WO2023145010A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2023145010A1
WO2023145010A1 PCT/JP2022/003370 JP2022003370W WO2023145010A1 WO 2023145010 A1 WO2023145010 A1 WO 2023145010A1 JP 2022003370 W JP2022003370 W JP 2022003370W WO 2023145010 A1 WO2023145010 A1 WO 2023145010A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
baffle plates
air
outlets
angle
Prior art date
Application number
PCT/JP2022/003370
Other languages
French (fr)
Japanese (ja)
Inventor
遼太 福田
文人 北村
昭宏 若▲松▼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/003370 priority Critical patent/WO2023145010A1/en
Priority to JP2023576527A priority patent/JPWO2023145010A1/ja
Publication of WO2023145010A1 publication Critical patent/WO2023145010A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0033Indoor units, e.g. fan coil units characterised by fans having two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air

Definitions

  • the present disclosure relates to an air conditioner in which two fans are arranged side by side in the width direction of the housing.
  • Patent Document 1 there are air conditioners in which two blowers are arranged side by side in the width direction of the housing (see Patent Document 1, for example).
  • the inside of the housing is divided into a heat exchange chamber containing a heat exchanger and a blowing chamber containing a blower.
  • a diffuser section extending to the vessel is provided. Then, the air sucked into the housing from the suction port formed on the blowing chamber side of the housing is blown out from the blowing part of the blower, passes through the diffuser part, passes through the heat exchanger, and then heats the housing. It is discharged to the outside of the housing from an outlet formed on the exchange chamber side.
  • the diffuser section is formed so as to diffuse the air flow in the width direction, thereby making the air velocity distribution in the width direction uniform with respect to the heat exchanger.
  • Patent Document 1 only a motor connected to them by a double shaft is provided between the two blowers, and if the distance between the two blowers is short, the air sucked from the suction port of the two blowers interfere with each other resulting in uneven loading of the two fans. Further, in Patent Document 1, a diffuser portion is provided in the blowing portion of the blower, and the diffuser portion is formed so as to diffuse the air flow in the width direction. After passing through the diffuser section, the air blown out from the blowing section of the other fan interferes with the air that has passed through the diffuser section. As a result, air blow resistance increases. In addition, when the load on the two fans becomes uneven or the blowing resistance increases, there is a problem that the operating efficiency is lowered and the aerodynamic performance is lowered.
  • the present disclosure has been made in order to solve the above problems, and an air blower that suppresses a decrease in operating efficiency caused by uneven loads on the two fans and an increase in air blow resistance.
  • the purpose is to provide a harmonizing machine.
  • An air conditioner includes a housing having an inlet and two outlets, and arranged side by side in the width direction of the housing inside the housing.
  • two blowers blowing from different one of them, a partition plate provided between the two blowers, and a baffle plate provided at each edge of the two outlets and protruding outside the housing; , wherein the two air guide plates are provided so as to be positioned between the two outlets, and the angle with respect to the opening surface of the outlets provided respectively is 90° or less.
  • the partition plate is provided between the two fans, even if the two fans are close to each other, the air sucked from the fans interferes with each other, Uneven loads can be suppressed.
  • two air guide plates are provided at the edges of each of the two air outlets, and the two air guide plates are provided so as to be positioned between the two air outlets.
  • the angle of the air outlet with respect to the opening surface is 90° or less. Therefore, it is possible to suppress the spread of the flow of air blown out from the outlet in the width direction, thereby suppressing an increase in blowing resistance. As a result, uneven loads on the two blowers and an increase in blowing resistance are suppressed, so a decrease in operating efficiency can be suppressed.
  • FIG. 1 is a front perspective view showing an air conditioner according to Embodiment 1.
  • FIG. Fig. 2 is a front perspective view of the air conditioner shown in Fig. 1 with a front plate removed; 2 is a front view showing the internal structure of the upper part of the air conditioner according to Embodiment 1.
  • FIG. 4 is a front view of the fan shown in FIG. 3 with a fan casing removed;
  • FIG. 2 is a schematic front view showing the flow of air inside the housing of the air conditioner according to Embodiment 1; 2 is an enlarged front perspective view of the upper structure of the air conditioner according to Embodiment 1.
  • FIG. FIG. 4 is a diagram for explaining sizes of partition plates of the air conditioner according to Embodiment 1; FIG.
  • FIG. 4 is a diagram illustrating the position of the lower end of the partition plate of the air conditioner according to Embodiment 1;
  • FIG. 4 is a diagram for explaining the angle of the baffle plate of the air conditioner according to Embodiment 1;
  • FIG. 4 is a diagram illustrating the size of the air guide plate of the air conditioner according to Embodiment 1;
  • FIG. 4 is a diagram showing a control flow of the baffle plate performed by the control device during operation of the air conditioner according to Embodiment 1;
  • FIG. 10 is a diagram showing a control flow of the baffle plate performed by the control device when the operation of the air conditioner according to Embodiment 2 is stopped.
  • FIG. 10 is a diagram showing a modification of the control flow of the baffle plate performed by the control device during operation of the air conditioner according to Embodiment 2;
  • FIG. 1 is a front perspective view showing an air conditioner 100 according to Embodiment 1.
  • FIG. 2 is a front perspective view of the air conditioner 100 shown in FIG. 1 with the front plate 2 removed.
  • 3 is a front view showing the internal structure of the upper portion of the air conditioner 100 according to Embodiment 1.
  • FIG. 4 is a front view of the fans 5a and 5b shown in FIG. 3 with the fan casings 50a and 50b removed.
  • the air conditioner 100 is, for example, a floor type, and supplies conditioned air to the indoor space via a duct 60 (see FIG. 5 described later).
  • An air conditioner 100 includes a housing 1 forming an outer shell, and a front plate 2 is provided on the front surface of the housing 1 .
  • the front plate 2 of the housing 1 is formed with an intake port 20 for taking air into the housing 1 .
  • the upper surface 4 of the housing 1 is formed with outlets 40 a and 40 b for blowing out air to the outside of the housing 1 .
  • An air passage is formed inside the housing 1 from the inlet 20 to the outlets 40a and 40b.
  • baffle plates 11a and 11b protruding outward from the housing 1, that is, upward are provided on one side (hereinafter referred to as edge) of the periphery of the outlets 40a and 40b formed on the upper surface 4 of the housing 1, baffle plates 11a and 11b protruding outward from the housing 1, that is, upward, are provided.
  • the baffle plates 11a and 11b are provided on the edge of the air outlet 40a on the air outlet 40b side and the edge of the air outlet 40b on the air outlet 40a side, respectively. That is, the two baffle plates 11a and 11b are provided so as to be located between the two outlets 40a and 40b. The details of the baffle plates 11a and 11b will be described later.
  • the heat exchanger 6 is arranged on the back side of the intake port 20 when viewed from the side of the housing 1 where the front plate 2 is arranged. Also, the heat exchanger 6 is arranged at an angle inside the housing 1 .
  • the two fans 5a and 5b are arranged inside the housing 1 above the heat exchanger 6 and below the outlets 40a and 40b.
  • the two fans 5a and 5b are arranged side by side in the left-right direction (width direction).
  • the two blowers 5a and 5b include fans 51a and 51b and fan casings 50a and 50b that cover the peripheries of the fans 51a and 51b and are fixed to the upper surface 4 of the housing 1. I have.
  • the fans 51a and 51b are composed of sirocco fans.
  • Motors 9a and 9b are connected to the fans 51a and 51b of the two blowers 5a and 5b, respectively.
  • the fans 51a and 51b are driven by inverter-controlling the motors 9a and 9b.
  • the motors 9a and 9b are connected to the fans 51a and 51b of the two blowers 5a and 5b, respectively.
  • 51b may be connected to the same motor.
  • the drain pan 7 is arranged inside the housing 1 so as to collect moisture flowing down below the heat exchanger 6 which is inclined.
  • the control device 30 is, for example, dedicated hardware, or a CPU (Central Processing Unit) that executes a program stored in a storage unit (not shown). ).
  • a CPU Central Processing Unit
  • control device 30 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applicable. Each functional unit implemented by the control device 30 may be implemented by separate hardware, or each functional unit may be implemented by one piece of hardware.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • each function executed by the control device 30 is implemented by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in the storage unit.
  • the CPU implements each function of the control device 30 by reading and executing the programs stored in the storage unit.
  • the storage unit stores various kinds of information, and includes, for example, a rewritable non-volatile semiconductor memory such as flash memory, EPROM, and EEPROM.
  • control device 30 may be realized by dedicated hardware, and part of them may be realized by software or firmware.
  • the control device 30 controls the fans 5a and 5b based on detection signals from various sensors (not shown) provided in the air conditioner 100 and operation signals from an operation unit (not shown). and controls the operation of the air conditioner 100 as a whole.
  • FIG. 5 is a schematic front view showing the flow of air inside the housing 1 of the air conditioner 100 according to Embodiment 1.
  • the air that has flowed into the housing 1 from the suction port 20 passes through the heat exchanger 6 and is conditioned, then flows upward and branches into the fan casings 50a of the blowers 5a and 5b. , 50b.
  • the conditioned air sucked into the fan casings 50a, 50b of the blowers 5a, 5b is blown out from the outlets 40a, 40b formed in the upper surface 4 of the housing 1, respectively, and supplied to the indoor space via the duct 60.
  • FIG. 6 is an enlarged front perspective view of the upper structure of the air conditioner 100 according to Embodiment 1.
  • FIG. FIG. 7 is a diagram illustrating the size of partition plate 10 of air conditioner 100 according to Embodiment 1.
  • FIG. 8 is a diagram illustrating the position of the lower end of partition plate 10 of air conditioner 100 according to Embodiment 1.
  • FIG. 6 to 8 show the air conditioner 100 with the front plate 2 removed. Also, in FIGS. 7 and 8, some parts are omitted for the sake of clarity of explanation.
  • a rectangular partition plate 10 is provided between the two fans 5a and 5b installed in the horizontal direction.
  • the partition plate 10 By providing the partition plate 10 between the two fans 5a and 5b in this way, even if the two fans 5a and 5b are close to each other, the air flow from the suction port 20 below the fans 5a and 5b to the fans 5a and 5b can be maintained. It is suppressed that the blowers 5a and 5b compete for the flowing air (see B section in FIG. 5). Therefore, it is possible to prevent the air sucked from the suction ports 52a and 52b of the fans 5a and 5b from interfering with each other and causing the loads on the two fans 5a and 5b to become uneven.
  • the width H1 of the partition plate 10 in the height direction is larger than the diameter H2 of the suction ports 52a and 52b of the fans 5a and 5b indicated by broken lines.
  • the width W1 of the partition plate 10 in the depth direction is larger than the width W2 of the suction ports 52a and 52b of the fans 5a and 5b in the depth direction indicated by broken lines.
  • the partition plate 10 is provided so that the end on the suction port 20 side is located closer to the suction port 20 than the ends on the suction port 20 side of the suction ports 52a and 52b of the fans 5a and 5b. . That is, as shown in FIG. 8, the partition plate 10 is provided so that the lower end L1 thereof is positioned below the lower ends L2 of the suction ports 52a, 52b of the fans 5a, 5b.
  • the partition plate 10 by providing the partition plate 10 so that the lower end L1 of the partition plate 10 is positioned closer to the suction port 20 side of the housing 1 than the lower end L2 of the suction ports 52a and 52b of the fans 5a and 5b, , 5b from the suction port 20 to the fans 5a and 5b.
  • FIG. 9 is a diagram for explaining the angle of the baffle plate 11 of the air conditioner 100 according to Embodiment 1.
  • FIG. FIG. 10 is a diagram illustrating the size of the baffle plate 11 of the air conditioner 100 according to Embodiment 1.
  • FIG. 9 and 10 show the air conditioner 100 with the front plate 2 removed.
  • FIG. 9 omits some parts for the sake of clarity of explanation.
  • different angles are shown for the baffle plate 11a and the baffle plate 11b, but this is for explanation.
  • the baffle plate 11a and the baffle plate 11b may have the same angle or may have different angles.
  • the baffle plates 11a and 11b are provided so that the angle ⁇ with respect to the opening plane of the outlets 40a and 40b on which the upper surface 4 of the housing 1 is provided is 90° or less. .
  • the upper surfaces 11a1 and 11b1 (see FIG. 6) of the air guide plates 11a and 11b are provided so that the angle .theta. with respect to the opening surfaces of the outlets 40a and 40b is 90.degree. or less.
  • the upper surfaces 11a1 and 11b1 of the baffle plates 11a and 11b have a rectangular shape, but the shape is not limited thereto.
  • the baffle plates 11a and 11b are provided with arbitrary lengths that fit within the projected plane X above the outlets 40a and 40b when viewed from the front.
  • the width of the projection plane X in the horizontal direction is the same as the width of the outlets 40a and 40b in the horizontal direction. That is, the baffle plates 11a and 11b are provided so as to fit within the lateral width of the outlets 40a and 40b in which they are provided.
  • the baffle plates 11a and 11b By providing the baffle plates 11a and 11b in this manner, the flow of air blown out from the outlets 40a and 40b (see part A in FIG. 5) is suppressed from being diffused in the width direction, and the blowing resistance is increased. can be prevented from becoming If the baffle plates 11a and 11b are provided in at least part of the lateral width of the outlets 40a and 40b, the effect of suppressing the diffusion of the blown air can be obtained. Therefore, even if the baffle plates 11a and 11b are provided so as not to fit within the lateral width of the outlets 40a and 40b in which they are provided, the flow of air blown out from the outlets 40a and 40b does not extend in the width direction. The effect of suppressing diffusion does not change much. Therefore, by providing the baffle plates 11a and 11b so as to fit within the lateral width of the outlets 40a and 40b, the baffle plates 11a and 11b do not have to be unnecessarily long.
  • the airflow resistance caused by the baffle plates 11a and 11b blocking the air blown from the outlets 40a and 40b increases. is preferably 30° or more.
  • the width W3 of the baffle plates 11 a and 11 b in the depth direction is smaller than the width W4 of the connecting portion of the duct 60 provided on the upper surface 4 of the housing 1 in the depth direction.
  • the longitudinal lengths of the baffle plates 11 a and 11 b are smaller than the connecting portion of the duct 60 . This is to allow the duct 60 to be connected to the upper surface 4 of the housing 1 so as to cover the outlets 40a and 40b.
  • the width W3 of the baffle plates 11a and 11b in the depth direction is made larger than the width W5 of the outlets 40a and 40b in the depth direction. That is, the baffle plates 11a and 11b are made longer than the edges of the outlets 40a and 40b in the longitudinal direction. By doing so, it is possible to further suppress the spread of the flow of air blown out from the outlets 40a and 40b in the width direction, thereby enhancing the effect of suppressing an increase in the blowing resistance.
  • the air conditioner 100 includes the housing 1 having the intake port 20 and the two outlets 40a and 40b, and is arranged side by side in the width direction inside the housing 1.
  • Two blowers 5a and 5b for blowing out the sucked air from a different one of the two blowers 40a and 40b, a partition plate 10 provided between the two blowers 5a and 5b, and the two blowers 40a and 40b. provided at each edge of the housing 1 and projecting to the outside of the housing 1, the two air guide plates 11a and 11b being positioned between the two outlets 40a and 40b. and the angle ⁇ with respect to the opening surface of the outlets 40a and 40b is 90° or less.
  • the partition plate 10 is provided between the two fans 5a and 5b. Therefore, even if the two fans 5a and 5b are close to each other, it is possible to prevent the air sucked from the fans 5a and 5b from interfering with each other and causing the loads on the two fans 5a and 5b to become uneven.
  • Two air guide plates 11a and 11b are provided at the edges of the two air outlets 40a and 40b, respectively, and the two air guide plates 11a and 11b are positioned between the two air outlets 40a and 40b. and the angle ⁇ with respect to the opening surface of the outlets 40a and 40b is 90° or less.
  • the two baffle plates 11a and 11b are provided so as to fit within the width in the width direction of the outlets 40a and 40b in which they are provided.
  • the baffle plates 11a and 11b need not be unnecessarily long.
  • the area of the partition plate 10 is larger than the opening areas of the suction ports 52a and 52b of the two fans 5a and 5b.
  • the air conditioner 100 According to the air conditioner 100 according to Embodiment 1, it is further suppressed that the fans 5a and 5b compete for the air that has flowed from the suction port 20 to the fans 5a and 5b. Therefore, it is possible to enhance the effect of preventing the air sucked from the suction ports 52a and 52b of the fans 5a and 5b from interfering with each other and causing the loads on the two fans 5a and 5b to become uneven. As a result, it is possible to enhance the effect of suppressing the deterioration of the operating efficiency, and it is possible to enhance the effect of suppressing the deterioration of the aerodynamic performance caused by the deterioration of the operating efficiency.
  • the end of the partition plate 10 on the suction port 20 side draws more air than the ends on the suction port 20 side of the suction ports 52a and 52b of the two fans 5a and 5b. It is located on the mouth 20 side.
  • the air conditioner 100 it is further suppressed that the fans 5a and 5b compete for the air that has flowed from the suction port 20 to the fans 5a and 5b. Therefore, it is possible to further enhance the effect of preventing the air sucked from the suction ports 52a and 52b of the fans 5a and 5b from interfering with each other and causing the loads on the two fans 5a and 5b to become uneven. As a result, it is possible to further enhance the effect of suppressing a decrease in operating efficiency, and to further enhance the effect of suppressing a decrease in aerodynamic performance caused by a decrease in operating efficiency.
  • the two baffle plates 11a and 11b have a rectangular shape, and the longitudinal direction is provided along the respective edges of the two outlets 40a and 40b. and is longer than the edge length of each of the two outlets 40a, 40b in the longitudinal direction.
  • the flow of air blown out from the outlets 40a and 40b is further suppressed from being diffused in the width direction, thereby suppressing an increase in blowing resistance. You can increase the effect.
  • Embodiment 2 will be described below, but descriptions of parts that overlap with those of Embodiment 1 will be omitted, and parts that are the same as or correspond to those of Embodiment 1 will be given the same reference numerals.
  • the angle ⁇ of the baffle plates 11a and 11b is set to 90° or less, and the angle ⁇ remains unchanged.
  • the angle ⁇ of the baffle plates 11a and 11b is variably set to 90° or less. Therefore, in the second embodiment, a baffle plate motor (not shown) is provided separately from the motors 9a and 9b, which are coupled to the two baffle plates 11a and 11b to rotate them.
  • the two baffle plates 11a and 11b are connected to the baffle plate motors, respectively.
  • a configuration in which the wind plate motor is connected may be employed.
  • the motors 9a and 9b are connected to the fans 51a and 51b of the two blowers 5a and 5b, respectively.
  • the control device 30 detects the loads of the motors 9a and 9b that drive the fans 51a and 51b of the blowers 5a and 5b, respectively.
  • a method of detecting the load of the motors 9a and 9b for example, there is a method of detecting the current value input to the motors 9a and 9b using a current sensor. Other methods such as detecting the power consumption of 9b may be used.
  • Th1 the difference between the load on the motor 9a and the load on the motor 9b exceeds a preset first threshold value Th1
  • the control device 30 sets the angle ⁇ of the baffle plates 11a and 11b to a preset threshold value Th1.
  • the baffle plates 11a and 11b are rotated so as to decrease by one angle ⁇ 1.
  • ⁇ L is an absolute value.
  • the control device 30 sets the angle ⁇ of the baffle plates 11a and 11b to The baffle plates 11a and 11b are rotated so as to increase by the set second angle ⁇ 2.
  • the first angle ⁇ 1 and the second angle ⁇ 2 may have the same value or may have different values. In this way, the loads of the two motors 9a and 9b are detected, and the angle ⁇ of the baffle plates 11a and 11b is controlled according to the difference ⁇ L between the load of the motors 9a and 9b.
  • Embodiment 2 has a regulation structure in which the angle ⁇ of the baffle plates 11a and 11b does not exceed 90°.
  • the regulating structure is, for example, a stopper provided at a position where the baffle plates 11a and 11b collide with each other when the angle ⁇ is 90°.
  • FIG. 11 is a diagram showing a flow of control of the baffle plates 11a and 11b performed by the control device 30 during operation of the air conditioner 100 according to Embodiment 1. As shown in FIG. A control flow of the baffle plates 11a and 11b during operation of the air conditioner 100 will be described below with reference to FIG. When the operation of the air conditioner 100 is started, or when the air volume setting is changed, the process proceeds to step S101.
  • Step S101 The control device 30 detects the loads on the two motors 9a and 9b and determines whether the difference ⁇ L between the load on the motor 9a and the load on the motor 9b is greater than a preset first threshold Th1.
  • a preset first threshold Th1 a preset first threshold value
  • the process proceeds to step S102.
  • the controller 30 determines that the difference ⁇ L between the load on the motor 9a and the load on the motor 9b is not greater than the first threshold Th1 (NO)
  • the process repeats step S101.
  • Step S102 The control device 30 rotates the baffle plates 11a and 11b so that the angle ⁇ of the baffle plates 11a and 11b is reduced by a preset first angle ⁇ 1.
  • Step S103 The control device 30 detects the loads on the two motors 9a and 9b and determines whether the difference ⁇ L between the load on the motor 9a and the load on the motor 9b is smaller than a preset second threshold Th2.
  • the controller 30 determines that the difference ⁇ L between the load on the motor 9a and the load on the motor 9b is smaller than the second threshold Th2 (YES)
  • the process proceeds to step S104.
  • the controller 30 determines that the difference ⁇ L between the load on the motor 9a and the load on the motor 9b is not smaller than the second threshold Th2 (NO)
  • the process returns to step S102.
  • Step S104 The control device 30 maintains the angle ⁇ of the baffle plates 11a and 11b. In other words, nothing is processed.
  • Step S105 The control device 30 detects the loads on the two motors 9a and 9b and determines whether the difference ⁇ L between the load on the motor 9a and the load on the motor 9b is greater than a first threshold Th1.
  • a first threshold Th1 YES
  • the process returns to step S102.
  • the controller 30 determines that the difference ⁇ L between the load on the motor 9a and the load on the motor 9b is not greater than the first threshold Th1 (NO)
  • the process proceeds to step S106.
  • step S105 is a process that assumes a case where the difference ⁇ L between the load on the motor 9a and the load on the motor 9b fluctuates due to an external factor. With this process, even if the difference ⁇ L between the load of the motor 9a and the load of the motor 9b becomes larger than the first threshold Th1 due to an external factor, the process can be returned to step S102, and the load of the motor 9a and the load of the motor 9b can be returned to step S102.
  • a process (steps S102 and S103) can be performed to reduce the difference ⁇ L from the load of the .
  • Step S106 The control device 30 detects the loads of the two motors 9a and 9b, and the state in which the difference ⁇ L between the load of the motor 9a and the load of the motor 9b is smaller than the second threshold Th2 has passed for a predetermined time T1 or longer. determine whether When the controller 30 determines that the state in which the difference ⁇ L between the load of the motor 9a and the load of the motor 9b is smaller than the second threshold Th2 has passed for the predetermined time T1 or more (YES), the process proceeds to step S107.
  • step S104 when the control device 30 determines that the state in which the difference ⁇ L between the load of the motor 9a and the load of the motor 9b is smaller than the second threshold Th2 has not passed the predetermined time T1 or longer (NO), the process proceeds to step S104. back to
  • Step S107 The control device 30 rotates the baffle plates 11a and 11b so that the angle ⁇ of the baffle plates 11a and 11b is increased by a preset second angle ⁇ 2.
  • Step S108 The control device 30 detects the loads on the two motors 9a and 9b and determines whether the difference ⁇ L between the load on the motor 9a and the load on the motor 9b is greater than a second threshold Th2.
  • a second threshold Th2 the difference ⁇ L between the load on the motor 9a and the load on the motor 9b is greater than the second threshold Th2 (YES)
  • the process returns to step S101.
  • the controller 30 determines that the difference ⁇ L between the load on the motor 9a and the load on the motor 9b is not greater than the second threshold Th2 (NO)
  • the process returns to step S107.
  • FIG. 12 is a diagram showing a control flow of the baffle plates 11a and 11b performed by the control device 30 when the operation of the air conditioner 100 according to Embodiment 1 is stopped.
  • a control flow of the baffle plates 11a and 11b when the operation of the air conditioner 100 is stopped will be described below with reference to FIG. After the operation of the air conditioner 100 is stopped, the process proceeds to step S201.
  • Step S201 The control device 30 rotates the baffle plates 11a and 11b so that the angle ⁇ of the baffle plates 11a and 11b is 90°.
  • the baffle plates 11a and 11b can always be in the same position.
  • FIG. 13 is a diagram showing a modification of the control flow for the baffle plates 11a and 11b performed by the control device 30 when the air conditioner 100 according to Embodiment 1 is in operation.
  • the control flow of the air guide plates 11a and 11b during operation of the air conditioner 100 may be simpler than the control flow shown in FIG. 11, as shown in FIG. That is, when the control device 30 determines that the difference ⁇ L between the load of the motor 9a and the load of the motor 9b is larger than the first threshold Th1, the angle ⁇ of the baffle plates 11a and 11b is decreased until it becomes smaller than the second threshold Th2. It is also possible to perform only the process of
  • the air conditioner 100 includes the motors 9a and 9b that drive the two fans 5a and 5b, respectively, and the two wind guide plates 11a according to the load difference ⁇ L between the two motors 9a and 9b. , 11b.
  • the two baffle plates 11a and 11b are rotated according to the difference in load ⁇ L between the two motors 9a and 9b. Therefore, it is possible to suppress uneven loads on the two fans 5a and 5b, and to suppress a decrease in operating efficiency due to current imbalance between the two fans 5a and 5b. A decrease in aerodynamic performance caused by a decrease in efficiency can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)

Abstract

This air conditioner comprises: a casing having an intake opening and two blowout openings; two blowers disposed inside the casing so as to be lined up in the width direction thereof, the blowers blowing air taken in through the intake opening to a mutually different one of the two blowout openings; a partition plate provided between the two blowers; and baffle plates provided to the edges of each of the two blowout openings, the baffle plates protruding toward the outside of the casing. The two baffle plates are provided so as to be positioned between the two blowout openings and such that the angles formed by each of the baffle plates with respect to opening surfaces of the provided blowout openings are 90° or less.

Description

空気調和機air conditioner
 本開示は、2つの送風機が筐体の幅方向に並べて配置された空気調和機に関するものである。 The present disclosure relates to an air conditioner in which two fans are arranged side by side in the width direction of the housing.
 従来、2つの送風機が筐体の幅方向に並べて配置された空気調和機がある(例えば、特許文献1参照)。特許文献1の空気調和機は、筐体の内部が、熱交換器が収納された熱交換室と、送風機が収納された送風室とに区画されており、送風機の吹き出し部には、熱交換器まで延長したディフューザ部が設けられている。そして、筐体の送風室側に形成された吸入口より筐体内に吸い込まれた空気は、送風機の吹き出し部より吹き出され、ディフューザ部を通って熱交換器を通過し、その後、筐体の熱交換室側に形成された吹出口より筐体外へ放出される。 Conventionally, there are air conditioners in which two blowers are arranged side by side in the width direction of the housing (see Patent Document 1, for example). In the air conditioner of Patent Document 1, the inside of the housing is divided into a heat exchange chamber containing a heat exchanger and a blowing chamber containing a blower. A diffuser section extending to the vessel is provided. Then, the air sucked into the housing from the suction port formed on the blowing chamber side of the housing is blown out from the blowing part of the blower, passes through the diffuser part, passes through the heat exchanger, and then heats the housing. It is discharged to the outside of the housing from an outlet formed on the exchange chamber side.
 また、ディフューザ部は、空気の流れを幅方向に拡散させるように形成されており、これにより、熱交換器に対して幅方向の風速分布の均一化を図っている。 In addition, the diffuser section is formed so as to diffuse the air flow in the width direction, thereby making the air velocity distribution in the width direction uniform with respect to the heat exchanger.
特開2010-117110号公報Japanese Patent Application Laid-Open No. 2010-117110
 しかしながら、特許文献1では、2つの送風機の間にはそれらに両軸シャフトで連結されたモーターしか設けられておらず、2つの送風機の距離が近いと、2つの送風機の吸込口から吸い込まれる空気が互いに干渉して2つの送風機の負荷が不均一となってしまう。また、特許文献1では、送風機の吹き出し部にディフューザ部が設けられており、ディフューザ部は、空気の流れを幅方向に拡散させるように形成されているため、一方の送風機の吹き出し部から吹き出された空気は、ディフューザ部を通過した後、他方の送風機の吹き出し部から吹き出されてディフューザ部を通過した空気と干渉するようになっており、2つの送風機の吹き出し部から吹き出された空気が互いに干渉することにより、送風抵抗が大きくなってしまう。そして、2つの送風機の負荷が不均一となったり、送風抵抗が大きくなったりすると、運転効率が低下し、空力性能が低下してしまうという課題があった。 However, in Patent Document 1, only a motor connected to them by a double shaft is provided between the two blowers, and if the distance between the two blowers is short, the air sucked from the suction port of the two blowers interfere with each other resulting in uneven loading of the two fans. Further, in Patent Document 1, a diffuser portion is provided in the blowing portion of the blower, and the diffuser portion is formed so as to diffuse the air flow in the width direction. After passing through the diffuser section, the air blown out from the blowing section of the other fan interferes with the air that has passed through the diffuser section. As a result, air blow resistance increases. In addition, when the load on the two fans becomes uneven or the blowing resistance increases, there is a problem that the operating efficiency is lowered and the aerodynamic performance is lowered.
 本開示は、以上のような課題を解決するためになされたもので、2つの送風機の負荷が不均一となること、および、送風抵抗が大きくなることにより発生する運転効率の低下を抑制した空気調和機を提供することを目的としている。 The present disclosure has been made in order to solve the above problems, and an air blower that suppresses a decrease in operating efficiency caused by uneven loads on the two fans and an increase in air blow resistance. The purpose is to provide a harmonizing machine.
 本開示に係る空気調和機は、吸入口および2つの吹出口を有する筐体と、前記筐体の内部にその幅方向に並べて配置され、前記吸入口から吸い込んだ空気を前記2つの吹出口のうちそれぞれ異なる一方から吹き出す2つの送風機と、前記2つの送風機の間に設けられた仕切板と、前記2つの吹出口のそれぞれの縁に設けられ、前記筐体の外側に突出した導風板と、を備え、2つの前記導風板は、前記2つの吹出口の間に位置するように設けられており、かつ、それぞれが設けられた前記吹出口の開口面に対する角度が90°以下となるように設けられているものである。 An air conditioner according to the present disclosure includes a housing having an inlet and two outlets, and arranged side by side in the width direction of the housing inside the housing. two blowers blowing from different one of them, a partition plate provided between the two blowers, and a baffle plate provided at each edge of the two outlets and protruding outside the housing; , wherein the two air guide plates are provided so as to be positioned between the two outlets, and the angle with respect to the opening surface of the outlets provided respectively is 90° or less. It is provided as follows.
 本開示に係る空気調和機によれば、2つの送風機の間に仕切板が設けられているため、2つの送風機の距離が近くても、送風機から吸い込まれる空気が互いに干渉して2つの送風機の負荷が不均一となるのを抑制することができる。また、2つの吹出口のそれぞれの縁に2つの導風板が設けられており、2つの導風板は、2つの吹出口の間に位置するように設けられており、かつ、それぞれが設けられた吹出口の開口面に対する角度が90°以下となるように設けられている。そのため、吹出口から吹き出された空気の流れが幅方向に拡散されるのが抑制され、送風抵抗が大きくなることを抑制することができる。その結果、2つの送風機の負荷が不均一となること、および、送風抵抗が大きくなることが抑制されるため、運転効率の低下を抑制することができる。 According to the air conditioner according to the present disclosure, since the partition plate is provided between the two fans, even if the two fans are close to each other, the air sucked from the fans interferes with each other, Uneven loads can be suppressed. In addition, two air guide plates are provided at the edges of each of the two air outlets, and the two air guide plates are provided so as to be positioned between the two air outlets. The angle of the air outlet with respect to the opening surface is 90° or less. Therefore, it is possible to suppress the spread of the flow of air blown out from the outlet in the width direction, thereby suppressing an increase in blowing resistance. As a result, uneven loads on the two blowers and an increase in blowing resistance are suppressed, so a decrease in operating efficiency can be suppressed.
実施の形態1に係る空気調和機を示す正面斜視図である。1 is a front perspective view showing an air conditioner according to Embodiment 1. FIG. 図1に示す空気調和機から前板を取り外した正面斜視図である。Fig. 2 is a front perspective view of the air conditioner shown in Fig. 1 with a front plate removed; 実施の形態1に係る空気調和機の上部の内部構造を示す正面図である。2 is a front view showing the internal structure of the upper part of the air conditioner according to Embodiment 1. FIG. 図3に示す送風機からファンケーシングを取り外した状態の正面図である。4 is a front view of the fan shown in FIG. 3 with a fan casing removed; FIG. 実施の形態1に係る空気調和機の筐体内の空気の流れを示す正面模式図である。FIG. 2 is a schematic front view showing the flow of air inside the housing of the air conditioner according to Embodiment 1; 実施の形態1に係る空気調和機の上部構造を拡大した正面斜視図である。2 is an enlarged front perspective view of the upper structure of the air conditioner according to Embodiment 1. FIG. 実施の形態1に係る空気調和機の仕切板のサイズを説明する図である。FIG. 4 is a diagram for explaining sizes of partition plates of the air conditioner according to Embodiment 1; 実施の形態1に係る空気調和機の仕切板の下端部の位置を説明する図である。FIG. 4 is a diagram illustrating the position of the lower end of the partition plate of the air conditioner according to Embodiment 1; 実施の形態1に係る空気調和機の導風板の角度を説明する図である。FIG. 4 is a diagram for explaining the angle of the baffle plate of the air conditioner according to Embodiment 1; 実施の形態1に係る空気調和機の導風板のサイズを説明する図である。FIG. 4 is a diagram illustrating the size of the air guide plate of the air conditioner according to Embodiment 1; 実施の形態1に係る空気調和機の運転時に制御装置が行う導風板の制御フローを示す図である。FIG. 4 is a diagram showing a control flow of the baffle plate performed by the control device during operation of the air conditioner according to Embodiment 1; 実施の形態2に係る空気調和機の運転停止時に制御装置が行う導風板の制御フローを示す図である。FIG. 10 is a diagram showing a control flow of the baffle plate performed by the control device when the operation of the air conditioner according to Embodiment 2 is stopped. 実施の形態2に係る空気調和機の運転時に制御装置が行う導風板の制御フローの変形例を示す図である。FIG. 10 is a diagram showing a modification of the control flow of the baffle plate performed by the control device during operation of the air conditioner according to Embodiment 2;
 以下、実施の形態に係る空気調和機100を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の説明において、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、これは説明のためのものであって、これらの用語は本開示を限定するものではない。これらの方向を示す用語は、特に明示しない限り、空気調和機100を正面視した場合の方向を意味している。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。 The air conditioner 100 according to the embodiment will be described below with reference to the drawings. It should be noted that the present disclosure is not limited by the embodiments described below. Also, in the following drawings, the size relationship of each component may differ from the actual size. Also, in the following description, terms representing directions (for example, "up", "down", "right", "left", "front", "back", etc.) are used as appropriate for ease of understanding. For the purpose of description, these terms are not intended to limit this disclosure. Unless otherwise specified, these directional terms mean directions when the air conditioner 100 is viewed from the front. Also, in each figure, the same reference numerals denote the same or corresponding parts, which are common throughout the specification.
 実施の形態1.
 図1は、実施の形態1に係る空気調和機100を示す正面斜視図である。図2は、図1に示す空気調和機100から前板2を取り外した状態の正面斜視図である。図3は、実施の形態1に係る空気調和機100の上部の内部構造を示す正面図である。図4は、図3に示す送風機5a、5bからファンケーシング50a、50bを取り外した状態の正面図である。
Embodiment 1.
FIG. 1 is a front perspective view showing an air conditioner 100 according to Embodiment 1. FIG. FIG. 2 is a front perspective view of the air conditioner 100 shown in FIG. 1 with the front plate 2 removed. 3 is a front view showing the internal structure of the upper portion of the air conditioner 100 according to Embodiment 1. FIG. FIG. 4 is a front view of the fans 5a and 5b shown in FIG. 3 with the fan casings 50a and 50b removed.
 実施の形態1に係る空気調和機100は、図1および図2に示すように、例えば床置き型であり、ダクト60(後述する図5参照)を介して室内空間に調和空気を供給するものである。空気調和機100は、外郭を構成する筐体1を備えており、筐体1の前面には前板2が設けられている。筐体1の内部には、2つの送風機5a、5b、熱交換器6、熱交換器6からの凝縮水を回収するドレンパン7、および、制御装置30を収納する制御箱8が設けられている。筐体1の前板2には、筐体1の内部に空気を取り込む吸入口20が形成されている。また、筐体1の上面4には、筐体1の外部へ空気を吹き出す吹出口40a、40bが形成されている。そして、筐体1の内部には、吸入口20から吹出口40a、40bに至る風路が形成されている。また、筐体1の上面4に形成された吹出口40a、40bの周縁部の一辺(以下、縁と称する)には、筐体1の外側つまり上方に突出した導風板11a、11bが設けられている。導風板11a、11bは、吹出口40aの吹出口40b側の縁と、吹出口40bの吹出口40a側の縁にそれぞれ設けられている。つまり、2つの導風板11a、11bは、2つの吹出口40a、40bの間に位置するように設けられている。なお、導風板11a、11bの詳細については後述する。 As shown in FIGS. 1 and 2, the air conditioner 100 according to Embodiment 1 is, for example, a floor type, and supplies conditioned air to the indoor space via a duct 60 (see FIG. 5 described later). is. An air conditioner 100 includes a housing 1 forming an outer shell, and a front plate 2 is provided on the front surface of the housing 1 . Inside the housing 1, two fans 5a and 5b, a heat exchanger 6, a drain pan 7 for collecting condensed water from the heat exchanger 6, and a control box 8 for housing a control device 30 are provided. . The front plate 2 of the housing 1 is formed with an intake port 20 for taking air into the housing 1 . In addition, the upper surface 4 of the housing 1 is formed with outlets 40 a and 40 b for blowing out air to the outside of the housing 1 . An air passage is formed inside the housing 1 from the inlet 20 to the outlets 40a and 40b. In addition, on one side (hereinafter referred to as edge) of the periphery of the outlets 40a and 40b formed on the upper surface 4 of the housing 1, baffle plates 11a and 11b protruding outward from the housing 1, that is, upward, are provided. It is The baffle plates 11a and 11b are provided on the edge of the air outlet 40a on the air outlet 40b side and the edge of the air outlet 40b on the air outlet 40a side, respectively. That is, the two baffle plates 11a and 11b are provided so as to be located between the two outlets 40a and 40b. The details of the baffle plates 11a and 11b will be described later.
 熱交換器6は、筐体1の前板2が配置されている側から見て、吸入口20の裏側に配置されている。また、熱交換器6は、筐体1の内部において傾斜して配置されている。 The heat exchanger 6 is arranged on the back side of the intake port 20 when viewed from the side of the housing 1 where the front plate 2 is arranged. Also, the heat exchanger 6 is arranged at an angle inside the housing 1 .
 2つの送風機5a、5bは、筐体1の内部において熱交換器6よりも上側かつ吹出口40a、40bよりも下側に配置されている。また、2つの送風機5a、5bは、左右方向(幅方向)に並べて配置されている。2つの送風機5a、5bは、図3および図4に示すように、ファン51a、51bと、ファン51a、51bの周囲を覆い筐体1の上面4に固定されたファンケーシング50a、50bと、を備えている。ここで、ファン51a、51bは、シロッコファンにより構成されている。また、2つの送風機5a、5bのファン51a、51bには、モーター9a、9bがそれぞれ連結されている。そして、モーター9a、9bをインバーター制御することにより、ファン51a、51bが駆動される。なお、実施の形態1では、2つの送風機5a、5bのファン51a、51bにモーター9a、9bがそれぞれ連結されている構成としたが、それに限定されず、2つの送風機5a、5bのファン51a、51bに同一のモーターが連結されている構成としてもよい。 The two fans 5a and 5b are arranged inside the housing 1 above the heat exchanger 6 and below the outlets 40a and 40b. The two fans 5a and 5b are arranged side by side in the left-right direction (width direction). As shown in FIGS. 3 and 4, the two blowers 5a and 5b include fans 51a and 51b and fan casings 50a and 50b that cover the peripheries of the fans 51a and 51b and are fixed to the upper surface 4 of the housing 1. I have. Here, the fans 51a and 51b are composed of sirocco fans. Motors 9a and 9b are connected to the fans 51a and 51b of the two blowers 5a and 5b, respectively. The fans 51a and 51b are driven by inverter-controlling the motors 9a and 9b. In Embodiment 1, the motors 9a and 9b are connected to the fans 51a and 51b of the two blowers 5a and 5b, respectively. 51b may be connected to the same motor.
 ドレンパン7は、図2に示すように、筐体1の内部において傾斜して配置されている熱交換器6の下方で流下する水分を捕集できるように配置されている。 As shown in FIG. 2, the drain pan 7 is arranged inside the housing 1 so as to collect moisture flowing down below the heat exchanger 6 which is inclined.
 制御装置30は、例えば、専用のハードウェア、または記憶部(図示せず)に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、プロセッサともいう)で構成される。 The control device 30 is, for example, dedicated hardware, or a CPU (Central Processing Unit) that executes a program stored in a storage unit (not shown). ).
 制御装置30が専用のハードウェアである場合、制御装置30は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。制御装置30が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。 If the control device 30 is dedicated hardware, the control device 30 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applicable. Each functional unit implemented by the control device 30 may be implemented by separate hardware, or each functional unit may be implemented by one piece of hardware.
 制御装置30がCPUの場合、制御装置30が実行する各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアはプログラムとして記述され、記憶部に格納される。CPUは、記憶部に格納されたプログラムを読み出して実行することにより、制御装置30の各機能を実現する。ここで、記憶部は、各種情報を記憶するものであり、例えば、フラッシュメモリ、EPROM、および、EEPROMなどの、データの書き換え可能な不揮発性の半導体メモリを備えている。 When the control device 30 is a CPU, each function executed by the control device 30 is implemented by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in the storage unit. The CPU implements each function of the control device 30 by reading and executing the programs stored in the storage unit. Here, the storage unit stores various kinds of information, and includes, for example, a rewritable non-volatile semiconductor memory such as flash memory, EPROM, and EEPROM.
 なお、制御装置30の機能の一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。 It should be noted that part of the functions of the control device 30 may be realized by dedicated hardware, and part of them may be realized by software or firmware.
 制御装置30は、空気調和機100に設けられた各種センサ(図示せず)からの検知信号、および、操作部(図示せず)からの操作信号などに基づいて、送風機5a、5bなどを制御し、空気調和機100全体の動作を制御する。 The control device 30 controls the fans 5a and 5b based on detection signals from various sensors (not shown) provided in the air conditioner 100 and operation signals from an operation unit (not shown). and controls the operation of the air conditioner 100 as a whole.
 図5は、実施の形態1に係る空気調和機100の筐体1内の空気の流れを示す正面模式図である。なお、図5の矢印は空気の流れを示している。 FIG. 5 is a schematic front view showing the flow of air inside the housing 1 of the air conditioner 100 according to Embodiment 1. FIG. Note that the arrows in FIG. 5 indicate the flow of air.
 図5に示すように、吸入口20から筐体1の内部に流入した空気は、熱交換器6を通過して調和された後、上方に流れながら分岐し、送風機5a、5bのファンケーシング50a、50bの内部に吸い込まれる。送風機5a、5bのファンケーシング50a、50bに吸い込まれた調和空気は、筐体1の上面4に形成された吹出口40a、40bからそれぞれ吹き出され、ダクト60を介して室内空間に供給される。 As shown in FIG. 5, the air that has flowed into the housing 1 from the suction port 20 passes through the heat exchanger 6 and is conditioned, then flows upward and branches into the fan casings 50a of the blowers 5a and 5b. , 50b. The conditioned air sucked into the fan casings 50a, 50b of the blowers 5a, 5b is blown out from the outlets 40a, 40b formed in the upper surface 4 of the housing 1, respectively, and supplied to the indoor space via the duct 60.
 図6は、実施の形態1に係る空気調和機100の上部構造を拡大した正面斜視図である。図7は、実施の形態1に係る空気調和機100の仕切板10のサイズを説明する図である。図8は、実施の形態1に係る空気調和機100の仕切板10の下端部の位置を説明する図である。なお、図6~図8は、空気調和機100から前板2を取り外した状態を示している。また、図7および図8は、説明を分かりやすくするため一部部品を図示省略している。 FIG. 6 is an enlarged front perspective view of the upper structure of the air conditioner 100 according to Embodiment 1. FIG. FIG. 7 is a diagram illustrating the size of partition plate 10 of air conditioner 100 according to Embodiment 1. As shown in FIG. FIG. 8 is a diagram illustrating the position of the lower end of partition plate 10 of air conditioner 100 according to Embodiment 1. As shown in FIG. 6 to 8 show the air conditioner 100 with the front plate 2 removed. Also, in FIGS. 7 and 8, some parts are omitted for the sake of clarity of explanation.
 図6に示すように、左右方向に設置された2つの送風機5a、5bの間には、矩形状の仕切板10が設けられている。このように、2つの送風機5a、5bの間に仕切板10を設けることで、2つの送風機5a、5bの距離が近くても、送風機5a、5bの下方の吸入口20から送風機5a、5bに流れてきた空気を送風機5a、5bで奪い合うことが抑制される(図5のB部参照)。そのため、送風機5a、5bの吸込口52a、52bから吸い込まれる空気が互いに干渉して2つの送風機5a、5bの負荷が不均一となるのを抑制することができる。そして、その結果、2つの送風機5a、5bの間で電流値不均衡が発生するなどによる運転効率の低下を抑制することができ、運転効率の低下によって生じる空力性能の低下を抑制することができる。 As shown in FIG. 6, a rectangular partition plate 10 is provided between the two fans 5a and 5b installed in the horizontal direction. By providing the partition plate 10 between the two fans 5a and 5b in this way, even if the two fans 5a and 5b are close to each other, the air flow from the suction port 20 below the fans 5a and 5b to the fans 5a and 5b can be maintained. It is suppressed that the blowers 5a and 5b compete for the flowing air (see B section in FIG. 5). Therefore, it is possible to prevent the air sucked from the suction ports 52a and 52b of the fans 5a and 5b from interfering with each other and causing the loads on the two fans 5a and 5b to become uneven. As a result, it is possible to suppress the deterioration of the operating efficiency due to the current imbalance occurring between the two fans 5a and 5b, and it is possible to suppress the deterioration of the aerodynamic performance caused by the deterioration of the operating efficiency. .
 また、図7に示すように、仕切板10の高さ方向(上下方向)の幅H1は、送風機5a、5bの破線で示す吸込口52a、52bの直径H2よりも大きくなっている。また、仕切板10の奥行き方向(前後方向)の幅W1は、送風機5a、5bの破線で示す吸込口52a、52bの奥行き方向の幅W2よりも大きくなっている。このように、仕切板10の面積を送風機5a、5bの吸込口52a、52bの開口面積よりも大きく設けることで、送風機5a、5bの下方の吸入口20から送風機5a、5bに流れてきた空気を送風機5a、5bで奪い合うことがさらに抑制される。そのため、送風機5a、5bの吸込口52a、52bから吸い込まれる空気が互いに干渉して2つの送風機5a、5bの負荷が不均一となるのを抑制する効果を高めることができる。そして、その結果、運転効率の低下を抑制する効果を高めることができ、運転効率の低下によって生じる空力性能の低下を抑制する効果を高めることができる。 Further, as shown in FIG. 7, the width H1 of the partition plate 10 in the height direction (vertical direction) is larger than the diameter H2 of the suction ports 52a and 52b of the fans 5a and 5b indicated by broken lines. Further, the width W1 of the partition plate 10 in the depth direction (front-rear direction) is larger than the width W2 of the suction ports 52a and 52b of the fans 5a and 5b in the depth direction indicated by broken lines. Thus, by setting the area of the partition plate 10 larger than the opening area of the suction ports 52a and 52b of the fans 5a and 5b, the air flowing from the suction port 20 below the fans 5a and 5b to the fans 5a and 5b are further suppressed from competing for the air blowers 5a and 5b. Therefore, it is possible to enhance the effect of preventing the air sucked from the suction ports 52a and 52b of the fans 5a and 5b from interfering with each other and causing the loads on the two fans 5a and 5b to become uneven. As a result, it is possible to enhance the effect of suppressing the deterioration of the operating efficiency, and it is possible to enhance the effect of suppressing the deterioration of the aerodynamic performance caused by the deterioration of the operating efficiency.
 さらに、仕切板10は、その吸入口20側の端部が、送風機5a、5bの吸込口52a、52bの吸入口20側の端部よりも吸入口20側に位置するように設けられている。つまり、図8に示すように、仕切板10は、その下端L1が、送風機5a、5bの吸込口52a、52bの下端L2よりも下側に位置するように設けられている。このように、仕切板10の下端L1が、送風機5a、5bの吸込口52a、52bの下端L2よりも筐体1の吸入口20側に位置するように仕切板10を設けることで、送風機5a、5bの下方の吸入口20から送風機5a、5bに流れてきた空気を送風機5a、5bで奪い合うことがさらに抑制される。そのため、送風機5a、5bの吸込口52a、52bから吸い込まれる空気が互いに干渉して2つの送風機5a、5bの負荷が不均一となるのを抑制する効果をさらに高めることができる。そして、その結果、運転効率の低下を抑制する効果をさらに高めることができ、運転効率の低下によって生じる空力性能の低下を抑制する効果をさらに高めることができる。 Furthermore, the partition plate 10 is provided so that the end on the suction port 20 side is located closer to the suction port 20 than the ends on the suction port 20 side of the suction ports 52a and 52b of the fans 5a and 5b. . That is, as shown in FIG. 8, the partition plate 10 is provided so that the lower end L1 thereof is positioned below the lower ends L2 of the suction ports 52a, 52b of the fans 5a, 5b. Thus, by providing the partition plate 10 so that the lower end L1 of the partition plate 10 is positioned closer to the suction port 20 side of the housing 1 than the lower end L2 of the suction ports 52a and 52b of the fans 5a and 5b, , 5b from the suction port 20 to the fans 5a and 5b. Therefore, it is possible to further enhance the effect of preventing the air sucked from the suction ports 52a and 52b of the fans 5a and 5b from interfering with each other and causing the loads on the two fans 5a and 5b to become uneven. As a result, it is possible to further enhance the effect of suppressing a decrease in operating efficiency, and to further enhance the effect of suppressing a decrease in aerodynamic performance caused by a decrease in operating efficiency.
 図9は、実施の形態1に係る空気調和機100の導風板11の角度を説明する図である。図10は、実施の形態1に係る空気調和機100の導風板11のサイズを説明する図である。なお、図9および図10は、空気調和機100から前板2を取り外した状態を示している。また、図9は、説明を分かりやすくするため一部部品を図示省略している。また、図9では、導風板11aと導風板11bとで異なる角度を示しているが、説明のためである。導風板11aと導風板11bとは、同じ角度にしてもよいし、異なる角度にしてもよい。 FIG. 9 is a diagram for explaining the angle of the baffle plate 11 of the air conditioner 100 according to Embodiment 1. FIG. FIG. 10 is a diagram illustrating the size of the baffle plate 11 of the air conditioner 100 according to Embodiment 1. FIG. 9 and 10 show the air conditioner 100 with the front plate 2 removed. Moreover, FIG. 9 omits some parts for the sake of clarity of explanation. Also, in FIG. 9, different angles are shown for the baffle plate 11a and the baffle plate 11b, but this is for explanation. The baffle plate 11a and the baffle plate 11b may have the same angle or may have different angles.
 図9に示すように、導風板11a、11bは、筐体1の上面4のそれぞれが設けられた吹出口40a、40bの開口面に対する角度θが90°以下となるように設けられている。詳しくは、導風板11a、11bの上面11a1、11b1(図6参照)が、上記の吹出口40a、40bの開口面に対する角度θが90°以下となるように設けられている。なお、図6に示すように、導風板11a、11bの上面11a1、11b1は、長方形状を有しているが、それに限定されない。さらに、導風板11a、11bは、正面視して、吹出口40a、40bの上方への投影面X内に収まる任意の長さで設けられている。ここで、投影面Xの左右方向の幅は吹出口40a、40bの左右方向の幅と同じである。つまり、導風板11a、11bは、それぞれが設けられた吹出口40a、40bの左右方向の幅内に収まるように設けられている。 As shown in FIG. 9, the baffle plates 11a and 11b are provided so that the angle θ with respect to the opening plane of the outlets 40a and 40b on which the upper surface 4 of the housing 1 is provided is 90° or less. . Specifically, the upper surfaces 11a1 and 11b1 (see FIG. 6) of the air guide plates 11a and 11b are provided so that the angle .theta. with respect to the opening surfaces of the outlets 40a and 40b is 90.degree. or less. In addition, as shown in FIG. 6, the upper surfaces 11a1 and 11b1 of the baffle plates 11a and 11b have a rectangular shape, but the shape is not limited thereto. Furthermore, the baffle plates 11a and 11b are provided with arbitrary lengths that fit within the projected plane X above the outlets 40a and 40b when viewed from the front. Here, the width of the projection plane X in the horizontal direction is the same as the width of the outlets 40a and 40b in the horizontal direction. That is, the baffle plates 11a and 11b are provided so as to fit within the lateral width of the outlets 40a and 40b in which they are provided.
 このように導風板11a、11bを設けることで、吹出口40a、40bから吹き出された空気の流れ(図5のA部参照)が幅方向に拡散されるのが抑制され、送風抵抗が大きくなることを抑制することができる。なお、吹出口40a、40bの左右方向の幅内の少なくとも一部に導風板11a、11bが設けられていれば、吹き出された空気の拡散を抑止する効果が得られる。そのため、導風板11a、11bをそれぞれが設けられた吹出口40a、40bの左右方向の幅内に収まらないように設けても、吹出口40a、40bから吹き出された空気の流れが幅方向に拡散されるのが抑制される効果はあまり変わらない。そこで、導風板11a、11bをそれぞれが設けられた吹出口40a、40bの左右方向の幅内に収まるように設けることで、導風板11a、11bを無駄に長く設けなくて済む。 By providing the baffle plates 11a and 11b in this manner, the flow of air blown out from the outlets 40a and 40b (see part A in FIG. 5) is suppressed from being diffused in the width direction, and the blowing resistance is increased. can be prevented from becoming If the baffle plates 11a and 11b are provided in at least part of the lateral width of the outlets 40a and 40b, the effect of suppressing the diffusion of the blown air can be obtained. Therefore, even if the baffle plates 11a and 11b are provided so as not to fit within the lateral width of the outlets 40a and 40b in which they are provided, the flow of air blown out from the outlets 40a and 40b does not extend in the width direction. The effect of suppressing diffusion does not change much. Therefore, by providing the baffle plates 11a and 11b so as to fit within the lateral width of the outlets 40a and 40b, the baffle plates 11a and 11b do not have to be unnecessarily long.
 なお、導風板11a、11bの角度θが小さくなると、吹出口40a、40bから吹き出される空気を導風板11a、11bが遮ることで生じる送風抵抗が大きくなるため、導風板11a、11bの角度θは30°以上が好ましい。図10に示すように、導風板11a、11bの奥行き方向の幅W3は、筐体1の上面4に設けられたダクト60の接続部の奥行き方向の幅W4よりも小さくなっている。つまり、導風板11a、11bの長手方向の長さは、ダクト60の接続部よりも小さくなっている。これは、ダクト60を吹出口40a、40bを覆うようにダクト60を筐体1の上面4に接続できるようにするためである。また、導風板11a、11bの奥行き方向の幅W3を、吹出口40a、40bの奥行き方向の幅W5よりも大きくする。つまり、導風板11a、11bは、長手方向において、吹出口40a、40bの縁の長さよりも大きくする。そうすることで、吹出口40a、40bから吹き出された空気の流れが幅方向に拡散されるのがさらに抑制されるため、送風抵抗が大きくなることを抑制する効果を高めることができる。 When the angle θ of the baffle plates 11a and 11b decreases, the airflow resistance caused by the baffle plates 11a and 11b blocking the air blown from the outlets 40a and 40b increases. is preferably 30° or more. As shown in FIG. 10 , the width W3 of the baffle plates 11 a and 11 b in the depth direction is smaller than the width W4 of the connecting portion of the duct 60 provided on the upper surface 4 of the housing 1 in the depth direction. In other words, the longitudinal lengths of the baffle plates 11 a and 11 b are smaller than the connecting portion of the duct 60 . This is to allow the duct 60 to be connected to the upper surface 4 of the housing 1 so as to cover the outlets 40a and 40b. Further, the width W3 of the baffle plates 11a and 11b in the depth direction is made larger than the width W5 of the outlets 40a and 40b in the depth direction. That is, the baffle plates 11a and 11b are made longer than the edges of the outlets 40a and 40b in the longitudinal direction. By doing so, it is possible to further suppress the spread of the flow of air blown out from the outlets 40a and 40b in the width direction, thereby enhancing the effect of suppressing an increase in the blowing resistance.
 以上、実施の形態1に係る空気調和機100は、吸入口20および2つの吹出口40a、40bを有する筐体1と、筐体1の内部にその幅方向に並べて配置され、吸入口20から吸い込んだ空気を2つの吹出口40a、40bのうちそれぞれ異なる一方から吹き出す2つの送風機5a、5bと、2つの送風機5a、5bの間に設けられた仕切板10と、2つの吹出口40a、40bのそれぞれの縁に設けられ、筐体1の外側に突出した導風板11a、11bと、を備え、2つの導風板11a、11bは、2つの吹出口40a、40bの間に位置するように設けられており、かつ、それぞれが設けられた吹出口40a、40bの開口面に対する角度θが90°以下となるように設けられている。 As described above, the air conditioner 100 according to Embodiment 1 includes the housing 1 having the intake port 20 and the two outlets 40a and 40b, and is arranged side by side in the width direction inside the housing 1. Two blowers 5a and 5b for blowing out the sucked air from a different one of the two blowers 40a and 40b, a partition plate 10 provided between the two blowers 5a and 5b, and the two blowers 40a and 40b. provided at each edge of the housing 1 and projecting to the outside of the housing 1, the two air guide plates 11a and 11b being positioned between the two outlets 40a and 40b. and the angle θ with respect to the opening surface of the outlets 40a and 40b is 90° or less.
 実施の形態1に係る空気調和機100によれば、2つの送風機5a、5bの間に仕切板10が設けられている。そのため、2つの送風機5a、5bの距離が近くても、送風機5a、5bから吸い込まれる空気が互いに干渉して2つの送風機5a、5bの負荷が不均一となるのを抑制することができる。また、2つの吹出口40a、40bのそれぞれの縁に2つの導風板11a、11bが設けられており、2つの導風板11a、11bは、2つの吹出口40a、40bの間に位置するように設けられており、かつ、それぞれが設けられた吹出口40a、40bの開口面に対する角度θが90°以下となるように設けられている。そのため、吹出口40a、40bから吹き出された空気の流れが幅方向に拡散されるのが抑制され、送風抵抗が大きくなることを抑制することができる。その結果、2つの送風機5a、5bの負荷が不均一となること、および、送風抵抗が大きくなることが抑制されるため、運転効率の低下を抑制することができる。 According to the air conditioner 100 according to Embodiment 1, the partition plate 10 is provided between the two fans 5a and 5b. Therefore, even if the two fans 5a and 5b are close to each other, it is possible to prevent the air sucked from the fans 5a and 5b from interfering with each other and causing the loads on the two fans 5a and 5b to become uneven. Two air guide plates 11a and 11b are provided at the edges of the two air outlets 40a and 40b, respectively, and the two air guide plates 11a and 11b are positioned between the two air outlets 40a and 40b. and the angle θ with respect to the opening surface of the outlets 40a and 40b is 90° or less. Therefore, it is possible to suppress the spread of the air flow blown out from the outlets 40a and 40b in the width direction, thereby suppressing an increase in the blowing resistance. As a result, uneven loads on the two fans 5a and 5b and an increase in blowing resistance are suppressed, so that a decrease in operating efficiency can be suppressed.
 また、実施の形態1に係る空気調和機100において、2つの導風板11a、11bは、それぞれが設けられた吹出口40a、40bの幅方向の幅内に収まるように設けられている。 In addition, in the air conditioner 100 according to Embodiment 1, the two baffle plates 11a and 11b are provided so as to fit within the width in the width direction of the outlets 40a and 40b in which they are provided.
 実施の形態1に係る空気調和機100によれば、導風板11a、11bを無駄に長くしなくて済む。 According to the air conditioner 100 according to Embodiment 1, the baffle plates 11a and 11b need not be unnecessarily long.
 また、実施の形態1に係る空気調和機100において、仕切板10の面積は、2つの送風機5a、5bの吸込口52a、52bの開口面積よりも大きい。 Also, in the air conditioner 100 according to Embodiment 1, the area of the partition plate 10 is larger than the opening areas of the suction ports 52a and 52b of the two fans 5a and 5b.
 実施の形態1に係る空気調和機100によれば、吸入口20から送風機5a、5bに流れてきた空気を送風機5a、5bで奪い合うことがさらに抑制される。そのため、送風機5a、5bの吸込口52a、52bから吸い込まれる空気が互いに干渉して2つの送風機5a、5bの負荷が不均一となるのを抑制する効果を高めることができる。そして、その結果、運転効率の低下を抑制する効果を高めることができ、運転効率の低下によって生じる空力性能の低下を抑制する効果を高めることができる。 According to the air conditioner 100 according to Embodiment 1, it is further suppressed that the fans 5a and 5b compete for the air that has flowed from the suction port 20 to the fans 5a and 5b. Therefore, it is possible to enhance the effect of preventing the air sucked from the suction ports 52a and 52b of the fans 5a and 5b from interfering with each other and causing the loads on the two fans 5a and 5b to become uneven. As a result, it is possible to enhance the effect of suppressing the deterioration of the operating efficiency, and it is possible to enhance the effect of suppressing the deterioration of the aerodynamic performance caused by the deterioration of the operating efficiency.
 また、実施の形態1に係る空気調和機100において、仕切板10の吸入口20側の端部は、2つの送風機5a、5bの吸込口52a、52bの吸入口20側の端部よりも吸入口20側に位置している。 Further, in the air conditioner 100 according to Embodiment 1, the end of the partition plate 10 on the suction port 20 side draws more air than the ends on the suction port 20 side of the suction ports 52a and 52b of the two fans 5a and 5b. It is located on the mouth 20 side.
 実施の形態1に係る空気調和機100によれば、吸入口20から送風機5a、5bに流れてきた空気を送風機5a、5bで奪い合うことがさらに抑制される。そのため、送風機5a、5bの吸込口52a、52bから吸い込まれる空気が互いに干渉して2つの送風機5a、5bの負荷が不均一となるのを抑制する効果をさらに高めることができる。そして、その結果、運転効率の低下を抑制する効果をさらに高めることができ、運転効率の低下によって生じる空力性能の低下を抑制する効果をさらに高めることができる。 According to the air conditioner 100 according to Embodiment 1, it is further suppressed that the fans 5a and 5b compete for the air that has flowed from the suction port 20 to the fans 5a and 5b. Therefore, it is possible to further enhance the effect of preventing the air sucked from the suction ports 52a and 52b of the fans 5a and 5b from interfering with each other and causing the loads on the two fans 5a and 5b to become uneven. As a result, it is possible to further enhance the effect of suppressing a decrease in operating efficiency, and to further enhance the effect of suppressing a decrease in aerodynamic performance caused by a decrease in operating efficiency.
 また、実施の形態1に係る空気調和機100において、2つの導風板11a、11bは長方形状を有し、長手方向が前記2つの吹出口40a、40bのそれぞれの縁に沿うように設けられており、長手方向において2つの吹出口40a、40bのそれぞれの縁の長さよりも大きい。 Further, in the air conditioner 100 according to Embodiment 1, the two baffle plates 11a and 11b have a rectangular shape, and the longitudinal direction is provided along the respective edges of the two outlets 40a and 40b. and is longer than the edge length of each of the two outlets 40a, 40b in the longitudinal direction.
 実施の形態1に係る空気調和機100によれば、吹出口40a、40bから吹き出された空気の流れが幅方向に拡散されるのがさらに抑制されるため、送風抵抗が大きくなることを抑制する効果を高めることができる。 According to the air conditioner 100 according to Embodiment 1, the flow of air blown out from the outlets 40a and 40b is further suppressed from being diffused in the width direction, thereby suppressing an increase in blowing resistance. You can increase the effect.
 実施の形態2.
 以下、実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 2.
Embodiment 2 will be described below, but descriptions of parts that overlap with those of Embodiment 1 will be omitted, and parts that are the same as or correspond to those of Embodiment 1 will be given the same reference numerals.
 実施の形態1に係る空気調和機100では、導風板11a、11bの角度θが90°以下となるように設けられており、角度θは不変である。それに対して、実施の形態2に係る空気調和機100では、導風板11a、11bの角度θが90°以下の角度で可変に設けられている。そのため、実施の形態2では、2つの導風板11a、11bにそれぞれ連結され、それらを回動させる導風板用モーター(図示せず)がモーター9a、9bとは別に設けられている。なお、実施の形態2では、2つの導風板11a、11bに導風板用モーターがそれぞれ連結されている構成としたが、それに限定されず、2つの導風板11a、11bに同一の導風板用モーターが連結されている構成としてもよい。ただし、実施の形態2では、2つの送風機5a、5bのファン51a、51bにモーター9a、9bがそれぞれ連結されている構成とする。 In the air conditioner 100 according to Embodiment 1, the angle θ of the baffle plates 11a and 11b is set to 90° or less, and the angle θ remains unchanged. In contrast, in the air conditioner 100 according to Embodiment 2, the angle θ of the baffle plates 11a and 11b is variably set to 90° or less. Therefore, in the second embodiment, a baffle plate motor (not shown) is provided separately from the motors 9a and 9b, which are coupled to the two baffle plates 11a and 11b to rotate them. In the second embodiment, the two baffle plates 11a and 11b are connected to the baffle plate motors, respectively. A configuration in which the wind plate motor is connected may be employed. However, in the second embodiment, the motors 9a and 9b are connected to the fans 51a and 51b of the two blowers 5a and 5b, respectively.
 制御装置30は、送風機5a、5bのファン51a、51bを駆動するモーター9a、9bの負荷をそれぞれ検知する。ここで、モーター9a、9bの負荷を検知する方法としては、例えば、電流センサを用いてモーター9a、9bに入力される電流値を検知する方法などであるが、それに限定されず、モーター9a、9bの消費電力を検知するなどその他の方法でもよい。そして、制御装置30は、モーター9aの負荷とモーター9bの負荷との差ΔLが、あらかじめ設定された第1閾値Th1を超えた場合、導風板11a、11bの角度θがあらかじめ設定された第1角度θ1だけ小さくなるように導風板11a、11bを回動させる。ここで、ΔLは絶対値である。 The control device 30 detects the loads of the motors 9a and 9b that drive the fans 51a and 51b of the blowers 5a and 5b, respectively. Here, as a method of detecting the load of the motors 9a and 9b, for example, there is a method of detecting the current value input to the motors 9a and 9b using a current sensor. Other methods such as detecting the power consumption of 9b may be used. When the difference ΔL between the load on the motor 9a and the load on the motor 9b exceeds a preset first threshold value Th1, the control device 30 sets the angle θ of the baffle plates 11a and 11b to a preset threshold value Th1. The baffle plates 11a and 11b are rotated so as to decrease by one angle θ1. Here, ΔL is an absolute value.
 また、制御装置30は、モーター9aの負荷とモーター9bの負荷との差ΔLが、あらかじめ設定された第2閾値Th2(<Th1)以下である場合、導風板11a、11bの角度θがあらかじめ設定された第2角度θ2だけ大きくなるように導風板11a、11bを回動させる。ここで、第1角度θ1と第2角度θ2とは同じ値であってもよいし、異なる値であってもよい。このように、2つのモーター9a、9bの負荷を検知し、モーター9aの負荷とモーター9bの負荷との差ΔLに応じて、導風板11a、11bの角度θを制御する。そうすることで、2つの送風機5a、5bの負荷が不均一となるのを抑制し、2つの送風機5a、5bの間で電流値不均衡が発生することによる運転効率の低下を抑制することができ、運転効率の低下によって生じる空力性能の低下を抑制することができる。 Further, when the difference ΔL between the load of the motor 9a and the load of the motor 9b is equal to or less than a preset second threshold Th2 (<Th1), the control device 30 sets the angle θ of the baffle plates 11a and 11b to The baffle plates 11a and 11b are rotated so as to increase by the set second angle θ2. Here, the first angle θ1 and the second angle θ2 may have the same value or may have different values. In this way, the loads of the two motors 9a and 9b are detected, and the angle θ of the baffle plates 11a and 11b is controlled according to the difference ΔL between the load of the motors 9a and 9b. By doing so, it is possible to suppress uneven loads on the two fans 5a and 5b and to suppress a decrease in operating efficiency due to current imbalance between the two fans 5a and 5b. It is possible to suppress deterioration in aerodynamic performance caused by deterioration in operating efficiency.
 実施の形態2では、導風板11a、11bの角度θが90°を超えない規制構造を有している。規制構造は、例えば、導風板11a、11bの角度θが90°のときにぶつかる位置に設けられたストッパーなどである。 Embodiment 2 has a regulation structure in which the angle θ of the baffle plates 11a and 11b does not exceed 90°. The regulating structure is, for example, a stopper provided at a position where the baffle plates 11a and 11b collide with each other when the angle θ is 90°.
 図11は、実施の形態1に係る空気調和機100の運転時に制御装置30が行う導風板11a、11bの制御フローを示す図である。
 以下、空気調和機100の運転時の導風板11a、11bの制御フローについて、図11を用いて説明する。空気調和機100の運転が開始されたら、あるいは、風量設定の変更があったら、処理はステップS101に進む。
FIG. 11 is a diagram showing a flow of control of the baffle plates 11a and 11b performed by the control device 30 during operation of the air conditioner 100 according to Embodiment 1. As shown in FIG.
A control flow of the baffle plates 11a and 11b during operation of the air conditioner 100 will be described below with reference to FIG. When the operation of the air conditioner 100 is started, or when the air volume setting is changed, the process proceeds to step S101.
(ステップS101)
 制御装置30は、2つのモーター9a、9bの負荷を検知し、モーター9aの負荷とモーター9bの負荷との差ΔLがあらかじめ設定された第1閾値Th1より大きいかどうか判定する。制御装置30が、モーター9aの負荷とモーター9bの負荷との差ΔLが第1閾値Th1より大きいと判定した場合(YES)、処理はステップS102に進む。一方、制御装置30が、モーター9aの負荷とモーター9bの負荷との差ΔLが第1閾値Th1より大きくないと判定した場合(NO)、処理はステップS101を繰り返す。
(Step S101)
The control device 30 detects the loads on the two motors 9a and 9b and determines whether the difference ΔL between the load on the motor 9a and the load on the motor 9b is greater than a preset first threshold Th1. When the control device 30 determines that the difference ΔL between the load on the motor 9a and the load on the motor 9b is greater than the first threshold value Th1 (YES), the process proceeds to step S102. On the other hand, when the controller 30 determines that the difference ΔL between the load on the motor 9a and the load on the motor 9b is not greater than the first threshold Th1 (NO), the process repeats step S101.
(ステップS102)
 制御装置30は、導風板11a、11bの角度θがあらかじめ設定された第1角度θ1だけ小さくなるように導風板11a、11bを回動させる。
(Step S102)
The control device 30 rotates the baffle plates 11a and 11b so that the angle θ of the baffle plates 11a and 11b is reduced by a preset first angle θ1.
(ステップS103)
 制御装置30は、2つのモーター9a、9bの負荷を検知し、モーター9aの負荷とモーター9bの負荷との差ΔLがあらかじめ設定された第2閾値Th2より小さいかどうか判定する。制御装置30が、モーター9aの負荷とモーター9bの負荷との差ΔLが第2閾値Th2より小さいと判定した場合(YES)、処理はステップS104に進む。一方、制御装置30が、モーター9aの負荷とモーター9bの負荷との差ΔLが第2閾値Th2より小さくないと判定した場合(NO)、処理はステップS102に戻る。
(Step S103)
The control device 30 detects the loads on the two motors 9a and 9b and determines whether the difference ΔL between the load on the motor 9a and the load on the motor 9b is smaller than a preset second threshold Th2. When the controller 30 determines that the difference ΔL between the load on the motor 9a and the load on the motor 9b is smaller than the second threshold Th2 (YES), the process proceeds to step S104. On the other hand, when the controller 30 determines that the difference ΔL between the load on the motor 9a and the load on the motor 9b is not smaller than the second threshold Th2 (NO), the process returns to step S102.
(ステップS104)
 制御装置30は、導風板11a、11bの角度θを維持する。つまり、処理的には何も行われない。
(Step S104)
The control device 30 maintains the angle θ of the baffle plates 11a and 11b. In other words, nothing is processed.
(ステップS105)
 制御装置30は、2つのモーター9a、9bの負荷を検知し、モーター9aの負荷とモーター9bの負荷との差ΔLが第1閾値Th1より大きいかどうか判定する。制御装置30が、モーター9aの負荷とモーター9bの負荷との差ΔLが第1閾値Th1より大きいと判定した場合(YES)、処理はステップS102に戻る。一方、制御装置30が、モーター9aの負荷とモーター9bの負荷との差ΔLが第1閾値Th1より大きくないと判定した場合(NO)、処理はステップS106に進む。
(Step S105)
The control device 30 detects the loads on the two motors 9a and 9b and determines whether the difference ΔL between the load on the motor 9a and the load on the motor 9b is greater than a first threshold Th1. When the controller 30 determines that the difference ΔL between the load on the motor 9a and the load on the motor 9b is greater than the first threshold Th1 (YES), the process returns to step S102. On the other hand, when the controller 30 determines that the difference ΔL between the load on the motor 9a and the load on the motor 9b is not greater than the first threshold Th1 (NO), the process proceeds to step S106.
 なお、ステップS105は、外的要因によってモーター9aの負荷とモーター9bの負荷との差ΔLが変動した場合を想定した処理である。この処理によって、外的要因によってモーター9aの負荷とモーター9bの負荷との差ΔLが第1閾値Th1より大きくなっても、処理をステップS102に戻すことができ、再びモーター9aの負荷とモーター9bの負荷との差ΔLを小さくする処理(ステップS102~S103)を行うことができる。 Note that step S105 is a process that assumes a case where the difference ΔL between the load on the motor 9a and the load on the motor 9b fluctuates due to an external factor. With this process, even if the difference ΔL between the load of the motor 9a and the load of the motor 9b becomes larger than the first threshold Th1 due to an external factor, the process can be returned to step S102, and the load of the motor 9a and the load of the motor 9b can be returned to step S102. A process (steps S102 and S103) can be performed to reduce the difference ΔL from the load of the .
(ステップS106)
 制御装置30は、2つのモーター9a、9bの負荷を検知し、モーター9aの負荷とモーター9bの負荷との差ΔLが第2閾値Th2より小さい状態が、あらかじめ設定された一定時間T1以上経過したかどうか判定する。制御装置30が、モーター9aの負荷とモーター9bの負荷との差ΔLが第2閾値Th2より小さい状態が、一定時間T1以上経過したと判定した場合(YES)、処理はステップS107に進む。一方、制御装置30が、モーター9aの負荷とモーター9bの負荷との差ΔLが第2閾値Th2より小さい状態が、一定時間T1以上経過していないと判定した場合(NO)、処理はステップS104に戻る。
(Step S106)
The control device 30 detects the loads of the two motors 9a and 9b, and the state in which the difference ΔL between the load of the motor 9a and the load of the motor 9b is smaller than the second threshold Th2 has passed for a predetermined time T1 or longer. determine whether When the controller 30 determines that the state in which the difference ΔL between the load of the motor 9a and the load of the motor 9b is smaller than the second threshold Th2 has passed for the predetermined time T1 or more (YES), the process proceeds to step S107. On the other hand, when the control device 30 determines that the state in which the difference ΔL between the load of the motor 9a and the load of the motor 9b is smaller than the second threshold Th2 has not passed the predetermined time T1 or longer (NO), the process proceeds to step S104. back to
(ステップS107)
 制御装置30は、導風板11a、11bの角度θがあらかじめ設定された第2角度θ2だけ大きくなるように導風板11a、11bを回動させる。
(Step S107)
The control device 30 rotates the baffle plates 11a and 11b so that the angle θ of the baffle plates 11a and 11b is increased by a preset second angle θ2.
(ステップS108)
 制御装置30は、2つのモーター9a、9bの負荷を検知し、モーター9aの負荷とモーター9bの負荷との差ΔLが第2閾値Th2より大きいかどうか判定する。制御装置30が、モーター9aの負荷とモーター9bの負荷との差ΔLが第2閾値Th2より大きいと判定した場合(YES)、処理はステップS101に戻る。一方、制御装置30が、モーター9aの負荷とモーター9bの負荷との差ΔLが第2閾値Th2より大きくないと判定した場合(NO)、処理はステップS107に戻る。
(Step S108)
The control device 30 detects the loads on the two motors 9a and 9b and determines whether the difference ΔL between the load on the motor 9a and the load on the motor 9b is greater than a second threshold Th2. When the controller 30 determines that the difference ΔL between the load on the motor 9a and the load on the motor 9b is greater than the second threshold Th2 (YES), the process returns to step S101. On the other hand, when the controller 30 determines that the difference ΔL between the load on the motor 9a and the load on the motor 9b is not greater than the second threshold Th2 (NO), the process returns to step S107.
 図12は、実施の形態1に係る空気調和機100の運転停止時に制御装置30が行う導風板11a、11bの制御フローを示す図である。
 以下、空気調和機100の運転停止時の導風板11a、11bの制御フローについて、図12を用いて説明する。空気調和機100の運転が停止されたら、処理はステップS201に進む。
FIG. 12 is a diagram showing a control flow of the baffle plates 11a and 11b performed by the control device 30 when the operation of the air conditioner 100 according to Embodiment 1 is stopped.
A control flow of the baffle plates 11a and 11b when the operation of the air conditioner 100 is stopped will be described below with reference to FIG. After the operation of the air conditioner 100 is stopped, the process proceeds to step S201.
(ステップS201)
 制御装置30は、導風板11a、11bの角度θが90°になるように導風板11a、11bを回動させる。
(Step S201)
The control device 30 rotates the baffle plates 11a and 11b so that the angle θ of the baffle plates 11a and 11b is 90°.
 これにより、空気調和機100の運転再開後、導風板11a、11bを常に同じ位置とすることができる。 As a result, after restarting the operation of the air conditioner 100, the baffle plates 11a and 11b can always be in the same position.
 図13は、実施の形態1に係る空気調和機100の運転時に制御装置30が行う導風板11a、11bの制御フローの変形例を示す図である。
 なお、空気調和機100の運転時の導風板11a、11bの制御フローは、図13に示すように、図11に示す制御フローよりもシンプルな制御フローとしてもよい。つまり、制御装置30が、モーター9aの負荷とモーター9bの負荷との差ΔLが第1閾値Th1より大きいと判定したら、第2閾値Th2より小さくなるまで導風板11a、11bの角度θを小さくする処理のみとしてもよい。
FIG. 13 is a diagram showing a modification of the control flow for the baffle plates 11a and 11b performed by the control device 30 when the air conditioner 100 according to Embodiment 1 is in operation.
The control flow of the air guide plates 11a and 11b during operation of the air conditioner 100 may be simpler than the control flow shown in FIG. 11, as shown in FIG. That is, when the control device 30 determines that the difference ΔL between the load of the motor 9a and the load of the motor 9b is larger than the first threshold Th1, the angle θ of the baffle plates 11a and 11b is decreased until it becomes smaller than the second threshold Th2. It is also possible to perform only the process of
 以上、実施の形態2に係る空気調和機100は、2つの送風機5a、5bをそれぞれ駆動するモーター9a、9bと、2つのモーター9a、9bの負荷の差ΔLに応じて2つの導風板11a、11bを回動させる制御装置30と、を備えたものである。 As described above, the air conditioner 100 according to Embodiment 2 includes the motors 9a and 9b that drive the two fans 5a and 5b, respectively, and the two wind guide plates 11a according to the load difference ΔL between the two motors 9a and 9b. , 11b.
 実施の形態2に係る空気調和機100によれば、2つのモーター9a、9bの負荷ΔLの差に応じて2つの導風板11a、11bを回動させる。そのため、2つの送風機5a、5bの負荷が不均一となるのを抑制し、2つの送風機5a、5bの間で電流値不均衡が発生することによる運転効率の低下を抑制することができ、運転効率の低下によって生じる空力性能の低下を抑制することができる。 According to the air conditioner 100 according to Embodiment 2, the two baffle plates 11a and 11b are rotated according to the difference in load ΔL between the two motors 9a and 9b. Therefore, it is possible to suppress uneven loads on the two fans 5a and 5b, and to suppress a decrease in operating efficiency due to current imbalance between the two fans 5a and 5b. A decrease in aerodynamic performance caused by a decrease in efficiency can be suppressed.
 1 筐体、2 前板、4 (筐体の)上面、5a 送風機、5b 送風機、6 熱交換器、7 ドレンパン、8 制御箱、9a モーター、9b モーター、10 仕切板、11 導風板、11a 導風板、11a1 (導風板の)上面、11b 導風板、11b1 (導風板の)上面、20 吸入口、30 制御装置、40a 吹出口、40b 吹出口、50a ファンケーシング、50b ファンケーシング、51a ファン、51b ファン、52a 吸込口、52b 吸込口、60 ダクト、100 空気調和機。 1 housing, 2 front plate, 4 upper surface (of housing), 5a blower, 5b blower, 6 heat exchanger, 7 drain pan, 8 control box, 9a motor, 9b motor, 10 partition plate, 11 baffle plate, 11a Air guide plate 11a1 (air guide plate) upper surface 11b Air guide plate 11b1 (air guide plate) upper surface 20 Suction port 30 Control device 40a Air outlet 40b Air outlet 50a Fan casing 50b Fan casing , 51a fan, 51b fan, 52a suction port, 52b suction port, 60 duct, 100 air conditioner.

Claims (10)

  1.  吸入口および2つの吹出口を有する筐体と、
     前記筐体の内部にその幅方向に並べて配置され、前記吸入口から吸い込んだ空気を前記2つの吹出口のうちそれぞれ異なる一方から吹き出す2つの送風機と、
     前記2つの送風機の間に設けられた仕切板と、
     前記2つの吹出口のそれぞれの縁に設けられ、前記筐体の外側に突出した導風板と、を備え、
     2つの前記導風板は、
     前記2つの吹出口の間に位置するように設けられており、かつ、それぞれが設けられた前記吹出口の開口面に対する角度が90°以下となるように設けられている
     空気調和機。
    a housing having an inlet and two outlets;
    two blowers arranged side by side in the width direction inside the housing for blowing out the air sucked from the suction port from a different one of the two blowout ports;
    a partition plate provided between the two blowers;
    a baffle plate provided at each edge of the two outlets and protruding outside the housing;
    The two baffle plates are
    The air conditioner is provided so as to be located between the two outlets, and is provided so that the angle with respect to the opening surface of the outlets provided is 90° or less.
  2.  2つの前記導風板は、
     それぞれが設けられた前記吹出口の前記幅方向の幅内に収まるように設けられている
     請求項1に記載の空気調和機。
    The two baffle plates are
    The air conditioner according to claim 1, wherein each is provided so as to be accommodated within the width in the width direction of the provided outlet.
  3.  前記仕切板の面積は、前記2つの送風機の吸込口の開口面積よりも大きい
     請求項1または2に記載の空気調和機。
    The air conditioner according to claim 1 or 2, wherein the area of the partition plate is larger than the opening areas of the suction ports of the two fans.
  4.  前記仕切板の前記吸入口側の端部は、前記2つの送風機の吸込口の前記吸入口側の端部よりも前記吸入口側に位置している
     請求項3に記載の空気調和機。
    The air conditioner according to claim 3, wherein the end of the partition plate on the side of the suction port is located closer to the side of the suction port than the ends of the suction ports of the two fans on the side of the suction ports.
  5.  2つの前記導風板は長方形状を有し、長手方向が前記2つの吹出口のそれぞれの縁に沿うように設けられており、長手方向において前記2つの吹出口のそれぞれの縁の長さよりも大きい
     請求項1~4のいずれか一項に記載の空気調和機。
    The two baffle plates have a rectangular shape and are provided so that their longitudinal directions are along the respective edges of the two air outlets, and are longer than the lengths of the respective edges of the two air outlets in the longitudinal direction. The air conditioner according to any one of claims 1 to 4.
  6.  2つの前記送風機をそれぞれ駆動するモーターと、
     2つの前記モーターの負荷の差に応じて2つの前記導風板を回動させる制御装置と、を備えた請求項1~5のいずれか一項に記載の空気調和機。
    a motor that drives each of the two blowers;
    The air conditioner according to any one of claims 1 to 5, further comprising a control device that rotates the two baffle plates according to the difference in load between the two motors.
  7.  前記制御装置は、
     2つの前記モーターの負荷の差が、あらかじめ設定された第1閾値を超えた場合、2つの前記導風板の前記角度があらかじめ設定された第1角度小さくなるように2つの前記導風板を回動させる
     請求項6に記載の空気調和機。
    The control device is
    When the load difference between the two motors exceeds a preset first threshold, the two baffle plates are moved so that the angle of the two baffle plates is reduced by a first preset angle. The air conditioner according to claim 6, wherein the air conditioner is rotated.
  8.  前記制御装置は、
     2つの前記モーターの負荷の差が、前記第1閾値より小さいあらかじめ設定された第2閾値より小さくなるまで、2つの前記導風板の前記角度が前記第1角度小さくなるように2つの前記導風板を回動させる
     請求項7に記載の空気調和機。
    The control device is
    The two guides are adjusted such that the angles of the two baffle plates are reduced to the first angle until the load difference of the two motors is less than a preset second threshold that is less than the first threshold. The air conditioner according to claim 7, wherein the wind plate is rotated.
  9.  制御装置は、
     2つの前記モーターの負荷の差が前記第2閾値より小さい状態が、あらかじめ設定された一定時間以上経過した場合、2つの前記導風板の前記角度があらかじめ設定された第2角度大きくなるように2つの前記導風板を回動させる
     請求項8に記載の空気調和機。
    The controller is
    When the load difference between the two motors is smaller than the second threshold for a predetermined period of time or more, the angle of the two air guide plates is increased by a second angle set in advance. The air conditioner according to claim 8, wherein the two baffle plates are rotated.
  10.  前記制御装置は、
     2つの前記モーターの負荷の差が、前記第2閾値より大きくなるまで、2つの前記導風板の前記角度が前記第2角度大きくなるように2つの前記導風板を回動させる
     請求項9に記載の空気調和機。
    The control device is
    10. The two baffle plates are rotated so that the angle of the two baffle plates increases by the second angle until a load difference between the two motors becomes greater than the second threshold. The air conditioner described in .
PCT/JP2022/003370 2022-01-28 2022-01-28 Air conditioner WO2023145010A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/003370 WO2023145010A1 (en) 2022-01-28 2022-01-28 Air conditioner
JP2023576527A JPWO2023145010A1 (en) 2022-01-28 2022-01-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003370 WO2023145010A1 (en) 2022-01-28 2022-01-28 Air conditioner

Publications (1)

Publication Number Publication Date
WO2023145010A1 true WO2023145010A1 (en) 2023-08-03

Family

ID=87470946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003370 WO2023145010A1 (en) 2022-01-28 2022-01-28 Air conditioner

Country Status (2)

Country Link
JP (1) JPWO2023145010A1 (en)
WO (1) WO2023145010A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916909U (en) * 1982-07-21 1984-02-01 株式会社東芝 Air conditioner blower
JPS6149960A (en) * 1984-08-16 1986-03-12 Matsushita Seiko Co Ltd Blow-off device for ceiling embedded type air-conditioning machine
JPH1038305A (en) * 1996-07-23 1998-02-13 Mitsubishi Heavy Ind Ltd Ceiling embedded type air conditioner
WO2016121071A1 (en) * 2015-01-29 2016-08-04 三菱電機株式会社 Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916909U (en) * 1982-07-21 1984-02-01 株式会社東芝 Air conditioner blower
JPS6149960A (en) * 1984-08-16 1986-03-12 Matsushita Seiko Co Ltd Blow-off device for ceiling embedded type air-conditioning machine
JPH1038305A (en) * 1996-07-23 1998-02-13 Mitsubishi Heavy Ind Ltd Ceiling embedded type air conditioner
WO2016121071A1 (en) * 2015-01-29 2016-08-04 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JPWO2023145010A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
JP6022003B2 (en) Air conditioner indoor unit
US10465697B2 (en) Centrifugal fan and air conditioner having the same
JP4760411B2 (en) Blower
CN109990387B (en) Air conditioner assembly
EP2345852A1 (en) Indoor unit for floor mounted air conditioner
WO2014042002A1 (en) Air-conditioning indoor unit
JP4863696B2 (en) Ventilation equipment
WO2010097883A1 (en) Simultaneously supplying/discharging ventilation fan and air conditioner
JP2007205268A (en) Centrifugal fan
TWI810248B (en) Air supply device, air conditioner and dehumidifier
JP4760410B2 (en) Blower
WO2023145010A1 (en) Air conditioner
JP5206365B2 (en) Blower
WO1999008051A1 (en) Method and apparatus for controlling air flow in indoor machine of air conditioner
EP3130860B1 (en) Air conditioner
US10436473B2 (en) Air conditioning indoor unit
JP5966149B2 (en) Air conditioner
JP5907410B2 (en) Bathroom air conditioner
JP6083195B2 (en) Air conditioning indoor unit
KR101507794B1 (en) A control method for a duct type airconditioner
JPH1019291A (en) Wall hang type air conditioner
KR20080062890A (en) Airconditioner
JP6182851B2 (en) Air conditioning indoor unit
JP6098137B2 (en) Blower
CN216048194U (en) Air interchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023576527

Country of ref document: JP

Kind code of ref document: A