽出された候補構造物のシミュレーションモデルを修正することと、を実行させる
 情報処理プログラム。
1    :情報処理システム
100  :処理部
110  :実測値取得部
120  :電波伝搬シミュレータ
130  :対象地点特定部
140  :候補構造物抽出部
150  :モデル修正部
200  :入力部
300  :記憶部
400  :表示部

Claims (16)

  1.  少なくとも1つのプロセッサを有する情報処理システムであって、
     前記少なくとも1つのプロセッサは、
     無線システムを構築する対象エリアにある複数の受信地点の中から、シミュレーション上で推定された推定受信品質値と実測により得られた実測受信品質値との差分が所定値以上である対象受信地点を特定する特定手順と、
     電波の送信地点から前記対象受信地点までの前記電波の伝搬経路であってシミュレーション上で推定された推定伝搬経路に基づいて、前記推定伝搬経路上にある構造物の中から前記差分の要因となる候補構造物を統計処理により抽出する抽出手順と、
     前記抽出された候補構造物のシミュレーションモデルを修正する修正手順と、を実行する
     情報処理システム。
  2.  前記特定手順は、前記複数の受信地点のそれぞれについて前記推定受信品質値及び前記実測受信品質値を比較することにより、前記対象受信地点を特定する処理を含む
     請求項1に記載の情報処理システム。
  3.  前記修正手順は、前記抽出された候補構造物のうち前記推定伝搬経路と交わる箇所のシミュレーションモデルを修正する処理を含む
     請求項1に記載の情報処理システム。
  4.  前記修正手順は、前記差分が前記所定値以上である複数の対象受信地点が前記特定手順により特定された場合、前記複数の対象受信地点のすべてにおいて前記差分が前記所定値よりも低くなるまで前記シミュレーションモデルを修正する処理を含む
     請求項1に記載の情報処理システム。
  5.  前記抽出手順は、前記推定伝搬経路と最も多く交わる構造物を第1候補構造物として抽出する処理を含む
     請求項1に記載の情報処理システム。
  6.  前記抽出手順は、前記推定伝搬経路が複数ある場合において、前記複数の推定伝搬経路上に共通して存在する構造物を第1候補構造物として抽出する処理を含む
     請求項1に記載の情報処理システム。
  7.  前記抽出手順は、前記第1候補構造物以外の第2候補構造物を抽出する処理を含み、
     前記修正手順は、前記第2候補構造物のシミュレーションモデルよりも前記第1候補構造物のシミュレーションモデルを優先して修正する処理を含む
     請求項5に記載の情報処理システム。
  8.  前記抽出手順は、前記推定伝搬経路が複数ある場合において、
     前記構造物間の領域であって、最も多くの推定伝搬経路が存在する領域を特定する処理と、
     前記特定された領域に面する前記候補構造物の箇所であって、前記推定伝搬経路と交わる箇所を修正候補箇所として特定する処理と、を含む
     請求項1に記載の情報処理システム。
  9.  前記修正手順は、前記抽出された候補構造物のうち前記推定伝搬経路と交わる箇所を修正候補箇所として、前記修正候補箇所の形状を修正する形状修正処理を含み、
     前記形状修正処理は、
     前記修正候補箇所の表面に対する法線角度を変化させて前記推定伝搬経路の伝搬方向を最適化する処理と、
     前記最適化に応じて前記表面の形状を修正する処理と、を含む
     請求項1に記載の情報処理システム。
  10.  前記修正手順は、前記抽出された候補構造物の材質を修正する材質修正処理を含み、
     前記材質修正処理は、前記対象エリアの環境に応じて、修正後の材質を選択又は提案する処理を含む
     請求項1に記載の情報処理システム。
  11.  前記特定手順は、前記対象エリアを複数の構造物とともに表すエリア図を表示部により表示する第1表示処理を含み、
     前記第1表示処理は、前記複数の受信地点のそれぞれの前記推定受信品質値、前記複数の受信地点のそれぞれの前記実測受信品質値、前記複数の受信地点のそれぞれの前記差分、前記送信地点から前記複数の受信地点のそれぞれまでの推定伝搬経路、前記特定された対象受信地点、及び前記送信地点から当該対象受信地点までの推定伝搬経路のうち、少なくとも1つを前記エリア図上に表示する処理を含む
     請求項1に記載の情報処理システム。
  12.  前記抽出手順は、前記対象エリアを複数の構造物とともに表すエリア図を表示部により表示する第2表示処理を含み、
     前記第2表示処理は、前記抽出された構造物を他の構造物と区別可能な態様で前記エリア図上に表示する処理を含む
     請求項1に記載の情報処理システム。
  13.  前記第2表示処理は、前記抽出された構造物において前記推定伝搬経路と交わる箇所を表す修正候補箇所情報を表示する処理をさらに含む
     請求項12に記載の情報処理システム。
  14.  前記修正手順は、前記対象エリアを複数の構造物とともに表すエリア図を表示部により表示する第3表示処理を含み、
     前記第3表示処理は、前記修正された構造物及び当該構造物の修正箇所のうち少なくとも1つを前記エリア図上に表示する処理を含む
     請求項1乃至13のいずれか1項に記載の情報処理システム。
  15.  情報処理システムで実行する情報処理方法であって、
     無線システムを構築する対象エリアにある複数の受信地点の中から、シミュレーション上で推定された推定受信品質値と実測により得られた実測受信品質値との差分が所定値以上である対象受信地点を特定する特定することと、
     電波の送信地点から前記対象受信地点までの前記電波の伝搬経路であってシミュレーション上で推定された推定伝搬経路に基づいて、前記推定伝搬経路上にある構造物の中から前記差分の要因となる候補構造物を統計処理により抽出することと、
     前記抽出された候補構造物のシミュレーションモデルを修正することと、を有する
     情報処理方法。
  16.  情報処理システムに、
     無線システムを構築する対象エリアにある複数の受信地点の中から、シミュレーション上で推定された推定受信品質値と実測により得られた実測受信品質値との差分が所定値以上である対象受信地点を特定することと、
     電波の送信地点から前記対象受信地点までの前記電波の伝搬経路であってシミュレーション上で推定された推定伝搬経路に基づいて、前記推定伝搬経路上にある構造物の中から前記差分の要因となる候補構造物を統計処理により抽出することと、
     前記抽出された候補構造物のシミュレーションモデルを修正することと、を実行させる
     情報処理プログラム。
PCT/JP2023/001010 2022-01-31 2023-01-16 情報処理システム、情報処理方法、及び情報処理プログラム WO2023145515A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-013527 2022-01-31
JP2022013527 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145515A1 true WO2023145515A1 (ja) 2023-08-03

Family

ID=87471404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001010 WO2023145515A1 (ja) 2022-01-31 2023-01-16 情報処理システム、情報処理方法、及び情報処理プログラム

Country Status (1)

Country Link
WO (1) WO2023145515A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147519A (ja) * 2008-12-16 2010-07-01 Hitachi Ltd 無線通信システム
JP2010187140A (ja) * 2009-02-10 2010-08-26 Softbank Bb Corp 通信特性解析システム、通信特性解析方法、及び通信特性解析プログラム
JP2012118024A (ja) * 2010-12-03 2012-06-21 Brother Ind Ltd 電波推定方法、及び電波推定プログラム、並びに電波推定装置
JP2020174343A (ja) * 2019-04-12 2020-10-22 ダイキン工業株式会社 機械学習装置
JP2023007070A (ja) * 2021-07-01 2023-01-18 株式会社日立製作所 電波伝搬シミュレーションシステム及び電波伝搬モデルの作成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147519A (ja) * 2008-12-16 2010-07-01 Hitachi Ltd 無線通信システム
JP2010187140A (ja) * 2009-02-10 2010-08-26 Softbank Bb Corp 通信特性解析システム、通信特性解析方法、及び通信特性解析プログラム
JP2012118024A (ja) * 2010-12-03 2012-06-21 Brother Ind Ltd 電波推定方法、及び電波推定プログラム、並びに電波推定装置
JP2020174343A (ja) * 2019-04-12 2020-10-22 ダイキン工業株式会社 機械学習装置
JP2023007070A (ja) * 2021-07-01 2023-01-18 株式会社日立製作所 電波伝搬シミュレーションシステム及び電波伝搬モデルの作成方法

Similar Documents

Publication Publication Date Title
Rebolj et al. Point cloud quality requirements for Scan-vs-BIM based automated construction progress monitoring
Chen et al. A BIM-based location aware AR collaborative framework for facility maintenance management.
JP6955144B2 (ja) 無線機器の設置位置決定装置、無線機器の設置位置決定方法及び無線機器の設置位置決定プログラム
EP1987687B1 (en) Method and apparatus for automated characterization of objects with unknown rf characteristics
JP5522054B2 (ja) 電波環境データ補正システム、方法およびプログラム
US20150105087A1 (en) System and method for conducting wireless site surveys
JP5120786B2 (ja) 電波伝搬特性推定システム及びその方法並びにプログラム
Galetto et al. Optimal sensor positioning for large scale metrology applications
TWI608744B (zh) 估算裝置及其無線網路之通訊品質估算方法及電表安裝方法
WO2017162181A1 (zh) 业务指标显示的方法和设备
CN112218306B (zh) 基站覆盖性能的预测方法、装置和计算机设备
CN108242962B (zh) 一种基于测量报告的室内信号传播损耗计算方法及装置
CN106658538B (zh) 一种基于泰森多边形的手机基站信号覆盖范围模拟方法
US20140018084A1 (en) Method and apparatus for antenna placement of wireless basestations
CN112417687B (zh) 智能审图方法及相关装置
CN107995630B (zh) 一种无线网络覆盖的信号数据计算方法及装置
WO2023145515A1 (ja) 情報処理システム、情報処理方法、及び情報処理プログラム
US20180279078A1 (en) Confirming work supporting device, confirming work supporting system, and computer program product
KR20000050372A (ko) 실시간 일조환경 시뮬레이션 방법 및 기록매체
JPWO2009069507A1 (ja) 電波伝搬シミュレータ及びそれに用いる電波伝搬特性推定方法並びにそのプログラム
US20210329478A1 (en) Radio wave strength estimation device, position estimation system, and radio wave strength estimation method
JP7460886B2 (ja) 機械学習装置
WO2020209380A1 (ja) 機械学習装置
JP2018194392A (ja) 電波強度マップの生成方法、伝搬損失推定方法及び屋内測位システム
US11877159B2 (en) Computing system that is configured to assign wireless beacons to positions within a building

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746729

Country of ref document: EP

Kind code of ref document: A1