WO2023143160A1 - 通信方法与通信装置 - Google Patents

通信方法与通信装置 Download PDF

Info

Publication number
WO2023143160A1
WO2023143160A1 PCT/CN2023/072302 CN2023072302W WO2023143160A1 WO 2023143160 A1 WO2023143160 A1 WO 2023143160A1 CN 2023072302 W CN2023072302 W CN 2023072302W WO 2023143160 A1 WO2023143160 A1 WO 2023143160A1
Authority
WO
WIPO (PCT)
Prior art keywords
smart
terminal device
antenna
codebook
reflective surface
Prior art date
Application number
PCT/CN2023/072302
Other languages
English (en)
French (fr)
Inventor
孙欢
毕晓艳
董蕾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023143160A1 publication Critical patent/WO2023143160A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a communication method and a communication device.
  • the network equipment implements the terminal equipment according to the angle of arrival (angle of arrival, AOA) of the terminal equipment and the timing advance (timing advance, TA) between the terminal equipment and the network equipment. position.
  • AOA angle of arrival
  • TA timing advance
  • the AOA may be determined through a multiple signal classification (multiple signal classification, MUSIC) algorithm.
  • the MUSIC algorithm is an algorithm based on subspace decomposition. It uses the orthogonality of the signal subspace and the noise subspace to construct a spatial spectral function and estimate the parameters of the signal through peak search.
  • Smart reflectors consist only of passive antenna elements and do not have signal processing, so they cannot take advantage of existing angle estimation techniques.
  • Embodiments of the present application provide a communication method and a communication device, which can complete high-precision measurement of the orientation of a terminal device in a scene including an intelligent reflective surface.
  • a communication method including: a terminal device acquires a channel measurement result, and the channel measurement result is obtained by the terminal device based on at least two reflections of a first signal sent by a network device by a set of antenna units of a smart reflector Yes, the first signal is used for channel measurement, and the antenna unit set includes at least two antenna units; the terminal device determines the path difference between the antenna units of the smart reflector according to the channel measurement result.
  • the terminal device determines the path difference based on channel measurement results determined by at least two reflections of the first signal sent by the network device by the antenna unit set of the smart reflector, and can determine the orientation of the terminal device with high precision based on the path difference.
  • the path difference determined by the terminal can be used to locate the position of the terminal.
  • the terminal device when locating the position of the terminal device with high precision, can determine the angle between the terminal device and the smart reflecting surface and/or the angle between the network device and the smart reflecting surface based on the path difference, and combine the angle between the terminal device and the network device , to determine the orientation of the terminal device with high precision.
  • the aforementioned angle between the terminal device and the smart reflecting surface and the angle between the network device and the smart reflecting surface may be determined based on known positions of the network device and the smart reflecting surface after determining the path difference. Therefore, the embodiment of the present application can simply and accurately determine The orientation of the end device.
  • the embodiment of the present application can complete high-precision measurement of the orientation of the terminal device in a scene including an intelligent reflective surface, and can improve positioning accuracy.
  • the path difference can be used to further determine the channel estimation result from the terminal device to the smart reflector and then to the network device in a manner with low pilot signal overhead.
  • the antenna unit set includes a first antenna unit set and a second antenna unit set, the first antenna unit set includes at least one first antenna unit, and the second antenna unit set includes at least one first antenna unit.
  • the antenna unit set includes at least one second antenna unit, and the first antenna unit set and the second antenna unit set correspond to different phases in the at least two reflections.
  • the path difference between the antenna units of the smart reflection surface can be determined, and the terminal device can be further obtained according to the path difference.
  • the different phases include any of the following groups: the first set of antenna elements corresponds to the first phase, and the second set of antenna elements corresponds to the first phase; the second set of antenna elements corresponds to the first phase; An antenna element set corresponds to the first phase, and the second antenna element set corresponds to the second phase; the first antenna element set corresponds to the second phase, and the second antenna element set corresponds to the first phase; the first antenna element set corresponds to the second phase Two phases, the second antenna unit set corresponds to a second phase; wherein, the first phase is different from the second phase.
  • the embodiment of the present application is based on multiple channel measurements corresponding to the different phases The results are used to determine the path difference between the antenna elements of the smart reflector.
  • the first phase is an even multiple of ⁇ , and the second phase is an odd multiple of ⁇ ; or, the first phase is an odd multiple of ⁇ , and the second phase is an odd multiple of ⁇ even multiples of .
  • the method further includes at least one of the following: the terminal device determines the first angle between the network device and the smart reflecting surface according to the path difference; or, the terminal The device determines a second angle between the smart reflecting surface and the terminal device according to the path difference.
  • the first angle can be understood as an incident angle
  • the second angle can be understood as a reflection angle.
  • the incident angle is an angle between the first signal emitted by the network device to the smart reflective surface and the normal.
  • the reflection angle is the angle between the signal after the smart reflector reflects the first signal transmitted by the network device and the normal.
  • the first angle is the incident angle and the second angle is the reflection angle based on the fact that the network device transmits the first signal to the smart reflective surface.
  • the first angle is the reflection angle
  • the second angle is the incident angle.
  • the network device sends the first signal to the smart reflective surface
  • the first angle is the incident angle
  • the second angle is the reflection angle.
  • the embodiment of the present application determines the second angle between the terminal device and the smart reflective surface or the first angle between the smart reflective surface and the network device based on the path difference.
  • the first angle or the second angle can be used for further
  • the position or orientation of the terminal device is determined, so that the positioning accuracy of the terminal device can be improved.
  • the method further includes: the terminal device sending the second angle to the network device.
  • the embodiment of the present application can make the network device based on the second angle, the position of the network device
  • the position of the terminal device can be determined based on the position of the terminal device, the position of the intelligent reflective surface, and the angle between the terminal device and the network device, so that a more accurate positioning result can be obtained.
  • the method further includes: the terminal device determining the distance between the terminal device and the smart reflecting surface according to the position of the smart reflecting surface and the position of the terminal device.
  • the embodiment of the present application further judges the number of antenna units used for data transmission in the smart reflective surface based on the distance between the terminal device and the smart reflective surface, so as to ensure that the channel between the terminal device and the smart reflective surface satisfies Far-field radiation model, which can ensure the accuracy and convenience of channel modeling, measurement and data processing between terminal equipment and smart reflectors.
  • the method further includes: the terminal device sending the distance between the terminal device and the smart reflecting surface to the network device.
  • the embodiment of the present application can enable the network device to determine the number of antenna units used for data transmission in the smart reflective surface based on the relationship between the distance and the Rayleigh distance between the terminal device and the smart reflective surface, so that Ensure that the channel between the terminal device and the smart reflector satisfies the far-field radiation model, which can ensure the accuracy and convenience of channel modeling, measurement, and data processing between the terminal device and the smart reflector.
  • the method further includes: the terminal device determines the antenna used for data transmission on the smart reflective surface according to the distance between the terminal device and the smart reflective surface and the Rayleigh distance the number of units.
  • the determination of the number of antenna units used for data transmission in the smart reflective surface is related to the antenna aperture used for data transmission in the smart reflective surface.
  • the number of antenna units used for data transmission in the intelligent reflective surface is determined through the relationship between the distance between the intelligent reflective surface and the terminal device and the Rayleigh distance, so that the distance between the terminal device and the intelligent reflective surface can be guaranteed.
  • the channel satisfies the far-field radiation model, which can ensure the accuracy and convenience of channel modeling, measurement and data processing between terminal equipment and smart reflectors.
  • the method further includes: the terminal device sending the number of antenna units used for data transmission to the network device.
  • the embodiment of the present application enables the network device to obtain the number of antenna units used for data transmission in the smart reflector, so that it can be ensured that the channel between the terminal device and the smart reflector satisfies the far-field radiation model, which can Ensure the accuracy and convenience of channel modeling, measurement and data processing between terminal equipment and smart reflectors.
  • the number of antenna units used for data transmission is associated with the distance between the terminal device and the smart reflecting surface, the carrier frequency, and the bandwidth.
  • a communication method including: a network device acquires a channel measurement result, and the channel measurement result is obtained by the network device based on at least two reflections of a first signal sent by a terminal device by a set of antenna units of a smart reflector Yes, the first signal is used for channel measurement, and the antenna unit set includes at least two antenna units; the network device determines the path difference between the antenna units of the smart reflector according to the channel measurement result.
  • the network device determines the path difference between the antenna units of the smart reflector based on the channel measurement results determined by at least two reflections of the first signal sent by the terminal device by the set of antenna units of the smart reflector, and may be based on the path difference and the network
  • the angle between the device and the smart reflective surface determines the angle between the terminal device and the smart reflective surface, so that the orientation of the terminal device can be determined.
  • the path difference determined by the network device can be used to locate the position of the terminal device.
  • the path difference is the core feature when locating the orientation of the terminal device with high precision.
  • the network device can determine the angle between the terminal device and the intelligent reflective surface and the angle between the network device and the intelligent reflective surface based on the path difference, and combine the angles between the terminal device and the network device to determine the orientation of the terminal device with high precision.
  • the aforementioned angle between the terminal device and the smart reflecting surface and the angle between the network device and the smart reflecting surface may be determined based on known positions of the network device and the smart reflecting surface after determining the path difference. Therefore, in the embodiment of the present application, the orientation of the terminal device can be determined simply and with high precision by using the path difference.
  • the embodiment of the present application can complete high-precision measurement of the orientation of the terminal device in a scene including an intelligent reflective surface, and can improve positioning accuracy.
  • the path difference can be used to further determine the channel estimation result from the terminal device to the smart reflector and then to the network device in a manner with low pilot signal overhead.
  • the antenna unit set includes a first antenna unit set and a second antenna unit set, the first antenna unit set includes at least one first antenna unit, and the second antenna unit set includes at least one first antenna unit.
  • the antenna unit set includes at least one second antenna unit, and the first antenna unit set and the second antenna unit set correspond to different phases in the at least two reflections.
  • the path difference between the antenna units of the smart reflection surface can be determined, and the terminal device can be further obtained according to the path difference.
  • the different phases include any of the following groups: the first set of antenna elements corresponds to the first phase, and the second set of antenna elements corresponds to the first phase; the second set of antenna elements corresponds to the first phase; An antenna element set corresponds to the first phase, and the second antenna element set corresponds to the second phase; the first antenna element set corresponds to the second phase, and the second antenna element set corresponds to the first phase; the first antenna element set corresponds to the second phase Two phases, the second antenna unit set corresponds to a second phase; wherein, the first phase is different from the second phase.
  • the embodiment of the present application is based on multiple channel measurements corresponding to the different phases The results are used to determine the path difference between the antenna elements of the smart reflector.
  • the first phase is an even multiple of ⁇
  • the second phase is an odd multiple of ⁇
  • the first phase is an odd multiple of ⁇
  • the second phase is an odd multiple of ⁇ even multiples of .
  • the method further includes at least one of the following: the network device determines the first angle between the network device and the smart reflecting surface according to the path difference; The path difference determines the second angle between the smart reflective surface and the terminal device.
  • the network device in the embodiment of the present application determines the second angle between the terminal device and the smart reflective surface or the first angle between the smart reflective surface and the network device based on the path difference.
  • the first angle or the second angle can be used for
  • the position or orientation of the terminal device is further determined, so that a positioning result of the terminal device with higher accuracy can be obtained.
  • the method further includes: the network device determining the location of the terminal device according to the second angle.
  • the network device can determine the position of the terminal device according to the second angle, the angle between the terminal device and the network device, the position of the network device, and the position of the smart reflective surface. In this way, a more accurate positioning result of the terminal device can be obtained.
  • the method further includes: the network device determining the distance between the terminal device and the smart reflecting surface; the network device determining the distance between the terminal device and the smart reflecting surface and the Rayleigh distance indeed Determine the number of antenna elements used for data transmission in the smart reflector.
  • the network device determines the number of antenna units used for data transmission in the smart reflector based on the distance and the Rayleigh distance between the terminal device and the smart reflector, so that the embodiment of the present application can ensure that the terminal The channel between the device and the smart reflector satisfies the far-field radiation model, which can ensure the accuracy and convenience of channel modeling, measurement, and data processing between the terminal device and the smart reflector.
  • the network device determines the distance between the terminal device and the reflecting device, including: the network device determines the distance between the terminal device and the smart reflecting surface according to the position of the terminal device and the position of the smart reflecting surface. The distance of the reflective surface.
  • the network device determines the distance between the terminal device and the intelligent reflective surface, including: the network device receives the distance sent by the terminal device; The position of the reflective surface is determined by the position of the terminal equipment.
  • the number of antenna units used for data transmission is associated with the distance between the terminal device and the smart reflecting surface, the carrier frequency, and the bandwidth.
  • the method further includes: the network device sending first information to the smart reflective surface, where the first information includes at least one of the following: a codebook set, a terminal device, and The distance of the intelligent reflective surface or the number of antenna units used for data transmission in the intelligent reflective surface; wherein, the codebook set includes at least one codebook, and a codebook includes at least one of the following: an antenna unit of the intelligent reflective surface magnitude or phase.
  • the embodiment of the present application can realize the autonomy of the intelligent reflective surface in selecting a codebook, thereby reducing the complexity of implementing the controller of the intelligent reflective surface by the network device, and improving the flexibility of system design.
  • the codebook set includes a near-field codebook and a far-field codebook
  • the method further includes: the network device sends indication information to the smart reflective surface, the indication The information is used to instruct the smart reflective surface to select the near-field codebook or the far-field codebook.
  • the embodiment of the present application can enable the network device to dynamically instruct the smart reflector to select an appropriate codebook type.
  • the codebook of the smart reflector can match the actual far-field model or near-field model, thereby reducing the cost of the system. Bit error rate, improve system spectrum efficiency.
  • a communication method including: a smart reflective surface acquires first information, and the first information includes at least one of the following: a codebook set, a distance between a terminal device and the smart reflective surface, or The number of antenna units for data transmission; wherein, the codebook set includes at least one codebook, and a codebook includes at least one of the following: the amplitude or phase of an antenna unit of the smart reflector; the smart reflector according to the first The information identifies second information including at least one codebook for data transmission.
  • the first information obtained by the smart reflective surface may be sent by the network device to the smart reflective surface, or may be pre-configured in the smart reflective surface, or may be obtained in other ways.
  • the embodiment of the present application can realize the autonomy of the intelligent reflective surface in selecting a codebook, thereby reducing the complexity of implementing the controller of the intelligent reflective surface by the network device, and improving the flexibility of system design.
  • the number of codebooks in the codebook set used for data transmission is the same as the number of antenna units used for data transmission.
  • the number of codebooks in the codebook set used for data transmission is consistent with the number of antenna units used for data transmission in the smart reflector.
  • the codebook set includes a near-field codebook and a far-field codebook
  • the method further includes: the smart reflector receives indication information sent by a network device, the indication information used to indicate that the smart The reflective surface selects the near-field codebook or the far-field codebook.
  • a communication method including: a network device receiving a second angle between a smart reflective surface and the terminal device sent by a terminal device; and the network device determining the position of the terminal device according to the second angle.
  • the network device determines the position of the terminal device according to the second angle, the angle between the terminal device and the network device, the position of the network device, and the position of the intelligent reflection surface, so that a more accurate positioning result of the terminal device can be obtained.
  • the method further includes: the network device determines the antenna used for data transmission in the smart reflective surface the number of units.
  • the embodiment of the present application can ensure that the channel between the terminal device and the smart reflector satisfies the far-field radiation model based on the determined number of antenna units, and this model can ensure that the channel between the terminal device and the smart reflector is established.
  • the network device determining the number of antenna units used for data transmission includes: the network device determining the distance between the terminal device and the smart reflecting surface; The distance between the device and the smart reflector and the Rayleigh distance determine the number of antenna elements used for data transmission.
  • the network device determines the distance between the terminal device and the intelligent reflecting surface, including: the network device determines the distance between the terminal device and the intelligent reflecting surface according to the position of the terminal device and the position of the intelligent reflecting surface. The distance of the smart reflective surface.
  • the method further includes: the network device receiving the distance between the terminal device and the smart reflecting surface sent by the terminal device, where the distance between the terminal device and the smart reflecting surface is The terminal device is determined according to the position of the intelligent reflective surface and the position of the terminal device.
  • the network device determining the number of antenna units used for data transmission includes: the network device receiving the number of antenna units used for data transmission sent by the terminal device.
  • the number of antenna units used for data transmission is associated with the distance between the terminal device and the smart reflecting surface, the carrier frequency, and the bandwidth.
  • the method further includes: the network device sends first information to the smart reflective surface, where the first information includes at least one of the following: a codebook set, a terminal device, and a smart The distance of the reflective surface or the number of antenna units used for data transmission in the intelligent reflective surface; wherein, the codebook set includes at least one codebook, and a codebook includes at least one of the following: the amplitude of an antenna unit of the intelligent reflective surface or phase.
  • the embodiment of the present application can realize the autonomy of the intelligent reflective surface in selecting a codebook, thereby reducing the complexity of implementing the controller of the intelligent reflective surface by the network device, and improving the flexibility of system design.
  • the codebook set includes a near-field codebook and a far-field codebook
  • the method further includes: the network device also sends indication information to the smart reflective surface, the indication information It is used to instruct the smart reflective surface to select a near-field codebook or a far-field codebook.
  • the embodiment of the present application can enable the network device to dynamically instruct the smart reflector to select an appropriate codebook type.
  • the codebook of the smart reflector can match the actual far-field model or near-field model, thereby reducing the cost of the system. Bit error rate, improve system spectrum efficiency.
  • a communication method including: a network device sends first information to a smart reflective surface, and the first information includes at least one of the following: a codebook set, a distance between a terminal device and the smart reflective surface, or the smart reflective surface middle use The number of antenna units used for data transmission; wherein, the codebook set includes at least one codebook, and one codebook includes at least one of the following: amplitude or phase of an antenna unit of the smart reflector.
  • the embodiment of the present application can realize the autonomy of the intelligent reflective surface in selecting a codebook, thereby reducing the complexity of implementing the controller of the intelligent reflective surface by the network device, and improving the flexibility of system design.
  • the codebook set includes a near-field codebook and a far-field codebook
  • the method further includes: the network device also sends indication information to the smart reflective surface, the indication information It is used to instruct the smart reflective surface to select a near-field codebook or a far-field codebook.
  • a communication method including: a network device determines the distance between the terminal device and the smart reflective surface; the network device determines the distance between the terminal device and the smart reflective surface and the Rayleigh distance. Number of antenna elements for data transmission.
  • the number of antenna units used for data transmission in the smart reflective surface is determined by the distance between the smart reflective surface and the terminal device. In this way, it can be ensured that the channel between the terminal device and the smart reflective surface satisfies the far-field radiation model.
  • the model can ensure the accuracy and convenience of channel modeling, measurement and data processing between terminal equipment and smart reflectors.
  • the network device determining the distance between the terminal device and the smart reflecting surface includes: the network device determining the distance between the terminal device and the smart reflecting surface according to the location of the terminal device and the location of the smart reflecting surface. The distance from the smart reflective surface.
  • the network device determines the distance between the terminal device and the smart reflective surface, including: the network device receives the distance between the terminal device and the smart reflective surface sent from the terminal device Distance; wherein, the distance between the terminal device and the smart reflecting surface is determined by the terminal device according to the position of the smart reflecting surface and the position of the terminal device.
  • the number of antenna units used for data transmission is related to the distance between the terminal device and the smart reflecting surface, the carrier frequency, and the association.
  • a communication device including: a transceiver unit, configured to acquire a channel measurement result, the channel measurement result being at least two results of the first signal sent by the communication device to the network device according to the antenna unit set of the smart reflector.
  • the first signal is obtained by the second reflection, the first signal is used for channel measurement, the antenna unit set includes at least two antenna units;
  • a processing unit is configured to determine the path difference between the antenna units of the smart reflector according to the channel measurement result.
  • the antenna unit set includes a first antenna unit set and a second antenna unit set, the first antenna unit set includes at least one first antenna unit, and the second antenna unit set includes at least one first antenna unit.
  • the antenna unit set includes at least one second antenna unit, and the first antenna unit set and the second antenna unit set correspond to different phases in the at least two reflections.
  • the different phases include any of the following groups: the first set of antenna elements corresponds to the first phase, and the second set of antenna elements corresponds to the first phase; the second set of antenna elements corresponds to the first phase; An antenna element set corresponds to the first phase, and the second antenna element set corresponds to the second phase; the first antenna element set corresponds to the second phase, and the second antenna element set corresponds to the first phase; the first antenna element set corresponds to the second phase Two phases, the second antenna unit set corresponds to a second phase; wherein, the first phase is different from the second phase.
  • the first phase is an even multiple of ⁇
  • the second phase is an odd multiple of ⁇
  • the first phase is an odd multiple of ⁇
  • the second phase is an odd multiple of ⁇ even multiples of .
  • the processing unit is further configured to determine determining a first angle between the network device and the smart reflecting surface; or, the processing unit is further configured to determine a second angle between the smart reflecting surface and the terminal device according to the path difference.
  • the transceiving unit is further configured to send the second angle to the network device.
  • the processing unit is further configured to determine the distance between the communication device and the smart reflecting surface according to the position of the smart reflecting surface and the position of the communication device.
  • the transceiver unit is further configured to send the distance between the communication device and the smart reflective surface to the network device.
  • the processing unit is further configured to determine the antenna used for data transmission in the smart reflective surface according to the distance between the communication device and the smart reflective surface and the Rayleigh distance the number of units.
  • the transceiver unit is further configured to send the number of antenna units used for data transmission to the network device.
  • the number of antenna units used for data transmission is associated with the distance between the terminal device and the smart reflecting surface, the carrier frequency, and the bandwidth.
  • a communication device including: a transceiver unit, configured to acquire a channel measurement result, the channel measurement result being at least two results of the first signal sent by the communication device to the terminal device according to the antenna unit set of the smart reflector.
  • the first signal is obtained by the second reflection, the first signal is used for channel measurement, the antenna unit set includes at least two antenna units; the processing unit is configured to determine the path difference between the antenna units of the smart reflector according to the channel measurement result.
  • the antenna unit set includes a first antenna unit set and a second antenna unit set, the first antenna unit set includes at least one first antenna unit, and the second antenna unit set includes at least one first antenna unit.
  • the antenna unit set includes at least one second antenna unit, and the first antenna unit set and the second antenna unit set correspond to different phases in the at least two reflections.
  • the different phases include any of the following groups: the first set of antenna elements corresponds to the first phase, and the second set of antenna elements corresponds to the first phase; the second set of antenna elements corresponds to the first phase; An antenna element set corresponds to the first phase, and the second antenna element set corresponds to the second phase; the first antenna element set corresponds to the second phase, and the second antenna element set corresponds to the first phase; the first antenna element set corresponds to the second phase Two phases, the second antenna unit set corresponds to a second phase; wherein, the first phase is different from the second phase.
  • the first phase is an even multiple of ⁇
  • the second phase is an odd multiple of ⁇
  • the first phase is an odd multiple of ⁇
  • the second phase is an odd multiple of ⁇ even multiples of .
  • the processing unit is further configured to determine the first angle between the network device and the smart reflective surface according to the path difference;
  • the path difference determines a second angle between the smart reflective surface and the terminal device.
  • the processing unit is further configured to determine the position of the terminal device according to the second angle.
  • the processing unit is further configured to determine the distance between the terminal device and the smart reflective surface; the processing unit is further configured to determine the distance between the terminal device and the smart reflective surface and The Rayleigh distance determines the number of antenna elements used for data transmission in the smart reflector.
  • the processing unit is further configured to determine the distance between the terminal device and the smart reflective surface according to the position of the terminal device and the position of the smart reflective surface.
  • the transceiver unit is further configured to receive the distance between the terminal device and the smart reflective surface sent by the terminal device; wherein, the distance between the terminal device and the smart reflective surface is The terminal device is determined according to the position of the intelligent reflective surface and the position of the terminal device.
  • the number of antenna units used for data transmission is associated with the distance between the terminal device and the smart reflecting surface, the carrier frequency, and the bandwidth.
  • the transceiver unit is further configured to send first information to the smart reflective surface, where the first information includes at least one of the following: a codebook set, a terminal device, and a smart reflective surface The distance of the surface or the number of antenna units used for data transmission in the smart reflector; wherein, the codebook set includes at least one codebook, and a codebook includes at least one of the following: the amplitude of an antenna unit of the smart reflector or phase.
  • the codebook set includes a near-field codebook and a far-field codebook
  • the transceiver unit is further configured to send indication information to the smart reflective surface, the indication information It is used to instruct the smart reflective surface to select the near-field codebook or the far-field codebook.
  • a communication device including: an acquisition unit, configured to acquire first information, where the first information includes at least one of the following: a codebook set, a distance between a terminal device and a smart reflective surface, or a distance from a smart reflective surface The number of antenna units used for data transmission; wherein, the codebook set includes at least one codebook, and a codebook includes at least one of the following: the amplitude or phase of an antenna unit of the smart reflector; The first information determines second information including at least one codebook for data transmission.
  • the number of codebooks in the codebook set used for data transmission is the same as the number of antenna units used for data transmission.
  • the codebook set includes a near-field codebook and a far-field codebook
  • the obtaining unit is further configured to receive indication information sent by the network device, and the indication information is used Instructing the communication device to select the near-field codebook or the far-field codebook.
  • a communication device including: a transceiver unit, configured to receive a second angle between the smart reflective surface and the terminal device sent by the terminal device; a processing unit, configured to determine the position of the terminal device according to the second angle .
  • the processing unit is further configured to determine the number of antenna units used for data transmission in the smart reflective surface.
  • the processing unit is further configured to determine the distance between the terminal device and the smart reflective surface; the processing unit is also configured to determine the distance between the terminal device and the smart reflective surface
  • the Rayleigh distance determines the number of antenna elements that are used for data transmission.
  • the processing unit is further configured to determine the distance between the terminal device and the smart reflective surface according to the position of the terminal device and the position of the smart reflective surface.
  • the transceiver unit is further configured to receive the distance between the terminal device and the smart reflective surface sent by the terminal device, where the distance between the terminal device and the smart reflective surface is The terminal device is determined according to the position of the intelligent reflecting surface and the position of the terminal device.
  • the transceiver unit is further configured to receive the number of antenna units used for data transmission sent by the terminal device.
  • the number of antenna units used for data transmission is associated with the distance between the terminal device and the smart reflecting surface, the carrier frequency, and the bandwidth.
  • the transceiver unit is also used to send Sending first information, where the first information includes at least one of the following: a codebook set, a distance between the terminal device and the smart reflective surface, or the number of antenna units used for data transmission in the smart reflective surface; where the codebook set includes at least A codebook.
  • a codebook includes at least one of the following: amplitude or phase of an antenna unit of the smart reflector.
  • the codebook set includes a near-field codebook and a far-field codebook
  • the transceiver unit is further configured to send indication information to the smart reflective surface, and the indication information uses to instruct the smart reflective surface to select a near-field codebook or a far-field codebook.
  • a communication device including: a sending unit, configured to send first information to a smart reflecting surface, where the first information includes at least one of the following: a codebook set, a distance between a terminal device and the smart reflecting surface Or the number of antenna units used for data transmission in the smart reflector; wherein, the codebook set includes at least one codebook, and one codebook includes at least one of the following: amplitude or phase of an antenna unit of the smart reflector.
  • the codebook set includes a near-field codebook and a far-field codebook
  • the sending unit is further configured to send indication information to the smart reflective surface
  • the instruction information is used to instruct the smart reflective surface to select a near-field codebook or a far-field codebook.
  • a communication device including: a processing unit configured to determine the distance between the terminal device and the smart reflective surface; the processing unit is also configured to determine the distance between the terminal device and the smart reflective surface and the Rayleigh distance , to determine the number of antenna elements used by the smart reflector for data transmission.
  • the processing unit is further configured to determine the distance between the terminal device and the smart reflective surface according to the position of the terminal device and the position of the smart reflective surface.
  • the communication device further includes a transceiver unit configured to receive the distance between the terminal device and the smart reflective surface sent by the terminal device; wherein, the terminal The distance between the device and the smart reflecting surface is determined by the terminal device according to the position of the smart reflecting surface and the position of the terminal device.
  • the number of antenna units used for data transmission is related to the distance between the terminal device and the smart reflective surface, the carrier frequency, and the relationship.
  • a computer-readable storage medium including computer programs or instructions.
  • the computer executes the computer program according to the first aspect and the first aspect.
  • the method described in any one of the possible implementations; or, causing the computer to execute the method described in any one of the second aspect and any possible implementation of the second aspect; or, making the The computer executes the method described in any one of the third aspect and any possible implementation manner of the third aspect; or, making the computer execute the fourth aspect and any one of the possible implementation manners of the fourth aspect The method described in any one; or, causing the computer to execute the method described in any one of the fifth aspect and any possible implementation manner of the fifth aspect; or, causing the computer to execute the method described in the sixth aspect And the method described in any one of the possible implementation manners of the sixth aspect.
  • a computer program product including instructions. When the instructions are run on a computer, the computer is made to perform any one of the possibilities of the first aspect and the first aspect.
  • a communication device including a processor, the processor is coupled with a memory, and the processor is used to execute computer programs or instructions, so that the communication device performs any one of the first aspect and the first aspect.
  • the method described in any one of the possible implementations; or, causing the computer to execute the method described in any one of the second aspect and any possible implementation of the second aspect; or, causing the computer to execute The method as described in any one of the third aspect and any possible implementation manner of the third aspect; or, making the computer execute any one of the fourth aspect and any one of the possible implementation manners of the fourth aspect The method; or, causing the computer to execute the method described in any one of the fifth aspect and any possible implementation manner of the fifth aspect; or, causing the computer to execute the method described in the sixth aspect and the sixth aspect The method described in any one of the possible implementations of the aspect.
  • a communication device including a logic circuit and an input/output interface, the logic circuit is used to execute computer programs or instructions, so that the communication device performs the first aspect and any possible implementation of the first aspect
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of measuring path differences between antenna units of a smart reflector provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, for example: global system for mobile communication (global system for mobile communication, GSM) system, code division multiple access (code division multiple access, CDMA) system, wideband code division multiple access (wideband code division multiple access, WCDMA) system, general packet radio service (general packet radio service, GPRS), long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE Time division duplex (time division duplex, TDD), universal mobile telecommunications system (universal mobile telecommunications system, UMTS), worldwide interoperability for microwave access (WiMAX) communication system, fifth generation (5th generation, 5G) system or new radio (new radio, NR), future sixth generation (6th generation, 6G) system etc.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service
  • GPRS general packet radio service
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • the communication system architecture includes terminals, network devices and intelligent reflective surfaces (reconfigurable intelligent surfaces, RIS).
  • the network device can communicate with the terminal via the smart reflective surface, or directly communicate with the terminal.
  • the terminal can communicate with the network device via the intelligent reflective surface, or directly communicate with the network device.
  • the embodiment of the present application does not limit the number of terminals, network devices, and intelligent reflection surfaces in the communication system architecture.
  • the terminal in the embodiment of the present application may refer to user equipment (user equipment, UE), access terminal, subscriber unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the terminal can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (PDA), a wireless communication function Handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminals in 5G networks, terminals in future 6G networks, or public land mobile networks (PLMN) Terminals, etc., are not limited in this embodiment of the application.
  • PLMN public land mobile networks
  • the network device in the embodiment of the present application may be a device for communicating with a terminal, and the network device may be a base transceiver station (BTS) in the global system for mobile communication or code division multiple access, or a broadband code division multiple access It can also be a base station (nodeB, NB) in an LTE system, or an evolved base station (evolutional nodeB, eNB or eNodeB) in an LTE system, or a wireless network in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • BTS base transceiver station
  • NB base station
  • evolutional nodeB, eNB or eNodeB evolved base station
  • CRAN cloud radio access network
  • the controller, or the network device can be a relay station, an access point, a vehicle-mounted device, a wearable device, a network device in a 5G network, a network device in a future 6G network, or a network device in a PLMN network. limited.
  • the smart reflective surface is composed of a smart panel including multiple antenna units, and each antenna unit is a low-cost passive reflective device.
  • each antenna unit is a low-cost passive reflective device.
  • the intelligent reflector provides a new degree of freedom that can be changed. Through the intelligent control of the antenna unit, the communication quality of the wireless link can be further improved, the useful signal strength at the receiving end can be enhanced, and the channel interference intensity can be reduced. And it provides an entry point for the realization of the overall intelligent network in the future.
  • the smart reflective surface can be regarded as a supplementary device of the existing network, so it will not have any impact on the existing protocol, and there is no need to change the existing device, so it is compatible.
  • the orientation of the terminal can be determined by measuring the angle of arrival (AOA).
  • AOA angle of arrival
  • the AOA may be determined based on a multiple signal classification (MUSIC) algorithm.
  • MUSIC multiple signal classification
  • the MUSIC algorithm is an algorithm based on subspace decomposition. It uses the orthogonality of the signal subspace and the noise subspace to construct a spatial spectral function and estimate the parameters of the signal through peak search.
  • MUSIC multiple signal classification
  • the smart reflector because the existing angle estimation method requires peak search at the signal receiving end, the smart reflector only includes passive reflectors and does not have signal processing functions, so the existing angle estimation method cannot be used technology to determine the orientation of the terminal.
  • the pilot overhead required by the existing channel estimation algorithm is related to the number of antenna units of the terminal equipment or network equipment.
  • the large number of antenna units included in the smart reflector will lead to the loss of the pilot signal. Expenses increased dramatically.
  • the embodiments of the present application provide a communication method and a communication device, which can complete high-precision measurement of the position of the terminal in a scene including an intelligent reflecting surface, and can be used to reduce the pilot frequency of the channel estimation algorithm. Signal overhead.
  • Fig. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application. The method includes:
  • the terminal device acquires a channel measurement result, the channel measurement result is obtained by the terminal device from at least two reflections of a first signal sent by the network device by the antenna unit set of the smart reflector, and the first signal is used for channel measurement.
  • the antenna unit set for channel measurement includes at least two antenna units.
  • the antenna unit set is the antenna units participating in reflecting the first signal in the smart reflecting surface.
  • the smart reflective surface may also include at least one antenna unit for data transmission.
  • the number of antenna units included in the antenna unit set may be determined in a preconfigured manner.
  • the smart reflecting surface includes 100 antenna units, 10 of which may be preconfigured to reflect the first signal sent by the network device to the smart reflecting surface.
  • the first signal is used for channel measurement.
  • the first signal may be a downlink channel measurement signal, or a downlink pilot signal, for example, a channel state information reference signal (channel state information reference signal, CRI-RS), sounding reference signal (sounding reference signal, SRS), demodulation A reference signal (demodulation reference signal, DMRS), etc., may also be other signals, for example, a smart reflector signal.
  • a channel state information reference signal channel state information reference signal
  • CRI-RS channel state information reference signal
  • SRS sounding reference signal
  • demodulation A reference signal demodulation reference signal
  • DMRS demodulation reference signal
  • the channel measurement result obtained by the terminal device based on at least two reflections of the first signal by the antenna unit set of the smart reflector can be understood as: the terminal device can obtain a channel measurement result according to the first signal sent by the network device each time, and each channel The measurement results are all reflected by the antenna unit set of the smart reflector, that is, the network device sends the first signal at least twice, and each channel measurement result corresponds to one reflection.
  • the channel measurement results can be expressed as a whole as:
  • Y n is used to represent the nth channel measurement result determined by the terminal device according to the nth reflection of the first signal by the antenna unit set, and n is a positive integer.
  • g n is used to indicate the channel between the network device and the terminal device when the network device sends the first signal for the nth time.
  • s is used to represent the first signal.
  • n n is used to represent the noise during the nth reflection.
  • g n can be expressed as:
  • d 0 is the transmission path between the network device and the terminal device
  • d 1 is the transmission path from the network device to the antenna unit #A in the antenna unit set
  • d 2 is the transmission path from the terminal device to the antenna unit #A in the antenna unit set.
  • is the path difference between adjacent antenna elements in the set of antenna elements.
  • the path difference between antenna unit #A and antenna unit #B can be expressed as:
  • the transmission path of the nth antenna unit passing through the smart reflector is d 1 +d 2 +(n-1)* ⁇ .
  • the path difference between the nth antenna unit of the smart reflector and the antenna unit #A is (n ⁇ 1)* ⁇ .
  • ⁇ 1 is the angle between the network device and antenna unit #A in the antenna unit set
  • ⁇ 2 is the antenna in the terminal device and the antenna unit set The included angle of cell #A.
  • the included angle between the network device and any antenna unit of the smart reflector is the same (theta 1 ).
  • the included angles between the terminal equipment and any antenna unit of the smart reflector are the same (theta 2 ).
  • Fig. 3 is a schematic diagram of measuring path differences between antenna units provided by an embodiment of the present application. Each parameter shown in FIG. 3 has been described above and will not be repeated here.
  • antenna unit #A is any antenna unit in the antenna unit set.
  • Antenna unit #B is any antenna unit in the antenna unit set.
  • Antenna unit #A is adjacent to antenna unit #B.
  • the channel measurement results obtained by the terminal device from at least two reflections of the first signal sent by the network device according to the set of antenna units of the smart reflector can also be understood as obtained after performing corresponding calculations between at least two channel measurement results Channel measurement results.
  • channel measurement result Y 1 *(Y 2 )* or
  • (Y 1 -Y 3 )* is the conjugate expression form of (Y 1 -Y 3 ).
  • the terminal device determines the path difference between the antenna units of the smart reflector according to the channel measurement result.
  • the channel measurement results corresponding to the two reflections are Y 1 and Y 2 respectively.
  • the channel measurement results corresponding to the three reflections are Y 1 , Y 2 and Y 3 respectively.
  • the terminal device determines the path difference between the antenna units of the smart reflector according to the first channel measurement result and the second channel measurement result.
  • the adjustable phase response of each antenna element in the set of antenna elements is All direct links are blocked, and the noise part is 0, or the noise is so small that it can be ignored.
  • each antenna unit index number in the antenna unit set used for channel measurement of the smart reflector is numbered, and one antenna unit corresponds to an index number, and the index number is divided into odd and even numbers.
  • antenna elements with even index numbers and antenna elements with odd index numbers.
  • the odd index number satisfies (2i+1) antenna units
  • the even index number satisfies (2i) antenna units, where i is a natural number.
  • the index number is associated with the specific arrangement position of the antenna units in the smart reflector.
  • the distance between the antenna elements of the smart reflector is uniform.
  • the antenna unit set used for channel measurement includes a first antenna unit set and a second antenna unit set.
  • the first set of antenna elements includes at least one first antenna element and the second set of antenna elements includes at least one second antenna element.
  • first antenna units included in the first antenna unit set is the same as the number of second antenna units included in the second antenna unit set.
  • Each first antenna unit in the first antenna unit set is in one-to-one correspondence with each second antenna unit at a corresponding position in the second antenna unit set.
  • the spacing between the one-to-one antenna elements of each group is equal. The corresponding relationship is specifically as shown below.
  • the first antenna unit may be an antenna unit with an odd index number in the antenna unit set
  • the second antenna unit may be an antenna unit with an even index number in the antenna unit set.
  • the antenna unit set includes 10 antenna units, and their index numbers are 1-10 respectively.
  • the first antenna unit set includes five first antenna units with index numbers of 1, 3, 5, 7, and 9, and the second antenna unit set includes five first antenna units with index numbers of 2, 4, 6, 8, and 10.
  • the antenna unit with index number 7 corresponds to the antenna unit with index number 8, and the antenna unit with index number 9 corresponds to the antenna unit with index number 10.
  • the spacing between the one-to-one antenna elements of each group is equal.
  • the path difference between the antenna units with the index number value 1 and the index number value 2 the path difference between the antenna units with the index number value 3 and the index number value 4, the index number value 5 and the index number value Path difference between antenna elements with index number 6, path difference between antenna elements with index number 7 and index number 8, and path difference between antenna elements with index number 9 and index number 10 Both are equal.
  • the first antenna unit may be the antenna unit with the first half index number in the antenna unit set
  • the second antenna unit may be the antenna unit with the second half index number in the antenna unit set.
  • the antenna unit set includes 10 antenna units, and their index numbers are 1-10 respectively.
  • the first antenna unit set includes five antenna units with index numbers ranging from 1 to 5, which can all be referred to as the first antenna unit
  • the second antenna unit set includes five antennas with index numbers ranging from 6 to 10. unit, the five antenna units may all be referred to as the second antenna unit. Therefore, the antenna unit with the index number 1 corresponds to the antenna unit with the index number 6, the antenna unit with the index number 2 corresponds to the antenna unit with the index number 7, and the antenna unit with the index number 3 corresponds to the antenna unit with the index number 8,
  • the antenna unit with index number 4 corresponds to the antenna unit with index number 9, and the antenna unit with index number 5 corresponds to the antenna unit with index number 10.
  • the path difference between the antenna elements with the index number value 1 and the index number value 6 the path difference between the antenna elements with the index number value 2 and the index number value 7, the index number value 3 and the index number Path difference between antenna elements with index number 8, path difference between antenna elements with index number 4 and index number 9, and path between antenna elements with index number 5 and index number 10
  • the differences are all equal and both are five times the path difference between adjacent antenna elements.
  • the index number of the antenna unit participating in the first reflection corresponds to the index number of the antenna unit participating in the second reflection, and the number of antenna units participating in each reflection is the same.
  • the index numbers of the antenna elements participating in the first reflection are 1, 3, and 5 respectively
  • the index numbers of the antenna elements participating in the second reflection are 2, 4, and 6 respectively.
  • the channel measurement result described in step S220 can be understood as Y 1 *(Y 2 ) * or
  • the terminal device may determine that the phase of the channel measurement result is e jk ⁇ or e ⁇ jk ⁇ , and then determine the path difference between the antenna elements of the smart reflector.
  • the terminal device determines the path difference between the antenna units of the smart reflector according to the first channel measurement result, the second channel measurement result, and the third channel measurement result.
  • phase responses of antenna elements with odd index numbers in the antenna element set are both The phase responses of antenna elements with even index numbers are
  • phase responses of antenna elements with odd index numbers in the antenna element set are both The phase responses of antenna elements with even index numbers are
  • the antenna unit participating in the first reflection also participates in the second reflection and the third reflection.
  • the first channel measurement result can be expressed as:
  • the second channel measurement result can be expressed as:
  • the third channel measurement result can be expressed as:
  • the first channel measurement result is subtracted from the third channel measurement result to get:
  • the channel measurement result described in step S220 can be understood as (Y 1 -Y 2 )*(Y 1 -Y 3 ) * , and the terminal device can determine that the phase of the channel measurement result is e jk ⁇ , and then determine the antenna unit path difference between them.
  • the order of the above reflection process can also be adjusted, for example, the phase e jk ⁇ can also be obtained by exchanging the order of the second reflection and the third reflection, and the rest of the process is the same as above.
  • the order of the above reflection process can also be adjusted, for example, the phase e jk ⁇ can also be obtained by exchanging the order of the second reflection and the third reflection, and the rest of the process is the same as above.
  • There are other ways to adjust the order of the above reflection process such as exchanging the order of the first reflection and the second reflection, and the specific logic is the same as above.
  • the aforementioned path difference between antenna units may be a path difference between adjacent antenna units, or may be a path difference between non-adjacent antenna units.
  • the adjacent antenna unit that is, the antenna unit with the index number value 1 and the index number value 3
  • the adjacent antenna unit that is, the antenna unit with the index number value 1 and the index number The path difference between the antenna elements whose index number value is 2
  • the path difference between the antenna elements whose index number value is 1 and the index number value is 2 and the path difference between the antenna elements whose index number value is 2 and the index number value is 3
  • the path difference is the same. Therefore, the aforementioned path difference between antenna elements may include two cases: path difference between adjacent antenna elements and path difference between non-adjacent antenna elements.
  • the terminal device can still determine the path difference between the antenna units of the smart reflector according to the above formula (7) to formula (13) .
  • the terminal device determines the path difference based on channel measurement results determined by at least two reflections of the first signal sent by the network device by the set of antenna units of the smart reflector, and can determine the orientation of the terminal device with high precision based on the path difference .
  • the path difference determined by the terminal can be used to locate the position of the terminal.
  • the terminal device when locating the position of the terminal device with high precision, can determine the angle between the terminal device and the smart reflecting surface and/or the angle between the network device and the smart reflecting surface based on the path difference, and combine the angle between the terminal device and the network device , to determine the orientation of the terminal device with high precision.
  • the aforementioned angle between the terminal device and the smart reflecting surface and the angle between the network device and the smart reflecting surface may be determined based on known positions of the network device and the smart reflecting surface after determining the path difference. Therefore, in the embodiment of the present application, the orientation of the terminal device can be determined simply and with high precision by using the path difference.
  • the embodiment of the present application can complete high-precision measurement of the orientation of the terminal device in a scene including an intelligent reflective surface, and can improve positioning accuracy.
  • the first antenna element set includes a first antenna element
  • the second antenna element set includes a second antenna element
  • Equation (9) simplifies to:
  • Equation (10) simplifies to:
  • Equation (14) simplifies to:
  • the first antenna unit set and the second antenna unit set correspond to different phases in at least two reflections.
  • the different phases may include any of the following groups: the first set of antenna elements corresponds to the first phase, and the second set of antenna elements corresponds to the first phase; the first set of antenna elements corresponds to the first phase, and the second set of antenna elements corresponds to the first phase.
  • the first phase is different from the second phase.
  • the first phase is an odd multiple of ⁇
  • the second phase is an even multiple of ⁇
  • the first phase is an even multiple of ⁇
  • the second phase is an odd multiple of ⁇
  • the first phase is an odd multiple of ⁇
  • the second phase is an even multiple of ⁇
  • the aforementioned odd and even numbers include both positive and negative cases.
  • the first phase and the second phase may also be other phase values, for example, the difference between the first phase and the second phase is an odd multiple of ⁇ .
  • the embodiment of this application is not limited.
  • the path difference between the antenna units of the smart reflection surface can be determined, and the terminal device can be further obtained according to the path difference.
  • the execution subject of the technical solution shown in FIG. 2 may be a network device.
  • the channel measurement result obtained by the network device is obtained by the network device according to at least two reflections of the first signal sent by the terminal device by the smart reflector, and the path difference of the antenna unit of the smart reflector is determined according to the channel measurement result .
  • the specific steps are consistent with the above description and will not be repeated here.
  • the first signal sent by the terminal device to the smart reflector is also used for channel measurement.
  • the first signal may be an uplink channel measurement signal, an uplink pilot signal, such as CRI-RS, SRS, DMRS, etc., or other signals, such as a smart reflector signal.
  • the network device may determine the channel of the antenna unit of the smart reflector based on the path difference.
  • turn off all the antenna units of the smart reflector, and through the fourth channel measurement, the channel between the network device and the terminal device can be expressed as:
  • the channel between the network device and the terminal device can be expressed as :
  • the terminal device can determine in, is a known parameter.
  • the terminal device can further obtain a channel estimation result from the terminal device to the smart reflective surface and then to the network device according to the path difference of the smart reflective surface obtained from the previous three measurements.
  • the terminal device can determine the channel between the network device and the terminal device according to the fourth channel measurement, the fifth channel measurement and the path difference, which can be expressed as:
  • the channel between the network device and the terminal device can be expressed as:
  • the channel between the network device and the terminal device can be expressed as:
  • the terminal device can determine the channel estimation result of the antenna unit of the smart reflector based on the foregoing formula (15) to formula (18). In this way, the terminal device can further determine the channel estimation result from the terminal device to the smart reflector and then to the network device in a manner with low pilot signal overhead through the path difference.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application. Methods include:
  • the network device sends the first signal to the smart reflective surface at least twice.
  • the first antenna unit set and the second antenna unit set of the smart reflecting surface reflect the first signal at least twice.
  • the first antenna unit set and the second antenna unit set reflect the first signal three times, and each reflection corresponds to a different phase.
  • the first set of antenna elements corresponds to the first phase
  • the second set of antenna elements corresponds to the first phase
  • the first set of antenna elements corresponds to the first phase
  • the second set of antenna elements corresponds to The second phase
  • the third reflection the first set of antenna elements corresponds to the second phase
  • the second set of antenna elements corresponds to the first phase.
  • the first phase is ⁇
  • the second phase is 2 ⁇ .
  • step S430 and step S440 reference may be made to the content of the aforementioned steps S210 and S220, which will not be repeated here.
  • the terminal device determines the path difference based on channel measurement results determined by at least two reflections of the first signal sent by the network device by the set of antenna units of the smart reflector, and can determine the orientation of the terminal device with high precision based on the path difference .
  • the path difference determined by the terminal can be used to locate the position of the terminal.
  • the path difference is the core feature when locating the orientation of the terminal device with high precision.
  • the terminal device can determine the angle between the terminal device and the smart reflective surface and/or the angle between the network device and the smart reflective surface based on the path difference, and combine the angle between the terminal device and the network device to determine the orientation of the terminal device with high precision.
  • the aforementioned angle between the terminal device and the smart reflecting surface and the angle between the network device and the smart reflecting surface may be determined based on known positions of the network device and the smart reflecting surface after determining the path difference. Therefore, in the embodiment of the present application, the orientation of the terminal device can be determined simply and with high precision by using the path difference, thereby completing the high-precision measurement of the orientation of the terminal device, and improving the positioning accuracy.
  • the execution subject of the technical solution shown in FIG. 4 may also be a network device.
  • the terminal equipment to the smart The reflective surface can transmit the first signal at least twice (refer to S410), and the network device determines the channel measurement result according to at least two reflections (refer to S420) of the first signal sent by the terminal device by the antenna unit set of the intelligent reflective surface (refer to S420).
  • the network device determines the path difference between the antenna units of the smart reflector based on the channel measurement result (refer to S440).
  • the specific process is consistent with the above process, and will not be repeated here.
  • time-frequency code resources used for the above-mentioned uplink measurement (the path difference is determined by the network device) or downlink measurement (the path difference is determined by the terminal device) may be determined by pre-definition, pre-configuration, or by means of the network device instructing the terminal device.
  • Specific phase values such as the above-mentioned first phase and second phase may also be determined through pre-definition, pre-configuration, or the manner in which the network device instructs the smart reflective surface.
  • step S450 after step S440 includes at least one of the following:
  • the terminal device determines the angle between the network device and the smart reflective surface according to the path difference; or,
  • S450#B The terminal device determines the angle between the terminal device and the smart reflective surface according to the path difference.
  • the terminal device determines an angle (which may be called a second angle) between the terminal device and the smart reflecting surface according to the path difference. For example, if the terminal device knows the location of the network device and the smart reflecting surface, it may determine the angle between the network device and the smart reflecting surface based on the known location of the network device and the smart reflecting surface.
  • the position of the network device is ⁇ x b , y b ⁇
  • the position of the smart reflective surface is ⁇ x r , y r ⁇ .
  • the angle between the network device and the smart reflective surface can be expressed as:
  • the angle between the terminal device and the smart reflective surface can then be expressed as:
  • the terminal device may determine the angle between the terminal device and the smart reflecting surface based on the path difference and the angle between the network device and the smart reflecting surface. In this way, the position of the terminal device can be determined through the angle between the terminal device and the smart reflective surface.
  • the terminal device determines the angle between the terminal device and the intelligent reflecting surface based on the known position of the terminal device and the intelligent reflecting surface, and determines the distance between the network device and the intelligent reflecting surface based on the path difference and the angle between the terminal device and the intelligent reflecting surface. The angle of the reflective surface.
  • the position of the terminal device is ⁇ x u , y u ⁇
  • the position of the smart reflective surface is ⁇ x r , y r ⁇ .
  • the angle between the network device and the smart reflective surface can be expressed as:
  • the angle between the network device and the smart reflective surface can be expressed as:
  • the first angle can be understood as an incident angle
  • the second angle can be understood as a reflection angle.
  • the incident angle is an angle between the first signal emitted by the network device to the smart reflective surface and the normal.
  • the reflection angle is the angle between the signal after the smart reflector reflects the first signal transmitted by the network device and the normal.
  • the first angle is the incident angle and the second angle is the reflection angle based on the fact that the network device transmits the first signal to the smart reflective surface.
  • the first angle is the reflection angle
  • the second angle is the incident angle.
  • the network device sends the first signal to the smart reflective surface
  • the first angle is the incident angle
  • the second angle degrees is the angle of reflection.
  • the terminal device may send the angle to the network device after determining the angle between the terminal device and the smart reflecting surface based on the path difference.
  • the network device may determine the position of the terminal device based on at least one of the angle, the position of the network device, the position of the smart reflective surface, and the angle between the network device and the terminal device (which may be referred to as a third angle). In this way, a positioning result with higher accuracy than existing positioning technologies can be obtained.
  • the angle between the network device and the terminal device is determined by the network device based on an existing angle estimation technology.
  • step S450 the embodiment of the present application determines the second angle between the terminal device and the smart reflective surface or the first angle between the smart reflective surface and the network device based on the path difference, and the first angle or the second angle can be used for further determination
  • the location or orientation of the terminal device can improve the positioning accuracy of the terminal device.
  • step S460 after step S440 the terminal device determines the distance between the terminal device and the smart reflecting surface according to the position of the smart reflecting surface and the position of the terminal device. In this way, the terminal device can further determine the number of antenna units used for data transmission in the smart reflective surface according to the distance.
  • the distance between the terminal device and the smart reflecting surface may be determined according to the positions of the terminal device and the smart reflecting surface.
  • the position of the smart reflective surface is ⁇ x r , y r ⁇
  • the position of the terminal device is ⁇ x u , y u ⁇ .
  • the distance between the terminal device and the smart reflective surface can be expressed as:
  • the terminal device may send the distance between the terminal device and the smart reflective surface to the network device.
  • the network device is based on the relationship between the distance and the Rayleigh distance (rayleigh distance) or Fraunhofer distance (fraunhofer distance)
  • the network device determines the data used in the intelligent reflective surface. The number of antenna elements transmitted.
  • the Rayleigh distance or the Fraunhofer distance is the boundary distance between the far-field radiation and the near-field radiation of the antenna. If the distance between the sending device and the receiving device is greater than the Rayleigh distance, the channel between the sending device and the receiving device conforms to the far-field radiation. Field radiation model, if the distance between the sending device and the receiving device is less than the Rayleigh distance, the channel between the sending device and the receiving device conforms to the near-field radiation model.
  • the embodiment of the present application further judges the number of antenna units used for data transmission in the smart reflective surface based on the distance between the terminal device and the smart reflective surface, so as to ensure that the channel between the terminal device and the smart reflective surface meets the distance requirements.
  • Field radiation model which can ensure the accuracy and convenience of channel modeling, measurement and data processing between terminal equipment and smart reflectors.
  • step S450 and step S460 may mutually form a new technical solution, and this embodiment of the present application does not limit the order of step S450 and step S460.
  • the number of antenna units used for data transmission in the smart reflective surface is related to the antenna aperture used for data transmission in the smart reflective surface.
  • the antenna units included in the smart reflector are equally spaced, and the spacing is ⁇ , the number of antenna units used for data transmission in the smart reflector
  • the embodiment of the present application is described in terms of the number of antenna units used for data transmission, but does not exclude the way of expressing the aperture of the smart reflective surface used for data transmission.
  • Z 2 max(a,b) 2 , that is, Z can be expressed as the maximum value between a and b, and the unit can be meters, or Millimeters, microns, and other units of length.
  • the Z should satisfy:
  • the codebook based on discrete Fourier transform (DFT) is often used in the smart reflector, that is, the number N of antenna units used for data transmission in the smart reflector needs to be is an even power of 2. Therefore, the number N of antenna elements used for data transmission in the smart reflector is calculated as follows:
  • the number N of antenna elements used for data transmission in the smart reflector can also be determined by the following formula:
  • N is the number of antenna elements used for data transmission in the smart reflector
  • fc is the carrier frequency
  • B is the bandwidth
  • is a predefined or preconfigured value
  • d is the distance between the smart reflector and the terminal device
  • is the wavelength.
  • the codebook can be understood as the phase and/or amplitude of an antenna element. It should be understood that N is used to indicate quantity.
  • the number of antenna units used for data transmission in the smart reflective surface is associated with the distance between the smart reflective surface and the terminal device.
  • the number of antenna units used for data transmission in the smart reflective surface is associated with the distance, bandwidth, and carrier frequency between the smart reflective surface and the terminal device.
  • step S470 the embodiment of the present application determines the number of antenna units used for data transmission in the intelligent reflective surface through the relationship between the distance between the intelligent reflective surface and the terminal device and the Rayleigh distance, so that the terminal device and the intelligent reflective
  • the channel between the surfaces satisfies the far-field radiation model, which can ensure the accuracy and convenience of channel modeling, measurement, and data processing between the terminal device and the smart reflective surface.
  • steps S450-S470 may also be a network device.
  • the steps performed by the network device are the same as the steps performed by the terminal device, the specific content can be found in the above description, and will not be repeated here.
  • step S450, step S460, and step S470 may form a new technical solution, and this embodiment of the present application does not limit the order of step S450, step S460, and step S470.
  • FIG. 5 is a schematic flow chart of another communication method provided by an embodiment of the present application. The method includes:
  • the terminal device sends the angle between the terminal device and the smart reflective surface to the network device.
  • the network device receives the angle between the terminal device and the smart reflective surface sent by the terminal device.
  • the angle between the terminal device and the smart reflecting surface sent by the terminal device is determined by the terminal device according to step S450.
  • the terminal device For specific content, reference may be made to the foregoing description, and details are not repeated here.
  • the network device determines the position of the terminal device according to the angle between the terminal device and the smart reflective surface.
  • the network device knows the position of the network device and the position of the intelligent reflective surface, and the network device can combine the angle between the intelligent reflective surface and the terminal device and the distance between the terminal device and the network device based on the position of the network device and the position of the intelligent reflective surface. The angle between them determines the position of the end device.
  • the coordinates of the network device are ⁇ x b , y b ⁇
  • the coordinates of the smart reflective surface are ⁇ x r , y r ⁇
  • the coordinates of the terminal device are ⁇ x u , y u ⁇ .
  • the angle ⁇ 3 between network equipment and terminal equipment can be expressed as:
  • the angle between the terminal device and the smart reflective surface can be expressed as:
  • the network device may determine the angle between the terminal device and the network device based on the aforementioned angle estimation technology, and determine the position of the terminal device according to the angle between the terminal device and the smart reflecting surface, the position of the network device, and the position of the smart reflecting surface.
  • the angle between the terminal device and the intelligent reflective surface is determined according to the path difference, and the position of the terminal device is determined in combination with the angle between the terminal device and the network device, the position of the network device, and the position of the intelligent reflective surface, so as to ensure that the network device is
  • the high-precision positioning of terminal equipment can also reduce the interaction between network equipment and reduce the complexity of implementation.
  • the terminal device is positioned by combining the network device with the smart reflector, that is, the phase of the smart reflector is adjusted in multiple measurements, and the multiple measurement results are jointly processed to obtain the terminal device and the smart reflector.
  • the angle of the reflecting surface and further obtain the specific position of the terminal device according to the angle.
  • the network device determines the distance between the terminal device and the smart reflecting surface according to the position of the smart reflecting surface and the position of the terminal device.
  • step S460 For specific content, reference may be made to the description of the aforementioned step S460.
  • the network device determines the number of antenna units used for data transmission in the smart reflector based on the relationship between the distance and the Rayleigh distance between the terminal device and the smart reflector, so that the distance between the terminal device and the smart reflector can be guaranteed.
  • the channel satisfies the far-field radiation model, which can ensure the accuracy and convenience of channel modeling, measurement, and data processing between terminal equipment and smart reflectors.
  • the network device determines the number of antenna elements used for data transmission in the smart reflective surface according to the distance and the Rayleigh distance.
  • step S470 For specific content, refer to the description of the aforementioned step S470.
  • the network device may calculate the distance between the terminal device and the smart reflective surface by the network device itself, or may be sent by the terminal device to the network device (see the foregoing description of step S460 here).
  • the embodiment of the present application can ensure that the channel between the terminal device and the smart reflector satisfies the far-field radiation model, which can ensure the accuracy and accuracy of channel modeling, measurement, and data processing between the terminal device and the smart reflector. convenience.
  • Fig. 6 is a schematic diagram of another communication method provided by the embodiment of the present application. Methods include:
  • the network device sends information #A to the smart reflective surface, where the information #A includes at least one of the following: a codebook set, a distance between the terminal device and the smart reflective surface, or an antenna unit used for data transmission in the smart reflective surface quantity.
  • the smart reflective surface receives the information #A sent by the network device.
  • the codebook set includes at least one codebook, and one codebook includes at least one of the following: phase or amplitude of an antenna unit in the smart reflector.
  • the network device determines a codebook set, and the number of codebooks in the codebook set can be more than the number of antenna units used for data transmission in the smart reflector, and can also be less than the number of antenna units used for data transmission in the smart reflector The number may also be equal to the number of antenna units used for data transmission in the smart reflector. Wherein, one codebook corresponds to one antenna unit.
  • the network device can send information #A including the codebook set and the distance between the terminal device and the smart reflector to the smart reflector, and can also send information #A including the codebook set and the antenna unit used for data transmission in the smart reflector
  • the information #A of the two parameters of the quantity can also send the information #A including the codebook set, or can also send the information #A including the distance between the terminal device and the smart reflective surface, or can also send the information #A in the smart reflective surface Information #A of the number of antenna elements used for data transmission.
  • information #A includes one of the above three parameters to the smart reflective surface
  • the remaining two parameters may be configured in the smart reflective surface in a pre-configured manner.
  • information #A includes a codebook set, and the number of antenna units used for data transmission in the smart reflective surface is preconfigured on the smart reflective surface; or, the distance between the terminal device and the smart reflective surface is preconfigured on the smart reflective surface. Therefore, the smart reflective surface can determine information #B based on information #A sent by the network device.
  • the codebook set sent by the network device to the smart reflective surface is not the final codebook used for data transmission, and the smart reflective surface may determine the final codebook used for data transmission based on the codebook set sent by the network device.
  • the smart reflector determines the path difference between the antenna units by controlling and adjusting the phase of the antenna units instead of the amplitude.
  • smart reflectors can adjust the channel conditions for data transmission by adjusting the phase and amplitude of the antenna elements.
  • the network device can determine a codebook set by itself.
  • the codebook in the codebook set can be phase, amplitude, or phase and amplitude, and then send the codebook set to the smart reflector.
  • the smart reflector is based on The set of codebooks determines the set of codebooks used for data transmission.
  • the smart reflective surface determines information #B according to information #A, where information #B includes at least one codebook for data transmission.
  • the intelligent reflective surface determines information #B according to information #A.
  • the smart reflective surface determines a codebook set for data transmission according to information #A, and the codebook set for data transmission includes at least one codebook.
  • the smart reflector can directly determine the number of antenna units used for data transmission;
  • the smart reflective surface may determine the number of antenna units used for data transmission based on formula (26-1) and/or (26-2).
  • Each codebook in the set is expanded to 2 codebooks, resulting in 20 codebooks for data transmission.
  • the extension can be realized by adding a small range of phase shift to the codebook.
  • the number of codebooks to be expanded for each codebook can be determined according to the ratio of N to S. Therefore, use
  • the number of codebooks in the codebook set for data transmission is the same as the number of antenna elements used for data transmission.
  • the specific sampling interval can be determined according to the ratio of S to N.
  • the network device sends instruction information to the smart reflective surface, and the instruction information is used to instruct the smart reflective surface to select the near-field codebook or the far-field codebook .
  • the near-field codebook is used to represent the codebook conforming to the near-field radiation model
  • the far-field codebook is used to represent the codebook conforming to the far-field radiation model.
  • the same far-field codebook and near-field codebook including amplitude and/or phase can be pre-configured on the network device and the smart reflector, and the network device can dynamically indicate
  • the smart reflector needs to use a near-field codebook or a far-field codebook. In this way, the codebook of the smart reflector can match the actual far-field model or near-field model, thereby reducing the bit error rate of the system and improving the spectral efficiency of the system.
  • the indication information sent by the network device to the smart reflective surface may be sent after sending the codebook set and parameters, or at the same time, which is not limited in this embodiment of the present application.
  • the smart reflector after the smart reflector determines the number of antenna units used for data transmission and the angle between the smart reflector and the terminal device, the smart reflector directly generates a codebook for data transmission according to the angle (the codebook is phase, not magnitude).
  • the phase of the nth antenna in the antenna unit is Wherein, n is the index of the antenna in the antenna unit, ⁇ is a preset deviation value, and the amplitude may be a constant amplitude.
  • the embodiment of the present application can realize the autonomy of the intelligent reflective surface in selecting a codebook, thereby reducing the complexity of implementing the controller of the intelligent reflective surface by the network device, and improving the flexibility of system design.
  • multiple codebooks in the codebook set used for data transmission of the smart reflective surface are determined by the network device, and the network device sends the codebook used for data transmission determined by the network device to the smart reflective surface.
  • Multiple codebooks in the codebook set, the number of codebooks in the codebook set is consistent with the number of antenna units used for data transmission in the smart reflector.
  • the information #A can also be pre-configured in the smart reflective surface, that is, the smart reflective surface obtains the pre-configured information# A determines information #B including at least one codebook for data transmission.
  • the information #A sent by the network device to the smart reflective surface includes a codebook set, and the number of antenna units used for data transmission in the smart reflective surface is pre-configured in the smart reflective surface, and the smart reflective surface can be based on the Information #A and the number of pre-configured antenna units used for data transmission determine information #B.
  • the information #A sent by the network device to the smart reflector includes the number of antenna units used for data transmission in the smart reflector, and the aforementioned codebook set is preconfigured in the smart reflector, then the smart reflector can Information #B is determined based on this information #A and a preconfigured codebook set.
  • the information #A sent by the network device to the smart reflective surface includes the distance between the terminal device and the smart reflective surface
  • the aforementioned codebook set is pre-configured in the smart reflective surface
  • the smart reflective surface can also be based on this information #A and the pre-configured codebook set to determine information #B.
  • the smart reflector may send request information for requesting selection of antenna units to the smart reflector, and the network The device may send indication information to the smart reflector to instruct the smart reflector to autonomously select an antenna unit for measurement and reflection.
  • Fig. 7 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • the communication device includes a processor 701 , a memory 702 and a communication interface 703 , and the processor 701 , the memory 702 and the communication interface 703 are connected to each other through a bus 704 .
  • the communication device shown in FIG. 7 may be the above-mentioned network device, or may be a terminal device.
  • Memory 702 includes, but is not limited to, random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable read only memory, EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM), the memory 702 is used for relevant instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read only memory
  • Portable read-only memory compact disc read-only memory, CD-ROM
  • the processor 701 may be one or more central processing units (central processing unit, CPU).
  • CPU central processing unit
  • the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 701 in the communication device is used to read the program code stored in the memory 702, for example, to perform the following operations:
  • the channel measurement result is obtained by the network device from at least two reflections of the first signal sent by the terminal device by the antenna unit set of the smart reflector;
  • the path difference between the antenna elements of the smart reflector is determined according to the channel measurement result.
  • the processor 701 in the communication device is used to read the program code stored in the memory 702, for example, to perform the following operations:
  • the channel measurement result is obtained by the terminal device from at least two reflections of the first signal sent by the network device by the antenna unit set of the smart reflector;
  • the path difference between the antenna elements of the smart reflector is determined according to the channel measurement result.
  • FIG. 8 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • the communication device may be applied to a network device or a terminal device, and may be used to implement the methods involved in the above embodiments.
  • the communication device includes a transceiver unit 810 and a processing unit 820 .
  • the transceiver unit 810 and the processing unit 820 are exemplarily introduced below.
  • the transceiving unit 810 is used for acquiring channel measurement results.
  • the processing unit 820 is configured to determine the path difference between the antenna units of the smart reflector according to the channel measurement result.
  • the transceiver unit 810 can also be used to send the codebook set and parameters, and indication information to the smart reflective surface, and can also be used to receive information sent by the terminal device, such as the distance between the terminal device and the smart reflective surface, the angle, and the smart reflective surface Parameters such as the number of antenna elements used for data transmission.
  • the terminal device such as the distance between the terminal device and the smart reflective surface, the angle, and the smart reflective surface Parameters such as the number of antenna elements used for data transmission.
  • the transceiver unit 810 is configured to obtain channel measurement results.
  • the processing unit 820 is configured to determine the path difference between the antenna units of the smart reflector according to the channel measurement result.
  • the transceiver unit 810 may also be used to send the angle between the terminal device and the smart reflective surface, the distance between the terminal device and the smart reflective surface, and the number of antenna units used for data transmission in the smart reflective surface to the network device.
  • the transceiver unit 810 may also be used to send the angle between the terminal device and the smart reflective surface, the distance between the terminal device and the smart reflective surface, and the number of antenna units used for data transmission in the smart reflective surface to the network device.
  • the transceiver unit 810 may also be used to send the angle between the terminal device and the smart reflective surface, the distance between the terminal device and the smart reflective surface, and the number of antenna units used for data transmission in the smart reflective surface to the network device.
  • the communication device further includes a storage unit 830, and the storage unit is configured to store a program or code for executing the foregoing method.
  • FIG. 9 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • the communication device may be applied to a smart reflective surface and may be used to implement the methods involved in the above embodiments.
  • the communication device includes an acquisition unit 910 and a processing unit 920 .
  • the acquisition unit 910 and the processing unit 920 are described below by way of example.
  • the obtaining unit 910 may be used to receive the first information sent by the network device, and may also be used to receive indication information sent by the network device.
  • the processing unit 920 may be configured to determine the second information and the like according to the first information sent by the network device. For specific content, reference may be made to the description of the foregoing method embodiments, and details are not repeated here.
  • FIG. 10 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • the communication device can be applied to a smart reflective surface, or to a network device and a terminal device, and can be used to implement the methods involved in the above embodiments.
  • the communication device includes a logic circuit 1010 and an input and output interface 1020 .
  • the logic circuit 1010 is configured to execute methods or steps related to network devices or terminal devices or smart reflective surfaces in the above method embodiments. For specific content, reference may be made to the foregoing description, and details are not repeated here.
  • the input and output interface 1020 is used to connect the logic circuit and other modules. It should be understood that the apparatus embodiments shown in FIG. 7 to FIG. 10 are used to implement the content described in FIG. 2 to FIG. 6 in the foregoing method embodiment. Therefore, for the specific execution steps and methods of the devices shown in FIG. 7 to FIG. 10 , reference may be made to the content described in the foregoing method embodiments.
  • the embodiment of the present application also provides a chip, including a processor, configured to call and execute instructions stored in the memory from a memory, so that a communication device installed with the chip executes the methods in the above examples.
  • the embodiment of the present application also provides another chip, including: an input interface, an output interface, a processor, and a memory, the input interface, the output interface, the processor, and the memory are connected through an internal connection path, and the The processor is configured to execute the codes in the memory, and when the codes are executed, the processor is configured to execute the methods in the above examples.
  • An embodiment of the present application further provides a processor, configured to be coupled with a memory, and configured to execute the methods and functions related to satellites or user equipment in any one of the foregoing embodiments.
  • a computer program product is provided.
  • the methods of the foregoing embodiments are realized.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, the methods described in the foregoing embodiments are implemented.
  • plural means two or more than two.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • words such as “exemplarily” or “for example” are used as examples, illustrations or illustrations.
  • references to "an embodiment” throughout the specification mean that a particular feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are realized in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in the various embodiments of the present application.
  • aforementioned storage medium comprises: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请实施例提供一种通信方法和通信装置,方法包括:终端设备获取信道测量结果,该信道测量结果是终端设备根据智能反射面的天线单元集合对网络设备发送的第一信号的至少两次反射得到的,该第一信号是用于信道测量的信号,该天线单元集合包括至少两个天线单元;该终端设备根据该信道测量结果确定该智能反射面的天线单元之间的路径差。通过该方法,本申请实施例可以根据该路径差进一步地在包括智能反射面的场景中完成对终端方位的高精度测量,以及获得终端设备到智能反射面再到网络设备之间的信道估计结果。

Description

通信方法与通信装置
本申请要求于2022年1月30提交中国国家知识产权局、申请号为202210114465.4、申请名称为“通信方法与通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,更具体地,涉及一种通信方法与通信装置。
背景技术
在新无线(new radio,NR)通信系统中,网络设备根据终端设备的到达角(angle of arrival,AOA)和终端设备与网络设备之间的定时提前(timing advance,TA)实现对终端设备的定位。其中,AOA具体可以通过多信号分类(multiple signal classification,MUSIC)算法确定。MUSIC算法是一种基于子空间分解的算法,它利用信号子空间和噪声子空间的正交性,构建空间谱函数,通过峰值搜索估计信号的参数。
网络设备和终端设备距离较远时,即使微小的AOA的测量误差也会造成较大的定位偏差。智能反射面只包括被动天线单元,不具备信号处理功能,因此无法利用现有的角度估计技术。
因此,如何在包括智能反射面的场景中完成对终端设备方位的高精度测量是目前亟待解决的技术问题。
发明内容
本申请实施例提供了一种通信方法与通信装置,能够在包括智能反射面的场景中完成对终端设备方位的高精度测量。
第一方面,提供了一种通信方法,包括:终端设备获取信道测量结果,该信道测量结果是该终端设备根据智能反射面的天线单元集合对网络设备发送的第一信号的至少两次反射得到的,该第一信号用于信道测量,该天线单元集合包括至少两个天线单元;该终端设备根据该信道测量结果确定该智能反射面的天线单元之间的路径差。
终端设备基于智能反射面的天线单元集合对网络设备发送的第一信号的至少两次反射确定的信道测量结果来确定路径差,并可以基于该路径差高精度地确定终端设备的方位。换言之,终端设备所确定的路径差能够用于定位终端设备的位置。
具体地,在高精度定位终端设备的方位时,终端设备可以基于该路径差确定终端设备与智能反射面的角度和/或网络设备与智能反射面的角度,并结合终端设备与网络设备的角度,实现高精度地确定终端设备的方位。另外,前述的终端设备与智能反射面的角度和网络设备与智能反射面的角度在确定该路径差之后可以基于已知的网络设备的位置与智能反射面的位置而确定的。因此,本申请实施例通过路径差就能够简单地和高精度地确定 终端设备的方位。
通过上述技术方案,本申请实施例能够在包括智能反射面的场景中完成对终端设备方位的高精度测量,并可以提高定位精度。
另外,本申请实施例还可以通过该路径差进一步地以一种导频信号开销较低的方式确定终端设备到智能反射面再到网络设备的信道估计结果。
结合第一方面,在第一方面的某些实现方式中,该天线单元集合包括第一天线单元集合与第二天线单元集合,该第一天线单元集合包括至少一个第一天线单元,该第二天线单元集合包括至少一个第二天线单元,该第一天线单元集合与该第二天线单元集合在该至少两次反射中对应不同的相位。
本申请实施例通过调整每次反射过程中天线单元的相位,并基于获取的多次信道测量结果来确定智能反射面的天线单元之间的路径差,并且可以根据此路径差进一步获得终端设备的高精度的定位结果,以及以一种导频信号开销较低的方式获得终端设备到智能反射面再到网络设备的信道估计结果。
结合第一方面,在第一方面的某些实现方式中,该不同的相位包括以下任意一组:该第一天线单元集合对应第一相位,该第二天线单元集合对应第一相位;该第一天线单元集合对应第一相位,该第二天线单元集合对应第二相位;该第一天线单元集合对应第二相位,该第二天线单元集合对应第一相位;该第一天线单元集合对应第二相位,该第二天线单元集合对应第二相位;其中,该第一相位与该第二相位不同。
通过调整智能反射面的天线单元集合在每次的反射过程中所对应的相位,且不同的反射过程对应不同的相位,如此,本申请实施例基于与该不同的相位所对应的多次信道测量结果来确定智能反射面的天线单元之间的路径差。
结合第一方面,在第一方面的某些实现方式中,第一相位是π的偶数倍,第二相位是π的奇数倍;或者,第一相位是π的奇数倍,第二相位是π的偶数倍。
结合第一方面,在第一方面的某些实现方式中,该方法还包括以下至少一种:该终端设备根据该路径差确定该网络设备与该智能反射面的第一角度;或者,该终端设备根据该路径差确定该智能反射面与该终端设备的第二角度。
应理解,该第一角度可以理解是入射角,第二角度可以理解是反射角。该入射角是网络设备向智能反射面发射的第一信号与法线之间的夹角。该反射角是智能反射面对网络设备发射的第一信号进行反射后的信号与法线之间的夹角。
应理解,第一角度是入射角和第二角度是反射角是基于网络设备向智能反射面发射第一信号而言的。当终端设备向智能反射面发送第一信号时,第一角度就是反射角,第二角度就是入射角。当网络设备向智能反射面发送第一信号时,第一角度就是入射角,第二角度就是反射角。
通过上述技术方案,本申请实施例基于该路径差来确定终端设备与智能反射面的第二角度或者智能反射面与网络设备的第一角度,该第一角度或者第二角度能够用于进一步地确定终端设备的位置或者方位,从而可以提高对终端设备的定位精度。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该终端设备向网络设备发送第二角度。
通过上述技术方案,本申请实施例能够使得网络设备基于该第二角度、网络设备的位 置、智能反射面的位置以及终端设备与网络设备的角度来确定终端设备的位置,如此可以获得精确度更高的定位结果。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该终端设备根据智能反射面的位置与终端设备的位置,确定终端设备与智能反射面的距离。
通过上述技术方案,本申请实施例基于终端设备与智能反射面的距离进一步地判断智能反射面中用于数据传输的天线单元的数量,如此就可以保证终端设备和智能反射面之间的信道满足远场辐射模型,该模型可以保证终端设备和智能反射面之间的信道建模,测量以及数据处理的准确性和便利性。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该终端设备向网络设备发送终端设备与智能反射面的距离。
通过上述技术方案,本申请实施例能够使得网络设备基于该距离和终端设备与智能反射面的瑞利距离之间的关系来确定智能反射面中用于数据传输的天线单元的数量,如此就可以保证终端设备和智能反射面之间的信道满足远场辐射模型,该模型可以保证终端设备和智能反射面之间的信道建模,测量以及数据处理的准确性和便利性。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该终端设备根据终端设备与智能反射面的距离和瑞利距离,确定该智能反射面中用于数据传输的天线单元的数量。
应理解,该确定智能反射面中用于数据传输的天线单元的数量与智能反射面中用于数据传输的天线孔径相关。
本申请实施例通过智能反射面与终端设备的距离和瑞利距离之间的关系,确定智能反射面中用于数据传输的天线单元的数量,如此就可以保证终端设备和智能反射面之间的信道满足远场辐射模型,该模型可以保证终端设备和智能反射面之间的信道建模,测量以及数据处理的准确性和便利性。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该终端设备向网络设备发送该用于数据传输的天线单元的数量。
通过上述技术方案,本申请实施例使得网络设备获取智能反射面中用于数据传输的天线单元的数量,如此就可以保证终端设备和智能反射面之间的信道满足远场辐射模型,该模型可以保证终端设备和智能反射面之间的信道建模,测量以及数据处理的准确性和便利性。
结合第一方面,在第一方面的某些实现方式中,该用于数据传输的天线单元的数量与终端设备与智能反射面之间的距离、载波频率和带宽相关联。
第二方面,提供了一种通信方法,包括:网络设备获取信道测量结果,该信道测量结果是该网络设备根据智能反射面的天线单元集合对终端设备发送的第一信号的至少两次反射得到的,该第一信号用于信道测量,该天线单元集合包括至少两个天线单元;该网络设备根据该信道测量结果确定该智能反射面的天线单元之间的路径差。
网络设备基于智能反射面的天线单元集合对终端设备发送的第一信号的至少两次反射确定的信道测量结果来确定智能反射面的天线单元之间的路径差,并可以基于该路径差和网络设备与智能反射面的角度确定终端设备与智能反射面的角度,从而可以确定终端设备的方位。换言之,网络设备所确定的路径差能够用于定位终端设备的位置。
具体地,在高精度定位终端设备的方位时,该路径差是最核心的特征。例如,网络设备可以基于该路径差确定终端设备与智能反射面的角度和网络设备与智能反射面的角度,并结合终端设备与网络设备的角度,实现高精度地确定终端设备的方位。另外,前述的终端设备与智能反射面的角度和网络设备与智能反射面的角度在确定该路径差之后可以基于已知的网络设备的位置与智能反射面的位置而确定的。因此,本申请实施例通过路径差就能够简单地和高精度地确定终端设备的方位。
通过上述技术方案,本申请实施例能够在包括智能反射面的场景中完成对终端设备方位的高精度测量,并可以提高定位精度。
另外,本申请实施例还可以通过该路径差进一步地以一种导频信号开销较低的方式确定终端设备到智能反射面再到网络设备的信道估计结果。结合第二方面,在第二方面的某些实现方式中,该天线单元集合包括第一天线单元集合与第二天线单元集合,该第一天线单元集合包括至少一个第一天线单元,该第二天线单元集合包括至少一个第二天线单元,该第一天线单元集合与该第二天线单元集合在该至少两次反射中对应不同的相位。
本申请实施例通过调整每次反射过程中天线单元的相位,并基于获取的多次信道测量结果来确定智能反射面的天线单元之间的路径差,并且可以根据此路径差进一步获得终端设备的高精度的定位结果,以及以一种导频信号开销较低的方式获得终端设备到智能反射面再到网络设备的信道估计结果。结合第二方面,在第二方面的某些实现方式中,该不同的相位包括以下任意一组:该第一天线单元集合对应第一相位,该第二天线单元集合对应第一相位;该第一天线单元集合对应第一相位,该第二天线单元集合对应第二相位;该第一天线单元集合对应第二相位,该第二天线单元集合对应第一相位;该第一天线单元集合对应第二相位,该第二天线单元集合对应第二相位;其中,该第一相位与该第二相位不同。
通过调整智能反射面的天线单元集合在每次的反射过程中所对应的相位,且不同的反射过程对应不同的相位,如此,本申请实施例基于与该不同的相位所对应的多次信道测量结果来确定智能反射面的天线单元之间的路径差。
结合第二方面,在第二方面的某些实现方式中,第一相位是π的偶数倍,第二相位是π的奇数倍;或者,第一相位是π的奇数倍,第二相位是π的偶数倍。
结合第二方面,在第二方面的某些实现方式中,该方法还包括以下至少一种:该网络设备根据该路径差确定网络设备与智能反射面的第一角度;或者,该网络设备根据该路径差确定智能反射面与终端设备的第二角度。
通过上述技术方案,本申请实施例的网络设备基于该路径差确定终端设备与智能反射面的第二角度或者智能反射面与网络设备的第一角度,该第一角度或者第二角度可以用于进一步地确定终端设备的位置或者方位,从而可以获得精确度更高的终端设备的定位结果。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该网络设备根据该第二角度确定终端设备的位置。
具体地,网络设备可以根据第二角度、终端设备与网络设备的角度、网络设备的位置与智能反射面的位置确定终端设备的位置,如此,可以获得精确度更高的终端设备的定位结果。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该网络设备确定终端设备与智能反射面的距离;该网络设备根据终端设备与智能反射面的距离和瑞利距离,确 定该智能反射面中用于数据传输的天线单元的数量。
通过上述技术方案,网络设备基于该距离和终端设备与智能反射面的瑞利距离之间的关系来确定智能反射面中用于数据传输的天线单元的数量,如此本申请实施例就可以保证终端设备和智能反射面之间的信道满足远场辐射模型,该模型可以保证终端设备和智能反射面之间的信道建模,测量以及数据处理的准确性和便利性。结合第二方面,在第二方面的某些实现方式中,该网络设备确定终端设备与反射设备的距离,包括:该网络设备根据终端设备的位置与智能反射面的位置,确定终端设备与智能反射面的距离。
结合第二方面,在第二方面的某些实现方式中,该网络设备确定终端设备与智能反射面的距离,包括:该网络设备接收终端设备发送的距离;其中,该距离是终端设备根据智能反射面的位置与终端设备的位置确定的。
结合第二方面,在第二方面的某些实现方式中,该用于数据传输的天线单元的数量与终端设备与智能反射面之间的距离、载波频率和带宽相关联。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该网络设备向智能反射面发送第一信息,该第一信息包括以下至少一种:码本集合、终端设备与智能反射面的距离或者智能反射面中用于数据传输的天线单元的数量;其中,该码本集合包括至少一个码本,一个码本包括以下至少一种:该智能反射面的一个天线单元的幅度或相位。
通过上述技术方案,本申请实施例能够实现让智能反射面有选择码本的自主性,从而降低了网络设备对智能反射面的控制器的实现复杂度,提高了系统设计的灵活性。
结合第二方面,在第二方面的某些实现方式中,该码本集合包括近场码本与远场码本,该方法还包括:该网络设备向该智能反射面发送指示信息,该指示信息用于指示该智能反射面选择该近场码本或者该远场码本。
通过上述技术方案,本申请实施例可以使得网络设备可以动态指示智能反射面选择合适的码本类型,如此,智能反射面的码本能够匹配实际的远场模型或近场模型,从而降低系统的误码率,提高系统频谱效率。
第三方面,提供了一种通信方法,包括:智能反射面获取第一信息,该第一信息包括以下至少一种:码本集合、终端设备与智能反射面的距离或者智能反射面中用于数据传输的天线单元的数量;其中,该码本集合包括至少一个码本,一个码本包括以下至少一种:该智能反射面的一个天线单元的幅度或相位;该智能反射面根据该第一信息确定第二信息,该第二信息包括至少一个用于数据传输的码本。
应理解,智能反射面获取的第一信息可以是网络设备向智能反射面发送的,也可以是以预配置的方式配置在智能反射面中,也还可以通过其他的方式获取的。
通过上述技术方案,本申请实施例能够实现让智能反射面有选择码本的自主性,从而降低了网络设备对智能反射面的控制器的实现复杂度,提高了系统设计的灵活性。
结合第三方面,在第三方面的某些实现方式中,该用于数据传输的码本集合中码本的数量与该用于数据传输的天线单元的数量相同。
应理解,该用于数据传输的码本集合中码本数量与该智能反射面中用于数据传输的天线单元的数量一致。
结合第三方面,在第三方面的某些实现方式中,该码本集合包括近场码本与远场码本,该方法还包括:该智能反射面接收网络设备发送的指示信息,该指示信息用于指示该智能 反射面选择该近场码本或者该远场码本。
第四方面,提供了一种通信方法,包括:网络设备接收终端设备发送的智能反射面与该终端设备的第二角度;该网络设备根据该第二角度确定该终端设备的位置。
具体地,该网络设备根据第二角度、终端设备与网络设备之间的角度、网络设备的位置和智能反射面的位置确定终端设备的位置,如此可以获得更高精度的终端设备的定位结果。
结合第四方面,在第四方面的某些实现方式中,在网络设备根据第二角度确定终端设备的位置之后,该方法还包括:该网络设备确定该智能反射面中用于数据传输的天线单元的数量。
通过上述技术方案,本申请实施例基于该确定的天线单元的数量可以保证终端设备和智能反射面之间的信道满足远场辐射模型,该模型可以保证终端设备和智能反射面之间的信道建模,测量以及数据处理的准确性和便利性。
结合第四方面,在第四方面的某些实现方式中,该网络设备确定用于数据传输的天线单元的数量,包括:该网络设备确定终端设备与智能反射面的距离;网络设备根据该终端设备与智能反射面的距离与瑞利距离,确定用于数据传输的天线单元的数量。
结合第四方面,在第四方面的某些实现方式中,该网络设备确定终端设备与智能反射面的距离,包括:该网络设备根据终端设备的位置与智能反射面的位置确定该终端设备与智能反射面的距离。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:该网络设备接收终端设备发送的终端设备与智能反射面的距离,其中,该终端设备与智能反射面的距离是终端设备根据智能反射面的位置与终端设备的位置确定的。
结合第四方面,在第四方面的某些实现方式中,该网络设备确定用于数据传输的天线单元的数量,包括:网络设备接收终端设备发送的该用于数据传输的天线单元的数量。
结合第四方面,在第四方面的某些实现方式中,该用于数据传输的天线单元的数量与终端设备与智能反射面之间的距离、载波频率和带宽相关联。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:网络设备向智能反射面发送第一信息,该第一信息包括以下至少一种:码本集合、终端设备与智能反射面的距离或者智能反射面中用于数据传输的天线单元的数量;其中,该码本集合包括至少一个码本,一个码本包括以下至少一种:该智能反射面的一个天线单元的幅度或相位。
通过上述技术方案,本申请实施例能够实现让智能反射面有选择码本的自主性,从而降低了网络设备对智能反射面的控制器的实现复杂度,提高了系统设计的灵活性。
结合第四方面,在第四方面的某些实现方式中,该码本集合包括近场码本与远场码本,该方法还包括:网络设备还向智能反射面发送指示信息,该指示信息用于指示该智能反射面选择近场码本或者远场码本。
通过上述技术方案,本申请实施例可以使得网络设备可以动态指示智能反射面选择合适的码本类型,如此,智能反射面的码本能够匹配实际的远场模型或近场模型,从而降低系统的误码率,提高系统频谱效率。
第五方面,提供了一种通信方法,包括:网络设备向智能反射面发送第一信息,该第一信息包括以下至少一种:码本集合、终端设备与智能反射面的距离或者智能反射面中用 于数据传输的天线单元的数量;其中,该码本集合包括至少一个码本,一个码本包括以下至少一种:该智能反射面的一个天线单元的幅度或相位。
通过上述技术方案,本申请实施例能够实现让智能反射面有选择码本的自主性,从而降低了网络设备对智能反射面的控制器的实现复杂度,提高了系统设计的灵活性。
结合第五方面,在第五方面的某些实现方式中,该码本集合包括近场码本与远场码本,该方法还包括:网络设备还向智能反射面发送指示信息,该指示信息用于指示该智能反射面选择近场码本或者远场码本。
第六方面,提供了一种通信方法,包括:网络设备确定终端设备与智能反射面的距离;该网络设备根据该终端设备与智能反射面的距离和瑞利距离,确定该智能反射面用于数据传输的天线单元的数量。
本申请实施例通过智能反射面与终端设备的距离确定智能反射面中用于数据传输的天线单元的数量,如此,就可以保证终端设备和智能反射面之间的信道满足远场辐射模型,该模型可以保证终端设备和智能反射面之间的信道建模,测量以及数据处理的准确性和便利性。
结合第六方面,在第六方面的某些实现方式中,该网络设备确定该终端设备与智能反射面的距离,包括:网络设备根据终端设备的位置与智能反射面的位置,确定该终端设备与智能反射面的距离。
结合第六方面,在第六方面的某些实现方式中,该网络设备确定终端设备与智能反射面之间的距离,包括:网络设备接收来自终端设备发送的终端设备与智能反射面之间的距离;其中,该终端设备与智能反射面的距离是终端设备根据智能反射面的位置与终端设备的位置确定的。
结合第六方面,在第六方面的某些实现方式中,该用于数据传输的天线单元的数量与终端设备与智能反射面之间的距离、载波频率和关联。
第七方面,提供了一种通信装置,包括:收发单元,用于获取信道测量结果,该信道测量结果是该通信装置根据智能反射面的天线单元集合对网络设备发送的第一信号的至少两次反射得到的,该第一信号用于信道测量,该天线单元集合包括至少两个天线单元;处理单元,用于根据该信道测量结果确定该智能反射面的天线单元之间的路径差。
结合第七方面,在第七方面的某些实现方式中,该天线单元集合包括第一天线单元集合与第二天线单元集合,该第一天线单元集合包括至少一个第一天线单元,该第二天线单元集合包括至少一个第二天线单元,该第一天线单元集合与该第二天线单元集合在该至少两次反射中对应不同的相位。
结合第七方面,在第七方面的某些实现方式中,该不同的相位包括以下任意一组:该第一天线单元集合对应第一相位,该第二天线单元集合对应第一相位;该第一天线单元集合对应第一相位,该第二天线单元集合对应第二相位;该第一天线单元集合对应第二相位,该第二天线单元集合对应第一相位;该第一天线单元集合对应第二相位,该第二天线单元集合对应第二相位;其中,该第一相位与该第二相位不同。
结合第七方面,在第七方面的某些实现方式中,第一相位是π的偶数倍,第二相位是π的奇数倍;或者,第一相位是π的奇数倍,第二相位是π的偶数倍。
结合第七方面,在第七方面的某些实现方式中,该处理单元,还用于根据该路径差确 定该网络设备与该智能反射面的第一角度;或者,该处理单元,还用于根据该路径差确定该智能反射面与该终端设备的第二角度。
结合第七方面,在第七方面的某些实现方式中,该收发单元,还用于向网络设备发送第二角度。
结合第七方面,在第七方面的某些实现方式中,该处理单元,还用于根据智能反射面的位置与该通信装置的位置确定该通信装置与智能反射面的距离。
结合第七方面,在第七方面的某些实现方式中,该收发单元,还用于向网络设备发送该通信装置与智能反射面的距离。
结合第七方面,在第七方面的某些实现方式中,该处理单元,还用于根据该通信装置与智能反射面的距离和瑞利距离,确定该智能反射面中用于数据传输的天线单元的数量。
结合第七方面,在第七方面的某些实现方式中,该收发单元,还用于向网络设备发送该用于数据传输的天线单元的数量。
结合第七方面,在第七方面的某些实现方式中,该用于数据传输的天线单元的数量与终端设备与智能反射面之间的距离、载波频率和带宽相关联。
第八方面,提供了一种通信装置,包括:收发单元,用于获取信道测量结果,该信道测量结果是该通信装置根据智能反射面的天线单元集合对终端设备发送的第一信号的至少两次反射得到的,该第一信号用于信道测量,该天线单元集合包括至少两个天线单元;处理单元,用于根据该信道测量结果,确定智能反射面的天线单元之间的路径差。
结合第八方面,在第八方面的某些实现方式中,该天线单元集合包括第一天线单元集合与第二天线单元集合,该第一天线单元集合包括至少一个第一天线单元,该第二天线单元集合包括至少一个第二天线单元,该第一天线单元集合与该第二天线单元集合在该至少两次反射中对应不同的相位。
结合第八方面,在第八方面的某些实现方式中,该不同的相位包括以下任意一组:该第一天线单元集合对应第一相位,该第二天线单元集合对应第一相位;该第一天线单元集合对应第一相位,该第二天线单元集合对应第二相位;该第一天线单元集合对应第二相位,该第二天线单元集合对应第一相位;该第一天线单元集合对应第二相位,该第二天线单元集合对应第二相位;其中,该第一相位与该第二相位不同。
结合第八方面,在第八方面的某些实现方式中,第一相位是π的偶数倍,第二相位是π的奇数倍;或者,第一相位是π的奇数倍,第二相位是π的偶数倍。
结合第八方面,在第八方面的某些实现方式中,该处理单元,还用于根据该路径差确定网络设备与智能反射面的第一角度;或者,该处理单元,还用于根据该路径差确定智能反射面与终端设备的第二角度。
结合第八方面,在第八方面的某些实现方式中,该处理单元,还用于根据该第二角度确定终端设备的位置。
结合第八方面,在第八方面的某些实现方式中,该处理单元,还用于确定终端设备与智能反射面的距离;该处理单元,还用于根据终端设备与智能反射面的距离和瑞利距离,确定该智能反射面中用于数据传输的天线单元的数量。
结合第八方面,在第八方面的某些实现方式中,该处理单元,还用于根据终端设备的位置与智能反射面的位置确定该终端设备与智能反射面的距离。
结合第八方面,在第八方面的某些实现方式中,该收发单元,还用于接收终端设备发送的该终端设备与智能反射面的距离;其中,该终端设备与智能反射面的距离是终端设备根据智能反射面的位置与终端设备的位置确定的。
结合第八方面,在第八方面的某些实现方式中,该用于数据传输的天线单元的数量与终端设备与智能反射面之间的距离、载波频率和带宽相关联。
结合第八方面,在第八方面的某些实现方式中,该收发单元,还用于向智能反射面发送第一信息,第一信息包括以下至少一种:码本集合、终端设备与智能反射面的距离或者智能反射面中用于数据传输的天线单元的数量;其中,该码本集合包括至少一个码本,一个码本包括以下至少一种:该智能反射面的一个天线单元的幅度或相位。
结合第八方面,在第八方面的某些实现方式中,该码本集合包括近场码本与远场码本,该收发单元,还用于向该智能反射面发送指示信息,该指示信息用于指示该智能反射面选择该近场码本或者该远场码本。
第九方面,提供了一种通信装置,包括:获取单元,用于获取第一信息,该第一信息包括以下至少一种:码本集合、终端设备与智能反射面的距离或者智能反射面中用于数据传输的天线单元的数量;其中,该码本集合包括至少一个码本,一个码本包括以下至少一种:该智能反射面的一个天线单元的幅度或相位;处理单元,用于根据该第一信息确定第二信息,该第二信息包括至少一个用于数据传输的码本。
结合第九方面,在第九方面的某些实现方式中,该用于数据传输的码本集合中码本的数量与该用于数据传输的天线单元的数量相同。
结合第九方面,在第九方面的某些实现方式中,该码本集合包括近场码本与远场码本,该获取单元,还用于接收网络设备发送的指示信息,该指示信息用于指示该通信装置选择该近场码本或者该远场码本。
第十方面,提供了一种通信装置,包括:收发单元,用于接收终端设备发送的智能反射面与终端设备之间的第二角度;处理单元,用于根据第二角度确定终端设备的位置。
结合第十方面,在第十方面的某些实现方式中,该处理单元,还用于确定智能反射面中用于数据传输的天线单元的数量。
结合第十方面,在第十方面的某些实现方式中,该处理单元,还用于确定终端设备与智能反射面的距离;该处理单元,还用于根据该终端设备与智能反射面的距离与瑞利距离,确定该用于数据传输的天线单元的数量。
结合第十方面,在第十方面的某些实现方式中,该处理单元,还用于根据终端设备的位置与智能反射面的位置确定该终端设备与该智能反射面的距离。
结合第十方面,在第十方面的某些实现方式中,该收发单元,还用于接收终端设备发送的该终端设备与智能反射面的距离,其中,该终端设备与智能反射面的距离是该终端设备根据智能反射面的位置与终端设备的位置确定的。
结合第十方面,在第十方面的某些实现方式中,该收发单元,还用于接收终端设备发送的该用于数据传输的天线单元的数量。
结合第十方面,在第十方面的某些实现方式中,该用于数据传输的天线单元的数量与终端设备与智能反射面之间的距离、载波频率和带宽相关联。
结合第十方面,在第十方面的某些实现方式中,该收发单元,还用于向智能反射面发 送第一信息,该第一信息包括以下至少一种:码本集合、终端设备与智能反射面的距离或者智能反射面中用于数据传输的天线单元的数量;其中,该码本集合包括至少一个码本,一个码本包括以下至少一种:该智能反射面的一个天线单元的幅度或相位。
结合第十方面,在第十方面的某些实现方式中,该码本集合包括近场码本与远场码本,该收发单元,还用于向智能反射面发送指示信息,该指示信息用于指示该智能反射面选择近场码本或者远场码本。
第十一方面,提供了一种通信装置,包括:发送单元,用于向智能反射面发送第一信息,该第一信息包括以下至少一种:码本集合、终端设备与智能反射面的距离或者智能反射面中用于数据传输的天线单元的数量;其中,该码本集合包括至少一个码本,一个码本包括以下至少一种:该智能反射面的一个天线单元的幅度或相位。结合第十一方面,在第十一方面的某些实现方式中,该码本集合包括近场码本与远场码本,该发送单元,还用于还向智能反射面发送指示信息,该指示信息用于指示该智能反射面选择近场码本或者远场码本。
第十二方面,提供了一种通信装置,包括:处理单元,用于确定终端设备与智能反射面的距离;该处理单元,还用于根据该终端设备与智能反射面的距离和瑞利距离,确定该智能反射面用于数据传输的天线单元的数量。
结合第十二方面,在第十二方面的某些实现方式中,该处理单元,还用于根据终端设备的位置与智能反射面的位置确定终端设备与智能反射面的距离。
结合第十二方面,在第十二方面的某些实现方式中,该通信装置还包括收发单元,该收发单元,用于接收终端设备发送的终端设备与智能反射面的距离;其中,该终端设备与智能反射面的距离是该终端设备根据智能反射面的位置与终端设备的位置确定的。
结合第十二方面,在第十二方面的某些实现方式中,该用于数据传输的天线单元的数量与终端设备与智能反射面之间的距离、载波频率和关联。
第十三方面,提供了一种计算机可读存储介质,包括计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得所述计算机执行如第一方面以及第一方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第二方面以及第二方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第三方面以及第三方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第四方面以及第四方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第五方面以及第五方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第六方面以及第六方面的任一种可能实现方式中任意一项所述的方法。
第十四方面,提供了一种计算机程序产品,包含指令,当所述指令在计算机上运行时,使得所述计算机执行如使得所述计算机执行如第一方面以及第一方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第二方面以及第二方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第三方面以及第三方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第四方面以及第四方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第五方面以及第五方面的任一种可能实现方式中任意一项所述的方法;或者,使得所 述计算机执行如第六方面以及第六方面的任一种可能实现方式中任意一项所述的方法。
第十五方面,提供了一种通信装置,包括处理器,该处理器与存储器耦合,该处理器用于执行计算机程序或者指令,使得该通信装置执行如第一方面以及第一方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第二方面以及第二方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第三方面以及第三方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第四方面以及第四方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第五方面以及第五方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第六方面以及第六方面的任一种可能实现方式中任意一项所述的方法。
第十六方面,提供了一种通信装置,包括逻辑电路和输入输出接口,该逻辑电路用于执行计算机程序或者指令,使得该通信装置执行如第一方面以及第一方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第二方面以及第二方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第三方面以及第三方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第四方面以及第四方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第五方面以及第五方面的任一种可能实现方式中任意一项所述的方法;或者,使得所述计算机执行如第六方面以及第六方面的任一种可能实现方式中任意一项所述的方法。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意图。
图2是本申请实施例提供的通信方法的示意流程图。
图3是本申请实施例提供的测定智能反射面的天线单元之间的路径差的示意图。
图4是本申请实施例提供的一种通信方法的示意流程图。
图5是本申请实施例提供的另一种通信方法的示意流程图。
图6是本申请实施例提供的再一种通信方法的示意流程图。
图7是本申请实施例提供的一种通信装置的示意性框图。
图8是本申请实施例提供的又一种通信装置的示意性框图。
图9是本申请实施例提供的另一种通信装置的示意性框图。
图10是本申请实施例提供的再一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system for mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system, UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)、未来第六代(6th generation,6G)系统等。
图1是本申请实施例提供的一种通信系统架构的示意图。该通信系统架构包括终端、网络设备和智能反射面(reconfigurable intelligent surfaces,RIS)。在图1中,网络设备可以经由智能反射面实现与终端的通信,也可以直接与终端进行通信。终端可以经由智能反射面实现与网络设备的通信,也可以直接与网络设备进行通信。本申请实施例对该通信系统架构的终端、网络设备和智能反射面的数量不作限定。
本申请实施例中的终端可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端,未来6G网络中的终端或者公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,本申请实施例不作限定。
本申请实施例中的网络设备可以是用于与终端通信的设备,该网络设备可以是全球移动通讯系统或码分多址中的基站(base transceiver station,BTS),也可以是宽带码分多址系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、5G网络中的网络设备以及未来6G网络中的网络设备或者PLMN网络中的网络设备等,本申请实施例不作限定。
应理解,智能反射面是由一个包括多个天线单元的智能面板组成,每个天线单元是一个低造价的被动反射器件。通过灵活配置每个天线单元的幅度和相位可以达到控制无线信道衰落,并形成期望的定向波束的目的。
智能反射面的优点可以总结如下:
1)频谱效率增强:智能反射面提供了一个新的可以改变的自由度,通过对天线单元的智能控制,可以进一步提高无线链路的通信质量,增强接收端的有用信号强度,降低信道干扰强度,并且对于未来整体智能网络的实现提供了切入点。
2)降低能耗和设备复杂度:由于智能反射面只需要对接收到的信号进行被动反射,即在智能反射面端无需配置发射和接收单元,无需对数据进行编解码,因此智能反射面的硬件设备的复杂度可大幅度降低,从而达到减小无线网络的系统能耗的目的。
3)易于部署:由于只包括被动反射的电磁器件,智能反射面可以方便地部署在各种建筑物的表面,室内墙体,平台,路边广告牌,高速路牌,车窗等设备上。并且可以根据网络的需要,随时移除或重新部署。
4)可兼容性:智能反射面可以视为现有网络的补充设备,因此不会对现有协议造成任何影响,无需对现有设备进行更改,具有可兼容性。
5)全双工:相比运行在半双工模式下的中继(relay)系统,智能反射面仅进行被动 反射,因此可以运行在全双工模式,进而提高频谱效率。
终端的方位可以通过测量到达时间角(angle of arrival,AOA)来确定。AOA具体可以通过基于多信号分类(multiple signal classification,MUSIC)算法确定。MUSIC算法是一种基于子空间分解的算法,它利用信号子空间和噪声子空间的正交性,构建空间谱函数,通过峰值搜索估计信号的参数。但是在远距离的场景中,即使微小的AOA测量误差也会为测定终端的方位造成较大的偏差。并且,在包括智能反射面的场景中,由于现有的角度估计方法需要在信号接收端进行峰值搜索,智能反射面只包括被动反射器件,不具有信号处理功能,因此无法利用现有的角度估计技术测定终端的方位。
此外,现有信道估计算法所需要的导频开销与终端设备或网络设备的天线单元个数相关,当智能反射面被引入后,智能反射面包括的超大数量的天线单元会导致导频信号的开销急剧增加。
鉴于上述技术问题,本申请实施例提供一种通信方法与通信装置,能够在包括智能反射面的场景中完成对终端所处方位的高精度测量,并且可以用于减小信道估计算法的导频信号开销。
下文将结合附图对本申请实施例提供的通信方法作进一步的描述。
图2是本申请实施例提供的通信方法的示意流程图。该方法包括:
S210,终端设备获取信道测量结果,该信道测量结果是终端设备根据智能反射面的天线单元集合对网络设备发送的第一信号的至少两次反射得到的,该第一信号用于信道测量。
该用于信道测量的天线单元集合包括至少两个天线单元。该天线单元集合是智能反射面中参与反射第一信号的天线单元。除了该天线单元集合外,智能反射面还可以包括至少一个用于数据传输的天线单元。该天线单元集合包括的天线单元的数量可以是通过预配置的方式确定的。示例性地,智能反射面包括100个天线单元,可以预配置其中的10个天线单元用于反射网络设备向智能反射面发送的第一信号。
应理解,第一信号是用于信道测量的。第一信号可以是下行信道测量信号,也可以是下行导频信号,例如,信道状态信息参考信号(channel state information reference signal,CRI-RS),探测参考信号(sounding reference signal,SRS),解调参考信号(demodulation reference signal,DMRS)等,也还可以是其他的信号,例如,智能反射面信号。
终端设备根据智能反射面的天线单元集合对第一信号的至少两次反射所得的信道测量结果可以理解为:终端设备根据网络设备每次发送的第一信号可获得一个信道测量结果,每个信道测量结果都会经过智能反射面的天线单元集合的反射,即:网络设备至少发送两次第一信号,每个信道测量结果对应一次反射。该信道测量结果可以整体表示为:
Yn=gn*s+nn    (1)
其中,Yn用于表示终端设备根据天线单元集合对第一信号的第n次反射确定的第n个信道测量结果,n为正整数。gn用于表示网络设备第n次发送第一信号时,网络设备到终端设备之间的信道。s用于表示第一信号。nn用于表示第n次反射过程中的噪声。其中,假设n1=n2=…=nn,即噪声可以视为相同,或者多次反射过程中噪声的变化部分可以忽略不计。
gn可以表示为:
其中,分别是网络设备与终端设备之间直连链路的幅度响应和相位响应。分别是网络设备—智能反射面—终端设备之间反射链路的幅度响应与相位响应。k=2π/λ,λ表示波长。是天线单元集合中第n个天线单元的可调相位响应(也可以理解为第n个天线单元的相位)。d0是网络设备与终端设备的传输路径,d1是网络设备到天线单元集合中天线单元#A的传输路径,d2是终端设备到天线单元集合中天线单元#A的传输路径。Δ是天线单元集合中相邻天线单元之间的路径差。例如,终端设备—天线单元#A—网络设备的传输路径是:Δ1=d1+d2。终端设备—天线单元#B(天线单元#B与天线单元#A相邻)—网络设备的传输路径是:Δ2=d1+μ*sinθ1+d2-μ*sinθ1。则天线单元#A与天线单元#B之间的路径差可表示为:
Δ=Δ21=(d1+μ*sinθ1+d2-μ*sinθ1)-d1+d2=μ*(sinθ1-sinθ2)    (3)
因此,经过智能反射面的第n个天线单元的传输路径为d1+d2+(n-1)*Δ。智能反射面的第n个天线单元与天线单元#A的路径差为(n—1)*Δ。其中,是该智能反射面的天线单元集合中相邻天线单元之间的距离,θ1是网络设备与天线单元集合中天线单元#A的夹角,θ2是终端设备与天线单元集合中天线单元#A的夹角。
应理解,网络设备与智能反射面的任意一个天线单元之间的夹角均相同(为θ1)。终端设备与智能反射面的任意一个天线单元之间的夹角均相同(为θ2)。
图3是本申请实施例提供的测定天线单元之间的路径差的示意图。图3所示的各个参数已在前文进行描述,在此不再赘述。
应理解,天线单元#A是天线单元集合中任意一个天线单元。天线单元#B是天线单元集合中任意一个天线单元。天线单元#A与天线单元#B相邻。
应理解,终端设备根据智能反射面的天线单元集合对网络设备发送的第一信号的至少两次反射所得的信道测量结果也可以理解为是至少两次信道测量结果之间进行相应运算之后得到的信道测量结果。
例如,智能反射面的天线单元集合对第一信号进行两次反射时,该信道测量结果可以理解为:信道测量结果=Y1*(Y2)*或者
又例如,智能反射面的天线单元集合对第一信号进行三次反射时,该信道测量结果可以理解为:信道测量结果=(Y1-Y2)*(Y1-Y3)*。其中,(Y1-Y3)*是(Y1-Y3)的共轭表达形式。
S220,终端设备根据信道测量结果确定智能反射面的天线单元之间的路径差。
具体地,智能反射面的天线单元集合对第一信号反射两次时,该两次反射对应的信道测量结果分别是Y1和Y2。智能反射面的天线单元集合对第一信号反射三次时,该三次反射对应的信道测量结果分别是Y1、Y2和Y3
示例性地,终端设备根据第一信道测量结果与第二信道结果确定智能反射面的天线单元之间的路径差。例如,该天线单元集合中每个天线单元的可调相位响应均为直连链路均发生阻塞,噪声部分为0,或者噪声很小,可以忽略。
应理解,本申请实施例对智能反射面的用于信道测量的天线单元集合中每个天线单元索引编号,一个天线单元对应一个索引编号,该索引编号存在奇偶之分。例如,偶数索引编号的天线单元和奇数索引编号的天线单元。示例性地,奇数索引编号值满足(2i+1)的天线单元,偶数索引编号值满足(2i)的天线单元,其中,i是自然数。应理解,该索引编号与智能反射面中天线单元的具体排布位置是关联的。
应理解,智能反射面的天线单元之间的间距是均匀的。
作为一个可能的实现方式,该用于信道测量的天线单元集合包括第一天线单元集合与第二天线单元集合。第一天线单元集合包括至少一个第一天线单元,第二天线单元集合包括至少一个第二天线单元。
应理解,第一天线单元集合包括的第一天线单元的数量与第二天线单元集合包括的第二天线单元的数量是相同的。第一天线单元集合中的每个第一天线单元与第二天线单元集合中对应位置的每个第二天线单元是一一对应的。每组一一对应的天线单元之间的间距是相等的。该对应关系具体如下文所示。
示例性地,第一天线单元可以是天线单元集合中奇数索引编号的天线单元,第二天线单元可以是天线单元集合中偶数索引编号的天线单元。
例如,该天线单元集合包括10个天线单元,其索引编号值分别是1~10。第一天线单元集合包括索引编号值为1、3、5、7、9等五个第一天线单元,第二天线单元集合包括索引编号值为2、4、6、8、10等五个第二天线单元。因此,索引编号为1的天线单元对应索引编号为2的天线单元,索引编号为3的天线单元对应索引编号为4的天线单元,索引编号为5的天线单元对应索引编号为6的天线单元,索引编号为7的天线单元对应索引编号为8的天线单元,索引编号为9的天线单元对应索引编号为10的天线单元。每组一一对应的天线单元之间的间距是相等的。即索引编号值为1与索引编号值为2的天线单元之间的路径差、索引编号值为3与索引编号值为4的天线单元之间的路径差、索引编号值为5与索引编号值为6的天线单元之间的路径差、索引编号值为7与索引编号值为8的天线单元之间的路径差和索引编号值为9与索引编号值为10的天线单元之间的路径差均相等。
又示例性地,第一天线单元可以是天线单元集合中前一半索引编号的天线单元,第二天线单元可以是天线单元集合中后一半索引编号的天线单元。
例如,该天线单元集合包括10个天线单元,其索引编号值分别是1~10。第一天线单元集合包括索引编号值为1—5等五个天线单元,该五个天线单元可以均称为第一天线单元,第二天线单元集合包括索引编号值为6—10等五个天线单元,该五个天线单元可以均称为第二天线单元。因此,索引编号为1的天线单元对应索引编号为6的天线单元,索引编号为2的天线单元对应索引编号为7的天线单元,索引编号为3的天线单元对应索引编号为8的天线单元,索引编号为4的天线单元对应索引编号为9的天线单元,索引编号为5的天线单元对应索引编号为10的天线单元。另外,索引编号值为1与索引编号值为6的天线单元之间的路径差、索引编号值为2与索引编号值为7的天线单元之间的路径差、索引编号值为3与索引编号值为8的天线单元之间的路径差、索引编号值为4与索引编号值为9的天线单元之间的路径差和索引编号值为5与索引编号值为10的天线单元之间的路径差均相等,且均是相邻天线单元之间的路径差的五倍。
只要保证第一天线单元集合和第二天线单元集合中每组一一对应的天线单元之间的间距是相等的即可,本申请实施例不做具体限定。
应理解,参与第一次反射的天线单元的索引编号与参与第二次反射的天线单元的索引编号是对应的,且参与每次反射的天线单元的数量都是相同的。示例性地,参与第一次反射的天线单元的索引编号值分别为1、3、5,则参与第二次反射的天线单元的索引编号值分别为2、4、6。
结合公式(1)与公式(2),当第一天线单元集合包括奇数索引编号的天线单元,第二天线单元集合包括偶数索引编号的天线单元时,可知:

令Y2的共轭表示为:
则,Y1与(Y2)*的乘积可以表示为:
又或者,Y1与Y2的相除结果可以表示为:
因此,步骤S220中所述的信道测量结果可以理解为是Y1*(Y2)*或者终端设备可以确定该信道测量结果的相位是ejkΔ或者e-jkΔ,继而确定智能反射面的天线单元之间的路径差。
又示例性地,终端设备根据第一信道测量结果、第二信道结果和第三信道测量结果确定智能反射面的天线单元之间的路径差。
在第一次反射中,天线单元集合中每个天线单元的相位响应均为
在第二次反射中,天线单元集合中奇数索引编号的天线单元的相位响应均为偶数索引编号的天线单元的相位响应均为
在第三次反射中,天线单元集合中奇数索引编号的天线单元的相位响应均为偶数索引编号的天线单元的相位响应均为
另外,在上述的三次反射过程中,参与第一次反射的天线单元也参与第二次反射与第三次反射。
第一信道测量结果可以表示为:
第二信道测量结果可以表示为:
第三信道测量结果可以表示为:
在n1=n2=n3的情况下,第一信道测量结果与第二信道测量结果相减,得到:
第一信道测量结果与第三信道测量结果相减,可得:
将Y1-Y3的共轭表示为:
(Y1-Y2)和(Y1-Y3)*相乘,得到:
因此,步骤S220中所述的信道测量结果可以理解为是(Y1-Y2)*(Y1-Y3)*,终端设备可以确定该信道测量结果的相位是ejkΔ,继而确定天线单元之间的路径差。
应理解,上述反射过程的顺序也可调整,例如,将第二次反射和第三次反射的顺序交换,也可得相位ejkΔ,剩余流程与上述相同。上述反射过程的顺序还有其他调整方式,例如将第一次反射和第二次反射的顺序交换,具体逻辑如上一致。
应理解,上述的天线单元之间的路径差可以是相邻天线单元之间的路径差,也可以是非相邻天线单元之间的路径差。例如,索引编号值为1的天线单元与索引编号值为3的天线单元之间的路径差为2Δ,则可以基于该2Δ确定相邻天线单元(即索引编号值为1的天线单元与索引编号值为2的天线单元)之间的路径差,且索引编号值为1与索引编号值为2的天线单元之间的路径差与索引编号值为2与索引编号值为3的天线单元之间的路径差相同。因此,上述的天线单元之间的路径差可以包括两种情况:相邻天线单元之间的路径差和非相邻天线单元之间的路径差。
应理解,智能反射面的天线单元集合对第一信号反射四次以及四次以上时,终端设备仍可以按照上述公式(7)至公式(13)确定智能反射面的天线单元之间的路径差。
应理解,终端设备基于智能反射面的天线单元集合对网络设备发送的第一信号的至少两次反射确定的信道测量结果来确定路径差,并可以基于该路径差高精度地确定终端设备的方位。换言之,终端设备所确定的路径差能够用于定位终端设备的位置。
具体地,在高精度定位终端设备的方位时,终端设备可以基于该路径差确定终端设备与智能反射面的角度和/或网络设备与智能反射面的角度,并结合终端设备与网络设备的角度,实现高精度地确定终端设备的方位。另外,前述的终端设备与智能反射面的角度和网络设备与智能反射面的角度在确定该路径差之后可以基于已知的网络设备的位置与智能反射面的位置而确定的。因此,本申请实施例通过路径差就能够简单地和高精度地确定终端设备的方位。
通过上述技术方案,本申请实施例能够在包括智能反射面的场景中完成对终端设备方位的高精度测量,并可以提高定位精度。
作为一个示例,第一天线单元集合包括一个第一天线单元,第二天线单元集合包括一个第二天线单元,公式(8)简化为:
公式(9)简化为:
公式(10)简化为:
公式(14)简化为:
应理解,第一天线单元集合与第二天线单元集合在至少两次反射中对应不同的相位。具体地,不同的相位可以包括如下任意一组:第一天线单元集合对应第一相位,第二天线单元集合对应第一相位;第一天线单元集合对应第一相位,第二天线单元集合对应第二相位;第一天线单元集合对应第二相位,第二天线单元集合对应第一相位;第一天线单元集合对应第二相位,第二天线单元集合对应第二相位。其中,第一相位与第二相位不同。
其中,第一相位是π的奇数倍,第二相位是π的偶数倍;或者,第一相位是π的偶数倍,第二相位是π的奇数倍。示例性地,第一相位是π的奇数倍,则第二相位是π的偶数倍,则应理解,前述的奇数与偶数均包括正负两种情况。该第一相位与第二相位也可以是其他的相位值,例如,第一相位和第二相位相差π的奇数倍。本申请实施例不作限定。
本申请实施例通过调整每次反射过程中天线单元的相位,并基于获取的多次信道测量结果来确定智能反射面的天线单元之间的路径差,并且可以根据此路径差进一步获得终端设备的高精度的定位结果,以及以一种导频信号开销较低的方式获得终端设备到智能反射面再到网络设备的信道估计结果。
应理解,图2所示的技术方案的执行主体可以是网络设备。具体地,网络设备获取的信道测量结果是网络设备根据智能反射面对终端设备发送的第一信号的至少两次反射而得到的,并根据该信道测量结果确定智能反射面的天线单元的路径差。具体步骤与上述所描述一致,在此不再赘述。
其中,终端设备向智能反射面发送的第一信号也是用于信道测量的。该第一信号可以是上行信道测量信号,可以是上行导频信号,例如,CRI-RS,SRS,DMRS等,也还可以是其他的信号,例如,智能反射面信号。
应理解,该信道测量等同于信道估计,在此做统一说明,后文不再叙述。
应理解,在确定了智能反射面的天线单元之间的路径差之后,网络设备可以基于该路径差确定智能反射面的天线单元的信道。
例如,关闭智能反射面的所有天线单元,通过第四次信道测量,网络设备到终端设备之间的信道可以表示为:
关闭智能反射面的除第一个天线单元之外的天线单元,即智能反射面的天线单元集合中只有一个天线单元,通过第五次信道测量,网络设备到终端设备之间的信道可以表示为:
根据第四次信道测量与第五次信道测量,终端设备可以确定其中,为已知的参数。终端设备可以根据前三次测量获得的智能反射面的路径差,进一步地获得终端设备到智能反射面再到网络设备的信道估计结果。
例如,智能反射面的天线单元集合中有两个天线单元,终端设备可以根据第四次信道测量、第五次信道测量和路径差确定网络设备到终端设备之间的信道,其可以表示为:
例如,智能反射面的天线单元集合中有三个天线单元,其中,为已知的参数,网络设备到终端设备之间的信道可以表示为:
进一步地,智能反射面的天线单元集合中有多于三个以上的天线单元时,网络设备到终端设备之间的信道可以表示为:
因此,终端设备可以基于上述公式(15)—公式(18)确定智能反射面的天线单元的信道估计结果。如此,终端设备可以通过该路径差进一步地以一种导频信号开销较低的方式确定终端设备到智能反射面再到网络设备的信道估计结果。
下文将结合图4对图3所示的方案做进一步的描述。
图4是本申请实施例提供的一种通信方法的示意流程图。方法包括:
S410,网络设备向智能反射面发送至少两次第一信号。
S420,智能反射面的第一天线单元集合与第二天线单元集合对第一信号进行至少两次反射。
示例性地,第一天线单元集合与第二天线单元集合对第一信号进行三次反射,每次反射对应不同相位。例如,第一次反射中,第一天线单元集合对应第一相位,第二天线单元集合对应第一相位;第二次反射中,第一天线单元集合对应第一相位,第二天线单元集合对应第二相位;第三次反射中,第一天线单元集合对应第二相位,第二天线单元集合对应第一相位。其中,第一相位是π,第二相位是2π。
S430,同S210。
S440,同S220。
关于步骤S430和步骤S440的具体描述可以参考前述步骤S210和S220的内容,在此不再赘述。
应理解,终端设备基于智能反射面的天线单元集合对网络设备发送的第一信号的至少两次反射确定的信道测量结果来确定路径差,并可以基于该路径差高精度地确定终端设备的方位。换言之,终端设备所确定的路径差能够用于定位终端设备的位置。
具体地,在高精度定位终端设备的方位时,该路径差是最核心的特征。例如,终端设备可以基于该路径差确定终端设备与智能反射面的角度和/或网络设备与智能反射面的角度,并结合终端设备与网络设备的角度,实现高精度地确定终端设备的方位。
另外,前述的终端设备与智能反射面的角度和网络设备与智能反射面的角度在确定该路径差之后可以基于已知的网络设备的位置与智能反射面的位置而确定的。因此,本申请实施例通过路径差就能够简单地和高精度地确定终端设备的方位,从而完成对终端设备方位的高精度测量,并可以提高定位精度。
应理解,图4所示的技术方案的执行主体也可以是网络设备。具体地,终端设备向智 能反射面发送至少两次第一信号(可以参考S410),网络设备根据智能反射面的天线单元集合对终端设备发送的第一信号的至少两次反射(可以参考S420)确定信道测量结果(可以参考S430),并基于该信道测量结果确定智能反射面的天线单元之间的路径差(可以参考S440)。具体过程与上述过程一致,在此不再赘述。
应理解,上述的上行测量(网络设备确定路径差)或者下行测量(终端设备确定路径差)所用的时频码资源可以通过预定义、预配置或者网络设备指示终端设备的方式确定的。上述的第一相位与第二相位等具体的相位值也可以通过预定义、预配置或者网络设备指示智能反射面的方式确定的。
在一个实施例中,步骤S440之后的步骤S450包括以下至少一种:
S450#A:终端设备根据路径差确定网络设备与智能反射面的角度;或者,
S450#B:终端设备根据路径差确定终端设备与智能反射面的角度。
应理解,终端设备根据路径差确定终端设备与智能反射面的角度(可以称为第二角度)。例如,终端设备已知网络设备的位置与智能反射面的位置,则可以基于已知的网络设备的位置与智能反射面的位置确定网络设备与智能反射面的角度。
应理解,智能反射面的天线单元之间的路径差为Δ,且
例如,网络设备的位置为{xb,yb},智能反射面的位置为{xr,yr}。网络设备和智能反射面之间的角度可表示为:
终端设备和智能反射面之间的角度则可表示为:
进一步地,终端设备可以基于路径差、网络设备与智能反射面的角度确定终端设备与智能反射面的角度。如此,终端设备的位置可以通过终端设备与智能反射面的角度确定出来。
又或者,终端设备基于已知的终端设备的位置与智能反射面的位置,确定终端设备与智能反射面的角度,并基于该路径差与终端设备与智能反射面的角度,确定网络设备与智能反射面的角度。
例如,终端设备的位置为{xu,yu},智能反射面的位置为{xr,yr}。网络设备和智能反射面之间的角度可表示为:
网络设备和智能反射面之间的角度则可表示为:
应理解,该第一角度可以理解是入射角,第二角度可以理解是反射角。该入射角是网络设备向智能反射面发射的第一信号与法线之间的夹角。该反射角是智能反射面对网络设备发射的第一信号进行反射后的信号与法线之间的夹角。
应理解,第一角度是入射角和第二角度是反射角是基于网络设备向智能反射面发射第一信号而言的。当终端设备向智能反射面发送第一信号时,第一角度就是反射角,第二角度就是入射角。当网络设备向智能反射面发送第一信号时,第一角度就是入射角,第二角 度就是反射角。
应理解,终端设备基于该路径差确定终端设备与智能反射面的角度之后可以将该角度发送给网络设备。网络设备可以基于该角度、网络设备的位置、智能反射面的位置和网络设备与终端设备的角度(可以称为第三角度)中的至少一种确定终端设备的位置。如此,可以获得相比现有定位技术精确度更高的定位结果。
应理解,网络设备与终端设备的角度是网络设备基于现有的角度估计技术确定的。
通过步骤S450,本申请实施例基于该路径差来确定终端设备与智能反射面的第二角度或者智能反射面与网络设备的第一角度,该第一角度或者第二角度能够用于进一步地确定终端设备的位置或者方位,从而可以提高对终端设备的定位精度。
在另一个实施例中,步骤S440之后的步骤S460:终端设备根据智能反射面的位置与终端设备的位置,确定终端设备与智能反射面的距离。如此,终端设备可以根据该距离进一步判断智能反射面中用于数据传输的天线单元的数量。
具体地,终端设备已知智能反射面的位置时,可以根据终端设备与智能反射面的位置确定终端设备与智能反射面的距离。例如,智能反射面的位置为{xr,yr},终端设备的位置为{xu,yu}。终端设备和智能反射面之间的距离可以表示为:
进一步地,终端设备可以将该终端设备与智能反射面之间的距离发送给网络设备。网络设备根据该距离和瑞利距离(或者说,网络设备基于该距离与瑞利距离(rayleigh distance)或弗劳恩霍夫距离(fraunhofer distance)之间的关系)确定智能反射面中用于数据传输的天线单元的数量。
其中,瑞利距离或弗劳恩霍夫距离为天线远场辐射与近场辐射的分界距离,若发送设备与接收设备的距离大于瑞利距离,则发送设备与接收设备之间的信道符合远场辐射模型,若发送设备与接收设备的距离小于瑞利距离,则发送设备与接收设备之间的信道符合近场辐射模型。
通过步骤S460,本申请实施例基于终端设备与智能反射面的距离进一步地判断智能反射面中用于数据传输的天线单元的数量,如此就可以保证终端设备和智能反射面之间的信道满足远场辐射模型,该模型可以保证终端设备和智能反射面之间的信道建模,测量以及数据处理的准确性和便利性。
应理解,步骤S450和步骤S460可以互相组成一个新的技术方案,本申请实施例不限定步骤S450和步骤S460的先后顺序。
在又一个实施例中,步骤S460之后的步骤S470:终端设备根据终端设备与智能反射面的距离和瑞利距离确定智能反射面中用于数据传输的天线单元的数量。
应理解,智能反射面中用于数据传输的天线单元的数量与智能反射面中用于数据传输的天线孔径相关。该天线孔径用于表示天线接收功率的有效面积。对于一个面积为a*b的矩形天线面板,天线孔径可表示为Z2=(a*b)。当智能反射面包括的天线单位为等间距时,且间距为μ,智能反射面中用于数据传输的天线单元的数量
为便于描述,本申请实施例以用于数据传输的天线单元的数量这一表述进行描述,但不排除用于数据传输的智能反射面的孔径这一表述方式。
应理解,如果要保证智能反射面与终端设备之间的信道满足远场辐射的条件,终端设 备与智能反射面之间的距离需要大于瑞利距离。假设智能反射面中用于数据传输的天线单元的最大天线孔径为Z2。对于一个面积为a*b的矩形天线面板,最大天线孔径为Z2=max(a,b)2。当智能反射面包括的天线单位为等间距时,且间距为μ,智能反射面中用于数据传输的天线单元的数量N={max(a,b)/μ}2,终端设备与智能反射面之间的距离需要满足如下关系式:
其中,为智能反射面与终端设备之间的瑞利距离。假设智能反射面中用于数据传输的天线单元的面积为a*b,Z2=max(a,b)2,即Z可以表示为是a与b中的最大值,单位可以为米,或者毫米,微米等其他表示长度的单位。
由上式可得,该Z应满足:当智能反射面的尺寸为面阵,且智能反射面内常采用基于离散傅里叶变换(discrete fourier transform,DFT)的码本,即智能反射面中用于数据传输的天线单元的数量N需要为2的偶数次幂。因此智能反射面中用于数据传输的天线单元的数量N计算如下:
其中运算是为了保证N为2的偶数次幂。当考虑载波频率,带宽以及对天线单元数量的预定义或预配置限制时,智能反射面中用于数据传输的天线单元的数量N还可以由下式确定:
其中,N是智能反射面中用于数据传输的天线单元的数量,fc是载波频率,B是带宽,ξ是预定义或预配置的值,d是智能反射面与终端设备之间的距离,λ是波长。该码本可以理解为一个天线单元的相位和/或幅度。应理解,N用于表示数量。
换句话说,智能反射面中用于数据传输的天线单元的数量与智能反射面与终端设备之间的距离相关联。
进一步地,智能反射面中用于数据传输的天线单元的数量与智能反射面与终端设备之间的距离、带宽、载波频率相关联。
通过步骤S470,本申请实施例通过智能反射面与终端设备的距离和瑞利距离之间的关系,确定智能反射面中用于数据传输的天线单元的数量,如此就可以保证终端设备和智能反射面之间的信道满足远场辐射模型,该模型可以保证终端设备和智能反射面之间的信道建模,测量以及数据处理的准确性和便利性。
应理解,步骤S450-S470的执行主体也可以是网络设备。网络设备执行的步骤同终端设备执行的步骤一致,具体内容可以见上文描述,在此不再赘述。
应理解,步骤S450、步骤S460和步骤S470之间可以互相组成一个新的技术方案,本申请实施例不限定步骤S450、步骤S460和步骤S470之间的先后顺序。
图5是本申请实施例提供的又一种通信方法的示意流程图。该方法包括:
S510,终端设备向网络设备发送终端设备与智能反射面之间的角度。
相应地,网络设备接收终端设备发送的终端设备与智能反射面之间的角度。
应理解,终端设备发送的终端设备与智能反射面之间的角度是终端设备依据步骤S450确定的。具体内容可以参见前述描述,在此不再赘述。
S520,网络设备根据终端设备与智能反射面之间的角度确定终端设备的位置。
具体地,网络设备已知网络设备的位置与智能反射面的位置,网络设备可以基于网络设备的位置与智能反射面的位置,并结合智能反射面与终端设备的角度和终端设备与网络设备之间的角度,确定终端设备的位置。
示例性地,网络设备的坐标为{xb,yb},智能反射面的坐标为{xr,yr},终端设备的坐标为{xu,yu}。网络设备和终端设备之间的角度θ3可以表示为:
终端设备和智能反射面之间的角度可表示为:
将(15)和(16)相减,终端设备的坐标{xu,yu}可分别表示为:

应理解,网络设备可以基于前述的角度估计技术确定终端设备与网络设备的角度,并根据终端设备与智能反射面的角度、网络设备的位置以及智能反射面的位置确定终端设备的位置。
本申请实施例根据该路径差确定终端设备与智能反射面的角度,并结合终端设备与网络设备的角度、网络设备的位置和智能反射面的位置确定终端设备的位置,从而能够保证网络设备对终端设备的高精度的定位,也可以减少网络设备之间的交互,降低实现复杂度。
具体地说,本申请实施例通过网络设备联合智能反射面对终端设备进行定位,即在多次测量中调整智能反射面的相位,并对多次测量结果进行联合处理,以获得终端设备和智能反射面的角度,再根据该角度进一步获得终端设备的具体位置。
S530,网络设备根据智能反射面的位置和终端设备的位置确定终端设备与智能反射面的距离。
具体内容可以参见前述步骤S460的描述。
如此,网络设备基于该距离和终端设备与智能反射面的瑞利距离之间的关系来确定智能反射面中用于数据传输的天线单元的数量,如此就可以保证终端设备和智能反射面之间的信道满足远场辐射模型,该模型可以保证终端设备和智能反射面之间的信道建模,测量以及数据处理的准确性和便利性。
S540,网络设备根据该距离与瑞利距离确定智能反射面中用于数据传输的天线单元的数量。
具体内容可以参见前述步骤S470的描述。
应理解,网络设备确定终端设备与智能反射面之间的距离可以是由网络设备自行计算得出的,也可以是终端设备向网络设备发送的(此处可以见前述对于步骤S460的描述)。
通过该技术方案,本申请实施例能够保证终端设备和智能反射面之间的信道满足远场辐射模型,该模型可以保证终端设备和智能反射面的信道建模、测量以及数据处理的准确性和便利性。
图6是本申请实施例提供的再一种通信方法的示意图。方法包括:
S610,网络设备向智能反射面发送信息#A,该信息#A包括以下至少一种:码本集合、终端设备与所述智能反射面的距离或者智能反射面中用于数据传输的天线单元的数量。
相应地,智能反射面接收网络设备发送的信息#A。
具体地,该码本集合包括至少一个码本,一个码本包括以下至少一种:智能反射面中一个天线单元的相位或幅度。
网络设备确定一个码本集合,该码本集合中码本的数量可以多于智能反射面中用于数据传输的天线单元的数量,也可以少于智能反射面中用于数据传输的天线单元的数量,也可以等于智能反射面中用于数据传输的天线单元的数量。其中,一个码本对应一个天线单元。
网络设备可以向智能反射面发送包括码本集合和终端设备与智能反射面的距离这两个参数的信息#A,也可以发送包括码本集合和智能反射面中用于数据传输的天线单元的数量这两个参数的信息#A,也可以发送包括码本集合的信息#A,或者,也可以发送包括终端设备与智能反射面的距离的信息#A,或者,也可以发送智能反射面中用于数据传输的天线单元的数量的信息#A。
应理解,当网络设备向智能反射面发送包括上述三个参数中的一个参数的信息#A时,剩余的两个参数可以以预配置的方式配置在智能反射面中。例如,信息#A包括码本集合,智能反射面中用于数据传输的天线单元的数量预配置在智能反射面;或者,终端设备与智能反射面的距离预配置在智能反射面。因此,智能反射面可以基于网络设备发送的信息#A确定信息#B。
应理解,网络设备向智能反射面发送的码本集合并非是最终的用于数据传输的码本,智能反射面可以基于该网络设备发送的码本集合确定最终的用于数据传输的码本。
应理解,在前述涉及信道测量的技术方案中,智能反射面通过控制调整天线单元的相位而非幅度确定天线单元之间的路径差。在涉及数据传输时,智能反射面可以通过调整天线单元的相位和幅度来调整数据传输的信道条件。网络设备可以自行确定一个码本集合,该码本集合中的码本可以是相位,也可以是幅度,也可以是相位与幅度,然后将该码本集合发送给智能反射面,智能反射面基于该码本集合确定用于数据传输的码本集合。
S620,智能反射面根据信息#A确定信息#B,该信息#B包括至少一个用于数据传输的码本。
具体地,智能反射面根据信息#A确定信息#B。换言之,智能反射面根据信息#A确定用于数据传输的码本集合,该用于数据传输的码本集合包括至少一个码本。
应理解,网络设备直接向智能反射面发送该用于数据传输的天线单元的数量时,智能反射面可以直接确定该用于数据传输的天线单元的数量;网络设备向智能反射面发送的时智能反射面与终端设备之间的距离时,智能反射面可以基于公式(26-1)和/或(26-2)确定该用于数据传输的天线单元的数量。
示例性地,网络设备提供的码本集合包括的码本数量S小于智能反射面中用于数据传输的天线单元的数量N,例如,S=10,N=20,智能反射面可以把码本集合中的每个码本扩展为2个码本,从而获得20个用于数据传输的码本。具体可通过对码本加一个小范围的相移来实现扩展。每个码本需要扩展的码本个数可按照N与S的比值确定。因此,用 于数据传输的码本集合中码本的数量与用于数据传输的天线单元的数量相同。
又示例性地,网络设备提供的码本集合包括的码本数量S大于智能反射面中用于数据传输的天线单元的数量N,例如,S=20,N=10,智能反射面可以从两个码本采样一个码本,从而获得10个用于数据传输的码本。具体的采样间隔可按照S与N的比值确定。
作为一个例子,该码本集合包括:远场码本与近场码本时,网络设备向智能反射面发送指示信息,该指示信息用于指示智能反射面选择近场码本或者远场码本。其中,近场码本是用于表示符合近场辐射模型的码本,远场码本用于表示符合远场辐射模型的码本。
具体地,当网络设备向智能反射面发送码本集合时,可预先在网络设备和智能反射面配置相同的包括幅度和/或相位的远场码本和近场码本,网络设备可以动态指示智能反射面当前需要采用近场码本还是远场码本,如此,智能反射面的码本能够匹配实际的远场模型或近场模型,从而降低系统的误码率,提高系统频谱效率。
应理解,网络设备向智能反射面发送的指示信息可以是在发送码本集合与参数之后发送的,也可以是同时发送的,本申请实施例不作限定。
作为一个例子,智能反射面确定用于数据传输的天线单元的数量和智能反射面与终端设备之间的角度之后,智能反射面根据该角度直接生成用于数据传输的码本(该码本是相位,不包括幅度)。其中,天线单元内第n个天线的相位为其中,n为天线单元中天线的索引,ε为预先设定的偏差值,幅度可以是恒定幅度。
通过上述技术方案,本申请实施例能够实现让智能反射面有选择码本的自主性,从而降低了网络设备对智能反射面的控制器的实现复杂度,提高了系统设计的灵活性。
作为一个可能的实现方式,智能反射面的用于数据传输的码本集合中的多个码本是由网络设备确定的,并由网络设备向该智能反射面发送网络设备确定的用于数据传输的码本集合中的多个码本,该码本集合中码本的数量与智能反射面中用于数据传输的天线单元的数量一致。
作为一个实施例,上述的信息#A除了可以是由网络设备向智能反射面发送的以外,信息#A也可以是预配置在智能反射面之中,即智能反射面通过获取预配置的信息#A确定包括至少一个用于数据传输的码本的信息#B。
作为又一个实施例,网络设备向智能反射面发送的信息#A包括码本集合,智能反射面中用于数据传输的天线单元的数量预配置在智能反射面中,则智能反射面可以基于该信息#A和预配置的用于数据传输的天线单元的数量确定信息#B。
作为另一个实施例,网络设备向智能反射面发送的信息#A包括智能反射面中用于数据传输的天线单元的数量,前述的码本集合预配置在智能反射面中,则智能反射面可以基于该信息#A和预配置的码本集合来确定信息#B。作为再一个实施例,网络设备向智能反射面发送的信息#A包括终端设备与智能反射面的距离时,前述的码本集合预配置在智能反射面中,则智能反射面也可以基于该信息#A和预配置的码本集合来确定信息#B。
还应理解,当智能反射面的部分天线单元发生毁坏时,或者同一个智能反射面需要辅助多个网络设备时,智能反射面可以向智能反射面发送用于请求选择天线单元的请求信息,网络设备可以向智能反射面发送用于指示智能反射面自主选择用于测量与反射的天线单元的指示信息。
以上描述了本申请实施例的方法实施例,下面对相应的装置实施例进行介绍。
图7是本申请实施例提供的一种通信装置的示意图。该通信装置包括处理器701、存储器702和通信接口703,该处理器701、存储器702和通信接口703通过总线704相互连接。应理解,图7所示的通信装置可以是上述的网路设备,也可以是终端设备。
存储器702包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器702用于相关指令及数据。
处理器701可以是一个或多个中央处理器(central processing unit,CPU),在处理器701是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
当该通信装置是网络设备时,该通信装置中的处理器701用于读取该存储器702中存储的程序代码,示例性地,执行以下操作:
获取信道测量结果,该信道测量结果是该网络设备根据智能反射面的天线单元集合对终端设备发送的第一信号的至少两次反射得到的;
根据该信道测量结果确定智能反射面的天线单元之间的路径差。
当该通信装置是终端设备时,该通信装置中的处理器701用于读取该存储器702中存储的程序代码,示例性地,执行以下操作:
获取信道测量结果,该信道测量结果是该终端设备根据智能反射面的天线单元集合对网络设备发送的第一信号的至少两次反射得到的;
根据该信道测量结果确定智能反射面的天线单元之间的路径差。
应理解,上述描述仅是示例性描述。具体内容可以参见上述方法实施例所示的内容。另外,图7中的各个操作的实现还可以对应参照图2至图6所示的方法实施例的相应描述。
图8是本申请实施例提供的又一种通信装置的示意图,该通信装置可以应用于网络设备,也可以应用于终端设备,可以用于实现上述实施例涉及的方法。该通信装置包括收发单元810和处理单元820。下面对该收发单元810和处理单元820进行示例性地介绍。
当该通信装置是网络设备,该收发单元810用于获取信道测量结果。该处理单元820用于根据该信道测量结果确定智能反射面的天线单元之间的路径差。
应理解,该收发单元810还可以用于向智能反射面发送码本集合与参数,以及指示信息,也可以用于接收终端设备发送的例如终端设备与智能反射面的距离、角度和智能反射面中用于数据传输的天线单元的数量等参数。具体内容可以参见前述方法实施例所述的内容。
当该通信装置是终端设备,该收发单元810用于获取信道测量结果。该处理单元820用于根据该信道测量结果确定智能反射面的天线单元之间的路径差。
应理解,该收发单元810还可以用于向网络设备发送终端设备与智能反射面的角度、终端设备与智能反射面的距离以及智能反射面中用于数据传输的天线单元的数量等。具体内容可以参见前述方法实施例所述的内容。
作为一个可能的实现方式,该通信装置还包括存储单元830,存储单元用于存储用于执行前述方法的程序或者代码。
另外,图8的各个操作的实现还可以对应参照上述实施例所示的方法相应描述,在此不再赘述。
图9是本申请实施例提供的另一种通信装置的示意图,该通信装置可以应用于智能反射面,可以用于实现上述实施例涉及的方法。
该通信装置包括获取单元910和处理单元920。下面对该获取单元910和处理单元920进行示例性地介绍。
该获取单元910可以用于接收网络设备发送的第一信息,以及还可以用于接收网络设备发送的指示信息等。该处理单元920可以用于根据网络设备发送的第一信息确定第二信息等。具体内容可以参见前述方法实施例的描述,在此不再赘述。
图10是本申请实施例提供的再一种通信装置的示意图,该通信装置可以应用于智能反射面,也可以应用于网络设备和终端设备,可以用于实现上述实施例涉及的方法。该通信装置包括逻辑电路1010和输入输出接口1020。该逻辑电路1010用于执行上述方法实施例中涉及网络设备或者终端设备或者智能反射面的方法或者步骤。具体内容可以参见前述描述,在此不再赘述。该输入输出接口1020用于连接逻辑电路与其他模块。应理解,图7至图10所示的装置实施例是用于实现前述方法实施例图2至图6所述的内容的。因此,图7至图10所示的装置的具体执行步骤与方法可以参见前述方法实施例所述的内容。
本申请实施例还提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述各示例中的方法。
本申请实施例还提供另一种芯片,包括:输入接口、输出接口、处理器和存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各示例中的方法。
本申请实施例还提供了一种处理器,用于与存储器耦合,用于执行上述各实施例中任一实施例中涉及卫星或用户设备的方法和功能。
在本申请的另一实施例中提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,前述实施例的方法得以实现。
在本申请的另一实施例中提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时实现前述实施例所述的方法。
在本申请实施例的描述中,除非另有说明,"多个"是指两个或多于两个。"以下至少一项(个)"或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。
本申请实施例中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用"示例性的"或者"例如"等词旨在以具体方式呈现相关概念,便于理解。
在本申请实施例的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表 示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。
因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。
因此,在整个说明书各个实施例未必指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器 (random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (74)

  1. 一种通信方法,其特征在于,包括:
    终端设备获取信道测量结果,所述信道测量结果是所述终端设备根据智能反射面的天线单元集合对网络设备发送的第一信号的至少两次反射得到的,所述第一信号用于信道测量,所述天线单元集合包括至少两个天线单元;
    所述终端设备根据所述信道测量结果确定所述智能反射面的天线单元之间的路径差。
  2. 根据权利要求1所述的方法,其特征在于,所述天线单元集合包括第一天线单元集合与第二天线单元集合,
    所述第一天线单元集合包括至少一个第一天线单元,所述第二天线单元集合包括至少一个第二天线单元,
    所述第一天线单元集合与所述第二天线单元集合在所述至少两次反射中对应不同的相位。
  3. 根据权利要求2所述的方法,其特征在于,所述不同的相位包括以下任意一组:
    所述第一天线单元集合对应第一相位,所述第二天线单元集合对应第一相位;
    所述第一天线单元集合对应第一相位,所述第二天线单元集合对应第二相位;
    所述第一天线单元集合对应第二相位,所述第二天线单元集合对应第一相位;
    所述第一天线单元集合对应第二相位,所述第二天线单元集合对应第二相位;
    其中,所述第一相位与所述第二相位不同。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括以下至少一种:
    所述终端设备根据所述路径差确定所述网络设备与所述智能反射面的第一角度;或者,
    所述终端设备根据所述路径差确定所述智能反射面与所述终端设备的第二角度。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送所述第二角度。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述智能反射面的位置与所述终端设备的位置,确定所述终端设备与所述智能反射面的距离。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送所述终端设备与所述智能反射面的距离。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述终端设备与所述智能反射面的距离和瑞利距离,确定所述智能反射面中用于数据传输的天线单元的数量。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送所述用于数据传输的天线单元的数量。
  10. 一种通信方法,其特征在于,包括:
    网络设备获取信道测量结果,所述信道测量结果是所述网络设备根据智能反射面的天线单元集合对终端设备发送的第一信号的至少两次反射得到的,所述第一信号用于信道测 量,所述天线单元集合包括至少两个天线单元;
    所述网络设备根据所述信道测量结果确定所述智能反射面的天线单元之间的路径差。
  11. 根据权利要求10所述的方法,其特征在于,所述天线单元集合包括第一天线单元集合与第二天线单元集合,
    所述第一天线单元集合包括至少一个第一天线单元,所述第二天线单元集合包括至少一个第二天线单元,
    所述第一天线单元集合与所述第二天线单元集合在所述至少两次反射中对应不同的相位。
  12. 根据权利要求11所述的方法,其特征在于,所述不同的相位包括以下任意一组:
    所述第一天线单元集合对应第一相位,所述第二天线单元集合对应第一相位;
    所述第一天线单元集合对应第一相位,所述第二天线单元集合对应第二相位;
    所述第一天线单元集合对应第二相位,所述第二天线单元集合对应第一相位;
    所述第一天线单元集合对应第二相位,所述第二天线单元集合对应第二相位;
    其中,所述第一相位与所述第二相位不同。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述方法还包括至少一种:
    所述网络设备根据所述路径差确定所述网络设备与所述智能反射面的第一角度;或者,
    所述网络设备根据所述路径差确定所述智能反射面与所述终端设备的第二角度。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述第二角度确定所述终端设备的位置。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定所述终端设备与所述智能反射面的距离;
    所述网络设备根据所述终端设备与所述智能反射面的距离和瑞利距离,确定所述智能反射面中用于数据传输的天线单元的数量。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述智能反射面发送第一信息,所述第一信息包括以下至少一种:码本集合、所述终端设备与所述智能反射面的距离或者所述智能反射面中用于数据传输的天线单元的数量;
    其中,所述码本集合包括至少一个码本,一个码本包括以下至少一种:所述智能反射面的一个天线单元的幅度或相位。
  17. 根据权利要求16所述的方法,其特征在于,所述码本集合包括近场码本与远场码本,所述方法还包括:
    所述网络设备向所述智能反射面发送指示信息,所述指示信息用于指示所述智能反射面选择所述近场码本或者所述远场码本。
  18. 一种通信方法,其特征在于,包括:
    智能反射面获取第一信息,所述第一信息包括以下至少一种:码本集合、终端设备与所述智能反射面的距离或者所述智能反射面中用于数据传输的天线单元的数量;
    所述智能反射面根据所述第一信息确定第二信息,所述第二信息包括至少一个用于数据传输的码本,
    其中,所述码本集合包括至少一个码本,一个码本包括以下至少一种:所述智能反射面的一个天线单元的幅度或相位。
  19. 根据权利要求18所述的方法,其特征在于,所述码本集合包括近场码本与远场码本,所述方法还包括:
    所述智能反射面接收网络设备发送的指示信息,所述指示信息用于指示所述智能反射面选择所述近场码本或者所述远场码本。
  20. 一种通信方法,其特征在于,包括:
    网络设备接收终端设备发送的智能反射面与所述终端设备的第二角度;
    所述网络设备根据所述第二角度确定所述终端设备的位置。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定所述智能反射面中用于数据传输的天线单元的数量。
  22. 根据权利要求21所述的方法,其特征在于,所述网络设备确定所述智能反射面中用于数据传输的天线单元的数量,包括:
    所述网络设备确定所述终端设备与所述智能反射面的距离;
    所述网络设备根据所述终端设备与所述智能反射面的距离与瑞利距离,确定所述用于数据传输的天线单元的数量。
  23. 根据权利要求22所述的方法,其特征在于,所述网络设备确定所述终端设备与所述智能反射面的距离,包括:
    所述网络设备根据所述终端设备的位置与所述智能反射面的位置确定所述终端设备与所述智能反射面的距离。
  24. 根据权利要求22所述的方法,其特征在于,所述网络设备确定所述终端设备与所述智能反射面的距离,包括:
    所述网络设备接收所述终端设备发送的所述终端设备与所述智能反射面的距离;
    其中,所述终端设备与所述智能反射面的距离是所述终端设备根据所述智能反射面的位置与所述终端设备的位置确定的。
  25. 根据权利要求21所述的方法,其特征在于,所述网络设备确定所述智能反射面中用于数据传输的天线单元的数量,包括:
    所述网络设备接收所述终端设备发送的所述用于数据传输的天线单元的数量。
  26. 根据权利要求21至25中任一项所述的方法,其特征在于,所述用于数据传输的天线单元的数量与所述终端设备与所述智能反射面之间的距离、载波频率和带宽相关联。
  27. 根据权利要求21至26中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述智能反射面发送第一信息,所述第一信息包括以下至少一种:
    码本集合、所述终端设备与所述智能反射面的距离或者所述智能反射面中用于数据传输的天线单元的数量;
    其中,所述码本集合包括至少一个码本,一个码本包括以下至少一种:所述智能反射面的一个天线单元的幅度或相位。
  28. 根据权利要求27所述的方法,其特征在于,所述码本集合包括近场码本与远场码本,所述方法还包括:
    所述网络设备向所述智能反射面发送指示信息,所述指示信息用于指示所述智能反射 面选择所述近场码本或者所述远场码本。
  29. 一种通信方法,其特征在于,包括:
    网络设备向智能反射面发送第一信息,所述第一信息包括以下至少一种:码本集合、终端设备与所述智能反射面的距离或者所述智能反射面中用于数据传输的天线单元的数量;
    其中,所述码本集合包括至少一个码本,一个码本包括以下至少一种:所述智能反射面的一个天线单元的幅度或相位。
  30. 根据权利要求29所述的方法,其特征在于,所述码本集合包括近场码本与远场码本,所述方法还包括:
    所述网络设备向所述智能反射面发送指示信息,所述指示信息用于指示所述智能反射面选择所述近场码本或者所述远场码本。
  31. 一种通信方法,其特征在于,包括:
    网络设备确定终端设备与智能反射面的距离;
    所述网络设备根据所述终端设备与所述智能反射面的距离和瑞利距离,确定所述智能反射面中用于数据传输的天线单元的数量。
  32. 根据权利要求31所述的方法,其特征在于,所述网络设备确定终端设备与智能反射面的距离,包括:
    所述网络设备根据所述终端设备的位置与所述智能反射面的位置,确定所述终端设备与所述智能反射面的距离。
  33. 根据权利要求31所述的方法,其特征在于,所述网络设备确定终端设备与智能反射面之间的距离,包括:
    所述网络设备接收来自所述终端设备发送的所述终端设备与所述智能反射面之间的距离;
    其中,所述终端设备与所述智能反射面的距离是所述终端设备根据所述智能反射面的位置与所述终端设备的位置确定的。
  34. 根据权利要求31至33中任一项所述的方法,其特征在于,所述用于数据传输的天线单元的数量与所述终端设备与所述智能反射面之间的距离、载波频率和关联。
  35. 一种通信装置,其特征在于,包括:
    收发单元,用于获取信道测量结果,所述信道测量结果是所述通信装置根据智能反射面的天线单元集合对网络设备发送的第一信号的至少两次反射得到的,所述第一信号用于信道测量,所述天线单元集合包括至少两个天线单元;
    处理单元,用于根据所述信道测量结果确定所述智能反射面的天线单元之间的路径差。
  36. 根据权利要求35所述的装置,其特征在于,所述天线单元集合包括第一天线单元集合与第二天线单元集合,
    所述第一天线单元集合包括至少一个第一天线单元,所述第二天线单元集合包括至少一个第二天线单元,
    所述第一天线单元集合与所述第二天线单元集合在所述至少两次反射中对应不同的相位。
  37. 根据权利要求36所述的装置,其特征在于,所述不同的相位包括以下任意一组:
    所述第一天线单元集合对应第一相位,所述第二天线单元集合对应第一相位;
    所述第一天线单元集合对应第一相位,所述第二天线单元集合对应第二相位;
    所述第一天线单元集合对应第二相位,所述第二天线单元集合对应第一相位;
    所述第一天线单元集合对应第二相位,所述第二天线单元集合对应第二相位;
    其中,所述第一相位与所述第二相位不同。
  38. 根据权利要求35至37中任一项所述的装置,其特征在于,
    所述处理单元,还用于根据所述路径差确定所述网络设备与所述智能反射面的第一角度;或者,
    所述处理单元,还用于根据所述路径差确定所述智能反射面与所述通信装置的第二角度。
  39. 根据权利要求38所述的装置,其特征在于,所述收发单元,还用于向所述网络设备发送所述第二角度。
  40. 根据权利要求35至39中任一项所述的装置,其特征在于,所述处理单元,还用于根据所述智能反射面的位置与所述通信装置的位置,确定所述通信装置与所述智能反射面的距离。
  41. 根据权利要求40所述的装置,其特征在于,所述收发单元,还用于向所述网络设备发送所述通信装置与所述智能反射面的距离。
  42. 根据权利要求40或41所述的装置,其特征在于,所述处理单元,还用于根据所述通信装置与所述智能反射面的距离和瑞利距离,确定所述智能反射面中用于数据传输的天线单元的数量。
  43. 根据权利要求42所述的装置,其特征在于,所述收发单元,用于向所述网络设备发送所述用于数据传输的天线单元的数量。
  44. 一种通信装置,其特征在于,包括:
    收发单元,用于获取信道测量结果,所述信道测量结果是所述通信装置根据智能反射面的天线单元集合对终端设备发送的第一信号的至少两次反射得到的,所述第一信号用于信道测量,所述天线单元集合包括至少两个天线单元;
    处理单元,用于根据所述信道测量结果确定所述智能反射面的天线单元之间的路径差。
  45. 根据权利要求44所述的装置,其特征在于,所述天线单元集合包括第一天线单元集合与第二天线单元集合,
    所述第一天线单元集合包括至少一个第一天线单元,所述第二天线单元集合包括至少一个第二天线单元,
    所述第一天线单元集合与所述第二天线单元集合在所述至少两次反射中对应不同的相位。
  46. 根据权利要求45所述的装置,其特征在于,所述不同的相位包括以下任意一组:
    所述第一天线单元集合对应第一相位,所述第二天线单元集合对应第一相位;
    所述第一天线单元集合对应第一相位,所述第二天线单元集合对应第二相位;
    所述第一天线单元集合对应第二相位,所述第二天线单元集合对应第一相位;
    所述第一天线单元集合对应第二相位,所述第二天线单元集合对应第二相位;
    其中,所述第一相位与所述第二相位不同。
  47. 根据权利要求44至46中任一项所述的装置,其特征在于,
    所述处理单元,还用于根据所述路径差确定所述通信装置与所述智能反射面的第一角度;或者,
    所述处理单元,还用于根据所述路径差确定所述智能反射面与所述终端设备的第二角度。
  48. 根据权利要求47所述的装置,其特征在于,所述处理单元,还用于根据所述第二角度确定所述终端设备的位置。
  49. 根据权利要求48所述的装置,其特征在于,所述处理单元,还用于:
    确定所述终端设备与所述智能反射面的距离;
    根据所述终端设备与所述智能反射面的距离和瑞利距离,确定所述智能反射面中用于数据传输的天线单元的数量。
  50. 根据权利要求44至49中任一项所述的装置,其特征在于,所述收发单元,还用于向所述智能反射面发送第一信息,
    所述第一信息包括以下至少一种:码本集合、所述终端设备与所述智能反射面的距离或者所述智能反射面中用于数据传输的天线单元的数量;
    其中,所述码本集合包括至少一个码本,一个码本包括以下至少一种:所述智能反射面的一个天线单元的幅度或相位。
  51. 根据权利要求50所述的装置,其特征在于,所述码本集合包括近场码本与远场码本,
    所述收发单元,还用于向所述智能反射面发送指示信息,所述指示信息用于指示所述智能反射面选择所述近场码本或者所述远场码本。
  52. 一种通信装置,其特征在于,包括:
    收发单元,用于获取第一信息,所述第一信息包括以下至少一种:码本集合、终端设备与所述通信装置的距离或者所述通信装置中用于数据传输的天线单元的数量;
    处理单元,用于根据所述第一信息确定第二信息,所述第二信息包括至少一个用于数据传输的码本,
    其中,所述码本集合包括至少一个码本,一个码本包括以下至少一种:所述通信装置的一个天线单元的幅度或相位。
  53. 根据权利要求52所述的装置,其特征在于,所述码本集合包括近场码本与远场码本,所述收发单元,还用于接收网络设备发送的指示信息,所述指示信息用于指示所述通信装置选择所述近场码本或者所述远场码本。
  54. 一种通信装置,其特征在于,包括:
    收发单元,用于接收终端设备发送的智能反射面与所述终端设备的第二角度;
    处理单元,用于根据所述第二角度确定所述终端设备的位置。
  55. 根据权利要求54所述的装置,其特征在于,所述处理单元,还用于确定所述智能反射面中用于数据传输的天线单元的数量。
  56. 根据权利要求55所述的装置,其特征在于,
    所述处理单元,还用于确定所述终端设备与所述智能反射面的距离;
    所述处理单元,还用于根据所述终端设备与所述智能反射面的距离与瑞利距离,确定 所述用于数据传输的天线单元的数量。
  57. 根据权利要求56所述的装置,其特征在于,所述处理单元,还用于根据所述终端设备的位置与所述智能反射面的位置确定所述终端设备与所述智能反射面的距离。
  58. 根据权利要求56所述的装置,其特征在于,所述收发单元,还用于接收所述终端设备发送的所述终端设备与所述智能反射面的距离;
    其中,所述终端设备与所述智能反射面的距离是所述终端设备根据所述智能反射面的位置与所述终端设备的位置确定的。
  59. 根据权利要求55所述的装置,其特征在于,所述收发单元,还用于接收所述终端设备发送的所述用于数据传输的天线单元的数量。
  60. 根据权利要求55至59中任一项所述的装置,其特征在于,所述用于数据传输的天线单元的数量与所述终端设备与所述智能反射面之间的距离、载波频率和带宽相关联。
  61. 根据权利要求55至60中任一项所述的装置,其特征在于,所述收发单元,还用于向所述智能反射面发送第一信息,所述第一信息包括以下至少一种:
    码本集合、所述终端设备与所述智能反射面的距离或者所述智能反射面中用于数据传输的天线单元的数量;
    其中,所述码本集合包括至少一个码本,一个码本包括以下至少一种:所述智能反射面的一个天线单元的幅度或相位。
  62. 根据权利要求61所述的装置,其特征在于,所述码本集合包括近场码本与远场码本,所述收发单元,还用于向所述智能反射面发送指示信息,所述指示信息用于指示所述智能反射面选择所述近场码本或者所述远场码本。
  63. 一种通信装置,其特征在于,包括:
    收发单元,用于向智能反射面发送第一信息,所述第一信息包括以下至少一种:码本集合、终端设备与智能反射面的距离或者所述智能反射面中用于数据传输的天线单元的数量;
    其中,所述码本集合包括至少一个码本,一个码本包括以下至少一种:所述智能反射面的一个天线单元的幅度或相位。
  64. 根据权利要求63所述的装置,其特征在于,所述码本集合包括近场码本与远场码本,所述收发单元,还用于向所述智能反射面发送指示信息,所述指示信息用于指示所述智能反射面选择所述近场码本或者所述远场码本。
  65. 一种通信装置,其特征在于,包括:
    处理单元,用于确定终端设备与智能反射面的距离;
    所述处理单元,还用于根据所述终端设备与所述智能反射面的距离和瑞利距离,确定所述智能反射面中用于数据传输的天线单元的数量。
  66. 根据权利要求65所述的装置,其特征在于,所述处理单元,还用于根据所述终端设备的位置与所述智能反射面的位置,确定所述终端设备与所述智能反射面的距离。
  67. 根据权利要求65所述的装置,其特征在于,所述装置还包括收发单元,所述收发单元,用于接收来自所述终端设备发送的所述终端设备与所述智能反射面之间的距离;
    其中,所述终端设备与所述智能反射面的距离是所述终端设备根据所述智能反射面的位置与所述终端设备的位置确定的。
  68. 根据权利要求65至67中任一项所述的装置,其特征在于,所述用于数据传输的天线单元的数量与所述终端设备与所述智能反射面之间的距离、载波频率和关联。
  69. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述处理器用于执行计算机程序或指令,使得所述通信装置执行如权利要求1-34中任一项所述的方法。
  70. 一种通信装置,其特征在于,包括逻辑电路和输入输出接口,所述逻辑电路用于执行如权利要求1-34中任一项所述的方法,所述输入输出接口用于连接所述逻辑电路与其他模块。
  71. 一种计算机可读存储介质,其特征在于,包括计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得所述计算机执行如权利要求1-34中任意一项所述的方法。
  72. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-34中任意一项所述的方法。
  73. 一种通信系统,其特征在于,所述系统包括用于执行权利要求1至9中任一项所述的方法的通信装置,所述系统还包括用于执行权利要求10至17中任一项所述的方法的通信装置,所述系统还包括用于执行权利要求18或19所述的方法的通信装置。
  74. 根据权利要求73所述的系统,其特征在于,所述系统还包括用于执行权利要求20至28中任一项所述的方法的通信装置;或者,所述系统还包括用于执行权利要求29至30中任一项所述的方法的通信装置;或者,所述系统还包括用于执行权利要求31至34中任一项所述的方法的通信装置。
PCT/CN2023/072302 2022-01-30 2023-01-16 通信方法与通信装置 WO2023143160A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210114465.4A CN116567692A (zh) 2022-01-30 2022-01-30 通信方法与通信装置
CN202210114465.4 2022-01-30

Publications (1)

Publication Number Publication Date
WO2023143160A1 true WO2023143160A1 (zh) 2023-08-03

Family

ID=87470517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072302 WO2023143160A1 (zh) 2022-01-30 2023-01-16 通信方法与通信装置

Country Status (2)

Country Link
CN (1) CN116567692A (zh)
WO (1) WO2023143160A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117640409A (zh) * 2024-01-25 2024-03-01 广东广宇科技发展有限公司 一种基于智能反射面通讯的优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818533A (zh) * 2020-06-04 2020-10-23 浙江大学 一种基于智能反射面的无线通信系统设计方法
CN112737655A (zh) * 2020-12-16 2021-04-30 北京邮电大学 一种基于智能反射面的通信方法、系统及装置
WO2021221603A1 (en) * 2020-04-27 2021-11-04 Nokia Technologies Oy Ue positioning aided by reconfigurable reflecting surfaces such as intelligent reflecting surfaces (irs)
WO2021236510A1 (en) * 2020-05-18 2021-11-25 Google Llc Position control of adaptive phase-changing devices
CN113810083A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 信息传输方法、装置与终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221603A1 (en) * 2020-04-27 2021-11-04 Nokia Technologies Oy Ue positioning aided by reconfigurable reflecting surfaces such as intelligent reflecting surfaces (irs)
WO2021236510A1 (en) * 2020-05-18 2021-11-25 Google Llc Position control of adaptive phase-changing devices
CN111818533A (zh) * 2020-06-04 2020-10-23 浙江大学 一种基于智能反射面的无线通信系统设计方法
CN113810083A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 信息传输方法、装置与终端设备
CN112737655A (zh) * 2020-12-16 2021-04-30 北京邮电大学 一种基于智能反射面的通信方法、系统及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117640409A (zh) * 2024-01-25 2024-03-01 广东广宇科技发展有限公司 一种基于智能反射面通讯的优化方法
CN117640409B (zh) * 2024-01-25 2024-04-19 广东广宇科技发展有限公司 一种基于智能反射面通讯的优化方法

Also Published As

Publication number Publication date
CN116567692A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
US20230176174A1 (en) UE Positioning Aided by Reconfigurable Reflecting Surfaces Such as Intelligent Reflecting Surfaces (IRS)
CN113840324B (zh) 一种测量上报方法及装置
EP3861806B1 (en) Method for positioning reference design
CN111431687B (zh) 一种资源指示方法及装置
JP6162321B2 (ja) ワイヤレス通信におけるチャンネル推定
CN111510189A (zh) 信息反馈方法及装置
WO2019052420A1 (zh) 电子设备和通信方法
US11307299B2 (en) Radio frequency based sensing using communication signals
CN112737714A (zh) 轨道角动量模态管理方法、装置及基站
WO2019029426A1 (zh) 用于传输参考信号的方法及装置
WO2023143160A1 (zh) 通信方法与通信装置
WO2021052056A1 (zh) 一种资源调度方法以及相关设备
US20230239014A1 (en) Information indication method and apparatus
CN111869123B (zh) 用于高效波束管理的通信设备
WO2016044997A1 (zh) 一种波束跟踪方法、装置及系统
EP4040700A1 (en) Measurement reporting method, and device
EP4120583A1 (en) Beam training method and device
CN114079596A (zh) 信道估计方法、装置、设备及可读存储介质
WO2024174246A1 (en) Devices, methods, and apparatuses for joint communication and sensing
WO2022135026A1 (zh) 信号发送方法、目标感知方法、设备和存储介质
WO2024174237A1 (en) Devices, methods, and apparatuses for joint communication and sensing
WO2024000603A1 (en) Probing signal selection
WO2023202478A1 (zh) 波束管理的方法、通信装置以及通信系统
WO2024199027A1 (zh) 线序确定方法及相关装置
WO2023184538A1 (zh) 一种信息处理方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746042

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023746042

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023746042

Country of ref document: EP

Effective date: 20240805

NENP Non-entry into the national phase

Ref country code: DE