WO2023142963A1 - 一种塑料换热板组件、组装工艺及换热模块 - Google Patents
一种塑料换热板组件、组装工艺及换热模块 Download PDFInfo
- Publication number
- WO2023142963A1 WO2023142963A1 PCT/CN2023/070875 CN2023070875W WO2023142963A1 WO 2023142963 A1 WO2023142963 A1 WO 2023142963A1 CN 2023070875 W CN2023070875 W CN 2023070875W WO 2023142963 A1 WO2023142963 A1 WO 2023142963A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchange
- plastic
- exchange plate
- exchange medium
- plate assembly
- Prior art date
Links
- 229920003023 plastic Polymers 0.000 title claims abstract description 111
- 239000004033 plastic Substances 0.000 title claims abstract description 111
- 238000000034 method Methods 0.000 title claims abstract description 11
- 230000008569 process Effects 0.000 title claims abstract description 10
- 230000000712 assembly Effects 0.000 claims description 26
- 238000000429 assembly Methods 0.000 claims description 26
- 125000006850 spacer group Chemical group 0.000 claims description 23
- 238000004891 communication Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 9
- 238000001746 injection moulding Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 4
- 239000002861 polymer material Substances 0.000 claims description 4
- 239000002699 waste material Substances 0.000 abstract description 11
- 238000004064 recycling Methods 0.000 abstract description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 22
- 239000003546 flue gas Substances 0.000 description 22
- 239000002918 waste heat Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000011084 recovery Methods 0.000 description 10
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 239000008399 tap water Substances 0.000 description 4
- 235000020679 tap water Nutrition 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000006477 desulfuration reaction Methods 0.000 description 3
- 230000023556 desulfurization Effects 0.000 description 3
- 238000011010 flushing procedure Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/03—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/06—Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
Definitions
- the present application relates to the technical field of heat exchange equipment, in particular to a plastic heat exchange plate assembly, an assembly process and a heat exchange module.
- a heat exchanger is a device that transfers part of the heat of a hot fluid to a cold fluid, also known as a heat exchanger. Heat exchangers play an important role in chemical, petroleum, power, food and many other industrial productions.
- a tail gas waste heat recovery system for flue gas waste heat recovery is installed.
- the tail gas waste heat recovery system it is generally at the entrance of the wet flue gas desulfurization tower
- a flue gas heat exchanger is installed to recover the waste heat of the flue gas through the flue gas heat exchanger.
- the flue gas heat exchanger determines the performance of the waste heat recovery system.
- Flue gas waste heat recovery is of great significance, because flue gas waste heat recovery can not only utilize the waste heat of flue gas, but also reduce the temperature entering the flue gas desulfurization tower, reduce the evaporation of water in the desulfurization spray slurry, and reduce the water consumption.
- the heat exchange medium often has problems such as corrosion, viscosity, and easy scaling, which makes the steel plate corroded, sticky, and scaled, and often requires maintenance. Reduced, the service life is short, and it is expensive to replace it with a corrosion-resistant rare metal plate.
- the patent with the publication number CN 210570092 U is a technical solution previously disclosed by the applicant.
- the patent discloses a heat exchange module and a heat exchanger.
- the heat exchange module includes at least one pair of integrated heads and at least one heat exchange plate
- the heat exchange plate group is provided with a heat exchange medium channel inside the heat exchange plate group, and the heat exchange plate group is an integrally formed polymer material hollow plate, and the integrated head is provided with a medium pipeline and an interface port.
- There is a cavity inside the integrated head, and the medium pipeline, the cavity, and the interface end are connected in sequence, the interface end is sealed and connected to the end of the heat exchange plate group, and the interface end is connected to the heat exchange medium channel.
- this application aims to propose a plastic heat exchange plate assembly, assembly process and heat exchange module to solve the technical problems of insufficient low-temperature heat recovery, more heat waste, and low heat exchange efficiency in the prior art.
- a plastic heat exchange plate assembly comprising:
- a heat exchange plate body the heat exchange plate body includes several relatively independent heat exchange units, and a first heat exchange medium flow channel is arranged in each heat exchange unit;
- Connecting pipes arranged at opposite ends of the heat exchange plate body, are used to connect the first heat exchange medium channels of two adjacent heat exchange units;
- the directions of the first heat exchange medium flowing in two adjacent first heat exchange medium channels are opposite.
- the heat exchange plate body is an integrally formed polymer material hollow plate, and the first heat exchange medium flow channel on the heat exchange unit is integrated by several hollow flow channels on the heat exchange plate body.
- a spacer is provided between the two first heat exchange medium flow channels, and the spacer is formed by one hollow flow channel or a plurality of hollow flow channels on the heat exchange plate body.
- a first inflow pipe and a first outflow pipe are respectively arranged at opposite ends of the heat exchange plate, and the first inflow pipe is connected to the inlet of the first heat exchange medium channel on the heat exchange plate, and the The first outflow pipe is connected with the outlet of the first heat exchange medium flow channel on the heat exchange plate body.
- the heat exchange unit includes two connection ports, the two connection ports are arranged on opposite sides of the heat exchange unit, the two connection ports are respectively connected to two connection pipes, and the two connection ports are respectively connected to two connection pipes. Pipe misalignment settings.
- the plastic heat exchange plate assembly described in this application has the following advantages:
- the plastic heat exchange plate assembly disclosed in this application by improving the flow channel structure inside the plastic heat exchange plate, avoids waste and loss of low-temperature heat, prolongs the heat exchange process, increases the heat exchange flow area, and improves heat exchange efficiency , greatly improving the heat exchange performance of the plastic heat exchange plate assembly described in this application.
- the plastic heat exchange plate assembly disclosed in this application is processed and manufactured through an integrally formed hollow plate, and some hollow flow channels on the hollow plate can be directly used to form the first heat exchange medium flow channel on the heat exchange unit.
- Several hollow flow channels between two adjacent first heat exchange medium flow channels form spacers, which further increases the heat exchange area of the plastic heat exchange plate and improves heat exchange efficiency.
- the two connection ports provided on both sides of the heat exchange unit are misplaced to facilitate the assembly and connection of the connecting pipe and the heat exchange unit, and at the same time make the first heat exchange medium flow in the heat exchange unit.
- the internal heat exchange is sufficient to ensure the efficiency and reliability of heat exchange.
- the plastic heat exchange plate assembly disclosed in this application has ingenious structure, stable connection, greatly improved heat exchange efficiency, realizes the recycling of low-temperature heat, avoids waste, and reduces costs.
- Another object of the present application is to disclose an assembly process of a plastic heat exchange plate assembly, including the following steps:
- the third purpose of the present application is to disclose a heat exchange module, the heat exchange module includes at least two plastic heat exchange plate assemblies as described above, and a second plastic heat exchange plate assembly is formed between two adjacent plastic heat exchange plate assemblies.
- Two heat exchange medium flow channels, the first communication ports on two adjacent plastic heat exchange plate assemblies are connected through the first heat exchange medium inlet pipe, and the second communication ports on two adjacent plastic heat exchange plate assemblies are connected through the first The heat exchange medium outlet pipe is connected.
- the first heat exchange medium inlet pipe is arranged at the upper end of the plastic heat exchange plate assembly
- the first heat exchange medium outlet pipe is arranged at the lower end of the plastic heat exchange plate assembly
- flue gas or other gaseous heat exchange medium is passed into the second heat exchange medium flow channel
- the The first heat exchange medium inlet pipe is arranged at the lower end of the plastic heat exchange plate assembly
- the first heat exchange medium outlet pipe is arranged at the upper end of the plastic heat exchange plate assembly.
- the plastic heat exchange plate assembly in the heat exchange module is set in a flat plate shape, and a support frame is provided between two adjacent plastic heat exchange plate assemblies, and the support frame is used to make the two adjacent plastic heat exchange plate assemblies A gap is formed between the plastic heat exchange plate assemblies.
- the heat exchange module described in this application has the following advantages:
- the heat exchange module disclosed in this application improves the heat exchange efficiency by improving the first heat exchange medium channel structure inside the plastic heat exchange plate assembly, and at the same time, through the first heat exchange medium inlet pipe and the first The location where the heat exchange medium exits the pipe is limited, and the low-temperature heat carried by the second heat exchange medium is fully recycled to increase the heat exchange capacity and avoid waste.
- Figure 1 is a schematic top view of the plastic heat exchange plate assembly described in the embodiment of the present application.
- Fig. 2 is a side view structural schematic diagram of the plastic heat exchange plate assembly described in the embodiment of the present application;
- Fig. 3 is a front structural schematic diagram of the plastic heat exchange plate assembly described in the embodiment of the present application.
- Fig. 4 is the schematic cross-sectional structure diagram of A-A in Fig. 3;
- Fig. 5 is a side view structural schematic diagram of the structure in Fig. 4;
- Fig. 6 is a side view of the second structure of the plastic heat exchange plate assembly described in the embodiment of the present application.
- Fig. 7 is a schematic cross-sectional structural view of the structure in Fig. 6;
- Fig. 8 is a schematic cross-sectional structure diagram of the second structure in Fig. 6;
- Fig. 9 is a schematic side view of the plastic heat exchange body described in the embodiment of the present application.
- Fig. 10 is a schematic side view of the plastic heat exchange plate assembly described in the embodiment of the present application.
- Fig. 11 is a schematic side view of the plastic heat exchange unit described in the embodiment of the present application.
- Fig. 12 is a schematic structural diagram of the heat exchanger described in the embodiment of the present application.
- Fig. 13 is a schematic structural view of the second viewing angle of the heat exchanger according to the embodiment of the present application.
- Fig. 14 is a schematic diagram of the plastic heat exchange plate unit of the heat exchanger described in the embodiment of the present application for secondary injection molding;
- Fig. 15 is a schematic diagram of assembling multiple heat exchange units described in the embodiment of the present application.
- Fig. 16 is a schematic diagram of a plastic heat exchange plate unit without a spacer according to the embodiment of the present application.
- Fig. 17 is a schematic diagram of assembling a plurality of heat exchange units without spacers according to the embodiment of the present application.
- Plastic heat exchange plate assembly 100 second heat exchange medium flow channel 200, first heat exchange medium inlet pipe 300, first heat exchange medium outlet pipe 400, heat exchanger shell 500, second heat exchange medium outlet 510, second heat exchange medium outlet 510, Two heat exchange medium inlets 520, connecting frame 530, support frame 540, heat exchange plate body 1, heat exchange unit 101, positioning insert 1011, first heat exchange medium flow channel 102, branch flow channel 1021, hollow flow channel 1022, Partition 103, first inflow pipe 104, first outflow pipe 105, first communication port 2, second communication port 3, connection port 4, connection pipe 5, gap 6, upper connection pipe 501, lower connection pipe 502, upper connection Tube first end 501a, upper connecting tube second end 501b, lower connecting tube first end 502a, lower connecting tube second end 502b, left side 101a, right side 101b.
- connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral Connection; it can be a mechanical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two elements.
- connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral Connection; it can be a mechanical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two elements.
- references to the terms “one embodiment,” “some embodiments,” “exemplary embodiments,” “example,” “specific examples,” or “some examples” are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present application.
- schematic representations of the above terms do not necessarily refer to the same embodiment or example.
- the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
- plastic heat exchange plate assembly including:
- a heat exchange plate body 1 the heat exchange plate body 1 includes several relatively independent heat exchange units 101, and a first heat exchange medium flow channel 102 is arranged in each heat exchange unit 101;
- the first communication port 2 is used to connect the first heat exchange medium to the inside of the heat exchange plate body 1;
- the second communication port 3 is used to discharge the first heat exchange medium inside the heat exchange plate body 1;
- Connecting pipes 5 are arranged at opposite ends of the heat exchange plate body 1, and are used to connect the first heat exchange medium channels 102 of two adjacent heat exchange units 101;
- the directions of the first heat exchange medium flowing in two adjacent first heat exchange medium channels 102 are opposite.
- the plastic heat exchange plate assembly disclosed in this application adopts a heat exchange plate body 1 made of plastic material as a unit carrying the first heat exchange medium.
- the heat exchange unit 101 of the heat exchange medium channel 102 allows the first heat exchange medium to flow in a serpentine or S shape in the heat exchange plate body 1 after passing through the first communication port 2 , and the first heat exchange medium after heat exchange The medium is discharged from the heat exchange plate body 1 through the second communication port 3 .
- the plastic heat exchange plate assembly described in this application can be applied to the recovery of flue gas in the low-temperature section, avoiding energy waste, and at the same time, two adjacent
- the flow direction of the first heat exchange medium inside the first heat exchange medium channel 102 of the heat exchange unit 101 is set to be reversed, which improves the space ratio inside the heat exchange plate body 1, increases the heat exchange flow area, and improves the heat exchange efficiency. efficiency, and make the first heat exchange medium flow in the same direction as the to-be-heat-exchange medium, that is, the flow direction of the second heat exchange medium, which further improves the heat exchange performance of the plastic heat exchange plate assembly described in the present application.
- the plastic heat exchange plate assembly disclosed in this application by improving the flow channel structure inside the plastic heat exchange plate, avoids the waste of low-temperature heat, increases the heat exchange flow area, improves the heat exchange efficiency, and greatly improves the heat exchange efficiency described in this application. Heat transfer performance of plastic heat exchange plate assembly.
- the heat exchange unit 101 includes two connection ports 4, the two connection ports 4 are arranged on opposite sides of the heat exchange unit 101, and the two connection ports 4 are respectively connected to two There are two connecting pipes 5, and the two connecting pipes 5 are arranged in a staggered position.
- two connecting pipes 5 connect the three heat exchange units 101 . This setting facilitates the processing and manufacture of the plastic heat exchange plate assembly described in this application.
- branch flow channels 1021 are provided in the first heat exchange medium flow channel 102 , and the branch flow channels 1021 communicate with the connection ports 4 on both sides of the heat exchange unit 101 .
- This arrangement improves the structural strength of the heat exchange unit 101 on the one hand, avoids thermal stress deformation, and at the same time ensures the heat exchange efficiency of the plastic heat exchange plate assembly described in this application.
- the projections of the two connection ports 4 on the plane perpendicular to the flow direction of the first heat exchange medium inside the heat exchange unit 101 are arranged in a misaligned manner.
- the heat exchange unit 101 is arranged in a rectangular shape, the length direction of the heat exchange unit 101 is parallel to the flow direction of the first heat exchange medium inside the heat exchange unit 101, and the width of the connection port 4 is not larger than that of the heat exchange unit. 101 sets half the width.
- this setting is convenient to improve the convenience of assembly and connection between the heat exchange unit 101 and the connecting pipe 5, and on the other hand, it reduces the cross-sectional area of the inlet of the first heat exchange medium channel 102 inside the heat exchange unit 101, so that the first heat exchange medium When the medium enters the first heat exchange medium flow channel 102 inside the heat exchange unit 101, the speed slows down to ensure sufficient heat exchange.
- the cross-sectional area of the outlet of the first heat exchange medium flow channel 102 inside the heat exchange unit 101 is reduced to improve
- the flow rate of the heat exchange medium from the inside of the heat exchange unit 101 to the connecting pipe 5 is ensured to ensure the reliability of the flow of the heat exchange medium.
- This arrangement facilitates the assembly and connection of the connecting pipe 5 and the heat exchange unit 101 , and at the same time enables the first heat exchange medium to fully exchange heat inside the heat exchange unit 101 , ensuring the efficiency and reliability of heat exchange.
- a gap 6 is provided between the two connection ports 4 on the same side of the two heat exchange units 101 .
- this setting facilitates the formation of a closed connection port 4 in the heat exchange unit 101, and at the same time enhances the strength of the connection port 4, avoids stress impact deformation at the connection port, and ensures the stability and stability of the connection between the connection pipe 5 and the connection port 4. reliability.
- the connecting pipe 5 is arranged in a "C" shape or a "[" shape or a “one” shape, and the connecting pipe 5 is detachably connected to the connection port 4 in a sealed manner.
- the connecting pipe 5 described in the present application is made of metal material or plastic material, preferably plastic material, and the connecting pipe 5 and the connecting port 4 are set as a detachable sealed connection.
- the detachable connection here can be a plug-in Connecting, clamping or connecting through the third connecting piece, the sealing connection between the connecting pipe 5 and the connecting port 4 can use a gasket or sealant or other sealing connection structure to avoid leakage of the heat exchange medium.
- This setting facilitates the cleaning of the first heat exchange medium channel 102 inside the heat exchange unit 101, improves the heat exchange reliability and heat exchange efficiency of the plastic heat exchange plate assembly described in this application, and prolongs the service life of the plastic heat exchange plate assembly .
- At least one heat exchange unit 101 is detachably connected to adjacent heat exchange units 101.
- This setting uses the heat exchange unit 101 as an independent component, and can extend the range of the first heat exchange medium flow channel 102 inside the heat exchange plate body 1 according to needs. On the one hand, it facilitates the flexible setting of the heat exchange area of the heat exchange plate body 1. At the same time, the heat exchange unit 101 can also be reused to avoid waste and reduce costs.
- the first heat exchange medium inside the heat exchange plate body 1 is tap water or purified water. This setting uses the heat of flue gas low-temperature heat exchange to heat tap water or pure water, thus turning it into warm domestic water.
- This setting realizes the recycling of low-temperature heat, reduces the waste of flue gas waste heat, responds to the call for energy saving and emission reduction, and improves living comfort.
- the heat exchange unit 101 in the heat exchange plate body 1 can be assembled from upper and lower parts through detachable structures or welded connections.
- this application discloses another plastic heat exchange plate assembly, including:
- Heat exchange plate body 1 said heat exchange plate body 1 is a polymer material hollow plate integrally formed;
- the first heat exchange medium flow channel 102 is integrated by several hollow flow channels 1022 on the heat exchange plate body 1, and a spacer 103 is provided between the two first heat exchange medium flow channels 102;
- the connecting pipes 5 are arranged at both ends of the heat exchange plate body 1 and are used for two adjacent groups of first heat exchange medium passages 102 to flow alternately.
- This setting is through the transformation and utilization of the polymer hollow plate, integrating several hollow flow channels on the hollow plate into a group of first heat exchange medium flow channels 102, and then through the connecting pipes 5 arranged at both ends of the heat exchange plate body 1
- a spacer 103 is provided between two adjacent first heat exchange medium flow channels 102, and the spacer 103 is another hollow flow channel on the hollow plate.
- the channel is used as a spacer 103, and the spacer 103 can pass through the second heat exchange medium to be exchanged during use.
- the first heat exchange medium inside the heat exchange plate body 1 is tap water or pure water.
- Low-temperature flue gas is passed between the two heat exchange plate bodies. During heat exchange, the low-temperature flue gas can enter the heat exchange plate body 1
- the spacer 103 further improves the heat exchange efficiency and reduces the waste of flue gas waste heat.
- the two ends of the spacer 103 can also be sealed by welding, so that adjacent heat exchange units 101 are arranged independently of each other, and the spacer 103 serves as a connecting piece connecting two adjacent heat exchange units 101 .
- a first inflow pipe 104 and a first outflow pipe 105 are respectively provided at opposite ends of the heat exchange plate body 1, and the first inflow pipe 104 is connected to the first heat exchange pipe on the heat exchange plate body 1.
- the inlet of the medium flow channel 102 is connected, and the first outflow pipe 105 is connected with the outlet of the first heat exchange medium flow channel 102 on the heat exchange plate body 1 .
- the first inflow pipe 104 and the first outflow pipe 105 are arranged in an L shape.
- the body 1 is connected, and at the same time, it is also convenient to fix and limit the heat exchange plate body 1 during storage, transportation and use, so as to ensure that the heat exchange plate body is fixed and reliable.
- two adjacent first heat exchange medium channels 102 are formed by the same number or different numbers of hollow channels 1022 on the heat exchange plate body 1;
- One hollow channel 1022 is formed on the body 1 , or the spacer 103 is formed by several hollow channels 1022 on the heat exchange plate body 1 .
- the distance between the two ends of the spacer 103 is smaller than that of the first heat exchange medium flow.
- the distance between the two ends of the road 102 may be the same or different.
- a positioning insert 1011 is provided at the connection port 4 at the end of the heat exchange unit 101 .
- the positioning insert 1011 is used for fast insertion and positioning of the connection port 4 and the first inflow pipe 104 or the first outflow pipe 105 or the connection pipe 5, and the connection port 4 at the end of the heat exchange unit 101 is connected to the first flow
- the inlet pipe 104 or the first outflow pipe 105 or the connection pipe 5 are welded.
- the heat exchange unit 101 is set to a thin-walled structure of 0.6-1.0mm.
- the thin wall of the heat exchange unit 101 is easily damaged, resulting in leakage at the welded part of the heat exchange unit 101 and affecting the stability of the heat exchange plate assembly.
- This embodiment provides an assembly process of a plastic heat exchange plate assembly, using the heat exchange plate body and connecting pipes as shown in Figures 9-10, with a single heat exchange unit 101 as the smallest unit, including the following steps:
- the right side 101b of the first heat exchange unit is butted side by side with the left side 101a of the adjacent second heat exchange unit to form a spacer, and the second end 501b of the connecting pipe on the first heat exchange unit It is welded and connected with the first end 501a of the upper connecting pipe of the second heat exchange unit, the second end 502b of the lower connecting pipe of the first heat exchange unit is disconnected from the first end 502a of the lower connecting pipe of the second heat exchange unit, and the lower part of the disconnected part Both the second end 502b of the connecting pipe and the first end 502a of the lower connecting pipe are blocked.
- the second end 501b of the upper connecting pipe of the second heat exchange unit is disconnected from the first end 501a of the upper connecting pipe of the third heat exchange unit, and the second end 501b of the upper connecting pipe and the first end 501a of the upper connecting pipe at the disconnected position are all blocked .
- the second end 502b of the lower connecting pipe of the second heat exchange unit is welded and communicated with the first end 502a of the lower connecting pipe of the third heat exchange unit. Both the second end 502b of the lower connecting pipe of the third heat exchange unit and the first end 502a of the lower connecting pipe of the fourth heat exchange unit are blocked.
- the second end 501b of the connecting pipe on the third heat exchange unit is connected to the first end 501a of the connecting pipe on the fourth heat exchange unit by welding.
- the wall thickness of the heat exchange unit 101 in this embodiment is 0.8mm.
- the wall thickness of the connecting pipe may be larger than that of the heat exchange unit, so that there is no damage to the pipe wall during welding between adjacent connecting pipes.
- the materials of the heat exchange unit 101 and the connecting pipe 5 in this embodiment are both polypropylene.
- the setting of the spacer can also be omitted.
- the left and right sides of the heat exchange unit are directly set to be flush with the two ends of the connecting pipe 5, and the assembly process Ditto.
- the present application also discloses a heat exchange module
- the heat exchange module includes at least two plastic heat exchange plate assemblies 100 as described in the above-mentioned embodiments, and at least two plastic heat exchange plate assemblies 100 are stacked
- the second heat exchange medium flow path 200 is formed between two adjacent plastic heat exchange plate assemblies 100, and the first communication port 2 on the two adjacent plastic heat exchange plate assemblies 100 enters through the first heat exchange medium.
- the tubes 300 are in communication, and the second communication ports 3 on two adjacent plastic heat exchange plate assemblies 100 are in communication through the first heat exchange medium outlet tube 400 .
- a heat exchange medium such as tap water or pure water
- a heat exchange medium is introduced into the heat exchange units 101 on a plurality of plastic heat exchange plate assemblies 100 through the first heat exchange medium inlet pipe 300, and the adjacent two
- the second heat exchange medium flow channel 200 is formed between the plastic heat exchange plate assemblies 100, through which a gaseous heat exchange medium such as flue gas or a liquid heat exchange medium such as slag flushing water can be passed through to recover low-temperature heat, and the plastic heat exchange plate assembly 100 can exchange heat
- the first heat exchange medium in the heat unit 101 flows out through the first heat exchange medium outlet pipe 400 after exchanging heat, and can supply warm domestic water in living areas or public areas, reducing heat loss, improving heat utilization efficiency, and high heat exchange efficiency , energy saving and emission reduction, reducing costs and losses.
- the first heat exchange medium inlet pipe 300 is set at the The upper end position of the plastic heat exchange plate assembly 100, the first heat exchange medium outlet pipe 400 is arranged at the lower end position of the plastic heat exchange plate assembly 100;
- the first heat exchange medium inlet pipe 300 is arranged at the lower end of the plastic heat exchange plate assembly 100, and the first heat exchange medium outlet pipe 400 is arranged at the lower end of the plastic heat exchange plate assembly 100.
- the position of the upper end of the plastic heat exchange plate assembly 100 is described above.
- This arrangement makes the overall flow direction of the first heat exchange medium consistent with the flow direction of the second heat exchange medium, fully recovers and utilizes the low-temperature heat carried by the second heat exchange medium, increases the heat exchange capacity, and avoids waste.
- the plastic heat exchange plate assembly 100 in the heat exchange module is arranged as a left and right flat plate, the first heat exchange medium inlet pipe 300 and the first heat exchange medium outlet pipe 400 They are respectively arranged on the left and right opposite sides of the plastic heat exchange plate assembly 100 .
- the present application also discloses a heat exchanger, including a heat exchanger shell 500, inside the heat exchanger shell 500 is set such as implementing 1.
- the second heat exchange medium outlets are respectively provided at opposite ends of the heat exchanger shell 500 510 and the second heat exchange medium inlet 520, the second heat exchange medium inlet 520 is used to enter the second heat exchange medium into the heat exchanger shell 500, and the second heat exchange medium outlet 510 is used to exchange
- the second heat exchange medium inside the heat exchanger shell 500 is discharged, the first heat exchange medium inlet pipe 300 and the first heat exchange medium outlet pipe 400 protrude from the heat exchanger shell 500, and
- the connection is sealed and connected, and a connecting frame 530 is provided on the heat exchanger shell 500, and the connecting frame 530 is used to fix the plastic heat exchange plate assembly 100 or the heat exchange module composed of the plastic heat exchange plate
- a support frame 540 is provided between two adjacent plastic heat exchange plate assemblies 100 .
- This setting makes a certain gap exist between two adjacent plastic heat exchange plate assemblies 100 , which facilitates the flow of heat exchange medium between the two plastic heat exchange plate assemblies 100 .
- the support frame 540 can be any structure capable of supporting two plastic heat exchange plate assemblies 100, such as a rectangular block, an H-shaped support block, an L-shaped support block, or a straight support block.
- the second heat exchange medium is passed into the second heat exchange medium inlet 520, which is used to exchange heat for the first heat exchange medium in the heat exchange unit 101 on the plastic heat exchange plate assembly 100.
- the setting of the support frame 540 is only to support the adjacent
- the purpose of the two plastic heat exchange plate assemblies 100 is to facilitate the flow of the second heat exchange medium between the plastic heat exchange plate assemblies 100 .
- the support frame 540 is welded to the plastic heat exchange plate assembly 100 to fix the limit or contact the fixed limit.
- the plastic used in the plastic heat exchange plate or heat exchanger described in this application is engineering plastic.
- the plastic heat exchange plate and heat exchanger described in this application have the characteristics of corrosion resistance and fluoroplastic tube, not easy to scale and block, and the heat exchange wall is thin, and the temperature of the flue gas is below 100 °C, which greatly reduces the heat exchange rate of the metal heat exchange plate.
- the heat transfer efficiency of the plate structure is higher than that of the tube type, and the heat transfer area is also smaller, which further reduces the cost and achieves the purpose of high corrosion resistance and low cost in the recovery of low-temperature flue gas waste heat. Long life, fast return on investment, greatly enhanced energy-saving benefits.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
本申请提供了一种塑料换热板组件、组装工艺及换热模块,所述塑料换热板组件,包括:换热板体,所述换热板体包括若干个相对独立的换热单元,在每个换热单元内设置第一换热介质流道;连接管,设置在所述换热板体的相对两端,用于连接两个相邻换热单元的第一换热介质流道;其中,相邻两个第一换热介质流道内部流动的第一换热介质方向相反。本申请所述的塑料换热板组件、换热模块及换热器,结构巧妙,连接稳定,换热效率大大提高,实现了低温热量的回收利用,避免浪费,降低成本。
Description
本申请涉及换热设备技术领域,特别涉及一种塑料换热板组件、组装工艺及换热模块。
换热器,将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位。
在化工领域,在使用燃烧器或者加热炉或者其他工业锅炉的系统中,设置有进行烟气余热回收用的尾气余热回收系统,在尾气余热回收系统中,一般是在湿式烟气脱硫塔入口处安装烟气换热器,通过烟气换热器回收烟气余热。烟气换热器作为烟气余热回收系统的核心设备,决定着余热回收系统的性能。烟气余热回收的意义重大,这是因为烟气余热回收既可以将烟气的余热加以利用,又可以使进入烟气脱硫塔的温度降低,减少对脱硫喷淋浆液中的水分的蒸发,降低水耗。
但是,由于燃煤等化石燃料中含有硫磺等成份,热交换介质常有腐蚀性、粘滞性和易结垢等问题,使得钢板片腐蚀、粘滞及结垢,经常需要检修,换热效率降低,使用寿命短,而以抗腐蚀的稀有金属板片代替价格昂贵。
公开号为CN 210570092 U的专利为申请人在前公开一种技术方案,该专利公开了一种换热模块及换热器,所述换热模块包括至少一对集成头以及至少一个换热板片组,所述换热板片组内部设置换热介质通道,且所述换热板片组为一体成型的高分子材料中空板,所述集成头上设置介质管路、接口端,所述集成头内部具有腔体,所述介质管路、腔体、接口端依次连通,所述接口端与换热板片组的端部密封连接,且所述接口端与换热介质通道连通。
如何提高塑料换热板中的换热效率和换热稳定性,且保证换热器装配的便捷性,尤其是在低温换热领域,申请人进一步提出改进方案,特提出本申请。
发明内容
有鉴于此,本申请旨在提出一种塑料换热板组件、组装工艺及换热模块,以解决现有技术中低温热量回收不足,热量浪费较多,换热效率较低的技术问题。
为达到上述目的,本申请的技术方案是这样实现的:
一种塑料换热板组件,包括:
换热板体,所述换热板体包括若干个相对独立的换热单元,在每个换热单元内设置第一换热介质流道;
连接管,设置在所述换热板体的相对两端,用于连接两个相邻换热单元的第一换热介质流道;
其中,相邻两个第一换热介质流道内部流动的第一换热介质方向相反。
进一步的,所述换热板体一体成型的高分子材料中空板,所述换热单元上的第一换热介质流道由若干个换热板体上的中空流道集成。
进一步的,在两个所述第一换热介质流道之间设置间隔部,所述间隔部由换热板体上一个中空流道或者多个中空流道形成。
进一步的,在所述换热板体的相对两端分别设置第一流入管和第一流出管,所述第一流入管与换热板体上第一换热介质流道的进口处连接,所述第一流出管与换热板体上第一换热介质流道的出口处连接。
进一步的,所述间隔部的端部与所述第一换热介质流道的端部存在间距。
进一步的,所述换热单元包括两个连接口,两个所述连接口设置在所述换热单元的相对两侧,两个所述连接口分别连接两个连接管,两个所述连接管错位设置。
相对于现有技术,本申请所述的塑料换热板组件具有以下优势:
(1)本申请公开的塑料换热板组件,通过对塑料换热板内部的流道结构进行改进,避免低温热量的浪费损耗,延长换热流程,增大换热流动面积,提高换热效率,大大提高了本申请所述塑料换热板组件的换热性能。
(2)本申请公开的塑料换热板组件,通过一体成型的中空板进行加工制作,可以直接利用中空板上的一些中空流道形成换热单元上的第一换热介质流道,在相邻的两个第一换热介质流道之间的若干个中空流道形成间隔部,进一步提 高了塑料换热板的换热面积,提高换热效率。
(3)本申请公开的塑料换热板组件,通过将换热单元两侧设置的两个连接口错位设置,便于连接管与换热单元装配连接,同时使得第一换热介质在换热单元内部充分换热,保证换热的效率和可靠性。
(4)本申请公开的塑料换热板组件,结构巧妙,连接稳定,换热效率大大提高,实现了低温热量的回收利用,避免浪费,降低成本。
本申请的另一个目的在于公开一种塑料换热板组件的组装工艺,包括如下步骤:
S1、在一次模具中挤塑成型换热单元;
S2、将换热单元的两个端部依次放至二次模具内部,二次模具内部对换热单元端部的上下表面进行加热,加热温度为280~320℃;
S3、采用注塑机向二次模具内部加料,加料压力不低于85MPa,进行二次注塑成型连接管,形成塑料换热板,换热单元的上端成型有上连接管,换热单元的下端成型有下连接管。
本申请的第三个目的在于公开一种换热模块,所述换热模块包括至少两个如上述所述的塑料换热板组件,在两个相邻的塑料换热板组件之间形成第二换热介质流道,相邻两个塑料换热板组件上的第一连通口通过第一换热介质进管连通,相邻两个塑料换热板组件上的第二连通口通过第一换热介质出管连通。
进一步的,当所述第二换热介质流道内通入的是冲渣水或者其它液态换热介质时,所述第一换热介质进管设置在所述塑料换热板组件的上端部位置,所述第一换热介质出管设置在所述塑料换热板组件的下端部位置;当所述第二换热介质流道内通入的是烟气或者其它气态换热介质时,所述第一换热介质进管设置在所述塑料换热板组件的下端部位置,所述第一换热介质出管设置在所述塑料换热板组件的上端部位置。
进一步的,所述换热模块中的塑料换热板组件呈平板状设置,在相邻的两个所述塑料换热板组件之间设置支撑架,所述支撑架用于使相邻的两个所述塑料换热板组件之间形成间隙。
相对于现有技术,本申请所述的换热模块具有以下优势:
本申请公开的换热模块,通过改进塑料换热板组件内部的第一换热介质流道结构,提高了换热效率,同时通过对塑料换热板上第一换热介质进管和第一换热介质出管的位置限定,充分对第二换热介质携带的低温热量进行回收利用,提高换热量,避免浪费。
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例所述塑料换热板组件的俯视结构示意图;
图2为本申请实施例所述塑料换热板组件的侧视结构示意图;
图3为本申请实施例所述塑料换热板组件的正视结构示意图;
图4为图3中A-A的剖视结构示意图;
图5为图4中结构的侧视结构示意图;
图6为本申请实施例所述塑料换热板组件的第二种结构侧视图;
图7为图6中结构的剖视结构示意图;
图8为图6中结构第二种的剖视结构示意图;
图9为本申请实施例所述塑料换热体的侧视结构示意图;
图10为本申请实施例所述塑料换热板组件的侧视结构示意图;
图11为本申请实施例所述塑料换热单元的侧视结构示意图;
图12为本申请实施例所述换热器的结构示意图;
图13为本申请实施例所述换热器第二视角的结构示意图;
图14为本申请实施例所述二次注塑的换热器塑料换热板单元示意图;
图15为本申请实施例所述组装多个换热单元的示意图;
图16为本申请实施例所述不具有间隔部的塑料换热板单元示意图;
图17为本申请实施例所述组装多个不具有间隔部的换热单元的示意图。
附图标记说明:
塑料换热板组件100,第二换热介质流道200,第一换热介质进管300,第一换热介质出管400,换热器壳体500,第二换热介质出口510,第二换热介质进口520,连接架530,支撑架540,换热板体1,换热单元101,定位插片1011,第一换热介质流道102,分支流道1021,中空流道1022,间隔部103,第一流入管104,第一流出管105,第一连通口2,第二连通口3,连接口4,连接管5,间隙6,上连接管501,下连接管502,上连接管第一端501a,上连接管第二端501b,下连接管第一端502a,下连接管第二端502b,左侧边101a,右侧边101b。
为了使本申请的技术手段及达到目的与功效易于理解,下面结合具体图示对本申请的实施例进行详细说明。
需要说明,本申请中所有进行方向性和位置性指示的术语,诸如:“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“内”、“外”、“顶”、“低”、“横向”、“纵向”、“中心”等,仅用于解释在某一特定状态(如附图所示)下各部件之间的相对位置关系、连接情况等,仅为了便于描述本申请,而不是要求本申请必须以特定的方位构造和操作,因此不能理解为对本申请的限制。另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。
在本申请的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
实施例1
如图1~8所示,本申请公开了一种塑料换热板组件,包括:
换热板体1,所述换热板体1包括若干个相对独立的换热单元101,在每个换热单元101内设置第一换热介质流道102;
第一连通口2,用于向换热板体1内部接入第一换热介质;
第二连通口3,用于将换热板体1内部的第一换热介质排出;
连接管5,设置在所述换热板体1的相对两端,用于连接两个相邻换热单元101的第一换热介质流道102;
其中,相邻两个第一换热介质流道102内部流动的第一换热介质方向相反。
本申请公开的塑料换热板组件,采用塑料材质制备的换热板体1,作为承载第一换热介质的单元,在所述换热板体1内设置若干个通过连接管5连通第一换热介质流道102的换热单元101,使得第一换热介质通过第一连通口2后,在换热板体1内呈蛇形或者S型进行流动,换热后的第一换热介质通过第二连通口3排出换热板体1。将该换热板体用于高温烟气的换热时,一方面使得本申请所述的塑料换热板组件能够应用于低温段的烟气回收,避免能源浪费,同时,将两个相邻的换热单元101的第一换热介质流道102内部第一换热介质流动的方向设置为反向,提高了换热板体1内部的空间率,增大换热流动面积,提高换热效率,并且使得第一换热介质流动的方向与待换热介质,即第二换热介质流动的方向同向,进一步提高了本申请所述塑料换热板组件的换热性能。
本申请公开的塑料换热板组件,通过对塑料换热板内部的流道结构进行改进,避免低温热量的浪费损耗,增大换热流动面积,提高换热效率,大大提高了本申请所述塑料换热板组件的换热性能。
作为本申请的一个较佳示例,所述换热单元101包括两个连接口4,两个所述连接口4设置在所述换热单元101的相对两侧,两个连接口4分别连接两个连接管5,两个所述连接管5错位设置。优选的,如图7所示,两个连接管5连接三个换热单元101的连通。该设置便于本申请所述塑料换热板组件的加工制作。
优选的,在所述第一换热介质流道102内设置若干个分支流道1021,所述分支流道1021连通所述换热单元101两侧的连接口4。
该设置一方面提高了换热单元101的结构强度,避免热应力变形,同时保证本申请所述塑料换热板组件的换热效率。
作为本申请的一个示例,两个所述连接口4在换热单元101内部第一换热介质流动方向垂直平面上的投影错位设置。
具体的,所述换热单元101呈矩形设置,所述换热单元101的长度方向与换热单元101内部第一换热介质流动方向平行,所述连接口4的设置宽度不大于换热单元101设置宽度的一半。该设置一方面便于提高换热单元101与连接管5装配连接的便捷性,另一方面,减小换热单元101内部第一换热介质流道102的进口的截面面积,使得第一换热介质进入换热单元101内部第一换热介质流道102时,速度变缓,保证充分换热,同时,减小换热单元101内部第一换热介质流道102的出口的截面面积,提高了换热介质从换热单元101内部流向连接管5的速率,保证换热介质流动的可靠性。
该设置便于连接管5与换热单元101装配连接,同时使得第一换热介质在换热单元101内部充分换热,保证换热的效率和可靠性。
作为本申请的一个较佳示例,在两个所述换热单元101同侧的两个连接口4之间设置间隙6。
该设置一方面便于在换热单元101形成收口状的连接口4,同时也增强了连接口4处的强度,避免连接口处应力冲击变形,保证连接管5与连接口4连接的稳定性和可靠性。
作为本申请的一个较佳示例,所述连接管5呈“C”字形或者“[”字形或者“一”字形设置,所述连接管5与连接口4可拆卸的密封连接。
具体的,本申请所述的连接管5采用金属材料或者塑料材料制备而成,优选塑料材料,将连接管5与连接口4设置为可拆卸的密封连接,此处的可拆卸连接可以为插接、卡接或者通过第三连接件连接,连接管5与连接口4的密封连接可以采用密封垫或者密封胶或其它密封连接结构,避免换热介质外泄。
该设置方便换热单元101内部第一换热介质流道102的清洗,提高本申请所述塑料换热板组件换热的可靠性和换热效率,并且延长了塑料换热板组件的使用寿命。
作为本申请的一个较佳示例,至少有一个所述换热单元101与相邻的换热 单元101可拆卸连接。
该设置将换热单元101作为独立的零部件,可以根据需要对换热板体1内部的第一换热介质流道102增程,一方面便于换热板体1换热面积的灵活设置,同时,也可以将换热单元101重复使用,避免浪费,降低成本。
作为本申请的一个较佳示例,所述换热板体1内部的第一换热介质为自来水或者纯净水。该设置利用烟气低温换热的热量对自来水或者纯净水进行加热,从而变为温热的生活用水。
该设置实现了低温热量的回收利用,减少烟气废热的浪费,响应节能减排的号召,提高生活舒适度。
作为本申请的一个较佳示例,所述换热板体1中的换热单元101可以由上下两部分结构通过可拆卸结构或者焊接连接拼接而成。
实施例2
如图1~10所示,本申请公开了另外一种塑料换热板组件,包括:
换热板体1,所述换热板体1一体成型的高分子材料中空板;
第一换热介质流道102,由若干个换热板体1上的中空流道1022集成,在两个所述第一换热介质流道102之间设置间隔部103;
连接管5,所述连接管5设置在所述换热板体1的两端,用于两个相邻组第一换热介质流道102换向流动。
其它结构参考实施例1。
该设置通过对高分子中空板进行改造利用,将中空板上的若干个中空流道集成为一组第一换热介质流道102,然后通过在换热板体1两端设置的连接管5,实现第一换热介质流道102的连通,在相邻的两个第一换热介质流道102之间设置间隔部103,间隔部103为中空板上的其它中空流道。在使用时,通过换热板1上的介质流入口向第一换热介质流道102内通入介质,然后通过连接管5实现换热介质在相邻的第一换热介质流道102内换向流动,增加了换热流程,提高同一换热介质的换热效果,采用现成的中空板进行加工制作,大大提高了塑料换热板组件的加工效率,同时,利用中空板中的一些流道作为间隔部103,间隔部103在使用时可以通入待换热的第二种换热介质,例如,本实施例所述 的换热板体1用于低温烟气热量回收,所述换热板体1内部的第一换热介质为自来水或者纯净水,两块换热板板体之间通入低温烟气,在换热时,低温烟气同时可以进入换热板体1上的间隔部103,进一步提高了换热效率,减少烟气废热的浪费。也可以将间隔部103的两端进行焊接封堵,使得相邻的换热单元101相互独立设置,间隔部103作为连接相邻两个换热单元101的连接件。
作为本申请的较佳示例,在所述换热板体1的相对两端分别设置第一流入管104和第一流出管105,所述第一流入管104与换热板体1上第一换热介质流道102的进口处连接,所述第一流出管105与换热板体1上第一换热介质流道102的出口处连接。作为本申请的示例,所述第一流入管104、所述第一流出管105呈L型设置,该设置一方面便于所述第一流入管104、所述第一流出管105与所述换热板体1连接,同时,还便于对换热板体1在储存、运输以及使用时进行固定限位,保证换热板体固定可靠。
作为本申请的较佳示例,相邻两个所述第一换热介质流道102由换热板体1上相同数量或者不同数量的中空流道1022形成;所述间隔部103由换热板体1上1个中空流道1022形成,或者所述间隔部103由换热板体1上若干个中空流道1022形成。
作为本申请的较佳示例,所述间隔部103的端部与所述第一换热介质流道102的端部存在一定间距,间隔部103两端之间的距离小于第一换热介质流道102两端之间的距离。所述间隔部103两端距离对应相邻的第一换热介质流道102端部的距离可以相同,也可以不同。
作为本申请的较佳示例,在所述换热单元101端部的连接口4处设置定位插片1011。所述定位插片1011用于所述连接口4与所述第一流入管104或第一流出管105或连接管5快速插接定位,所述换热单元101端部的连接口4与第一流入管104或第一流出管105或连接管5焊接连接。
实施例3
为提高塑料换热板组件的换热效率,将换热单元101设置为0.6~1.0mm的薄壁结构,当使用塑料材料制备的第一流入管104或第一流出管105或连接管5与薄壁的换热单元101端部焊接时,换热单元101的薄壁极易被损坏,导致出现换热单元101的焊接部位易泄漏,影响换热板组件的使用稳定性。
本实施例提供了一种塑料换热板组件的组装工艺,使用如图9~10所述的换热板体和连接管,以单个换热单元101作为最小单元,包括如下步骤:
S1、在一次模具中挤塑成型换热单元101。
S2、将换热单元101的两个端部依次放至二次模具内部,二次模具内部对换热单元101端部的上下表面进行加热,加热温度为280~320℃。
S3、采用注塑机向二次模具内部加料,加料压力不低于85MPa,进行二次注塑成型连接管5,形成如图14所示的塑料换热板单元,换热单元101的上端成型有上连接管501,换热单元101的下端成型有下连接管502。
S4、将相邻的两个换热单元连接在一起并焊接。具体地,如图15所示,将第一换热单元右侧边101b与相邻第二换热单元的左侧边101a并排对接形成间隔部,第一换热单元上连接管第二端501b与第二换热单元上连接管第一端501a焊接连通,第一换热单元下连接管第二端502b与第二换热单元下连接管第一端502a断开,且断开部位的下连接管第二端502b、下连接管第一端502a均封堵。第二换热单元上连接管第二端501b与第三换热单元上连接管第一端501a断开,断开部位的上连接管第二端501b、上连接管第一端501a均封堵。第二换热单元下连接管第二端502b与第三换热单元下连接管第一端502a焊接连通。第三换热单元下连接管第二端502b、第四换热单元下连接管第一端502a均封堵。第三换热单元上连接管第二端501b与第四换热单元上连接管第一端501a焊接连通。以此类推,实现换热介质在多个换热单元组成的塑料换热板组件中蛇形流动。
本实施例中优选的,本实施例中换热单元101的壁厚为0.8mm。连接管的壁厚可采用大于换热单元的壁厚,使得相邻连接管之间在进行焊接时不存在管壁破损的情况。
优选的,本实施例中换热单元101与连接管5的材质均设置为聚丙烯。
将加热温度设置为280~320℃,保证换热单元的薄壁变软的同时又不会破损,便于二次成型的连接管与换热单元成型为一体,避免连接管与换热单元的连接部位泄漏。
作为本实施例的另一种变形,也可以省略间隔部的设置,如图16和17所示,直接将换热单元的左右侧边设置为与连接管5的两端平齐,其组装工艺同 上。
实施例4
如图11所示,本申请还公开了一种换热模块,所述换热模块包括至少两个如上述实施例所述的塑料换热板组件100,至少两个塑料换热板组件100层叠设置,在两个相邻的塑料换热板组件100之间形成第二换热介质流道200,相邻两个塑料换热板组件100上的第一连通口2通过第一换热介质进管300连通,相邻两个塑料换热板组件100上的第二连通口3通过第一换热介质出管400连通。
本申请公开的换热模块,通过第一换热介质进管300向多个塑料换热板组件100上的换热单元101内通入换热介质,例如自来水或者纯净水,相邻的两个塑料换热板组件100之间形成第二换热介质流道200,可以通入烟气等气态换热介质或者冲渣水等液态换热介质,回收低温热量,塑料换热板组件100上换热单元101内的第一换热介质换热后经过第一换热介质出管400流出,可以供给生活区或者公共区温热的生活用水,减少热量损失,提高热量利用效率,换热效率高,节能减排,降低成本和损耗。
作为本申请的一个较佳示例,当所述第二换热介质流道200内通入的是冲渣水或者其它液态换热介质时,所述第一换热介质进管300设置在所述塑料换热板组件100的上端部位置,所述第一换热介质出管400设置在所述塑料换热板组件100的下端部位置;当所述第二换热介质流道200内通入的是烟气或者其它气态换热介质时,所述第一换热介质进管300设置在所述塑料换热板组件100的下端部位置,所述第一换热介质出管400设置在所述塑料换热板组件100的上端部位置。
该设置使得第一换热介质整体的流动方向与第二换热介质的流动方向保持一致,充分对第二换热介质携带的低温热量进行回收利用,提高换热量,避免浪费。
作为本申请的一个较佳示例,所述换热模块中的塑料换热板组件100呈左右状的平板设置,所述第一换热介质进管300、所述第一换热介质出管400分别设置在所述塑料换热板组件100的左右相对两侧。
实施例5
作为本申请的一个较佳示例,如图12、图13所示,本申请还公开了一种换热器,包括换热器壳体500,在所述换热器壳体500内部设置如实施1、实施例2中所述的塑料换热板组件和/或如实施例3中所述的换热模块,在所述换热器壳体500的相对两端分别设置第二换热介质出口510和第二换热介质进口520,所述第二换热介质进口520用于向换热器壳体500内部接入第二换热介质,所述第二换热介质出口510用于将换热器壳体500内部第二换热介质排出,所述第一换热介质进管300与所述第一换热介质出管400伸出所述换热器壳体500,且在伸出的连接处密封连接,在所述换热器壳体500上设置连接架530,所述连接架530用于固定所述塑料换热板组件100或者所述塑料换热板组件100组成的换热模块。
作为本申请的较佳示例,在相邻的两个所述塑料换热板组件100之间设置支撑架540。该设置使得相邻两个塑料换热板组件100之间存在一定间隙,便于换热介质在两个塑料换热板组件100之间流动。具体的,所述支撑架540可以呈矩形块、H型支撑块、L型支撑块、一字型支撑块等能够实现支撑两块塑料换热板组件100的任意结构,在换热器的第二换热介质进口520内通入第二换热介质,用于对塑料换热板组件100上换热单元101内的第一换热介质换热,支撑架540的设置只是起到支撑相邻两块塑料换热板组件100的目的,便于第二换热介质在塑料换热板组件100之间流动。
作为本申请的较佳示例,所述支撑架540与所述塑料换热板组件100焊接固定限位或者接触固定限位。
作为本申请的较佳示例,本申请所述的塑料换热板或者换热器中采用的塑料为工程塑料。
本申请所述的塑料换热板及换热器,具有和氟塑料管耐腐蚀,不容易结垢堵塞,换热壁厚薄的特点,在烟气温度100℃以下的大大降低了金属换热板的生产成本,同时板式结构比管式的换热效率更高,换热面积也更小,进一步降低了成本,达到在低温烟气余热回收时耐腐蚀性较高且成本较低的目的,使用寿命长、投资回收快,节能效益大大增强。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (10)
- 一种塑料换热板组件,其特征在于,包括:换热板体(1),所述换热板体(1)包括若干个相对独立的换热单元(101),在每个换热单元(101)内设置第一换热介质流道(102);连接管(5),设置在所述换热板体(1)的相对两端,用于连接两个相邻换热单元(101)的第一换热介质流道(102);其中,相邻两个第一换热介质流道(102)内部流动的第一换热介质方向相反。
- 根据权利要求1所述的塑料换热板组件,其特征在于,所述换热板体(1)为一体成型的高分子材料中空板,所述换热单元(101)上的第一换热介质流道(102)由若干个换热板体(1)上的中空流道(1022)集成。
- 根据权利要求2所述的塑料换热板组件,其特征在于,在两个所述第一换热介质流道(102)之间设置间隔部(103),所述间隔部(103)由换热板体(1)上一个中空流道(1022)或者多个中空流道(1022)形成。
- 根据权利要求3所述的塑料换热板组件,其特征在于,在所述换热板体(1)的相对两端分别设置第一流入管(104)和第一流出管(105),所述第一流入管(104)与换热板体(1)上第一换热介质流道(102)的进口处连接,所述第一流出管(105)与换热板体(1)上第一换热介质流道(102)的出口处连接。
- 根据权利要求4所述的塑料换热板组件,其特征在于,所述间隔部(103)两端之间的距离小于所述第一换热介质流道(102)两端之间的距离。
- 根据权利要求1~5任意一项所述的塑料换热板组件,其特征在于,所述换热单元(101)包括两个连接口(4),两个所述连接口(4)设置在所述换热单元(101)的相对两侧,两个所述连接口(4)分别连接两个连接管(5),两个所述连接管(5)错位设置。
- 一种塑料换热板组件的组装工艺,其特征在于,用于组装权利要求1~6中任意一项所述的塑料换热板组件,包括如下步骤:S1、在一次模具中挤塑成型换热单元;S2、将换热单元的两个端部依次放至二次模具内部,二次模具内部对换热 单元端部的上下表面进行加热,加热温度为280~320℃;S3、采用注塑机向二次模具内部加料,加料压力不低于85MPa,进行二次注塑成型连接管,形成塑料换热板,换热单元的上端成型有上连接管,换热单元的下端成型有下连接管;S4、将相邻的两个换热单元连接在一起并焊接。
- 一种换热模块,其特征在于,所述换热模块包括至少两个如权利要求1~6任一项所述的塑料换热板组件,至少两个所述塑料换热板组件(100)层叠设置,在两个相邻的塑料换热板组件(100)之间形成第二换热介质流道(200),相邻两个塑料换热板组件(100)上的第一连通口(2)通过第一换热介质进管(300)连通,相邻两个塑料换热板组件(100)上的第二连通口(3)通过第一换热介质出管(400)连通。
- 根据权利要求8所述的换热模块,其特征在于,当所述第二换热介质流道(200)内通入的是液态换热介质时,所述第一换热介质进管(300)设置在所述塑料换热板组件(100)的上端部位置,所述第一换热介质出管(400)设置在所述塑料换热板组件(100)的下端部位置;当所述第二换热介质流道(200)内通入的是气态换热介质时,所述第一换热介质进管(300)设置在所述塑料换热板组件(100)的下端部位置,所述第一换热介质出管(400)设置在所述塑料换热板组件(100)的上端部位置。
- 根据权利要求8所述的换热模块,其特征在于,所述换热模块中的塑料换热板组件(100)呈平板状设置,在相邻的两个所述塑料换热板组件(100)之间设置支撑架(540),所述支撑架(540)用于使相邻的两个所述塑料换热板组件(100)之间形成间隙。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220215094.4U CN216815099U (zh) | 2022-01-26 | 2022-01-26 | 一种塑料换热板组件、换热模块及换热器 |
CN202220215094.4 | 2022-01-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023142963A1 true WO2023142963A1 (zh) | 2023-08-03 |
Family
ID=82066015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/070875 WO2023142963A1 (zh) | 2022-01-26 | 2023-01-06 | 一种塑料换热板组件、组装工艺及换热模块 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN216815099U (zh) |
WO (1) | WO2023142963A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN216815099U (zh) * | 2022-01-26 | 2022-06-24 | 洛阳瑞昌环境工程有限公司 | 一种塑料换热板组件、换热模块及换热器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997045688A1 (es) * | 1996-05-28 | 1997-12-04 | Antonio Montes Navio | Nuevo intercambiador termico |
KR100829801B1 (ko) * | 2007-05-04 | 2008-05-16 | 조규천 | 폐수열교환기 |
CN209524783U (zh) * | 2019-01-05 | 2019-10-22 | 淮北师范大学 | 一种带有防堵塞结构的烟气余热回收装置 |
CN210441713U (zh) * | 2019-07-16 | 2020-05-01 | 浙江三新科技有限公司 | 一种成型有蛇形流道的板式换热器 |
CN210570092U (zh) * | 2019-08-08 | 2020-05-19 | 洛阳瑞昌环境工程有限公司 | 一种换热模块及换热器 |
CN111595191A (zh) * | 2020-06-22 | 2020-08-28 | 舒创电气科技(辽宁)有限公司 | 辐射换热板及辐射换热系统 |
CN216815099U (zh) * | 2022-01-26 | 2022-06-24 | 洛阳瑞昌环境工程有限公司 | 一种塑料换热板组件、换热模块及换热器 |
-
2022
- 2022-01-26 CN CN202220215094.4U patent/CN216815099U/zh active Active
-
2023
- 2023-01-06 WO PCT/CN2023/070875 patent/WO2023142963A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997045688A1 (es) * | 1996-05-28 | 1997-12-04 | Antonio Montes Navio | Nuevo intercambiador termico |
KR100829801B1 (ko) * | 2007-05-04 | 2008-05-16 | 조규천 | 폐수열교환기 |
CN209524783U (zh) * | 2019-01-05 | 2019-10-22 | 淮北师范大学 | 一种带有防堵塞结构的烟气余热回收装置 |
CN210441713U (zh) * | 2019-07-16 | 2020-05-01 | 浙江三新科技有限公司 | 一种成型有蛇形流道的板式换热器 |
CN210570092U (zh) * | 2019-08-08 | 2020-05-19 | 洛阳瑞昌环境工程有限公司 | 一种换热模块及换热器 |
CN111595191A (zh) * | 2020-06-22 | 2020-08-28 | 舒创电气科技(辽宁)有限公司 | 辐射换热板及辐射换热系统 |
CN216815099U (zh) * | 2022-01-26 | 2022-06-24 | 洛阳瑞昌环境工程有限公司 | 一种塑料换热板组件、换热模块及换热器 |
Also Published As
Publication number | Publication date |
---|---|
CN216815099U (zh) | 2022-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017162018A1 (zh) | 用于气-气热交换的逆流式翅片板换热器 | |
CN106705716A (zh) | 一种板式气气热交换器 | |
WO2023142963A1 (zh) | 一种塑料换热板组件、组装工艺及换热模块 | |
CN201722400U (zh) | 全焊式双流程波纹板煤气预热器 | |
CN204202456U (zh) | 非对称相变换热器 | |
CN210242495U (zh) | 一种换热器 | |
CN111121506A (zh) | 一种新型螺旋板式热交换器 | |
CN207095352U (zh) | 一种新型气液板式换热器 | |
CN201722401U (zh) | 全焊式三流程波纹板空气预热器 | |
CN210373527U (zh) | 一种高效板式空气预热器 | |
CN201611231U (zh) | 大波节u形管束换热器 | |
CN206656631U (zh) | 一种板式气气热交换器 | |
CN202813894U (zh) | 污水冷热源流体与制冷剂热交换用可拆卸的板式换热器 | |
CN104315909B (zh) | 非对称相变换热器 | |
CN109945717B (zh) | 一种高温冷却器换热管组 | |
CN114688900A (zh) | 一种多模块组合式板翅式换热器 | |
CN102620485A (zh) | 污水等冷热源流体与制冷剂热交换用可拆卸的板式换热器 | |
CN109506498B (zh) | 一种管式超高温气体冷却器 | |
CN106979710B (zh) | 一种模块化组装卷板换热体的换热器及换热方法 | |
CN216049338U (zh) | 一种用于余热回收的气-液式热管换热器结构 | |
CN216523302U (zh) | 一种废气余热回收利用的热交换器 | |
CN216897836U (zh) | 一种高效节能煤气加热器 | |
CN213179555U (zh) | 一种管板式换热器 | |
CN221376386U (zh) | 一种板式换热元件 | |
CN220398316U (zh) | 一种立式螺旋板换热器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23745848 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12024551768 Country of ref document: PH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |