WO2023142928A9 - 一种通信设备 - Google Patents

一种通信设备 Download PDF

Info

Publication number
WO2023142928A9
WO2023142928A9 PCT/CN2023/070439 CN2023070439W WO2023142928A9 WO 2023142928 A9 WO2023142928 A9 WO 2023142928A9 CN 2023070439 W CN2023070439 W CN 2023070439W WO 2023142928 A9 WO2023142928 A9 WO 2023142928A9
Authority
WO
WIPO (PCT)
Prior art keywords
wave
antenna
medium
communication device
back cover
Prior art date
Application number
PCT/CN2023/070439
Other languages
English (en)
French (fr)
Other versions
WO2023142928A1 (zh
Inventor
庄德浩
薛梅
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP23745813.8A priority Critical patent/EP4290689A1/en
Priority to US18/550,164 priority patent/US20240222849A1/en
Publication of WO2023142928A1 publication Critical patent/WO2023142928A1/zh
Publication of WO2023142928A9 publication Critical patent/WO2023142928A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/002Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0485Dielectric resonator antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/422Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material

Definitions

  • the present application relates to the field of antenna technology, and in particular, to a communication device with an antenna.
  • Embodiments of the present application provide a communication device to solve the problem of how to improve antenna gain without interfering with antenna modularization.
  • the communication device includes an antenna and a wave-density medium.
  • the wave-density medium is located in the transmitting direction of the antenna and is spaced apart from the antenna.
  • the communication device is located close to the wave-density medium.
  • the dielectric constant of the medium on one side of the antenna and the dielectric constant of the medium on the side of the wave-dense medium away from the antenna are both smaller than the dielectric constant of the wave-dense medium.
  • the dielectric constant of the medium located on the side of the wave-dense medium close to the antenna, and the dielectric constant of the medium located on the side of the wave-dense medium away from the antenna are both smaller than the dielectric constant of the wave-dense medium, so relative to the wave-dense medium , the dielectric constant of the medium located on the side of the wave-dense medium close to the antenna and the medium located on the side of the wave-dense medium away from the antenna are low and belong to wave-sparse media.
  • the transmitted electromagnetic wave is the first transmitted electromagnetic wave and the reflected electromagnetic wave is the first reflected electromagnetic wave;
  • a transmitted electromagnetic wave passes through the wave-dense medium and enters the wave-sparse medium located on the side of the wave-dense medium away from the antenna, and undergoes a second wave splitting.
  • the transmitted electromagnetic wave in the second wave splitting is the second transmitted electromagnetic wave, and the reflected electromagnetic wave is the second reflection.
  • Electromagnetic wave; the second reflected electromagnetic wave reversely passes through the wave-dense medium and enters the wave-sparse medium located on the side of the wave-dense medium close to the antenna, and the transmitted electromagnetic wave is the third transmitted electromagnetic wave.
  • the thickness D of the wave-dense medium from the surface close to the antenna to the surface far away from the antenna satisfies: 0.5n ⁇ g (1-10%) ⁇ D ⁇ 0.5n ⁇ g (1 + 10%).
  • n 1, 2, 3,..., ⁇ g is the resonant wavelength of the antenna's working frequency band in the wave-dense medium. Therefore, the thickness of the wave-dense medium is an integer multiple of half the wavelength of the antenna in the wave-dense medium.
  • the wave-dense medium forms Fabry-Perot resonator
  • the electromagnetic wave reflects from a wave-dense medium to a wave-dense medium with a phase difference of 180° and transmits a phase difference of 0°
  • the electromagnetic wave reflects a phase difference of 0° and transmits a phase difference of 0°.
  • phase difference between the first reflected electromagnetic wave and the electromagnetic wave emitted by the antenna between the electromagnetic wave emitted by the antenna and the first transmitted electromagnetic wave, between the first transmitted electromagnetic wave and the second reflected electromagnetic wave, and between the second reflected electromagnetic wave and
  • the phase difference between the third transmitted electromagnetic wave and the third transmitted electromagnetic wave is 0°, so the phase difference between the first reflected electromagnetic wave and the third transmitted electromagnetic wave is exactly 180°, which shows interference phase cancellation, so the Fabry-Perot resonator can achieve anti-reflection
  • the effect can increase the gain of the antenna.
  • n 1. In this way, the thickness D of the wave-density medium is small, so it can be installed in a communication device with limited space, and the communication device can be made thinner.
  • the thickness D of the wave-dense medium is less than or equal to 2 mm. In this way, it is conducive to the installation of wave-density media in communication equipment with limited space, and can ensure the thinning of communication equipment.
  • the thickness D of the wave-dense medium is greater than or equal to 0.1 mm. In this way, the structural strength of the wave-dense medium can be ensured and installation in communication equipment can be facilitated.
  • the thickness D of the wave-dense medium can be 0.1mm, 0.2mm, 0.4mm, 0.6mm, 0.8mm, 1.0mm, 1.2mm, 1.3mm, 1.4mm, 1.5mm, 1.6mm, 1.7mm, 1.8mm, 1.9mm or 2.0mm.
  • the dielectric constant DK of the wave-dense medium is greater than or equal to 14 and less than or equal to 40.
  • the operating frequency band of the antenna is between 24GHz and 40GHz
  • the thickness D of the wave-dense medium is about 1mm. It can ensure the structural strength of wave-dense media without affecting the thinness of communication equipment.
  • the material of the wave density medium is zirconia ceramic.
  • the dielectric constant DK of zirconia ceramic is 30.
  • the thickness D of the wave-dense medium is about 1 mm, which can ensure the structural strength of the wave-dense medium without affecting the thinning of communication equipment.
  • the antenna and the wave-dense medium are separated by air, and the air forms a medium located on the side of the wave-dense medium close to the antenna in the communication device.
  • the dielectric constant of air is low and has little impact on the Fabry-Perot effect of wave-dense media.
  • the distance between the antenna and the wave-dense medium is greater than 0 mm and less than 10 mm. In this way, it has less impact on the thinning of communication equipment, and at the same time, the wave-dense medium has a better effect on improving the antenna gain.
  • the distance between the antenna and the wave-dense medium is greater than 0.02 mm and less than 3 mm. In this way, it will have less impact on the thinning of communication equipment, and at the same time, the wave-dense medium will have a better effect on improving the antenna gain.
  • the distance between the antenna and the wave-dense medium is greater than or equal to 0.5 mm and less than or equal to 1 mm. In this way, there will be less impact on the thinning of communication equipment, and at the same time, the wave-dense medium will have a better effect on improving the antenna gain.
  • the communication device further includes a back cover.
  • the antenna is located inside the back cover, and the wave-dense medium is located between the antenna and the back cover and is disposed on the inner surface of the back cover.
  • the back cover forms a medium in the communication device located on the side of the wave-dense medium away from the antenna.
  • the material of the back cover is plastic or glass. The dielectric constant of plastic and glass is small and has a small impact on the Fabry-Perot effect of wave-dense media.
  • the communication device further includes a back cover.
  • the antenna is located inside the back cover, and the wave-dense medium is embedded in the area on the back cover opposite to the antenna. In this way, the thickness of the communication device can be reduced, which is beneficial to the thinning of the communication device.
  • the holes on the back cover for embedding the wave-dense medium may be blind holes or through holes.
  • the blind hole may penetrate the inner surface of the back cover but not the outer surface of the back cover, or it may penetrate the outer surface of the back cover but not penetrate the back cover.
  • the inner surface is not specifically limited here.
  • the hole used to embed the wave-dense medium on the back cover is a blind hole, and the blind hole penetrates the inner surface of the back cover but does not penetrate the outer surface of the back cover, part of the wave-dense medium is located inside the back cover, and the other part Embedded in blind hole.
  • the hole for embedding the wave-dense medium on the back cover is a blind hole
  • the blind hole penetrates the outer surface of the back cover but does not penetrate the inner surface of the back cover
  • part of the wave-dense medium is located outside the back cover, and the other part Embedded in blind hole.
  • the surface of the wave-dense medium away from the antenna can be flush with the outer surface of the back cover, or can protrude to the back cover. outside of the cover.
  • the surface of the wave-dense medium away from the antenna is flush with the outer surface of the back cover. In this way, the clean appearance of the communication device can be improved.
  • the communication device further includes a back cover; the antenna is located inside the back cover, the wave-dense medium includes a first part and a second part, the first part is formed by a partial area of the back cover, and the second part is located in the first part and the antenna, and the second part is disposed on the inner surface of the first part.
  • the sum of the thicknesses of the first part and the second part is the thickness of the wave-dense medium, which is also conducive to thinning the communication device, and because the second part is disposed on the surface of the first part close to the antenna, it will not affect the communication Appearance of the device.
  • the second part may also be located on a side of the first part away from the antenna and disposed on the outer surface of the first part.
  • a part of the second part is located between the first part and the antenna and is disposed on the inner surface of the first part, and the other part is located on a side of the first part away from the antenna and is disposed on the outer surface of the first part.
  • the first part and the second part are integrally formed. In this way, the structural complexity of the communication equipment can be reduced and the assembly efficiency can be improved.
  • the communication device further includes a back cover; the antenna is located inside the back cover, the wave density medium is located outside the back cover, and the wave density medium is disposed on the outer surface of the back cover.
  • the wave-density medium will not occupy the internal accommodation space of the communication equipment, and can avoid squeezing the installation space of other components in the communication equipment.
  • the front projection of the antenna on the back cover is the first projection
  • the front projection of the wave density medium on the back cover is the second projection.
  • the area of the second projection is larger than the area of the first projection
  • the edge of the second projection is located outside the edge of the first projection.
  • the edge of the second projection is spaced apart from the edge of the first projection.
  • the antenna is a millimeter wave band antenna.
  • the millimeter wave frequency band Compared with the Sub-6GHz frequency band, the millimeter wave frequency band has the characteristics of higher bandwidth, wider connections and lower latency.
  • signals in the millimeter wave band attenuate rapidly in space, so there is an urgent need to increase the gain to improve the coverage of communication equipment (such as base stations or terminals) in the millimeter wave band.
  • the millimeter wave frequency band compared with the terahertz frequency band, the millimeter wave frequency band has the characteristics of low cost, so it has the advantage of wide application range.
  • Figure 1 is a schematic front structural diagram of a communication device provided by some embodiments of the present application.
  • Figure 2 is a schematic structural diagram of the back of the communication device shown in Figure 1;
  • Figure 3 is a schematic cross-sectional structural diagram of the communication equipment shown in Figure 2 along the A-A direction;
  • Figure 4 is a schematic diagram of the relative positions of the midplane, back cover, antenna and wave-density medium in the communication equipment shown in Figure 3;
  • Figure 5 is a schematic diagram of the transmission path of electromagnetic waves emitted by the antenna in the communication device shown in Figure 4 in a wave-dense medium;
  • Figure 6 is a schematic diagram of the orthographic projection of the antenna on the back cover and the orthographic projection of the wave density medium on the back cover in the communication device shown in Figures 2 and 3;
  • Figure 7 shows the input return loss of the antenna when the communication equipment shown in Figures 1-3 is not equipped with a wave-dense medium and is equipped with a wave-dense medium;
  • Figure 8 is the pattern of the antenna at 26GHz when the communication equipment shown in Figures 1 to 3 is not provided with a wave-density medium and is provided with a wave-density medium; wherein (a) in Figure 8 indicates that when no wave-density medium is provided, The pattern of the antenna at 26GHz; (b) in Figure 8 shows the pattern of the antenna at 26GHz when a wave-dense medium is installed;
  • Figure 9 is the pattern of the antenna at 28 GHz when the communication equipment shown in Figures 1 to 3 is not provided with a wave-density medium and is provided with a wave-density medium; wherein (a) in Figure 9 indicates that when no wave-density medium is provided, The pattern of the antenna at 28GHz; (b) in Figure 9 shows the pattern of the antenna at 28GHz when a wave-dense medium is installed;
  • Figure 10 is the pattern of the antenna at 26GHz after the communication equipment shown in Figures 1-3 is equipped with a wave-dense medium and the size of the antenna reference ground layer is optimized;
  • Figure 11 is the pattern of the antenna at 28GHz after the communication equipment shown in Figures 1-3 is equipped with a wave-dense medium and the size of the antenna reference ground layer is optimized;
  • Figure 12 is the pattern of the antenna at 26GHz after the communication equipment shown in Figures 1 to 3 is not equipped with a wave density medium but the size of the antenna reference ground layer is optimized;
  • Figure 13 is the pattern of the antenna at 28GHz after the communication equipment shown in Figures 1 to 3 is not equipped with a wave density medium but the size of the antenna reference ground layer is optimized;
  • Figure 14 is a schematic diagram of the relative positions of the midplane, back cover, antenna and wave-density medium in the communication device provided by some embodiments of the present application;
  • Figure 15 is a schematic diagram of the relative positions of the midplane, back cover, antenna and wave-density medium in the communication device provided by some embodiments of the present application;
  • Figure 16 is a schematic diagram of the relative positions of the midplane, back cover, antenna and wave-density medium in the communication device provided by some embodiments of the present application;
  • Figure 17 is a schematic diagram of the relative positions of the midplane, back cover, antenna and wave-density medium in the communication device provided by some embodiments of the present application;
  • Figure 18 is a schematic structural diagram of the back of a communication device provided by some embodiments of the present application.
  • Figure 19 is a schematic cross-sectional structural diagram of the communication device shown in Figure 18 along the B-B direction;
  • Figure 20 is a schematic diagram of the relative positions of the middle panel, camera decoration, antenna and wave density medium in the communication device provided by some embodiments of the present application;
  • Figure 21 is a schematic diagram of the relative positions of the middle panel, camera decoration, antenna and wave density medium in the communication device provided by some embodiments of the present application;
  • Figure 22 is a schematic structural diagram of the back of a communication device provided by some embodiments of the present application.
  • Figure 23 is a schematic structural diagram of the communication device shown in Figure 22 when viewed from direction D1;
  • Figure 24 is a schematic structural diagram of the communication device shown in Figure 22 when viewed from direction D2;
  • Figure 25 is a schematic structural diagram of the communication device shown in Figure 22 when viewed from direction D3;
  • Figure 26 is a schematic structural diagram of the communication device shown in Figure 22 when viewed from direction D4;
  • Figure 27 is a schematic diagram of the relative positions of antennas, wave-density media, and mid-boards in communication equipment according to some further embodiments of the present application;
  • Figure 28 is a schematic diagram of the relative positions of antennas, wave-density media, and mid-boards in communication equipment according to some further embodiments of the present application.
  • the terms “comprising”, “comprises” or any other variation thereof are intended to cover a non-exclusive inclusion, such that a process, method, article or apparatus that includes a list of elements not only includes those elements, but also Includes other elements not expressly listed or elements inherent to the process, method, article or apparatus.
  • an element defined by the statement “comprises a" does not exclude the presence of additional identical elements in a process, method, article or apparatus that includes that element.
  • this application is based on using the Fabry-Perot effect (also known as the F-P effect) to set up a resonator in the transmission direction of the antenna to add to the existing modular antenna.
  • the gain of the antenna can be improved without changing the shape, material and size of the antenna, so there is no need to interfere with the initial performance of the modular antenna.
  • the present application provides a communication device, which is a type of communication device with a wireless signal transceiver function.
  • the communication device may be a portable electronic device or other suitable electronic device.
  • the communication device can be a mobile phone, a base station, a tablet personal computer, a notebook computer, a laptop computer, a personal digital assistant (PDA), a wearable device, etc.
  • wearable devices include but are not limited to bracelets, watches, augmented reality (AR) glasses, AR helmets, virtual reality (VR) glasses or VR helmets, etc.
  • Figure 1 is a schematic front structural view of the communication device 100 provided by some embodiments of the present application.
  • Figure 2 is a schematic rear structural view of the communication device 100 shown in Figure 1.
  • Figure 3 is a schematic view of the communication device 100 shown in Figure 2. Schematic diagram of the cross-sectional structure of 100 along the A-A direction. This embodiment and the following embodiments are introduced by taking the communication device 100 as a mobile phone as an example. This cannot be considered as a special restriction on the communication device 100 .
  • the communication device 100 includes a screen 10, a back case 20, a circuit board (not shown in the figure) and an antenna 30.
  • an XYZ coordinate system is established.
  • the length direction of the communication device 100 is defined as the Y-axis direction
  • the width direction is the X-axis direction
  • the thickness direction is the Z-axis direction. It can be understood that the coordinate system setting of the communication device 100 can be flexibly set according to actual needs, and is not specifically limited here.
  • the screen 10 is used to display images, videos, etc.
  • the screen 10 includes a light-transmitting cover 11 and a display screen 12 .
  • the light-transmitting cover 11 and the display screen 12 are stacked and fixedly connected.
  • the light-transmitting cover 11 is mainly used to protect the display screen 12 and prevent dust.
  • the material of the light-transmitting cover 11 includes but is not limited to glass.
  • the display screen 12 may be a flexible display screen or a rigid display screen.
  • the display screen 12 may be an organic light-emitting diode (OLED) display, an active matrix organic light-emitting diode or an active-matrix organic light-emitting diode (AMOLED).
  • OLED organic light-emitting diode
  • AMOLED active-matrix organic light-emitting diode
  • Display mini organic light-emitting diode display, micro organic light-emitting diode display, micro organic light-emitting diode display, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) display screen, liquid crystal display (liquid crystal display, LCD).
  • QLED quantum dot light emitting diodes
  • the back case 20 is used to protect the internal electronic components of the communication device 100 .
  • the back case 20 includes a back cover 21 and a frame 22 .
  • the material of the back cover 21 includes but is not limited to glass, plastic such as polycarbonate (PC), and ceramics.
  • the back cover 21 is located on the side of the display screen 12 away from the light-transmitting cover 11 and is stacked with the light-transmitting cover 11 and the display screen 12 .
  • the frame 22 is located between the back cover 21 and the light-transmitting cover 11 , and is fixed on the back cover 21 .
  • the frame 22 can be fixedly connected to the back cover 21 through adhesive.
  • the frame 22 may also be an integrally formed structure with the back cover 21 , that is, the frame 22 and the back cover 21 may be an integral structure.
  • the transparent cover 11 is fixed on the frame 22 .
  • the light-transmitting cover 11 can be fixed on the frame 22 through adhesive.
  • the light-transmitting cover 11 , the back cover 21 and the frame 22 form an internal accommodation space of the communication device 100 .
  • the inner accommodation space accommodates the display screen 12 therein.
  • communication device 100 also includes midplane 23 .
  • the middle plate 23 is disposed between the display screen 12 and the back cover 21 , and is fixed to the inner surface of the frame 22 .
  • the middle plate 23 can be glued and fixed on the frame 22 , or the middle plate 23 and the frame 22 can be an integrally formed structure.
  • the middle plate 23 is made of metal material, and the middle plate 23 can be used as a reference ground for electronic components in the communication device 100 .
  • the circuit board is disposed in the internal accommodation space of the communication device 100 .
  • the circuit board is located between the middle plate 23 and the back cover 21 , and the circuit board is fixed on the middle plate 23 .
  • the circuit board can be a main circuit board or a secondary circuit board, which is not specifically limited in this application.
  • the antenna 30 is provided in the internal accommodation space of the communication device 100 .
  • the antenna 30 is disposed between the middle panel 23 and the back cover 21 .
  • a radio frequency circuit is provided on the circuit board, and the antenna 30 is electrically connected to the radio frequency circuit on the circuit board to transmit radio frequency signals from the radio frequency circuit to the external space in the form of electromagnetic waves to achieve signal transmission; or Receives electromagnetic waves from the external space, and converts the electromagnetic waves into radio frequency signals and transmits them to the radio frequency circuit to achieve signal reception.
  • the antenna 30 may be a directional antenna or an omnidirectional antenna.
  • the antenna 30 can transmit signals to the side of the back cover 21 away from the screen 10 .
  • the antenna 30 can also be used to receive electromagnetic wave signals from the side of the back cover 21 away from the screen 10 .
  • the antenna 30 can also transmit signals to the side of the frame 22 away from the internal accommodation space of the communication device 100, or to the side of the screen 10 away from the back cover 21.
  • the antenna 30 can transmit signals to the back cover 21.
  • the cover 21 transmits signals from the side away from the screen 10 as an example. This cannot be considered as a special limitation on the present application.
  • the antenna 30 transmits signals to the side of the back cover 21 away from the screen 10
  • it can also transmit signals to other sides, such as transmitting signals to the side of the frame 22 away from the internal accommodation space of the communication device 100, or to the screen. 10 emits signals from the side away from the back cover 21, which is not specifically limited here.
  • the antenna 30 includes, but is not limited to, a Sub-6GHz band antenna, a millimeter wave (mmWave) band antenna, and a terahertz (THz) band antenna.
  • the antenna 30 is a mmWave band antenna.
  • the mmWave frequency band has the characteristics of higher bandwidth, wider connections and lower latency than the Sub-6GHz frequency band.
  • mmWave band signals attenuate rapidly in space, so there is an urgent need to increase the gain to improve the coverage of mmWave band communication equipment (such as base stations or terminals).
  • the mmWave frequency band has the characteristics of low cost, so it has the advantage of wide application range.
  • the working frequency band of the antenna 30 can be the n257 frequency band (26.5GHz-29.5GHz), the n258 frequency band (24.25GHz-27.5GHz) or the n260 frequency band (37-40GHz).
  • the antenna 30 can be supplied as a module. In this way, management is facilitated and the production efficiency of the communication equipment including the antenna 30 can be improved. However, in this way, it is inconvenient to increase the gain of the antenna 30 by changing the shape, material or size of the antenna 30 .
  • the communication device also includes a wave density medium 40.
  • the wave-dense medium 40 is a structure used to increase the gain of the antenna 30 .
  • the wave-dense medium 40 is in the shape of a rectangular sheet.
  • the wave-dense medium 40 can also be in the shape of a circular sheet, an elliptical sheet, a triangular sheet, or a polygonal sheet. status and so on.
  • the wave-dense medium 40 is located in the emission direction of the antenna 30 , and is spaced apart from the antenna 30 . Specifically, the wave-dense medium 40 may be located between the antenna 30 and the back cover 21 , or may be disposed in an area on the back cover 21 opposite to the antenna 30 , or may be disposed on a side of the back cover 21 away from the antenna 30 . In some embodiments, please continue to refer to FIG. 3 , the wave-dense medium 40 is located between the antenna 30 and the back cover 21 , and the wave-dense medium 40 is disposed on the inner surface of the back cover 21 .
  • the inner surface of the back cover 21 refers to the surface of the back cover 21 facing the internal accommodation space of the communication device 100 , that is, it refers to the surface of the back cover 21 close to the screen 10 .
  • the wave-density medium 40 can be glued to the inner surface of the back cover 21 , or directly formed on the inner surface of the back cover 21 using the back cover 21 as a base. This is not specifically limited in the embodiment of the present application.
  • the wave-dense medium 40 and the antenna 30 may be separated by a solid medium, may be separated by air, or may be separated by at least one layer of solid medium and at least one layer of air, which are not specifically limited here.
  • Figure 4 is a schematic diagram of the relative positions of the middle plate 23, the back cover 21, the antenna 30 and the wave density medium 40 in the communication device 100 shown in Figure 3.
  • the relationship between the wave density medium 40 and the antenna 30 is separated by air. This structure is simple, the cost of air is low, and it is easy to implement.
  • the dielectric constant (DK, also called dielectric constant) value of the medium located on the side of the wave-dense medium 40 close to the antenna 30, and the DK value of the medium located on the side of the wave-dense medium 40 away from the antenna 30 are both less than DK value of wave dense medium 40.
  • the medium located on the side of the wave-dense medium 40 close to the antenna 30 refers to the medium located on the side of the wave-dense medium 40 close to the antenna 30 and adjacent to the wave-dense medium 40 .
  • the medium located on the side of the wave-dense medium 40 away from the antenna 30 refers to the medium located on the side of the wave-dense medium 40 away from the antenna 30 and adjacent to the wave-dense medium 40 .
  • the medium located on the side of the wave-dense medium 40 close to the antenna 30 is air
  • the medium located on the side of the wave-dense medium 40 away from the antenna 30 is the back cover 21 . That is to say, the DK value of the air and the DK value of the back cover 21 are both smaller than the DK value of the wave-dense medium 40 .
  • the material of the back cover 21 can be selected as plastic or glass with a smaller DK value. In this way, relative to the wave-dense medium 40 , the medium located on the side of the wave-dense medium 40 close to the antenna 30 and the medium located on the side of the wave-dense medium 40 away from the antenna 30 have lower dielectric constants and belong to ripple media.
  • Figure 5 is a schematic diagram of the transmission path of the electromagnetic wave emitted by the antenna 30 in the communication device 100 shown in Figure 4 in the wave-dense medium 40.
  • the sparse medium enters the wave-dense medium 40 and undergoes the first wave splitting.
  • the transmitted electromagnetic wave is the first transmitted electromagnetic wave b
  • the reflected electromagnetic wave is the first reflected electromagnetic wave c; the first transmitted electromagnetic wave b passes through the wave-dense medium 40 and enters the wave-dense medium 40 .
  • the medium 40 is a wave-sparse medium on the side far away from the antenna 30 and undergoes the second wave splitting.
  • the transmitted electromagnetic wave is the second transmitted electromagnetic wave d, and the reflected electromagnetic wave is the second reflected electromagnetic wave e; the second reflected electromagnetic wave e reversely passes through the wave density.
  • the medium 40 enters the wave-thin medium located on the side of the wave-dense medium 40 close to the antenna 30, and the transmitted electromagnetic wave is the third transmitted electromagnetic wave f.
  • the thickness D of the wave-dense medium 40 from the surface close to the antenna 30 to the surface far away from the antenna 30 satisfies: 0.5n ⁇ g (1-10%) ⁇ D ⁇ 0.5n ⁇ g (1 + 10%).
  • n 1, 2, 3, ..., ⁇ g is the resonant wavelength of the antenna 30 working frequency band in the wave-dense medium 40 .
  • ⁇ 0 is the resonant wavelength of the working frequency band of the antenna 30 in vacuum
  • ⁇ 0 C 0 /F
  • C 0 is the transmission speed of electromagnetic waves in vacuum
  • C 0 3 ⁇ 10 ⁇ 8m/s.
  • F is the working frequency band of the antenna 30, and F represents a frequency band range. For example, if the working frequency band of the antenna 30 is the n257 frequency band, then F is 26.5GHz-29.5GHz.
  • ⁇ 0 is also a wavelength range, specifically the upper limit of the C 0 /F frequency band range - the lower limit of the C 0 /F frequency band range.
  • DK is the dielectric constant of the wave-dense medium 40.
  • ⁇ g is also a wavelength range. It can be seen that the thickness D satisfies the conditions: 0.5n ⁇ g (1-10%) ⁇ D ⁇ 0.5n ⁇ g (1 + 10%), that is, the thickness D satisfies: 0.5n ⁇ g1 (1-10%) ⁇ D ⁇ 0.5n ⁇ g2 (1+10%), where ⁇ g1 is the resonant wavelength of the upper limit frequency in the wave-dense medium 40 in the working frequency band of the antenna 30, and ⁇ g2 is the resonant wavelength of the lower limit frequency in the wave-dense medium 40 in the working frequency band of the antenna 30.
  • the thickness D of the wave-dense medium 40 is an integer multiple of half the wavelength of the antenna 30 in the wave-dense medium 40.
  • the wave-dense medium 40 forms a Fabry-Perot resonator, and the electromagnetic wave passes from the wave-sparse medium to the wave-dense medium.
  • the reflection has a phase difference of 180° and the transmission has a phase difference of 0°; from the wave-dense medium to the wave-thin medium, the reflection has a phase difference of 0° and the transmission has a phase difference of 0°.
  • the phase difference between the first reflected electromagnetic wave b and the third transmitted electromagnetic wave f is exactly 180°, which shows interference phase elimination. Therefore, the Fabry Perspective
  • the Luo resonator can achieve an anti-reflection effect and can increase the gain of the antenna 30 .
  • n 1
  • the thickness D of the wave-density medium 40 is small, so that it can be installed in a communication device with limited space, and the communication device can be made thinner.
  • the thickness D of the wave dense medium 40 may be less than or equal to 2 mm. In this way, the wave-density medium 40 is facilitated to be installed in a communication device with limited space, and the communication device can be made thinner. On this basis, optionally, the thickness D of the wave-density medium 40 is greater than or equal to 0.1 mm. In this way, the structural strength of the wave-density medium 40 can be ensured without affecting the thinning of the communication equipment, making it easy to install in the communication equipment.
  • the thickness D of the wave-density medium 40 can be 0.1mm, 0.2mm, 0.4mm, 0.6mm, 0.8mm, 1.0mm, 1.2mm, 1.3mm, 1.4mm, 1.5mm, 1.6mm, 1.7mm, 1.8mm , 1.9mm or 2.0mm.
  • the DK value of the wave density medium 40 can be greater than or equal to 14 and less than or equal to 40.
  • the working frequency band of the antenna 30 is between 24GHz and 40GHz, and the thickness D of the wave-dense medium 40 is about 1 mm.
  • the structural strength of the wave-density medium 40 can be ensured without affecting the thinning of the communication equipment.
  • materials of the wave density medium 40 include, but are not limited to, zirconia ceramics and alumina ceramics.
  • the dielectric constant DK of zirconia ceramics and alumina ceramics can reach 26-35.
  • the thickness D of the wave density medium 40 is about 1 mm, which can ensure the wave density without affecting the thinning of communication equipment.
  • the structural strength of the dense medium 40 is not limited to, zirconia ceramics and alumina ceramics.
  • the distance between the wave-dense medium 40 and the antenna 30 (that is, the height h of the air gap) is greater than 0 mm and less than 10 mm. In this way, there is less impact on the thinning of the communication device 100, and at the same time, the wave-density medium 40 has a better effect on improving the gain of the antenna 30.
  • the height h is greater than 0.02mm and less than 3mm. In this way, there is less impact on the thinning of the communication device 100, and at the same time, the wave-density medium 40 has a better effect on improving the gain of the antenna 30.
  • the height h is greater than or equal to 0.5mm and less than or equal to 1mm. In this way, the impact on the thinning of the communication device 100 is smaller, and at the same time, the wave-density medium 40 has a better effect on improving the gain of the antenna 30 .
  • the front projection of the antenna 30 on the back cover 21 is the first projection
  • the front projection of the wave density medium 40 on the back cover 21 is the second projection
  • the first projection and the second projection overlap.
  • the wave-dense medium 40 is located in the emission direction of the antenna 30 and faces the antenna 30 , which can increase the gain of the antenna 30 .
  • the overlap between the first projection and the second projection means: the part of the first projection overlaps with the part of the second projection; or the whole of the first projection overlaps with the part of the second projection; or the part of the first projection overlaps with the part of the second projection. All of the second projection overlaps; or, all of the first projection overlaps with all of the second projection.
  • the area of the second projection is larger than the area of the first projection, and the edge of the second projection is located outside the edge of the first projection, and the edge of the second projection is spaced apart from the edge of the first projection.
  • the antenna 30 is in the shape of a rectangular plate, and the wave density medium 40 is in the shape of a rectangular sheet.
  • Figure 6 shows the antenna 30 on the back of the communication device 100 shown in Figures 2 and 3.
  • the first projection O1 and the second projection O2 are both rectangular.
  • the length direction of the first projection O1 is consistent with the length direction of the second projection O2, and the width direction of the first projection O1 is consistent with the width direction of the second projection O2.
  • the first projection O1 is located within the second projection O2.
  • the length L1 of the first projection O1 is smaller than the length L2 of the second projection O2.
  • the width W1 of the first projection O1 is smaller than the width W2 of the second projection O2.
  • the edge C1 of the first projection O1 It is spaced apart from the edge C2 of the second projection O2. In this way, the size of the wave-dense medium 40 exceeds the size of the antenna 30, and the wave-dense medium 40 can cover the antenna 30, thereby maximizing the gain of the antenna 30.
  • Figure 7 shows the communication device 100 shown in Figures 1-3 when the wave-density medium 40 is not provided and when the wave-density medium 40 is provided.
  • the input return loss of the antenna 30 is S11.
  • S11_no F-P represents the input return loss of the antenna 30 when the communication device 100 is not provided with the wave-dense medium 40
  • S11_0.25 ⁇ g represents the antenna 30 when the communication device 100 is provided with the wave-dense medium 40 and the thickness of the wave-dense medium 40 is 0.25 ⁇ g.
  • the input return loss; S11_0.5 ⁇ g represents the input return loss of the antenna 30 when the communication device 100 is provided with the wave-dense medium 40 and the thickness of the wave-dense medium 40 is 0.5 ⁇ g; S11_0.75 ⁇ g represents the communication device 100 is provided with the wave-dense medium 40 and the input return loss of the antenna 30 when the thickness of the wave-dense medium 40 is 0.75 ⁇ g. It can be seen from Figure 5 that when the thickness of the wave-dense medium 40 is far away from 0.5 ⁇ g, the S11 of the antenna 30 deteriorates significantly. When the thickness of the wave-dense medium 40 is close to 0.5 ⁇ g, although the bandwidth becomes narrower, S11 ⁇ can be ensured at the resonant frequency point. -10dB. This shows that the wave-dense medium 40 has a wave-transmitting effect and can increase the gain of the antenna 30 .
  • FIG. 8 is a pattern of the antenna 30 at 26 GHz when the communication device 100 shown in FIGS. 1 to 3 is not provided with the wave-density medium 40 and is provided with the wave-density medium 40 .
  • (a) in Figure 8 shows the pattern of the antenna 30 at 26 GHz when the wave density medium 40 is not provided;
  • (b) in Figure 8 shows the pattern of the antenna 30 at 26 GHz when the wave density medium 40 is provided.
  • direction diagram in which the thickness of the wave dense medium 40 is close to 0.5 ⁇ g.
  • the gain (gain) of the antenna 30 obtained in (a) of Figure 8 is 3.6dBi; when the wave-dense medium 40 is installed, the gain of the antenna 30 obtained in (b) of Figure 8 is 7.8dBi, the gain is increased by about 4.2dBi.
  • FIG. 9 is a pattern of the antenna 30 at 28 GHz when the communication device 100 shown in FIGS. 1 to 3 is not provided with the wave-density medium 40 and is provided with the wave-density medium 40 .
  • (a) in Figure 9 shows the pattern of the antenna 30 at 28 GHz when the wave dense medium 40 is not provided;
  • (b) in Figure 9 shows the pattern of the antenna 30 at 28 GHz when the wave dense medium 40 is provided.
  • direction diagram in which the thickness of the wave dense medium 40 is close to 0.5 ⁇ g.
  • the gain (gain) of the antenna 30 obtained in (a) of Figure 9 is 3.7dBi; when the wave-dense medium 40 is installed, the gain of the antenna 30 is obtained in (b) of Figure 9: 8.1dBi, the gain is increased by about 4.4dBi.
  • the size of the reference ground layer in the modular antenna 30 is less than or equal to the size of the antenna 30, so the size of the wave-dense medium 40 exceeds the size of the antenna.
  • Dimensions of reference strata within 30 the size of the reference formation can be increased to emit the energy of the electromagnetic field extended in the wave-dense medium 40 as far as possible in the direction of the wave-dense medium 40 away from the reference formation, thereby further improving the gain of the antenna 30 .
  • the reference ground layer of the antenna 30 can be electrically connected to a larger-sized midplane 23 or a reference ground layer within the circuit board, To increase the size of the reference ground layer of the antenna 30, the gain of the antenna 30 can be further improved.
  • Figure 10 is the pattern of the antenna 30 at 26GHz after the communication device 100 shown in Figures 1 to 3 is provided with the wave density medium 40 and the size of the reference ground layer of the antenna 30 is optimized.
  • Figure 11 is The communication device 100 shown in FIGS. 1 to 3 is provided with the wave-dense medium 40 and after optimizing the size of the antenna 30 with reference to the ground layer, the pattern of the antenna 30 at 28 GHz is obtained.
  • Figure 12 shows that the communication device 100 shown in Figures 1 to 3 is not provided with the wave density medium 40 but After optimizing the size of the antenna 30 with reference to the ground layer, the pattern of the antenna 30 at 26 GHz is shown in Figure 13.
  • the communication device 100 shown in Figures 1-3 does not have the wave density medium 40 but after optimizing the size of the antenna 30 with the reference ground layer, the antenna 30 pattern at 28GHz. It can be seen from Figures 12 and 13 that after optimizing the size of the reference ground layer of the antenna 30, the gain increases slightly.
  • the gain of the antenna 30 is increased from 3.6dBi to 3.8dBi under the 26GHz condition, and the gain of the antenna 30 is increased from 3.7dBi to 4.0dBi under the 28GHz condition, but the pattern is also distorted. It can be seen from this that only by further optimizing the size of the reference ground layer of the antenna 30 on the basis of setting the wave density medium 40 can the purpose of greatly increasing the gain be achieved.
  • the antenna 30 can transmit signals to the side of the back cover 21 away from the screen 10
  • the wave-dense medium 40 is disposed on the inner surface of the back cover 21
  • the wave-dense medium 40 can also be disposed in the area on the back cover 21 opposite to the antenna 30 , or can also be disposed on the side of the back cover 21 away from the antenna 30 .
  • the antenna 30 can also transmit signals to the side of the frame 22 away from the internal accommodation space of the communication device 100, or transmit signals to the side of the screen 10 away from the back cover 21.
  • the wave density medium 40 can be disposed on the frame. 22 or the inner surface of the screen 10 , the area opposite to the antenna 30 or the side away from the antenna 30 .
  • FIG. 14 is a schematic diagram of the relative positions of the middle plate 23 , the back cover 21 , the antenna 30 and the wave-density medium 40 in the communication device 100 according to some embodiments of the present application.
  • the wave-dense medium 40 is embedded in the area on the back cover 21 opposite to the antenna 30 . In this way, the thickness of the communication device can be reduced, which is beneficial to the thinning of the communication device.
  • the holes on the back cover 21 for embedding the wave-dense medium 40 may be blind holes or through holes.
  • the blind hole may penetrate the inner surface of the back cover 21 , not penetrate the outer surface of the back cover 21 , or may penetrate the outer surface of the back cover 21 , does not penetrate the inner surface of the back cover 21, and is not specifically limited here.
  • the hole on the back cover 21 for embedding the wave-dense medium 40 is a blind hole, and the blind hole penetrates the inner surface of the back cover 21 but does not penetrate the outer surface of the back cover 21 , a part of the wave-dense medium 40 is located on the back cover.
  • another part is embedded in the blind hole.
  • the hole on the back cover 21 for embedding the wave-dense medium 40 is a blind hole, and the blind hole penetrates the outer surface of the back cover 21 but does not penetrate the inner surface of the back cover 21 , a part of the wave-dense medium 40 is located on the back cover.
  • another part is embedded in the blind hole.
  • the surface of the wave-dense medium 40 away from the antenna 30 can be flush with the outer surface of the back cover 21 , or can protrude to the outside of the back cover 21 .
  • the surface of the wave-dense medium 40 away from the antenna 30 is flush with the outer surface of the back cover 21 . In this way, the clean appearance of the communication device 100 can be improved.
  • the outer surface of the back cover 21 refers to the surface of the back cover 21 away from the internal accommodation space of the communication device 100 , that is, it refers to the surface of the back cover 21 away from the screen 10 .
  • the outside of the back cover 21 refers to the side of the outer surface of the back cover 21 away from the inner surface of the back cover 21 .
  • the inner side of the back cover 21 refers to the side of the inner surface of the back cover 21 away from the outer surface of the back cover 21 .
  • the ripple-thin medium located on the side of the wave-dense medium 40 close to the antenna 30 is air
  • the ripple-thin medium located on the side of the wave-dense medium 40 away from the antenna 30 is air.
  • the medium is also air.
  • the dielectric constant DK of air is small, approximately 1, and has little impact on the F-P effect of the wave-dense medium 40 .
  • the wave-dense medium 40 includes a first part 41 and a second part 42.
  • the first part 41 is formed by a partial area of the back cover 21 .
  • the second part 42 is located between the first part 41 and the antenna 30 , and the second part 42 is disposed on the surface of the first part 41 close to the antenna 30 (that is, the inner surface of the first part 41 ).
  • the sum of the thicknesses of the first part 41 and the second part 42 is the thickness D of the wave-dense medium 40 , which is also conducive to thinning the communication device, and because the second part 42 is disposed on the first part 41 close to the antenna 30 surface, so it does not affect the appearance of the communication device.
  • the second part 42 may also be disposed on a surface of the first part 41 away from the antenna 30 (that is, the outer surface of the first part 41).
  • Figure 16 is a schematic diagram of the relative positions of the middle plate 23, the back cover 21, the antenna 30 and the wave density medium 40 in the communication device 100 according to some embodiments of the present application.
  • the second part A part of 42 is disposed on the inner surface of the first part 41
  • the other part is disposed on the outer surface of the first part 41 .
  • the first part 41 and the second part 42 are integrally formed. In this way, the structural complexity of the communication equipment can be reduced and the assembly efficiency can be improved.
  • the ripple-thin medium located on the side of the wave-dense medium 40 close to the antenna 30 is air, and the ripple-thin medium located on the side of the wave-dense medium 40 away from the antenna 30 is also air.
  • the dielectric constant DK of air is small, approximately 1, and has little impact on the F-P effect of the wave-dense medium 40 .
  • FIG. 17 is a schematic diagram of the relative positions of the middle plate 23 , the back cover 21 , the antenna 30 and the wave-density medium 40 in the communication device 100 according to some embodiments of the present application.
  • the wave-dense medium 40 is located on the side of the back cover 21 away from the antenna 30 , that is, the wave-dense medium 40 is located outside the back cover 21 .
  • the wave-density medium 40 is disposed on the outer surface of the back cover 21 . In this way, the wave-density medium 40 does not occupy the internal accommodation space of the communication equipment, and can avoid squeezing the installation space of other components in the communication equipment.
  • the ripple-thin medium located on the side of the wave-dense medium 40 close to the antenna 30 is the back cover 21
  • the ripple-thin medium located on the side of the wave-dense medium 40 away from the antenna 30 is air.
  • the material of the back cover 21 can be plastic or glass. The dielectric constants of plastic and glass are small and have a small impact on the F-P effect of the wave-dense medium 40.
  • FIG. 18 is a schematic structural diagram of the back of the communication device 100 provided by some embodiments of the present application.
  • the communication device 100 further includes a camera decoration part 50 , and the camera decoration part 50 is disposed on the back cover 21 .
  • the signal transmission direction of the antenna 30 is directed toward the camera decoration 50 .
  • FIG. 19 which is a schematic cross-sectional structural diagram of the communication device 100 shown in FIG. 18 along the BB direction.
  • the camera decoration part 50 includes a decoration part main body 51 and a light-transmitting plate 52 disposed on a side of the decoration part main body 51 away from the antenna 30.
  • the decoration part main body 51 is provided with a first mounting hole 51a, and a part of the wave density medium 40 is located on the camera decoration.
  • One side of the component 50 is close to the antenna 30, and the other part of the wave-density medium 40 is installed in the first mounting hole 51a of the main body 51 of the decorative component. In this way, the thickness of the communication device 100 can be reduced to a certain extent, and the appearance consistency of the camera decoration 50 can be ensured.
  • FIG. 20 is a schematic diagram of the relative positions of the middle panel 23 , the camera decoration 50 , the antenna 30 and the wave-density medium 40 in the communication device 100 according to some embodiments of the present application.
  • the main body 51 of the decorative piece is provided with a first mounting hole 51a
  • the light-transmitting plate 52 is provided with a second mounting hole 52a.
  • a part of the wave-density medium 40 is installed in the first mounting hole 51a of the decoration body 51
  • a part of the wave-density medium 40 is installed in the second mounting hole 52a of the light-transmitting plate 52
  • the remaining part of the wave-density medium 40 is located in the camera decoration.
  • the piece 50 is close to the side of the antenna 30. In this way, the thickness of the communication device 100 can be reduced to a large extent.
  • FIG. 21 is a schematic diagram of the relative positions of the middle panel 23 , the camera decoration 50 , the antenna 30 and the wave-density medium 40 in the communication device 100 according to some embodiments of the present application.
  • the wave-dense medium 40 is located on the side of the camera decoration 50 away from the antenna 30 , that is, the wave-dense medium 40 is located outside the camera decoration 50 .
  • the wave-density medium 40 is provided on the outer surface of the camera decoration 50 . In this way, the wave-density medium 40 does not occupy the internal accommodation space of the communication equipment, and can avoid squeezing the installation space of other components in the communication equipment.
  • FIG. 22 is a schematic structural diagram of the back of the communication device 100 provided by some embodiments of the present application.
  • the frame 22 includes a lower frame. 221, left border 222, right border 223 and top border 224.
  • FIG. 23 is a schematic structural diagram of the communication device 100 shown in FIG. 22 when viewed from the direction D1.
  • the antenna 30 transmits signals to the side of the lower frame 221 away from the internal accommodation space of the communication device 100.
  • the wave-density medium 40 is disposed on the inner surface of the lower frame 221, embedded in the lower frame 221, and connected with the lower frame 221.
  • Figure 24 is a schematic structural diagram of the communication device 100 shown in Figure 22 when viewed from the direction D2;
  • Figure 25 is a schematic structural diagram of the communication device 100 shown in Figure 22 viewed from the direction D3.
  • FIG. 26 is a schematic structural diagram of the communication device 100 shown in FIG. 22 when viewed from direction D4.
  • the antenna 30 can also transmit signals to the side of the left frame 222, the right frame 223, or the upper frame 224 away from the internal accommodation space of the communication device 100.
  • the wave density medium 40 is disposed on the left frame 222, the right frame 223, or the upper frame 224.
  • the inner surface is embedded in the left frame 222, the right frame 223 or the upper frame 224, or is provided on the outer surface of the left frame 222, the right frame 223 or the upper frame 224.
  • the number of antennas 30 may be one or multiple, and the plurality of antennas 30 may be arranged in an array.
  • the wave-density medium 40 can be provided for each antenna 30 , or the same wave-density medium 40 can be provided for the multiple antennas 30 , and the wave-density medium 40 can cover the multiple antennas. 30 to increase the gain of the plurality of antennas 30, which is not specifically limited here.
  • FIG. 27 is a schematic diagram of the relative positions of the antenna 30 , the wave-density medium 40 , and the middle plate 23 in the communication device 100 according to some embodiments of the present application.
  • the number of antennas 30 is multiple, and the multiple antennas 30 are integrated in the same carrying medium 31 .
  • the carrying medium 31 may be formed by alternating and stacking insulating dielectric layers and metal layers in sequence, and the antenna 30 is formed by a metal layer in the carrying medium 31 and metallized vias connected between the plurality of metal layers.
  • Each antenna 30 corresponds to a wave-dense medium 40, and the wave-dense media 40 corresponding to multiple antennas 30 are independent of each other. In this way, the volume of a single wave-dense medium 40 is smaller, and the cost of a single wave-dense medium 40 is lower.
  • FIG. 28 is a schematic diagram of the relative positions of the antenna 30 , the wave-density medium 40 , and the middle plate 23 in the communication device 100 according to some embodiments of the present application.
  • the number of antennas 30 is multiple, and the multiple antennas 30 are also integrated in the same carrying medium 31 .
  • Multiple antennas 30 correspond to the same wave-dense medium 40 , and the wave-dense medium 30 can cover the multiple antennas 30 to increase the gains of the multiple antennas 30 . In this way, the number of wave-density media 40 is smaller, the structural complexity of the communication equipment is lower, the assembly difficulty is lower, and the efficiency is higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aerials With Secondary Devices (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请提供一种通信设备,涉及天线技术领域,用于解决如何在不干预天线模块化的前提下,提升天线增益的问题。具体的,通信设备包括天线和波密介质。波密介质位于天线的发射方向上并与天线间隔设置,通信设备内位于波密介质靠近天线一侧的介质的介电常数,以及位于波密介质远离天线一侧的介质的介电常数均小于波密介质的介电常数,波密介质由靠近天线的表面至远离天线的表面的厚度D满足:0.5nλg(1-10%)≤D≤0.5nλg(1+10%),其中n=1,2,3…,λg为天线工作频段在波密介质中的谐振波长。本申请提供的通信设备用于实现电磁波信号的发射和接收。

Description

一种通信设备
本申请要求于2022年01月27日提交国家知识产权局、申请号为202210103508.9、发明名称为“一种通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种带天线的通信设备。
背景技术
[根据细则91更正 30.08.2023]
目前,诸如Sub-6GHz、毫米波(mmWave)、太赫兹(THz)等频段信号在空间中传输的过程中具有不同程度的衰减。为提升设备(基站或终端)的覆盖范围,一般提升天线的增益。为了提升天线的增益,可以优化天线的形状、材料或者尺寸。但是,诸如mmWave等天线的尺寸较小,且趋于模块化,若改变其形状、材料或者尺寸,其制作难度及成本将会大幅度增大,导致这些天线的增益难以得到提升。
发明内容
本申请实施例提供一种通信设备,用于解决如何在不干预天线模块化的前提下,提升天线增益的问题。
为达到上述目的,本申请的实施例提供了一种通信设备,该通信设备包括天线和波密介质,波密介质位于天线的发射方向上并与天线间隔设置,通信设备内位于波密介质靠近天线一侧的介质的介电常数,以及位于波密介质远离天线一侧的介质的介电常数均小于波密介质的介电常数,波密介质由靠近天线的表面至远离天线的表面的厚度D满足:0.5nλg(1-10%)≤D≤0.5nλg(1+10%),其中n=1,2,3…,λg为天线工作频段在波密介质中的谐振波长。
由于通信设备内,位于波密介质靠近天线一侧的介质的介电常数,以及位于波密介质远离天线一侧的介质的介电常数均小于波密介质的介电常数,因此相对于波密介质,位于波密介质靠近天线一侧的介质、以及位于波密介质远离天线一侧的介质的介电常数较低,属于波疏介质。天线发射的电磁波由位于波密介质靠近天线一侧的波疏介质进入波密介质时,经历第一次分波,假设透射的电磁波为第一透射电磁波,反射的电磁波为第一反射电磁波;第一透射电磁波穿过波密介质进入位于波密介质远离天线一侧的波疏介质,经历第二次分波,二次分波中透射的电磁波为第二透射电磁波,反射的电磁波为第二反射电磁波;第二反射电磁波反向穿过波密介质进入位于波密介质靠近天线一侧的波疏介质,透射的电磁波为第三透射电磁波。在此基础上,由于波密介质由靠近天线的表面至远离天线的表面的厚度D满足:0.5nλg(1-10%)≤D≤0.5nλg(1+10%)。其中n=1,2,3,…,λg为天线工作频段在波密介质中的谐振波长,因此波密介质的厚度为天线在波密介质中的半倍波长的整数倍,波密介质形成法布里珀罗谐振器,电磁波从波疏介质到波密介质反射有180°相位差、透射0°相位差;从波密介质到波疏介质反射0°相位差、透射0°相位差。也即是,第一反射电磁波与天线发射的电磁波之间有180°相位差,天线发射的电磁波与第一透射电磁波之间、第一透 射电磁波与第二反射电磁波之间,第二反射电磁波与第三透射电磁波之间均为0°相位差,因此第一次反射电磁波、第三透射电磁波相位差正好为180°,表现为干涉相消除,因此该法布里珀罗谐振器可实现增透效果,能够提升天线的增益。
在一种可能的实现方式中,n=1。这样一来,波密介质的厚度D较小,能够在空间有限的通信设备内进行安装,能够实现通信设备的薄型化。
在一种可能的实现方式中,波密介质的厚度D小于或者等于2mm。这样,有利于波密介质在空间有限的通信设备内进行安装,能够保证通信设备的薄型化。
[根据细则91更正 30.08.2023]
在一种可能的实现方式中,波密介质的厚度D还大于或者等于0.1mm。这样,能够保证波密介质的结构强度,便于在通信设备内进行安装。
在一种可能的实现方式中,波密介质的厚度D可以为0.1mm、0.2mm、0.4mm、0.6mm、0.8mm、1.0mm、1.2mm、1.3mm、1.4mm、1.5mm、1.6mm、1.7mm、1.8mm、1.9mm或者2.0mm。
在一种可能的实现方式中,波密介质的介电常数DK大于或者等于14,且小于或者等于40。这样一来,当n=1,且天线为mmWave频段天线时,天线的工作频段位于24GHz~40GHz之间,波密介质的厚度D为1mm左右。能够在不影响通信设备的薄型化的同时,保证波密介质的结构强度。
在一种可能的实现方式中,波密介质的材料为氧化锆陶瓷。氧化锆陶瓷的介电常数DK为30,当n=1时,波密介质的厚度D在1mm左右,能够在不影响通信设备的薄型化的同时,保证波密介质的结构强度。
在一种可能的实现方式中,天线与波密介质之间由空气间隔,空气形成通信设备内位于波密介质靠近天线一侧的介质。空气的介电常数较低,对波密介质的法布里珀罗效应产生的影响较小。
在一种可能的实现方式中,天线与波密介质之间的间距大于0mm,且小于10mm。这样一来,对通信设备的薄型化影响较小,同时波密介质对天线增益的提升效果较优。
在一种可能的实现方式中,天线与波密介质之间的间距大于0.02mm且小于3mm。这样一来,对通信设备的薄型化影响较小,同时波密介质对天线增益的提升效果更优。
在一种可能的实现方式中,天线与波密介质之间的间距大于或者等于0.5mm且小于或者等于1mm。这样一来,对通信设备的薄型化影响更小,同时波密介质对天线增益的提升效果更优。
在一种可能的实现方式中,通信设备还包括背盖。天线位于背盖的内侧,波密介质位于天线与背盖之间且设置于背盖的内表面,背盖形成通信设备内位于波密介质远离天线一侧的介质。在此基础上,可选的,背盖的材料为塑料或者玻璃。塑料和玻璃的介电常数较小,对波密介质的法布里珀罗效应产生的影响较小。
在一种可能的实现方式中,通信设备还包括背盖。天线位于背盖的内侧,波密介质嵌设于背盖上与天线相对的区域内。这样一来,能够减小通信设备的厚度,有利于通信设备的薄型化。
在一种可能的实现方式中,背盖上用于嵌设波密介质的孔可以为盲孔,也可以为通孔。当背盖上用于嵌设波密介质的孔为盲孔时,该盲孔可以贯穿背盖的内表面,未贯穿背盖的外表面,也可以贯穿背盖的外表面,未贯穿背盖的内表面,在此不做具体 限定。当背盖上用于嵌设波密介质的孔为盲孔,且该盲孔贯穿背盖的内表面,未贯穿背盖的外表面时,波密介质的一部分位于背盖的内侧,另一部分嵌设于盲孔内。当背盖上用于嵌设波密介质的孔为盲孔,且该盲孔贯穿背盖的外表面,未贯穿背盖的内表面时,波密介质的一部分位于背盖的外侧,另一部分嵌设于盲孔内。
在一种可能的实现方式中,当背盖上用于嵌设波密介质的孔为通孔时,波密介质远离天线的表面可以与背盖的外表面平齐,也可以凸出至背盖的外侧。可选的,波密介质远离天线的表面与背盖的外表面平齐。这样,能够提高通信设备的外观整洁性。
在一种可能的实现方式中,通信设备还包括背盖;天线位于背盖的内侧,波密介质包括第一部分和第二部分,第一部分由背盖的部分区域形成,第二部分位于第一部分与天线之间,且第二部分设置于第一部分的内表面。这样一来,第一部分与第二部分的厚度之和为波密介质的厚度,同样有利于通信设备的薄型化,且由于第二部分设置于第一部分的靠近天线的表面,因此不会影响通信设备的外观。
在一种可能的实现方式中,第二部分也可以位于第一部分的远离天线的一侧并设置于第一部分的外表面。或者,第二部分的一部分位于第一部分与天线之间且设置于第一部分的内表面,另一部分位于第一部分远离天线的一侧且设置于第一部分的外表面。
在一种可能的实现方式中,第一部分与第二部分一体成型。这样一来,能够降低通信设备的组成结构复杂度,提高装配效率。
在一种可能的实现方式中,通信设备还包括背盖;天线位于背盖的内侧,波密介质位于背盖的外侧,且波密介质设置于背盖的外表面。这样,波密介质不会占用通信设备的内部容纳空间,能够避免对通信设备内其他器件的安装空间产生挤压。
在一种可能的实现方式中,天线在背盖的正投影为第一投影,波密介质在背盖的正投影为第二投影。第二投影的面积大于第一投影的面积,且第二投影的边缘位于第一投影的边缘外,第二投影的边缘与第一投影的边缘间隔设置。这样一来,波密介质的尺寸超出天线的尺寸,波密介质能够覆盖天线,能够尽可能大地提升天线的增益。
在一种可能的实现方式中,天线为毫米波频段天线。相比于Sub-6GHz频段,毫米波频段具有带宽更高、连接更广以及延迟性更低等特性。但是毫米波频段信号在空间中衰减迅速,因此急需提高增益,来提升毫米波频段的通信设备(比如基站或终端)的覆盖范围。同时,相比于太赫兹频段,毫米波频段具有成本低的特点,因此具有适用范围广的优势。
附图说明
图1为本申请一些实施例提供的通信设备的正面结构示意图;
图2为图1所示通信设备的背面结构示意图;
图3为图2所示通信设备沿A-A向的截面结构示意图;
图4为图3所示通信设备内中板、背盖、天线和波密介质的相对位置示意图;
图5为图4所示通信设备中天线发射的电磁波在波密介质的传输路径示意图;
图6为图2和图3所示通信设备中天线在背盖的正投影以及波密介质在背盖的正投影的示意图;
图7为图1-图3所示通信设备未设置波密介质以及设置有波密介质时,天线的输 入回波损耗;
图8为图1-图3所示通信设备未设置波密介质以及设置有波密介质时,天线在26GHz处的方向图;其中,图8中的(a)表示未设置波密介质时,天线在26GHz处的方向图;图8中的(b)表示设置有波密介质时,天线在26GHz处的方向图;
图9为图1-图3所示通信设备未设置波密介质以及设置有波密介质时,天线在28GHz处的方向图;其中,图9中的(a)表示未设置波密介质时,天线在28GHz处的方向图;图9中的(b)表示设置有波密介质时,天线在28GHz处的方向图;
图10为图1-图3所示通信设备设置有波密介质且优化了天线参考地层的尺寸后,天线在26GHz处的方向图;
图11为图1-图3所示通信设备设置有波密介质且优化了天线参考地层的尺寸后,天线在28GHz处的方向图;
图12为图1-图3所示通信设备未设置波密介质但优化了天线参考地层的尺寸后,天线在26GHz处的方向图;
图13为图1-图3所示通信设备未设置波密介质但优化了天线参考地层的尺寸后,天线在28GHz处的方向图;
图14为本申请又一些实施例提供的通信设备内中板、背盖、天线和波密介质的相对位置示意图;
图15为本申请又一些实施例提供的通信设备内中板、背盖、天线和波密介质的相对位置示意图;
图16为本申请又一些实施例提供的通信设备内中板、背盖、天线和波密介质的相对位置示意图;
图17为本申请又一些实施例提供的通信设备内中板、背盖、天线和波密介质的相对位置示意图;
图18为本申请又一些实施例提供的通信设备的背面结构示意图;
图19为图18所示通信设备沿B-B方向的截面结构示意图;
图20为本申请又一些实施例提供的通信设备内中板、摄像头装饰件、天线和波密介质的相对位置示意图;
图21为本申请又一些实施例提供的通信设备内中板、摄像头装饰件、天线和波密介质的相对位置示意图;
图22为本申请又一些实施例提供的通信设备的背面结构示意图;
图23为图22所示通信设备由方向D1看去时的结构示意图;
图24为图22所示通信设备由方向D2看去时的结构示意图;
图25为图22所示通信设备由方向D3看去时的结构示意图;
图26为图22所示通信设备由方向D4看去时的结构示意图;
图27为本申请又一些实施例提供通信设备中天线、波密介质、中板的相对位置示意图;
图28为本申请又一些实施例提供通信设备中天线、波密介质、中板的相对位置示意图。
具体实施方式
在本申请实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
为了在不干预天线模块化的前提下,提升天线的增益,本申请基于利用法布里珀罗效应(也称为F-P效应)在天线的发射方向上设置谐振器,以在现有模块化天线的基础上,无需改变该天线的形状、材料及尺寸,即可提升天线的增益,因此无需干预模块化天线的初始性能。
下面结合附图详细介绍本申请实施例,且在介绍本申请实施例之前,首先介绍本申请实施例的应用场景。
本申请提供一种通信设备,该通信设备为具有无线信号收发功能的一类通信设备。具体的,该通信设备可以是便携式电子装置或其他合适的电子装置。例如,通信设备可以是手机、基站、平板电脑(tablet personal computer)、笔记本电脑、膝上型电脑(laptop computer)、个人数码助理(personal digital assistant,PDA)、可穿戴设备等等。其中,可穿戴设备包括但不限于手环、手表、增强现实(augmented reality,AR)眼镜、AR头盔、虚拟现实(virtual reality,VR)眼镜或者VR头盔等。
请参阅图1-图3,图1为本申请一些实施例提供的通信设备100的正面结构示意图,图2为图1所示通信设备100的背面结构示意图,图3为图2所示通信设备100沿A-A向的截面结构示意图。本实施例以及下文各实施例均是以通信设备100是手机为例进行介绍,这并不能认为是对通信设备100作出的特殊限制。通信设备100包括屏幕10、背壳20、电路板(图中未示出)和天线30。
为了方便下文各实施例的描述,建立XYZ坐标系。具体的,定义通信设备100的长度方向为Y轴方向,宽度方向为X轴方向,厚度方向为Z轴方向。可以理解的是,通信设备100的坐标系设置可以根据实际需要进行灵活设置,在此不做具体限定。
屏幕10用于显示图像、视频等。屏幕10包括透光盖板11和显示屏12。透光盖板11与显示屏12层叠设置并固定连接。透光盖板11主要用于对显示屏12起到保护以及防尘作用。透光盖板11的材质包括但不限于玻璃。显示屏12可以采用柔性显示屏,也可以采用刚性显示屏。例如,显示屏12可以为有机发光二极管(organic light-emitting diode,OLED)显示屏,有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light-emitting diode,AMOLED)显示屏,迷你发光二极管(mini organic light-emitting diode)显示屏,微型发光二极管(micro organic light-emitting diode)显示屏,微型有机发光二极管(micro organic light-emitting diode)显示屏,量子点发光二极管(quantum dot light emitting diodes,QLED)显示屏,液晶显示屏(liquid crystal display,LCD)。
背壳20用于保护通信设备100的内部电子器件。背壳20包括背盖21和边框22。背盖21的材料包括但不限于玻璃、诸如聚碳酸酯(polycarbonate,PC)等塑料以及陶瓷。背盖21位于显示屏12远离透光盖板11的一侧,并与透光盖板11、显示屏12 层叠设置。边框22位于背盖21与透光盖板11之间,且边框22固定于背盖21上。示例性的,边框22可以通过粘胶固定连接于背盖21上。边框22也可以与背盖21为一体成型结构,即边框22与背盖21为一个整体结构。透光盖板11固定于边框22上。一些实施例中,透光盖板11可以通过胶粘固定于边框22上。透光盖板11、背盖21与边框22围成通信设备100的内部容纳空间。该内部容纳空间将显示屏12容纳在内。
在一些实施例中,通信设备100还包括中板23。中板23设置于显示屏12与背盖21之间,且中板23固定于边框22的内表面。示例地,中板23可以胶粘固定于边框22上,中板23也可以与边框22为一体成型结构。中板23由金属材料制作,中板23可以用作通信设备100内电子元器件的参考地。
电路板设置于通信设备100的内部容纳空间。在一些实施例中,电路板位于中板23与背盖21之间,且电路板固定于中板23上。电路板可以为主电路板,也可以为副电路板,本申请对此不做具体限定。
天线30设置于通信设备100的内部容纳空间。在一些实施例中,请参阅图3,天线30设置于中板23与背盖21之间。
在一些实施例中,电路板上设有射频电路,天线30与电路板上的射频电路电连接,以将来自射频电路的射频信号以电磁波的形式发射至外界空间,以实现信号的发射;或者接收外界空间的电磁波,并将该电磁波转换成射频信号传输至射频电路,以实现信号的接收。
天线30可以为定向天线,也可以为全向天线。在一些实施例中,请参阅图3,天线30可以向背盖21远离屏幕10一侧发射信号。在此基础上,天线30也可以用于接收来自背盖21远离屏幕10一侧的电磁波信号。在其他一些实施例中,天线30也可以向边框22的远离通信设备100内部容纳空间的一侧发射信号,或者向屏幕10远离背盖21的一侧发射信号,本实施例以天线30可以向背盖21远离屏幕10一侧发射信号为例进行说明,这并不能认为是对本申请构成的特殊限制。
需要说明的是,天线30在向背盖21远离屏幕10一侧发射信号的同时,还可以向其他侧发射信号,比如向边框22的远离通信设备100内部容纳空间的一侧发射信号,或者向屏幕10远离背盖21的一侧发射信号,在此不做具体限定。
天线30包括但不限于Sub-6GHz频段天线、毫米波(mmWave)频段天线、太赫兹(THz)频段天线。一些实施例中,天线30为mmWave频段天线。mmWave频段作为5G移动通信的频段之一,相比于Sub-6GHz频段,具有带宽更高、连接更广以及延迟性更低等特性。但是mmWave频段信号在空间中衰减迅速,因此急需提高增益,来提升mmWave频段的通信设备(比如基站或终端)的覆盖范围。同时,相比于THz频段,mmWave频段具有成本低的特点,因此具有适用范围广的优势。具体的,当天线30为mmWave频段天线时,天线30的工作频段可以为n257频段(26.5GHz-29.5GHz)、n258频段(24.25GHz-27.5GHz)或者n260频段(37-40GHz),在此不做具体限定。
为了提高通信设备的生产效率,天线30可以作为一个模块进行来料。这样,便于管理,能够提高包含天线30的通信设备的生产效率。但是,这样,又不便于通过改变天线30的形状、材料或者尺寸来提高天线30的增益。
在上述基础上,为了在不干涉天线30模块化的基础上,提高天线30的增益,请 参阅图2和图3,通信设备还包括波密介质40。
波密介质40为用于提升天线30增益的结构。在一些实施例中,请参阅图3,波密介质40呈矩形片状,在其他一些实施例中,波密介质40也可以呈圆形片状、椭圆形片状、三角形片状或者多边形片状等等。
波密介质40位于天线30的发射方向上,且波密介质40与天线30间隔设置。具体的,波密介质40可以位于天线30与背盖21之间,也可以设置于背盖21上与天线30相对的区域内,还可以设置于背盖21的远离天线30的一侧。在一些实施例中,请继续参阅图3,波密介质40位于天线30与背盖21之间,且波密介质40设置于背盖21的内表面。其中,背盖21的内表面是指背盖21朝向通信设备100的内部容纳空间的表面,也即是指背盖21的靠近屏幕10的表面。具体的,波密介质40可以胶粘于背盖21的内表面,或者直接以背盖21为基底,直接成型于背盖21的内表面,本申请实施例对此不做具体限定。
波密介质40与天线30之间可以通过固体介质间隔开,也可以通过空气间隔开,还可以通过至少一层固体介质和至少一层空气间隔开,在此不做具体限定。在一些实施例中,请参阅图4,图4为图3所示通信设备100内中板23、背盖21、天线30和波密介质40的相对位置示意图,波密介质40与天线30之间通过空气间隔开。此结构简单,且空气的成本较低,容易实现。
通信设备100内,位于波密介质40靠近天线30一侧的介质的介电常数(DK,又称为介质常数)值,以及位于波密介质40远离天线30一侧的介质的DK值均小于波密介质40的DK值。具体的,位于波密介质40靠近天线30一侧的介质是指位于波密介质40靠近天线30的一侧并与波密介质40邻接的介质。同理的,位于波密介质40远离天线30一侧的介质是指位于波密介质40远离天线30的一侧并与波密介质40邻接的介质。示例的,请参阅图4,位于波密介质40靠近天线30一侧的介质为空气,位于波密介质40远离天线30一侧的介质为背盖21。也即是,空气的DK值以及背盖21的DK值均小于波密介质40的DK值。在此基础上,背盖21的材料可以选择为DK值较小的塑料或者玻璃。这样一来,相对于波密介质40,位于波密介质40靠近天线30一侧的介质、以及位于波密介质40远离天线30一侧的介质的介电常数较低,属于波疏介质。
请参阅图5,图5为图4所示通信设备100中天线30发射的电磁波在波密介质40的传输路径示意图,天线30发射的电磁波a由位于波密介质40靠近天线30一侧的波疏介质进入波密介质40,经历第一次分波,透射的电磁波为第一透射电磁波b,反射的电磁波为第一反射电磁波c;第一透射电磁波b穿过波密介质40进入位于波密介质40远离天线30一侧的波疏介质,经历第二次分波,透射的电磁波为第二透射电磁波d,反射的电磁波为第二反射电磁波e;第二反射电磁波e反向穿过波密介质40进入位于波密介质40靠近天线30一侧的波疏介质,透射的电磁波为第三透射电磁波f。
在上述实施例的基础上,波密介质40由靠近天线30的表面至远离天线30的表面的厚度D满足:0.5nλg(1-10%)≤D≤0.5nλg(1+10%)。其中n=1,2,3,…,λg为天线30工作频段在波密介质40中的谐振波长。
其中,
Figure PCTCN2023070439-appb-000001
λ 0为天线30工作频段在真空中的谐振波长,λ 0=C 0/F,C 0为 电磁波在真空中的传输速度,C 0=3×10^8m/s。F为天线30的工作频段,F表示一个频段范围,比如天线30的工作频段为n257频段,则F为26.5GHz-29.5GHz。在此基础上,λ 0也为一个波长范围,具体为C 0/F频段范围内的上限-C 0/F频段范围内的下限。DK为波密介质40的介电常数,不同材料的波密介质40,DK值不同。因此,λg也为一个波长范围。由此可知,厚度D所满足的条件:0.5nλg(1-10%)≤D≤0.5nλg(1+10%),也即是,厚度D满足:0.5nλg1(1-10%)≤D≤0.5nλg2(1+10%),其中,λg1为天线30工作频段中上限频率在波密介质40中的谐振波长,λg2为天线30工作频段中下限频率在波密介质40中的谐振波长。
这样一来,波密介质40的厚度D为天线30在波密介质40中的半倍波长的整数倍,波密介质40形成法布里珀罗谐振器,电磁波从波疏介质到波密介质反射有180°相位差、透射0°相位差;从波密介质到波疏介质反射0°相位差、透射0°相位差。也即是,第一反射电磁波c与电磁波a之间有180°相位差,电磁波a与第一透射电磁波b之间、第一透射电磁波b与第二反射电磁波e之间,第二反射电磁波e与第三透射电磁波f之间均为0°相位差,因此图5中第一次反射电磁波b、第三透射电磁波f相位差正好为180°,表现为干涉相消除,因此该法布里珀罗谐振器可实现增透效果,能够提升天线30的增益。
在一些实施例中,n=1。这样一来,波密介质40的厚度D较小,能够在空间有限的通信设备内进行安装,能够实现通信设备的薄型化。
在一些实施例中,波密介质40的厚度D可以小于或者等于2mm。这样,有利于波密介质40在空间有限的通信设备内进行安装,能够保证通信设备的薄型化。在此基础上,可选的,波密介质40的厚度D还大于或者等于0.1mm。这样,能够在不影响通信设备的薄型化的同时,保证波密介质40的结构强度,便于在通信设备内进行安装。具体的,波密介质40的厚度D可以为0.1mm、0.2mm、0.4mm、0.6mm、0.8mm、1.0mm、1.2mm、1.3mm、1.4mm、1.5mm、1.6mm、1.7mm、1.8mm、1.9mm或者2.0mm。
为了达到上述目的,当天线30为mmWave频段(如n257频段:26.5-29.5GHz;n258频段:24.25-27.5GHz;n260频段37-40GHz)天线时,波密介质40的DK值可以大于或者等于14且小于或者等于40。这样一来,当n=1,且天线30为mmWave频段天线时,天线30的工作频段位于24GHz~40GHz之间,波密介质40的厚度D为1mm左右。能够在不影响通信设备的薄型化的同时,保证波密介质40的结构强度。
在一些实施例中,波密介质40的材料包括但不限于氧化锆陶瓷和氧化铝陶瓷。氧化锆陶瓷和氧化铝陶瓷的介电常数DK可达为26-35,当n=1时,波密介质40的厚度D在1mm左右,能够在不影响通信设备的薄型化的同时,保证波密介质40的结构强度。
在一些实施例中,请参阅图4,波密介质40与天线30之间的间距(也即是空气间隙的高度h)大于0mm,且小于10mm。这样一来,对通信设备100的薄型化影响较小,同时波密介质40对天线30增益的提升效果较优。在此基础上,进一步可选的,高度h大于0.02mm且小于3mm。这样一来,对通信设备100的薄型化影响较小,同时波密介质40对天线30增益的提升效果更优。进一步可选的,高度h大于或者等于0.5mm且小于或者等于1mm。这样一来,对通信设备100的薄型化影响更小,同时波密介质40对天线30增益的提升效果更优。
在一些实施例中,天线30在背盖21的正投影为第一投影,波密介质40在背盖21的正投影为第二投影,第一投影与第二投影有交叠。这样,波密介质40位于天线30的发射方向上,并与天线30正对,能够提升天线30的增益。其中,第一投影与第二投影有交叠表示:第一投影的部分与第二投影的部分重叠;或者,第一投影的全部与第二投影的部分重叠;或者,第一投影的部分与第二投影的全部重叠;或者,第一投影的全部与第二投影的全部重叠。
在一些实施例中,第二投影的面积大于第一投影的面积,且第二投影的边缘位于第一投影的边缘外,第二投影的边缘与第一投影的边缘间隔设置。
示例的,请参阅图1-图3,天线30呈矩形板状,波密介质40呈矩形片状,请参阅图6,图6为图2和图3所示通信设备100中天线30在背盖21的正投影(也即第一投影O1)以及波密介质40在背盖21的正投影(也即第二投影O2)的示意图,第一投影O1和第二投影O2均呈矩形,第一投影O1的长度方向与第二投影O2的长度方向一致,第一投影O1的宽度方向与第二投影O2的宽度方向一致。第一投影O1位于第二投影O2内,第一投影O1的长度L1小于第二投影O2的长度L2,第一投影O1的宽度W1小于第二投影O2的宽度W2,第一投影O1的边缘C1与第二投影O2的边缘C2间隔设置。这样一来,波密介质40的尺寸超出天线30的尺寸,波密介质40能够覆盖天线30,能够尽可能大地提升天线30的增益。
根据以上描述,为了验证波密介质40对天线30增益的提升效果,请参阅图7,图7为图1-图3所示通信设备100未设置波密介质40以及设置有波密介质40时,天线30的输入回波损耗S11。具体的,S11_no F-P表示通信设备100未设置波密介质40时天线30的输入回波损耗;S11_0.25λg表示通信设备100设置有波密介质40且波密介质40的厚度为0.25λg时天线30的输入回波损耗;S11_0.5λg表示通信设备100设置有波密介质40且波密介质40的厚度为0.5λg时天线30的输入回波损耗;S11_0.75λg表示通信设备100设置有波密介质40且波密介质40的厚度为0.75λg时天线30的输入回波损耗。由图5可知,当波密介质40的厚度远离0.5λg时,天线30的S11恶化明显,当波密介质40的厚度接近0.5λg时,虽然带宽变窄,但是在谐振频点能够保证S11<-10dB。由此可以说明,波密介质40具有透波效果,能够提升天线30的增益。
请参阅图8,图8为图1-图3所示通信设备100未设置波密介质40以及设置有波密介质40时,天线30在26GHz处的方向图。具体的,图8中的(a)表示未设置波密介质40时,天线30在26GHz处的方向图;图8中的(b)表示设置有波密介质40时,天线30在26GHz处的方向图,其中波密介质40的厚度接近0.5λg。图8中的(a)得到的未设置波密介质40时,天线30的增益(gain)为3.6dBi;图8中的(b)得到的设置有波密介质40时,天线30的增益为7.8dBi,增益提升了约4.2dBi。
[根据细则91更正 30.08.2023]
请参阅图9,图9为图1-图3所示通信设备100未设置波密介质40以及设置有波密介质40时,天线30在28GHz处的方向图。具体的,图9中的(a)表示未设置波密介质40时,天线30在28GHz处的方向图;图9中的(b)表示设置有波密介质40时,天线30在28GHz处的方向图,其中波密介质40的厚度接近0.5λg。图9中的(a)得到的未设置波密介质40时,天线30的增益(gain)为3.7dBi;图9中的(b)得 到的设置有波密介质40时,天线30的增益为8.1dBi,增益提升了约4.4dBi。
由于图1-图3所示通信设备100中波密介质40的尺寸超出天线30的尺寸,模块化的天线30内参考地层的尺寸小于等于天线30的尺寸,因此波密介质40的尺寸超出天线30内参考地层的尺寸。在此基础上,可以通过增大参考地层的尺寸,以将电磁场在波密介质40中外延的能量尽可能地向波密介质40远离参考地层的方向发射,由此进一步提升天线30的增益。为了在不影响天线30的模块化的同时,优化天线30的参考地层的尺寸,在一些实施例中,天线30的参考地层可以与较大尺寸的中板23或者电路板内参考地层电连接,以增大天线30的参考地层的尺寸,从而能够进一步提升天线30的增益。
请参阅图10和图11,图10为图1-图3所示通信设备100设置有波密介质40且优化了天线30参考地层的尺寸后,天线30在26GHz处的方向图,图11为图1-图3所示通信设备100设置有波密介质40且优化了天线30参考地层的尺寸后,天线30在28GHz处的方向图。由图10和图11可以看出,设置有波密介质40且优化天线30参考地层的尺寸后,26GHz条件下天线30的增益由7.8dBi提升至14.1dBi,28GHz条件下天线30的增益由8.1dBi提升至17.8dBi。由此进一步提升了天线30的增益。
需要说明的是,对于无波密介质40的天线30进行参考地层的尺寸优化时,请参阅图12和图13,图12为图1-图3所示通信设备100未设置波密介质40但优化了天线30参考地层的尺寸后,天线30在26GHz处的方向图,图13为图1-图3所示通信设备100未设置波密介质40但优化了天线30参考地层的尺寸后,天线30在28GHz处的方向图。由图12和图13可以看出,在优化天线30的参考地层的尺寸后,增益略有增加。具体的,26GHz条件下天线30的增益由3.6dBi提升至3.8dBi,28GHz条件下天线30的增益由3.7dBi提升至4.0dBi,但是方向图也有畸变。由此可知,在设置波密介质40的基础上,进一步优化天线30参考地层的尺寸,才能达到大幅度提升增益的目的。
以上实施例介绍了天线30可以向背盖21远离屏幕10一侧发射信号,且波密介质40设置于背盖21的内表面的示例。根据前文表述,波密介质40也可以设置于背盖21上与天线30相对的区域内,还可以设置于背盖21的远离天线30的一侧。而且,天线30也可以向边框22的远离通信设备100内部容纳空间的一侧发射信号,或者向屏幕10远离背盖21的一侧发射信号,在此基础上,波密介质40可以设置于边框22或者屏幕10的内表面、与天线30相对的区域内或者远离天线30的一侧。
请参阅图14,图14为本申请又一些实施例提供的通信设备100内中板23、背盖21、天线30和波密介质40的相对位置示意图。在本实施例中,波密介质40嵌设于背盖21上与天线30相对的区域内。这样一来,能够减小通信设备的厚度,有利于通信设备的薄型化。
上述实施例中,背盖21上用于嵌设波密介质40的孔可以为盲孔,也可以为通孔。当背盖21上用于嵌设波密介质40的孔为盲孔时,该盲孔可以贯穿背盖21的内表面,未贯穿背盖21的外表面,也可以贯穿背盖21的外表面,未贯穿背盖21的内表面,在此不做具体限定。当背盖21上用于嵌设波密介质40的孔为盲孔,且该盲孔贯穿背盖21的内表面,未贯穿背盖21的外表面时,波密介质40的一部分位于背盖21的内侧, 另一部分嵌设于盲孔内。当背盖21上用于嵌设波密介质40的孔为盲孔,且该盲孔贯穿背盖21的外表面,未贯穿背盖21的内表面时,波密介质40的一部分位于背盖21的外侧,另一部分嵌设于盲孔内。
当背盖21上用于嵌设波密介质40的孔为通孔时,波密介质40远离天线30的表面可以与背盖21的外表面平齐,也可以凸出至背盖21的外侧。在图14所示的实施例中,波密介质40远离天线30的表面与背盖21的外表面平齐。这样,能够提高通信设备100的外观整洁性。
在上述实施例中,背盖21的外表面是指背盖21远离通信设备100的内部容纳空间的表面,也即是指背盖21的远离屏幕10的表面。背盖21的外侧是指背盖21的外表面远离背盖21的内表面的一侧。相应的,背盖21的内侧是指背盖21的内表面远离背盖21的外表面的一侧。
当背盖21上用于嵌设波密介质40的孔为通孔时,位于波密介质40靠近天线30一侧的波疏介质为空气,位于波密介质40远离天线30一侧的波疏介质也为空气。空气的介电常数DK较小,近似为1,对波密介质40的F-P效应产生的影响较小。
请参阅图15,图15为本申请又一些实施例提供的通信设备100内中板23、背盖21、天线30和波密介质40的相对位置示意图。在本实施例中,波密介质40包括第一部分41和第二部分42。第一部分41由背盖21的部分区域形成。第二部分42位于第一部分41与天线30之间,且第二部分42设置于第一部分41的靠近天线30的表面(也即是第一部分41的内表面)。这样一来,第一部分41与第二部分42的厚度之和为波密介质40的厚度D,同样有利于通信设备的薄型化,且由于第二部分42设置于第一部分41的靠近天线30的表面,因此不会影响通信设备的外观。
在其他一些实施例中,第二部分42也可以设置于第一部分41的远离天线30的表面(也即是第一部分41的外表面)。或者,请参阅图16,图16为本申请又一些实施例提供的通信设备100内中板23、背盖21、天线30和波密介质40的相对位置示意图,本实施例中,第二部分42的一部分设置于第一部分41的内表面,另一部分设置于第一部分41的外表面。
在一些实施例中,请继续参阅图16,第一部分41与第二部分42一体成型。这样一来,能够降低通信设备的组成结构复杂度,提高装配效率。
在图15和图16所示的实施例中,位于波密介质40靠近天线30一侧的波疏介质为空气,位于波密介质40远离天线30一侧的波疏介质也为空气。空气的介电常数DK较小,近似为1,对波密介质40的F-P效应产生的影响较小。
请参阅图17,图17为本申请又一些实施例提供的通信设备100内中板23、背盖21、天线30和波密介质40的相对位置示意图。在本实施例中,波密介质40位于背盖21的远离天线30的一侧,也即是,波密介质40位于背盖21的外侧。具体的,波密介质40设置于背盖21的外表面。这样,波密介质40不会占用通信设备的内部容纳空间,能够避免对通信设备内其他器件的安装空间产生挤压。
在上述实施例中,位于波密介质40靠近天线30一侧的波疏介质为背盖21,位于波密介质40远离天线30一侧的波疏介质为空气。在此基础上,可选的,背盖21的材料可以为塑料或者玻璃,塑料和玻璃的介电常数较小,对波密介质40的F-P效应产生 的影响较小。
[根据细则91更正 30.08.2023]
请参阅图18,图18为本申请又一些实施例提供的通信设备100的背面结构示意图。在本实施例中,通信设备100还包括摄像头装饰件50,摄像头装饰件50设置于背盖21上。在一些实施例中,天线30的信号发射方向指向摄像头装饰件50。在此基础上,请参阅图19,图19为图18所示通信设备100沿B-B方向的截面结构示意图。摄像头装饰件50包括装饰件主体51以及设置于装饰件主体51远离天线30的一侧的透光板52,装饰件主体51上设有第一安装孔51a,波密介质40的一部分位于摄像头装饰件50靠近天线30的一侧,波密介质40的另一部分安装于装饰件主体51的第一安装孔51a内。这样一来,可以在一定程度上降低通信设备100的厚度,并保证摄像头装饰件50的外观一致性。
请参阅图20,图20为本申请又一些实施例提供的通信设备100内中板23、摄像头装饰件50、天线30和波密介质40的相对位置示意图。在本实施例中,装饰件主体51上设有第一安装孔51a,透光板52上设有第二安装孔52a。波密介质40的一部分安装于装饰件主体51的第一安装孔51a内,波密介质40的一部分安装于透光板52的第二安装孔52a内,波密介质40的其余部分位于摄像头装饰件50靠近天线30的一侧。这样一来,能够较大程度地降低通信设备100的厚度。
请参阅图21,图21为本申请又一些实施例提供的通信设备100内中板23、摄像头装饰件50、天线30和波密介质40的相对位置示意图。在本实施例中,波密介质40位于摄像头装饰件50的远离天线30的一侧,也即是波密介质40位于摄像头装饰件50的外侧。具体的,波密介质40设置于摄像头装饰件50的外表面。这样,波密介质40不会占用通信设备的内部容纳空间,能够避免对通信设备内其他器件的安装空间造成挤压。
当天线30向边框22的远离通信设备100内部容纳空间的一侧发射信号时,请参阅图22,图22为本申请又一些实施例提供的通信设备100的背面结构示意图,边框22包括下边框221、左边框222、右边框223和上边框224。请参阅图23,图23为图22所示通信设备100由方向D1看去时的结构示意图。在本实施例中,天线30向下边框221远离通信设备100内部容纳空间的一侧发射信号,波密介质40设置于下边框221的内表面、嵌设于下边框221内、与下边框221一体成型或者设置于下边框221的外表面。在其他一些实施例中,请参阅图24-图26,图24为图22所示通信设备100由方向D2看去时的结构示意图;图25为图22所示通信设备100由方向D3看去时的结构示意图;图26为图22所示通信设备100由方向D4看去时的结构示意图。天线30也可以向左边框222、右边框223或者上边框224远离通信设备100内部容纳空间的一侧发射信号,这样一来,波密介质40设置于左边框222、右边框223或者上边框224的内表面,嵌设于左边框222、右边框223或者上边框224内,或者,设置于左边框222、右边框223或者上边框224的外表面。
在以上各实施例所处的通信设备中,天线30的数量可以为一个,也可以为多个,该多个天线30阵列设置。当天线30的数量为多个时,可以对应每个天线30分别设置波密介质40,也可以针对该多个天线30设置同一个波密介质40,该波密介质40可以覆盖该多个天线30,以提升该多个天线30的增益,在此不做具体限定。
示例的,请参阅图27,图27为本申请又一些实施例提供通信设备100中天线30、波密介质40、中板23的相对位置示意图。天线30的数量为多个,多个天线30集成在同一承载介质31内。一些实施例中,承载介质31可以为由绝缘介质层和金属层依次交替并堆叠形成,天线30由该承载介质31内的金属层以及连接于多个金属层之间的金属化过孔形成。每个天线30对应一个波密介质40,多个天线30对应的波密介质40彼此独立。这样,单个波密介质40的体积较小,单个波密介质40的成本较低。
又示例的,请参阅图28,图28为本申请又一些实施例提供通信设备100中天线30、波密介质40、中板23的相对位置示意图。天线30的数量为多个,多个天线30也集成在同一承载介质31内。多个天线30对应同一个波密介质40,该一个波密介质30能够覆盖该多个天线30,用以提升该多个天线30的增益。这样,波密介质40的数量较少,通信设备的组成结构复杂度较低,装配难度较小,效率较高。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种通信设备,其特征在于,包括天线和波密介质,所述波密介质位于所述天线的发射方向上并与所述天线间隔设置,所述通信设备内位于所述波密介质靠近所述天线一侧的介质的介电常数,以及位于所述波密介质远离所述天线一侧的介质的介电常数均小于所述波密介质的介电常数,所述波密介质由靠近所述天线的表面至远离所述天线的表面的厚度D满足:0.5nλg(1-10%)≤D≤0.5nλg(1+10%),其中n=1,2,3…,λg为所述天线工作频段在所述波密介质中的谐振波长。
  2. 根据权利要求1所述的通信设备,其特征在于,所述波密介质的厚度D小于或者等于2mm。
  3. 根据权利要求2所述的通信设备,其特征在于,所述波密介质的厚度D大于或者等于0.1mm。
  4. 根据权利要求3所述的通信设备,其特征在于,所述波密介质的介电常数DK大于或者等于14,且小于或者等于40。
  5. 根据权利要求4所述的通信设备,其特征在于,所述波密介质的材料为氧化锆陶瓷或者氧化铝陶瓷。
  6. 根据权利要求1-5任一项所述的通信设备,其特征在于,n=1。
  7. 根据权利要求1-6任一项所述的通信设备,其特征在于,所述天线与所述波密介质之间由空气间隔,所述空气形成所述通信设备内位于所述波密介质靠近所述天线一侧的介质。
  8. 根据权利要求7所述的通信设备,其特征在于,所述天线与所述波密介质之间的间距大于0mm,且小于10mm。
  9. 根据权利要求7或8所述的通信设备,其特征在于,还包括背盖;
    所述天线位于所述背盖的内侧,所述波密介质位于所述天线与所述背盖之间且设置于所述背盖的内表面,所述背盖形成所述通信设备内位于所述波密介质远离所述天线一侧的介质。
  10. 根据权利要求7或8所述的通信设备,其特征在于,还包括背盖;
    所述天线位于所述背盖的内侧,所述波密介质嵌设于所述背盖上与所述天线相对的区域内。
  11. 根据权利要求7或8所述的通信设备,其特征在于,还包括背盖;
    所述天线位于所述背盖的内侧,所述波密介质包括第一部分和第二部分,所述第一部分由所述背盖的部分区域形成;
    所述第二部分位于所述第一部分与所述天线之间,且所述第二部分设置于所述第一部分的内表面;或者,所述第二部分位于所述第一部分远离所述天线的一侧,且所述第二部分设置于所述第一部分的外表面;或者,所述第二部分的一部分位于所述第一部分与所述天线之间且设置于所述第一部分的内表面,另一部分位于所述第一部分远离所述天线的一侧且设置于所述第一部分的外表面。
  12. 根据权利要求11所述的通信设备,其特征在于,所述第一部分与所述第二部分一体成型。
  13. 根据权利要求1-6任一项所述的通信设备,其特征在于,还包括背盖;
    所述天线位于所述背盖的内侧,所述波密介质位于所述背盖的外侧,且所述波密介质设置于所述背盖的外表面。
  14. 根据权利要求1-13任一项所述的通信设备,其特征在于,所述天线在所述背盖的正投影为第一投影,所述波密介质在所述背盖的正投影为第二投影;
    所述第二投影的面积大于所述第一投影的面积,且所述第二投影的边缘位于所述第一投影的边缘外,所述第二投影的边缘与所述第一投影的边缘间隔设置。
  15. 根据权利要求1-14任一项所述的通信设备,其特征在于,所述天线为毫米波频段天线。
PCT/CN2023/070439 2022-01-27 2023-01-04 一种通信设备 WO2023142928A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23745813.8A EP4290689A1 (en) 2022-01-27 2023-01-04 Communication device
US18/550,164 US20240222849A1 (en) 2022-01-27 2023-01-04 Communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210103508.9 2022-01-27
CN202210103508.9A CN116565514A (zh) 2022-01-27 2022-01-27 一种通信设备

Publications (2)

Publication Number Publication Date
WO2023142928A1 WO2023142928A1 (zh) 2023-08-03
WO2023142928A9 true WO2023142928A9 (zh) 2023-12-14

Family

ID=87470524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070439 WO2023142928A1 (zh) 2022-01-27 2023-01-04 一种通信设备

Country Status (4)

Country Link
US (1) US20240222849A1 (zh)
EP (1) EP4290689A1 (zh)
CN (1) CN116565514A (zh)
WO (1) WO2023142928A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2173679A1 (en) * 1996-04-09 1997-10-10 Apisak Ittipiboon Broadband nonhomogeneous multi-segmented dielectric resonator antenna
CN104931797B (zh) * 2015-07-16 2017-08-25 上海无线电设备研究所 基于透波机制的有耗媒质介电常数的测量方法
CN106768335B (zh) * 2017-03-23 2019-04-09 天津大学 一种非线性光谱相位测量方法
US10594028B2 (en) * 2018-02-13 2020-03-17 Apple Inc. Antenna arrays having multi-layer substrates
CN113937481B (zh) * 2020-06-29 2023-07-18 上海华为技术有限公司 介质滤波天线、电子设备和天线阵列
CN113346245A (zh) * 2021-05-18 2021-09-03 深圳市信维通信股份有限公司 基于低介电常数介质的介质谐振器天线及电子设备

Also Published As

Publication number Publication date
WO2023142928A1 (zh) 2023-08-03
US20240222849A1 (en) 2024-07-04
CN116565514A (zh) 2023-08-08
EP4290689A1 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
EP3726648B1 (en) Antenna module and electronic device
CN110416739B (zh) 壳体组件及移动终端
CN111063988A (zh) 天线模组及电子设备
CN110768006A (zh) 天线模组及电子设备
CN111146583B (zh) 天线组件及电子设备
CN111446550B (zh) 吸波结构、天线组件及电子设备
US20050062662A1 (en) Antenna unit having a wide band
US20240304999A1 (en) Millimeter Wave Antenna, Apparatus, and Electronic Device
JP7130164B2 (ja) アンテナを集積したディスプレイ、表示装置及び電子機器
US11205850B2 (en) Housing assembly, antenna assembly, and electronic device
US11532870B2 (en) Housing assembly and electronic devices
US20220094039A1 (en) Housing assembly, antenna assembly, and electronic device
US20220085493A1 (en) Housing assembly, antenna device, and electronic device
US20230344133A1 (en) Antenna assembly and electronic device
CN111162371B (zh) 电子设备
CN112397898A (zh) 天线阵列组件及电子设备
CN111146582B (zh) 天线组件及电子设备
WO2023142928A9 (zh) 一种通信设备
WO2022252899A1 (zh) 一种显示装置及电子设备
CN112822884A (zh) 外壳及应用该外壳的无线装置
CN117276254A (zh) 天线结构、天线模组、芯片与电子设备
CN111370843A (zh) 透波壳体组件、天线组件及电子设备
CN112909521B (zh) 天线装置、芯片和终端
WO2024001837A1 (zh) 电子设备
US20240079779A1 (en) Electronic Device with Antenna Grounding Through Sensor Module

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023745813

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18550164

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023745813

Country of ref document: EP

Effective date: 20230908