WO2023142972A1 - 极片成型方法、卷绕式及叠片式电极组件的制造方法 - Google Patents

极片成型方法、卷绕式及叠片式电极组件的制造方法 Download PDF

Info

Publication number
WO2023142972A1
WO2023142972A1 PCT/CN2023/071031 CN2023071031W WO2023142972A1 WO 2023142972 A1 WO2023142972 A1 WO 2023142972A1 CN 2023071031 W CN2023071031 W CN 2023071031W WO 2023142972 A1 WO2023142972 A1 WO 2023142972A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
electrode assembly
base material
substrate
forming method
Prior art date
Application number
PCT/CN2023/071031
Other languages
English (en)
French (fr)
Inventor
林文法
叶杰
赵颖
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP23745857.5A priority Critical patent/EP4398358A1/en
Publication of WO2023142972A1 publication Critical patent/WO2023142972A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, in particular, to a pole piece forming method, a method for manufacturing a wound electrode assembly, a method for manufacturing a stacked electrode assembly, an electrode assembly, a battery cell, a battery, an electrical device and Pole piece manufacturing equipment.
  • the embodiment of the present application provides a method for forming a pole piece, a method for manufacturing a wound electrode assembly, a method for manufacturing a laminated electrode assembly, an electrode assembly, a battery cell, a battery, an electrical device, and a pole piece manufacturing equipment, to Reduce battery manufacturing costs.
  • the embodiment of the present application provides a pole piece forming method, including:
  • At least one second portion is joined to the second base material in the length direction of the second base material to form a pole piece.
  • the first base material with defects is divided into a first part with defects and a second part without defects, and the second part without defects can be connected with the second base material without defects to form a pole piece.
  • the first part with defects needs to be scrapped, and the second part without defects can be fully utilized, avoiding the scrapping of the entire first base material, improving the utilization rate of the defective first base material, and reducing the manufacturing cost of the battery .
  • the cutting the first substrate includes:
  • the first substrate is divided into the first portion and a plurality of the second portions.
  • dividing the first base material into a first part and a plurality of second parts is beneficial to divide the first base material into as many second parts as possible to reduce the scrapped amount of the first base material. Improve the utilization rate of the first substrate.
  • a plurality of the second parts are joined to one end of the second base material in the length direction to form the pole piece.
  • a plurality of second parts are connected to one end of the second base material in the length direction of the second base material, in other words, a plurality of second parts are concentrated at one end of the second base material in the length direction of the second base material , making the connection between the second part and the second base material convenient, and improving the forming efficiency of the pole piece.
  • a part of the plurality of second parts is joined to one end of the second substrate in the length direction, and the other part of the plurality of second parts A part is connected with the other end of the second base material in the length direction to form the pole piece.
  • a part of the second part is connected to the second substrate at one end in the length direction of the second substrate, and another part of the second part is connected to the second substrate at the other end in the length direction of the second substrate, so as to avoid The distribution of the second part is too concentrated, thereby improving the quality of the pole piece.
  • one of the second parts is joined to one end of one of the second base materials in the length direction to form the pole piece.
  • a second part is connected to one end of the second base material in the length direction of the second base material, so that the pole piece formed in this way has only one joining position, which is beneficial to improve the quality of the pole piece.
  • a gap is formed at the joined position.
  • a gap is formed at the joint position.
  • the gap can reduce the risk of mutual extrusion between the second part and the second base material at the joint position.
  • the pole piece forming method before the cutting of the first substrate, further includes:
  • a plurality of first tabs are arranged at intervals along the length direction of the first base material, then the first tabs on the second part may also be arranged at intervals, and the second part is formed after connecting with the second base material.
  • the pole piece forming method further includes:
  • the plurality of first tabs and the plurality of second tabs form a plurality of tabs of the pole piece, and along the length direction, the The distance between two adjacent tabs among the plurality of tabs gradually increases from one end to the other end of the pole piece.
  • the distance between two adjacent tabs among the plurality of tabs of the pole piece gradually increases from one end of the pole piece to the other end, when the distance along the two adjacent tabs gradually increases Winding the pole piece in the same direction can reduce the risk of misalignment of the tab, reduce the risk of poor welding (such as the tab cannot be completely welded to the adapter piece) and the risk of short circuit of the electrode assembly using the pole piece, and improve safety performance.
  • an embodiment of the present application provides a method for manufacturing a wound electrode assembly, including:
  • the first pole piece, the separator and the second pole piece are laminated and then wound to form a wound electrode assembly.
  • the manufacturing method of the wound electrode assembly uses the first pole piece produced by the pole piece forming method provided in the embodiment of the first aspect, which can reduce the waste of materials in the manufacturing process of the wound electrode assembly, thereby reducing the Manufacturing costs of wound electrode assemblies.
  • the stacking of the first pole piece, the separator and the second pole piece and then winding to form a wound electrode assembly includes:
  • the second pole piece is attached to the first composite structure and wound to form the wound electrode assembly.
  • the separator is first attached to the first pole piece, in other words, the second part and the second base material are connected through the separator film. , forming a first composite structure, which can reduce the risk of misalignment of the second part and the second substrate relative to the isolation film during the winding process.
  • the second pole piece is manufactured by the pole piece forming method described in the embodiment of the first aspect.
  • the manufacturing method of the wound electrode assembly uses the second pole piece produced by the pole piece forming method provided in the embodiment of the first aspect, which can reduce the waste of materials in the manufacturing process of the wound electrode assembly, thereby reducing the Manufacturing costs of wound electrode assemblies.
  • the winding when winding the first pole piece, the winding starts from the second part.
  • the second part is closer to the winding center than the second base material, and the second base material has a certain binding ability to the second part, which can improve the stability of the wound electrode assembly. structural stability.
  • the wound electrode assembly includes a straight area and two bent areas, and the two bent areas are respectively connected to two ends of the straight area;
  • the step of laminating and winding the first pole piece, the separator and the second pole piece to form a wound electrode assembly includes:
  • the joining position of the second part and the second base material is located in the bending area.
  • the joining position of the second part and the second base material is located in the bending area, which can reduce the risk of lithium separation in the bending area.
  • an embodiment of the present application provides a method for manufacturing a laminated electrode assembly, including:
  • the first pole piece is a negative pole piece
  • the first pole piece, the separator and the second pole piece are laminated and then folded to form a laminated electrode assembly.
  • the manufacturing method of the laminated electrode assembly uses the negative electrode sheet produced by the electrode sheet forming method provided in the embodiment of the first aspect, which can reduce the waste of materials in the manufacturing process of the laminated electrode assembly, thereby reducing the winding The manufacturing cost of the type electrode assembly.
  • the embodiment of the present application provides an electrode assembly, including a separator and two pole pieces with opposite polarities; at least one of the two pole pieces is formed by the pole piece described in the embodiment of the first aspect The method is prepared; the isolation film is used to separate the two pole pieces.
  • At least one pole piece of the electrode assembly is manufactured by the pole piece forming method of the embodiment of the first aspect, which reduces material waste during the process of manufacturing the electrode assembly, thereby reducing the manufacturing cost of the electrode assembly.
  • the electrode assembly is a wound electrode assembly; both of the two pole pieces are manufactured by the pole piece forming method described in the embodiment of the first aspect.
  • both pole pieces of the electrode assembly are manufactured by the pole piece forming method of the embodiment of the first aspect, which reduces material waste during the process of manufacturing the electrode assembly, thereby reducing the manufacturing cost of the electrode assembly.
  • the second part and the second base material form a gap at the joining position.
  • the second part and the second substrate form a gap at the joining position, and the absence of active material at the gap position can reduce the risk of lithium precipitation.
  • the gap reduces the risk of the second part and the second base material being crushed against each other at the abutment location when bending occurs at the abutment location.
  • the wound electrode assembly includes a straight area and two bent areas, and the two bent areas are respectively connected to two ends of the straight area;
  • the gap is located in the bending area.
  • the gap formed by the connection between the second part and the second substrate is located in the bending area, which is conducive to increasing the CB (Cell Balance, battery balance) value in the bending area and reducing the risk of lithium analysis in the bending area; the gap Being located in the bending zone also reduces the risk of the second part and the second base material being squeezed against each other at the junction.
  • CB Cell Balance, battery balance
  • part or all of the second portion is located at the innermost circle of the wound electrode assembly.
  • part or all of the second part is located at the innermost circle of the wound electrode assembly, and the second base material has a certain binding ability to the second part, which can improve the structural stability of the wound electrode assembly.
  • the embodiment of the present application provides a battery cell, including the electrode assembly provided in the embodiment of the fourth aspect.
  • the battery cell including the electrode assembly provided by the embodiment of the fourth aspect has a low material waste rate in the manufacturing process, which can reduce the manufacturing cost.
  • the battery provided in the embodiment of the present application includes the battery cell provided in the embodiment of the fifth aspect.
  • the embodiment of the present application provides an electric device, including the battery provided in the embodiment of the sixth aspect.
  • the embodiment of the present application provides a pole piece manufacturing equipment, including a conveying device, a detection device, and a cutting device; the conveying device is used to convey the first substrate; the detection device is configured to detect the first substrate Whether a substrate is defective; the cutting device is configured to cut the defective first substrate so as to divide the first substrate into a first portion with defects and a second portion without defects.
  • the pole piece is manufactured by the pole piece manufacturing equipment, which can reduce the manufacturing cost of the pole piece, thereby reducing the manufacturing cost of the battery.
  • the pole piece manufacturing equipment further includes: a die-cutting device arranged upstream of the detection device, the die-cutting device is used for die-cutting the first base material,
  • the first base material forms a plurality of first tabs arranged at intervals along its length direction.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Fig. 2 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • Fig. 3 is an exploded view of a battery cell provided by some embodiments of the present application.
  • Fig. 4 is a block flow diagram of a pole piece forming method provided by some embodiments of the present application.
  • Fig. 5 is a schematic structural view of the first substrate provided by some embodiments of the present application.
  • Fig. 6 is a schematic structural diagram of forming a pole piece after the second part and the second substrate are connected according to some embodiments of the present application;
  • Fig. 7 is a block flow diagram of a pole piece forming method provided in some other embodiments of the present application.
  • Fig. 8 is a schematic structural diagram of forming a pole piece after the second part and the second substrate are connected according to some other embodiments of the present application;
  • Fig. 9 is a schematic structural diagram of forming a pole piece after the second part and the second substrate are connected according to other embodiments of the present application.
  • Fig. 10 is a schematic structural diagram of forming a pole piece after the second part and the second substrate are connected according to some further embodiments of the present application;
  • Fig. 11 is a flowchart of a pole piece forming method provided by other embodiments of the present application.
  • Fig. 12 is a block diagram of a pole piece forming method provided in some further embodiments of the present application.
  • Fig. 13 is a flowchart of a manufacturing method of a wound electrode assembly provided by some embodiments of the present application.
  • Fig. 14 is a block diagram of a manufacturing method of a wound electrode assembly provided in some other embodiments of the present application.
  • Fig. 15 is a schematic structural view of the attachment of the first pole piece, the separator and the second pole piece provided by some embodiments of the present application;
  • Fig. 16 is a schematic structural view of the attachment of the first pole piece, the separator and the second pole piece provided in some other embodiments of the present application;
  • Fig. 17 is a schematic structural view of a wound electrode assembly provided by some embodiments of the present application.
  • Fig. 18 is a schematic structural view of a wound electrode assembly provided in some other embodiments of the present application.
  • Fig. 19 is a block diagram of a manufacturing method of a wound electrode assembly provided by another embodiment of the present application.
  • Fig. 20 is a flowchart of a method for manufacturing a laminated electrode assembly provided in some embodiments of the present application.
  • Fig. 21 is a schematic structural diagram of the attached first pole piece, separator and second pole piece provided by some other embodiments of the present application;
  • Fig. 22 is a schematic structural diagram of a laminated electrode assembly provided by some embodiments of the present application.
  • Fig. 23 is a schematic structural diagram of pole piece manufacturing equipment provided by some embodiments of the present application.
  • Icons 1000-vehicle; 100-battery; 10-box; 11-installation space; 12-first box; 13-second box; 20-battery unit; 21-shell; 211-opening; 22- End cover assembly; 221-end cover; 222-electrode terminal; 23-electrode assembly; 23a-winding electrode assembly; 23b-laminated electrode assembly; Diode sheet; 2311-first end; 2312-second end; 2313-gap; 232-isolation film; 24-current collecting member; 200-controller; 300-motor; 400-first substrate; 410-defect 420-the first part; 430-the second part; 430a-the second part of the first pole piece; 430b-the second part of the second pole piece; 440-the first tab; 500-the second base material; 500a- 500b-the second substrate of the second pole piece; 510-the second tab; 2000-the manufacturing equipment of the pole piece; 2100-the conveying device; 2200-the detection device; 2300
  • the indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, or the orientation or positional relationship that is usually placed when the product of the application is used, or the orientation or positional relationship of this application.
  • Orientations or positional relationships commonly understood by those skilled in the art are only for the convenience of describing the present application and simplifying the description, and do not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood For the limitation of this application.
  • the terms “first”, “second”, “third”, etc. are only used for distinguishing descriptions, and should not be construed as indicating or implying relative importance.
  • Power batteries are not only used in energy storage power systems such as hydraulic, thermal, wind and solar power plants, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric vehicles, as well as military equipment and aerospace and other fields . With the continuous expansion of power battery application fields, its market demand is also constantly expanding.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, etc., which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative plates.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that has been coated with the positive electrode active material layer , the positive electrode current collector not coated with the positive electrode active material layer serves as at least part of the positive electrode tab.
  • the positive tab of the positive electrode sheet is a positive current collector that is not coated with a positive active material layer.
  • the positive tab in order to ensure the structural strength of the positive tab, includes an uncoated positive active material layer.
  • the positive electrode current collector of the material layer and the positive electrode current collector partially coated with the positive electrode active material layer.
  • the material of the positive electrode current collector can be aluminum
  • the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that has been coated with the negative electrode active material layer , the negative electrode collector not coated with the negative electrode active material layer serves as at least part of the negative electrode tab.
  • the negative electrode tab of the negative electrode sheet is a negative electrode current collector that is not coated with a negative electrode active material layer.
  • the negative electrode tab includes an uncoated negative electrode active material layer. The negative electrode current collector of the material layer and the positive electrode current collector partially coated with the negative electrode active material layer.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon. In order to ensure that a large current is passed without fusing, the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the isolation film may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the positive electrode sheet, the negative electrode sheet and the separator are stacked and wound around the winding center to form a winding structure.
  • the positive electrode sheet and the negative electrode sheet need to meet a certain length requirement so that the capacity of the battery cell can meet the usage requirements.
  • the negative plates need to meet a certain length requirement, and positive plates with smaller lengths are attached at intervals on both sides of the negative plate in the thickness direction, so that the battery cell The capacity meets the usage needs.
  • the positive and negative electrodes must not have any defects that affect the use of the electrodes within the length range.
  • Judging whether there is a defect on the pole piece is carried out before forming the electrode assembly. For example, for a wound electrode assembly, whether the pole piece is defective is completed before winding. For a laminated electrode assembly with a continuous negative electrode, Whether the negative electrode sheet is defective needs to be detected before attaching the positive electrode sheet to both sides in the thickness direction of the negative electrode sheet.
  • the inventors have conducted in-depth research and provided a pole piece forming method, by cutting the first base material with defects into a first part with defects and a second part without defects. part, the second part is connected with the second base material without defects in the length direction of the second base material, so as to form a pole piece.
  • a pole piece forming method by cutting the first base material with defects into a first part with defects and a second part without defects. part, the second part is connected with the second base material without defects in the length direction of the second base material, so as to form a pole piece.
  • the pole piece forming method disclosed in the embodiment of the present application can be used in the manufacture of wound electrode assemblies, and can also be used in the manufacture of laminated electrode assemblies, which is conducive to reducing the amount of material in the manufacturing process of wound or laminated electrode assemblies. waste, thereby reducing manufacturing costs.
  • the electrode assembly including the pole piece manufactured by the pole piece forming method provided by the embodiment of the present application can be used in battery cells and batteries, as well as in electric equipment such as vehicles, ships or aircrafts using the battery cells or batteries .
  • the power supply system of the electrical equipment can be composed of the battery cells and batteries disclosed in this application.
  • Electrical devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles;
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.;
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.;
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • the embodiment of the present application does not impose special limitations on the above electric equipment.
  • a battery 100 is disposed inside a vehicle 1000 , and the battery 100 may be disposed at the bottom, head or tail of the vehicle 1000 .
  • the battery 100 may be used for power supply of the vehicle 1000 , for example, the battery 100 may be used as an operating power source of the vehicle 1000 .
  • the vehicle 1000 may further include a controller 200 and a motor 300 , the controller 200 is used to control the battery 100 to supply power to the motor 300 , for example, for starting, navigating and running the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 to provide driving power for the vehicle 1000 instead of or partially replacing fuel oil or natural gas.
  • the battery 100 includes a box body 10 and a battery cell 20 , and the battery cell 20 is accommodated in the box body 10 .
  • the box body 10 is used to provide an installation space 11 for the battery cells 20 .
  • the box body 10 may include a first box body 12 and a second box body 13, and the first box body 12 and the second box body 13 cover each other to define a tight space for accommodating the battery cells 20. Installation space11.
  • the connection between the first box body 12 and the second box body 13 can be sealed by a sealing member (not shown in the figure), and the sealing member can be a sealing ring, a sealant, or the like.
  • the first box body 12 and the second box body 13 can be in various shapes, such as cuboid, cylinder and so on.
  • the first box body 12 may be a hollow structure with one side open to form an accommodation cavity for accommodating the battery cell 20
  • the second box body 13 may also be a hollow structure with one side opening to form an accommodation cavity for accommodating the battery cell 20 .
  • the opening side of the second box body 13 covers the opening side of the first box body 12 to form the box body 10 with the installation space 11 .
  • the first box 12 is a hollow structure with an opening on one side to form a cavity for accommodating the battery cell 20
  • the second box 13 is a plate-shaped structure
  • the second box 13 is covered by the first box.
  • the opening side of 12 forms a box body 10 with an installation space 11 .
  • the battery 100 there may be one or a plurality of battery cells 20 . If there are multiple battery cells 20 , the multiple battery cells 20 may be connected in series, in parallel or in parallel.
  • the mixed connection means that the multiple battery cells 20 are both in series and in parallel.
  • a plurality of battery cells 20 can be directly connected in series, in parallel or mixed together, and then the whole composed of a plurality of battery cells 20 is housed in the box 10; of course, a plurality of battery cells 20 can also be connected in series first
  • a battery module is formed by connecting in parallel or in series, and a plurality of battery modules are connected in series or in parallel or in series to form a whole, and are accommodated in the box 10 .
  • the battery cell 20 may be in the form of a cylinder, a flat body, a cuboid or other shapes.
  • FIG. 2 exemplarily shows the case where the battery cell 20 is in a square shape.
  • the battery 100 may further include a confluence component (not shown in the figure), and multiple battery cells 20 may be electrically connected through the confluence component, so as to realize series connection, parallel connection or mixed connection of multiple battery cells 20 . couplet.
  • the battery cell 20 may include a casing 21 , an electrode assembly 23 and an end cap assembly 22 .
  • the casing 21 has an opening 211
  • the electrode assembly 23 is accommodated in the casing 21
  • the end cap assembly 22 is used to cover the opening 211 .
  • the shell 21 can be in various shapes, such as cylinder, cuboid and so on.
  • the shape of the casing 21 can be determined according to the specific shape of the electrode assembly 23 .
  • the shell 21 can be a cylindrical structure; if the electrode assembly 23 is a rectangular parallelepiped, the shell 21 can be a rectangular parallelepiped.
  • FIG. 3 exemplarily shows the case that the shell 21 and the electrode assembly 23 are square.
  • the housing 21 may also be made of various materials, for example, copper, iron, aluminum, stainless steel, aluminum alloy, etc., which are not particularly limited in this embodiment of the present application.
  • the end cap 221 of the end cap assembly 22 is used to cover the opening 211 of the casing 21 to form a closed accommodating space (not shown in the figure), and the accommodating space is used for accommodating the electrode assembly 23 .
  • the accommodation space is also used to accommodate electrolyte, such as electrolytic solution.
  • the end cover assembly 22 is used as a component for outputting the electric energy of the electrode assembly 23, and the end cover in the end cover assembly 22 is provided with an electrode terminal 222, and the electrode terminal 222 is used to be electrically connected with the electrode assembly 23, that is, the connection between the electrode terminal 222 and the electrode assembly 23
  • the tabs are electrically connected, for example, the electrode terminals 222 are connected to the tabs through the current collecting member 24 to realize the electrical connection between the electrode terminals 222 and the tabs.
  • the end cap assembly 22 can also be one, and then two electrode terminals can be arranged in the end cap assembly 22, and the two electrode terminals are respectively used to connect with the positive pole lug and the negative pole lug of the electrode assembly 23.
  • the two electrode terminals 222 in the end cap assembly 22 are positive electrode terminals and negative electrode terminals respectively.
  • the end cover assembly 22 may also be two, and the two end cover assemblies 22 cover the two sides of the housing 21 respectively. Opening 211.
  • the electrode terminal 222 in one end cap assembly 22 may be a positive electrode terminal for electrical connection with the positive electrode lug of the electrode assembly 23; the electrode terminal 222 in the other end cap assembly 22 may be a negative electrode The terminal is used for electrical connection with the negative electrode sheet of the electrode assembly 23 .
  • the electrode assembly 23 may include a positive electrode sheet, a negative electrode sheet, and a separator 232 .
  • the electrode assembly 23 can be a coiled structure formed by winding the positive electrode sheet, separator 232 and negative electrode sheet, or a stacked structure formed by stacking the positive electrode sheet, separator 232 and negative electrode sheet.
  • the electrode assembly 23 also includes a positive electrode tab (not shown in the figure) and a negative electrode tab (not shown in the figure), which can be a positive electrode current collector that is not coated with a positive active material layer in the positive electrode sheet as the positive electrode tab, and can be a negative electrode sheet The negative electrode current collector that is not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the manufacture of the pole piece 231 is an important process link in the manufacture process of the battery 100 .
  • the embodiment of the present application provides a method for forming the pole piece 231
  • the method for forming the pole piece 231 includes:
  • Both the first substrate 400 and the second substrate 500 are structures that include a current collector and are coated with active material layers on both sides in the thickness direction Z of the current collector. If a positive electrode sheet is manufactured, both the first substrate 400 and the second substrate 500 include a positive electrode current collector and positive electrode active material layers coated on both sides of the positive electrode current collector in the thickness direction Z. If a negative electrode sheet is manufactured, both the first substrate 400 and the second substrate 500 include a negative electrode current collector and negative electrode active material layers coated on both sides of the negative electrode current collector in the thickness direction Z.
  • the defect 410 refers to the defect 410 that will affect the performance of the pole piece 231, such as the coating of the active material layer is too thick or too thin due to coating reasons, the current collector is seriously deformed between the two active material layers, the first base The material 400 is damaged or the like.
  • step S100 whether the first substrate 400 has a defect 410 can be checked manually or detected by the detection device 2200, such as by a CCD (Charge coupled Device) camera, a mobile phone camera, a video camera, and the like.
  • the detection device 2200 such as by a CCD (Charge coupled Device) camera, a mobile phone camera, a video camera, and the like.
  • CCD Charge coupled Device
  • Connection can be understood as, along the length direction X of the second base material 500, one end of the second part 430 abuts against one end of the second base material 500; it can also be understood as along the length direction X of the second base material 500, the second There is a gap 2313 between one end of the second part 430 and one end of the second base material 500; it can also be understood that along the length direction X of the second base material 500, one end of the second part 430 and one end of the second base material 500 are directly or indirect connection.
  • the tab of the pole piece 231 is located on at least one side of the second base material 500 in the width direction Y.
  • the thickness direction Z, the length direction X and the width direction Y are perpendicular to each other.
  • the length of the first substrate 400 before cutting meets the manufacturing requirement of one electrode assembly 23 .
  • the pole piece 231 formed after the second part 430 is connected with the second base material 500 may have the same length as the length of the first base material 400 from one end to the other end along the length direction X. As shown in Fig. 5 and Fig.
  • the length of the first base material 400 is C0
  • the length of the second part 430 is C1
  • the length of the second base material 500 is C2
  • the second part 430 farthest from the second base material 500
  • the end away from the second substrate 500 is the first end 2311 of the pole piece 231 in the longitudinal direction X
  • the end of the second substrate 500 away from the second portion 430 is the second end 2312 of the pole piece 231 in the longitudinal direction X.
  • the distance H1 between the first end 2311 and the second end 2312 may be equal to the length C0 of the first substrate 400 .
  • H1 includes the width H10 of the gap 2313 in the longitudinal direction X. It should be noted that the gap 2313 may be formed at the connecting position between the second part 430 and the second substrate 500 and/or at the connecting position between two adjacent second parts 430 . In order to form the gap 2313 , the second part 430 and the second substrate 500 can be attached to the isolation film 232 at intervals.
  • the second substrate 500 when the first substrate 400 is cut, can be divided into a first part 420 with a defect 410 and a first part 420 without a defect 410 that can be used to connect with the second substrate 500 .
  • cutting the first substrate 400 includes:
  • the first substrate 400 is divided into a first portion 420 and a plurality of second portions 430 .
  • Dividing the first base material 400 into a first part 420 and a plurality of second parts 430 is beneficial to divide the first base material 400 into as many available second parts 430 as possible, reducing the amount of scrapped first base material 400 , improving the utilization rate of the first substrate 400 .
  • first base material 400 is divided into a plurality of second parts 430 , there are many ways to connect the plurality of second parts 430 to the second base material 500 .
  • a plurality of second portions 430 are joined to one end of the second base material 500 in the length direction X to form pole pieces 231 .
  • a plurality of second parts 430 are all located at one end of the second base material 500 in the length direction X, and the plurality of second parts 430 are arranged side by side along the length direction X, and two adjacent second parts 430 are connected in the length direction X .
  • the first substrate 400 is divided into three second parts 430, and the three second parts 430 are located at one end of the second substrate 500 along the length direction X, and the three The two second portions 430 are arranged side by side along the length direction X, and only one second portion 430 is closest to the second substrate 500 along the length direction X.
  • Two adjacent second parts 430 are connected.
  • the joint positions of two adjacent second parts 430 may or may not form a gap 2313
  • the joint positions between the second part 430 and the second base material 500 may form a gap 2313 or may not form a gap 2313 .
  • gaps 2313 are formed at the joint positions of two adjacent second parts 430 and the joint positions between the second parts 430 and the second substrate 500 .
  • a plurality of second parts 430 are connected to one end of the second substrate 500 in the longitudinal direction X of the second substrate 500 , in other words, the plurality of second parts 430 are concentrated on the second substrate 500 in the longitudinal direction of the second substrate 500
  • One end of the X facilitates the connection between the second part 430 and the second base material 500 and improves the forming efficiency of the pole piece 231 .
  • a part of the plurality of second parts 430 is connected to one end of the second base material 500 in the longitudinal direction X, and another part of the plurality of second parts 430 is connected to the second base material 500.
  • the other end in the length direction X is connected to form the pole piece 231 .
  • a part of the plurality of second parts 430 is located at one end of the second substrate 500 in the length direction X, and is arranged side by side in sequence along the length direction X; another part of the plurality of second parts 430 is located at the end of the second substrate 500 The other end of the length direction X, and arranged side by side in sequence along the length direction X. Exemplarily, as shown in FIG.
  • the first base material 400 is divided into three second parts 430, one second part 430 is located at one end of the second base material 500 along the length direction X and is connected to the second base material 500
  • the two second parts 430 are located at the other end of the second substrate 500 along the length direction X and the two second parts 430 are arranged side by side along the length direction X, and only one second part 430 is closest to the length direction X
  • the two second parts 430 are connected.
  • the joining positions of two adjacent second parts 430 may or may not form a gap 2313
  • the joining positions of the second parts 430 and the second substrate 500 may or may not form a gap 2313. Clearance 2313.
  • gaps 2313 are formed at the joint positions of two adjacent second parts 430 and the joint positions between the second parts 430 and the second substrate 500 .
  • a part of the second part 430 is connected to the second base material 500 at one end of the second base material 500 in the longitudinal direction X, and another part of the second part 430 is connected to the second base material 500 at the other end of the second base material 500 in the longitudinal direction X. Convergence, to avoid the distribution of the second part 430 from being too concentrated, thereby improving the quality of the pole piece 231 .
  • a second portion 430 is joined to one end of a second base material 500 in the length direction X to form the pole piece 231 .
  • Each second portion 430 can be connected with a second base material 500 to form a pole piece 231 .
  • other second parts 430 can be reserved for use in connection with other second base materials 500 to form pole pieces 231 .
  • the joining position of the second part 430 and the second substrate 500 may or may not form a gap 2313 .
  • FIG. 9 shows that a gap 2313 is formed at the joining position of the second portion 430 and the second substrate 500 .
  • a second portion 430 is connected to one end of a second base material 500 in the length direction X of the second base material 500 , so that the pole piece 231 formed in this way has only one joining position, which is beneficial to improve the quality of the pole piece 231 .
  • a gap 2313 is formed at the joined position.
  • the gap 2313 may be formed after two adjacent second portions 430 are connected, or the gap 2313 may not be formed. If the gap 2313 is formed, the width of the gap 2313 between adjacent second parts 430 and the width of the gap 2313 formed after the second part 430 is connected with the second substrate 500 may be equal or unequal.
  • a gap 2313 is formed at the joint position.
  • the gap can reduce the risk of mutual extrusion between the second part 430 and the second base material 500 at the joint position.
  • the pole piece 231 forming method before cutting the first base material 400 , the pole piece 231 forming method further includes:
  • the second part 430 may have one first tab 440 , or may have multiple first tabs 440 .
  • a plurality refers to two or more.
  • a plurality of first tabs 440 are arranged at intervals along the length direction X of the first substrate 400 , then the first tabs 440 on the second part 430 may also be arranged at intervals, and the second part 430 is connected to the second substrate 500 After the pole piece 231 formed later is manufactured to form the electrode assembly 23 , it is beneficial for the electrolyte to infiltrate the electrode assembly 23 .
  • the forming method of the pole piece 231 further includes:
  • first tabs 440 and multiple second tabs 510 form multiple tabs of the pole piece 231, and along the length direction X, the multiple tabs are adjacent to each other.
  • the distance between the two tabs gradually increases from one end of the pole piece 231 to the other end.
  • the distance between two adjacent tabs among the plurality of tabs gradually increases from one end of the pole piece 231 to the other end. If a wound electrode assembly 23a is formed, the adjacent two poles among the multiple tabs The distance between the ears gradually increases from the winding start end of the pole piece 231 to the winding end end.
  • the transportation direction of the pole piece 231 is from right to left in the figure, and the distance between two adjacent first tabs 440 on the first substrate 400 gradually increases from left to right.
  • the distance D1 between the first tab 440 on the second part 430 and the second tab 510 on the second substrate 500 closest to the second part 430 and the distance between the two adjacent tabs on the second substrate 500 The distance D2 between the second tabs 510 satisfies D1 ⁇ D2.
  • the first tab 440 of the second part 430 is close to the end of the second substrate 500 and the second part 430 is close to the second substrate.
  • the length C10 between one end of the 500 and the distance D1 between the first tab 440 on the second part 430 and the second tab 510 on the second substrate 500 closest to the second part 430 satisfy: C10 ⁇ D1
  • the distance between two adjacent tabs gradually increases from one end of the pole piece 231 to the other end. Winding the pole piece 231 in a direction in which the distance between two adjacent tabs gradually increases can reduce the risk of misalignment of the tabs.
  • first tabs 440 there are a plurality of first tabs 440 on the second portion 430 .
  • the second part 430 has two first tabs 440 shown in FIG. 10 .
  • the distance D3 between the two first tabs 440 of the second part 430, the first tab 440 of the second part 430 closest to the second substrate 500 and the first tab 440 of the second substrate 500 closest to the second part 430 The distance D1 between the dipole tabs 510 and the distance D2 between two adjacent second pole tabs 510 on the second substrate 500 satisfy: D3 ⁇ D1 ⁇ D2.
  • the second part 430 has a plurality of first tabs 440, along the length direction X, the end of the first tab 440 of the second part 430 closest to the second base material 500 close to the second base material 500
  • the distance D1 between the second tabs 510 satisfies: C10 ⁇ D1, so as to ensure that the gap between two adjacent tabs of the plurality of tabs of the pole piece 231 formed by the engagement of the second part 430 and the second base material 500
  • the distance of the pole piece 231 gradually increases from one end to the other end of the pole piece 231.
  • the Wrapping the pole piece 231 can reduce the risk of dislocation of the tab, reduce the risk of poor welding (for example, the tab cannot be completely welded to the adapter piece) and the risk of short circuit of the electrode assembly 23 using the pole piece 231 , and improve safety performance.
  • the embodiment of the present application provides a manufacturing method of a wound electrode assembly 23a, including:
  • the first pole piece 231a may be a positive pole piece or a negative pole piece. If the first pole piece 231a is a positive pole piece, then the second pole piece 231b is a negative pole piece; if the first pole piece 231a is a negative pole piece, then the second pole piece 231b is a positive pole piece.
  • the stacking of the first pole piece 231a, the separator 232 and the second pole piece 231b means that the first pole piece 231a, the separator 232 and the second pole piece 231b are stacked along the thickness direction Z of the first pole piece 231a.
  • the first pole piece 231 a includes a second part 430 and a second base material 500 , and the second part 430 and the second base material 500 are connected in the length direction X.
  • Both sides of the thickness direction Z of the first pole piece 231a are respectively provided with isolation films 232, and the isolation films 232 on both sides of the thickness direction Z of the first pole piece 231a can isolate the second part 430 and the second base material 500 at two positions.
  • the films 232 are kept in contact with each other.
  • a second pole piece 231b is provided on a side of an isolation film 232 away from the first pole piece 231a. Then, the stacked first pole piece 231a, the separator 232 and the second pole piece 231b are wound around the winding center.
  • the manufacturing method of the wound electrode assembly 23a uses the first pole piece 231a produced by the pole piece 231 forming method provided in the embodiment of the first aspect, which can reduce the waste of materials in the manufacturing process of the wound electrode assembly 23a, thereby reducing the volume.
  • the manufacturing cost of the wound electrode assembly 23a uses the first pole piece 231a produced by the pole piece 231 forming method provided in the embodiment of the first aspect, which can reduce the waste of materials in the manufacturing process of the wound electrode assembly 23a, thereby reducing the volume.
  • the first pole piece 231 a and the second pole piece 231 b may have a risk of being displaced relative to the isolation film 232 .
  • the first pole piece 231a, the separator 232 and the second pole piece 231b are stacked and wound to form a wound electrode assembly 23a, including:
  • the second pole piece 231b is attached to the first composite structure and wound to form the wound electrode assembly 23a.
  • the first pole piece 231a, the isolation film 232 and the second pole piece 231b may also be heated to achieve thermal recombination.
  • glue or adhesive is provided on the surface of the isolation film 232 in the thickness direction Z.
  • the glue or adhesive on the surface of the isolation film 232 can be passed through.
  • the adhesive bonds the separator 232 and the first pole piece 231a together to form a first composite structure; when the first pole piece 231a is in contact with the surface of the second pole piece 231b separator 232, it can pass Glue or adhesive bond the separator 232 and the second pole piece 231b together, or in other words bond the second pole piece 231b and the first composite structure together through the glue or adhesive on the surface of the separator 232, so as to A second composite structure is formed.
  • the first pole piece 231a, the isolation film 232 and the second pole piece 231b are formed as a whole, and the relative positional relationship between the first pole piece 231a, the isolation film 232 and the second pole piece 231b is relatively fixed.
  • winding it is not easy to shift and misalign each other.
  • the second pole piece 231b may be a continuous structure, and the second pole piece 231b may not be attached to the first composite structure.
  • the separator 232 is first attached to the first pole piece 231a, in other words, the second part 430 and the second base material 500 are separated by The films 232 are connected to form the first composite structure, which can reduce the risk of misalignment of the second part 430 and the second substrate 500 relative to the isolation film 232 during the winding process.
  • the second pole piece 231b is manufactured by the method for forming the pole piece 231 provided in any of the above-mentioned embodiments.
  • both the second portion 430b of the second pole piece and the second base material 500b of the second pole piece are attached to the side of the isolation film 232 away from the first pole piece 231a.
  • the second part 430b of the second pole piece and the second part 430a of the first pole piece serve as the winding initial section of the second pole piece 231b and the first pole piece 231a respectively, that is, when winding, the first pole piece 231a and the first pole piece 231a
  • the second pole piece 231b is wound from the second portion 430b of the second pole piece and the second portion 430a of the first pole piece, respectively.
  • the first pole piece 231a is a negative pole piece
  • the second pole piece 231b is a positive pole piece.
  • the first pole piece 231a comprises a second base material 500 (the second base material 500a of the first pole piece) and two second parts 430 (the second part 430a of the first pole piece), the two first pole pieces
  • the second part 430a is adjacently arranged along the winding direction (if the first pole piece 231a is in the unfolded state, it is adjacently arranged along the length direction X).
  • the bending zone II that the second portions 430a of the two first pole pieces pass through for the first time during winding forms a gap 2313 .
  • the second portion 430a of the first pole piece and the second base material 500a of the first pole piece form a gap 2313 at the second passing bending zone II.
  • the first pole piece 231a forms two gaps 2313 due to the connection.
  • the second pole piece 231b includes a second base material 500 (the second base material 500b of the second pole piece) and two second parts 430 (the second base material 500b of the second pole piece).
  • the second portions 430b of the two second pole pieces are arranged adjacently along the winding direction (if the second pole pieces 231b are in the unfolded state, they are adjacently arranged along the length direction X).
  • the bending zone II that the second parts 430b of the two second pole pieces pass through for the first time during winding forms a gap 2313 .
  • the second portion 430b of the second pole piece and the second base material 500b of the second pole piece form a gap 2313 at the second passing bending region II.
  • the second pole piece 231b forms two gaps 2313 due to the connection.
  • the gap 2313 formed by the second parts 430b of the two second pole pieces passing through the bending zone II for the first time is larger than the gap 2313 formed by the second parts 430a of the two first pole pieces passing through the bending zone II for the first time.
  • the gap 2313 formed by the second part 430b of the second pole piece and the second base material 500b of the second pole piece when passing through the bending zone II for the first time is larger than the second part 430a of the first pole piece and the second part 430a of the first pole piece.
  • the second substrate 500a passes through the gap 2313 formed by the bending zone II for the first time.
  • the first pole piece 231a is a negative pole piece
  • the second pole piece 231b is a positive pole piece.
  • the first pole piece 231a includes a second base material 500 (the second base material 500a of the first pole piece) and a second portion 430 (the second portion 430a of the first pole piece).
  • the second portion 430a of the first pole piece and the second base material 500a of the first pole piece form a gap 2313 at the second passing bending zone II.
  • the first pole piece 231a forms a gap 2313 due to engagement.
  • the second pole piece 231b includes a second base material 500 (the second base material 500b of the second pole piece) and a second portion 430 (the second base material 500b of the second pole piece).
  • the second portion 430b of the second pole piece and the second base material 500b of the second pole piece form a gap 2313 at the second passing bending zone II.
  • the second pole piece 231b forms a gap 2313 due to the connection.
  • the gap 2313 formed by the second parts 430b of the two second pole pieces passing through the bending zone II for the first time is larger than the gap 2313 formed by the second parts 430a of the two first pole pieces passing through the bending zone II for the first time.
  • the gap 2313 formed by the second part 430b of the second pole piece and the second base material 500b of the second pole piece when passing through the bending zone II for the first time is larger than the second part 430a of the first pole piece and the second part 430a of the first pole piece.
  • the second substrate 500a passes through the gap 2313 formed by the bending zone II for the first time.
  • the second portion 430a of the first pole piece and the second portion 430b of the second pole piece may not be oppositely arranged, so that when winding, the first pole piece 231a starts to roll from the second portion 430a of the first pole piece. winding, the second pole piece 231b starts to be wound from the second base material 500b of the second pole piece; or, the first pole piece 231a starts to be wound from the second base material 500a of the first pole piece, and the second pole piece 231b starts to be wound from the second base material 500a of the first pole piece
  • the second portion 430b of the second pole piece begins to coil.
  • the manufacturing method of the wound electrode assembly 23a uses the second pole piece 231b produced by the pole piece 231 forming method provided in the above-mentioned embodiment, which can reduce the waste of materials in the manufacturing process of the wound electrode assembly 23a, thereby reducing the cost of the wound electrode assembly 23a.
  • the manufacturing cost of the electrode assembly 23a uses the second pole piece 231b produced by the pole piece 231 forming method provided in the above-mentioned embodiment, which can reduce the waste of materials in the manufacturing process of the wound electrode assembly 23a, thereby reducing the cost of the wound electrode assembly 23a.
  • the manufacturing cost of the electrode assembly 23a uses the second pole piece 231b produced by the pole piece 231 forming method provided in the above-mentioned embodiment, which can reduce the waste of materials in the manufacturing process of the wound electrode assembly 23a, thereby reducing the cost of the wound electrode assembly 23a.
  • the manufacturing cost of the electrode assembly 23a uses the second pole piece 231b produced by the pole piece 231 forming method provided in the above-menti
  • the winding starts from the second portion 430 .
  • the second pole piece 231b when winding, can also be wound from the second portion 430b of the second pole piece. In other embodiments, the second pole piece 231b can also be wound from the second base material 500b of the second pole piece.
  • the second part 430 is closer to the winding center than the second base material 500, and the second base material 500 has a certain binding ability to the second part 430, which can improve the winding electrode assembly 23a. structural stability.
  • the wound electrode assembly 23a includes a straight region I and two bending regions II, and the two bending regions II are respectively connected to the straight region I. both ends of
  • the first pole piece 231a, the separator 232 and the second pole piece 231b are stacked and wound to form a wound electrode assembly 23a, including:
  • the joining position of the second part 430 and the second substrate 500 is located in the bending zone II.
  • both the first pole piece 231a and the second pole piece 231b are manufactured by the method for forming the pole piece 231 provided in any of the above-mentioned embodiments.
  • the joint position of the second part 430a of the first pole piece and the second base material 500a of the first pole piece and the joint position of the second part 430b of the second pole piece and the second base material 500b of the second pole piece can be located at Bending zone II.
  • the second pole piece of the first pole piece may be located in the same bending zone II.
  • the gap 2313 is formed after the second part 430 and the second base material 500 are connected, after winding, the gap 2313 is located in the bending zone II, and the second part 430b of the second pole piece and the second pole piece of the second pole piece
  • the gap 2313 formed by the connection of the two base materials 500b is larger than the gap 2313 formed by the connection between the second part 430a of the first pole piece and the second base material 500a of the first pole piece, so as to increase the CB value of the bending zone II and reduce the The risk of lithium precipitation in bending zone II.
  • the CB value is the ratio of the capacity of the negative electrode active material to the capacity of the positive electrode active material.
  • the joining position of the second part 430 and the second substrate 500 is located in the bending region II, which can reduce the risk of lithium precipitation in the bending region II.
  • the embodiment of the present application also provides a method for manufacturing a laminated electrode assembly 23b, including:
  • the first pole piece 231a is a negative pole piece
  • two isolation films 232 are provided, and the isolation films 232 are continuous band structures, wherein, before the first pole piece 231a is bent, the two isolation films 232 are respectively attached to the second pole piece 231a.
  • a plurality of second electrodes are attached to the side of the two separators 232 away from the negative pole piece.
  • Two separators 232 are respectively attached to both sides of the first pole piece 231a in the thickness direction Z, so as to connect the second part 430a of the first pole piece and the second base material 500a of the first pole piece at the joining position, In order to realize the indirect connection between the second part 430a of the first pole piece and the second base material 500a of the first pole piece through the isolation film 232, avoiding the second part 430a of the first pole piece and the second base material 500a of the first pole piece dislocation.
  • a plurality of second pole pieces 231b are respectively attached to the side of the isolation membrane 232 away from the first pole piece 231a, so that the first pole piece 231a, the isolation membrane 232 and the plurality of second pole pieces 231b form an integral structure.
  • the overall structure is folded along the S track to form a laminated electrode assembly 23b.
  • the manufacturing method of the stacked electrode assembly 23b uses the negative electrode sheet produced by the pole piece 231 forming method provided by any of the above embodiments, which can reduce the waste of materials in the manufacturing process of the stacked electrode assembly 23b, thereby reducing the cost of the wound electrode assembly. 23a manufacturing cost.
  • the embodiment of the present application also provides an electrode assembly 23, the electrode assembly 23 includes a separator 232 and two pole pieces 231 with opposite polarities; at least one of the two pole pieces 231 One is manufactured by using the pole piece 231 forming method provided in the above embodiment; the isolation film 232 is used to separate the two pole pieces 231 .
  • one of the two pole pieces 231 is a positive pole piece, and the other is a negative pole piece.
  • Only the positive electrode sheet or the negative electrode sheet can be made by using the forming method of the pole piece 231 provided in the above-mentioned embodiment, or both of the pole pieces 231 can be made by using the forming method of the pole piece 231 provided in the above-mentioned embodiment.
  • At least one pole piece 231 of the electrode assembly 23 is manufactured by using the pole piece 231 forming method of the embodiment of the first aspect, which reduces material waste during the process of manufacturing the electrode assembly 23 , thereby reducing the manufacturing cost of the electrode assembly 23 .
  • the electrode assembly 23 is a wound electrode assembly 23a; the two pole pieces 231 are made by the pole piece 231 forming method provided by any of the above-mentioned embodiments.
  • the wound electrode assembly 23a can also be one of the two pole pieces 231 (the positive pole piece or the negative pole piece).
  • the two pole pieces 231 of the electrode assembly 23 are both manufactured by the pole piece 231 forming method provided by any of the above embodiments, which reduces material waste during the process of manufacturing the electrode assembly 23 , thereby reducing the manufacturing cost of the electrode assembly 23 .
  • the second portion 430 and the second base material 500 form a gap 2313 at the connecting position.
  • Each pole piece 231 can form one or more gaps 2313 due to the connection, and a plurality refers to two or more. As shown in FIG. 17 , each pole piece 231 may have a plurality of gaps 2313 . As shown in FIG. 18 and FIG. 22 , each pole piece 231 may also have only one gap 2313 .
  • the gap 2313 formed between the second part 430 and the second base material 500 means that the end of the second part 430 close to the second base material 500 is not in contact with the end of the second base material 500 close to the second part 430 .
  • the second portion 430 and the second base material 500 may also contact without forming the gap 2313 at the connecting position.
  • the second part 430 and the second substrate 500 form a gap 2313 at the connecting position, and the absence of active material in the gap 2313 can reduce the risk of lithium precipitation.
  • the gap 2313 can reduce the risk that the second part 430 and the second base material 500 will press against each other at the joining position.
  • the wound electrode assembly 23a includes a straight region I and two bent regions II, and the two bent regions II are respectively connected to both ends of the straight region I;
  • the gap 2313 is located in the bending zone II.
  • the two pole pieces 231 are defined as a first pole piece 231 a and a second pole piece 231 b respectively, one of the first pole piece 231 a and the second pole piece 231 b is a positive pole piece, and the other is a negative pole piece.
  • the gap 2313 of the positive electrode piece (second pole piece 231b) is larger than the gap 2313 of the negative electrode piece (first pole piece 231a). It is beneficial to increase the CB value of the bending zone II and reduce the risk of lithium precipitation in the bending zone II.
  • the gap 2313 formed by the connection of the second part 430 and the second base material 500 is located in the bending area II, which can also reduce the risk of extrusion caused by the bending of the pole piece 231 at the joining position of the second part 430 and the second base material 500 .
  • part or all of the second portion 430 is located at the innermost circle of the wound electrode assembly 23a.
  • the entire second portion 430 is located at the innermost circle of the wound electrode assembly 23 a.
  • the second part 430 may also be only partly located in the innermost circle of the wound electrode assembly 23a, and another part extends to other circle layers.
  • Part or all of the second part 430 is located at the innermost circle of the wound electrode assembly 23a, and the second part 430 is closer to the winding center than the second base material 500, so the second base material 500 has a certain degree of influence on the second part 430.
  • the binding ability can improve the structural stability of the wound electrode assembly 23a.
  • the embodiment of the present application also provides a battery cell 20, and the battery cell 20 includes the electrode assembly 23 provided in the above embodiment.
  • the battery cell 20 including the electrode assembly 23 provided by the above embodiment has a low material waste rate in the manufacturing process, which can reduce the manufacturing cost.
  • the embodiment of the present application also provides a battery 100, and the battery 100 includes the battery cell 20 provided in the above embodiment.
  • the embodiment of the present application also provides an electric device, which is the battery 100 provided in the above embodiments of the electric device.
  • the embodiment of the present application also provides a pole piece manufacturing equipment 2000
  • the pole piece manufacturing equipment 2000 includes a conveying device 2100, a detection device 2200 and a cutting device 2300; the conveying device 2100 is used to convey the first substrate material 400; the detection device 2200 is configured to detect whether the first substrate 400 has a defect 410; the cutting device 2300 is configured to cut the first substrate 400 with a defect 410, so as to classify the first substrate 400 as having a defect A first portion 420 of 410 and a second portion 430 without the defect 410 .
  • the detection device 2200 may be a CCD camera, a mobile phone camera, a video camera, and the like.
  • the cutting device 2300 may be a laser cutting device 2300, a knife cutting device 2300, and the like.
  • the cutting device 2300 is disposed downstream of the detection device 2200 , so that the first substrate 400 passes through the detection device 2200 to detect the defect 410 of the first substrate 400 and then the first substrate 400 is cut by the cutting device 2300 .
  • Manufacturing the pole piece 231 by the pole piece manufacturing equipment 2000 can reduce the manufacturing cost of the pole piece 231 , thereby reducing the manufacturing cost of the battery 100 .
  • the pole piece manufacturing equipment 2000 further includes: a die-cutting device 2400, arranged upstream of the detection device 2200, and the die-cutting device 2400 is used to die-cut the first substrate 400 to A plurality of first tabs 440 arranged at intervals are formed along the length direction X of the first base material 400 .
  • the die-cutting device 2400 may be a laser die-cutting device, a knife die-cutting device, or the like.
  • the die-cutting device 2400 is arranged upstream of the detection device 2200, and before the detection device 2200 detects whether the first base material 400 has a defect 410, it can die-cut the first base material 400 to form A plurality of first tabs 440 arranged at intervals.
  • the die-cutting device 2400 can also be used for die-cutting the second substrate 500 .
  • the embodiment of the present application provides a pole piece 231 forming method, the pole piece 231 forming method includes:
  • the first base material 400 Detect whether the first base material 400 has a defect 410, if the first base material 400 has a defect 410, then cut the first base material 400 to divide the first base material 400 into a first part 420 with a defect 410 and a portion without a defect 410
  • the second part 430 ; a second part 430 is connected with a second base material 500 in the length direction X of the second base material 500 to form the pole piece 231 .
  • the gap 2313 is formed after the second part 430 is connected with the second substrate 500 .
  • This pole piece 231 forming method only needs to scrap the first part 420 with defects 410, and the second part 430 without defects 410 can be fully utilized, avoiding the scrapping of the entire first base material 400, and improving the first part with defects 410.
  • the utilization rate of the substrate 400 reduces the manufacturing cost of the battery 100 .
  • the pole piece 231 is wound to form the wound electrode assembly 23a, and the winding starts from the second part 430, and the second part 430 is located at the innermost circle of the wound electrode assembly 23a. If both the first pole piece 231a and the second pole piece 231b are made by the above pole piece 231 forming method, the rolls of the first pole piece 231a and the second pole piece 231b start to be wound from the second part 430, and the first pole piece Both the second portion 430a and the second portion 430b of the second pole piece are located on the innermost circle.
  • the gap 2313 is located in the bending zone II, and the gap 2313 of the first pole piece 231a and the gap 2313 of the second pole piece 231b are both located in the bending zone II. At least one gap 2313 of a pole piece 231a and at least one gap 2313 of the second pole piece 231b are located in the same bending region II. The risk of lithium precipitation in the bending zone II can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请提供了一种极片成型方法、卷绕式电极组件的制造方法、叠片式电极组件的制造方法、电极组件、电池单体、电池、用电设备及极片的制造设备,涉及电池技术领域。极片成型方法包括:提供存在缺陷的第一基材和不存在缺陷的第二基材;裁切第一基材,以将第一基材分为存在缺陷的第一部分和没有缺陷的第二部分;将至少一个第二部分与第二基材在所述第二基材的长度方向衔接,以形成极片。这种极片成型方法只需要将存缺陷的第一部分报废,没有缺陷的第二部分能够被充分利用,避免了整个第一基材报废,提高了有缺陷的第一基材的利用率,降低了电池的制造成本。

Description

极片成型方法、卷绕式及叠片式电极组件的制造方法
相关申请的交叉引用
本申请要求享有于2022年01月29日提交的名称为“极片成型方法、卷绕式及叠片式电极组件的制造方法”的中国专利申请202210111901.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,具体而言,涉及一种极片成型方法、卷绕式电极组件的制造方法、叠片式电极组件的制造方法、电极组件、电池单体、电池、用电设备及极片的制造设备。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池又是关乎其发展的一项重要因素。
对电池而言,电池制造的成本控制是使得电池技术可持续发展的重要原因之一。因此,如何降低电池制造的成本,成为电池技术领域亟待解决的问题。
发明内容
本申请实施例提供一种极片成型方法、卷绕式电极组件的制造方法、叠片式电极组件的制造方法、电极组件、电池单体、电池、用电设备及极片的制造设备,以降低电池制造成本。
第一方面,本申请实施例提供一种极片成型方法,包括:
提供存在缺陷的第一基材和不存在缺陷的第二基材;
裁切所述第一基材,以将所述第一基材分为存在缺陷的第一部分和没有缺陷的第二部分;
将至少一个所述第二部分与所述第二基材在所述第二基材的长度方向衔接,以形成极片。
上述技术方案中,将存在缺陷的第一基材分为有缺陷的第一部分和没有缺陷的第二部分,没有缺陷的第二部分可以与没有缺陷的第二基材衔接,以形成极片。这样只需要将存缺陷的第一部分报废,没有缺陷的第二部分能够被充分利用,避免了整个第一基材报废,提高了有缺陷的第一基材的利用率,降低了电池的制造成本。
在本申请第一方面的一些实施例中,所述裁切所述第一基材,包括:
将所述第一基材分为所述第一部分和多个所述第二部分。
上述技术方案中,将第一基材分为第一部分和多个第二部分,有利于将第一基材尽可能多的分成可供使用的第二部分,减少第一基材的报废量,提高第一基材的利用率。
在本申请第一方面的一些实施例中,将多个所述第二部分与所述第二基材在所述长度方向的一端衔接,以形成所述极片。
上述技术方案中,多个第二部分与第二基材在第二基材长度方向的一端衔接,换句话说,多个第二部分集中位于第二基材在第二基材长度方向的一端,使得第二部分与第二基材衔接方便,提高极片成型效率。
在本申请第一方面的一些实施例中,将多个所述第二部分中的一部分与所述第二基材在所述长度方向的一端衔接,将多个所述第二部分中的另一部分与所述第二基材在所述长度方向的另一端衔接,以形成所述极片。
上述技术方案中,一部分第二部分在第二基材的长度方向的一端与第二基材衔接,另一部分第二部分在第二基材的长度方向的另一端与第二基材衔接,避免第二部分分布过于集中,从而提高极片的质量。
在本申请第一方面的一些实施例中,将一个所述第二部分与一个所述第二基材在所述长度方向的一端衔接,以形成所述极片。
上述技术方案中,一个第二部分与一个第二基材在第二基材的长度方向的一端衔接,这样形成的极片只有一个衔接位置,有利于提高极片的质量。
在本申请第一方面的一些实施例中,所述第二部分与所述第二基材衔接后在衔接位置形成间隙。
上述技术方案中,第二部分与第二基材衔接后在衔接位置形成间隙,弯曲发生在衔接位置时,间隙能够降低第二部分与第二基材在衔接位置相互挤压的风险。
在本申请第一方面的一些实施例中,所述裁切所述第一基材之前,所述极片成型方法还包括:
对所述第一基材进行模切,以使所述第一基材形成沿其长度方向间隔布置的多个第一极耳。
上述技术方案中,多个第一极耳沿第一基材的长度方向间隔布置,则第二部分上的第一极耳也可能是间隔布置的,第二部分与第二基材衔接后形成的极片被制造形成电极组件后,有利于电解液浸润电极组件。
在本申请第一方面的一些实施例中,所述极片成型方法还包括:
对所述第二基材进行模切,以使所述第二基材形成沿其长度方向间隔布置的多个第二极耳;
所述第二部分与所述第二基材衔接后,所述多个第一极耳和所述多个第二极耳形成所述极片的多个极耳,沿所述长度方向,所述多个极耳中相邻的两个极耳之间的距离从所述极片的一端到另一端逐渐增大。
上述技术方案中,极片的多个极耳中相邻的两个极耳之间的距离从极片的一端到另一端逐渐增大,当沿相邻的两个极耳的距离逐渐增大的方向卷绕极片能够降低极耳错位的风险,降低出现焊接不良(比如极耳不能完全与转接片焊接)和使用该极片的电极组件短路的风险,提高安全性能。
第二方面,本申请实施例提供一种卷绕式电极组件的制造方法,包括:
提供根据第一方面实施例所述的极片成型方法制得的第一极片;
提供第二极片,所述第二极片与所述第一极片极性相反;
提供隔离膜;
将所述第一极片、所述隔离膜和所述第二极片层叠后卷绕形成卷绕式电极组件。
上述技术方案中,卷绕式电极组件的制造方法使用通过第一方面实施例提供的极片成型方法制得的第一极片,能够减少卷绕式电极组件制造过程中材料的浪费,从而降低卷绕式电极组件的制造成本。
在本申请第二方面的一些实施例中,所述将所述第一极片、所述隔离膜和所述第二极片层叠后卷绕形成卷绕式电极组件,包括:
将所述第一极片附接于所述隔离膜,以使形成第一复合结构;
将所述第二极片附接于所述第一复合结构并卷绕形成所述卷绕式电极组件。
上述技术方案中,由于第一极片包括衔接的第二部分和第二基材,先将隔离膜附接于第一极片,换句话说,第二部分和第二基材通过隔离膜衔接,形成第一复合结构,能够降低第二部分和第二基材在卷绕过程中相对隔离膜偏移错位的风险。
在本申请第二方面的一些实施例中,所述第二极片采用第一方面实施例所述的极片成型方法制得。
上述技术方案中,卷绕式电极组件的制造方法使用通过第一方面实施例提供的极片成型方法制得的第二极片,能够减少卷绕式电极组件制造过程中材料的浪费,从而降低卷绕式电极组件的制造成本。
在本申请第二方面的一些实施例中,在卷绕所述第一极片时,从所述第二部分开始卷绕。
上述技术方案中,从第二部分开始卷绕,则第二部分相对第二基材更加靠近卷绕中心,第二基材对第二部分有一定的束缚能力,能够提高卷绕式电极组件的结构稳定性。
在本申请第二方面的一些实施例中,所述卷绕式电极组件包括平直区和两个弯折区,两个所述弯折区分别连接于所述平直区的两端;
所述将所述第一极片、所述隔离膜和所述第二极片层叠后卷绕形成卷绕式电极组件,包括:
使所述第二部分和所述第二基材的衔接位置位于所述弯折区。
上述技术方案中,第二部分和第二基材的衔接位置位于弯折区,能够降低弯折区析锂的风险。
第三方面,本申请实施例提供一种叠片式电极组件的制造方法,包括:
提供根据第一方面实施例所述的极片成型方法制得的第一极片,所述第一极片为负极片;
提供第二极片,所述第二极片为正极片;
提供隔离膜;
将所述第一极片、所述隔离膜和所述第二极片层叠后折叠以形成叠片式电极组件。
上述技术方案中,叠片式电极组件的制造方法使用通过第一方面实施例提供的极片成型方法制得的负极片,能够减少叠片式电极组件制造过程中材料的浪费,从而降低卷绕式电极组件的制造成本。
第四方面,本申请实施例提供一种电极组件,包括隔离膜和极性相反的两个极片;两个所述极片中的至少一者采用第一方面实施例所述的极片成型方法制得;所述隔离膜用于将两个所述极片隔开。
上述技术方案中,电极组件的至少一个极片采用第一方面实施例的极片成型方法制得,在制造电极组件的过程减少了材料浪费,从而降低电极组件的制造成本。
在本申请第四方面的一些实施例中,所述电极组件为卷绕式电极组件;两个所述极片中均采用第一方面实施例所述的极片成型方法制得。
上述技术方案中,电极组件的两个极片均采用第一方面实施例的极片成型方法制得,在制造电极组件的过程减少了材料浪费,从而降低电极组件的制造成本。
在本申请第四方面的一些实施例中,所述第二部分和所述第二基材在衔接位置形成间隙。
上述技术方案中,第二部分和第二基材在衔接位置形成间隙,间隙位置没有活性物质能够降低析锂的风险。弯曲发生在衔接位置时,间隙能降低第二部分与第二基材在衔接位置相互挤压的风险。
在本申请第四方面的一些实施例中,所述卷绕式电极组件包括平直区和两个弯折区,两个所述弯折区分别连接于所述平直区的两端;所述间隙位于所述弯折区。
上述技术方案中,第二部分和第二基材衔接形成的间隙位于弯折区,有利于增大弯折区的CB(Cell Balance,电池平衡)值,降低弯折区析锂的风险;间隙位于弯折区还能降低第二部分与第二基材在衔接位置相互挤压的风险。
在本申请第四方面的一些实施例中,所述第二部分的部分或者全部位于所述卷绕式电极组件的最内圈。
上述技术方案中,第二部分的部分或者全部位于卷绕式电极组件的最内圈,则第二基材对第二部分有一定的束缚能力,能够提高卷绕式电极组件的结构稳定性。
第五方面,本申请实施例提供一种电池单体,包括第四方面实施例提供的电极组件。
上述技术方案中,包括第四方面实施例提供的电极组件的电池单体在制造过程材料浪费率低,能够降低制造成本。
第六方面,本申请实施例提供的电池,包括第五方面实施例提供的电池单体。
第七方面,本申请实施例提供一种用电设备,包括第六方面实施例提供的电池。
第八方面,本申请实施例提供一种极片的制造设备,包括输送装置、检测装置和裁切装置;所述输送装置用于输送第一基材;所述检测装置被配置为检测所述第一基材是否有缺陷;所述裁切装置被配置为裁切有缺陷的所述第一基材,以将所述第一基材分为存在缺陷的第一部分和没有缺陷的第二部分。
上述技术方案中,通过极片的制造设备制造极片,能够降低极片制造成本,从而降低电池的制造成本。
在第八方面的一些实施例中,所述极片的制造设备还包括:模切装置,设置于所述检测装置的上游,所述模切装置用于对所述第一基材模切,以使所述第一基材沿其长度方向形成间隔布置的多个第一极耳。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的结构示意图;
图3为本申请一些实施例提供的电池单体的爆炸图;
图4为本申请一些实施例提供的极片成型方法的流程框图;
图5为本申请一些实施例提供的第一基材的结构示意图;
图6为本申请一些实施例提供的第二部分和第二基材衔接后形成极片的结构示意图;
图7为本申请又一些实施例提供的极片成型方法的流程框图;
图8为本申请又一些实施例提供的第二部分和第二基材衔接后形成极片的结构示意图;
图9为本申请另一些实施例提供的第二部分和第二基材衔接后形成极片的结构示意图;
图10为本申请再一些实施例提供第二部分和第二基材衔接后形成极片的结构示意图;
图11为本申请另一些实施例提供的极片成型方法的流程框图;
图12为本申请再一些实施例提供的极片成型方法的流程框图;
图13为本申请一些实施例提供的卷绕式电极组件的制造方法的流程框图;
图14为本申请又一些实施例提供的卷绕式电极组件的制造方法的流程框图;
图15为本申请一些实施例提供的第一极片、隔离膜和第二极片附接后的结构示意图;
图16为本申请又一些实施例提供的第一极片、隔离膜和第二极片附接后的结构示意图;
图17为本申请一些实施例提供的卷绕式电极组件的结构示意图;
图18为本申请又一些实施例提供的卷绕式电极组件的结构示意图;
图19为本申请另一些实施例提供的卷绕式电极组件的制造方法的流程框图;
图20为本申请一些实施例提供的叠片式电极组件的制造方法的流程框图;
图21为本申请再一些实施例提供的第一极片、隔离膜和第二极片附接后的结构示意图;
图22为本申请一些实施例提供的叠片式电极组件的结构示意图;
图23为本申请一些实施例提供的极片的制造设备的结构示意图。
图标:1000-车辆;100-电池;10-箱体;11-安装空间;12-第一箱体;13-第二箱体;20-电池单体;21-外壳;211-开口;22-端盖组件;221-端盖;222-电极端子;23-电极组件;23a-卷绕式电极组件;23b-叠片式电极组件;231-极片;231a-第一极片;231b-第二极片;2311-第一端;2312-第二端;2313-间隙;232-隔离膜;24-集流构件;200-控制器;300-马达;400-第一基材;410-缺陷;420-第一部分;430-第二部分;430a-第一极片的第二部分;430b-第二极片的第二部分;440-第一极耳;500-第二基材;500a-第一极片的第二基材;500b-第二极片的第二基材;510-第二极耳;2000-极片的制造设备;2100-输送装置;2200-检测装置;2300-裁切装置;2400-模切装置;X-长度方向;Y-宽度方向;Z-厚度方向;I-平直区;II-弯折区。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请实施例的描述中,需要说明的是,指示方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电 池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳的至少部分。在一些实施例中,正极片的正极极耳为未涂覆正极活性物质层的正极集流体,在另一些实施例中,为了保证正极极耳的结构强度,正极极耳包括未涂覆正极活性物质层的正极集流体和部分涂覆了正极活性物质层的正极集流体。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳的至少部分。在一些实施例中,负极片的负极极耳为未涂覆负极活性物质层的负极集流体,在另一些实施例中,为了保证负极极耳的结构强度,负极极耳包括未涂覆负极活性物质层的负极集流体和部分涂覆了负极活性物质层的正极集流体。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
对卷绕式电极组件而言,正极片、负极片和隔离膜层叠设置并绕卷绕中心卷绕形成卷绕结构。正极片和负极片需要满足一定的长度要求,以使电池单体的容量满足使用需求。对负极片连续的叠片式电极组件而言,负极片需要满足一定的长度要求,且在负极片的厚度方向的两侧分别间隔附接长度尺寸较小的正极片,以使电池单体的容量满足使用需求。且正极片和负极片在长度范围内不能有影响极片使用的缺陷。
判断极片上是否有缺陷是在形成电极组件之前进行的,比如对卷绕式电极组件,则极片是否有缺陷是在卷绕之前完成检测的,对负极连续的叠片式电极组件而言,负极片是否有缺陷需是在向负极片的厚度方向的两侧附接正极片之前完成检测的。
发明人发现,当检测到正极片或者负极片上有缺陷时,那么卷绕完成的电极组件整个都会报废,这大大提高了极片的报废率。
基于上述考虑,为了降低极片的报废率,发明人经过深入研究,提供一种极片成型方法,通过将存在缺陷的第一基材裁切分成存在缺陷的第一部分和不存在缺陷的第二部分,将第二部分与没有缺陷的第二基材在第二基材的长度方向上衔接,以形成极片。这样只需要将存缺陷的第一部分报废,没有缺陷的第二部分能够被充分利用,避免整个第一基材报废,提高了有缺陷的第一基材的利用率,降低了电池的制造成本。
本申请实施例公开的极片成型方法,可以用于卷绕式电极组件的制造,也可以用于叠片式电极组件的制造,有利于减少卷绕式或者叠片式电极组件制造过程中材料的浪费,从而降低制造成本。包括了通过本申请实施例提供的极片成型方法制造的极片的电极组件可以用于电池单体和电池中,以及使用了该电池单体或者电池的车辆、船舶或飞行器等用电设备中。可以使用具备本申请公开的电池单体、电池等组成该用电设备的电源系统。
本申请实施例描述的技术方案适用于电池以及使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
请参照图1,车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电 源。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,电池100包括箱体10和电池单体20,电池单体20收容于箱体10内。
箱体10用于为电池单体20提供安装空间11。在一些实施例中,箱体10可以包括第一箱体12和第二箱体13,第一箱体12与第二箱体13相互盖合,以限定出用于容纳电池单体20的密安装空间11。当然,第一箱体12与第二箱体13的连接处可通过密封件(图未示出)来实现密封,密封件可以是密封圈、密封胶等。
第一箱体12和第二箱体13可以是多种形状,比如,长方体、圆柱体等。第一箱体12可以是一侧开口以形成容纳电池单体20的容纳腔的空心结构,第二箱体13也可以是一侧开口以形成容纳电池单体20的容纳腔的空心结构,第二箱体13的开口侧盖合于第一箱体12的开口侧,则形成具有安装空间11的箱体10。当然,也可以是第一箱体12为一侧开口以形成容纳电池单体20的容纳腔的空心结构,第二箱体13为板状结构,第二箱体13盖合于第一箱体12的开口侧,则形成具有安装空间11的箱体10。
在电池100中,电池单体20可以是一个、也可以是多个。若电池单体20为多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,也可以是多个电池单体20先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。图2示例性的示出了电池单体20呈方形的情况。
在一些实施例中,电池100还可以包括汇流部件(图未示出),多个电池单体20之间可通过汇流部件实现电连接,以实现多个电池单体20的串联或并联或混联。
请参照图3,电池单体20可以包括外壳21、电极组件23和端盖组件22。外壳21具有开口211,电极组件23容纳于外壳21内,端盖组件22用于封盖于开口211。
外壳21可以是多种形状,比如,圆柱体、长方体等。外壳21的形状可根据电极组件23的具体形状来确定。比如,若电极组件23为圆柱体结构,外壳21则可选用为圆柱体结构;若电极组件23为长方体结构,外壳21则可选用长方体结构。图3示例性的示出了外壳21和电极组件23为方形的情况。
外壳21的材质也可以是多种,比如,铜、铁、铝、不锈钢、铝合金等,本申请实施例对此不作特殊限制。
端盖组件22的端盖221用于封盖外壳21的开口211,以形成一密闭的容纳空间(图未示出),容纳空间用于容纳电极组件23。容纳空间还用于容纳电解质,例如电解液。端盖组件22作为输出电极组件23的电能的部件,端盖组件22中的端盖上设有电极端子222,电极端子222用于与电极组件23电连接,即电极端子222与电极组件23的极耳电连接,比如,电极端子222与极耳通过集流构件24连接,以实现电极端子222与极耳的电连接。
需要说明的,外壳21的开口211可以是一个,也可以是两个。若外壳21的开口211为一个,端盖组件22也可以为一个,端盖组件22中则可设置两个电极端子,两个电极端子分别用于与电极组件23正极极耳和负极极耳电连接,端盖组件22中的两个电极端子222分别为正极电极端子和负极电极端子。若外壳21的开口211为两个,比如,两个开口211设置在外壳21相对的两侧,端盖组件22也可以为两个,两个端盖组件22分别盖合于外壳21的两个开口211处。在这种情况下,可以是一个端盖组件22中的电极端子222为正极电极端子,用于与电极组件23的正极极耳电连接;另一个端盖组件22中的电极端子222为负极电极端子,用于与电极组件23的负极片电连接。
电极组件23可以包括正极片、负极片和隔离膜232。电极组件23可以是由正极片、隔离膜232和负极片通过卷绕形成的卷绕式结构,也可以是由正极片、隔离膜232和负极片通过层叠布置形成的层叠式结构。电极组件23还包括正极极耳(图未示出)和负极极耳(图未示出),可以是正极片中未涂覆正极活性物质层的正极集流体作为正极极耳,可以是负极片中未涂覆负极活性物质层的负极集流体作为负极极耳。
极片231的制造是电池100制造过程中的一个重要工艺环节。如图4、图5、图6所示,本申请实施例提供一种极片231成型方法,该极片231成型方法包括:
S10,提供存在缺陷410的第一基材400和不存在缺陷410的第二基材500;
S20,裁切第一基材400,以将第一基材400分为存在缺陷410的第一部分420和没有缺陷410的第二部分430;
S30,将至少一个第二部分430与第二基材500在第二基材500的长度方向X衔接,以形成极片231。
第一基材400和第二基材500均是包括集流体和在集流体厚度方向Z的两侧涂覆有活性物质层的结构。若是制造的是正极片,则第一基材400和第二基材500均包括正极集流体和涂覆于正极集流体厚度方向Z的两侧的正极活性物质层。若是制造的是负极片,则第一基材400和第二基材500均包括负极集流体和涂覆于负极集流体厚度方向Z的两侧的负极活性物质层。
缺陷410是指会影响极片231的使用性能的缺陷410,比如因涂布原因导致的活性物质层涂布过厚或者过薄、集流体在两层活性物质层之间变形严重、第一基材400存在破损等。
步骤S100中,第一基材400是否有缺陷410可以通过人工排查或者通过检测装置2200检测,比如通过CCD(Charge coupled Device)相机、手机相机、摄像机等检测。
“衔接”可以理解为,沿第二基材500的长度方向X,第二部分430的一端与第二基材500的一端相抵;也可以理解为沿第二基材500的长度方向X,第二部分430的一端与第二基材500的一端之间具有间隙2313;也可以理解为沿第二基材500的长度方向X,第二部分430的一端与第二基材500的一端直接或者间接连接。极片231的极耳位于第二基材500的宽度方向Y的至少一侧。所述的厚度方向Z、长度方向X和宽度方向Y两两垂直。
在一些实施例中,第一基材400裁切前的长度满足一个电极组件23的制造需求。第二部分430和第二基材500衔接后形成的极片231,沿长度方向X的一端到另一端的尺寸可以与第一基材400的长度相同。如图5、图6所示,第一基材400的长度为C0,第二部分430的长度为C1,第二基材500的长度为C2,最远离第二基材500的第二部分430背离第二基材500的一端为极片231的在长度方向X的第一端2311,第二基材500背离第二部分430的一端为极片231的在长度方向X的第二端2312。沿长度方向X,第一端2311和第二端2312之间的距离H1可以等于第一基材400的长度为C0。需要说明的是,若是因衔接导致极片231的中部具有间隙2313,H1包括该间隙2313在长度方向X的宽度H10。需要说明的是该间隙2313可以是在形成于第二部分430与第二基材500的衔接位置和/或形成于相邻的两个第二部分430的衔接位置。为了形成间隙2313,第二部分430和第二基材500可以间隔附接于隔离膜232上实现。
将存在缺陷410的第一基材400分为有缺陷410的第一部分420和没有缺陷410的第二部分430,没有缺陷410的第二部分430可以与没有缺陷410的第二基材500衔接,以形成极片231。这样只需要将存缺陷410的第一部分420报废,没有缺陷410的第二部分430能够被充分利用,避免了整个第一基材400报废,提高了有缺陷410的第一基材400的利用率,降低了电池100的制造成本。
在一些实施例中,裁切第一基材400时,可以将第二基材500分为一个有缺陷410的第一部分420和一个没有缺陷410且可以用于与第二基材500衔接的第二部分430。
在另一些实施例中,如图5、图6、图7所示,在另一些实施例中,裁切所述第一基材400,包括:
将第一基材400分为第一部分420和多个第二部分430。
将第一基材400分为第一部分420和多个第二部分430,有利于将第一基材400尽可能多的分成可供使用的第二部分430,减少第一基材400的报废量,提高第一基材400的利用率。
若是将第一基材400分为多个第二部分430,则所述的多个第二部分430与第二基材500的衔接方式有多种。
比如,如图6所示,在一些实施例中,将多个第二部分430与第二基材500在长度方向X的一端衔接,以形成极片231。
多个第二部分430均位于与第二基材500在长度方向X的一端,且多个第二部分430沿长度方向X依次并排布置,相邻的两个第二部分430在长度方向X衔接。示例性的,如图5、图6所示,将第一基材400分为三个第二部分430,三个第二部分430均位于第二基材500沿长度方向X的一端,且三个第二部分430沿长度方向X并排布置,只有一个第二部分430沿长度方向X最靠 近第二基材500。相邻的两个第二部分430衔接。相邻的两个第二部分430的衔接位置可以形成间隙2313也可以不形成间隙2313,第二部分430和第二基材500的衔接位置可以形成间隙2313也可以不形成间隙2313。图6中示出了,相邻的两个第二部分430的衔接位置以及第二部分430与第二基材500的衔接位置均形成间隙2313的情况。
多个第二部分430与第二基材500在第二基材500长度方向X的一端衔接,换句话说,多个第二部分430集中位于第二基材500在第二基材500长度方向X的一端,使得第二部分430与第二基材500衔接方便,提高极片231成型效率。
再比如,如图8所示,将多个第二部分430中的一部分与第二基材500在长度方向X的一端衔接,将多个第二部分430中的另一部分与第二基材500在所述长度方向X的另一端衔接,以形成所述极片231。
多个第二部分430中的一部分位于与第二基材500在长度方向X的一端,且沿长度方向X依次并排布置;多个第二部分430中的另一部分位于与第二基材500在长度方向X的另一端,且沿长度方向X依次并排布置。示例性地,如图8所示,将第一基材400分为三个第二部分430,一个第二部分430均位于第二基材500沿长度方向X的一端并与第二基材500的对应端衔接;两个第二部分430位于第二基材500沿长度方向X的另一端且两个第二部分430沿长度方向X并排布置,只有一个第二部分430沿长度方向X最靠近第二基材500,所述的两个第二部分430衔接。这种实施例中,相邻的两个第二部分430的衔接位置可以形成间隙2313也可以不形成间隙2313,第二部分430和第二基材500的衔接位置可以形成间隙2313也可以不形成间隙2313。图8中示出了,相邻的两个第二部分430的衔接位置以及第二部分430与第二基材500的衔接位置均形成间隙2313的情况。
一部分第二部分430在第二基材500的长度方向X的一端与第二基材500衔接,另一部分第二部分430在第二基材500的长度方向X的另一端与第二基材500衔接,避免第二部分430分布过于集中,从而提高极片231的质量。
再比如,请参照图9、图10,在一些实施例中,将一个第二部分430与一个第二基材500在长度方向X的一端衔接,以形成极片231。
每个第二部分430均可以与一个第二基材500衔接,以形成一个极片231。在一个第二部分430与一个第二基材500衔接时,其他的第二部分430可以留着备用,以用作与其他的第二基材500衔接,以形成极片231。这种实施例中,第二部分430和第二基材500的衔接位置可以形成间隙2313也可以不形成间隙2313。图9中示出了,第二部分430与第二基材500的衔接位置形成间隙2313的情况。
一个第二部分430与一个第二基材500在第二基材500的长度方向X的一端衔接,这样形成的极片231只有一个衔接位置,有利于提高极片231的质量。
在一些实施例中,第二部分430与第二基材500衔接后在衔接位置形成间隙2313。
在形成的极片231具有多个第二部分430的实施例中,相邻的两个第二部分430衔接后可以形成间隙2313,也可以不形成间隙2313。若形成间隙2313,相邻的第二部分430之间的间隙2313的宽度和第二部分430与第二基材500衔接后形成的间隙2313的宽度可以相等,也可以不相等。
第二部分430与第二基材500衔接后在衔接位置形成间隙2313,弯曲发生在衔接位置时,间隙能够降低第二部分430与第二基材500在衔接位置相互挤压的风险。
结合参见图9、图10、图11,在一些实施例中,裁切所述第一基材400之前,极片231成型方法还包括:
S40,对第一基材400进行模切,以使第一基材400形成沿其长度方向X间隔布置的多个第一极耳440。
第二部分430可以具有一个第一极耳440,也可以具有多个第一极耳440。多个是指两个及两个以上。
当然,也可以不对第一基材400模切极耳。
多个第一极耳440沿第一基材400的长度方向X间隔布置,则第二部分430上的第一极耳440也可能是间隔布置的,第二部分430与第二基材500衔接后形成的极片231被制造形成电极组件23后,有利于电解液浸润电极组件23。
结合参见图9、图10、图12,在一些实施例中,极片231成型方法还包括:
S50,对第二基材500进行模切,以使第二基材500形成沿其长度方向X间隔布置的多个第二极耳510;
第二部分430与第二基材500衔接后,多个第一极耳440和多个第二极耳510形成极片231的多个极耳,沿长度方向X,多个极耳中相邻的两个极耳之间的距离从极片231的一端到另一端逐渐增大。
多个极耳中相邻的两个极耳之间的距离从极片231的一端到另一端逐渐增大,若是形成卷绕式电极组件23a,则多个极耳中相邻的两个极耳之间的距离从极片231的卷绕起始端到卷绕收尾端逐渐增大。
定义在长度方向X上,图中从右至左为极片231的输送方向,从左至右,第一基材400上的相邻两个第一极耳440的间距逐渐增大。
如图9所示,若是以第二部分430背离第二基材500的一端为卷绕起始端,第二部分430上只有一个第一极耳440,第一极耳440和第二基材500最靠近第二部分430的第二极耳510之间的间距小于任意相邻的两个第二极耳510之间的间距。沿第二基材500背离第二部分430的方向,相邻的两个第二极耳510之间的间距逐渐增大。图9中,第二部分430上的第一极耳440与第二基材500上最靠近第二部分430的第二极耳510之间的间距D1以及第二基材500上相邻的两个第二极耳510之间的间距D2,满足,D1<D2。在第二部分430只有一个第一极耳440的实施例中,沿长度方向X,第二部分430的第一极耳440靠近第二基材500的一端和第二部分430靠近第二基材500的一端之间长度C10、第二部分430上的第一极耳440和第二基材500上最靠近第二部分430的第二极耳510之间的间距D1,满足:C10<D1,以确保第二部分430和第二基材500衔接形成的极片231的多个极耳中相邻的两个极耳之间的距离从极片231的一端到另一端逐渐增大,当沿相邻的两个极耳的距离逐渐增大的方向卷绕极片231能够降低极耳错位的风险。
在一些实施例中,第二部分430上有多个第一极耳440。如图10所示,图10中示出了第二部分430具有两个第一极耳440的情况。第二部分430的两个第一极耳440之间的间距D3、第二部分430最靠近第二基材500的第一极耳440与第二基材500上最靠近第二部分430的第二极耳510之间的间距D1以及第二基材500上相邻的两个第二极耳510之间的间距D2,满足:D3<D1<D2。在第二部分430具有多个第一极耳440的实施例中,沿长度方向X,第二部分430的最靠近第二基材500的第一极耳440的靠近第二基材500的一端和第二部分430靠近第二基材500的一端之间长度C10、第二部分430上的最靠近第二基材500的第一极耳440与第二基材500上最靠近第二部分430的第二极耳510之间的间距D1满足:C10<D1,以确保第二部分430和第二基材500衔接形成的极片231的多个极耳中相邻的两个极耳之间的距离从极片231的一端到另一端逐渐增大,当沿相邻的两个极耳的距离逐渐增大的方向卷绕极片231能够降低极耳错位的风险。
极片231的多个极耳中相邻的两个极耳之间的距离从极片231的一端到另一端逐渐增大,当沿相邻的两个极耳的距离逐渐增大的方向卷绕极片231能够降低极耳错位的风险,降低出现焊接不良(比如极耳不能完全与转接片焊接)和使用该极片231的电极组件23短路的风险,提高安全性能。
如图13所示,本申请实施例提供一种卷绕式电极组件23a的制造方法,包括:
S100,提供根据第一方面实施例提供的极片231成型方法制得的第一极片231a;
S200,提供第二极片231b,第二极片231b与第一极片231a极性相反;
S3000,提供隔离膜232;
S400,将第一极片231a、隔离膜232和第二极片231b层叠后卷绕形成卷绕式电极组件23a。
第一极片231a可以是正极片,也可以是负极片。若是第一极片231a为正极片,则第二极片231b为负极片;若是第一极片231a为负极片,则第二极片231b为正极片。
第一极片231a、隔离膜232和第二极片231b层叠,是指第一极片231a、隔离膜232和第二极片231b沿第一极片231a的厚度方向Z层叠。以第一极片231a为负极片为例,第一极片231a包括第二部分430和第二基材500,第二部分430和第二基材500在长度方向X衔接。第一极片231a的厚度方向Z的两侧分别设有隔离膜232,第一极片231a厚度方向Z的两侧的隔离膜232能够将第二部分430和第二基材500在两个隔离膜232之间保持衔接状态。一个隔离膜232背离第一极片231a的一侧设有第二极片231b。再将层叠后的第一极片231a、隔离膜232和第二极片231b绕卷绕中心卷绕。
卷绕式电极组件23a的制造方法使用通过第一方面实施例提供的极片231成型方法制得的第一极片231a,能够减少卷绕式电极组件23a制造过程中材料的浪费,从而降低卷绕式电极组件23a的制造成本。
卷绕过程中,第一极片231a和第二极片231b可能存在相对隔离膜232偏移的风险。如图14、图15所示,在一些实施例中,将第一极片231a、隔离膜232和第二极片231b层叠后卷绕形成卷绕式电极组件23a,包括:
将第一极片231a附接于隔离膜232,以使形成第一复合结构;
将第二极片231b附接于第一复合结构并卷绕形成卷绕式电极组件23a。
在一些实施例中,也可以将第一极片231a、隔离膜232和第二极片231b加热实现热复合。
在另一些实施例中,隔离膜232的在厚度方向Z的表面上设有胶或者粘接剂,当第一极片231a与隔离膜232的表面接触时,可以通过隔离膜232表面的胶或者粘接剂将隔离膜232与第一极片231a粘接在一起形成第一复合结构;当第一极片231a与第二极片231b隔离膜232的表面接触时,可以通过隔离膜232表面的胶或者粘接剂将隔离膜232与第二极片231b粘接在一起,或者说通过隔离膜232表面的胶或者粘接剂将第二极片231b与第一复合结构粘接在一起,以形成第二复合结构。此时,第一极片231a、隔离膜232和第二极片231b则形成为一个整体,第一极片231a、隔离膜232和第二极片231b之间的相对位置关系较为固定,在卷绕时,相互之间不容易偏移错位。
在另一些实施例中,第二极片231b可以为连续结构,第二极片231b也可以不附接于第一复合结构。
由于第一极片231a包括衔接的第二部分430和第二基材500,先将隔离膜232附接于第一极片231a,换句话说,第二部分430和第二基材500通过隔离膜232衔接,形成第一复合结构,能够降低第二部分430和第二基材500在卷绕过程中相对隔离膜232偏移错位的风险。
在一些实施例中,第二极片231b采用上述任一实施例提供的极片231成型方法制得。
如图16、图17所示,第二极片的第二部分430b和第二极片的第二基材500b均附接在隔离膜232背离第一极片231a的一侧。
第二极片的第二部分430b和第一极片的第二部分430a分别作为第二极片231b和第一极片231a的卷绕起始段,即卷绕时,第一极片231a和第二极片231b分别从第二极片的第二部分430b和第一极片的第二部分430a开始卷绕。
如图17所示,第一极片231a为负极片,第二极片231b为正极片。第一极片231a包括一个第二基材500(第一极片的第二基材500a)和两个第二部分430(第一极片的第二部分430a),两个第一极片的第二部分430a沿卷绕方向相邻设置(若是第一极片231a处于展开状态则是沿长度方向X相邻设置)。两个第一极片的第二部分430a在卷绕时第一次经过的弯折区II形成间隙2313。第一极片的第二部分430a与第一极片的第二基材500a在第二次经过的弯折区II形成间隙2313。第一极片231a因衔接形成了两个间隙2313。
第二极片231b包括一个第二基材500(第二极片的第二基材500b)和两个第二部分430(第二极片的第二基材500b)。两个第二极片的第二部分430b沿卷绕方向相邻设置(若是第二极片231b处于展开状态则是沿长度方向X相邻设置)。两个第二极片的第二部分430b在卷绕时第一次经过的弯折区II形成间隙2313。第二极片的第二部分430b与第二极片的第二基材500b在第二次经过的弯折区II形成间隙2313。第二极片231b因衔接形成了两个间隙2313。
两个第二极片的第二部分430b在第一次经过弯折区II形成的间隙2313大于两个第一极片的第二部分430a在第一次经过弯折区II形成的间隙2313。第二极片的第二部分430b和第二极片的第二基材500b在第一次经过弯折区II形成的间隙2313大于第一极片的第二部分430a和第一极片的第二基材500a在第一次经过弯折区II形成的间隙2313。
如图18所示,第一极片231a为负极片,第二极片231b为正极片。第一极片231a包括一个第二基材500(第一极片的第二基材500a)和一个第二部分430(第一极片的第二部分430a)。第一极片的第二部分430a与第一极片的第二基材500a在第二次经过的弯折区II形成间隙2313。第一极片231a因衔接形成了一个间隙2313。
第二极片231b包括一个第二基材500(第二极片的第二基材500b)和一个第二部分430(第二极片的第二基材500b)。第二极片的第二部分430b与第二极片的第二基材500b在第二次经 过的弯折区II形成间隙2313。第二极片231b因衔接形成了一个间隙2313。
两个第二极片的第二部分430b在第一次经过弯折区II形成的间隙2313大于两个第一极片的第二部分430a在第一次经过弯折区II形成的间隙2313。第二极片的第二部分430b和第二极片的第二基材500b在第一次经过弯折区II形成的间隙2313大于第一极片的第二部分430a和第一极片的第二基材500a在第一次经过弯折区II形成的间隙2313。
当然,第一极片的第二部分430a和第二极片的第二部分430b也可以不是相对设置,使得在卷绕时,第一极片231a从第一极片的第二部分430a开始卷绕,第二极片231b从第二极片的第二基材500b开始卷绕;或者,第一极片231a从第一极片的第二基材500a开始卷绕,第二极片231b从第二极片的第二部分430b开始卷绕。
卷绕式电极组件23a的制造方法使用通过上述实施例提供的极片231成型方法制得的第二极片231b,能够减少卷绕式电极组件23a制造过程中材料的浪费,从而降低卷绕式电极组件23a的制造成本。
如图19所示,在一些实施例中,在卷绕第一极片231a时,从第二部分430开始卷绕。
若是第二极片231b也采用上述任一实施例提供的极片231成型方法制得,则卷绕时,第二极片231b也可以从第二极片的第二部分430b开始卷绕。在另一些实施例中,第二极片231b也可以从第二极片的第二基材500b开始卷绕。
从第二部分430开始卷绕,则第二部分430相对第二基材500更加靠近卷绕中心,第二基材500对第二部分430有一定的束缚能力,能够提高卷绕式电极组件23a的结构稳定性。
请继续参见图17、图18、图19,在一些实施例中,卷绕式电极组件23a包括平直区I和两个弯折区II,两个弯折区II分别连接于平直区I的两端;
将第一极片231a、隔离膜232和第二极片231b层叠后卷绕形成卷绕式电极组件23a,包括:
使第二部分430和第二基材500的衔接位置位于弯折区II。
若是第一极片231a和第二极片231b均采用上述任一实施例提供的极片231成型方法制得。第一极片的第二部分430a和第一极片的第二基材500a的衔接位置以及第二极片的第二部分430b和第二极片的第二基材500b的衔接位置均可以位于弯折区II。在第一极片231a从第一极片的第二部分430a开始卷绕和第二极片231b从第二极片的第二部分430b开始卷绕的实施例中,第一极片的第二部分430a和第一极片的第二基材500a的衔接位置以及第二极片的第二部分430b和第二极片的第二基材500b的衔接位置可以位于同一个弯折区II。
在第二部分430和第二基材500衔接后形成间隙2313的实施例中,卷绕后,间隙2313位于弯折区II,其第二极片的第二部分430b和第二极片的第二基材500b的衔接形成的间隙2313大于第一极片的第二部分430a和第一极片的第二基材500a衔接形成的间隙2313,以增大弯折区II的CB值,能够降低弯折区II析锂的风险。其中,CB值为负极活性物质容量和正极活性物质容量的比值。
第二部分430和第二基材500的衔接位置位于弯折区II,能够降低弯折区II析锂的风险。
如图20所示,本申请实施例还提供一种叠片式电极组件23b的制造方法,包括:
S1000,提供根据第一方面实施例的极片231成型方法制得的第一极片231a,所述第一极片231a为负极片;
S2000,提供第二极片231b,所述第二极片231b为正极片;
S3000,提供隔离膜232;
S4000,将第一极片231a、隔离膜232和第二极片231b层叠后折叠以形成叠片式电极组件23b。
如图21、图22所示,提供两个隔离膜232,隔离膜232为连续的带状结构,其中,在将第一极片231a折弯前,将两个隔离膜232分别附接于第一极片231a的厚度方向Z的两侧,将多个第二附接于两个隔离膜232的背离负极片的一侧。
将两个隔离膜232分别附接于第一极片231a的厚度方向Z的两侧,以将第一极片的第二部分430a和第一极片的第二基材500a在衔接位置连接,以实现第一极片的第二部分430a和第一极片的第二基材500a通过隔离膜232间接连接,避免第一极片的第二部分430a和第一极片的第二基材500a错位。再将多个第二极片231b分别附接于隔离膜232背离第一极片231a的一侧,以使第一极片231a、隔离膜232和多个第二极片231b形成整体结构。将整体结构沿S轨迹折叠形成叠片式 电极组件23b。
叠片式电极组件23b的制造方法使用通过上述任意实施例提供的极片231成型方法制得的负极片,能够减少叠片式电极组件23b制造过程中材料的浪费,从而降低卷绕式电极组件23a的制造成本。
请继续参照图17、图18和图22,本申请实施例还提供一种电极组件23,电极组件23包括隔离膜232和极性相反的两个极片231;两个极片231中的至少一者采用上述实施例提供的极片231成型方法制得;隔离膜232用于将两个极片231隔开。
其中,两个极片231中一者为正极片,另一者为负极片。可以仅仅是正极片或者负极片采用上述实施例提供的极片231成型方法制得,也可以是两个极片231均采用上述实施例提供的极片231成型方法制得。
电极组件23的至少一个极片231采用第一方面实施例的极片231成型方法制得,在制造电极组件23的过程减少了材料浪费,从而降低电极组件23的制造成本。
如图17、图18所示,在一些实施例中,电极组件23为卷绕式电极组件23a;两个极片231中均采用上述任意实施例提供的极片231成型方法制得。
在其他实施例中,卷绕式电极组件23a也可以是两个极片231中的一者(正极片或者负极片)采用上述实施例提供的极片231成型方法制得。
电极组件23的两个极片231均采用上述任意实施例提供的极片231成型方法制得,在制造电极组件23的过程减少了材料浪费,从而降低电极组件23的制造成本。
请继续参见图17、图22,在一些实施例中,第二部分430和第二基材500在衔接位置形成间隙2313。
每个极片231因衔接可以形成一个或者多个间隙2313,多个是指两个及以上。如图17所示,每个极片231可以有多个间隙2313。如图18、图22所示,每个极片231也可以仅有一个间隙2313。
第二部分430和第二基材500在衔接位置形成间隙2313,是指第二部分430靠近第二基材500的一端和第二基材500靠近第二部分430的一端没有接触。
在另一些实施例中,第二部分430和第二基材500在衔接位置也可以接触而不形成间隙2313。
第二部分430和第二基材500在衔接位置形成间隙2313,间隙2313位置没有活性物质能够降低析锂的风险。弯曲发生在衔接位置时,间隙2313能降低第二部分430与第二基材500在衔接位置相互挤压的风险。
请参照图17、图18,在一些实施例中,卷绕式电极组件23a包括平直区I和两个弯折区II,两个弯折区II分别连接于平直区I的两端;间隙2313位于弯折区II。
如图17、图18所示,两个极片231的第二部分430和第二基材500的衔接位置均存在间隙2313,且间须均位于同一个弯折区II。定义两个极片231分别为第一极片231a和第二极片231b,第一极片231a和第二极片231b中一者为正极片,另一者为负极片。正极片(第二极片231b)的间隙2313大于负极片(第一极片231a)的间隙2313。有利于增大弯折区II的CB值,降低弯折区II析锂的风险。第二部分430和第二基材500衔接形成的间隙2313位于弯折区II还能降低第二部分430与第二基材500在衔接位置因极片231弯曲导致的挤压的风险。
在一些实施例中,第二部分430的部分或者全部位于卷绕式电极组件23a的最内圈。
如图17、图18所示,第二部分430的全部位于卷绕式电极组件23a的最内圈。在其他实施例中,若是第二部分430的长度较长,第二部分430也可以是仅仅部分位于卷绕式电极组件23a的最内圈,另一部分延伸至其他圈层。
第二部分430的部分或者全部位于卷绕式电极组件23a的最内圈,第二部分430相对第二基材500更加靠近卷绕中心,则第二基材500对第二部分430有一定的束缚能力,能够提高卷绕式电极组件23a的结构稳定性。
本申请实施例还提供一种电池单体20,电池单体20包括上述实施例提供的电极组件23。
包括上述实施例提供的电极组件23的电池单体20在制造过程材料浪费率低,能够降低制造成本。
本申请实施例还提供一种电池100,电池100包括上述实施例提供的电池单体20。
本申请实施例还提供一种用电设备,用电设备上述实施例提供的电池100。
如图23所示,本申请实施例还提供一种极片的制造设备2000,该极片的制造设备2000包括输送装置2100、检测装置2200和裁切装置2300;输送装置2100用于输送第一基材400;检测装置2200被配置为检测第一基材400是否有缺陷410;裁切装置2300被配置为裁切有缺陷410的第一基材400,以将第一基材400分为存在缺陷410的第一部分420和没有缺陷410的第二部分430。
输送装置2100的结构可以参照相关技术,在此不再赘述。
检测装置2200可以是CCD相机、手机相机、摄像机等。
裁切装置2300可以是激光裁切装置2300、刀具裁切装置2300等。裁切装置2300设置于检测装置2200的下游,以使第一基材400经过检测装置2200检测第一基材400有缺陷410后再通过裁切装置2300裁切第一基材400。
通过极片的制造设备2000制造极片231,能够降低极片231制造成本,从而降低电池100的制造成本。
如图23所示,在一些实施例中,极片的制造设备2000还包括:模切装置2400,设置于检测装置2200的上游,模切装置2400用于对第一基材400模切,以使第一基材400沿其长度方向X形成间隔布置的多个第一极耳440。
模切装置2400可以是激光模切装置、刀具模切等。模切装置2400设置于检测装置2200上游,则可以在检测装置2200检测第一基材400是否有缺陷410之前,对第一基材400模切,以沿第一基材400的长度方向X形成间隔布置的多个第一极耳440。当然,模切装置2400也可以用于对第二基材500模切。
本申请实施例提供一种极片231成型方法,该极片231成型方法包括:
检测第一基材400是否具有缺陷410,若是第一基材400具有缺陷410,则裁切第一基材400,以将第一基材400分为存在缺陷410的第一部分420和没有缺陷410的第二部分430;将一个第二部分430与一个第二基材500在第二基材500的长度方向X衔接,以形成极片231。且第二部分430与第二基材500衔接后形成间隙2313。这种极片231成型方法只需要将存缺陷410的第一部分420报废,没有缺陷410的第二部分430能够被充分利用,避免了整个第一基材400报废,提高了有缺陷410的第一基材400的利用率,降低了电池100的制造成本。
使用该极片231卷绕形成卷绕式电极组件23a,从第二部分430开始卷绕,第二部分430为位于卷绕式电极组件23a的最内圈。若是第一极片231a和第二极片231b均采用上述极片231成型方法制得,第一极片231a和第二极片231b卷均从第二部分430开始卷绕,第一极片的第二部分430a和第二极片的第二部分430b均位于最内圈。使用该极片231卷绕形成卷绕式电极组件23a后,间隙2313位于弯折区II,则第一极片231a的间隙2313和第二极片231b的间隙2313均位于弯折区II,第一极片231a的至少一个间隙2313与第二极片231b的至少一个间隙2313位于同一个弯折区II。能够降低弯折区II析锂的风险。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (24)

  1. 一种极片成型方法,包括:
    提供存在缺陷的第一基材和不存在缺陷的第二基材;
    裁切所述第一基材,以将所述第一基材分为存在缺陷的第一部分和没有缺陷的第二部分;
    将至少一个所述第二部分与所述第二基材在所述第二基材的长度方向衔接,以形成极片。
  2. 根据权利要求1所述的极片成型方法,其中,所述裁切所述第一基材,包括:
    将所述第一基材分为所述第一部分和多个所述第二部分。
  3. 根据权利要求2所述的极片成型方法,其中,将多个所述第二部分与所述第二基材在所述长度方向的一端衔接,以形成所述极片。
  4. 根据权利要求2所述的极片成型方法,其中,将多个所述第二部分中的一部分与所述第二基材在所述长度方向的一端衔接,将多个所述第二部分中的另一部分与所述第二基材在所述长度方向的另一端衔接,以形成所述极片。
  5. 根据权利要求2所述的极片成型方法,其中,将一个所述第二部分与一个所述第二基材在所述长度方向的一端衔接,以形成所述极片。
  6. 根据权利要求1-5任一项所述的极片成型方法,其中,所述第二部分与所述第二基材衔接后在衔接位置形成间隙。
  7. 根据权利要求1-5任一项所述的极片成型方法,其中,所述裁切所述第一基材之前,所述极片成型方法还包括:
    对所述第一基材进行模切,以使所述第一基材形成沿其长度方向间隔布置的多个第一极耳。
  8. 根据权利要求7所述的极片成型方法,其中,所述极片成型方法还包括:
    对所述第二基材进行模切,以使所述第二基材形成沿其长度方向间隔布置的多个第二极耳;
    所述第二部分与所述第二基材衔接后,所述多个第一极耳和所述多个第二极耳形成所述极片的多个极耳,沿所述长度方向,所述多个极耳中相邻的两个极耳之间的距离从所述极片的一端到另一端逐渐增大。
  9. 一种卷绕式电极组件的制造方法,包括:
    提供根据权利要求1-8任一项所述的极片成型方法制得的第一极片;
    提供第二极片,所述第二极片与所述第一极片极性相反;
    提供隔离膜;
    将所述第一极片、所述隔离膜和所述第二极片层叠后卷绕形成卷绕式电极组件。
  10. 根据权利要求9所述的卷绕式电极组件的制造方法,其中,所述将所述第一极片、所述隔离膜和所述第二极片层叠后卷绕形成卷绕式电极组件,包括:
    将所述第一极片附接于所述隔离膜,以使形成第一复合结构;
    将所述第二极片附接于所述第一复合结构并卷绕形成所述卷绕式电极组件。
  11. 根据权利要求9所述的卷绕式电极组件的制造方法,其中,所述第二极片采用权利要求1-8任一项所述的极片成型方法制得。
  12. 根据权利要求9-11任一项所述的卷绕式电极组件的制造方法,其中,在卷绕所述第一极片时,从所述第二部分开始卷绕。
  13. 根据权利要求9-11任一项所述的卷绕式电极组件的制造方法,其中,所述卷绕式电极组件包括平直区和两个弯折区,两个所述弯折区分别连接于所述平直区的两端;
    所述将所述第一极片、所述隔离膜和所述第二极片层叠后卷绕形成卷绕式电极组件,包括:
    使所述第二部分和所述第二基材的衔接位置位于所述弯折区。
  14. 一种叠片式电极组件的制造方法,所述包括:
    提供根据权利要求1-8任一项所述的极片成型方法制得的第一极片,所述第一极片为负极片;
    提供第二极片,所述第二极片为正极片;
    提供隔离膜;
    将所述第一极片、所述隔离膜和所述第二极片层叠后折叠以形成叠片式电极组件。
  15. 一种电极组件,所述包括:
    极性相反的两个极片,两个所述极片中的至少一者采用权利要求1-8任一项所述的极片成型方法制得;以及
    隔离膜,用于将两个所述极片隔开。
  16. 根据权利要求15所述的电极组件,其中,所述电极组件为卷绕式电极组件;
    两个所述极片中均采用权利要求1-8任一项所述的极片成型方法制得。
  17. 根据权利要求16所述的电极组件,其中,所述第二部分和所述第二基材在衔接位置形成间隙。
  18. 根据权利要求17所述的电极组件,其中,所述卷绕式电极组件包括平直区和两个弯折区,两个所述弯折区分别连接于所述平直区的两端;
    所述间隙位于所述弯折区。
  19. 根据权利要求16-18任一项所述的电极组件,其中,所述第二部分的部分或者全部位于所述卷绕式电极组件的最内圈。
  20. 一种电池单体,包括根据权利要求15-19任一项所述的电极组件。
  21. 一种电池,包括根据权利要求20所述的电池单体。
  22. 一种用电设备,包括根据权利要求21所述的电池。
  23. 一种极片的制造设备,包括:
    输送装置,用于输送第一基材;
    检测装置,被配置为检测所述第一基材是否有缺陷;
    裁切装置,被配置为裁切有缺陷的所述第一基材,以将所述第一基材分为存在缺陷的第一部分和没有缺陷的第二部分。
  24. 根据权利要求23所述的极片的制造设备,其中,所述极片的制造设备还包括:
    模切装置,设置于所述检测装置的上游,所述模切装置用于对所述第一基材模切,以使所述第一基材沿其长度方向形成间隔布置的多个第一极耳。
PCT/CN2023/071031 2022-01-29 2023-01-06 极片成型方法、卷绕式及叠片式电极组件的制造方法 WO2023142972A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23745857.5A EP4398358A1 (en) 2022-01-29 2023-01-06 Electrode sheet forming method, manufacturing method for wound electrode assembly, and manufacturing method for laminated electrode assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210111901.2A CN116565110A (zh) 2022-01-29 2022-01-29 极片成型方法、卷绕式及叠片式电极组件的制造方法
CN202210111901.2 2022-01-29

Publications (1)

Publication Number Publication Date
WO2023142972A1 true WO2023142972A1 (zh) 2023-08-03

Family

ID=87470572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071031 WO2023142972A1 (zh) 2022-01-29 2023-01-06 极片成型方法、卷绕式及叠片式电极组件的制造方法

Country Status (3)

Country Link
EP (1) EP4398358A1 (zh)
CN (1) CN116565110A (zh)
WO (1) WO2023142972A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117476868A (zh) * 2023-12-27 2024-01-30 瑞浦兰钧能源股份有限公司 卷绕式电池的极片及其模切方法、电芯及电池
CN117564162A (zh) * 2024-01-16 2024-02-20 宁德时代新能源科技股份有限公司 极片模切方法和极片模切装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151064A (ja) * 2011-01-21 2012-08-09 Toyota Motor Corp 電極捲回装置および電池の製造方法
CN107895775A (zh) * 2017-11-04 2018-04-10 山西长征动力科技有限公司 一种制片工序断带时的接带方法
CN210730197U (zh) * 2019-06-05 2020-06-12 合肥国轩高科动力能源有限公司 一种锂电池缺陷极片剔除系统
CN114122481A (zh) * 2020-09-01 2022-03-01 比亚迪股份有限公司 一种电芯的制备方法以及电芯

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151064A (ja) * 2011-01-21 2012-08-09 Toyota Motor Corp 電極捲回装置および電池の製造方法
CN107895775A (zh) * 2017-11-04 2018-04-10 山西长征动力科技有限公司 一种制片工序断带时的接带方法
CN210730197U (zh) * 2019-06-05 2020-06-12 合肥国轩高科动力能源有限公司 一种锂电池缺陷极片剔除系统
CN114122481A (zh) * 2020-09-01 2022-03-01 比亚迪股份有限公司 一种电芯的制备方法以及电芯

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117476868A (zh) * 2023-12-27 2024-01-30 瑞浦兰钧能源股份有限公司 卷绕式电池的极片及其模切方法、电芯及电池
CN117564162A (zh) * 2024-01-16 2024-02-20 宁德时代新能源科技股份有限公司 极片模切方法和极片模切装置
CN117564162B (zh) * 2024-01-16 2024-04-30 宁德时代新能源科技股份有限公司 极片模切方法和极片模切装置

Also Published As

Publication number Publication date
CN116565110A (zh) 2023-08-08
EP4398358A1 (en) 2024-07-10

Similar Documents

Publication Publication Date Title
WO2023142972A1 (zh) 极片成型方法、卷绕式及叠片式电极组件的制造方法
EP2413398B1 (en) Prismatic secondary battery
WO2023216425A1 (zh) 电池单体及制造方法、电池及用电装置
EP4391105A1 (en) Electrode sheet, battery cell, battery, and electrical device
US20240072296A1 (en) Electrode assembly, battery cell, battery and electrical device
CN116686157A (zh) 卷绕式电极组件、电池单体、电池及用电设备
CN116154416B (zh) 极片、电极组件、电池单体、电池及用电设备
CN116097488A (zh) 电极组件、电池单体、电池及电极组件的制造方法和设备
US20230178860A1 (en) Battery cell, battery, power consuming device, and method and apparatus for manufacturing battery cell
WO2023133785A1 (zh) 电极组件、电池单体、电池、制备电极组件的方法和设备
CN118140353A (zh) 电极组件、电池单体、电池及用电装置
WO2022160296A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
US20210098767A1 (en) Battery cell for electric vehicle and method for manufacturing the same
CN217788494U (zh) 电极组件、电池单体、电池和用电设备
US20240243366A1 (en) Electrode assembly and preparation method therefor, battery cell, battery, and power consuming apparatus
US20240222598A1 (en) Electrode assembly and manufacturing method thereof, battery cell, battery, and electric apparatus
US20230420812A1 (en) Tab welded structure, battery cell, and power consuming apparatus
CN218215488U (zh) 端盖组件、电池单体、电池及用电设备
EP4358272A1 (en) Electrode assembly and preparation method therefor, battery cell, battery, and electronic device
CN220829979U (zh) 电极组件、电池单体、电池和用电装置
WO2024000153A1 (zh) 电极组件及其制造方法、电池单体、电池及用电装置
WO2024040503A1 (zh) 电极组件、制备方法、电池单体、电池及用电装置
CN217768461U (zh) 电极组件、制造设备、电池单体、电池及用电装置
WO2023206949A1 (zh) 圆柱电极组件、电池单体、电池、用电设备和制造方法
US20240170730A1 (en) Electrode Assembly, Battery Cell, Battery and Electrical Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745857

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023745857

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023745857

Country of ref document: EP

Effective date: 20240402