WO2023143094A1 - 半导体工艺设备 - Google Patents

半导体工艺设备 Download PDF

Info

Publication number
WO2023143094A1
WO2023143094A1 PCT/CN2023/071886 CN2023071886W WO2023143094A1 WO 2023143094 A1 WO2023143094 A1 WO 2023143094A1 CN 2023071886 W CN2023071886 W CN 2023071886W WO 2023143094 A1 WO2023143094 A1 WO 2023143094A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
structures
coil
faraday cage
present application
Prior art date
Application number
PCT/CN2023/071886
Other languages
English (en)
French (fr)
Inventor
王丽萍
李雪
柳朋亮
孔宇威
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2023143094A1 publication Critical patent/WO2023143094A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • H01J2237/3342Resist stripping

Definitions

  • the present application relates to the technical field of semiconductor processing, and in particular, the present application relates to a semiconductor process equipment.
  • the plasma ignition is performed under the conditions of low power and low pressure during the conversion step, and the output of the plasma source is then turned on during the etching step.
  • the 2500W power is directly loaded into the coil structure, but due to the high electromagnetic field near the coil structure, the temperature rise of the corresponding position of the quartz tube and the coil structure is much higher than that of other parts, resulting in too fast local temperature rise of the quartz tube, and slower cooling after the process ends. Slow, thus affecting the process efficiency.
  • the conversion step matching time is longer and the fluctuation range is larger, resulting in lower process efficiency and poor stability.
  • the present application proposes a semiconductor process equipment to solve the technical problems of low plasma source process efficiency and poor stability in the prior art.
  • the embodiment of the present application provides a semiconductor process equipment, including: a process chamber, a dielectric sleeve, a Faraday cage, a coil assembly, and an air intake assembly; the air intake assembly is covered by the The top end of the medium sleeve is used to transport the process gas into the medium sleeve; the bottom end of the medium sleeve is connected to the top of the process chamber and communicated with the process chamber; the Faraday cage Sleeved on the outer periphery of the medium sleeve, a plurality of opening structures uniformly distributed along the circumferential direction are opened on the peripheral wall of the Faraday cage; the opening structures are arranged along the axial extension of the Faraday cage, and a plurality of the openings At least one of the structures includes a first opening and a second opening, the first openings are two, and are respectively located at the top and bottom of the second opening, and the first opening is in the The circumferential direction of the Faraday cage has a first
  • the two coil structures are arranged symmetrically with respect to the second opening; the distance between the two coil structures in the axial direction of the Faraday cage is greater than that of the second opening The height of the portion in the axial direction of the Faraday cage.
  • the distance between the two coil structures ranges from 45 mm to 65 mm.
  • the total opening area of the plurality of opening structures is 25%-31% of the outer peripheral area of the Faraday cage.
  • the number of the opening structures is eight, and both the first opening and the second opening are rectangular structures.
  • the first circumferential dimension ranges from 20 mm to 30 mm
  • the second circumferential dimension ranges from 35 mm to 50 mm.
  • the two coil structures are arranged in parallel, and the connection of the two coil structures is located between any two adjacent opening structures, and the two coil structures are loaded with power
  • the direction of current flow is the same.
  • the coil structure includes a plurality of stacked coils, each of which has a gap at the same position, and any two adjacent coils are connected by a transition tube.
  • the two adjacent coils of the two coil structures are connected by a first connecting pipe, and the two coil structures are connected between the two coils at the farthest ends.
  • the second connection pipe is used for connection
  • the first connection pipe is used for grounding
  • the second connection pipe is used for connection with the radio frequency power supply.
  • the coil assembly further includes a load-bearing structure, the load-bearing structure is arranged on the outer periphery of the Faraday cage, and can avoid a plurality of the opening structures, and the two coil structures pass through
  • the bearing structure is disposed on the Faraday cage.
  • the air intake assembly is provided with a cooling channel
  • the ceiling of the process chamber is provided with a cooling channel
  • the two cooling channels are used for cooling the Faraday cage and the medium sleeve. Allow to cool.
  • the two coil structures are arranged close to the two ends of the Faraday cage respectively, so that the two coil structures are respectively arranged corresponding to the two first openings, so that there are two corresponding positions between the coil structure and the dielectric sleeve, avoiding the present situation.
  • the first circumferential dimension smaller than the second circumferential dimension, that is, the first opening adopts a relatively small circumferential dimension, so that The electromagnetic field fed in from the first opening can be reduced, thereby reducing the bombardment of the plasma on the dielectric sleeve; the second opening adopts a relatively large circumferential dimension, which can increase the electromagnetic field fed in from the second opening , so that the etching rate at the position corresponding to the second opening in the dielectric sleeve can be increased, so as to reduce the etching rate at the position corresponding to the second opening in the dielectric sleeve and that at the positions corresponding to the two first openings
  • the difference in etching rate can improve the etching uniformity at different positions in the axial direction of the dielectric sleeve.
  • two coil structures are used to feed the electromagnetic field through the two first openings, which effectively reduces the etching rate and uniformity without affecting the etching rate and uniformity.
  • the temperature rise rate of the medium sleeve greatly improves the process rate of the embodiment of the present application.
  • the above-mentioned design can also increase the impedance of the plasma, thereby increasing the voltage of the coil structure, and realizing rapid ignition in the dielectric sleeve, thereby not only improving the ignition efficiency of the embodiment of the present application, but also greatly reducing the conversion
  • FIG. 1 is a schematic cross-sectional view of a semiconductor process equipment provided in an embodiment of the present application
  • Fig. 2 is a schematic cross-sectional view of a Faraday cage and a coil assembly provided in an embodiment of the present application;
  • FIG. 3 is a schematic cross-sectional view of a Faraday cage provided in an embodiment of the present application.
  • Fig. 4 is a three-dimensional schematic diagram of a two-coil structure provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the matching time between the embodiment of the present application and the conversion step in the prior art:
  • Fig. 6 is a schematic diagram of the temperature rise of the etching step in the embodiment of the present application and the prior art:
  • Fig. 7 is a schematic diagram of an opening structure corresponding to the electric field change of the dielectric sleeve provided by the embodiment of the present application.
  • the embodiment of the present application provides a semiconductor process equipment.
  • the structure schematic diagram of the semiconductor process equipment is shown in Figure 1 and Figure 2, including: process chamber 1, dielectric sleeve 2, Faraday cage 3, coil assembly 4 and air inlet Component 5; the air inlet component 5 is covered on the top of the medium sleeve 3, and is used to transport the process gas into the medium sleeve 2; the bottom end of the medium sleeve 2 is connected to the top of the process chamber 1 (for example, it is arranged in the chamber chamber top) and communicate with the process chamber 1; the Faraday cage 3 is sleeved on the outer periphery of the medium sleeve 2, and the peripheral wall of the Faraday cage 3 is provided with a plurality of opening structures 31 uniformly distributed along the circumferential direction, and the opening structures 31 are arranged along the Faraday cage.
  • the plurality of opening structures 31 includes a first opening 311 and a second opening 312.
  • the coil assembly 4 is sleeved on the outer periphery of the Faraday cage 3, the coil assembly 4 includes two coil structures 41, the two coil structures 41 are spaced apart in the axial direction of the Faraday cage 3, and are connected to the two first openings 311 respectively corresponding settings.
  • the two first openings 311 can both communicate with the second opening 312, or both can be isolated from the second opening 312; or, one of the first openings 311 can also be connected to the second opening.
  • the other first opening 311 is in communication with the second opening 312 .
  • the embodiment of the present invention has no special limitation on this.
  • the semiconductor process equipment can be used to perform the adhesive removal process, but the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the setting according to the actual situation.
  • the bottom of the process chamber 1 is provided with a carrying device 11 , and the top surface of the carrying device 11 can be used to carry a wafer and can heat the wafer.
  • the medium sleeve 2 is, for example, a tubular structure made of quartz material, but this embodiment of the application is not limited thereto.
  • the bottom end of the medium sleeve 2 is connected to the top end of the process chamber 1 , and the top end of the medium sleeve 2 may be provided with an air inlet assembly 5 for introducing process gas into the medium sleeve 2 .
  • the coil assembly 4 can form an electromagnetic field around the dielectric sleeve 2 to ionize the process gas in the dielectric sleeve 2 to form plasma.
  • the Faraday cage 3 is sheathed on the outer periphery of the dielectric sleeve 2 to reduce the coupling of the electric field to the plasma, to make the plasma sheath uniform, and to reduce the local corrosion of the inner wall of the dielectric sleeve 2, and to reduce the plasma generation. ion energy.
  • Opening structures 31 penetrate through the peripheral wall of the Faraday cage 3 , and a plurality of opening structures 31 are uniformly and spaced apart along the circumferential direction of the Faraday cage 3 , but the embodiment of the present application does not limit the specific number of the opening structures 31 .
  • the plurality of opening structures 31 are all extended along the axial direction of the Faraday cage 3 , and distributed evenly and at intervals along the circumferential direction of the Faraday cage 3 .
  • the top and the bottom of the opening structure 31 are the first opening 311, and the first opening 311 can be arranged as a vertical rectangular structure; the middle part of the opening structure 31 is the second opening 312, and the second opening 312 can be set as vertical rectangular structure, and the width of the second opening 312 is greater than the width of the first opening 311, that is, the second opening 312 has a second circumferential dimension along the circumferential direction of the Faraday cage 3, and the first opening 311
  • the Faraday cage 3 has a first circumferential dimension in the circumferential direction, and the first circumferential dimension is smaller than the second circumferential dimension.
  • the electromagnetic field fed from the first opening 311 can be reduced, thereby reducing the plasma
  • the application can reduce the medium by increasing the electromagnetic field fed from the second opening 312
  • the difference between the electromagnetic field intensity at the position corresponding to the second opening 312 in the sleeve 2 and the electromagnetic field intensity at the positions corresponding to the two first openings 311 reduces the electromagnetic field intensity at the position corresponding to the second opening 312 in the dielectric sleeve 2
  • the difference between the etching rate and the etching rate at the positions corresponding to the two first openings 311 can improve the etching uniformity at different positions in the axial direction of the dielectric sleeve 2 .
  • the coil assembly 4 is integrally sleeved on the outer periphery of the Faraday cage 3, and the coil assembly 4 may include two coil structures 41, and the two coil structures 41 are respectively close to the top and bottom ends of the Faraday cage 3, that is, the two coil structures 41 are along the Faraday cage.
  • the cylinder 3 is distributed axially at intervals, so that the two coil structures 41 have a preset gap in the axial direction of the Faraday cylinder 3 , and the two coil structures 41 are arranged corresponding to the two first openings 311 .
  • the positions of the coil structures 41 corresponding to the dielectric sleeve 2 are two, so as to avoid excessive temperature rise of the dielectric sleeve 2 due to centralized arrangement. Fast, thereby improving the process efficiency of the embodiment of the present application. Furthermore, the impedance of the plasma can be increased, thereby increasing the voltage of the coil structure 41 , thereby greatly reducing the matching time of the conversion step, thereby greatly improving the stability of the embodiment of the present application.
  • the two coil structures are arranged close to the two ends of the Faraday cage respectively, so that the two coil structures are respectively arranged corresponding to the two first openings, so that there are two corresponding positions between the coil structure and the dielectric sleeve, avoiding the present situation.
  • the heat is concentrated at a certain position, which causes the temperature rise of the dielectric sleeve to be relatively fast, and two coil structures are used to feed the electromagnetic field through the two first openings respectively, so that the etching rate and uniformity are not affected. , effectively reducing the temperature rise rate of the medium sleeve, and greatly increasing the process rate of the embodiment of the present application.
  • the electromagnetic field fed from the first opening 311 can be reduced, thereby reducing the plasma
  • the etch rate at the 312 position reduces the dielectric
  • the difference between the etching rate at the position corresponding to the second opening 312 in the dielectric sleeve 2 and the etching rate at the positions corresponding to the two first openings 311 can further increase the etching uniformity.
  • the above-mentioned design can also increase the impedance of the plasma, thereby increasing the voltage of the coil structure, and realizing rapid ignition in the dielectric sleeve, thereby not only improving the ignition efficiency of the embodiment of the present application, but also greatly reducing the conversion
  • the two coil structures 41 are arranged symmetrically with respect to the second opening 312; the distance between the two coil structures 41 in the axial direction of the Faraday cage 3 is greater than The height of the second opening 312 in the axial direction of the Faraday cage 3 .
  • the distance between the two coil structures 41 ranges from 45 mm to 65 mm.
  • the two coil structures 41 are arranged symmetrically with respect to the second opening 312, and the distance between the two coil structures 41 in the axial direction of the Faraday cage 3 can be defined as a first axial dimension, and the range of the distance can be Set it between 45 mm and 65 mm.
  • the height of the second opening 312 in the axial direction of the Faraday cage 3 can be defined as a second axial dimension, and the second axial dimension can be set to 44 millimeters, thus making the first axial dimension greater than the second axial dimension, i.e.
  • the separation distance is greater than the height of the second opening portion 312 .
  • the embodiment of the present application does not limit the specific values of the first axial dimension and the second axial dimension, as long as the first axial dimension is greater than the second axial dimension. Therefore, the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the setting by themselves according to the actual situation.
  • the total opening area of the plurality of opening structures 31 is 25%-31% of the outer peripheral area of the Faraday cage 3 .
  • the number of opening structures 31 is eight, and the first opening portion 311 and the second opening portion 312 are both rectangular structures.
  • the first circumferential dimension ranges from 20 mm to 30 mm, and the second circumferential dimension ranges from 35 mm to 50 mm.
  • the total opening area of the plurality of opening structures 31 can reach 25% to 31% of the outer peripheral area of the Faraday cage 3, which can not only improve the etching rate and yield of the embodiment of the present application, but also Reduce application and maintenance costs.
  • the embodiment of the present application does not limit the total opening area of the plurality of opening structures 31 , and those skilled in the art can adjust the setting according to the actual situation.
  • the number of opening structures 31 may be eight, and both the first opening 311 and the second opening 312 adopt a rectangular structure, that is, both adopt a rectangular structure.
  • the opening structure 31 is a rectangular structure as a whole, the first is to make the plasma distribution more uniform, and the second is to make the layout of the multiple opening structures 31 on the outer periphery of the Faraday cage 3 reasonable, and to make the multiple opening structures 31 between them.
  • the large gap makes the connection between the two coil structures 41 and the dielectric sleeve 2 shielded by a Faraday cage 3, thereby preventing the connection of the coil structure 41 from being directly exposed to the dielectric sleeve 2, and making the middle of the dielectric sleeve 2 The location temperature is faster.
  • the width of the first opening 311 is set to 25 millimeters to 30 millimeters, that is, the first circumferential dimension can be set to 25 millimeters, and the height of the first opening 311 is 83 millimeters; the width of the second opening 312 is 35 millimeters to 50 millimeters. mm, that is, the second circumferential dimension can be set to 40 mm, and the height of the second opening 312 can be set to 44 mm.
  • the first circumferential dimension and the second circumferential dimension of the first opening 311 and the second opening 312 are provided with different dimensions, so that the total opening area of the plurality of opening structures 31 can reach 25% to 25% of the outer circumferential area of the Faraday cage 3. 31%.
  • the width of the first opening 311 is relatively small, so that the electromagnetic field at both ends of the dielectric sleeve 2 is relatively weak, so as to reduce the bombardment of the dielectric sleeve 2, thereby further reducing the temperature rise of the dielectric sleeve 2; due to the second opening 312
  • the width is relatively large, and due to the spacing between the two coil structures 41, the electromagnetic field in the middle of the dielectric sleeve 2 is weak, and the second opening 312 can also allow more electromagnetic fields to pass through, improving the etching process to the greatest extent. In the case of the rate, the impact on the bombardment of the dielectric sleeve 2 is small, thereby ensuring the etching rate.
  • the embodiment of the present application does not limit the specific shapes of the plurality of opening structures 31 , for example, the first opening portion 311 and the second opening portion 312 may also adopt other shapes. Therefore, the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the setting by themselves according to the actual situation.
  • two coil structures 41 are arranged in parallel and the connection of the two coil structures 41 is located between the two opening structures 31, and the current direction of the two coil structures 41 is the same when power is applied.
  • the two coil structures 41 can be connected in parallel, so that the current direction of the two coil structures 41 is the same when the power is applied, so that the temperature rise of the dielectric sleeve 2 in the embodiment of the present application is relatively uniform.
  • connection of the two coil structures 41 has a certain width, and the connection can be located between the two opening structures 31, so as to prevent the electromagnetic field at the connection from entering the dielectric sleeve 2 from the opening structure 31, thereby avoiding the dielectric sleeve 2
  • the temperature rise is faster and the plasma inhomogeneity of the dielectric sleeve 2 is avoided, thereby improving the etching uniformity of the embodiment of the present application.
  • the embodiment of the present application does not limit that the two coil structures 41 must be connected in parallel.
  • the two coil structures 41 may be connected to radio frequency power sources respectively. Therefore, the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the setting by themselves according to the actual situation.
  • the coil structure 41 includes a plurality of stacked coils 411, and the same position of the plurality of coils 411 has gaps, and any two adjacent coils 411 The transition pipe 412 is used to connect between them.
  • the distance between any two adjacent coils 411 of the coil structure 41 is 20 mm.
  • the coil structure 41 may include three stacked coils 411 .
  • the coils 411 may be made of gold-plated copper tubes, and the diameter of each coil 411 may be set to 6 mm.
  • the distance between any two adjacent coils 411 can be set to 20 millimeters, that is, the center point turn distance of any two adjacent coils 411 is 20 millimeters.
  • the embodiment of the present application does not limit the specific implementation of the coil structure 41.
  • the number of coils 411 included in the coil structure 41 can be more than three or less than three, so the embodiment of the present application is not limited thereto. Personnel can adjust the settings by themselves according to the actual situation.
  • Each of the three coils 411 has a circumferential notch, and the length of the notch can be specifically set to 55 mm, but the embodiment of the present application does not limit the specific length of the notch.
  • each coil 411 is a non-closed circular planar coil.
  • the transition tube 412 is made of exactly the same material and specification as the coil 411 , and the transition tube 412 is located at the gap of the coil 411 for connecting two adjacent coils 411 .
  • one end of the transition tube 412 is connected to the right end of the previous coil 411, and the other end is connected to the next coil 411.
  • the left end of the ring 411 is connected, and the transition pipe 412 specifically adopts a wavy line structure.
  • each coil structure 41 is relatively small, so that there is a preset gap between the two coil structures 41, which can not only prevent the electromagnetic field from directly entering the second opening 312, thereby ensuring the etching rate and reducing the The temperature rise of the medium sleeve 2 is reduced, and the installation space can be saved.
  • the embodiment of the present application does not limit the specific structure of the coil structure 41 , for example, the coil structure 41 may adopt an integrally formed helical structure.
  • the coil structure 41 may be a columnar helical coil with multiple coil turns, each coil is the above-mentioned coil 411 , and the connecting part between two adjacent coils is the above-mentioned transition tube 412 . Therefore, the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the setting by themselves according to the actual situation.
  • the two adjacent coils 411 of the two coil structures 41 are connected by a first connecting tube 413 , and the two coil structures 41 are opposite to the farthest end.
  • the two coils 411 are connected by a second connecting pipe 414, the first connecting pipe 413 is used for grounding, and the second connecting pipe 414 is used for connecting with a radio frequency power supply.
  • the bottommost coil 411 of the upper coil structure 41 is connected to the topmost coil 411 of the lower coil structure 41 through a first connecting pipe 413 , that is, one end of the first connecting pipe 413 It is connected to the right end of the upper coil 411 , and the other end is connected to the right end of the lower coil 411 .
  • the coil 411 at the top of the upper coil structure 41 is connected to the bottom coil 411 of the lower coil structure 41 by a second connecting pipe 414, that is, one end of the second connecting pipe 414 is connected to the left end of the upper coil 411, The other end is connected to the left end of the lower coil 411 .
  • the connection of the two coil structures 41 is located between any two opening structures 31, the first connecting pipe 413 and the second connecting pipe 414 are both located between any two opening structures 31, thus avoiding the first connecting pipe 413 and the second connecting pipe 414.
  • the electromagnetic field of the second connecting pipe 414 enters the dielectric sleeve 2 through the opening structure 31, thereby avoiding the rapid temperature rise of the dielectric sleeve 2 and avoiding the uneven plasma of the dielectric sleeve 2, thereby improving the etching of the embodiment of the present application Uniformity.
  • the first connecting pipe 413 and the second connecting pipe 414 are integrally formed with the two coil structures 41, and the first connecting pipe 413 and the second connecting pipe 413
  • the middle positions of the tubes 414 pass through the connection block, wherein the first connection tube 413 is grounded through the connection block, and the second connection tube 414 is connected to the radio frequency power supply through this connection.
  • the embodiment of the present application does not limit the functions of the first connecting pipe 413 and the second connecting pipe 414, for example, the functions of the two can be interchanged, that is, the first connecting pipe 413 is used to connect the grounded.
  • the embodiment of the present application can realize the parallel arrangement of two coil structures 41 with a relatively simple structure, thereby greatly reducing the application and maintenance costs of the embodiment of the present application.
  • the embodiment of the present application is not limited to the specific implementation of the first connecting pipe 413 and the second connecting pipe 414.
  • the two connecting pipes and the two coil structures 41 are connected by welding, so as to facilitate the embodiment of the present application. Disassembly and maintenance. Therefore, the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the setting by themselves according to the actual situation.
  • the coil assembly 4 further includes a load-bearing structure 42, the load-bearing structure 42 is arranged on the outer periphery of the Faraday cage 3, and the two coil structures 41 are arranged on the Faraday cage 3 on.
  • the bearing structure 42 can adopt a sleeve structure made of resin material, and the bearing structure 42 can be installed on the outer periphery of the Faraday through a plurality of fasteners, and a plurality of openings are provided on the bearing structure 42 for connecting with the Faraday cage.
  • a plurality of opening structures 31 on 3 are provided correspondingly.
  • the outer circumference of the carrying structure 42 is provided with six grooves from top to bottom for accommodating and limiting the six coils 411 of the two coil structures 41, but the embodiment of the present application does not limit the specific number of grooves, as long as The number of grooves and the number of coils 411 can be set correspondingly.
  • the above-mentioned design makes the structure of the embodiment of the present application simple, thereby greatly improving the efficiency of disassembly and maintenance.
  • the embodiment of the present application does not limit the specific structure of the bearing structure 42.
  • the bearing structure 42 may include a plurality of bearing blocks, and the plurality of bearing blocks are uniformly and spaced along the circumference of the Faraday cage 3 for bearing Two coil structures 41 . Therefore, the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the entire settings.
  • a cooling flow channel is provided in the air inlet assembly 5 , and a cooling flow channel is provided in the top plate of the process chamber 1 , and the two cooling flow channels are used for cooling the Faraday cage 3 and medium sleeve 2 for cooling.
  • the intake assembly 5 is made of aluminum alloy, and is covered on the medium sleeve 2 and the Faraday cage 3.
  • a cooling flow channel may be opened in the top plate of the intake assembly 5, and the cooling flow channel leads into the cooling The medium is used to cool the coil structure 41 at the top, and to cool the top of the dielectric sleeve 2 and the Faraday cage 3 .
  • the top plate of the process chamber 1 can be made of aluminum alloy, and is used to cover the top of the process chamber 1 so that the process chamber 1 forms a vacuum environment to perform the glue removal process.
  • a cooling channel is opened in the top plate of the process chamber 1 , and a cooling medium is passed into the cooling channel to cool the bottom of the medium sleeve 2 and the Faraday cage 3 .
  • the two coil structures 41 are arranged close to the two ends of the Faraday cage 3 respectively, and the two cooling channels can cool the Faraday cage 3 and the medium sleeve 2, not only the temperature rise of the medium sleeve 2 can be greatly reduced, but also the The matching time of the conversion step is reduced, thereby improving the stability of the embodiment of the present application, so as to further increase the etching rate and uniformity.
  • the embodiment of the present application and the prior art are continuously executed 20 times of ignition, and the matching time of the conversion step is shown in Figure 5, the maximum ignition time of the embodiment of the application is 2.372 times of the prior art
  • the second is shortened to 1.311 seconds, and the fluctuation of the ignition time is shortened from 1.81 seconds in the prior art to 0.874 seconds.
  • Both the embodiment of the present application and the prior art perform a deglue process on the wafer, for example, a wafer using THHR-ipt700HP-60cp type glue, and the time of the etching step is set to 10 seconds to perform the degumming process.
  • the etching rate of the embodiment of the present application is 14.08um/min, and the etching uniformity is 4.8%; the etching rate of the prior art is 14.41um/min, and the etching uniformity is 2.5%. Since the etching uniformity can meet the needs of the current deglue process within 6%, it can be seen that the application implements
  • the etching rate and uniformity of the embodiment are basically the same as those of the prior art, so as to meet the requirements of the current stripping process. Both the embodiment of the present application and the prior art perform the temperature change state within 1 minute of the etching step as shown in Figure 6.
  • the highest temperature rise of the dielectric sleeve 2 of the embodiment of the present application is 121°C; while the temperature of the quartz tube of the prior art The temperature rises to a maximum of 138°C, which is 17°C lower in the embodiment of the present application compared with the existing technology. It can be seen that the embodiment of the present application can greatly reduce the dielectric sleeve 2 while obtaining the same etching rate and uniformity. temperature rise, thereby greatly increasing the process rate. Further, the change of the electric field at the position corresponding to the axial height of the dielectric sleeve 2 and the opening structure 31 is shown in FIG. , and the bottom extending down to the first opening 311 is a negative value.
  • the dielectric can also be made
  • the electromagnetic field at the middle position of the sleeve 2 is relatively weak, so that the temperature rise at the middle position of the dielectric sleeve 2 is smaller. Since the electromagnetic field near the two coil structures 41 is the strongest, part of the electric field is shielded by the relatively small two first openings 311, but the electromagnetic field near the two first openings 311 is still higher than the electromagnetic field at the second opening 312. , the air intake assembly 5 and the top plate of the process chamber 1 are provided with cooling channels to cool the Faraday cage 3 and the medium sleeve 2 , thereby further reducing the temperature rise of the medium sleeve 2 .
  • the two coil structures are arranged close to the two ends of the Faraday cage respectively, so that the two coil structures are respectively arranged corresponding to the two first openings, so that there are two corresponding positions between the coil structure and the dielectric sleeve, avoiding the present situation.
  • the heat is concentrated at a certain position, which causes the temperature rise of the dielectric sleeve to be relatively fast, and two coil structures are used to feed the electromagnetic field through the two first openings respectively, so that the etching rate and uniformity are not affected. , effectively reducing the temperature rise rate of the medium sleeve, and greatly increasing the process rate of the embodiment of the present application.
  • the electromagnetic field fed from the first opening 311 can be reduced, thereby reducing the plasma The bombardment of the medium sleeve 2; the second opening 312 adopts With a relatively large circumferential dimension, the electromagnetic field fed in from the second opening 312 can be increased, so that the etching rate at the position corresponding to the second opening 312 in the dielectric sleeve 2 can be increased to reduce the thickness of the dielectric sleeve 2.
  • the difference between the etching rate at the position corresponding to the second opening in the barrel and the etching rate at the positions corresponding to the two first openings can further improve the etching uniformity at different positions in the axial direction of the dielectric sleeve 2 .
  • the above-mentioned design can also increase the impedance of the plasma and the voltage of the coil structure, and realize rapid ignition in the dielectric sleeve, thereby not only improving the ignition efficiency of the embodiment of the present application, but also greatly reducing the matching of the conversion step Time, and reduce the fluctuation of the ignition time, improve the matching stability of the conversion step.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two elements.
  • installation e.g., it can be a fixed connection or a detachable connection.
  • connection e.g., it can be a fixed connection or a detachable connection.
  • Connected, or integrally connected it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Transformer Cooling (AREA)

Abstract

本申请实施例提供了一种半导体工艺设备。该半导体工艺设备的进气组件盖设于介质套筒的顶端,介质套筒的底端连接于工艺腔室的顶板且与工艺腔室连通;法拉第筒套设于介质套筒的外周,法拉第筒的周壁上开设有多个沿周向均布的开口结构;开口结构沿法拉第筒的轴向延伸设置,并且多个开口结构中的至少一个包括有第一开口部及第二开口部,两个第一开口部分别位于第二开口部的顶部及底部;线圈组件套设于法拉第筒的外周,线圈组件包括两个线圈结构,两个线圈结构在法拉第筒的轴向上间隔设置,并且分别与两个第一开口部对应设置。本申请实施例实现了不影响刻蚀速率及均匀性的情况下,大幅提高工艺速率以及稳定性。

Description

半导体工艺设备 技术领域
本申请涉及半导体加工技术领域,具体而言,本申请涉及一种半导体工艺设备。
背景技术
目前,在集成电路芯片制造工艺中,需要采用等离子体对晶圆表面的光刻胶进行去除。由于大量去胶工艺需要等离子体源实现高速率(即晶圆在275℃高温加热器下,等离子源功率加载至2500W,刻蚀速率>10um/min),因此需要采用电感耦合等离子体源(Inductively Coupled Plasma,ICP)来满足去胶工艺的需求。
现有技术中,由于需要等离子体源实现高刻蚀速率,因此在执行转化步骤时在低功率及低压力的条件下进行等离子体启辉,在执行刻蚀步骤时再把等离子体源输出的2500W功率直接加载到线圈结构中,但是由于线圈结构附近的电磁场较高,造成石英管与线圈结构对应位置温升远高于其他部分,导致石英管局部温升过快,以及工艺结束后冷却较慢,从而影响工艺效率。另外,由于现有技术中结构设计不合理还导致转化步骤匹配时间较长,并且波动范围较大,从而导致工艺效率较低以及稳定性较差。
发明内容
本申请针对现有方式的缺点,提出一种半导体工艺设备,用以解决现有技术存在等离子体源工艺效率较低及稳定性较差的技术问题。
第一个方面,本申请实施例提供了一种半导体工艺设备,包括:工艺腔室、介质套筒、法拉第筒、线圈组件及进气组件;所述进气组件盖设于所述 介质套筒的顶端,用于将工艺气体输送至所述介质套筒内;所述介质套筒的底端连接于所述工艺腔室的顶部且与所述工艺腔室连通;所述法拉第筒套设于所述介质套筒的外周,所述法拉第筒的周壁上开设有多个沿周向均布的开口结构;所述开口结构沿所述法拉第筒的轴向延伸设置,并且多个所述开口结构中的至少一个包括有第一开口部及第二开口部,所述第一开口部为两个,且分别位于所述第二开口部的顶部及底部,所述第一开口部在所述法拉第筒的周向上具有第一周向尺寸,所述第二开口部沿所述法拉第筒的周向上具有第二周向尺寸,所述第一周向尺寸小于所述第二周向尺寸;所述线圈组件套设于所述法拉第筒的外周,所述线圈组件包括两个线圈结构,两个所述线圈结构在所述法拉第筒的轴向上间隔设置,并且分别与两个所述第一开口部对应设置。
于本申请的一实施例中,两个所述线圈结构相对于所述第二开口部对称设置;两个所述线圈结构在所述法拉第筒的轴向上的间隔距离大于所述第二开口部在所述法拉第筒的轴向上的高度。
于本申请的一实施例中,两个所述线圈结构的所述间隔距离的范围为45毫米~65毫米。
于本申请的一实施例中,多个所述开口结构的开口总面积为所述法拉第筒外周面积的25%~31%。
于本申请的一实施例中,所述开口结构的数量为八个,并且所述第一开口部及所述第二开口部均为矩形结构。
于本申请的一实施例中,所述第一周向尺寸的范围为20毫米~30毫米,所述第二周向尺寸的范围为35毫米~50毫米。
于本申请的一实施例中,两个所述线圈结构并联设置,并且两个所述线圈结构的连接处位于任意两相邻的所述开口结构之间,两个所述线圈结构在加载功率时的电流方向相同。
于本申请的一实施例中,所述线圈结构包括多个层叠设置的线圈,多个所述线圈的同一位置处均具有缺口,并且任意两相邻的线圈之间采用过渡管连接。
于本申请的一实施例中,两个所述线圈结构相邻的两个所述线圈之间采用第一连接管连接,两个所述线圈结构相对最远端的两个所述线圈之间采用第二连接管连接,所述第一连接管用于接地,所述第二连接管用于与射频电源连接。
于本申请的一实施例中,所述线圈组件还包括承载结构,所述承载结构设置于所述法拉第筒的外周,并且能避开多个所述开口结构,两个所述线圈结构均通过所述承载结构设置于所述法拉第筒上。
于本申请的一实施例中,所述进气组件设置有冷却流道,所述工艺腔室的顶板内设置有冷却流道,两个所述冷却流道用于对法拉第筒和介质套筒进行冷却。
本申请实施例提供的技术方案带来的有益技术效果是:
本申请实施例通过将两个线圈结构分别靠近法拉第筒的两端设置,使两个线圈结构分别对应两个第一开口部设置,使得线圈结构与介质套筒的对应位置为两个,避免现有技术中热量集中在某一位置而造成介质套筒温升较快,并通过使第一周向尺寸小于第二周向尺寸,即,第一开口部采用相对较小的周向尺寸,这样可以减少自该第一开口部馈入的电磁场,从而可以减少等离子体对介质套筒的轰击;第二开口部采用相对较大的周向尺寸,这样可以增加自第二开口部馈入的电磁场,从而可以提高介质套筒内对应该第二开口部位置处的刻蚀速率,以减小介质套筒内对应该第二开口部位置处的刻蚀速率与对应两个第一开口部位置处的刻蚀速率的差异,进而可以提高介质套筒内轴向上不同位置处的刻蚀均匀性。并且,采用两个线圈结构分别通过两个第一开口部馈入电磁场,实现了不影响刻蚀速率及均匀性的情况下,有效降低 介质套筒的升温速度,大幅提高本申请实施例的工艺速率。此外,采用上述设计还能提高等离子体的阻抗,进而提高了线圈结构的电压,实现了介质套筒内快速启辉,从而不仅提高了本申请实施例的启辉效率,而且还能大幅降低转化步骤的匹配时间,并降低启辉时间的波动,提高转化步骤的匹配稳定性。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例提供的一种半导体工艺设备的剖视示意图;
图2为本申请实施例提供的一种法拉第筒与线圈组件配合的剖视示意图;
图3为本申请实施例提供的一种法拉第筒的剖视示意图;
图4为本申请实施例提供的一种两个线圈结构的立体示意图;
图5为本申请实施例与现有技术中的转化步骤匹配时间示意图:
图6为本申请实施例与现有技术中的刻蚀步骤温升示意图:
图7为本申请实施例提供的一种开口结构对应介质套筒电场变化示意图。
具体实施方式
下面详细描述本申请,本申请的实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的部件或具有相同或类似功能的部件。此外,如果已知技术的详细描述对于示出的本申请的特征是不必要的,则将其省略。下面通过参考附图描述的实施例是示例性的,仅用于解释本申 请,而不能解释为对本申请的限制。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。
本申请实施例提供了一种半导体工艺设备,该半导体工艺设备的结构示意图如图1及图2所示,包括:工艺腔室1、介质套筒2、法拉第筒3、线圈组件4及进气组件5;进气组件5盖设于介质套筒3的顶端,用于将工艺气体输送至介质套筒2内;介质套筒2的底端连接于工艺腔室1的顶部(例如设置于腔室顶部的顶板)且与工艺腔室1连通;法拉第筒3套设于介质套筒2的外周,法拉第筒3的周壁上开设有多个沿周向均布的开口结构31,开口结构31沿法拉第筒3的轴向延伸设置,并且多个开口结构31中的至少一个包括第一开口部311及第二开口部312,第一开口部311为两个,且分别位于第二开口部312的顶部及底部,第一开口部311在法拉第筒3的周向上具有第一周向尺寸,第二开口部312沿法拉第筒3的周向上具有第二周向尺寸,第一周向尺寸小于第二周向尺寸;线圈组件4套设于法拉第筒3的外周,线圈组件4包括两个线圈结构41,两个线圈结构41在法拉第筒3的轴向上间隔设置,并且分别与两个第一开口部311对应设置。在实际应用中,两个第一开口部311可以均与第二开口部312相连通,也可以均与第二开口部312相隔离;或者,还可以其中一个第一开口部311与第二开口部312相连通,另一个第一开口部311与第二开口部312相隔离。本发明实施例对此没有特别的限制。
如图1及图2所示,半导体工艺设备可以用于执行去胶工艺,但是本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。工艺腔室1内的底部设置有承载装置11,该承载装置11的顶面可以用于承载晶圆,并且可以对晶圆加热。介质套筒2例如采用石英材质制成的管状结构,但是本申请实施例并不以此为限。介质套筒2的底端与工艺腔室1的顶端连接,并且介质套筒2的顶端可以设置有进气组件5,以用于向介质套筒2内通入工艺气体。线圈组件4能在介质套筒2的周围形成电磁场,以使介质套筒2内的工艺气体发生电离以形成等离子体。法拉第筒3套设于介质套筒2的外周,用于减小电场对等离子体的耦合,使等离子鞘层均匀,同时减少对介质套筒2内壁的局部腐蚀,也能够减小等离子体产生中的离子能量。法拉第筒3的周壁上贯穿有开口结构31,多个开口结构31沿法拉第筒3的周向均匀且间隔分布,但是本申请实施例并不限定开口结构31的具体数量。多个开口结构31均沿法拉第筒3的轴向延伸设置,并且沿法拉第筒3的周向均匀且间隔分布。开口结构31的顶部及底部为第一开口部311,该第一开口部311可以设置为竖向的长方形结构;开口结构31的中部为第二开口部312,该第二开口部312可以设置为竖向的长方形结构,并且该第二开口部312的宽度大于第一开口部311的宽度,即第二开口部312沿法拉第筒3的周向上具有第二周向尺寸,而第一开口部311在法拉第筒3的周向具有第一周向尺寸,第一周向尺寸小于第二周向尺寸。通过使第一周向尺寸小于第二周向尺寸,即,第一开口部311采用相对较小的周向尺寸,这样可以减少自该第一开口部311馈入的电磁场,从而可以减少等离子体对介质套筒2的轰击;第二开口部312采用相对较大的周向尺寸,这样可以增加自第二开口部312馈入的电磁场,从而可以提高介质套筒2内对应该第二开口部312位置处的刻蚀速率。
由于线圈结构附近的电磁场较高,造成石英管与线圈结构对应位置温升 远高于其他部分,导致石英管局部温升过快,以及工艺结束后冷却较慢,从而影响工艺效率,基于此,本申请通过增加自第二开口部312馈入的电磁场,可以减小介质套筒2内对应该第二开口部312位置处的电磁场强度与对应两个第一开口部311位置处的电磁场强度的差异,减小介质套筒2内对应该第二开口部312位置处的刻蚀速率与对应两个第一开口部311位置处的刻蚀速率的差异,从而可以提高介质套筒2内轴向上不同位置处的刻蚀均匀性。
线圈组件4整体套设于法拉第筒3的外周,并且线圈组件4可以包括两个线圈结构41,并且两个线圈结构41分别靠近法拉第筒3的顶端及底端,即两个线圈结构41沿法拉第筒3轴向间隔分布,以使两个线圈结构41在法拉第筒3的轴向具有预设间隙,并且使两个线圈结构41分别对应两个第一开口部311设置。在实际应用时,由于两个线圈结构41分别靠近法拉第筒3的两端设置,使得线圈结构41对应于介质套筒2的位置为两个,避免集中设置而造成介质套筒2的温升过快,从而提高本申请实施例的工艺效率。进一步的,还能提高等离子体的阻抗,进而提高了线圈结构41的电压,从而大幅降低转化步骤的匹配时间,进而大幅提高本申请实施例的稳定性。
本申请实施例通过将两个线圈结构分别靠近法拉第筒的两端设置,使两个线圈结构分别对应两个第一开口部设置,使得线圈结构与介质套筒的对应位置为两个,避免现有技术中热量集中在某一位置而造成介质套筒温升较快,并且采用两个线圈结构分别通过两个第一开口部馈入电磁场,实现了不影响刻蚀速率及均匀性的情况下,有效降低介质套筒的升温速度,大幅提高本申请实施例的工艺速率。通过使第一周向尺寸小于第二周向尺寸,即,第一开口部311采用相对较小的周向尺寸,这样可以减少自该第一开口部311馈入的电磁场,从而可以减少等离子体对介质套筒2的轰击;第二开口部312采用相对较大的周向尺寸,这样可以增加自第二开口部312馈入的电磁场,从而可以提高介质套筒2内对应该第二开口部312位置处的刻蚀速率,减小介 质套筒2内对应该第二开口部312位置处的刻蚀速率与对应两个第一开口部311位置处的刻蚀速率的差异,进而可以提高介质套筒2内轴向上不同位置处的刻蚀均匀性。此外,采用上述设计还能提高等离子体的阻抗,进而提高了线圈结构的电压,实现了介质套筒内快速启辉,从而不仅提高了本申请实施例的启辉效率,而且还能大幅降低转化步骤的匹配时间,并降低启辉时间的波动,提高转化步骤的匹配稳定性。
于本申请的一实施例中,如图1至图3所示,两个线圈结构41相对于第二开口部312对称设置;两个线圈结构41在法拉第筒3的轴向上的间隔距离大于第二开口部312在法拉第筒3的轴向上的高度。可选地,两个线圈结构41的间隔距离的范围为45毫米~65毫米。具体来说,两个线圈结构41相对于第二开口部312对称设置,并且两个线圈结构41在法拉第筒3轴向上的间隔距离可以定义为第一轴向尺寸,该间隔距离的范围可以设置在45毫米~65毫米。第二开口部312在法拉第筒3的轴向的高度可以定义为第二轴向尺寸,第二轴向尺寸可以设置为44毫米,由此使得第一轴向尺寸大于第二轴向尺寸,即间隔距离大于第二开口部312的高度。采用上述设计,避免线圈结构41的电磁场直接由第二开口部312进入介质套筒2,使得第二开口部312处的介质套筒2温升相对较低,从而在降低介质套筒2温升速度的同时,而且还能确保刻蚀速率。但是本申请实施例并不限定第一轴向尺寸及第二轴向尺寸的具体数值,只要第一轴向尺寸大于第二轴向尺寸即可。因此本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。
于本申请的一实施例中,如图1至图3所示,多个开口结构31的开口总面积为法拉第筒3外周面积的25%~31%。可选地,开口结构31的数量为八个,并且第一开口部311及第二开口部312均为矩形结构。可选地,第一周向尺寸的范围为20毫米~30毫米,第二周向尺寸的范围为35毫米~50毫米。
如图1至图3所示,多个开口结构31的开口总面积能够达到法拉第筒3外周面积的25%~31%,不仅能提高本申请实施例的刻蚀速率及良率,而且还能降低应用及维护成本。但是本申请实施例并不限定多个开口结构31的开口总面积,本领域技术人员可以根据实际情况自行调整设置。开口结构31的数量可以为八个,第一开口部311及第二开口部312均采用长方形结构,即两者均采用矩形结构。采用上述设计,由于开口结构31整体为长方形结构,一是使等离子体分布更均匀,二是使得多个开口结构31的在法拉第筒3外周上布局合理,并且使多个开口结构31之间具有较大的间隙,使得两个线圈结构41的连接处与介质套筒2之间采用法拉第筒3屏蔽,从而避免线圈结构41的连接处直接暴露在介质套筒2,使介质套筒2的中部位置温度较快。第一开口部311的宽度设置为25毫米~30毫米,即第一周向尺寸可以设置为25毫米,第一开口部311的高度为83毫米;第二开口部312的宽度为35毫米~50毫米,即第二周向尺寸可以设置为40毫米,第二开口部312的高度可以设置44毫米。第一开口部311及第二开口部312的第一周向尺寸及第二周向尺寸设置不同的尺寸,从而使得多个开口结构31的开口总面积能够达到法拉第筒3外周面积的25%~31%。第一开口部311的宽度相对较小,使得介质套筒2两端的电磁场相对较弱,以减少对介质套筒2的轰击,从而进一步降低介质套筒2的温升;由于第二开口部312的宽度相对较大,以及由于两个线圈结构41的间隔设置,使得介质套筒2中部位置电磁场较弱,并且第二开口部312还能供更多的电磁场通过,在最大限度的提高刻蚀速率的情况下,对介质套筒2的轰击影响很小,从而确保刻蚀速率。
需要说明的是,本申请实施例并不限定多个开口结构31的具体形状,例如第一开口部311及第二开口部312也可以采用其它形状。因此本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。
于本申请的一实施例中,如图1至图4所示,两个线圈结构41并联设 置,并且两个线圈结构41的连接处位于两个开口结构31之间,两个线圈结构41在加载功率时的电流方向相同。具体来说,两个线圈结构41可以采用并联的方式连接,并使得两个线圈结构41在加载功率时的电流方向相同,从而使得本申请实施例的介质套筒2温升比较均匀。两个线圈结构41的连接处具有一定的宽度,并且该连接处可以位于两个开口结构31之间,避免连接处的电磁场由开口结构31进入介质套筒2内,从而避免介质套筒2的温升较快,以及避免介质套筒2等离子体不均匀,从而提高本申请实施例的刻蚀均匀性。但是本申请实施例并不限定两个线圈结构41必须采用并联方式连接,例如两个线圈结构41可以分别连接至射频电源。因此本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。
于本申请的一实施例中,如图1至图4所示,线圈结构41包括多个层叠设置的线圈411,多个线圈411的同一位置处均具有缺口,并且任意两相邻的线圈411之间采用过渡管412连接。可选地,线圈结构41的任意相邻的两线圈411之间的间距为20毫米。
如图1至图4所示,线圈结构41可以包括三个层叠设置的线圈411,线圈411具体可以采用外表面镀金的铜管制成,每个线圈411的直径可以设置为6毫米。任意两相邻线圈411之间距离可以设置为20毫米,即任意两相邻线圈411中心点匝距为20毫米。但是本申请实施例并不限定线圈结构41的具体实施方式,例如线圈结构41包括的线圈411数量可以为三个以上或三个以下,因此本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。三个线圈411均具有周向的缺口,该缺口的长度具体可以设置为55毫米,但是本申请实施例并不限定缺口的具体长度。可选的,每个线圈411为非闭合的圆形平面线圈。过渡管412采用与线圈411完全相同材质及规格制成,过渡管412位于线圈411的缺口处,用于连接两相邻的线圈411。例如,过渡管412的一端与上一个线圈411的右端连接,另一端与下一个线 圈411的左端连接,过渡管412具体采用波浪线结构。采用上述设计,使得每个线圈结构41的轴向高度相对较小,使得两个线圈结构41之间具有预设间隙,不仅能够避免电磁场直接第二开口部312进入,从而确保刻蚀速率以及降低介质套筒2的温升,而且还能节省安装空间。
需要说明的是,本申请实施例并不限定线圈结构41的具体结构,例如线圈结构41可以采用一体成形的螺旋状结构。具体来说,线圈结构41可以为柱状螺旋线圈,该柱状螺旋线圈有多匝线圈,每匝线圈即为上述线圈411,各相邻两匝线圈之间的连接部分即为上述过渡管412。因此本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。
于本申请的一实施例中,如图1至图4所示,两个线圈结构41相邻的两个线圈411之间采用第一连接管413连接,两个线圈结构41相对最远端的两个线圈411之间采用第二连接管414连接,第一连接管413用于接地,第二连接管414用于与射频电源连接。
如图1至图4所示,位于上方的线圈结构41最底部的线圈411与位于下方的线圈结构41最顶部的线圈411之间通过第一连接管413连接,即第一连接管413的一端与上方的线圈411的右端部连接,另一端与下方的线圈411的右端部连接。位于上方的线圈结构41最顶部的线圈411与位于下方的线圈结构41最底部的线圈411之间采用第二连接管414连接,即第二连接管414的一端与上方的线圈411的左端连接,另一端与下方的线圈411的左端部连接。由于两个线圈结构41的连接处位于任意两个开口结构31之间,因此第一连接管413及第二连接管414均位于任意两个开口结构31之间,从而避免第一连接管413及第二连接管414的电磁场由开口结构31进入介质套筒2内,从而避免介质套筒2的温升较快,以及避免介质套筒2等离子体不均匀,从而提高本申请实施例的刻蚀均匀性。第一连接管413及第二连接管414与两个线圈结构41采用一体成形的方式制成,并且第一连接管413及第二连接 管414的中部位置均通过连接块,其中第一连接管413通过连接块接地设置,而第二连接管414通过该连接与射频电源连接。采用该设计,由于第二连接管414与两个线圈结构41相对最远端线圈411连接,并且配合进气组件5内的冷却流道及工艺腔室1顶板内的冷却流道,以对法拉第筒3和介质套筒2进行冷却。但是本申请实施例并不限定第一连接管413及第二连接管414的作用,例如两者的作用可以互换,即第一连接管413用于连接射频电源,第二连接管414用于接地。采用上述设计,使得本申请实施例采用较为简单的结构即可以实现两个线圈结构41的并联设置,从而大幅降低本申请实施例的应用及维护成本。
需要说明的是,本申请实施例并不限第一连接管413及第二连接管414的具体实施方式,例如两个连接管与两个线圈结构41采用焊接方式连接,从而便于本申请实施例拆装维护。因此本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。
于本申请的一实施例中,如图2至图4所示,线圈组件4还包括承载结构42,承载结构42设置于法拉第筒3的外周,两个线圈结构41均通过承载结构42设置于法拉第筒3上。具体来说,承载结构42可以采用树脂材质制成的套筒结构,承载结构42可以通过多个紧固件安装于法拉第的外周,并且承载结构42上开设有多个开口,用于与法拉第筒3上的多个开口结构31对应设置。承载结构42的外周上自上至下开设有六个沟槽,用于容置并限位两个线圈结构41的六个线圈411,但是本申请实施例并不限定沟槽的具体数量,只要沟槽与线圈411数量对应设置即可。采用上述设计,使得本申请实施例结构简单,从而大幅提高拆装维护效率。需要说明的是,本申请实施例并不限定承载结构42的具体结构,例如承载结构42可以包括多个承载块,多个承载块沿法拉第筒3的周向均匀且间隔设置,以用于承载两个线圈结构41。因此本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调 整设置。
于本申请的一实施例中,如图1所示,进气组件5内设置有冷却流道,工艺腔室1的顶板内设置有冷却流道,两个冷却流道用于对法拉第筒3和介质套筒2进行冷却。具体来说,进气组件5采用铝合金材质制成,并且盖合于介质套筒2及法拉第筒3上,进气组件5的顶板内可以开设有冷却流道,该冷却流道通入冷却介质,以对位于顶部的线圈结构41进行冷却,以及对介质套筒2及法拉第筒3的顶部进行冷却。工艺腔室1的顶板可以采用铝合金材质制成,用于盖合于工艺腔室1顶部,使工艺腔室1形成真空环境以执行去胶工艺。工艺腔室1的顶板内开设有冷却流道,该冷却流道内通入冷却介质,以及对介质套筒2及法拉第筒3的底部进行冷却。由于两个线圈结构41分别靠近法拉第筒3的两端设置,并且两个冷却流道能够对法拉第筒3和介质套筒2进行冷却,不仅能大幅降低介质套筒2的温升,而且还能降低转化步骤的匹配时间,从而提升了本申请实施例的稳定性,以进一步提高刻蚀速率及均匀性。
为了进一步说明本申请实施例的原理及有益效果,以下结合附图对本申请实施例的具体实验数据进行说明。
图1至图6所示,将本申请实施例与现有技术连续执行20次启辉,转化步骤的匹配时间如图5所示,本申请实施例的最大启辉时间由现有技术的2.372秒缩短至1.311秒,并且启辉时间的波动由现有技术的1.81秒缩短至为0.874秒,由此可见本申请实施相对于现有技术大幅提升了匹配稳定性和重复性。将本申请实施例与现有技术均对晶圆执行去胶工艺,例如采用THHR-ipt700HP-60cp类型胶的晶圆,刻蚀步骤的时间设置为10秒以执行去胶工艺。经过实验可知,本申请实施例的刻蚀速率为14.08um/min,刻蚀均匀性为4.8%;现有技术的刻蚀速率为14.41um/min,刻蚀均匀性为2.5%。由于刻蚀均匀性在6%以内即可满足目前去胶工艺的需求,由此可见本申请实 施例的刻蚀速率及均匀性均与现有技术基本相同,从而满足目前去胶工艺的需求。本申请实施例与现有技术均执行刻蚀步骤1分钟内的温度变化状态如图6所示,本申请实施例的介质套筒2最高温升为121℃;而现有技术的石英管温升为最高为138℃,本申请实施例相较于现有技术降低了17℃,由此可见本申请实施例在获得同等刻蚀速率及均匀性的情况下,还能大幅降低介质套筒2的温升,从而大幅提高了工艺速率。进一步的,介质套筒2与开口结构31轴向高度对应处的电场变化如图7所示,例如以开口结构31的居中位置为原点位置,向上延伸到第一开口部311的顶部为正值,以及向下延伸至第一开口部311的底部为负值。具体来说,由于第二开口部312相对较大,能使较多的电场进入介质套筒2内以确保刻蚀速率,并且由于两个线圈结构41之间具有预设间隙,还能使介质套筒2的中部位置电磁场相对较弱,从而使得介质套筒2的中部位置温升更小。由于两个线圈结构41附近的电磁场最强,通过相对较小的两个第一开口部311屏蔽部分电场,但是两个第一开口部311附近的电磁场依然高于第二开口部312处的电磁场,进气组件5和工艺腔室1的顶板内设有冷却流道,以对法拉第筒3和介质套筒2进行冷却,从而进一步降低介质套筒2的温升。
应用本申请实施例,至少能够实现如下有益效果:
本申请实施例通过将两个线圈结构分别靠近法拉第筒的两端设置,使两个线圈结构分别对应两个第一开口部设置,使得线圈结构与介质套筒的对应位置为两个,避免现有技术中热量集中在某一位置而造成介质套筒温升较快,并且采用两个线圈结构分别通过两个第一开口部馈入电磁场,实现了不影响刻蚀速率及均匀性的情况下,有效降低介质套筒的升温速度,大幅提高本申请实施例的工艺速率。通过使第一周向尺寸小于第二周向尺寸,即,第一开口部311采用相对较小的周向尺寸,这样可以减少自该第一开口部311馈入的电磁场,从而可以减少等离子体对介质套筒2的轰击;第二开口部312采 用相对较大的周向尺寸,这样可以增加自第二开口部312馈入的电磁场,从而可以提高介质套筒2内对应该第二开口部312位置处的刻蚀速率,以减小介质套筒内对应该第二开口部位置处的刻蚀速率与对应两个第一开口部位置处的刻蚀速率的差异,进而可以提高介质套筒2内轴向上不同位置处的刻蚀均匀性。此外,采用上述设计还能提高等离子体的阻抗和线圈结构的电压,实现了介质套筒内快速启辉,从而不仅提高了本申请实施例的启辉效率,而且还能大幅降低转化步骤的匹配时间,并降低启辉时间的波动,提高转化步骤的匹配稳定性。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以 具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (11)

  1. 一种半导体工艺设备,其特征在于,包括:工艺腔室、介质套筒、法拉第筒、线圈组件及进气组件;
    所述进气组件盖设于所述介质套筒的顶端,用于将工艺气体输送至所述介质套筒内;所述介质套筒的底端连接于所述工艺腔室的顶部且与所述工艺腔室连通;
    所述法拉第筒套设于所述介质套筒的外周,所述法拉第筒的周壁上开设有多个沿周向均布的开口结构;所述开口结构沿所述法拉第筒的轴向延伸设置,并且多个所述开口结构中的至少一个包括有第一开口部及第二开口部,所述第一开口部为两个,且分别位于所述第二开口部的顶部及底部,所述第一开口部在所述法拉第筒的周向上具有第一周向尺寸,所述第二开口部沿所述法拉第筒的周向上具有第二周向尺寸,所述第一周向尺寸小于所述第二周向尺寸;
    所述线圈组件套设于所述法拉第筒的外周,所述线圈组件包括两个线圈结构,两个所述线圈结构在所述法拉第筒的轴向上间隔设置,并且分别与两个所述第一开口部对应设置。
  2. 如权利要求1所述的半导体工艺设备,其特征在于,两个所述线圈结构相对于所述第二开口部对称设置;
    两个所述线圈结构在所述法拉第筒的轴向上的间隔距离大于所述第二开口部在所述法拉第筒的轴向上的高度。
  3. 如权利要求2所述的半导体工艺设备,其特征在于,两个所述线圈结构的所述间隔距离的范围为45毫米~65毫米。
  4. 如权利要求1所述的半导体工艺设备,其特征在于,多个所述开口 结构的开口总面积为所述法拉第筒外周面积的25%~31%。
  5. 如权利要求4所述的半导体工艺设备,其特征在于,所述开口结构的数量为八个,并且所述第一开口部及所述第二开口部均为矩形结构。
  6. 如权利要求4所述的半导体工艺设备,其特征在于,所述第一周向尺寸的范围为20毫米~30毫米,所述第二周向尺寸的范围为35毫米~50毫米。
  7. 如权利要求1所述的半导体工艺设备,其特征在于,两个所述线圈结构并联设置,并且两个所述线圈结构的连接处位于任意两相邻的所述开口结构之间,两个所述线圈结构在加载功率时的电流方向相同。
  8. 如权利要求7所述的半导体工艺设备,其特征在于,所述线圈结构包括多个层叠设置的线圈,多个所述线圈的同一位置处均具有缺口,并且任意两相邻的线圈之间采用过渡管连接。
  9. 如权利要求7所述的半导体工艺设备,其特征在于,两个所述线圈结构的彼此相邻的两个所述线圈之间采用第一连接管连接,两个所述线圈结构的相对最远端的两个所述线圈之间采用第二连接管连接,所述第一连接管用于接地,所述第二连接管用于与射频电源连接。
  10. 如权利要求6所述的半导体工艺设备,其特征在于,所述线圈组件还包括承载结构,所述承载结构设置于所述法拉第筒的外周,并且能避开多个所述开口结构,两个所述线圈结构均通过所述承载结构设置于所述法拉第筒上。
  11. 如权利要求1至10的任一所述的半导体工艺设备,其特征在于,所述进气组件设置有冷却流道,所述工艺腔室的顶板内设置有冷却流道,两个所述冷却流道用于对所述法拉第筒和所述介质套筒进行冷却。
PCT/CN2023/071886 2022-01-26 2023-01-12 半导体工艺设备 WO2023143094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210095263.XA CN114446761B (zh) 2022-01-26 2022-01-26 半导体工艺设备
CN202210095263.X 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023143094A1 true WO2023143094A1 (zh) 2023-08-03

Family

ID=81370266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071886 WO2023143094A1 (zh) 2022-01-26 2023-01-12 半导体工艺设备

Country Status (2)

Country Link
CN (1) CN114446761B (zh)
WO (1) WO2023143094A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114446761B (zh) * 2022-01-26 2024-06-21 北京北方华创微电子装备有限公司 半导体工艺设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020005392A1 (en) * 1997-11-17 2002-01-17 Leroy Luo Systems and methods for variable mode plasma enhanced processing of semiconductor wafers
CN106328472A (zh) * 2015-07-02 2017-01-11 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体产生装置和半导体加工设备
CN113903649A (zh) * 2021-09-23 2022-01-07 北京北方华创微电子装备有限公司 半导体工艺设备
CN114446761A (zh) * 2022-01-26 2022-05-06 北京北方华创微电子装备有限公司 半导体工艺设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3460113B2 (ja) * 1997-12-25 2003-10-27 東京応化工業株式会社 プラズマ処理装置
KR100783071B1 (ko) * 2006-12-22 2007-12-07 세메스 주식회사 패러데이 실드 유닛 및 이를 갖는 기판 처리 장치
KR101232198B1 (ko) * 2011-08-09 2013-02-12 피에스케이 주식회사 플라스마 발생 유닛 및 이를 포함하는 기판 처리 장치 및 방법
CN103014745B (zh) * 2011-09-28 2015-07-08 北京北方微电子基地设备工艺研究中心有限责任公司 一种等离子体预清洗装置
CN103820758B (zh) * 2012-11-19 2016-08-31 北京北方微电子基地设备工艺研究中心有限责任公司 物理气相沉积装置
CN103849836B (zh) * 2012-12-05 2016-12-28 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体设备及其反应腔室
CN204391038U (zh) * 2015-03-05 2015-06-10 苏州阿特斯阳光电力科技有限公司 一种等离子体刻蚀机
CN106653549B (zh) * 2015-11-03 2020-02-11 中微半导体设备(上海)股份有限公司 一种半导体加工设备
CN107256822B (zh) * 2017-07-27 2019-08-23 北京北方华创微电子装备有限公司 上电极组件及反应腔室
US20210066054A1 (en) * 2019-08-28 2021-03-04 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor processing apparatus for generating plasma

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020005392A1 (en) * 1997-11-17 2002-01-17 Leroy Luo Systems and methods for variable mode plasma enhanced processing of semiconductor wafers
CN106328472A (zh) * 2015-07-02 2017-01-11 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体产生装置和半导体加工设备
CN113903649A (zh) * 2021-09-23 2022-01-07 北京北方华创微电子装备有限公司 半导体工艺设备
CN114446761A (zh) * 2022-01-26 2022-05-06 北京北方华创微电子装备有限公司 半导体工艺设备

Also Published As

Publication number Publication date
TW202331967A (zh) 2023-08-01
CN114446761A (zh) 2022-05-06
CN114446761B (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
CN107004561B (zh) 具有直接出口环状等离子体源的等离子体处理系统
US10529541B2 (en) Inductive plasma source with metallic shower head using B-field concentrator
TWI701703B (zh) 用於供應電漿產物之裝置
KR100964398B1 (ko) 유도결합형 안테나 및 이를 채용한 플라즈마 처리장치
US8826855B2 (en) C-shaped confinement ring for a plasma processing chamber
CN102421239B (zh) 等离子体处理装置
KR101920842B1 (ko) 플라즈마 소스 디자인
US20060289409A1 (en) Plasma source with discharge inducing bridge and plasma processing system using the same
CN102832095A (zh) 等离子处理装置
WO2023143094A1 (zh) 半导体工艺设备
WO2012024116A2 (en) Symmetric vhf source for a plasma reactor
JP2004140363A (ja) 蛇行コイルアンテナを具備した誘導結合プラズマ発生装置
JP2022512852A (ja) He孔着火/アーク放電を防止する特徴を有する高出力静電チャック
JP3787079B2 (ja) プラズマ処理装置
CN111095476B (zh) 用于等离子体处理设备的冷却聚焦环
KR101232198B1 (ko) 플라스마 발생 유닛 및 이를 포함하는 기판 처리 장치 및 방법
EP4369360A1 (en) Coil device for generating plasma and semiconductor processing apparatus
TWI843379B (zh) 半導體製程設備
TWI406336B (zh) 高密度電漿產生器
KR102015381B1 (ko) 플라즈마 발생 유닛 및 이를 포함하는 기판 처리 장치
CN216563009U (zh) 一种磁增强法拉第屏蔽结构
KR101446554B1 (ko) 다중 방전관 어셈블리를 갖는 플라즈마 챔버
KR20090073327A (ko) 고밀도 원격 플라즈마 처리 장치
KR20100129369A (ko) 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기
KR102467297B1 (ko) 마그네틱 코어 방열패드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745977

Country of ref document: EP

Kind code of ref document: A1