WO2023145119A1 - ポリアルキレンオキシド粒子、医薬用組成物、製剤用組成物及び製剤 - Google Patents

ポリアルキレンオキシド粒子、医薬用組成物、製剤用組成物及び製剤 Download PDF

Info

Publication number
WO2023145119A1
WO2023145119A1 PCT/JP2022/032816 JP2022032816W WO2023145119A1 WO 2023145119 A1 WO2023145119 A1 WO 2023145119A1 JP 2022032816 W JP2022032816 W JP 2022032816W WO 2023145119 A1 WO2023145119 A1 WO 2023145119A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide particles
polyalkylene oxide
particles
sieve
mass
Prior art date
Application number
PCT/JP2022/032816
Other languages
English (en)
French (fr)
Inventor
直輝 西能
敬太 須賀
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to EP22818593.0A priority Critical patent/EP4242253A1/en
Publication of WO2023145119A1 publication Critical patent/WO2023145119A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • C08G65/12Saturated oxiranes characterised by the catalysts used containing organo-metallic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/266Metallic elements not covered by group C08G65/2648 - C08G65/2645, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/30Post-polymerisation treatment, e.g. recovery, purification, drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to polyalkylene oxide particles, pharmaceutical compositions, pharmaceutical compositions and formulations.
  • Patent Document 1 discloses polyalkylene oxide particles whose particle size distribution is controlled within a specific range and which can be applied as a binder for pharmaceutical preparations.
  • polyalkylene oxide particles having a particle size distribution have different aqueous solution viscosities depending on their particle sizes, and that the larger the difference in the aqueous solution viscosities between particle sizes, the more It has been found that the performance of the formulation tends to vary, especially the dissolution of the formulation tends to fluctuate. In particular, if the homogeneity of polyalkylene oxide particles is impaired due to segregation or destruction of homogeneity due to vibration during transfer of polyalkylene oxide particles, the performance (especially dissolution) of formulations using it will be particularly uneven. The inventors of the present invention have found the problem of increasing the size.
  • the present invention has been made in view of the above, and is capable of reducing variations in the dissolution of the formulation, and even if the uniformity of the polyalkylene oxide particles is impaired by vibration or the like, the dissolution of the formulation can be maintained.
  • An object of the present invention is to provide polyalkylene oxide particles that can be made less likely to vary.
  • Another object of the present invention is to provide a pharmaceutical composition containing the polyalkylene oxide particles and a pharmaceutical composition containing the pharmaceutical composition.
  • the present inventors have found that the above object can be achieved with polyalkylene oxide particles having specific aqueous solution viscosity characteristics, and have completed the present invention.
  • the present invention includes, for example, the subject matter described in the following sections.
  • Item 2 A part by mass of polyalkylene oxide particles X is sieved through a 300 ⁇ m sieve, a 250 ⁇ m sieve, a 180 ⁇ m sieve, a 150 ⁇ m sieve, a 106 ⁇ m sieve, a 75 ⁇ m sieve, and a tray in this order.
  • Item 2. The polyalkylene oxide particles according to item 1, wherein the mass ratio of the polyalkylene oxide particles remaining on the respective sieves and the tray when the above is 5% by mass or more with respect to X.
  • Item 3 Item 3.
  • Item 4 A pharmaceutical composition comprising the polyalkylene oxide particles according to any one of Items 1 to 3.
  • Item 5 Item 5.
  • a pharmaceutical composition comprising the pharmaceutical composition of item 4.
  • Item 6 Item 6.
  • Item 7
  • the polyalkylene oxide particles of the present invention can reduce variations in the degree of dissolution of the formulation, and even if the uniformity of the polyalkylene oxide particles is impaired by vibration or the like, the variation in the degree of dissolution of the formulation is less likely to occur. be able to.
  • the upper limit or lower limit of the numerical range at one stage can be arbitrarily combined with the upper limit or lower limit of the numerical range at another stage.
  • the upper and lower limits of the numerical ranges may be replaced with values shown in Examples or values that can be uniquely derived from Examples.
  • a numerical value connected with "-" means a numerical range including numerical values before and after "-" as lower and upper limits.
  • the pharmaceutical polyalkylene oxide particles of the present invention are particles having a particle diameter of 150 ⁇ m or more.
  • the mass% aqueous solution viscosity is A1 (mPa s)
  • the 1 mass% aqueous solution viscosity of particles having a particle diameter of less than 150 ⁇ m is A2 (mPa s)
  • the following formula (1) A (A1/A2) ⁇ 100 (1) It satisfies that the viscosity ratio A (%) represented by is 66% or more and 150% or less.
  • Such polyalkylene oxide particles can reduce variations in dissolution of formulations, for example, when used as binders (excipients) for forming formulations having dosage forms such as tablets.
  • dissolution varies little between formulations.
  • the polyalkylene oxide particles of the present invention can make it difficult for the dissolution of the formulation to vary even if the uniformity of the polyalkylene oxide particles is impaired by vibration or the like. Accordingly, the polyalkylene oxide particles of the present invention are suitable for use in forming formulations.
  • the polyalkylene oxide particles are formed in the form of particles, and the type thereof is not particularly limited as long as the viscosity ratio A (%) satisfies 66% or more and 150% or less.
  • the type of polyalkylene oxide is not particularly limited, and for example, a wide range of known polyalkylene oxides can be exemplified.
  • the number of carbon atoms in the alkylene moiety in the polyalkylene oxide is, for example, preferably 2 or more, and preferably 4 or less. From the viewpoint that the effects of the present invention are likely to be exhibited, it is particularly preferable that the number of carbon atoms in the alkylene moiety is 2, that is, the polyalkylene oxide is polyethylene oxide.
  • polyalkylene oxides other than polyethylene oxide include polypropylene oxide, polybutylene oxide, ethylene oxide/propylene oxide copolymers, and ethylene oxide/butylene oxide copolymers.
  • the polyalkylene oxide is usually a homopolymer, but is not limited to this and may be a copolymer.
  • the polyalkylene oxide is a copolymer, the polyalkylene oxide has, for example, two or more structural units with different carbon numbers in the alkylene moieties.
  • the alkylene portion of the polyalkylene oxide particles preferably contains at least an ethylene oxide unit in terms of ease of production and ease of reducing variations in dissolution of the formulation. That is, in the polyalkylene oxide particles, the polyalkylene oxide is preferably polyethylene oxide, or a copolymer of ethylene oxide units and other units (for example, the above-mentioned ethylene oxide/propylene oxide copolymer, ethylene oxide/butylene oxide copolymer).
  • the polyalkylene oxide particles can contain only one type of polyalkylene oxide, or can contain two or more types of polyalkylene oxides.
  • the polyalkylene oxide particles have a particle size distribution, but the particle size distribution is not particularly limited as long as the viscosity ratio A satisfies the above range.
  • X parts by mass of polyalkylene oxide particles are passed through a sieve with an opening of 300 ⁇ m, a sieve with an opening of 250 ⁇ m, a sieve with an opening of 180 ⁇ m, a sieve with an opening of 150 ⁇ m, a sieve with an opening of 106 ⁇ m, a sieve with an opening of 75 ⁇ m, and a tray in that order.
  • the mass ratio P (%) of the polyalkylene oxide particles remaining on each sieve and the tray after sieving is preferably 5% by mass or more with respect to X above.
  • the polyalkylene oxide particles, when applied to the formulation tend to reduce variations in the degree of dissolution of the formulation.
  • the mass ratio P of the polyalkylene oxide particles remaining at an opening of 300 ⁇ m is preferably 0 to 30% by mass, more preferably 0 to 20% by mass.
  • the mass ratio P of the polyalkylene oxide particles remaining at an opening of 250 ⁇ m is preferably 0 to 30 mass %, more preferably 0 to 20 mass %.
  • the mass ratio P of the polyalkylene oxide particles remaining at the mesh opening of 180 ⁇ m is preferably 5 to 50 mass %, more preferably 10 to 40 mass %.
  • the mass ratio P of the polyalkylene oxide particles remaining at an opening of 150 ⁇ m is preferably 5 to 70 mass %, more preferably 5 to 30 mass %.
  • the mass ratio P of the polyalkylene oxide particles remaining at the mesh opening of 106 ⁇ m is preferably 5 to 70 mass %, more preferably 5 to 30 mass %.
  • the mass ratio P of the polyalkylene oxide particles remaining at the mesh opening of 75 ⁇ m is preferably 5 to 70 mass %, more preferably 5 to 30 mass %.
  • the mass ratio P of the polyalkylene oxide particles remaining in the tray is preferably 5 to 70% by mass, more preferably 11 to 50% by mass.
  • the content of particles having a particle diameter of 150 ⁇ m or more is preferably 30 to 70% by mass, more preferably 40 to 60% by mass.
  • the polyalkylene oxide particles of the present invention preferably contain less than 20% by mass of particles having a particle diameter of 300 ⁇ m or more.
  • the content of polyalkylene oxide particles having a particle diameter of 150 ⁇ m or more can be calculated by classifying the polyalkylene oxide particles with a sieve having an opening of 150 ⁇ m (JIS Z 8801-1 standard sieve). can. Specifically, the polyalkylene oxide particles are classified with a sieve having an opening of 150 ⁇ m, the mass of the polyalkylene oxide particles remaining on the sieve is measured, and the ratio of the polyalkylene oxide particles used for classification to the total mass is calculated. Thus, the content of polyalkylene oxide particles having a particle diameter of 150 ⁇ m or more can be obtained.
  • "polyalkylene oxide particles having a particle diameter of 150 ⁇ m or more” means particles remaining on the sieve after classifying the polyalkylene oxide particles with a sieve having an opening of 150 ⁇ m.
  • the content of polyalkylene oxide particles having a particle diameter of 300 ⁇ m or more can be calculated by classifying the polyalkylene oxide particles with a sieve with an opening of 300 ⁇ m (JIS Z 8801-1 standard sieve). can. Specifically, the polyalkylene oxide particles are classified with a sieve having an opening of 300 ⁇ m, the mass of the polyalkylene oxide particles remaining on the sieve is measured, and the ratio of the polyalkylene oxide particles used for classification to the total mass is calculated. Thus, the content of polyalkylene oxide particles having a particle diameter of 300 ⁇ m or more can be obtained.
  • "polyalkylene oxide particles having a particle diameter of 300 ⁇ m or more” means particles remaining on the sieve after classifying the polyalkylene oxide particles with a sieve having an opening of 300 ⁇ m.
  • A (A1/A2) ⁇ 100
  • the viscosity ratio A (%) represented by is 66% or more and 150% or less.
  • A1 is a 1% by mass aqueous solution viscosity (mPa ⁇ s) of particles having a particle diameter of 150 ⁇ m or more
  • A2 is a 1% by mass aqueous solution viscosity (mPa ⁇ s) of particles having a particle diameter of less than 150 ⁇ m.
  • particles having a particle diameter of 150 ⁇ m or more can mean polyalkylene oxide particles remaining on the sieve when the polyalkylene oxide particles are classified with a sieve having an opening of 150 ⁇ m.
  • the particles having a particle size of 150 ⁇ m or more are polyalkylene oxide particles, a sieve with an opening of 300 ⁇ m, a sieve with an opening of 250 ⁇ m, a sieve with an opening of 180 ⁇ m, and a sieve with an opening of 150 ⁇ m. It can mean the polyalkylene oxide particles remaining on each sieve after the polyalkylene oxide particles are placed in the uppermost sieve with an opening of 300 ⁇ m and subjected to classification treatment.
  • particles having a particle diameter of less than 150 ⁇ m means polyalkylene oxide particles that pass through a sieve having an opening of 150 ⁇ m when the polyalkylene oxide particles are classified.
  • the polyalkylene oxide particles of the present invention have a viscosity ratio A within the above range, it is possible to reduce variations in the dissolution rate of formulations. can reduce dissolution variations between formulations. Moreover, even if the homogeneity of the polyalkylene oxide particles is impaired by vibration or the like, variations in the degree of dissolution of the formulation are suppressed.
  • the viscosity ratio A is preferably 66% or more, more preferably 71% or more, and even more preferably 80% or more. Also, the viscosity ratio A is preferably 150% or less, more preferably 140% or less, and even more preferably 125% or less.
  • the 1% by mass aqueous solution viscosity (A1 (mPa s)) of the polyalkylene oxide particles having a particle diameter of 150 ⁇ m or more is 40 to 20000 mPa s, or the 5% by mass aqueous solution viscosity is 30 to 50000 mPa s. is also preferred.
  • the 1% by mass aqueous solution viscosity is preferably 1000 mPa s or more, more preferably 2000 mPa s or more, further preferably 10000 mPa s or less, and particularly preferably 7500 mPa s or less. preferable.
  • the viscosity of the 5% by mass aqueous solution is preferably 30 to 50000 mPa ⁇ s, more preferably 40 mPa ⁇ s or more, and even more preferably 100 mPa ⁇ s or more.
  • the 1% by mass aqueous solution viscosity of the polyalkylene oxide particles and the 5% by mass aqueous solution viscosity described later can be measured using a rotational viscometer ("RV DVII+" manufactured by BROOK FIELD).
  • the 1% by mass aqueous solution viscosity (A1 (mPa s)) of the polyalkylene oxide particles having a particle size of less than 150 ⁇ m is 40 to 20000 mPa s, or the 5% by mass aqueous solution viscosity is 30 to 50000 mPa s. is also preferred.
  • the 1% by mass aqueous solution viscosity is preferably 1000 mPa s or more, more preferably 2000 mPa s or more, further preferably 10000 mPa s or less, and particularly preferably 7500 mPa s or less. preferable.
  • the viscosity of the 5% by mass aqueous solution is preferably 30 to 50000 mPa ⁇ s, more preferably 40 mPa ⁇ s or more, and even more preferably 100 mPa ⁇ s or more.
  • the 1% by mass aqueous solution viscosity of the polyalkylene oxide particles and the 5% by mass aqueous solution viscosity described later can be measured using a rotational viscometer ("RV DVII+" manufactured by BROOK FIELD).
  • the polyalkylene oxide particles of the present invention preferably have a 1% by mass aqueous solution viscosity of 40 to 20,000 mPa ⁇ s, or a 5% by mass aqueous solution viscosity of 30 to 50,000 mPa ⁇ s.
  • the 1% by mass aqueous solution viscosity and the 5% by mass aqueous solution viscosity here mean the aqueous solution viscosity of the entire polyalkylene oxide particles (total particle size). In this case, variations in the dissolution of the formulation can be reduced, and even if the uniformity of the polyalkylene oxide particles is impaired by vibration or the like, variations in the dissolution of the formulation are more likely to be suppressed.
  • the 1% by mass aqueous solution viscosity of the polyalkylene oxide particles (total particle size) in the entire particle size range is more preferably 1000 mPa s or more, more preferably 2000 mPa s or more, and 15000 mPa s or less. is more preferably 7500 mPa ⁇ s or less. Further, the 5% by mass aqueous solution viscosity of the polyalkylene oxide particles (total particle size) is preferably 30 to 50000 mPa s, more preferably 40 mPa s or more, and even more preferably 100 mPa s or more. .
  • the polyalkylene oxide particles (total particle size) have a 5% by mass aqueous solution viscosity of 30 to 50000 mPa ⁇ s
  • the 1% by mass aqueous solution viscosity is preferably less than 40 mPa ⁇ s.
  • the method for adjusting the viscosity ratio A of the polyalkylene oxide particles and the viscosity of the aqueous solution of the pre-particle size of the polyalkylene oxide particles is not particularly limited, and for example, a wide range of known methods can be adopted.
  • the viscosity ratio A of the polyalkylene oxide particles for example, a polyalkylene having a particle diameter of 150 ⁇ m or more sieved through a sieve with an opening of 150 ⁇ m and a specific 1% by mass aqueous solution viscosity
  • a polyalkylene having a particle diameter of 150 ⁇ m or more sieved through a sieve with an opening of 150 ⁇ m and a specific 1% by mass aqueous solution viscosity By mixing oxide particles and polyalkylene oxide particles having a particle diameter of less than 150 ⁇ m and a specific 1% by mass aqueous solution viscosity, polyalkylene oxide particles satisfying the viscosity ratio A can be obtained. .
  • the viscosity ratio A can be easily adjusted. can be done.
  • polyalkylene oxide particles having different particle size distributions there is a method of preparing two or more kinds of polyalkylene oxide particles having different particle size distributions and mixing them at a predetermined ratio. Furthermore, by sieving each of two or more types of polyalkylene oxide particles having different particle size distributions to prepare various particle size groups, and mixing two or more of such particle groups at a predetermined ratio, Polyalkylene oxide particles satisfying the above viscosity ratio A can be obtained. As one aspect of this, for example, two types of polyalkylene oxide particles PA and polyalkylene oxide particles PB having different particle size distributions are prepared.
  • Each of these is stacked from above in the order of a 300 ⁇ m sieve, a 250 ⁇ m sieve, a 180 ⁇ m sieve, a 150 ⁇ m sieve, a 106 ⁇ m sieve, a 75 ⁇ m sieve, and a tray.
  • the polyalkylene oxide particles are put into a sieve with an opening of 300 ⁇ m and sieved. This sieving operation yields polyalkylene oxide particles having seven particle sizes derived from polyalkylene oxide particles PA and PB respectively, ie, a total of 14 polyalkylene oxide particle groups.
  • the 1% by mass aqueous solution viscosity of each of these 14 types of polyalkylene oxide particle groups is measured by the above-described method, and two or more types are arbitrarily combined and mixed with reference to the measurement results, and the viscosity ratio of the obtained polyalkylene oxide particles is obtained.
  • A is measured, and polyalkylene oxide particles having an A of 66% or more and 150% or less can be obtained as the polyalkylene oxide particles of the present invention.
  • the method for adjusting the viscosity of a 1% by mass aqueous solution or a 5% by mass aqueous solution of polyalkylene oxide particles is not particularly limited. , the polymerization time, the solvent, the amount of chain transfer agent used, and the like.
  • the polyalkylene oxide particles preferably have a bulk specific gravity (loose) of 0.15 to 0.60 g/mL. In this case, production efficiency and transport efficiency are excellent, and moldability of the formulation tends to be good.
  • the bulk specific gravity (looseness) of the polyalkylene oxide particles is more preferably 0.20 to 0.55 g/mL.
  • the loose bulk density of polyalkylene oxide particles means a value measured according to JIS K6720 4.3.
  • the mass average molecular weight of the polyalkylene oxide particles is not particularly limited.
  • the mass-average molecular weight of the polyalkylene oxide particles is preferably 100,000 or more, and preferably 15,000,000 or less, in terms of easily bringing low friability to the formulation and enabling a low coefficient of thermal expansion.
  • the mass average molecular weight of the polyalkylene oxide particles is more preferably 200,000 to 12,000,000, more preferably 2,000,000 to 10,000,000, and particularly preferably 3,000,000 to 8,000,000.
  • the mass-average molecular weight of the polyalkylene oxide particles as used herein means a value measured by gel permeation chromatography, particularly a value calculated from a calibration curve prepared using a known polyethylene oxide standard sample.
  • the shape of the polyalkylene oxide particles is not particularly limited, and may be spherical, ellipsoidal, irregular, or the like, for example.
  • the polyalkylene oxide particles have a viscosity ratio A that satisfies a specific range, and when used as a binder (excipient) for forming a formulation having a dosage form such as a tablet, the dissolution rate of the formulation is variation can be reduced. Moreover, the polyalkylene oxide particles of the present invention can make it difficult for the dissolution of the formulation to vary even if the uniformity of the polyalkylene oxide particles is impaired by vibration or the like.
  • the polyalkylene oxide particles of the present invention are used as excipients for formulations, variations in formulation performance can be suppressed without changing the composition of the formulation. Therefore, the polyalkylene oxide particles of the present invention are suitable for pharmaceuticals and pharmaceuticals, and particularly suitable as excipients for tablets.
  • polyalkylene oxide particles can be obtained by polymerization reaction of alkylene oxide in the presence of an alkali or metal catalyst.
  • Alkylene oxides used herein include, for example, aliphatic alkylene oxides, specifically ethylene oxide, propylene oxide and butylene oxide, with ethylene oxide or propylene oxide being preferred, and ethylene oxide being particularly preferred.
  • One type of alkylene oxide can be used alone, or two or more types can be used.
  • the catalyst examples include alkali catalysts and metal catalysts.
  • the metal catalyst for example, a wide range of metal catalysts conventionally used in the production of polyalkylene oxides can be used, and among them, organic zinc catalysts are preferred.
  • the organozinc catalyst can be obtained by a known production method, and is preferably obtained by a step of reacting an organozinc compound with an aliphatic polyhydric alcohol and a monohydric alcohol to produce a particulate reaction product.
  • the amount of the catalyst used can be the same as in the known method for producing polyalkylene oxide particles, for example, a catalytic amount can be used.
  • the polymerization reaction of alkylene oxide can be carried out in a solvent.
  • Solvents used in known polyalkylene oxide production methods can be widely used, for example, 2-methylpentane, n-pentane, n-hexane, n-heptane, isopentane and cyclohexane.
  • At least one hydrocarbon solvent selected from the group consisting of, aromatic hydrocarbons such as benzene, toluene and xylene can be used.
  • n-hexane or n-pentane is preferably used because it is easily available industrially and because it has a boiling point lower than the melting point of the resulting polyalkylene oxide and is easy to remove after the polymerization reaction.
  • the amount of the polymerization solvent used is preferably 100 to 10,000 parts by mass, preferably 200 to 2,000 parts by mass, relative to 100 parts by mass of the alkylene oxide, in terms of removing the heat of polymerization and facilitating control of the polymerization reaction. is more preferable, and 400 to 600 parts by mass is more preferable.
  • An alcohol compound having 1 to 5 carbon atoms can also be used in carrying out the polymerization reaction of the alkylene oxide.
  • Examples thereof include alcohol compounds having 1 to 5 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol and t-butanol.
  • Conditions such as temperature for the polymerization reaction of alkylene oxide are not particularly limited, and can be the same as known conditions.
  • composition of the present invention comprises the aforementioned pharmaceutical polyalkylene oxide particles of the present invention. Therefore, when the pharmaceutical composition of the present invention is used as an excipient for forming a formulation having a dosage form such as a tablet, it is possible to reduce dissolution variations in the formulation. Moreover, even if the uniformity of the polyalkylene oxide particles is impaired by vibration or the like, the pharmaceutical composition of the present invention can make it difficult for the dissolution of the formulation to vary. Therefore, the pharmaceutical composition of the present invention is suitable as a raw material for preparing pharmaceutical compositions.
  • the pharmaceutical composition of the present invention may contain only the polyalkylene oxide particles, or may contain components other than the polyalkylene oxide particles.
  • composition of the present invention includes the aforementioned pharmaceutical composition of the present invention.
  • the pharmaceutical composition of the present invention can contain the polyalkylene oxide particles and components other than the polyalkylene oxide particles.
  • components other than polyalkylene oxide particles for example, various components contained in known pharmaceutical compositions can be widely applied.
  • specific examples of other components include active ingredients, fillers, excipients other than polyalkylene oxide particles, diluents, lubricants, dyes, pigments, and osmotic pressure inducers.
  • the pharmaceutical composition of the present invention can contain silica as the polyalkylene oxide particles and filler.
  • the pharmaceutical composition of the present invention contains the polyalkylene oxide particles and silica
  • the pharmaceutical composition of the present invention contains 3.0 parts by mass or less of silica with respect to 100 parts by mass of the polyalkylene oxide particles. is preferred.
  • the content of silica relative to 100 parts by mass of the polyalkylene oxide particles is, for example, more preferably 2.0 parts by mass or less, and even more preferably 1.5 parts by mass or less.
  • the content of silica relative to 100 parts by mass of the polyalkylene oxide particles is more preferably, for example, 0.1 parts by mass or more in terms of easily improving fluidity and the like.
  • silica for example, a wide range of known silicas can be used, and specific examples include Aerosil and the like.
  • the content of the polyalkylene oxide particles in the pharmaceutical composition is not particularly limited.
  • the pharmaceutical composition contains the polyalkylene oxide particles relative to the total mass of the polyalkylene oxide particles and the other ingredients (or the total mass of the pharmaceutical composition).
  • the content is preferably 20% by mass or more, preferably 30% by mass or more, more preferably 40% by mass or more, and even more preferably 50% by mass or more.
  • the polyalkylene oxide particles are contained in an amount of 90% by mass or less based on the total mass of the polyalkylene oxide particles and the other components (or the total mass of the pharmaceutical composition).
  • the pharmaceutical composition of the present invention is excellent in compression moldability by containing the polyalkylene oxide particles, and can be easily obtained into a compression molded product.
  • the method for obtaining the compression-molded body is not particularly limited, and for example, a wide range of known compression-molding methods can be employed.
  • the method for preparing the pharmaceutical composition of the present invention is not particularly limited, and can be, for example, the same as the known method for preparing pharmaceutical compositions. For example, by mixing polyalkylene oxide particles and a filler (such as silica) to obtain, for example, filler-coated polyalkylene oxide particles, and then mixing the polyalkylene oxide particles with other various components in a predetermined ratio. , a pharmaceutical composition can be prepared.
  • a filler such as silica
  • compositions for formulation of the present invention can be prepared using the pharmaceutical composition of the present invention. Since such a formulation contains the composition for formulation of the present invention, that is, contains the polyalkylene oxide particles, it is easy to reduce variations in dissolution of the formulation.
  • the formulation of the present invention can contain a compression molded body of the pharmaceutical composition.
  • the formulation can be made into various dosage forms including compression moldings, for example, tablets.
  • the temperature inside the container was raised to 80° C., and distillation was performed. After cooling, the reaction solution in the container was diluted with n-hexane so that the concentration of the organozinc catalyst was 3% by mass to obtain a dispersion containing the organozinc catalyst.
  • the concentration of the organic zinc catalyst to n-hexane is 0.0022 mol / L in terms of zinc, and t-butanol is 0.0041 mol to n-hexane.
  • An organic zinc catalyst, an alcohol compound having 1 to 5 carbon atoms, and n-hexane were added so as to obtain a concentration of /L and dispersed uniformly.
  • ethylene oxide was added so as to have a concentration of 3.84 mol/L with respect to hexane, and the mixture was sealed and polymerized with stirring in a constant temperature bath at 40°C.
  • the white product was filtered out and dried at 40° C., and 1% by mass of amorphous silica (Aerosil manufactured by Nippon Aerosil Co., Ltd.) was mixed with the obtained dry particles, and JIS Z 8801-1 was obtained. Transferred to a standard sieve (500 ⁇ m) to obtain passed polyethylene oxide particles PA .
  • Production example 4 Classification was carried out in the same manner as in Production Example 3, except that the polyethylene oxide particles PA obtained in Production Example 2 were changed to the polyethylene oxide particles PB obtained in Production Example 2, and the mass of the polyethylene oxide particles remaining on each sieve was measured. Then, the percentage (particle size distribution) of each mass relative to the total amount was calculated.
  • Table 1 shows the classification results of Production Examples 3 and 4 (classification results of polyethylene oxide particles PA and PB ).
  • Example 1 In the classification of the polyethylene oxide particles P A , 3 g was collected from each of the particles remaining in each sieve and the tray (7 types in total), and in the classification of the polyethylene oxide particles P B , each of the particles remaining in the sieve and the tray was sampled. 3 g were sampled (total of 7 types), and these 14 types of particles were uniformly mixed to obtain polyethylene oxide particles for formulation.
  • Example 2 In the classification of polyethylene oxide particles PA , 6 g was collected from each of 300 ⁇ m sieve particles, 180 ⁇ m sieve particles, 150 ⁇ m sieve particles, 75 ⁇ m sieve particles, and particles remaining on the tray (5 types in total), and polyethylene oxide particles were collected. In the classification of particles PB , except that 6 g of each of the 250 ⁇ m sieve particles and the 106 ⁇ m sieve particles were collected (total of 2 types), and polyethylene oxide particles for formulation were obtained by uniformly mixing these 7 types of particles. calculated the viscosity ratio A (%) in the same manner as in Example 1.
  • Example 3 In the classification of the polyethylene oxide particles P A , 6 g was collected from each of the 180 ⁇ m sieve particles, the 150 ⁇ m sieve particles, the 106 ⁇ m sieve particles, and the particles remaining in the tray ( 4 types in total). , Collecting 6 g from each of 300 ⁇ m sieve particles, 250 ⁇ m sieve particles and 75 ⁇ m sieve particles (2 types in total), and obtaining polyethylene oxide particles for formulation by uniformly mixing these 7 types of particles Except that The viscosity ratio A (%) was calculated in the same manner as in Example 1.
  • Table 2 shows the calculation results of the blending conditions and the viscosity ratio A of the polyethylene oxide particles for formulation obtained in each example and comparative example.
  • Table 2 shows the 1% by mass aqueous solution viscosity A1 (mPa s) of particles having a particle diameter of 150 ⁇ m or more, and the 1% by mass aqueous solution viscosity A2 (mPa s) of particles having a particle diameter of less than 150 ⁇ m ), and also shows the value of the 1% by mass aqueous solution viscosity of the whole particles (a mixture of particles having a particle size of 150 ⁇ m or more and particles having a particle size of less than 150 ⁇ m).
  • the 1 mass % aqueous solution viscosity was measured by the following procedures. [1% by mass aqueous solution viscosity of polyethylene oxide] 6 g of polyethylene oxide particles and 125 mL of isopropanol were added to a 1 L beaker, and while stirring at 350 rpm using a stirring blade, 594 g of ion-exchanged water was added and stirred for 1 minute. After that, the stirring rotation speed was changed to 60 rpm, and stirring was continued for 3 hours to obtain a 1% by mass aqueous solution of polyethylene oxide.
  • This aqueous solution is kept at 25 ° C., and the viscosity is measured using a rotational viscometer ("RV DVII+" manufactured by BROOK FIELD) (spindle: RV-2, rotation speed: 2 rpm). bottom.
  • RV DVII+ rotational viscometer
  • spindle RV-2, rotation speed: 2 rpm.
  • [5% by mass aqueous solution viscosity of polyethylene oxide] 30 g of polyethylene oxide particles and 125 mL of isopropanol were added to a 1 L beaker, and while stirring at 350 rpm using a stirring blade, 570 g of ion-exchanged water was added and stirred for 1 minute.
  • Shaking treatment was carried out in the following procedure, assuming vibrations applied during transportation of the polyethylene oxide particles for formulation. 21 g of polyethylene oxide particles for formulation were placed in a 100 mL poly beaker and uniformly shaken. The poly beaker was vertically fixed to a shaker (AS-1N manufactured by AS ONE Corporation) and shaken at a frequency of 250 rpm for 10 minutes. Approximately 2 g of particles were collected from the top and bottom of the shaken poly beaker (referred to as the top and bottom samples, respectively).
  • the notations “upper” and “lower” refer to the above-described upper sample and lower sample.
  • the polyethylene oxide particles of the present invention greatly contribute to improving the quality of pharmaceutical preparations. was demonstrated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Preparation (AREA)

Abstract

製剤の溶出度のバラつきを低減することができ、しかも、振動等によってポリアルキレンオキシド粒子の均一性が損なわれたとしても製剤の溶出度のバラつきを生じにくくすることができるポリアルキレンオキシド粒子を提供する。 本発明のポリアルキレンオキシド粒子は、150μm以上の粒子径を有する粒子の1質量%水溶液粘度をA1(mPa・s)とし、150μm未満の粒子径を有する粒子の1質量%水溶液粘度をA2(mPa・s)としたとき、 A=(A1/A2)×100 (1) で表される粘度割合A(%)が66%以上、150%以下であることを満たす。

Description

ポリアルキレンオキシド粒子、医薬用組成物、製剤用組成物及び製剤
 本発明は、ポリアルキレンオキシド粒子、医薬用組成物、製剤用組成物及び製剤に関する。
 従来、ポリエチレンオキシドに代表されるポリアルキレンオキシド粒子は、医薬用製剤等のバインダーとして用いられることが知られている。例えば、特許文献1には、ポリアルキレンオキシド粒子の粒度分布を特定の範囲制御し、医薬用製剤のバインダーに適用することができるポリアルキレンオキシド粒子が開示されている。
国際公開第2012/165198号
 近年では、製剤に対して性能のバラつきを小さくすることが求められており、例えば、薬物等の溶出性のバラつきが抑制された機能を有する製剤の開発も求められている。この観点から、製剤に対して性能のバラつきを小さくすることができるポリアルキレンオキシド粒子の開発も重要となる。この点、例えばポリアルキレンオキシド粒子では、水溶液粘度を代表的な物性値として管理することで、ポリアルキレンオキシド粒子の各種物性の安定性を維持しており、このようなポリアルキレンオキシド粒子を製剤に適用することで、製剤の性能を安定化している。
 しかしながら、本願の発明者らが検討したところ、粒度分布を有するポリアルキレンオキシド粒子にあっては、それぞれの粒径によって水溶液粘度が異なること、そして、粒径間の水溶液粘度の差が大きくなるほど、製剤の性能をバラつかせやすくなり、とりわけ製剤の溶出性を変動させやすいことを突き止めた。特に、ポリアルキレンオキシド粒子の移送時の振動等による偏析又は均一性の破壊などによって、ポリアルキレンオキシド粒子の均一性が損なわれると、それを使用した製剤の性能(特に溶出性)のバラつきが特段大きくなるという課題を本発明者らは見出した。
 本発明は、上記に鑑みてなされたものであり、製剤の溶出度のバラつきを低減することができ、しかも、振動等によってポリアルキレンオキシド粒子の均一性が損なわれたとしても製剤の溶出度のバラつきを生じにくくすることができるポリアルキレンオキシド粒子を提供することを目的とする。また、本発明は、該ポリアルキレンオキシド粒子を含む医薬用組成物並びに該医薬用組成物を含む製剤用組成物を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、特定の水溶液粘度特性を有するポリアルキレンオキシド粒子により上記目的を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、例えば、以下の項に記載の主題を包含する。
項1
150μm以上の粒子径を有する粒子の1質量%水溶液粘度をA1(mPa・s)とし、150μm未満の粒子径を有する粒子の1質量%水溶液粘度をA2(mPa・s)としたとき、下記式(1)
A=(A1/A2)×100   (1)
で表される粘度割合A(%)が66%以上、150%以下であることを満たす、ポリアルキレンオキシド粒子。
項2
ポリアルキレンオキシド粒子X質量部を、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、目開き106μmの篩、目開き75μmの篩及び受け皿の順に篩分けしたときの各篩及び受皿上に残ったポリアルキレンオキシド粒子の質量割合が、前記Xに対していずれも5質量%以上である、項1に記載のポリアルキレンオキシド粒子。
項3
製剤用である、項1又は2に記載のポリアルキレンオキシド粒子。
項4
項1~3のいずれか1項に記載のポリアルキレンオキシド粒子を含む、医薬用組成物。
項5
項4に記載の医薬用組成物を含む、製剤用組成物。
項6
前記ポリアルキレンオキシド粒子を20質量%以上含有する、項5に記載の製剤用組成物。
項7
項5又は6に記載の製剤用組成物を含む、製剤。
 本発明のポリアルキレンオキシド粒子は、製剤の溶出度のバラつきを低減することができ、しかも、振動等によってポリアルキレンオキシド粒子の均一性が損なわれたとしても製剤の溶出度のバラつきを生じにくくすることができる。
 以下、本発明の実施形態について詳細に説明する。なお、本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。
 本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値又は実施例から一義的に導き出せる値に置き換えてもよい。また、本明細書において、「~」で結ばれた数値は、「~」の前後の数値を下限値及び上限値として含む数値範囲を意味する。
 1.製剤用ポリアルキレンオキシド粒子
 本発明の製剤用ポリアルキレンオキシド粒子(以下単に「本発明のポリアルキレンオキシド粒子」又は「ポリアルキレンオキシド粒子」と表記する)は、150μm以上の粒子径を有する粒子の1質量%水溶液粘度をA1(mPa・s)とし、150μm未満の粒子径を有する粒子の1質量%水溶液粘度をA2(mPa・s)としたとき、下記式(1)
A=(A1/A2)×100   (1)
で表される粘度割合A(%)が66%以上、150%以下であることを満たす。
 斯かるポリアルキレンオキシド粒子は、例えば、錠剤等の剤形を有する製剤を形成するためのバインダー(賦形剤)として使用される場合に、製剤の溶出度のバラつきを低減することができる。すなわち、本発明のポリアルキレンオキシド粒子を用いて、複数個の製剤を調製した場合に、各製剤間で溶出度のバラつきが小さいものである。しかも、本発明のポリアルキレンオキシド粒子は、振動等によってポリアルキレンオキシド粒子の均一性が損なわれたとしても製剤の溶出度のバラつきを生じにくくすることができる。従って、本発明のポリアルキレンオキシド粒子は、製剤を形成するために好適に用いられる。
 ポリアルキレンオキシド粒子は、粒子状に形成されたものであって、前記粘度割合A(%)が66%以上、150%以下を満たす限り、その種類は特に限定されない。
 ポリアルキレンオキシド粒子において、ポリアルキレンオキシドの種類は特に限定されず、例えば、公知のポリアルキレンオキシドを広く例示することができる。
 ポリアルキレンオキシドにおけるアルキレン部位の炭素数は、例えば、2以上が好ましく、また、4以下であることが好ましい。本発明の効果が発揮されやすいという点で、アルキレン部位の炭素数は2であること、即ち、ポリアルキレンオキシドは、ポリエチレンオキシドであることが特に好ましい。ポリエチレンオキシド以外のポリアルキレンオキシドの具体例としては、ポリプロピレンオキシド、ポリブチレンオキシド、エチレンオキシド/プロピレンオキシド共重合体、エチレンオキシド/ブチレンオキシド共重合体等も挙げられる。
 ポリアルキレンオキシドは、通常、ホモポリマーであるが、これに限定されず、コポリマーであってもよい。ポリアルキレンオキシドがコポリマーである場合、ポリアルキレンオキシドは、例えば、アルキレン部位の炭素数が異なる二以上の構造単位を有する。
 ポリアルキレンオキシド粒子のアルキレン部位は、製造が容易であって、製剤の溶出度のバラつきを低減させやすい点で、エチレンオキシド単位を少なくとも含むことが好ましい。すなわち、ポリアルキレンオキシド粒子において、ポリアルキレンオキシドは、ポリエチレンオキシドであることが好ましく、あるいは、エチレンオキシド単位と他の単位との共重合体(例えば、前述のエチレンオキシド/プロピレンオキシド共重合体、エチレンオキシド/ブチレンオキシド共重合体)であることが好ましい。
 ポリアルキレンオキシド粒子は、1種のみのポリアルキレンオキシドを含むことができ、あるいは、2種以上のポリアルキレンオキシドを含むこともできる。
 ポリアルキレンオキシド粒子は粒度分布を有するものであるが、前記粘度割合Aが前述の範囲を満たす限り、その粒度分布は特に限定されない。
 例えば、ポリアルキレンオキシド粒子X質量部を、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、目開き106μmの篩、目開き75μmの篩及び受け皿の順に篩分けしたときの各篩及び受皿上に残ったポリアルキレンオキシド粒子の質量割合P(%)はいずれも、前記Xに対して5質量%以上であること好ましい。この場合、ポリアルキレンオキシド粒子は、製剤に適用した場合に該製剤の溶出度のバラつきを低減させやすい。
 上記篩い分けにおいて、目開き300μmに残ったポリアルキレンオキシド粒子の質量割合Pは、0~30質量%であることが好ましく、0~20質量%であることがさらに好ましい。上記篩い分けにおいて、目開き250μmに残ったポリアルキレンオキシド粒子の質量割合Pは、0~30質量%であることが好ましく、0~20質量%であることがさらに好ましい。上記篩い分けにおいて、目開き180μmに残ったポリアルキレンオキシド粒子の質量割合Pは、5~50質量%であることが好ましく、10~40質量%であることがさらに好ましい。上記篩い分けにおいて、目開き150μmに残ったポリアルキレンオキシド粒子の質量割合Pは、5~70質量%であることが好ましく、5~30質量%であることがさらに好ましい。上記篩い分けにおいて、目開き106μmに残ったポリアルキレンオキシド粒子の質量割合Pは、5~70質量%であることが好ましく、5~30質量%であることがさらに好ましい。上記篩い分けにおいて、目開き75μmに残ったポリアルキレンオキシド粒子の質量割合Pは、5~70質量%であることが好ましく、5~30質量%であることがさらに好ましい。上記篩い分けにおいて、受け皿に残ったポリアルキレンオキシド粒子の質量割合Pは、5~70質量%であることが好ましく、11~50質量%であることがさらに好ましい。
 また、本発明のポリアルキレンオキシド粒子は、150μm以上の粒子径を有する粒子の含有割合が30~70質量%であることが好ましく、40~60質量%であることがより好ましい。また、本発明のポリアルキレンオキシド粒子は、300μm以上の粒子径を有する粒子の含有割合が20質量%未満であることが好ましい。
 ポリアルキレンオキシド粒子において、150μm以上の粒子径を有するポリアルキレンオキシド粒子の含有割合は、目開き150μmの篩(JIS Z 8801-1標準篩)でポリアルキレンオキシド粒子を分級することで算出することができる。具体的には、目開き150μmの篩でポリアルキレンオキシド粒子を分級して篩上に残ったポリアルキレンオキシド粒子の質量を計測し、分級に使用したポリアルキレンオキシド粒子の全質量に対する割合を算出することで、150μm以上の粒子径を有するポリアルキレンオキシド粒子の含有割合を求めることができる。なお、当該説明から明らかなように、「150μm以上の粒子径を有するポリアルキレンオキシド粒子」とは、ポリアルキレンオキシド粒子を目開き150μmの篩で分級して篩上に残った粒子を意味する。
 ポリアルキレンオキシド粒子において、300μm以上の粒子径を有するポリアルキレンオキシド粒子の含有割合は、目開き300μmの篩(JIS Z 8801-1標準篩)でポリアルキレンオキシド粒子を分級することで算出することができる。具体的には、目開き300μmの篩でポリアルキレンオキシド粒子を分級して篩上に残ったポリアルキレンオキシド粒子の質量を計測し、分級に使用したポリアルキレンオキシド粒子の全質量に対する割合を算出することで、300μm以上の粒子径を有するポリアルキレンオキシド粒子の含有割合を求めることができる。なお、当該説明から明らかなように、「300μm以上の粒子径を有するポリアルキレンオキシド粒子」とは、ポリアルキレンオキシド粒子を目開き300μmの篩で分級して篩上に残った粒子を意味する。
 ポリアルキレンオキシド粒子は、前述のように下記式(1)
A=(A1/A2)×100   (1)
で表される粘度割合A(%)が66%以上、150%以下である。ここで、A1は150μm以上の粒子径を有する粒子の1質量%水溶液粘度(mPa・s)、A2は、150μm未満の粒子径を有する粒子の1質量%水溶液粘度(mPa・s)である。
 前記(1)式において、150μm以上の粒子径を有する粒子とは、ポリアルキレンオキシド粒子を目開き150μmの篩で分級したときに篩上に残ったポリアルキレンオキシド粒子を意味することができる。あるいは、前記(1)式において、150μm以上の粒子径を有する粒子とは、ポリアルキレンオキシド粒子を、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩及び目開き150μmの篩を上段から順に重ね、最上段の目開き300μmの篩にポリアルキレンオキシド粒子を投入して分級処理を行い、各篩に残ったポリアルキレンオキシド粒子を意味することができる。また、150μm未満の粒子径を有する粒子とは、ポリアルキレンオキシド粒子を目開き150μmの篩で分級したときに篩を通過したポリアルキレンオキシド粒子を意味する。
 本発明のポリアルキレンオキシド粒子は、粘度割合Aが前記範囲であることで、製剤の溶出度のバラつきを低減することができ、すなわち、本発明のポリアルキレンオキシド粒子を用いて、複数個の製剤を調製した場合に、各製剤間で溶出度のバラつきを小さくすることができる。しかも、振動等によってポリアルキレンオキシド粒子の均一性が損なわれたとしても製剤の溶出度のバラつきが抑制される。
 粘度割合Aは、66%以上であることが好ましく、71%以上であることがより好ましく、80%以上であることがさらに好ましい。また、粘度割合Aは、150%以下であることが好ましく、140%以下であることがより好ましく、125%以下であることがさらに好ましい。
 150μm以上の粒子径を有するポリアルキレンオキシド粒子の1質量%水溶液粘度(A1(mPa・s))は、40~20000mPa・sであり、または、5質量%水溶液粘度が30~50000mPa・sであることも好ましい。1質量%水溶液粘度は、1000mPa・s以上であることが好ましく、2000mPa・s以上であることがより好ましく、また、10000mPa・s以下であることがさらに好ましく、7500mPa・s以下であることが特に好ましい。また、5質量%水溶液粘度は、30~50000mPa・sであることが好ましく、40mPa・s以上であることがより好ましく、100mPa・s以上であることがさらに好ましい。ポリアルキレンオキシド粒子の1質量%水溶液粘度及び後記する5質量%水溶液粘度は、回転粘度計(BROOK FIELD製「RV DVII+」)を用いて測定することができる。
 150μm未満の粒子径を有するポリアルキレンオキシド粒子の1質量%水溶液粘度(A1(mPa・s))は、40~20000mPa・sであり、または、5質量%水溶液粘度が30~50000mPa・sであることも好ましい。1質量%水溶液粘度は、1000mPa・s以上であることが好ましく、2000mPa・s以上であることがより好ましく、また、10000mPa・s以下であることがさらに好ましく、7500mPa ・s以下であることが特に好ましい。また、5質量%水溶液粘度は、30~50000mPa・sであることが好ましく、40mPa・s以上であることがより好ましく、100mPa・s以上であることがさらに好ましい。ポリアルキレンオキシド粒子の1質量%水溶液粘度及び後記する5質量%水溶液粘度は、回転粘度計(BROOK FIELD製「RV DVII+」)を用いて測定することができる。
 また、本発明のポリアルキレンオキシド粒子は、1質量%水溶液粘度が40~20000mPa・sであり、または、5質量%水溶液粘度が30~50000mPa・sであることも好ましい。なお、ここでの1質量%水溶液粘度及び5質量%水溶液粘度は、ポリアルキレンオキシド粒子全体(全粒度)の水溶液粘度のことを意味する。この場合、製剤の溶出度のバラつきを低減することができ、振動等によってポリアルキレンオキシド粒子の均一性が損なわれたとしても製剤の溶出度のバラつきがより抑制されやすい。
 全粒度範囲のポリアルキレンオキシド粒子(全粒度)の1質量%水溶液粘度は、1000mPa・s以上であることがより好ましく、2000mPa・s以上であることがさらに好ましく、また、15000mPa・s以下であることがより好ましく、7500mPa・s以下であることがさらに好ましい。また、ポリアルキレンオキシド粒子(全粒度)の5質量%水溶液粘度は、30~50000mPa・sであることが好ましく、40mPa・s以上であることがより好ましく、100mPa・s以上であることがさらに好ましい。ポリアルキレンオキシド粒子(全粒度)の5質量%水溶液粘度は、30~50000mPa・sである場合は、1質量%水溶液粘度が40mPa・s未満であることが好ましい。
 ポリアルキレンオキシド粒子の上記粘度割合A及びポリアルキレンオキシド粒子の前粒度の水溶液粘度を調節する方法は特に限定されず、例えば、公知の方法を広く採用することができる。
 ポリアルキレンオキシド粒子の上記粘度割合Aを調節する方法としては、例えば、目開き150μmの篩で篩い分けられた150μm以上の粒子径を有し、かつ、特定の1質量%水溶液粘度を有するポリアルキレンオキシド粒子と、150μm未満の粒子径を有し、かつ、特定の1質量%水溶液粘度を有するポリアルキレンオキシド粒子とを混合することで、上記粘度割合Aを満たすポリアルキレンオキシド粒子を得ることができる。例えば、1質量%水溶液粘度が既知である150μm以上の粒子径を有するポリアルキレンオキシド粒子と、150μm未満の粒子径を有するポリアルキレンオキシド粒子とを混合することで、上記粘度割合Aの調節を容易に行うことができる。
 また、上記粘度割合Aを調節する他の方法としては、粒度分布の異なる2種以上のポリアルキレンオキシド粒子を準備し、それらを所定の割合で混合する方法が挙げられる。さらには、粒度分布の異なる2種以上のポリアルキレンオキシド粒子のそれぞれを篩い分けして種々の粒子径群を作製し、斯かる粒子群の中から2以上を所定の割合で混合することで、上記粘度割合Aを満たすポリアルキレンオキシド粒子を得ることができる。この一態様として、例えば、粒度分布の異なる2種のポリアルキレンオキシド粒子P及びポリアルキレンオキシド粒子Pを準備する。これらをそれぞれ、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、目開き106μmの篩、目開き75μmの篩及び受け皿の順に上から積み重ね、最上段の目開き300μmの篩にポリアルキレンオキシド粒子を投入し、篩分けをする。この篩分け操作により、ポリアルキレンオキシド粒子P及びPそれぞれから派生する7種類の粒度を有するポリアルキレンオキシド粒子、すなわち、計14種類のポリアルキレンオキシド粒子群が得られる。これら14種類のポリアルキレンオキシド粒子群それぞれの1質量%水溶液粘度を前述の方法で計測し、この計測結果を参考に任意に2種以上組み合わせて混合し、得られたポリアルキレンオキシド粒子の粘度割合Aを計測し、Aが66%以上、150%以下となるポリアルキレンオキシド粒子を本発明のポリアルキレンオキシド粒子として得ることができる。
 ポリアルキレンオキシド粒子の1質量%水溶液粘度又は5質量%水溶液粘度を調節する方法は特に限定されず、例えば、ポリアルキレンオキシド粒子を製造する際に使用する原料の種類、原料の使用割合、重合温度、重合時間、溶媒、連鎖移動剤の使用量等を調節する方法が挙げられる。
 ポリアルキレンオキシド粒子は、嵩比重(ゆるめ)が0.15~0.60g/mLであることが好ましい。この場合、製造効率および輸送効率に優れ、また、製剤の成形性も良好になりやすい。ポリアルキレンオキシド粒子の嵩比重(ゆるめ)は、0.20~0.55g/mLであることがより好ましい。本発明において、ポリアルキレンオキシド粒子のゆるめ嵩密度は、JIS K6720 4.3に従って測定された値を意味する。
 ポリアルキレンオキシド粒子の質量平均分子量は特に限定されない。製剤に対して低い摩損度をもたらしやすく、熱膨張率も低くできる点から、ポリアルキレンオキシド粒子の質量平均分子量は10万以上であることが好ましく、また、1500万以下であることが好ましい。ポリアルキレンオキシド粒子の質量平均分子量は、20万~1200万がより好ましく、200万~1000万がさらに好ましく、300万~800万が特に好ましい。ここでいうポリアルキレンオキシド粒子の質量平均分子量はゲル浸透クロマトグラフィーによる測定値を意味し、特に、既知のポリエチレンオキシド標準試料を用いて作製した検量線から算出した値を意味する。
 ポリアルキレンオキシド粒子の形状は特に限定されず、例えば、真球状、楕円球状、不定形状等であってもよい。
 ポリアルキレンオキシド粒子は、前記粘度割合Aが特定の範囲を満たすものであり、錠剤等の剤形を有する製剤を形成するためのバインダー(賦形剤)として使用される場合に、製剤の溶出度のバラつきを低減することができる。しかも、本発明のポリアルキレンオキシド粒子は、振動等によってポリアルキレンオキシド粒子の均一性が損なわれたとしても製剤の溶出度のバラつきを生じにくくすることができる。
 本発明のポリアルキレンオキシド粒子を製剤の賦形剤として利用した場合に、製剤の組成を変更することなく製剤の性能バラつきを抑制することができる。よって、本発明のポリアルキレンオキシド粒子は、医薬用、製剤用として好適であり、特に錠剤用の賦形剤として好適である。
 2.ポリアルキレンオキシド粒子の製造方法
 本発明のポリアルキレンオキシド粒子の製造法は、例えば、公知のポリアルキレンオキシド粒子の製造方法を広く採用することができる。
 例えば、アルカリまたは金属触媒の存在下、アルキレンオキシドの重合反応により、ポリアルキレンオキシド粒子を得ることができる。ここで使用するアルキレンオキシドは、例えば、脂肪族アルキレンオキシドが挙げられ、具体的には、エチレンオキシド、プロピレンオキシドおよびブチレンオキシドが挙げられ、エチレンオキシドまたはプロピレンオキシドが好ましく、エチレンオキシドが特に好ましい。アルキレンオキシドは、1種単独で使用することができ、あるいは、2種以上を使用することができる。
 前記触媒は、例えば、アルカリ触媒または金属触媒を挙げることができる。前記金属触媒は、例えば、ポリアルキレンオキシドの製造において従来から使用されている金属触媒を広く使用することができ、中でも、有機亜鉛触媒であることが好ましい。有機亜鉛触媒は、公知の製造方法で得ることができ、中でも、有機亜鉛化合物を脂肪族多価アルコール及び一価アルコールと反応させて粒子状の反応生成物を生成させる工程によって得ることが好ましい。
 前記触媒の使用量は、公知のポリアルキレンオキシド粒子の製造方法と同様とすることができ、例えば、触媒量の使用とすることができる。
 アルキレンオキシドの重合反応は、溶媒中で行うことができる。斯かる溶媒は、公知のポリアルキレンオキシドの製造方法で使用されている溶媒を広く使用することができ、例えば、2-メチルペンタン、n-ペンタン、n-ヘキサン、n-ヘプタン、イソペンタン及びシクロヘキサンからなる群より選ばれる少なくとも1種の炭化水素溶媒およびベンゼン、トルエン、キシレン等の芳香族炭化水素等を挙げることができる。工業的に入手が容易である点、並びに、得られるポリアルキレンオキシドの融点より沸点が低く、重合反応後の除去が容易である点から、n-ヘキサン又はn-ペンタンが好適に用いられる。重合溶媒の使用量は、重合熱を除去し、重合反応を制御しやすい点から、アルキレンオキシド100質量部に対して、100~10000質量部であることが好ましく、200~2000質量部であることがより好ましく、400~600質量部であることがより好ましい。
 アルキレンオキシドの重合反応を行うにあたって、炭素数1~5のアルコール化合物を使用することもできる。例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール等の炭素数1~5のアルコール化合物を挙げることができる。
 アルキレンオキシドの重合反応の温度等の条件は特に限定されず、公知の条件と同様とすることができる。
 3.医薬用組成物
 本発明の医薬用組成物は、前述の本発明の製剤用ポリアルキレンオキシド粒子を含む。従って、本発明の医薬用組成物は、錠剤等の剤形を有する製剤を形成するための賦形剤として使用される場合に、製剤に対し、溶出度のバラつきを低減することができる。しかも、本発明の医薬用組成物は、振動等によってポリアルキレンオキシド粒子の均一性が損なわれたとしても製剤の溶出度のバラつきを生じにくくすることができる。従って、本発明の医薬用組成物は、製剤用組成物を調製するための原料として適している。
 本発明の医薬用組成物は、前記ポリアルキレンオキシド粒子のみを含むのであってもよいし、前記ポリアルキレンオキシド粒子以外の成分を含むこともできる。
 4.製剤用組成物
 本発明の製剤用組成物は、前述の本発明の医薬用組成物を含む。具体的に本発明の医薬用組成物は、前記ポリアルキレンオキシド粒子と、前記ポリアルキレンオキシド粒子以外の成分を含むことができる。
 ポリアルキレンオキシド粒子以外の成分(以下、他の成分という)は、例えば、公知の製剤用組成物に含まれる各種成分を広く適用することができる。他の成分の具体例としては、活性成分、フィラー、ポリアルキレンオキシド粒子以外の賦形剤、希釈剤、滑沢剤、染料、色素、浸透圧誘起剤等を挙げることができる。
 本発明の製剤用組成物は、前記ポリアルキレンオキシド粒子とフィラーとしてシリカを含むことができる。本発明の製剤用組成物が前記ポリアルキレンオキシド粒子とシリカとを含む場合、本発明の製剤用組成物は、前記ポリアルキレンオキシド粒子100質量部に対し、シリカを3.0質量部以下含むことが好ましい。これにより、ポリアルキレンオキシド粒子の流動性等が向上しやすい。前記ポリアルキレンオキシド粒子100質量部に対するシリカの含有量は、例えば、2.0質量部以下であることがより好ましく、1.5質量部以下であることがさらに好ましい。流動性等が向上しやすい点で、前記ポリアルキレンオキシド粒子100質量部に対するシリカの含有量は、例えば、0.1質量部以上であることがより好ましい。
 シリカは、例えば、公知のシリカを広く使用することができ、具体的にはアエロジル等を挙げることができる。
 製剤用組成物は、本発明の効果が阻害されない限り、前記ポリアルキレンオキシド粒子の含有割合は特に制限はない。製剤に特に低い摩損度をもたらしやすい点で、製剤用組成物は、前記ポリアルキレンオキシド粒子と前記他の成分との総質量(又は製剤用組成物全質量)に対し、前記ポリアルキレンオキシド粒子を20質量%以上含有することが好ましく、30質量%以上含有することが好ましく、40質量%以上含有することがより好ましく、50質量%以上含有することがさらに好ましい。また、前記ポリアルキレンオキシド粒子と前記他の成分との総質量(又は製剤用組成物全質量)に対し、前記ポリアルキレンオキシド粒子を90質量%以下含有することが好ましい。
 特に本発明の製剤用組成物は、前記ポリアルキレンオキシド粒子を含むことで、圧縮成形性に優れるものであり、容易に圧縮成形体を得ることができる。圧縮成形体を得る方法は特に限定されず、例えば、公知の圧縮成形方法を広く採用することができる。
 本発明の製剤用組成物の調製方法は特に限定されず、例えば、公知の製剤用組成物の調製方法と同様とすることができる。例えばポリアルキレンオキシド粒子とフィラー(シリカ等)を混合して、例えば、フィラー被覆ポリアルキレンオキシド粒子を得た後、このポリアルキレンオキシド粒子と、他の各種成分とを所定の割合で混合することで、製剤用組成物を調製することができる。
 本発明の製剤用組成物を用いて、各種の製剤を調製することができる。斯かる製剤は、本発明の製剤用組成物を含むので、すなわち、前記ポリアルキレンオキシド粒子を含むので、製剤の溶出度のバラつきを低減させやすい。
 本発明の製剤は、前記製剤用組成物の圧縮成形体を含むことができる。この場合、製剤は圧縮成形体を含む各種剤形とすることができ、例えば、錠剤が挙げられる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例の態様に限定されるものではない。
 (製造例1)
 窒素置換された容器内に、亜鉛換算で0.66モル/Lの濃度になるようにジエチル亜鉛をn-ヘキサンで希釈した。次いで、容器内を10℃に冷却し、攪拌下で、n-ヘキサンに対して1,4-ブタンジオールが0.59モル/L、エタノールが2.58モル/Lの濃度になるまで該容器内に添加した。添加終了後、容器内を30℃まで昇温して、ジエチル亜鉛を1,4-ブタンジオール及びエタノールと1時間反応させ、次に、50℃まで昇温して1時間反応を行った。その後、容器内を80℃まで昇温して、蒸留を行った。冷却後、容器内の反応液を有機亜鉛触媒が3質量%の濃度となるようにn-ヘキサンで希釈し、有機亜鉛触媒を含む分散液を得た。
 次いで、窒素置換された耐圧容器に、n-ヘキサンに対して有機亜鉛触媒が亜鉛換算で0.0022mol/Lの濃度になるように、また、n-ヘキサンに対してt-ブタノールが0.0041mol/Lの濃度になるように有機亜鉛触媒と炭素数1~5のアルコール化合物とn-ヘキサンを添加し、均一に分散させた。次いで、ヘキサンに対して3.84mol/Lの濃度になるようにエチレンオキシドを添加して密閉し、40℃の恒温槽中で攪拌しながら重合させた。重合終了後、白色生成物を濾過して取り出し、40℃で乾燥し、得られた乾燥粒子に非晶質シリカ(日本アエロジル株式会社製、アエロジル)を1質量%混合し、JIS Z 8801-1標準篩(500μm)に移し、通過したポリエチレンオキシド粒子Pを得た。
 (製造例2)
 n-ヘキサンに対するt-ブタノールの濃度を0.00041mol/Lに変更したこと以外は製造例1と同様の方法により、ポリエチレンオキシド粒子Pを得た。
 (製造例3)
 ポリエチレンオキシド粒子の分級
 製造例1で得られたポリエチレンオキシド粒子Pを、JIS Z 8801-1標準篩として、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、目開き106μmの篩、目開き75μmの篩を上段からこの順で受け皿の上に重ね合わせた。最上段に配置された目開き500μmの篩に、ポリエチレンオキシド粒子を入れた。篩をロータップ式振とう器を用いて20分間振とうさせることにより、ポリエチレンオキシド粒子を分級した。分級後、各篩上に残ったポリエチレンオキシド粒子の質量を測定し、各質量の全量に対する百分率(粒度分布)を計算した。
 (製造例4)
 ポリエチレンオキシド粒子Pの代わりに製造例2で得られたポリエチレンオキシド粒子Pに変更したこと以外は製造例3と同様の方法で分級し、各篩上に残ったポリエチレンオキシド粒子の質量を測定し、各質量の全量に対する百分率(粒度分布)を計算した。
Figure JPOXMLDOC01-appb-T000001
 表1には、製造例3及び4の分級結果(ポリエチレンオキシド粒子P及びPの分級結果)を示している。
 (実施例1)
 ポリエチレンオキシド粒子Pの分級において、各篩及び受皿に残った粒子からそれぞれ3gを採取し(計7種類)、また、ポリエチレンオキシド粒子Pの分級において、各篩及び受皿に残った粒子からそれぞれ3gを採取し(計7種類)、それら14種類の粒子を均一に混合することで、製剤用ポリエチレンオキシド粒子を得た。斯かる製剤用ポリエチレンオキシド粒子を、150μmの篩(JIS Z 8801-1標準篩)を用いて分級し、150μm篩上粒子及び通過粒子を採取して、それぞれの粒子の1%水溶液粘度A1(mPa・s)及びA2(mPa・s)を測定し、下記式(1)
A=(A1/A2)×100   (1)
より、粘度割合A(%)を算出した。
 (実施例2)
 ポリエチレンオキシド粒子Pの分級において、300μm篩上粒子、180μm篩上粒子、150μm篩上粒子、75μm篩上粒子及び受皿に残った粒子それぞれから6gを採取し(計5種類)、また、ポリエチレンオキシド粒子Pの分級において、250μm篩上粒子、106μm篩上粒子からそれぞれ6gを採取し(計2種類)、それら7種類の粒子を均一に混合することで製剤用ポリエチレンオキシド粒子を得たこと以外は実施例1と同様の方法で粘度割合A(%)を算出した。
 (実施例3)
 ポリエチレンオキシド粒子Pの分級において、180μm篩上粒子、150μm篩上粒子、106μm篩上粒子及び受皿に残った粒子それぞれから6gを採取し(計4種類)また、ポリエチレンオキシド粒子Pの分級において、300μm篩上粒子、250μm篩上粒子及び75μm篩上粒子それぞれから6gを採取し(計2種類)、それら7種類の粒子を均一に混合することで製剤用ポリエチレンオキシド粒子を得たこと以外は実施例1と同様の方法で粘度割合A(%)を算出した。
 (比較例1)
 ポリエチレンオキシド粒子Pの分級において、106μm篩上粒子、75μm篩上粒子及び受皿に残った粒子それぞれから6gを採取し(計3種類)、また、ポリエチレンオキシド粒子Pの分級において、300μm篩上粒子、250μm篩上粒子、180μm篩上粒子及び150μm篩上粒子それぞれから6gを採取し(計4種類)、それら7種類の粒子を均一に混合することで製剤用ポリエチレンオキシド粒子を得たこと以外は実施例1と同様の方法で粘度割合A(%)を算出した。
 (比較例2)
 ポリエチレンオキシド粒子Pの分級において、300μm篩上粒子、250μm篩上粒子、180μm篩上粒子及び150μm篩上粒子それぞれから6gを採取し(計4種類)、また、ポリエチレンオキシド粒子Pの分級において、106μm篩上粒子、75μm篩上粒子及び受皿に残った粒子それぞれから6gを採取し(計3種類)、それら7種類の粒子を均一に混合することで製剤用ポリエチレンオキシド粒子を得たこと以外は実施例1と同様の方法で粘度割合A(%)を算出した。
 (比較例3)
 ポリエチレンオキシド粒子Pの分級において、180μm篩上粒子、150μm篩上粒子、106μm篩上粒子、75μm篩上粒子及び受皿に残った粒子それぞれから6gを採取し(計5種類)、また、ポリエチレンオキシド粒子Pの分級において、300μm篩上粒子及び250μm篩上粒子それぞかられ6gを採取し(計2種類)を、それら7種類の粒子を均一に混合することで製剤用ポリエチレンオキシド粒子を得たこと以外は実施例1と同様の方法で粘度割合A(%)を算出した。
Figure JPOXMLDOC01-appb-T000002
 表2には、各実施例及び比較例で得られた製剤用ポリエチレンオキシド粒子の配合条件及び粘度割合Aの算出結果を示している。また、表2には、150μm以上の粒子径を有する粒子の1質量%水溶液粘度をA1(mPa・s)、及び、150μm未満の粒子径を有する粒子の1質量%水溶液粘度A2(mPa・s)を示し、また、粒子全体(150μm以上の粒子径を有する粒子及び150μm未満の粒子径を有する粒子の混合体)の1質量%水溶液粘度の値も示している。
 表2の結果から、実施例1~3で得られた製剤用ポリエチレンオキシド粒子はいずれも粘度割合A(%)が66%以上、150%以下であった。
 なお、1質量%水溶液粘度は以下の手順で測定した。
 〔ポリエチレンオキシドの1質量%水溶液粘度〕
 1Lビーカーにポリエチレンオキシド粒子6gと、イソプロパノール125mLを添加し、撹拌翼を用いて350rpmで攪拌しつつ、イオン交換水594gを添加し、1分間撹拌を行った。その後、撹拌回転数を60rpmに変更して、さらに3時間攪拌を続けることで、ポリエチレンオキシドの1質量%水溶液を得た。この水溶液を25℃に保持し、回転粘度計(BROOK FIELD製「RV DVII+」)を用いて粘度を測定(スピンドル:RV-2、回転数:2rpm)し、この値を1質量%水溶液粘度とした。
 〔ポリエチレンオキシドの5質量%水溶液粘度〕
 1Lビーカーにポリエチレンオキシド粒子30gと、イソプロパノール125mLを添加し、撹拌翼を用いて350rpmで攪拌しつつ、イオン交換水570gを添加し、1分間撹拌を行った。その後、撹拌回転数を60rpmに変更して、さらに3時間攪拌を続けることで、ポリエチレンオキシドの5質量%水溶液を得た。この水溶液を25℃に保持し、回転粘度計(BROOK FIELD製「RV DVII+」)を用いて粘度を測定し、この値を5質量%水溶液粘度とした。
 (製剤の溶出度のバラつき評価)
(1)振とう処理
 製剤用ポリエチレンオキシド粒子を輸送する際に加わる振動を想定して、振とう処理を下記手順で実施した。製剤用ポリエチレンオキシド粒子21gを100mLポリビーカーに投入し均一に振り混ぜた。そのポリビーカーを垂直に振とう機(アズワン株式会社製AS-1N)に固定し、振動数250rpmで10分間振とうさせた。振とうさせたポリビーカー中の上部および下部からそれぞれ粒子を約2g採取した)それぞれ上部採取品、下部採取品とする)。
(2)圧縮成形
 振とう処理にて採取したサンプル200mgオートグラフ用汎用杵臼(市橋精機製、Φ10、R10)に投入し、オートグラフ(島津製作所製AGS-T)用いて、試験力5kN、圧縮速度:100mm/minで圧縮成形し、ポリエチレンオキシド粒子の単独錠剤を得た。同様の操作を繰り返すことで、前述の上部から採取した粒子について計3個の錠剤を作製し、また、前述の下部から採取した粒子について計3個の錠剤を作製し、計6個の錠剤を得た(つまり、合計がn=6、上部採取品がn=3、下部採取品がn=3である)。
(3)溶出試験
 上記のように得たポリエチレンオキシド粒子単独錠剤を用いて、日本薬局方(パドル法)に従い溶出試験を実施した(試験液:イオン交換水、試験温度:37.0度、撹拌回転数:200rpm)。この溶出試験において、8時間撹拌した後に取り出した錠剤を80℃で5時間乾燥させてから、下記式に基づいてポリエチレンオキシド錠剤(上部採取品n=3、下部採取品n=3それぞれ)の溶出率を算出した。
溶出率(%)=(1―溶出試験後の乾燥錠剤質量/溶出試験前の錠剤質量)×100
 また、得られた溶出率(%)から、計6個の錠剤の平均溶出率を算出した。
(4)溶出率の変動係数の算出
 錠剤の溶出試験結果(合計n=6、内訳は上部採取品n=3、下部採取品n=3)から、計6個の錠剤の平均溶出率(n=6)と、標準偏差(n=6)とを算出し、下記式
変動係数=(標準偏差(n=6)/平均溶出率(n=6))×100
に従って、変動係数を算出した。
Figure JPOXMLDOC01-appb-T000003
 表3には、各実施例及び比較例で製造した製剤用ポリエチレンオキシド粒子を用いて得られた錠剤の溶出率(合計n=6、上部採取品:n=3、下部採取品:n=3)、平均溶出率、標準偏差及び変動係数の結果を示している。また、表3において、「上部」、「下部」なる表記は、前述の上部採取品、下部採取品を意味する。
 表3に示す結果から、粘度割合A(%)が66%以上、150%以下であることを満たすポリエチレンオキシド粒子で得られる錠剤(製剤)は、変動係数が小さいことがわかる。すなわち、粘度割合Aが前記範囲であるポリエチレンオキシド粒子は、製剤の溶出度のバラつきを低減することができることがわかった。とりわけ、振動等によってポリエチレンオキシド粒子の均一性が損なわれたとしても製剤の溶出度のバラつきを生じにくくすることができることもわかった。
 従って、移送時の振動等によって粒度分布の均一性が損なわれた場合においても品質のバラつきを抑制することができるので、本発明のポリエチレンオキシド粒子は製剤の品質向上に大きく寄与するものであることが実証された。

Claims (7)

  1. 150μm以上の粒子径を有する粒子の1質量%水溶液粘度をA1(mPa・s)とし、150μm未満の粒子径を有する粒子の1質量%水溶液粘度をA2(mPa・s)としたとき、下記式(1)
    A=(A1/A2)×100   (1)
    で表される粘度割合A(%)が66%以上、150%以下であることを満たす、ポリアルキレンオキシド粒子。
  2. ポリアルキレンオキシド粒子X質量部を、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、目開き106μmの篩、目開き75μmの篩及び受け皿の順に篩分けしたときの各篩及び受皿上に残ったポリアルキレンオキシド粒子の質量割合が、前記Xに対していずれも5質量%以上である、請求項1に記載のポリアルキレンオキシド粒子。
  3. 製剤用である、請求項1又は2に記載のポリアルキレンオキシド粒子。
  4. 請求項1又は2に記載のポリアルキレンオキシド粒子を含む、医薬用組成物。
  5. 請求項4に記載の医薬用組成物を含む、製剤用組成物。
  6. 前記ポリアルキレンオキシド粒子を20質量%以上含有する、請求項5に記載の製剤用組成物。
  7. 請求項5又は6に記載の製剤用組成物を含む、製剤。
PCT/JP2022/032816 2022-01-31 2022-08-31 ポリアルキレンオキシド粒子、医薬用組成物、製剤用組成物及び製剤 WO2023145119A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22818593.0A EP4242253A1 (en) 2022-01-31 2022-08-31 Polyalkylene oxide particles, composition for medicine, composition for formulation, and formulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-013784 2022-01-31
JP2022013784 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145119A1 true WO2023145119A1 (ja) 2023-08-03

Family

ID=87471035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032816 WO2023145119A1 (ja) 2022-01-31 2022-08-31 ポリアルキレンオキシド粒子、医薬用組成物、製剤用組成物及び製剤

Country Status (2)

Country Link
EP (1) EP4242253A1 (ja)
WO (1) WO2023145119A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165198A1 (ja) * 2011-06-03 2012-12-06 住友精化株式会社 ポリアルキレンオキシド粒子及びその製造方法
WO2012165199A1 (ja) * 2011-06-03 2012-12-06 住友精化株式会社 ポリアルキレンオキシド粒子及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165198A1 (ja) * 2011-06-03 2012-12-06 住友精化株式会社 ポリアルキレンオキシド粒子及びその製造方法
WO2012165199A1 (ja) * 2011-06-03 2012-12-06 住友精化株式会社 ポリアルキレンオキシド粒子及びその製造方法

Also Published As

Publication number Publication date
EP4242253A1 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
EP2152402B1 (fr) Agglomeres spheriques a base de zeolite(s), leur procede d'obtention et leur utilisation dans les procedes d'adsorption ou en catalyse
EP1797141B1 (fr) Procede de preparation de particules a base de polymere thermoplastique et poudre ainsi obtenue.
US20220410121A1 (en) Metal-Organic Material Extrudates, Methods of Making, and Methods of Use
JP6267753B2 (ja) ポリアルキレンオキシド粒子
JP5927184B2 (ja) ポリアルキレンオキシド粒子及びその製造方法
WO2023145119A1 (ja) ポリアルキレンオキシド粒子、医薬用組成物、製剤用組成物及び製剤
CN101054442A (zh) 两亲性超支化聚醚纳米级自组装体的制备方法
WO2023145867A1 (ja) 製剤用ポリアルキレンオキシド粒子、医薬用組成物、製剤用組成物及び製剤
WO2023145864A1 (ja) ポリアルキレンオキシド粒子、医薬用組成物、製剤用組成物及び製剤
WO2023145865A1 (ja) 製剤用ポリアルキレンオキシド粒子、医薬用組成物、製剤用組成物及び製剤
Gavini et al. Compressed biodegradable matrices of spray-dried PLGA microspheres for the modified release of ketoprofen
CN108017734B (zh) 球形烷氧基镁颗粒的组份、制备方法及应用
DE102004006113A1 (de) Verfahren zur Herstellung von Trägern für Katalysatoren
CN108219040B (zh) 球形烷氧基镁颗粒的组份、制备方法及应用
AU2021106183A4 (en) Vitamin d3 complex and preparation method and application thereof
CN108102013B (zh) 烷氧基镁颗粒的组份及制备方法
Aparna SOLUBILITY & DISSOLUTION RATE ENHANCEMENT OF SORAFENIB BY DIFFERENT SOLID DISPERSION TECHNIQUES
CN108219039B (zh) 一种球形烷氧基镁颗粒的组份及制备方法
CN1662222A (zh) 包含α-硫辛酸(衍生物)的自由流动的粉状组合物
WO2023042534A1 (ja) ポリアルキレンオキシド、固形製剤用組成物及びその製造方法並びに徐放性製剤用組成物
Patil et al. Formulation and Characterization of Mesoporous Nanoparticulate Drug Delivery Platform
WO2023042533A1 (ja) ポリアルキレンオキシド、固形製剤用組成物及びその製造方法並びに徐放性製剤用組成物
KR20160141141A (ko) 홍삼 농축액으로부터 발생하는 이산화탄소 흡착을 위한 유무기 복합체 및 이를 포함하는 홍삼 농축액 포장용기 제조용 마스터 배치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022818593

Country of ref document: EP

Effective date: 20221216