WO2023142841A1 - 一种光学镜头以及电子设备 - Google Patents

一种光学镜头以及电子设备 Download PDF

Info

Publication number
WO2023142841A1
WO2023142841A1 PCT/CN2022/142498 CN2022142498W WO2023142841A1 WO 2023142841 A1 WO2023142841 A1 WO 2023142841A1 CN 2022142498 W CN2022142498 W CN 2022142498W WO 2023142841 A1 WO2023142841 A1 WO 2023142841A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical lens
object side
image side
Prior art date
Application number
PCT/CN2022/142498
Other languages
English (en)
French (fr)
Inventor
武斌
张宪先
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22905457.2A priority Critical patent/EP4249980A1/en
Priority to US18/266,910 priority patent/US20240210654A1/en
Publication of WO2023142841A1 publication Critical patent/WO2023142841A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0075Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having an element with variable optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the present application relates to the technical field of terminals, and in particular to an optical lens and an electronic device.
  • optical lens to realize a shooting function, and in order to clearly image objects at different distances, the optical lens has an auto-focus function.
  • the optical lens contains an optical power adjustable element.
  • the focal length of the entire optical lens is changed by adjusting the focal power of the focal power adjustable component, thereby realizing the automatic focusing function.
  • the optical power adjustable element is placed at the front end of the entire optical lens, and the front end is the end close to the object side.
  • the optical lens is usually embedded in the electronic device, and in order to allow external light to enter the optical lens, holes need to be opened on the surface of the electronic device.
  • the optical power adjustable element is usually a combination of optical lenses of different shapes and has a relatively large size, the above-mentioned method of placing the optical power adjustable element at the front end of the entire optical lens needs to be developed on the surface of the electronic device. Larger hole size.
  • opening a hole with a larger size will reduce the screen-to-body ratio of the electronic device.
  • the present application provides an optical lens and an electronic device, which reduces the size of the opening required by the optical lens, so as to increase the screen ratio of the electronic device.
  • the present application provides an optical lens.
  • the optical lens sequentially includes: a first lens group, an optical power adjustable element and a second lens group along the optical axis direction from the object side to the image side.
  • the first lens group includes at least two lenses; the second lens group includes at least one lens.
  • the optical lens is specifically an auto-focus lens, and the focal length of the optical lens can be changed by adjusting the optical power of the optical power adjustable element.
  • the optical power adjustable element with a large lateral size is placed between the first lens group and the second lens group, so that the size of the front end of the optical lens is smaller, thereby reducing the need to install on the surface of the electronic device.
  • the size of the opening improves the utilization rate of the surface of the electronic device.
  • the first lens group includes at least a first lens and a second lens in sequence;
  • ⁇ CT12 is the axial distance from the object side of the first lens to the image side of the second lens
  • TTL is the axial distance from the object side of the first lens to the imaging surface of the optical lens
  • ⁇ CT12/TTL is used to represent the ratio of the first lens and the second lens to the size of the entire optical lens in the direction of the optical axis.
  • the lens head (closer to the object side) has a smaller lateral dimension, making the aperture size Smaller, thereby increasing the screen-to-body ratio of the terminal; the lens head has a larger axial dimension, which increases the smoothness of light entering the optical system.
  • the first lens group includes at least a first lens and a second lens in sequence;
  • TTL/f ⁇ 1.83 where TTL is the axial distance from the object side of the first lens to the imaging surface of the optical lens, and f is the focal length of the optical lens.
  • the optical lens has a small TTL/f, so that the optical lens has a small axial size and can achieve clear imaging for objects that are farther away.
  • the first lens group includes at least a first lens and a second lens in sequence;
  • the object side of the first lens is convex at the paraxial place, and the image side of the first lens is concave at the paraxial place;
  • f1/f ⁇ 2.33 where f1 is the focal length of the first lens, and f is the focal length of the optical lens.
  • the optical lens has a smaller f1/f, which makes the size of the optical lens smaller in the axial direction, realizes the miniaturization of the size of the optical lens, and reduces the sensitivity of the optical lens to errors introduced by lens processing.
  • the first lens group includes at least a first lens and a second lens in sequence;
  • f2 is the focal length of the second lens
  • f is the focal length of the optical lens
  • R5 is the central radius of curvature of the third lens from the object side to the image side of the optical lens
  • R6 is the optical The center curvature radius of the third lens from the object side to the image side of the lens.
  • the third lens When the third lens has a smaller central curvature radius, it can buffer the incident angle of the light incident on the subsequent lens, smooth the trend of the light, and reduce the sensitivity of the optical lens to errors introduced by lens processing.
  • Yl/IH 1.75, where Yl is the effective aperture of the image side of the last lens of the optical lens from the object side to the image side, and IH is the half-image height of the optical lens.
  • IH is the half-image height of the full field of view of the optical lens.
  • the optical lens has a smaller Yl/IH, which can reduce the size of the rear end of the optical lens (near the image side), which is conducive to the miniaturization of the optical lens structure. While increasing the axial distance between the optical lens and the photosensitive element, the size of the imaging target surface is increased, thereby improving the resolution ability of the optical lens for object details.
  • the first lens group includes at least a first lens and a second lens in sequence;
  • IH/TTL 0.08
  • IH is the half-image height of the optical lens
  • TTL is the axial distance from the object side of the first lens to the imaging plane of the optical lens.
  • the optical lens has a smaller IH/TTL, which can reduce the size of the optical lens and obtain higher pixel imaging results, that is, improve the definition of imaging.
  • the first lens group includes at least a first lens and a second lens in sequence;
  • MaxY12/IH ⁇ 0.89 MaxY12/IH ⁇ 0.89, wherein, MaxY12 is the maximum clear aperture among the clear apertures of the first lens and the second lens, and IH is the half-image height of the optical lens.
  • the clear aperture of the first lens includes the clear aperture of the first lens object side and the clear aperture of the first lens image side
  • the clear aperture of the second lens includes the clear aperture of the second lens object side and the second lens image
  • the clear aperture on the side, MaxY12 is the largest clear aperture among the above four clear apertures.
  • the optical lens has a smaller MaxY12/IH, and has a larger image surface while the optical lens has a smaller head size.
  • Fno ⁇ 2.9, where Fno is the aperture value of the optical lens.
  • the optical lens has a smaller Fno, so that the optical lens has a better imaging effect in a darker shooting environment.
  • the full field of view refers to the maximum full field of view that the optical lens can achieve.
  • the optical lens has a larger full field of view Fov, which makes the captured image contain richer information.
  • the present application provides an electronic device, which at least includes an optical lens as described above.
  • the optical lens is specifically an auto-focus lens, and the focal length of the optical lens can be changed by adjusting the optical power of the optical power adjustable element.
  • the optical power adjustable element with a large lateral size is placed between the first lens group and the second lens group, so that the size of the front end of the optical lens is smaller, thereby reducing the need to install on the surface of the electronic device.
  • the size of the opening improves the utilization rate of the surface of the electronic device.
  • Figure 1a is a schematic structural diagram of a mobile phone with a front camera
  • Fig. 1b is a structural schematic diagram of a portable computer with a front camera
  • Fig. 1c is a schematic diagram of the structure of the electronic device provided by the embodiment of the present application.
  • FIG. 2 is a schematic structural view of an optical lens provided in an embodiment of the present application.
  • Fig. 3a is a schematic structural diagram of an optical lens provided by another embodiment of the present application.
  • Fig. 3b is a schematic diagram of the field curvature curve of the optical lens provided by the embodiment of the present application.
  • Fig. 3c is a schematic diagram of the axial aberration of the optical lens provided by the embodiment of the present application.
  • Fig. 4a is a schematic structural diagram of an optical lens provided by another embodiment of the present application.
  • Fig. 4b is a schematic diagram of the field curvature curve of the optical lens provided by another embodiment of the present application.
  • Fig. 4c is a schematic diagram of the axial aberration of the optical lens provided by another embodiment of the present application.
  • Fig. 5a is a schematic structural diagram of an optical lens provided by another embodiment of the present application.
  • Fig. 5b is a schematic diagram of the field curvature curve of the optical lens provided by another embodiment of the present application.
  • Fig. 5c is a schematic diagram of the axial aberration of the optical lens provided by another embodiment of the present application.
  • Fig. 6a is a schematic structural diagram of an optical lens provided by another embodiment of the present application.
  • Fig. 6b is a schematic diagram of the field curvature curve of the optical lens provided by another embodiment of the present application.
  • Fig. 6c is a schematic diagram of the axial aberration of the optical lens provided by another embodiment of the present application.
  • Fig. 7a is a schematic structural diagram of an optical lens provided by another embodiment of the present application.
  • Fig. 7b is a schematic diagram of the field curvature curve of the optical lens provided by another embodiment of the present application.
  • Fig. 7c is a schematic diagram of the axial aberration of the optical lens provided by another embodiment of the present application.
  • Fig. 8a is a schematic structural diagram of an optical lens provided by another embodiment of the present application.
  • Fig. 8b is a schematic diagram of the field curvature curve of the optical lens provided by another embodiment of the present application.
  • Fig. 8c is a schematic diagram of the axial aberration of the optical lens provided by another embodiment of the present application.
  • Auto focus Utilizes the principle of object light reflection, the reflected light is received by the imaging device on the camera, and the focusing device is driven to focus according to the actual shooting process.
  • usually autofocus can be divided into two types: ranging autofocus and focus detection autofocus. The former is based on the detection of the distance between the lens and the object to be photographed, and the latter is based on the focus detection of clear imaging on the focal plane.
  • Focal power It is used to characterize the deflection ability of the optical system for light, which is equal to the difference between the image-side beam convergence and the object-side beam convergence.
  • the refractive index of approximate air 1
  • the optical power can be expressed as the reciprocal of the focal length of the image space. The larger the value of the optical power, the stronger the refraction of the optical system for the incident parallel beam.
  • the refraction of the optical system When the power is greater than 0, the refraction of the optical system is converging; when the power is less than 0, the refraction of the optical system is divergent; when the power is equal to 0, it corresponds to plane refraction, that is, along The parallel optical axis of the optical axis is still a parallel beam along the optical axis after refraction, and there is no refraction of light.
  • Optical power adjustable element usually composed of multiple lenses of different shapes, the optical power of the element itself can be adjusted. In the process of realizing automatic focusing of the optical lens, the adjustment of the focal length of the optical lens is realized by adjusting the optical power of the optical focus adjustable element.
  • Aberration The imaging of most optical systems is imperfect, that is, it is not ideal imaging. Aberration is used to characterize the imperfection of optical system imaging.
  • the aberrations of the optical system can be divided into monochromatic aberrations and polychromatic aberrations.
  • monochromatic aberrations mainly include spherical aberration, coma, astigmatism, field curvature (image surface curvature), and distortion;
  • polychromatic aberrations include Vertical chromatic aberration and axial chromatic aberration.
  • the front camera function of electronic devices is becoming more and more common.
  • the front surface usually belongs to the main functional area.
  • the screen is located on the front surface of the electronic device, and is used to implement display and other human-computer interaction functions.
  • the screen-to-body ratio of electronic devices is gradually increasing.
  • the screen-to-body ratio generally refers to the ratio of the screen area of an electronic device to the front surface area.
  • the application scenario of the application scenario is introduced by taking a mobile phone with a front camera as an example.
  • FIG. 1a is a schematic structural diagram of a mobile phone with a front camera.
  • a mobile phone contains a screen and a front-facing camera.
  • the mobile phone has a large screen-to-body ratio, that is, the ratio of the area of the screen to the area of the front surface of the mobile phone is relatively large.
  • the phone also includes a front-facing camera.
  • a hole is opened on the surface of the mobile phone corresponding to the position of the front camera.
  • the front camera of a mobile phone has an auto-focus function, and the specific principle is as follows: an optical power adjustable element is arranged at the front end of the optical lens, and the front end is the end close to the object to be photographed.
  • the focal length of the optical lens needs to be changed, for example, when the shooting environment changes or the shooting temperature changes, the focal length of the entire optical lens is changed by controlling and adjusting the focal length of the optical power adjustable element, thereby realizing automatic focusing.
  • the focal power adjustable element is usually a combination of optical lenses of different shapes and has a large size, the above method needs to open a large hole on the front surface of the mobile phone, resulting in a reduction in the screen ratio of the mobile phone. .
  • FIG. 1b is a schematic structural diagram of a portable computer with a front camera.
  • a laptop contains a screen and a front-facing camera.
  • the front-facing camera is located in the upper area of the screen, and a hole needs to be opened in the area where the front-facing camera is located on the surface of the portable computer.
  • the screen is placed below the area where the front camera is located. Therefore, the size of the hole will affect the area of the screen. When the size of the hole is larger, the screen ratio of the portable computer is smaller.
  • an embodiment of the present application provides an optical lens and an electronic device, so as to improve the utilization rate of the surface of the electronic device.
  • the optical lens includes: a first lens group, an adjustable optical power element and a second lens group.
  • the optical power adjustable element is used to change the focal length of the optical lens
  • the first lens group includes at least two lenses
  • the second lens group includes at least one lens.
  • the optical focal length adjustable element enables the optical lens to image objects with different object distances and realize automatic focusing.
  • the end of the optical lens near the object side is called the front end of the lens.
  • the lens in the first lens group is the lens close to the object side and has a smaller size.
  • the focal power adjustable element G having a larger size is located near the image side of the optical lens, so that the front end of the optical lens has a smaller lateral size.
  • the lateral size of the front end of the optical lens will affect the size of the opening on the surface of the electronic device. Therefore, the solution of this embodiment can reduce the lateral size of the front end of the optical lens and reduce the size of the opening on the surface of the electronic device, thereby improving the performance of the electronic device. screen-to-body ratio.
  • Words such as “first” and “second” in the description of the present application are used for description purposes only, and should not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • connection should be understood in a broad sense, for example, “connection” can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection, or Can be connected indirectly through intermediaries.
  • the terminal device can be a mobile phone, a notebook computer, a wearable electronic device (such as a smart watch), a tablet computer, an augmented reality (augmented reality, AR) device, a virtual reality (virtual reality, VR) equipment, etc.
  • augmented reality augmented reality, AR
  • VR virtual reality
  • the structure of the terminal device will be described below.
  • FIG. 1c is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and A subscriber identification module (subscriber identification module, SIM) card interface 195 and the like.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the electronic device 100 realizes the display function through the GPU, the display screen 194 , and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos and the like.
  • the display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light emitting diodes (quantum dot light emitting diodes, QLED), etc.
  • the electronic device 100 may include 1 or N display screens 194 , where N is a positive integer greater than 1.
  • the electronic device 100 can realize the shooting function through the ISP, the camera 193 , the video codec, the GPU, the display screen 194 and the application processor.
  • the ISP is used for processing the data fed back by the camera 193 .
  • the light is transmitted to the photosensitive element of the camera through the lens, and the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin color.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be located in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the light signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other image signals.
  • the electronic device 100 may include 1 or N cameras 193 , where N is a positive integer greater than 1.
  • the optical lens in the embodiment of the present application may be a component of the camera 193 of the electronic device 100.
  • the object to be photographed generates an optical image through the optical lens and projects it to the photosensitive element to complete the imaging of the object to be photographed.
  • An embodiment of the present application provides an optical lens.
  • FIG. 2 is a schematic structural diagram of an optical lens provided in an embodiment of the present application.
  • the lens module 200 sequentially includes: a first lens group 201 , an optical power adjustable element G and a second lens group 202 along the optical axis from the object side to the image side.
  • the first lens group 201 includes at least two lenses. In FIG. 2 , it is shown that the first lens group 201 includes the first lens L1 and the second lens L2 as an example. The first lens group 201 may also include more than two lenses. .
  • the second lens group 202 includes at least one lens. As shown in FIG. In the case of an example, the second lens group 202 may also include other numbers of lenses, for example, the second lens group 202 may include one lens, two lenses, or more than three lenses.
  • the optical power adjustable element G is used to change the focal length of the optical lens 200 .
  • the optical focus adjustable element G changes the focal length of the optical lens 200 so that the optical lens 200 can image objects with different object distances to achieve autofocus.
  • the optical power adjustable element G is located between the second lens L2 and the third lens L3 , that is, the optical power adjustable element G is located between the first lens group 201 and the second lens group 202 .
  • the end of the optical lens near the object side is called the front end of the lens.
  • the first lens L1 and the second lens L2 are lenses close to the object side and have a smaller size.
  • the focal power adjustable element G having a larger size is located near the image side of the optical lens 200, so that the front end of the optical lens 200 has a smaller lateral size.
  • the lateral size of the front end of the optical lens 300 will affect the size of the opening on the surface of the electronic device. Therefore, the solution of this embodiment can reduce the lateral size of the front end of the optical lens 300 and reduce the size of the opening on the surface of the electronic device, thereby improving The screen-to-body ratio of electronic devices.
  • the embodiment of the present application also provides another optical lens.
  • FIG. 3a is a schematic structural diagram of an optical lens provided by another embodiment of the present application.
  • the lens module 200 sequentially includes: a first lens group 201 , an optical power adjustable element G and a second lens group 202 along the optical axis from the object side to the image side.
  • the first lens group 201 sequentially includes a first lens L1 and a second lens L2 along the optical axis direction from the object side to the image side, and the second lens group 202 includes a third lens L3.
  • the power adjustable element G is located between the second lens L2 and the third lens L3.
  • the end close to the object side is referred to as the front
  • the end close to the image side is referred to as the rear.
  • the first lens L1 is in front of the second lens L2.
  • the end of the optical lens near the object side is called the front end of the lens (lens head); the end near the image side is called the rear end of the lens.
  • the size of the lens head affects the size of the opening on the electronic device.
  • the direction perpendicular to the optical axis is the lateral direction
  • the lateral size of the lens head affects the size of the opening on the electronic device.
  • the lateral size of the lens head is large, the size of the opening on the electronic device needs to be large; when the lateral size of the lens head is small, the size of the opening on the electronic device needs to be small.
  • the size of the opening on the electronic device can be reduced.
  • the optical lens 200 may further include an optical filter GF, and the optical filter GF is located behind the second lens group 202 .
  • the optical filter GF only allows light of a specific wavelength to pass through, and cuts off light of other wavelengths, which can, for example, suppress optical noise and strengthen optical signals.
  • the above lens may be made of plastic.
  • the lens module 200 sequentially includes elements from the object side to the image side along the optical axis direction: the first lens L1, the second lens L2, the optical power adjustable element G, the third lens L3, and Optical filter GF.
  • Si is the image plane.
  • R Central curvature radius of lens and optical filter
  • Infinity refers to infinity
  • R_S Radius of curvature of the center of the aperture
  • R_object the central curvature radius of the object side of the lens and optical filter
  • R_image the central curvature radius of the image side of the lens and optical filter
  • R_object 1 the central radius of curvature of the object side of the first lens L1;
  • R_image 1 the central radius of curvature of the image side of the first lens L1;
  • R_object 2 the central radius of curvature of the object side of the second lens L2;
  • R_like 2 the central radius of curvature of the image side of the second lens L2;
  • R_object 3 the central radius of curvature of the object side of the third lens L3;
  • R_like 3 the central radius of curvature of the image side of the third lens L3;
  • R_object g the central curvature radius of the object side of the optical filter GF
  • R_image g the central curvature radius of the image side of the optical filter GF
  • d axial thickness of the lens, on-axis distance between optical elements; on-axis distance refers to the distance on the optical axis;
  • d0 the axial distance from the aperture S to the object side of the first lens L1;
  • d2 the axial distance from the image side of the first lens L1 to the object side of the second lens L2;
  • CT On-axis thickness of the focal power tunable optical element G
  • d7 axial thickness of optical filter GF
  • nd Refractive index of d-line (d-line is green light with a wavelength of 550nm);
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • ndg the refractive index of the d-line of the optical filter GF (d-line is green light with a wavelength of 550nm);
  • v1 the Abbe number of the first lens L1;
  • v3 the Abbe number of the third lens L3
  • vg Abbe number of optical filter GF.
  • the aspheric lens surface of each lens As the aspheric lens surface of each lens, the aspheric surface obtained by formula (1) is used.
  • z is the depth of the aspheric surface
  • c is the curvature at the center of the optical surface
  • r is the vertical distance between the point on the aspheric surface and the optical axis
  • k is the conic coefficient
  • A_4, A_6, A_8, A_10, A_12, A_14, A_16 , A_18, A_20 are aspheric coefficients.
  • Second structure third structure OBJ(mm) 400 150 1200 fG(mm) 208.27 9.44 -1927.8 IH 1.641 1.641 1.641 TTL 3.01 3.01 3.01 f 2.12 1.83 2.13 ⁇ CT12/TTL 0.32 0.32 0.32 TTL/f 1.42 1.58 1.41 Fno 2.40 2.40 2.40 f1/f 1.43 1.43 f2/f 7.05 7.05 7.05 (R object 3+R image 3)/(R object 3-R image 3) 1.10 1.10 1.10 Yl/IH 1.75 1.75 1.75 IH/TTL 0.55 0.55 0.55 MaxY12/IH 0.89 0.89 0.89 Fov(°) 74.36 74.35 74.35
  • the first structure, the second structure and the third structure are parameters when the optical lens 200 shoots objects at three different distances.
  • OBJ the distance on the optical axis from the object to be photographed to the object side of the first lens L1 in the optical lens 200;
  • fG the focal length of the focal length adjustable element G
  • IH the half-image height of the optical lens 200 imaging full field of view
  • TTL the distance on the optical axis from the object side of the first lens L1 to the imaging surface of the optical lens 200;
  • f the focal length of the optical lens 200
  • ⁇ CT12 the axial distance from the object side of the first lens L1 to the image side of the second lens L2;
  • Fno the maximum aperture of the optical lens 200
  • Y1 the effective light aperture of the image side of the last lens of the optical lens 200; in this embodiment, it is also the effective light aperture of the image side of the third lens L3.
  • MaxY12 the maximum clear aperture among the clear apertures of the first lens L1 and the second lens L2.
  • the clear aperture of the first lens includes the clear aperture of the first lens object side and the clear aperture of the first lens image side
  • the clear aperture of the second lens includes the clear aperture of the second lens object side and the second lens image
  • the clear aperture on the side, MaxY12 is the largest clear aperture among the above four clear apertures
  • Fov The field of view in the diagonal direction of the hologram, the maximum full field of view.
  • OBJ is used to represent the distance between the object to be photographed and the optical lens 200 , and may represent the shooting distance.
  • Different OBJs in Table 3 correspond to parameters of the optical lens 200 when shooting objects at different distances, that is, different OBJs correspond to different shooting distances.
  • the focal length of the optical focus adjustable element G that is fG
  • the focal length of the optical lens 200 that is f
  • the focal length of the optical lens 200 is changed to achieve clear imaging of objects at different shooting distances, that is, to realize the focusing function of the optical lens 200.
  • the optical lens 200 can achieve clear imaging of objects at different shooting distances by adjusting the focal length. As shown in Table 3, when the OBJ is 400mm, 150mm and 1200mm, the focal lengths of the optical lens 200 are 2.12mm, 1.83mm and 2.13mm respectively.
  • TTL is used to represent the size of the space occupied by the optical lens 200 in the direction of the optical axis
  • ⁇ CT12 is used to represent the size of the space occupied by the first lens L1 and the second lens L2 in the direction of the optical axis
  • ⁇ CT12/TTL is used to represent the ratio of the first lens L1 and the second lens L2 occupying the entire size of the optical lens 200 in the direction of the optical axis.
  • holes need to be drilled on the surface where the screen of the terminal is located.
  • the lens The head has a smaller horizontal size, which makes the hole size smaller, thereby increasing the screen-to-body ratio of the terminal.
  • the lens head has a larger size in the optical axis direction, that is, the optical lens 200 has a deeper lens head, and the light passes through the optical lens 200
  • the time trend is smoother, thereby increasing the smoothness of light entering the optical system.
  • the lens head has a small lateral dimension, which can reduce the space occupied by the lens head of the optical lens 200 .
  • the optical lens 200 has a smaller TTL/f, so that the optical lens 200 has a smaller axial dimension and can realize clear imaging of objects at a longer shooting distance.
  • the field of view (Field of View, Fov) of the optical system is also called the field of view.
  • the size of the field of view determines the field of view of the optical system.
  • the optical lens 200 has a large full field of view (Fov in Table 3), and the captured image contains rich information.
  • the aperture value of the optical lens 200 is small, and the intensity of light entering the optical lens 200 is high, so that the optical lens 200 has a better imaging effect in a dark shooting environment.
  • the optical lens 200 has a smaller aperture value and a larger viewing angle at the same time.
  • the first lens L1 has a positive refraction force to achieve convergence of incident light rays, which can compress the size of the lens head of the optical lens 200 and reduce the size of the opening on the terminal screen.
  • the object side of the first lens L1 is convex at the near optical axis, and the image side of the first lens L1 is concave at the near optical axis, so that the angle between the light rays on the object side and the image side of the first lens L1 is small, so that It makes the light trend smooth and helps to correct aberrations such as astigmatism.
  • the f1/f of the optical lens 200 is small, so that the size of the optical lens 200 in the axial direction is small, and the size of the optical lens is miniaturized.
  • Tolerance refers to the error introduced by actual processing, that is, the difference between the actual value and the design value.
  • the optical lens 200 can shoot in a wider field of view while being less sensitive to tolerances.
  • the second lens L2 has a positive refractive power, which can fully absorb incident light and reduce the lateral size of the lens head of the optical lens 200, thereby reducing the size of the opening on the screen of the terminal device.
  • the object side of the second lens L2 is concave at the paraxial position, and the object image surface of the second lens L2 is convex at the paraxial position.
  • the third lens L3 has a positive refractive power.
  • the object side of the third lens L3 is convex at the paraxial position, and the object image surface of the third lens L3 is concave at the paraxial position.
  • the third lens L3 has a smaller radius of curvature, which can buffer the incident angle of the light incident on the subsequent lens, smooth the light trend, and reduce the sensitivity of the system to tolerances.
  • Y1 is the effective light aperture of the image side of the last lens (the third lens L3) of the optical lens 200
  • IH is the half-image height of the optical lens 200 imaging
  • the optical lens 200 has a smaller Yl/IH, which can reduce the rear of the optical lens
  • the size of the end is conducive to the miniaturization of the structure of the optical lens 200; while increasing the axial distance between the optical lens 200 and the photosensitive element (such as a charge-coupled element, etc.), the target surface size of imaging is increased, thereby improving the optical lens 200 for The ability to distinguish object details.
  • TTL is used to characterize the space occupied by the optical lens 200 in the direction of the optical axis.
  • the optical lens 200 has a smaller IH/TTL, which can reduce the size of the optical lens 200 and obtain higher pixel imaging results, that is, improve the clarity of imaging. Spend.
  • MaxY12 is the maximum clear aperture in the clear apertures of the first lens L1 and the second lens L2
  • IH is the half-image height of the imaging of the optical lens 200
  • the optical lens 200 has a smaller MaxY12/IH, which can be adapted to the optical lens With 200 different head sizes, the amount of light entering the system can be guaranteed to a certain extent, thereby enriching the detailed information of the measured object.
  • MaxY12/IH is reduced, for example, MaxY12/IH ⁇ 0.5, the head size of the optical lens 200 can be further reduced.
  • the optical lens has a smaller MaxY12/IH, and has a larger image surface while the optical lens has a smaller head size.
  • the diameter of the entrance pupil of the optical lens 200 is 0.88mm, and the lateral dimension of the lens head is relatively small.
  • the optical characteristics of the optical lens 200 are analyzed.
  • Curvature of field refers to the curvature of the image field.
  • the intersection point of the entire beam does not coincide with the ideal image point.
  • the entire image plane is a curved surface.
  • the focal lengths at different positions in the field of view are different, and the focal lengths at the edge of the field of view are different from those on the optical axis, which is manifested as defocusing in terms of image quality.
  • FIG. 3b is a schematic diagram of the field curvature curve of the optical lens provided by the embodiment of the present application.
  • T is the field curvature curve in the meridional direction
  • S is the field curvature curve in the sagittal direction.
  • the field curvature curve shows the distance from the focal plane or image plane to the paraxial focal plane at each point in the field of view.
  • the field curvature curve in the meridional direction shows the distance from the currently determined focal plane to the paraxial focal plane along the z-axis direction, which is the data on the meridian plane (YZ plane); while the field curvature data in the sagittal direction shows is the data on the plane perpendicular to the meridian plane.
  • the field curvature of the optical lens 200 in the meridional direction and the sagittal direction has a smaller absolute value, and the field curvature curves in the meridian direction and the sagittal direction are closer, so the optical lens 200 has less astigmatism , the imaging effect is better.
  • FIG. 3c is a schematic diagram of the axial aberration of the optical lens provided by the embodiment of the present application.
  • the parameters of the components in the optical lens 200 are shown in Table 1a.
  • the axial aberration of the imaging of the optical lens 200 is obtained when the wavelengths are 656 nm, 587 nm, 546 nm, 486 nm, and 435 nm.
  • the optical lens has a smaller imaging aberration (chromatic aberration on-axis and off-axis) when tested using the above-mentioned light waves of multiple wavelengths, that is, it has a better imaging effect.
  • the optical lens 200 can adjust the focal length through the optical focus adjustable element, and can clearly image objects at different shooting distances.
  • the size of the first lens L1 and the second lens L2 is small, and the focal power adjustable element G with a large size and the third lens are located at the rear of the optical lens 200 .
  • the first lens L1 and the second lens L2 have smaller lateral dimensions. Therefore, the lens head of the optical lens 300 has a smaller lateral dimension, which can realize a smaller aperture size.
  • the second lens group of the optical lens includes one lens, and the second lens group of the optical lens may also include other numbers of lenses.
  • the second lens group of the optical lens includes three lenses as an example, To illustrate the optical lens 200, the second lens group of the optical lens includes other numbers of lenses in a similar principle.
  • the optical lens 100 has partially similar imaging effects to those in the above embodiments, for details, refer to the description in the above embodiments.
  • the embodiment of the present application also provides another optical lens.
  • FIG. 4a is a schematic structural diagram of an optical lens provided by another embodiment of the present application.
  • the lens module 200 sequentially includes: a first lens group 201 , an optical power adjustable element G and a second lens group 202 along the optical axis from the object side to the image side.
  • the first lens group 201 includes in sequence from the object side to the image side along the optical axis direction: a first lens L1 and a second lens L2, and the second lens group 202 includes in sequence from the object side to the image side along the optical axis direction: a third mirror lens L3, fourth lens L4 and fifth lens L5.
  • the power adjustable element G is located between the second lens L2 and the third lens L3.
  • the optical lens 200 may further include an optical filter GF, and the optical filter GF is located behind the second lens group 202 .
  • the above lens may be made of plastic.
  • the lens module 200 sequentially includes elements from the object side to the image side along the optical axis direction: the first lens L1, the second lens L2, the optical power adjustable element G, the third lens L3, the first lens Four lenses L4, a fifth lens L5, and an optical filter GF.
  • Si is the image plane.
  • R_object 4 the central radius of curvature of the object side of the fourth lens L4;
  • R_like 4 the central radius of curvature of the image side of the fourth lens L4;
  • R_object 5 the central radius of curvature of the object side of the fifth lens L5;
  • R_like 5 the central radius of curvature of the image side of the fifth lens L5;
  • d10 the axial distance from the image side of the fifth lens L5 to the object side of the optical filter GF;
  • d11 axial thickness of optical filter GF
  • nd4 the refractive index of the d-line of the fourth lens L4 (the d-line is green light with a wavelength of 550nm);
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • v4 the Abbe number of the fourth lens L4
  • v5 the Abbe number of the fifth lens L5.
  • the aspheric lens surface of each lens uses the aspheric surface obtained by the formula (1) in the above embodiment.
  • Table 2b Conic coefficients and aspheric coefficients of elements in optics
  • Second structure third structure OBJ(mm) 400 150 1200 fG(mm) 3759.82 156.66 -469.98 IH 3.432 3.432 3.432 TTL 4.45 4.45 4.45 f 3.70 3.44 3.82 ⁇ CT12/TTL 0.12 0.12 0.12 TTL/f 1.20 1.30 1.17 Fno 2.40 2.40 2.40 f1/f 0.87 0.93 0.84 f2/f -2.72 -2.93 -2.64 (R object 3+R image 3)/(R object 3-R image 3) -93.28 -93.28 -93.28 Yl/IH 0.89 0.89 0.89 IH/TTL 0.77 0.77 0.77 MaxY12/IH 0.45 0.45 0.46 Fov(°) 80.01 80.19 79.94
  • the first structure, the second structure and the third structure are parameters when the optical lens 200 shoots objects at three different distances.
  • Y1 is the effective light aperture of the image side of the last lens of the optical lens 200; in this embodiment, it is also the effective light aperture of the image side of the fifth lens L5.
  • optical lens 200 in this embodiment is analyzed below, and the descriptions in the above embodiments may refer to the descriptions in the above embodiments. In order to avoid repetition, details are not repeated in this embodiment.
  • the optical lens 200 can achieve clear imaging of objects at different shooting distances by adjusting the focal length. As shown in Table 2c, when the OBJ is 400mm, 150mm and 1200mm, the focal lengths of the optical lens 200 are 3.70mm, 3.44mm and 3.82mm respectively.
  • the lens head Since the lateral size of the first lens L1 and the second lens L2 is smaller than that of the focal power adjustable element G, and the ratio of the first lens L1 and the second lens L2 to the size of the entire optical lens 200 is relatively large ( ⁇ CT12/ TTL is larger), therefore, the lens head has a smaller lateral size, making the opening size smaller, thereby increasing the screen-to-body ratio of the terminal.
  • the lens head has a larger size in the optical axis direction, that is, the optical lens 200 has a deeper lens head, and the light passes through the optical lens 200
  • the time trend is smoother, thereby increasing the smoothness of light entering the optical system.
  • the lens head has a small lateral dimension, which can reduce the space occupied by the lens head of the optical lens 200 .
  • the optical lens 200 has a smaller TTL/f, so that the optical lens 200 has a smaller axial dimension, and can realize clear imaging for objects that are farther away.
  • the optical lens 200 has a large full field of view (Fov in Table 2c), and the captured image contains rich information.
  • the aperture value of the optical lens 200 is small, and the intensity of light entering the optical lens 200 is high, so that in a dark shooting environment, the optical lens 200 has a better imaging effect.
  • the optical lens 200 has a smaller aperture value and a larger viewing angle at the same time.
  • the first lens L1 has a positive refraction force to achieve convergence of incident light rays, which can compress the size of the lens head of the optical lens 200 and reduce the size of the opening on the terminal screen.
  • the object side of the first lens L1 is convex at the near optical axis, and the image side of the first lens L1 is concave at the near optical axis, so that the angle between the light rays on the object side and the image side of the first lens L1 is small, so that It makes the light trend smooth and helps to correct aberrations such as astigmatism.
  • the f1/f of the optical lens 200 is small, so that the size of the optical lens 200 in the axial direction is small, that is, it is beneficial to compress the total length of the entire optical system and realize the miniaturization of the size of the optical lens.
  • the optical lens 200 can shoot in a wider field of view while being less sensitive to tolerances.
  • the second lens L2 has a negative refractive power, which is beneficial for correcting distortion and correcting aberrations.
  • the object side of the second lens is convex at the near axis, and the image side of the second lens is concave at the near axis.
  • the third lens L3 is the front end of the second lens group and is located at the rear end of the optical power adjustable element G. As shown in FIG.
  • the third lens L3 has positive refractive power.
  • the object side of the third lens is convex at the near axis, and the image side of the third lens is concave at the near axis.
  • the third lens L3 has a smaller radius of curvature, which can buffer the incident angle of the light incident on the subsequent lens, smooth the light trend, and reduce the sensitivity of the system to tolerances.
  • the fourth lens L4 has positive refractive power, the object side of the fourth lens is concave at the paraxial position, and the image side of the fourth lens is convex at the paraxial position.
  • the fifth lens L5 has negative refractive power, the object side of the fifth lens is convex at the paraxial position, and the image side of the fifth lens is concave at the paraxial position.
  • Y1 is the effective light aperture of the image side of the last lens (the fifth lens L5) of the optical lens 200
  • IH is the half-image height of the optical lens 200 imaging
  • the optical lens 200 has a smaller Yl/IH, which can reduce the rear of the optical lens
  • the size of the end is conducive to the miniaturization of the structure of the optical lens 200; while increasing the axial distance between the optical lens 200 and the photosensitive element (such as a charge-coupled element, etc.), the target surface size of imaging is increased, thereby improving the optical lens 200 for The ability to distinguish object details.
  • the optical lens 200 has a smaller IH/TTL, which can reduce the size of the optical lens 200 while obtaining higher pixel imaging results, that is, improving the definition of imaging.
  • MaxY12 is the maximum clear aperture among the clear apertures of the first lens L1 and the second lens L2.
  • the optical lens 200 has a smaller MaxY12/IH, which can guarantee the amount of light entering the system to a certain extent when adapting to different head sizes of the optical lens 200, thereby enriching the detailed information of the measured object.
  • the optical lens has a smaller MaxY12/IH, and has a larger image surface while the optical lens has a smaller head size.
  • the diameter of the entrance pupil of the optical lens 200 is 1.54mm, and the lateral dimension of the lens head is relatively small.
  • the optical characteristics of the optical lens 200 are analyzed.
  • FIG. 4b is a schematic diagram of a field curvature curve of an optical lens provided in another embodiment of the present application.
  • T is the field curvature curve in the meridional direction
  • S is the field curvature curve in the sagittal direction.
  • the field curvature in the meridional direction and sagittal direction of the imaging of the optical lens 200 has a smaller absolute value, and the field curvature curves in the meridional direction and the sagittal direction are closer, so the optical lens 200 has less astigmatism , the imaging effect is better.
  • FIG. 4c is a schematic diagram of axial aberration of an optical lens provided by another embodiment of the present application.
  • the axial aberration of the imaging of the optical lens 200 is obtained when the wavelengths are 656 nm, 587 nm, 546 nm, 486 nm, and 435 nm.
  • the optical lens has a smaller imaging aberration (chromatic aberration on-axis and off-axis) when tested using the above-mentioned light waves of multiple wavelengths, that is, it has a better imaging effect.
  • the optical lens 200 can adjust the focal length through the optical focus adjustable element, and can clearly image objects at different shooting distances.
  • the size of the first lens L1 and the second lens L2 is small, and the focal power adjustable element G with a large size, the third lens, the fourth lens L4 and the fifth lens L5 are located at the rear of the optical lens 200 .
  • the third lens L3, the fourth lens L4 and the fifth lens L5 have smaller lateral dimensions. Therefore, the lens head of the optical lens 300 has a smaller lateral dimension, which can realize a smaller aperture size.
  • the second lens group of the optical lens 200 in this embodiment includes three lenses, which has more lenses, which is beneficial to correct the aberration of imaging .
  • the refractive power of the second lens in the first lens group of the optical lens is negative, which is beneficial for correcting distortion and aberration.
  • the second lens L2 when the second lens L2 has a positive refractive power, it can fully absorb incident light, reduce the lateral size of the lens head of the optical lens 200, and thereby reduce the size of the opening on the screen of the terminal device.
  • the embodiment of the present application also provides another optical lens.
  • FIG. 5a is a schematic structural diagram of an optical lens provided by another embodiment of the present application.
  • the lens module 200 sequentially includes: a first lens group 201 , an optical power adjustable element G and a second lens group 202 along the optical axis from the object side to the image side.
  • the first lens group 201 includes in sequence from the object side to the image side along the optical axis direction: a first lens L1 and a second lens L2, and the second lens group 202 includes in sequence from the object side to the image side along the optical axis direction: a third mirror lens L3, fourth lens L4 and fifth lens L5.
  • the power adjustable element G is located between the second lens L2 and the third lens L3.
  • the optical lens 200 may further include an optical filter GF, and the optical filter GF is located behind the second lens group 202 .
  • the above lens may be made of plastic.
  • the lens module 200 sequentially includes elements from the object side to the image side along the optical axis direction: the first lens L1, the second lens L2, the optical power adjustable element G, the third lens L3, the first lens Four lenses L4, a fifth lens L5, and an optical filter GF.
  • Si is the image plane.
  • the aspheric lens surface of each lens uses the aspheric surface obtained by the formula (1) in the above embodiment.
  • Second structure third structure OBJ(mm) 400 150 1200 fG(mm) 144.32 80.00 200.45 IH 3.432 3.432 3.432 TTL 3.96 3.96 4.45 f 2.76 2.71 2.78 ⁇ CT12/TTL 0.13 0.13 0.13 TTL/f 1.44 1.46 1.43
  • the first structure, the second structure and the third structure are parameters when the optical lens 200 shoots objects at three different distances.
  • Y1 is the effective light aperture of the image side of the last lens of the optical lens 200; in this embodiment, it is also the effective light aperture of the image side of the fifth lens L5.
  • optical lens 200 in this embodiment is analyzed below, and the descriptions in the above embodiments may refer to the descriptions in the above embodiments. In order to avoid repetition, details are not repeated in this embodiment.
  • the optical lens 200 can achieve clear imaging of objects at different shooting distances by adjusting the focal length. As shown in Table 3c, when the OBJ is 400mm, 150mm and 1200mm, the focal lengths of the optical lens 200 are 3.70mm, 3.44mm and 3.82mm respectively.
  • the optical lens 200 has a smaller TTL/f, so that the optical lens 200 has a smaller axial dimension, and can realize clear imaging for objects that are farther away.
  • the optical lens 200 has a larger maximum field of view (Fov in Table 3c), and the captured image contains rich information.
  • the aperture value of the optical lens 200 is small, and the intensity of light entering the optical lens 200 is high, so that the optical lens 200 has a better imaging effect in a dark shooting environment.
  • the optical lens 200 has a smaller aperture value and a larger viewing angle at the same time.
  • the first lens L1 has a positive refraction force to achieve convergence of incident light rays, which can compress the size of the lens head of the optical lens 200 and reduce the size of the opening on the terminal screen.
  • the object side of the first lens L1 is convex at the near optical axis, and the image side of the first lens L1 is concave at the near optical axis, so that the angle between the light rays on the object side and the image side of the first lens L1 is small, so that It makes the light trend smooth and helps to correct aberrations such as astigmatism.
  • the f1/f of the optical lens 200 is small, so that the size of the optical lens 200 in the axial direction is small, that is, it is beneficial to compress the total length of the entire optical system and realize the miniaturization of the size of the optical lens.
  • the optical lens 200 can shoot in a wider field of view while being less sensitive to tolerances.
  • the second lens L2 has a positive refractive power, which is beneficial for receiving incident light and reducing the head size of the optical lens.
  • the object side of the second lens is convex at the near axis, and the image side of the second lens is concave at the near axis.
  • the third lens L3 is the front end of the second lens group and is located at the rear end of the optical power adjustable element G. As shown in FIG.
  • the third lens L3 has a positive refractive power.
  • the object side of the third lens is convex at the near axis, and the image side of the third lens is concave at the near axis.
  • the third lens L3 has a smaller radius of curvature, which can buffer the incident angle of light incident on subsequent lenses, smooth the light trend, and reduce the sensitivity of the system to tolerances.
  • the fourth lens L4 has positive refractive power, the object side of the fourth lens is concave at the paraxial position, and the image side of the fourth lens is convex at the paraxial position.
  • the fifth lens L5 has negative refractive power, the object side of the fifth lens is convex at the paraxial position, and the image side of the fifth lens is concave at the paraxial position.
  • Y1 is the effective light aperture of the image side of the last lens (the fifth lens L5) of the optical lens 200
  • IH is the half-image height of the optical lens 200 imaging
  • the optical lens 200 has a smaller Yl/IH, which can reduce the rear of the optical lens
  • the size of the end is conducive to the miniaturization of the structure of the optical lens 200; while increasing the axial distance between the optical lens 200 and the photosensitive element (such as a charge-coupled element, etc.), the target surface size of imaging is increased, thereby improving the optical lens 200 for The ability to distinguish object details.
  • the optical lens 200 has a smaller IH/TTL, which can reduce the size of the optical lens 200 while obtaining higher pixel imaging results, that is, improving the definition of imaging.
  • the optical lens 200 has a smaller MaxY12/IH, which can guarantee the amount of light entering the system to a certain extent when adapting to different head sizes of the optical lens 200, thereby enriching the detailed information of the measured object.
  • the second lens group of the optical lens 200 of this embodiment includes three lenses.
  • the diameter of the entrance pupil of the optical lens 200 is 1.12 mm, and the lateral dimension of the lens head is relatively small.
  • the optical characteristics of the optical lens 200 are analyzed.
  • FIG. 5b is a schematic diagram of a field curvature curve of an optical lens provided by another embodiment of the present application.
  • T is the field curvature curve in the meridional direction
  • S is the field curvature curve in the sagittal direction.
  • the field curvature of the optical lens 200 in the meridional direction and the sagittal direction has a smaller absolute value, and the field curvature curves in the meridional direction and the sagittal direction are relatively close, so the optical lens 200 has less astigmatism , the imaging effect is better.
  • FIG. 5c is a schematic diagram of axial aberration of an optical lens provided by another embodiment of the present application.
  • the axial aberration of the imaging of the optical lens 200 is obtained when the wavelengths are 656 nm, 587 nm, 546 nm, 486 nm, and 435 nm.
  • the optical lens has a smaller imaging aberration (chromatic aberration on and off the axis) when tested using the above-mentioned light waves of multiple wavelengths, that is, it has a better imaging effect.
  • the optical lens 200 can adjust the focal length through the optical focus adjustable element, and can clearly image objects at different shooting distances.
  • the size of the first lens L1 and the second lens L2 is small, and the focal power adjustable element G with a large size, the third lens, the fourth lens L4 and the fifth lens L5 are located at the rear of the optical lens 200 .
  • the third lens L3, the fourth lens L4 and the fifth lens L5 have smaller lateral dimensions. Therefore, the lens head of the optical lens 300 has a smaller lateral dimension, which can realize a smaller aperture size.
  • the refractive power of the second lens in the first lens group of the optical lens in this embodiment is positive to facilitate the reception of incident light, reducing the lateral size of the lens head of the optical lens 200, thereby reducing the terminal The size of the opening on the device screen.
  • the second lens group of the optical lens 200 includes three lenses, which has a relatively large number of lenses, which is beneficial for correcting imaging aberrations.
  • the image surface of the fourth lens in the second lens group of the optical lens is convex at the paraxial position, and the optical lens will be described below with the image surface of the fourth lens being concave at the paraxial position.
  • the embodiment of the present application also provides another optical lens.
  • FIG. 6a is a schematic structural diagram of an optical lens provided by another embodiment of the present application.
  • the lens module 200 sequentially includes: a first lens group 201 , an optical power adjustable element G and a second lens group 202 along the optical axis from the object side to the image side.
  • the first lens group 201 includes in sequence from the object side to the image side along the optical axis direction: a first lens L1 and a second lens L2, and the second lens group 202 includes in sequence from the object side to the image side along the optical axis direction: a third mirror lens L3, fourth lens L4 and fifth lens L5.
  • the power adjustable element G is located between the second lens L2 and the third lens L3.
  • the optical lens 200 may further include an optical filter GF, and the optical filter GF is located behind the second lens group 202 .
  • the above lens may be made of plastic.
  • the lens module 200 sequentially includes elements from the object side to the image side along the optical axis direction: the first lens L1, the second lens L2, the optical power adjustable element G, the third lens L3, the first lens Four lenses L4, a fifth lens L5, and an optical filter GF.
  • Si is the image plane.
  • the aspheric lens surface of each lens uses the aspheric surface obtained by the formula (1) in the above embodiment.
  • Second structure third structure OBJ(mm) 400 150 1200 fG(mm) 90.20 64.43 106.12 IH 3.432 3.432 3.432 TTL 3.88 3.88 3.88 f 2.14 2.12 2.15 ⁇ CT12/TTL 0.08 0.08 0.08 TTL/f 1.81 1.83 1.81 Fno 2.40 2.40 2.40 f1/f 2.31 2.33 2.31 f2/f -5.28 -5.32 -5.26 (R object 3+R image 3)/(R object 3-R image 3) 0.81 0.81 0.81 0.81 Yl/IH 0.79 0.79 0.79 IH/TTL 0.88 0.88 0.88 MaxY12/IH 0.26 0.26 0.26 FOV(°) 120.24 120.53 120.14
  • the first structure, the second structure and the third structure are parameters when the optical lens 200 shoots objects at three different distances.
  • Y1 is the effective light aperture of the image side of the last lens of the optical lens 200; in this embodiment, it is also the effective light aperture of the image side of the fifth lens L5.
  • optical lens 200 in this embodiment is analyzed below, and the descriptions in the above embodiments may refer to the descriptions in the above embodiments. In order to avoid repetition, details are not repeated in this embodiment.
  • the optical lens 200 can achieve clear imaging of objects at different shooting distances by adjusting the focal length. As shown in Table 4c, when the OBJ is 400mm, 150mm and 1200mm, the focal lengths of the optical lens 200 are 3.70mm, 3.44mm and 3.82mm respectively.
  • the lens head Since the lateral size of the first lens L1 and the second lens L2 is smaller than that of the focal power adjustable element G, and the ratio of the first lens L1 and the second lens L2 to the size of the entire optical lens 200 is relatively large ( ⁇ CT12/ TTL is larger), therefore, the lens head has a smaller lateral size, making the opening size smaller, thereby increasing the screen-to-body ratio of the terminal.
  • the lens head has a larger size in the optical axis direction, that is, the optical lens 200 has a deeper lens head, and the light passes through the optical lens 200
  • the time trend is smoother, thereby increasing the smoothness of light entering the optical system.
  • the lens head has a small lateral dimension, which can reduce the space occupied by the lens head of the optical lens 200 .
  • the optical lens 200 has a smaller TTL/f, so that the optical lens 200 has a smaller axial dimension, and can realize clear imaging for objects that are farther away.
  • the optical lens 200 has a large full field of view (Fov in Table 4c), and the captured image contains rich information.
  • the aperture value of the optical lens 200 is small, and the intensity of light entering the optical lens 200 is high, so that in a dark shooting environment, the optical lens 200 has a better imaging effect.
  • the optical lens 200 has a smaller aperture value and a larger viewing angle at the same time.
  • the first lens L1 has a positive refraction force to achieve convergence of incident light rays, which can compress the size of the lens head of the optical lens 200 and reduce the size of the hole on the terminal screen.
  • the object side of the first lens L1 is convex at the near optical axis, and the image side of the first lens L1 is concave at the near optical axis, so that the angle between the light rays on the object side and the image side of the first lens L1 is small, so that It makes the light trend smooth and helps to correct aberrations such as astigmatism.
  • the f1/f of the optical lens 200 is small, so that the size of the optical lens 200 in the axial direction is small, that is, it is beneficial to compress the total length of the entire optical system and realize the miniaturization of the size of the optical lens.
  • the optical lens 200 can shoot in a wider field of view while being less sensitive to tolerances.
  • the second lens L2 has a negative refractive power, which is beneficial for correcting distortion and correcting aberrations.
  • the object side of the second lens L2 is convex at the paraxial position, and the image side of the second lens L2 is concave at the paraxial position.
  • the third lens L3 is the front end of the second lens group and is located at the rear end of the optical power adjustable element G. As shown in FIG.
  • the third lens L3 has a positive refractive power, the object side of the third lens L3 is convex at the paraxial position, and the image side of the third lens L3 is concave at the paraxial position.
  • the third lens L3 has a smaller radius of curvature, which can buffer the incident angle of the light incident on the subsequent lens, smooth the light trend, and reduce the sensitivity of the system to tolerances.
  • the fourth lens L4 has positive refractive power, the object side of the fourth lens is concave at the paraxial position, and the image side of the fourth lens is concave at the paraxial position.
  • the fifth lens L5 has negative refractive power, the object side of the fifth lens is convex at the paraxial position, and the image side of the fifth lens is concave at the paraxial position.
  • Y1 is the effective light aperture of the image side of the last lens (the fifth lens L5) of the optical lens 200
  • IH is the half-image height of the optical lens 200 imaging
  • the optical lens 200 has a smaller Yl/IH, which can reduce the rear of the optical lens
  • the size of the end is conducive to the miniaturization of the structure of the optical lens 200; while increasing the axial distance between the optical lens 200 and the photosensitive element (such as a charge-coupled element, etc.), the target surface size of imaging is increased, thereby improving the optical lens 200 for The ability to distinguish object details.
  • the optical lens 200 has a smaller IH/TTL, which can reduce the size of the optical lens 200 while obtaining higher pixel imaging results, that is, improving the definition of imaging.
  • the optical lens 200 has a smaller MaxY12/IH, which can guarantee the amount of light entering the system to a certain extent when adapting to different head sizes of the optical lens 200, thereby enriching the detailed information of the measured object.
  • the second lens group of the optical lens 200 of this embodiment includes three lenses.
  • the diameter of the entrance pupil of the optical lens 200 is 1.54mm, and the lateral dimension of the lens head is relatively small.
  • the optical characteristics of the optical lens 200 are analyzed.
  • FIG. 6b is a schematic diagram of a field curvature curve of an optical lens provided by another embodiment of the present application.
  • T is the field curvature curve in the meridional direction
  • S is the field curvature curve in the sagittal direction.
  • the field curvature in the meridional direction and the sagittal direction of the imaging of the optical lens 200 has a smaller absolute value, and the field curvature curves in the meridional direction and the sagittal direction are closer, so the optical lens 200 has less astigmatism , the imaging effect is better.
  • FIG. 6c is a schematic diagram of axial aberration of an optical lens provided by another embodiment of the present application.
  • the axial aberration of the imaging of the optical lens 200 is obtained when the wavelengths are 656 nm, 587 nm, 546 nm, 486 nm, and 435 nm.
  • the optical lens has a smaller imaging aberration (chromatic aberration on-axis and off-axis) when tested using the above-mentioned light waves of multiple wavelengths, that is, it has a better imaging effect.
  • the optical lens 200 can adjust the focal length through the optical focus adjustable element, and can clearly image objects at different shooting distances.
  • the size of the first lens L1 and the second lens L2 is small, and the focal power adjustable element G with a large size, the third lens, the fourth lens L4 and the fifth lens L5 are located at the rear of the optical lens 200 .
  • the third lens L3, the fourth lens L4 and the fifth lens L5 have smaller lateral dimensions. Therefore, the lens head of the optical lens 300 has a smaller lateral dimension, which can realize a smaller aperture size.
  • the refractive power of the second lens in the first lens group of the optical lens is negative, which is beneficial for correcting distortion and aberration.
  • the image side of the fourth lens of the optical lens 200 in this embodiment is concave near the axis.
  • the second lens group of the optical lens 200 in this embodiment includes three lenses, which has more lenses, which is beneficial to correct the aberration of imaging .
  • the second lens group of the optical lens may further include four lenses.
  • the embodiment of the present application also provides another optical lens.
  • FIG. 7a is a schematic structural diagram of an optical lens provided by another embodiment of the present application.
  • the lens module 200 sequentially includes: a first lens group 201 , an optical power adjustable element G and a second lens group 202 along the optical axis from the object side to the image side.
  • the first lens group 201 includes in sequence from the object side to the image side along the optical axis direction: a first lens L1 and a second lens L2, and the second lens group 202 includes in sequence from the object side to the image side along the optical axis direction: a third mirror lens L3, fourth lens L4, fifth lens L5, and sixth lens L6.
  • the power adjustable element G is located between the second lens L2 and the third lens L3.
  • the optical lens 200 may further include an optical filter GF, and the optical filter GF is located behind the second lens group 202 .
  • the above lens may be made of plastic.
  • the lens module 200 sequentially includes elements from the object side to the image side along the optical axis direction: the first lens L1, the second lens L2, the optical power adjustable element G, the third lens L3, the first lens Four lenses L4, fifth lens L5, sixth lens L6, and optical filter GF.
  • Si is the image plane.
  • R_object 6 the central radius of curvature of the object side of the sixth lens L6;
  • R_like 6 the central radius of curvature of the image side of the sixth lens L6;
  • d10 the axial distance from the image side of the fifth lens L5 to the object side of the sixth lens L6;
  • d11 axial thickness of the sixth lens L6;
  • d12 the axial distance from the sixth lens L6 to the object side of the optical filter GF;
  • d13 axial thickness of optical filter GF
  • nd6 the refractive index of the d-line of the sixth lens L6 (the d-line is green light with a wavelength of 550nm);
  • v6 the Abbe number of the sixth lens L6.
  • the aspheric lens surface of each lens uses the aspheric surface obtained by the formula (1) in the above embodiment.
  • Second structure third structure OBJ(mm) 400 150 1200 fG(mm) 171.81 90.20 257.72 IH 3.432 3.432 3.432 TTL 4.51 4.51 4.51 f 2.81 2.75 2.83 ⁇ CT12/TTL 0.12 0.12 0.12 TTL/f 1.60 1.64 1.59 Fno 2.90 2.90 2.90 f1/f 1.95 1.99 1.94 f2/f -52.52 -53.57 -52.13 (R object 3+R image 3)/(R object 3-R image 3) 6.84 6.84 6.84 Yl/IH 1.45 1.45 1.45 IH/TTL 0.76 0.76 0.76 MaxY12/IH 0.34 0.33 0.34 Fov(°) 91.64 91.80 91.59
  • the first structure, the second structure and the third structure are parameters when the optical lens 200 shoots objects at three different distances.
  • Y1 is the effective light aperture of the image side of the last lens of the optical lens 200; in this embodiment, it is also the effective light aperture of the image side of the sixth lens L6.
  • optical lens 200 in this embodiment is analyzed below, and the descriptions in the above embodiments may refer to the descriptions in the above embodiments. In order to avoid repetition, details are not repeated in this embodiment.
  • the optical lens 200 can achieve clear imaging of objects at different shooting distances by adjusting the focal length. As shown in Table 5c, when the OBJ is 400mm, 150mm and 1200mm, the focal lengths of the optical lens 200 are 3.70mm, 3.44mm and 3.82mm respectively.
  • the lens head Since the lateral size of the first lens L1 and the second lens L2 is smaller than that of the focal power adjustable element G, and the ratio of the first lens L1 and the second lens L2 to the size of the entire optical lens 200 is relatively large ( ⁇ CT12/ TTL is larger), therefore, the lens head has a smaller lateral size, making the opening size smaller, thereby increasing the screen-to-body ratio of the terminal.
  • the lens head has a larger size in the optical axis direction, that is, the optical lens 200 has a deeper lens head, and the light passes through the optical lens 200
  • the time trend is smoother, thereby increasing the smoothness of light entering the optical system.
  • the lens head has a small lateral dimension, which can reduce the space occupied by the lens head of the optical lens 200 .
  • the optical lens 200 has a smaller TTL/f, so that the optical lens 200 has a smaller axial dimension, and can realize clear imaging for objects that are farther away.
  • the optical lens 200 has a larger maximum field of view (Fov in Table 5c), and the captured image contains rich information.
  • Different field of view angles can shoot for different field of view ranges.
  • the captured image contains richer information. For example, when Fov ⁇ 120°, objects with a wider field of view can be imaged, more abundant image information can be provided, and the visual impact of the imaging result is stronger;
  • the field of view is small, for example, when Fov ⁇ 100°, deeper distortion correction can be achieved at a small field of view.
  • the size of the full field of view can be increased by increasing the number of lenses included in the optical lens, in the process of actually optimizing the parameters of the optical lens, aberrations such as image distortion introduced by the increase in the field of view also need to be considered.
  • the aperture value of the optical lens 200 is small, and the intensity of light entering the optical lens 200 is high, so that the optical lens 200 has a better imaging effect in a dark shooting environment.
  • the optical lens 200 has a smaller aperture value and a larger viewing angle at the same time.
  • the first lens L1 has a positive refraction force to achieve convergence of incident light rays, which can compress the size of the lens head of the optical lens 200 and reduce the size of the hole on the terminal screen.
  • the object side of the first lens L1 is convex at the near optical axis, and the image side of the first lens L1 is concave at the near optical axis, so that the angle between the light rays on the object side and the image side of the first lens L1 is small, so that It makes the light trend smooth and helps to correct aberrations such as astigmatism.
  • the f1/f of the optical lens 200 is small, so that the size of the optical lens 200 in the axial direction is small, that is, it is beneficial to compress the total length of the entire optical system and realize the miniaturization of the size of the optical lens.
  • the optical lens 200 can shoot in a wider field of view while being less sensitive to tolerances.
  • the second lens L2 has a negative refractive power, which is beneficial for correcting distortion and correcting aberrations.
  • the object side of the second lens L2 is convex at the near optical axis, and the image side of the second lens L2 is concave at the near optical axis.
  • the third lens L3 is the front end of the second lens group and is located at the rear end of the optical power adjustable element G. As shown in FIG.
  • the third lens L3 has a positive refractive power, the object side of the third lens L3 is convex at the paraxial position, and the image side of the third lens L3 is concave at the paraxial position.
  • the third lens L3 has a smaller radius of curvature, which can buffer the incident angle of the light incident on the subsequent lens, smooth the light trend, and reduce the sensitivity of the system to tolerances.
  • the fourth lens L4 has positive refractive power, the object side of the fourth lens L4 is convex at the paraxial position, and the image side of the fourth lens L4 is convex at the paraxial position.
  • the fifth lens L5 has positive refractive power, the object side of the fifth lens L5 is concave at the paraxial position, and the image side of the fifth lens L5 is convex at the paraxial position;
  • the sixth lens L6 has negative refractive power, the object side of the sixth lens L6 is convex at the paraxial position, and the image side of the sixth lens L6 is concave at the paraxial position.
  • Y1 is the effective light aperture of the image side of the last sheet lens (the sixth lens L6) of the optical lens 200
  • IH is the half-image height of the optical lens 200 imaging
  • the optical lens 200 has a smaller Y1/IH, which can reduce the rear of the optical lens
  • the size of the end is conducive to the miniaturization of the structure of the optical lens 200; while increasing the axial distance between the optical lens 200 and the photosensitive element (such as a charge-coupled element, etc.), the target surface size of imaging is increased, thereby improving the optical lens 200 for The ability to distinguish object details.
  • the optical lens 200 has a smaller IH/TTL, which can reduce the size of the optical lens 200 while obtaining higher pixel imaging results, that is, improving the definition of imaging.
  • the optical lens 200 has a smaller MaxY12/IH, which can guarantee the amount of light entering the system to a certain extent when adapting to different head sizes of the optical lens 200, thereby enriching the detailed information of the measured object.
  • the second lens group of the optical lens 200 of this embodiment includes four lenses.
  • the diameter of the entrance pupil of the optical lens 200 is 1.17 mm, and the lateral dimension of the lens head is relatively small.
  • FIG. 7b is a schematic diagram of a field curvature curve of an optical lens provided by another embodiment of the present application.
  • T is the field curvature curve in the meridional direction
  • S is the field curvature curve in the sagittal direction.
  • the field curvature in the meridional direction and the sagittal direction of the imaging of the optical lens 200 has a smaller absolute value, and the field curvature curves in the meridional direction and the sagittal direction are closer, so the optical lens 200 has less astigmatism , the imaging effect is better.
  • FIG. 7c is a schematic diagram of axial aberration of an optical lens provided by another embodiment of the present application.
  • the axial aberration of the imaging of the optical lens 200 is obtained when the wavelengths are 656 nm, 587 nm, 546 nm, 486 nm, and 435 nm.
  • the optical lens has a smaller imaging aberration (chromatic aberration on-axis and off-axis) when tested using the above-mentioned light waves of multiple wavelengths, that is, it has a better imaging effect.
  • the optical lens 200 can adjust the focal length through the optical focus adjustable element, and can clearly image objects at different shooting distances.
  • the size of the first lens L1 and the second lens L2 is relatively small, and the optical power adjustable element G, the third lens, the fourth lens L4, the fifth lens L5 and the sixth lens L6 with a larger size are located near the optical lens 200. post position.
  • the third lens L3, the fourth lens L4, the fifth lens L5 and the sixth lens L6, the first lens L1 and the second lens L2 have smaller lateral dimensions. Therefore, the lens head of the optical lens 300 has a smaller lateral dimension, which can realize a smaller aperture size.
  • the second lens group of the optical lens 200 in this embodiment includes four lenses, which has more lenses, which is beneficial to correct the aberration of imaging .
  • the optical lens is described by taking the second lens group including one lens and three lenses as an example.
  • the second lens group in the optical lens can also include other numbers of lenses.
  • the second lens group includes two lenses.
  • the specific implementation of one, four or more lenses is similar to that in the above embodiments, and will not be repeated here.
  • the optical lens is described by taking the first lens group including two lenses as an example.
  • the second lens group in the optical lens can also include other numbers of lenses.
  • the following embodiments assume that the first lens group includes three lenses. Using lenses as an example, optical lenses will be described.
  • the embodiment of the present application also provides another optical lens.
  • FIG. 8a is a schematic structural diagram of an optical lens provided by another embodiment of the present application.
  • the lens module 200 sequentially includes: a first lens group 201 , an optical power adjustable element G and a second lens group 202 along the optical axis from the object side to the image side.
  • the first lens group 201 includes in order from the object side to the image side along the optical axis direction: the first lens L1, the second lens L2 and the third mirror lens L3, and the second lens group 202 sequentially from the object side to the image side in the optical axis direction It includes: a fourth lens L4, a fifth lens L5 and a sixth lens L6.
  • the power adjustable element G is located between the third lens L3 and the fourth lens L4.
  • the optical lens 200 may further include an optical filter GF, and the optical filter GF is located behind the second lens group 202 .
  • the above lens may be made of plastic.
  • the lens module 200 sequentially includes elements from the object side to the image side along the optical axis direction: the first lens L1, the second lens L2, the optical power adjustable element G, the third lens L3, the first lens Four lenses L4, fifth lens L5, sixth lens L6, and optical filter GF.
  • Si is the image plane.
  • the aspheric lens surface of each lens uses the aspheric surface obtained by the formula (1) in the above embodiment.
  • Second structure third structure OBJ(mm) 400 150 1200 fG(mm) -2349.89 234.99 -626.63 IH 3.432 3.432 3.432 TTL 4.24 4.24 4.24 f 3.65 3.48 3.70 ⁇ CT12/TTL 0.11 0.11 0.11 TTL/f 1.16 1.22 1.14 Fno 2.40 2.40 2.40 f1/f 0.89 0.94 0.88 f2/f -3.23 -3.39 -3.19 (R object 3+R image 3)/(R object 3-R image 3) -98.57 -98.57 -98.57 Yl/IH 1.38 1.38 1.38 1.38 1.38 IH/TTL 0.81 0.81 0.81 MaxY12/IH 0.44 0.44 0.44 0.44 0.44 FOV(°) 82.20 82.08 82.37
  • the first structure, the second structure and the third structure are parameters when the optical lens 200 shoots objects at three different distances.
  • Y1 is the effective light aperture of the image side of the last lens of the optical lens 200; in this embodiment, it is also the effective light aperture of the image side of the sixth lens L6.
  • optical lens 200 in this embodiment is analyzed below, and the descriptions in the above embodiments may refer to the descriptions in the above embodiments. In order to avoid repetition, details are not repeated in this embodiment.
  • the optical lens 200 can achieve clear imaging of objects at different shooting distances by adjusting the focal length. As shown in Table 6c, when the OBJ is 400mm, 150mm and 1200mm, the focal lengths of the optical lens 200 are 3.70mm, 3.44mm and 3.82mm respectively.
  • the lens head Since the lateral size of the first lens L1 and the second lens L2 is smaller than that of the focal power adjustable element G, and the ratio of the first lens L1 and the second lens L2 to the size of the entire optical lens 200 is relatively large ( ⁇ CT12/ TTL is larger), therefore, the lens head has a smaller lateral size, making the opening size smaller, thereby increasing the screen-to-body ratio of the terminal.
  • the lens head has a larger size in the optical axis direction, that is, the optical lens 200 has a deeper lens head, and the light passes through the optical lens 200
  • the time trend is smoother, thereby increasing the smoothness of light entering the optical system.
  • the lens head has a small lateral dimension, which can reduce the space occupied by the lens head of the optical lens 200 .
  • the optical lens 200 has a smaller TTL/f, so that the optical lens 200 has a smaller axial dimension, and can realize clear imaging for objects that are farther away.
  • the optical lens 200 has a larger maximum field of view (Fov in Table 6c), and the captured image contains rich information.
  • the aperture value of the optical lens 200 is small, and the intensity of light entering the optical lens 200 is high, so that in a dark shooting environment, the optical lens 200 has a better imaging effect.
  • the optical lens 200 has a smaller aperture value and a larger viewing angle at the same time.
  • the first lens L1 has a positive refraction force to achieve convergence of incident light rays, which can compress the size of the lens head of the optical lens 200 and reduce the size of the hole on the terminal screen.
  • the object side of the first lens L1 is convex at the near optical axis, and the image side of the first lens L1 is concave at the near optical axis, so that the angle between the light rays on the object side and the image side of the first lens L1 is small, so that It makes the light trend smooth and helps to correct aberrations such as astigmatism.
  • the f1/f of the optical lens 200 is small, so that the size of the optical lens 200 in the axial direction is small, that is, it is beneficial to compress the total length of the entire optical system and realize the miniaturization of the size of the optical lens.
  • the optical lens 200 can shoot in a wider field of view while being less sensitive to tolerances.
  • the second lens L2 has a negative refractive power, which is beneficial for correcting distortion and correcting aberrations.
  • the object side of the second lens L2 is convex at the paraxial position, and the image side of the second lens L2 is concave at the paraxial position.
  • the third lens L3 has a positive refractive power, the object side of the third lens L3 is convex at the paraxial position, and the image side of the third lens L3 is concave at the paraxial position.
  • the fourth lens L4 is the front end of the second lens group and is located at the rear end of the optical power adjustable element G.
  • the fourth lens L4 has positive refractive power, the object side of the fourth lens L4 is convex at the paraxial position, and the image side of the fourth lens L4 is concave at the paraxial position.
  • the fourth lens L4 has a smaller radius of curvature, which can buffer the incident angle of light incident on subsequent lenses, smooth the light trend, and reduce the sensitivity of the system to tolerances.
  • the fifth lens L5 has positive refractive power, the object side of the fifth lens L5 is concave at the paraxial position, and the image side of the fifth lens L5 is convex at the paraxial position;
  • the sixth lens L6 has negative refractive power, the object side of the sixth lens L6 is convex at the paraxial position, and the image side of the sixth lens L6 is concave at the paraxial position.
  • Y1 is the effective light aperture of the image side of the last sheet lens (the sixth lens L6) of the optical lens 200
  • IH is the half-image height of the optical lens 200 imaging
  • the optical lens 200 has a smaller Y1/IH, which can reduce the rear of the optical lens
  • the size of the end is conducive to the miniaturization of the structure of the optical lens 200; while increasing the axial distance between the optical lens 200 and the photosensitive element (such as a charge-coupled element, etc.), the target surface size of imaging is increased, thereby improving the optical lens 200 for The ability to distinguish object details.
  • the optical lens 200 has a smaller IH/TTL, which can reduce the size of the optical lens 200 while obtaining higher pixel imaging results, that is, improving the definition of imaging.
  • the optical lens 200 has a smaller MaxY12/IH, which can guarantee the amount of light entering the system to a certain extent when adapting to different head sizes of the optical lens 200, thereby enriching the detailed information of the measured object.
  • the second lens group of the optical lens 200 of this embodiment includes four lenses.
  • the diameter of the entrance pupil of the optical lens 200 is 1.52 mm, and the lateral dimension of the lens head is relatively small.
  • the optical characteristics of the optical lens 200 are analyzed.
  • FIG. 8b is a schematic diagram of a field curvature curve of an optical lens provided by another embodiment of the present application.
  • T is the field curvature curve in the meridional direction
  • S is the field curvature curve in the sagittal direction.
  • the field curvature in the meridional direction and the sagittal direction of the imaging of the optical lens 200 has a smaller absolute value, and the field curvature curves in the meridional direction and the sagittal direction are closer, so the optical lens 200 has less astigmatism , the imaging effect is better.
  • FIG. 8c is a schematic diagram of axial aberration of an optical lens provided in another embodiment of the present application.
  • the axial aberration of the imaging of the optical lens 200 is obtained when the wavelengths are 656 nm, 587 nm, 546 nm, 486 nm, and 435 nm.
  • the optical lens has a smaller imaging aberration (chromatic aberration on and off the axis) when tested with light waves of the above multiple wavelengths, that is, it has a better imaging effect.
  • the optical lens 200 can adjust the focal length through the optical focus adjustable element, and can clearly image objects at different shooting distances.
  • the size of the first lens L1 and the second lens L2 is relatively small, and the optical power adjustable element G, the third lens, the fourth lens L4, the fifth lens L5 and the sixth lens L6 with a larger size are located near the optical lens 200. post location.
  • the third lens L3, the fourth lens L4, the fifth lens L5 and the sixth lens L6, the first lens L1 and the second lens L2 have smaller lateral dimensions. Therefore, the lens head of the optical lens 300 has a smaller lateral dimension, which can realize a smaller aperture size.
  • the first lens group of the optical lens 200 includes three lenses
  • the second lens group of the optical lens 200 includes three lenses, which have a large number of lenses, which is beneficial for correcting imaging aberrations.
  • the optical lens is described by taking the first lens group including two lenses and three lenses as an example; in the optical lens, the first lens group also includes other numbers of lenses, such as one lens or three lenses.
  • the specific implementation principles of the above number of lenses are similar to those in the above embodiments, and will not be repeated here.
  • the optical lens includes a large number of lenses, the effect of correcting aberrations can be improved.
  • Table 7 is a statistical table of the refractive power of each lens in Fig. 3a, Fig. 4a, Fig. 5a, Fig. 6a, Fig. 7a and Fig. 8a, showing Fig. 3a, Fig. 4a, Fig. 5a, Fig. 6a, Fig. 7a and The positive and negative conditions of the refractive power of each lens in the optical lens in Fig. 8a.
  • Table 7 Statistical table of the refractive power of each lens in Fig. 3a, Fig. 4a, Fig. 5a, Fig. 6a, Fig. 7a and Fig. 8a
  • Fig. 3a, Fig. 4a, Fig. 5a, Fig. 6a, Fig. 7a and Fig. 8a respectively refer to the optical lenses in Fig. 3a, Fig. 4a, Fig. 5a, Fig. 6a, Fig. 7a and Fig. 8a;
  • L1-L6 refer to respectively the first lens to the 6th lens in the optical lens in Fig. 3a, Fig. 4a, Fig. 5a, Fig. 6a, Fig. 7a and Fig. 8a, when there is no such lens in the optical lens, in the table Use " ⁇ " to indicate.
  • Table 8 is a statistical table of surface unevenness at the optical axes on both sides of each lens in Figure 3a, Figure 4a, Figure 5a, Figure 6a, Figure 7a and Figure 8a, showing Figure 3a, Figure 4a, Figure 5a, Figure 6a, Fig. 7a and Fig. 8a, the concave-convex situation of the optical axis of each lens object side and image side in the optical lens.
  • Table 8 Statistical table of concave-convex surface shape at the optical axis on both sides of each lens in Figure 3a, Figure 4a, Figure 5a, Figure 6a, Figure 7a and Figure 8a
  • Fig. 3a, Fig. 4a, Fig. 5a, Fig. 6a, Fig. 7a and Fig. 8a respectively refer to the optical lenses in Fig. 3a, Fig. 4a, Fig. 5a, Fig. 6a, Fig. 7a and Fig. 8a;
  • L1-L6 respectively refer to the first lens to the sixth lens in the optical lens in Fig. 3a, Fig. 4a, Fig. 5a, Fig. 6a, Fig. 7a and Fig. 8a, when there is no such lens in the optical lens, in the table Use " ⁇ " to indicate.
  • each embodiment in this specification is described in a progressive manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments.
  • the device embodiments described above are only illustrative, and the units and modules described as separate components may or may not be physically separated. In addition, some or all of the units and modules can also be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without creative effort.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请提供了一种光学镜头以及电子设备,涉及终端技术领域。光学镜头沿光轴方向,从物侧到像侧依次包括:第一透镜组、光焦度可调元件和第二透镜组。光焦度可调元件用于改变光学镜头的焦距。第一透镜组中包括至少两个透镜。第二透镜组中包括至少一个透镜。该光学镜头具体为自动对焦镜头,通过调整上述光焦度可调元件的光焦度,能够通过改变光学镜头的焦距,使得光学镜头对不同物距的被摄物体进行成像,实现自动对焦。利用本申请提供的方案,将尺寸较大的光焦度可调元件放置于第一透镜组和第二透镜组之间,使得光学镜头前端的横向尺寸较小,从而减小需要在电子设备表面开孔的尺寸,提高电子设备的屏占比。

Description

一种光学镜头以及电子设备
本申请要求于2022年01月25日提交中国国家知识产权局、申请号为202210083260.4、发明名称为“一种光学镜头以及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种光学镜头以及电子设备。
背景技术
目前,电子设备通常具有光学镜头,用以实现拍摄功能,并且为了对不同距离处的物体进行清晰地成像,光学镜头具有自动对焦的功能。为了实现自动对焦,光学镜头中包含有光焦度可调元件。在拍摄过程中,通过调节光焦度可调元件的光焦度,使整个光学镜头的焦距发生改变,从而实现自动对焦功能。目前在光学镜头中,光焦度可调元件放置于整个光学镜头的最前端,前端为靠近物侧的一端。
目前,光学镜头通常嵌在电子设备中,而为了使外部的光能够进入光学镜头,需要在电子设备的表面开孔。由于光焦度可调元件通常为不同形态的光学透镜的组合,具有较大的尺寸,因此,上述将光焦度可调元件放置于整个光学镜头的最前端的方式,需要在电子设备表面开尺寸较大的孔。当该光学镜头为电子设备的前置光学镜头时,开尺寸较大的孔会降低电子设备的屏占比。
发明内容
为了解决以上问题,本申请提供了一种光学镜头以及电子设备,减小了光学镜头所需开孔的大小,以便于提高电子设备的屏占比。
第一方面,本申请提供了一种光学镜头,光学镜头沿光轴方向从物侧到像侧依次包括:第一透镜组、光焦度可调元件和第二透镜组。第一透镜组包括至少两个透镜;第二透镜组包括至少一个透镜。
该光学镜头具体为自动对焦镜头,通过调整上述光焦度可调元件的光焦度,能够改变光学镜头的焦距。
利用本申请提供的方案,将横向尺寸较大的光焦度可调元件放置于第一透镜组和第二透镜组之间,使得光学镜头前端的尺寸较小,从而减小需要在电子设备表面开孔的尺寸,提升电子设备表面的利用率。
在一种可能的实现方式中,从物侧到像侧,第一透镜组至少依次包括第一透镜和第二透镜;
(∑CT12)/TTL≥0.08,其中,∑CT12为第一透镜的物侧面至第二透镜的像侧面的轴上距离,TTL为第一透镜的物侧面至光学镜头的成像面的轴上距离。
∑CT12/TTL用以表征在光轴方向,第一透镜和第二镜头占据整个光学镜头尺寸的比例。
由于第一镜头和第二镜头的横向尺寸相比于光焦度可调元件较小,∑CT12/TTL较大时,镜头头部(靠近物侧)具有较小的横向尺寸,使得开孔尺寸较小,从而提高终端的屏占比;镜头头部具有较大的轴向尺寸,增加光线进入光学系统的平滑度。
在一种可能的实现方式中,从物侧到像侧,第一透镜组至少依次包括第一透镜和第二 透镜;
TTL/f≤1.83,其中,TTL为第一透镜的物侧面至光学镜头的成像面的轴上距离,f为光学镜头的焦距。
光学镜头具有较小的TTL/f,使得光学镜头具有较小的轴向尺寸的同时,能够对于拍摄距离较远的物体实现清晰成像。
在一种可能的实现方式中,从物侧到像侧,第一透镜组至少依次包括第一透镜和第二透镜;
第一透镜的物侧面于近轴处为凸面,第一透镜的像侧面于近轴处为凹面;
f1/f≤2.33,其中,f1为第一透镜的焦距,f为光学镜头的焦距。
光学镜头具有较小的f1/f,使得光学镜头在轴向的尺寸较小,实现光学镜头尺寸的小型化,并且降低光学镜头对于镜头加工引入的误差的敏感度。
在一种可能的实现方式中,从物侧到像侧,第一透镜组至少依次包括第一透镜和第二透镜;
-53.57≤f2/f≤77.70,其中,f2为第二透镜的焦距,f为光学镜头的焦距。
在一种可能的实现方式中,-98.57≤(R5+R6)/(R5-R6)≤6.84,其中,R5为光学镜头从物侧到像侧第三个透镜的中心曲率半径,R6为光学镜头从物侧到像侧第三个透镜的中心曲率半径。
当第三透镜具有较小的中心曲率半径时,能够缓冲光线入射到后续透镜的入射角度,平滑光线的走势,降低光学镜头对于镜头加工引入的误差的敏感度。
在一种可能的实现方式中,Yl/IH≤1.75,其中,Yl为光学镜头从物侧到像侧的最后一片透镜的像侧面有效通光口径,IH为光学镜头的半像高。
IH为光学镜头全视场角的半像高。光学镜头具有较小的Yl/IH,能够降低光学镜头后端(靠近像侧)的尺寸,有利于光学镜头的结构小型化。在增加光学镜头和感光元件之间的轴向距离的同时,增加成像的靶面尺寸,从而提升光学镜头对于物体细节的分辨能力。
在一种可能的实现方式中,从物侧到像侧,第一透镜组至少依次包括第一透镜和第二透镜;
IH/TTL≤0.88,其中,IH为光学镜头的半像高,TTL为第一透镜的物侧面至光学镜头的成像面的轴上距离。
光学镜头具有较小的IH/TTL,能够降低光学镜头的尺寸同时能够得到较高像素的成像结果,也即提高成像的清晰度。
在一种可能的实现方式中,从物侧到像侧,第一透镜组至少依次包括第一透镜和第二透镜;
MaxY12/IH≤0.89,其中,MaxY12为第一透镜和第二透镜的通光孔径中的最大通光孔径,IH为光学镜头的半像高。
第一透镜的通光孔径包括第一透镜物侧面的通光孔径和第一透镜像侧面的通光孔径,第二透镜的通光孔径包括第二透镜物侧面的通光孔径和第二透镜像侧面的通光孔径,MaxY12为上述四个通光孔径中最大的通光孔径。光学镜头具有较小的MaxY12/IH,在光学镜头具有较小头部尺寸的同时,具有较大的像面。
在一种可能的实现方式中,Fno≤2.9,其中,Fno为光学镜头的光圈值。
光学镜头具有较小的Fno,使得在较暗的拍摄环境中,光学镜头具有较好的成像效果。
在一种可能的实现方式中,其特征在于,Fov≥74.35°,其中,Fov为光学镜头的全视场角。
全视场指的是光学镜头能够达到的最大的全视场角。
光学镜头具有较大的全视场角Fov,使得拍摄得到的图像包含的信息较为丰富。
第二方面,本申请提供了一种电子设备,电子设备上至少包括如上述任一项的光学镜头。
该光学镜头具体为自动对焦镜头,通过调整上述光焦度可调元件的光焦度,能够改变光学镜头的焦距。利用本申请提供的方案,将横向尺寸较大的光焦度可调元件放置于第一透镜组和第二透镜组之间,使得光学镜头前端的尺寸较小,从而减小需要在电子设备表面开孔的尺寸,提升电子设备表面的利用率。
附图说明
图1a为具有前置摄像头的手机的结构示意图;
图1b为具有前置摄像头的便携式电脑的结构示意图;
图1c为本申请实施例提供的电子设备的构架示意图;
图2为本申请实施例提供的光学镜头的结构示意图;
图3a为本申请另一实施例提供的光学镜头的结构示意图;
图3b为本申请实施例提供的光学镜头的场曲曲线的示意图;
图3c为本申请实施例提供的光学镜头的轴向像差的示意图;
图4a为本申请另一实施例提供的光学镜头的结构示意图;
图4b为本申请另一实施例提供的光学镜头的场曲曲线的示意图;
图4c为本申请另一实施例提供的光学镜头的轴向像差的示意图;
图5a为本申请另一实施例提供的光学镜头的结构示意图;
图5b为本申请另一实施例提供的光学镜头的场曲曲线的示意图;
图5c为本申请另一实施例提供的光学镜头的轴向像差的示意图;
图6a为本申请另一实施例提供的光学镜头的结构示意图;
图6b为本申请另一实施例提供的光学镜头的场曲曲线的示意图;
图6c为本申请另一实施例提供的光学镜头的轴向像差的示意图;
图7a为本申请另一实施例提供的光学镜头的结构示意图;
图7b为本申请另一实施例提供的光学镜头的场曲曲线的示意图;
图7c为本申请另一实施例提供的光学镜头的轴向像差的示意图;
图8a为本申请另一实施例提供的光学镜头的结构示意图;
图8b为本申请另一实施例提供的光学镜头的场曲曲线的示意图;
图8c为本申请另一实施例提供的光学镜头的轴向像差的示意图。
具体实施方式
为了便于本领域技术人员更清楚地理解本申请提供的技术方案,下面首先对本申请实施例中的术语进行介绍。
自动对焦(Auto focus):利用了物体光反射的原理,反射的光被相机上的成像器件接受,根据实际拍摄过程,带动对焦装置进行对焦。根据对焦的基本原理,通常自动对焦可以分为测距自动对焦,以及聚焦检测自动对焦两种。前者是基于对镜头和被拍摄目标之间距离的检测,后者基于对焦平上成像清晰的聚焦检测。
光焦度(Focal power):用于表征光学系统对于光线的偏折能力,等于像方光束会聚度与物方光束会聚度之差。在近似空气的折射率为1时,光焦度可以表示为像方焦距的倒数。光焦度的数值越大,光学系统对于入射平行光束的屈折越厉害。当光焦度大于0时,光学系统的屈折是会聚性的;当光焦度小于0时,光学系统的屈折是发散性的;当光焦度等于0时,对应于平面折射,也即沿光轴的平行光轴经折射后仍是沿光轴的平行光束,不出现光线的屈折现象。
光焦度可调元件:通常由多个不同形态的透镜组成,元件自身的光焦度可以调节。在光学镜头实现自动对焦的过程中,通过调节光焦度可调元件的光焦度,实现对于光学镜头的焦距的调节。
像差:绝大多数的光学系统的成像是不完善的,也即并非是理想成像,像差用于表征光学系统成像的不完善之处。光学系统的像差可以分为单色像差和复色像差,其中,单色像差主要包括球差、彗差、像散、场曲(像面弯曲)、畸变;复色像差包括垂轴色差和轴向色差。
为了便于理解本申请实施例提供的技术方案,下面对本申请实施例常见的应用场景进行介绍。
目前,电子设备的前置拍摄功能越来越常见。对于电子设备来说,前置的表面通常属于主要的功能区。例如,对于带有屏幕的电子设备来说,屏幕位于电子设备的前置的表面,用于实现显示以及其他人机交互功能。
为了提升使用体验以及丰富电子设备的屏幕功能,电子设备的屏占比逐渐提升,屏占比一般指电子设备的屏幕面积和前置的表面面积的比值。
首先以具有前置摄像头的手机为例,对本申请场景的应用场景进行介绍。
参见图1a,图1a为具有前置摄像头的手机的结构示意图。
如图1a所示,手机包含屏幕和前置摄像头。
手机具有较大的屏占比,也即,屏幕的面积占手机的前置的表面的面积的比值较大。
手机还包含前置摄像头。为了使得外部的光线能够进入前置摄像头中的光学镜头中,在手机的表面上对应前置摄像头的位置开孔。
上述开孔会减小屏幕的面积,降低手机的屏占比。通常手机的前置摄像头具有自动对焦功能,具体的原理为:在光学镜头的最前端设置有光焦度可调元件,前端为靠近被拍摄物体的一端。当需要改变光学镜头的焦距时,例如,当拍摄环境改变、拍摄温度改变时候,通过控制调节光焦度可调元件的光焦度,进而改变整个光学镜头的焦距,从而实现自动对焦。
由于光焦度可调元件通常为不同形态的光学透镜的组合,具有较大的尺寸,因此,上述方式需要在手机的前置的表面开尺寸较大的孔,导致对于手机的屏占比降低。
参见图1b,图1b为具有前置摄像头的便携式电脑的结构示意图。
如图1a所示,便携式电脑包含屏幕和前置摄像头。
为了实现前置拍摄功能,前置摄像头位于屏幕的上方区域,在便携式电脑的表面,需要对前置摄像头所在的区域开孔。
为了避让前置摄像头,屏幕位于前置摄像头所在区域的下方。因此,开孔尺寸的大小会影响屏幕的面积,当开孔尺寸较大时,便携式电脑的屏占比较小。
为了解决以上的技术问题,本申请实施例提供了一种光学镜头和电子设备,用以提高电子设备表面的利用率。
光学镜头沿光轴方向,从物侧到像侧依次包括:第一透镜组、光焦度可调元件和第二透镜组。光焦度可调元件用于改变所述光学镜头的焦距,第一透镜组中包括至少两个透镜,第二透镜组中包括至少一个透镜。
光焦度可调元件通过改变光学镜头的焦距,使得光学镜头对不同物距的被摄物体进行成像,实现自动对焦。
为了减小电子设备上开孔的尺寸,需要减小镜头前端的横向尺寸。光学镜头靠近物侧的一端称为镜头前端。
在光学镜头中,第一透镜组中的透镜为靠近物侧的镜头,具有较小的尺寸。相比于第一透镜组中的透镜的位置,具有较大尺寸的光焦度可调元件G位于光学镜头靠近像侧的位置,使得光学透镜的前端具有较小的横向尺寸。光学透镜前端的横向尺寸会影响在电子设备表面开孔的大小,因此,采用本实施例的方案,能够降低光学透镜前端的横向尺寸,减小在电子设备表面开孔的大小,从而提高电子设备的屏占比。
本申请说明中的“第一”、“第二”等用词仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接连接,也可以通过中间媒介间接连接。
本申请实施例不具体限定终端设备的类型,终端设备可以为手机、笔记本电脑、可穿戴电子设备(例如智能手表)、平板电脑、增强现实(augmented reality,AR)设备、虚拟现实(virtual reality,VR)设备等。
以下对终端设备的构架进行说明。
请参阅图1c,图1c为本申请实施例提供的电子设备的构架示意图。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
本申请的实施例的光学镜头可以为电子设备100的摄像头193的组成部部分,被拍摄物体通过光学镜头生成光学图像投射到感光元件,完成对被拍摄物体的成像。
本申请实施例提供了一种光学镜头。
参见图2,图2为本申请实施例提供的光学镜头的结构示意图。
如图2所示,镜头模组200沿光轴方向从物侧到像侧依次包括:第一透镜组201、光焦度可调元件G和第二透镜组202。
第一透镜组201至少包括两个透镜,图2中示出以第一透镜组201包括第一透镜L1和第二透镜L2为例的情况,第一透镜组201还可以包括两个以上的透镜。
第二透镜组202至少包括一个透镜,图2中示出以第二透镜组202从物侧到像侧依次包括第三镜透镜L3、第四透镜L4、第五透镜L5和第六透镜L6为例的情况,第二透镜组202还可以包括其他数量的透镜,例如,第二透镜组202可以包括一个透镜、两个透镜,或者三个以上数量的透镜。
光焦度可调元件G用于改变光学镜头200的焦距。
光焦度可调元件G通过改变光学镜头200的焦距,使得光学镜头200对不同物距的被摄物体进行成像,实现自动对焦。
光焦度可调元件G位于第二透镜L2和第三透镜L3之间,也即,光焦度可调元件G位于第一透镜组201和第二透镜组202之间。
为了减小电子设备上开孔的尺寸,需要减小镜头前端的横向尺寸。光学镜头靠近物侧的一端称为镜头前端。
在光学镜头200中,第一透镜L1和第二透镜L2为靠近物侧的镜头,具有较小的尺寸。相比于第一透镜L1和第二透镜L2的位置,具有较大尺寸的光焦度可调元件G位于光学镜头200靠近像侧的位置,使得光学透镜200的前端具有较小的横向尺寸。光学透镜300前端的横向尺寸会影响在电子设备表面开孔的大小,因此,采用本实施例的方案,能够降低光学透镜300前端的横向尺寸,减小在电子设备表面开孔的大小,从而提高电子设备的屏占比。
下面结合具体的实现方式进行说明。
本申请实施例还提供了另一种光学镜头。
参见图3a,图3a为本申请另一实施例提供的光学镜头的结构示意图。
如图3a所示,镜头模组200沿光轴方向从物侧到像侧依次包括:第一透镜组201、光焦度可调元件G和第二透镜组202。
第一透镜组201沿光轴方向从物侧到像侧依次包括:第一透镜L1和第二透镜L2,第二透镜组202包含第三透镜L3。
光焦度可调元件G位于第二透镜L2和第三透镜L3之间。
为了便于说明,在本实施例以下对于镜头模组200的说明中,沿着光轴方向,靠近物侧的一端称为前,靠近像侧的一端称为后。例如,对于本实施例中的第一透镜组201来说,第一透镜L1在第二透镜L2之前。
光学镜头靠近物侧的一端称为镜头前端(镜头头部);靠近像侧的一端称为镜头后端。
由于镜头头部是靠近电子表面的一端,镜头头部的尺寸影响电子设备上开孔的尺寸。
具体地,垂直于光轴的方向为横向,镜头头部的横向尺寸影响电子设备上开孔的尺寸。当镜头头部的横向尺寸较大时,需要电子设备上开孔的尺寸较大;当镜头头部的横向尺寸较小时,需要电子设备上开孔的尺寸较小。
因此,通过减小镜头头部的横向尺寸,能够减小电子设备上开孔的尺寸。
在一种可能的实现方式中,光学镜头200还可以包含光学滤光片GF,光学滤光片GF位于第二透镜组202的后方。
光学滤光片GF仅允许特定波长的光通过,其他波长的光截止,可以起到例如抑制光噪声、强化光信号的作用等。
在一种可能的情况中,上述透镜可以采用塑料材质。
在本实施例中,镜头模组200沿光轴方向从物侧到像侧依次包括的元件为:第一透镜L1、第二透镜L2、光焦度可调元件G、第三透镜L3,以及光学滤光片GF。
S为光圈;Si为像面。
本实施例提供的光学镜头中元件的参数请参见表1a。
表1a:光学镜头中元件的参数
Figure PCTCN2022142498-appb-000001
在表1a中,各符号的含义如下:
R:透镜、光学滤光片的中心曲率半径;
Infinity指的是无穷。
R_S:光圈的中心曲率半径;
R_物:透镜、光学滤光片的物侧面的中心曲率半径;
R_像:透镜、光学滤光片的像侧面的中心曲率半径;
R_物1:第一透镜L1的物侧面的中心曲率半径;
R_像1:第一透镜L1的像侧面的中心曲率半径;
R_物2:第二透镜L2的物侧面的中心曲率半径;
R_像2:第二透镜L2的像侧面的中心曲率半径;
R_物3:第三透镜L3的物侧面的中心曲率半径;
R_像3:第三透镜L3的像侧面的中心曲率半径;
R_物g:光学滤光片GF的物侧面的中心曲率半径;
R_像g:光学滤光片GF的像侧面的中心曲率半径;
d:透镜的轴向厚度、光学元件之间的轴上距离;轴上距离指的是在光轴上的距离;
d0:光圈S至第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
CT:光焦度可调光学元件G的轴上厚度;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到光学滤光片GF的物侧面的轴上距离;
d7:光学滤光片GF的轴上厚度;
d8:光学滤光片GF的像侧面到像面Si的轴上距离;
nd:d线的折射率(d线为波长为550nm的绿光);
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
ndg:光学滤光片GF的d线的折射率(d线为波长为550nm的绿光);
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
vg:光学滤光片GF的阿贝数。
各个透镜的非球面的透镜面,使用公式(1)得到的非球面。
Figure PCTCN2022142498-appb-000002
其中,z为非球面深度,c为光学面中心处的曲率,r为非球面曲线上的点与光轴的垂直距离,k为圆锥系数,A_4、A_6、A_8、A_10、A_12、A_14、A_16、A_18、A_20为非球面系数。
本实施例提供的光学镜头200中的透镜的圆锥系数k和非球面系数的数值,参见表1b。
表1b:光学镜头中元件的圆锥系数和非球面系数
Figure PCTCN2022142498-appb-000003
在表1b中,圆锥系数和非球面系数均用科学计数法表示,例如,-1.0132E+01表示的是-10.132。其他数据同理,在此不再赘述。
本实施例的光学镜头200中元件的参数如表1a所述时,光学镜头200的部分参数请参 见表1c。
表1c:光学镜头的参数
参数 第一结构 第二结构 第三结构
OBJ(mm) 400 150 1200
fG(mm) 208.27 9.44 -1927.8
IH 1.641 1.641 1.641
TTL 3.01 3.01 3.01
f 2.12 1.83 2.13
∑CT12/TTL 0.32 0.32 0.32
TTL/f 1.42 1.58 1.41
Fno 2.40 2.40 2.40
f1/f 1.43 1.43 1.43
f2/f 7.05 7.05 7.05
(R 3+R 3)/(R 3-R 3) 1.10 1.10 1.10
Yl/IH 1.75 1.75 1.75
IH/TTL 0.55 0.55 0.55
MaxY12/IH 0.89 0.89 0.89
Fov(°) 74.36 74.35 74.35
在表1c中,第一结构、第二结构和第三结构,分别是光学镜头200对位于三种不同距离的物体进行拍摄时的参数。
表1c中符号所对应的含义如下:
OBJ:被拍摄物体到光学镜头200中第一透镜L1物侧面的在光轴上的距离;
fG:光焦度可调元件G的焦距;
IH:光学镜头200成像全视场角的半像高;
TTL:第一透镜L1的物侧面至光学镜头200成像面在光轴上的距离;
f:光学镜头200的焦距;
∑CT12:第一透镜L1的物侧面到第二透镜L2的像侧面的轴上距离;
Fno:光学镜头200的最大光圈;
f1:第一透镜L1的焦距;
f2:第二透镜L1的焦距;
Yl:光学镜头200的最后一片透镜的像侧面的有效通光口径;在本实施例中,也即第三透镜L3的像侧面的有效通光口径。
MaxY12:第一透镜L1和第二透镜L2的通光孔径中的最大通光孔径。
第一透镜的通光孔径包括第一透镜物侧面的通光孔径和第一透镜像侧面的通光孔径,第二透镜的通光孔径包括第二透镜物侧面的通光孔径和第二透镜像侧面的通光孔径,MaxY12为上述四个通光孔径中最大的通光孔径;
Fov:全像面对角线方向的视场角,最大全视场角。
以下对本实施例中的光学镜头200的参数的分析。
OBJ用以表征被拍摄物体和光学镜头200的距离,可以表征拍摄距离。表3中不同的OBJ,对应的是对不同距离的物体进行拍摄时光学镜头200的参数,也即,不同的OBJ对应于不同的拍摄距离。
通过调节光焦度可调元件G的焦距,也即fG,改变光学镜头200的焦距,也即f,实现对不同拍摄距离的物体进行清晰成像,也即实现光学镜头200的对焦功能。
在本实施例中,光学镜头200能够通过焦距的调节,实现对于不同拍摄距离的物体的清晰地成像。如表3所示,OBJ为400mm、150mm和1200mm时,光学镜头200的焦距分别为2.12mm、1.83mm和2.13mm。
TTL用以表征光学镜头200在光轴方向占据的空间大小,∑CT12用以表征第一透镜L1和第二镜头L2在光轴方向占据的空间大小。∑CT12/TTL用以表征在光轴方向,第一透镜L1和第二镜头L2占据整个光学镜头200尺寸的比例。
为了实现终端的前置摄像功能,需要在终端的屏幕所在的表面开孔。
由于第一镜头L1和第二镜头L2的横向尺寸相比于光焦度可调元件G较小,而且第一透镜L1和第二镜头L2占据整个光学镜头200尺寸的比例较大,因此,镜头头部具有较小的横向尺寸,使得开孔尺寸较小,从而提高终端的屏占比。
另外,当∑CT12/TTL较大时,对于光学镜头200来说,镜头头部在光轴方向具有较大的尺寸,也即,光学镜头200具有较深的镜头头部,光线经过光学镜头200时走势较平滑,从而增加光线进入光学系统的平滑度。
镜头头部具有较小的横向尺寸,能够降低光学镜头200的镜头头部所占的空间。
光学镜头200具有较小的TTL/f,使得光学镜头200具有较小的轴向尺寸的同时,能够对于拍摄距离较远的物体实现清晰成像。
光学系统的视场角(Field of View,Fov),又称视场,视场角的大小决定了光学系统的视野范围。光学镜头200具有较大的全视场角(表3中的Fov),拍摄得到的图像包含的信息丰富。
在本实施例中,光学镜头200的光圈值较小,进入光学镜头200的光线强度大,使得在较暗的拍摄环境中,光学镜头200具有较好的成像效果。
根据以上的说明,光学镜头200同时具有较小的光圈值和较大的视场角。
第一透镜L1具有正曲折力,实现对于入射光线的会聚,能够压缩光学镜头200的镜头头部尺寸,减小在终端屏幕上开孔的尺寸。
第一透镜L1的物侧面于近光轴处为凸面,第一透镜L1的像侧面于近光轴处为凹面,使得第一透镜L1物侧面和像侧面的光线之间的角度较小,从而使得光线走势平缓,有助于校正像散等像差。
光学镜头200的f1/f较小,使得光学镜头200在轴向的尺寸较小,实现光学镜头尺寸的小型化。
光学系统的元件在生产制造时,通常会存在由工艺引起的尺寸误差。上述尺寸误差会对光学系统的成像性能产生影响。公差指的是,实际加工引入的误差,即实际值和设计值之间的差异。
当第一透镜L1的焦距和光学透镜200的焦距之比较小时,光学系统对于公差的敏感度 较低。
根据以上说明,光学镜头200能够在实现较广视野范围拍摄,同时对公差的敏感度较低。
第二透镜L2具有正屈折力,能够较为充分地收纳入射光线,降低光学镜头200的镜头头部的横向尺寸,从而降低终端设备屏幕上开孔尺寸。
第二透镜L2物侧面于近轴处为凹面,第二透镜L2物像面于近轴处为凸面。
第三透镜L3具有正曲折力。第三透镜L3物侧面于近轴处为凸面,第三透镜L3物像面于近轴处为凹面。
第三透镜L3具有较小的曲率半径,能够缓冲光线入射到后续透镜的入射角度,平滑光线走势,降低系统对于公差的敏感度。
Y1为光学镜头200最后一片透镜(第三透镜L3)的像侧面的有效通光口径,IH为光学镜头200成像的半像高,光学镜头200具有较小的Yl/IH,能够降低光学镜头后端的尺寸,有利于光学镜头200的结构小型化;在增加光学镜头200和感光元件(例如电荷耦合元件等)之间的轴向距离的同时,增加成像的靶面尺寸,从而提升光学镜头200对于物体细节的分辨能力。
TTL用以表征光学镜头200在光轴方向占据的空间大小,光学镜头200具有较小的IH/TTL,能够降低光学镜头200的尺寸同时具有得到较高像素的成像结果,也即提高成像的清晰度。
MaxY12为第一透镜L1和第二透镜L2的通光孔径中的最大通光孔径,IH为光学镜头200成像的半像高,光学镜头200具有较小的MaxY12/IH,能够在适配光学镜头200不同的头部尺寸时,在一定程度上保证系统的进光量,从而丰富被测物体细节信息。当减小MaxY12/IH,例如使得MaxY12/IH≤0.5时,能够进一步降低光学镜头200的头部尺寸。
光学镜头具有较小的MaxY12/IH,在光学镜头具有较小头部尺寸的同时,具有较大的像面。
光学镜头200的入瞳直径为0.88mm,镜头头部的横向尺寸较小。
以下为本实施例的光学镜头200的部分光学特性测试结果。
以光学镜头200的场曲、畸变和像差为例,对光学镜头200的光学特性进行分析。
场曲(curvature of field):指的是像场弯曲,当透镜存在场曲时,整个光束的交点不与理想像点重合。此时,虽然在每个特定点都能得到对应的像点,但是整个像平面是一个曲面。视场中不同位置的焦距不同,视场边缘的焦距和光轴上的焦距不同,表现在像质上为离焦。
参见图3b,图3b为本申请实施例提供的光学镜头的场曲曲线的示意图。
如图3b所示,546nm波长的光经过光学镜头200成像,T为子午方向的场曲曲线,S为弧矢方向的场曲曲线。
场曲曲线显示的是视场中各点的焦平面或像平面到近轴焦平面的距离。
子午方向的场曲曲线显示的是沿着z轴方向从当前所确定的聚焦面到近轴焦平面的距离,是在子午面(YZ面)上的数据;而弧矢方向的场曲数据显示的是和子午面垂直的平面上的数据。
如图3b所示,光学镜头200成像的子午方向和弧矢方向场曲具有较小的绝对值,且子 午方向和弧矢方向场曲曲线较为接近,因此,光学镜头200具有较小的像散,成像效果较好。
参见图3c,图3c为本申请实施例提供的光学镜头的轴向像差的示意图。
光学镜头200中元件的参数如表1a所示。
如图3c所示,在波长分别为656nm、587nm、546nm、486nm、及435nm时,光学镜头200成像的轴向像差。
如图3c所示,利用上述多个波长的光波进行测试,光学镜头的成像的像差(轴上和轴外的色像差)较小,也即具有较好的成像效果。
综上,光学镜头200能够通过光焦度可调元件进行焦距的调节,对于不同拍摄距离的物体进行清晰成像。
第一透镜L1和第二透镜L2的尺寸较小,具有较大尺寸的光焦度可调元件G和第三透镜位于光学镜头200靠后的位置。相比于光焦度可调元件G和第三透镜L3来说,第一透镜L1和第二透镜L2具有较小的横向尺寸。因此,光学透镜300的镜头头部具有较小的横向尺寸,能够实现较小的开孔大小。
在以上实施例中,光学镜头的第二透镜组包括一个透镜,光学镜头的第二透镜组还可以包括其他数量的透镜,以下实施例以光学镜头的第二透镜组包括三个透镜为例,对光学镜头200进行说明,学镜头的第二透镜组包括其他数量的透镜原理类似。
在以下实施例中,光学镜头100具有和以上实施例中部分相似的成像效果,具体参见以上实施例中的描述。
本申请实施例还提供了另一种光学镜头。
参见图4a,图4a为本申请另一实施例提供的光学镜头的结构示意图。
如图4a所示,镜头模组200沿光轴方向从物侧到像侧依次包括:第一透镜组201、光焦度可调元件G和第二透镜组202。
第一透镜组201沿光轴方向从物侧到像侧依次包括:第一透镜L1和第二透镜L2,第二透镜组202沿光轴方向从物侧到像侧依次包括:第三镜透镜L3、第四透镜L4和第五透镜L5。
光焦度可调元件G位于第二透镜L2和第三透镜L3之间。
为了减小电子设备上开孔的尺寸,需要减小镜头头部的横向尺寸。
在一种可能的实现方式中,光学镜头200还可以包含光学滤光片GF,光学滤光片GF位于第二透镜组202的后方。
在一些可能的情况中,上述透镜可以采用塑料材质。
在本实施例中,镜头模组200沿光轴方向从物侧到像侧依次包括的元件为:第一透镜L1、第二透镜L2、光焦度可调元件G、第三透镜L3、第四透镜L4、第五透镜L5,以及光学滤光片GF。
S为光圈;Si为像面。
本实施例提供的光学镜头中元件的参数请参见表2a。
表2a:光学镜头中元件的参数
Figure PCTCN2022142498-appb-000004
在表2a中,各符号的含义如下:
R_物4:第四透镜L4的物侧面的中心曲率半径;
R_像4:第四透镜L4的像侧面的中心曲率半径;
R_物5:第五透镜L5的物侧面的中心曲率半径;
R_像5:第五透镜L5的像侧面的中心曲率半径;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度
d10:第五透镜L5的像侧面到光学滤光片GF的物侧面的轴上距离;
d11:光学滤光片GF的轴上厚度;
d12:光学滤光片GF的像侧面到像面Si的轴上距离;
nd4:第四透镜L4的d线的折射率(d线为波长为550nm的绿光);
nd5:第五透镜L5的d线的折射率;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数。
在表2a中,其余符号的含义和表1a相同,这里不再赘述。
各个透镜的非球面的透镜面,使用以上实施例中的公式(1)得到的非球面。
本实施例提供的光学镜头200中的透镜的圆锥系数k和非球面系数的数值,参见表2b.
在表2b中,符号的含义和表2a相同,这里不再赘述。
表2b:光学镜头中元件的圆锥系数和非球面系数
Figure PCTCN2022142498-appb-000005
在本实施例的光学镜头200中元件的参数如表2a所述时,光学镜头200的部分参数请参见表2c。
表2c:光学镜头的参数
参数 第一结构 第二结构 第三结构
OBJ(mm) 400 150 1200
fG(mm) 3759.82 156.66 -469.98
IH 3.432 3.432 3.432
TTL 4.45 4.45 4.45
f 3.70 3.44 3.82
∑CT12/TTL 0.12 0.12 0.12
TTL/f 1.20 1.30 1.17
Fno 2.40 2.40 2.40
f1/f 0.87 0.93 0.84
f2/f -2.72 -2.93 -2.64
(R 3+R 3)/(R 3-R 3) -93.28 -93.28 -93.28
Yl/IH 0.89 0.89 0.89
IH/TTL 0.77 0.77 0.77
MaxY12/IH 0.45 0.45 0.46
Fov(°) 80.01 80.19 79.94
在表2c中,第一结构、第二结构和第三结构,分别是光学镜头200对位于三种不同距离的物体进行拍摄时的参数。
Yl为光学镜头200的最后一片透镜的像侧面的有效通光口径;在本实施例中,也即第五透镜L5的像侧面的有效通光口径。
表2c中符号的含义和表1c相同,这里不再赘述。
以下对本实施例中的光学镜头200的参数进行分析,和以上实施例中的说明的部分请参见以上实施例中的说明,为了避免重复,本实施例不再赘述。
在本实施例中,光学镜头200能够通过焦距的调节,实现对于不同拍摄距离的物体的清晰地成像。如表2c所示,OBJ为400mm、150mm和1200mm时,光学镜头200的焦距分别为3.70mm、3.44mm和3.82mm。
由于第一镜头L1和第二镜头L2的横向尺寸相比于光焦度可调元件G较小,而且第一透镜L1和第二镜头L2占据整个光学镜头200尺寸的比例较大(∑CT12/TTL较大),因此,镜头头部具有较小的横向尺寸,使得开孔尺寸较小,从而提高终端的屏占比。
另外,当∑CT12/TTL较大时,对于光学镜头200来说,镜头头部在光轴方向具有较大的尺寸,也即,光学镜头200具有较深的镜头头部,光线经过光学镜头200时走势较平滑,从而增加光线进入光学系统的平滑度。
镜头头部具有较小的横向尺寸,能够降低光学镜头200的镜头头部所占的空间。
光学镜头200具有较小的TTL/f,使得光学镜头200具有较小的轴向尺寸,并且能够对于拍摄距离较远的物体实现清晰成像。
光学镜头200具有较大的全视场角(表2c中的Fov),拍摄得到的图像包含的信息丰富。
光学镜头200的光圈值较小,进入光学镜头200的光线强度大,使得在较暗的拍摄环 境中,光学镜头200具有较好的成像效果。
根据以上的说明,光学镜头200同时具有较小的光圈值和较大的视场角。
第一透镜L1具有正曲折力,实现对于入射光线的会聚,能够压缩光学镜头200的镜头头部尺寸,减小在终端屏幕上开孔的尺寸。
第一透镜L1的物侧面于近光轴处为凸面,第一透镜L1的像侧面于近光轴处为凹面,使得第一透镜L1物侧面和像侧面的光线之间的角度较小,从而使得光线走势平缓,有助于校正像散等像差。
光学镜头200的f1/f较小,使得光学镜头200在轴向的尺寸较小,也即有利于压缩整个光学系统的总长,实现光学镜头尺寸的小型化。
当第一透镜L1的焦距和光学透镜200的焦距之比较小时,光学系统对于公差的敏感度较低。
根据以上说明,光学镜头200能够在实现较广视野范围拍摄,同时对公差的敏感度较低。
第二透镜L2具有负屈折力,有利于校正畸变,修正像差。
第二透镜物侧面于近轴处为凸面,第二透镜像侧面于近轴处为凹面。
第三透镜L3为第二透镜组的最前端,且位于光焦度可调元件G的后端。
第三透镜L3具有正屈折力。第三透镜物侧面于近轴处为凸面,第三透镜像侧面于近轴处为凹面。
第三透镜L3具有较小的曲率半径,能够缓冲光线入射到后续透镜的入射角度,平滑光线走势,降低系统对于公差的敏感度。
第四透镜L4具有正屈折力,第四透镜物侧面于近轴处为凹面,第四透镜像侧面于近轴处为凸面。
第五透镜L5具有负屈折力,第五透镜物侧面于近轴处为凸面,第五透镜像侧面于近轴处为凹面。
Y1为光学镜头200最后一片透镜(第五透镜L5)的像侧面的有效通光口径,IH为光学镜头200成像的半像高,光学镜头200具有较小的Yl/IH,能够降低光学镜头后端的尺寸,有利于光学镜头200的结构小型化;在增加光学镜头200和感光元件(例如电荷耦合元件等)之间的轴向距离的同时,增加成像的靶面尺寸,从而提升光学镜头200对于物体细节的分辨能力。
光学镜头200具有较小的IH/TTL,能够降低光学镜头200的尺寸同时具有得到较高像素的成像结果,也即提高成像的清晰度。
MaxY12为第一透镜L1和第二透镜L2的通光孔径中的最大通光孔径。
光学镜头200具有较小的MaxY12/IH,能够在适配光学镜头200不同的头部尺寸时,在一定程度上保证系统的进光量,从而丰富被测物体细节信息。
光学镜头具有较小的MaxY12/IH,在光学镜头具有较小头部尺寸的同时,具有较大的像面。
光学镜头200的入瞳直径为1.54mm,镜头头部的横向尺寸较小。
以下为本实施例的光学镜头200的部分光学特性测试结果。
以光学镜头200的场曲、畸变和像差为例,对光学镜头200的光学特性进行分析。
参见图4b,图4b为本申请另一实施例提供的光学镜头的场曲曲线的示意图。
如图4b所示,546nm波长的光经过光学镜头200成像,T为子午方向的场曲曲线,S为弧矢方向的场曲曲线。
如图4b所示,光学镜头200成像的子午方向和弧矢方向场曲具有较小的绝对值,且子午方向和弧矢方向场曲曲线较为接近,因此,光学镜头200具有较小的像散,成像效果较好。
参见图4c,图4c为本申请另一实施例提供的光学镜头的轴向像差的示意图。
光学镜头200中元件的参数如表2a所示。
如图4c所示,在波长分别为656nm、587nm、546nm、486nm、及435nm时,光学镜头200成像的轴向像差。
如图4c所示,利用上述多个波长的光波进行测试,光学镜头的成像的像差(轴上和轴外的色像差)较小,也即具有较好的成像效果。
综上,光学镜头200能够通过光焦度可调元件进行焦距的调节,对于不同拍摄距离的物体进行清晰成像。
第一透镜L1和第二透镜L2的尺寸较小,具有较大尺寸的光焦度可调元件G、第三透镜、第四透镜L4和第五透镜L5位于光学镜头200靠后的位置。相比于光焦度可调元件G、第三透镜L3、第四透镜L4和第五透镜L5来说,第一透镜L1和第二透镜L2具有较小的横向尺寸。因此,光学透镜300的镜头头部具有较小的横向尺寸,能够实现较小的开孔大小。
相比于以上实施例中光学镜头200的第二透镜组包括一个透镜,本实施例中光学镜头200的第二透镜组包括三个透镜,具有更多的透镜数,有利于修正成像的像差。
在本实施例中,光学镜头的第一透镜组中的第二透镜的屈折力为负,有利于校正畸变和修正像差。
在以下实施例中,当第二透镜L2具有正屈折力时,能够较为充分地收纳入射光线,降低光学镜头200的镜头头部的横向尺寸,从而降低终端设备屏幕上开孔尺寸。
本申请实施例还提供了另一种光学镜头。
参见图5a,图5a为本申请另一实施例提供的光学镜头的结构示意图。
如图5a所示,镜头模组200沿光轴方向从物侧到像侧依次包括:第一透镜组201、光焦度可调元件G和第二透镜组202。
第一透镜组201沿光轴方向从物侧到像侧依次包括:第一透镜L1和第二透镜L2,第二透镜组202沿光轴方向从物侧到像侧依次包括:第三镜透镜L3、第四透镜L4和第五透镜L5。
光焦度可调元件G位于第二透镜L2和第三透镜L3之间。
为了减小电子设备上开孔的尺寸,需要减小镜头头部的横向尺寸。
在一种可能的实现方式中,光学镜头200还可以包含光学滤光片GF,光学滤光片GF位于第二透镜组202的后方。
在一些可能的情况中,上述透镜可以采用塑料材质。
在本实施例中,镜头模组200沿光轴方向从物侧到像侧依次包括的元件为:第一透镜L1、第二透镜L2、光焦度可调元件G、第三透镜L3、第四透镜L4、第五透镜L5,以及光学滤光片GF。
S为光圈;Si为像面。
本实施例提供的光学镜头中元件的参数请参见表3a。
表3a:光学镜头中元件的参数
Figure PCTCN2022142498-appb-000006
在表3a中,其余符号的含义和表2a相同,这里不再赘述。
各个透镜的非球面的透镜面,使用以上实施例中的公式(1)得到的非球面。
本实施例提供的光学镜头200中的透镜的圆锥系数k和非球面系数的数值,参见表3b。
表3b:光学镜头中元件的圆锥系数和非球面系数
Figure PCTCN2022142498-appb-000007
在表3b中,符号的含义和表3a相同,这里不再赘述。
在本实施例的光学镜头200中元件的参数如表3a所述时,光学镜头200的部分参数请参见表3c。
表3c:光学镜头的参数
参数 第一结构 第二结构 第三结构
OBJ(mm) 400 150 1200
fG(mm) 144.32 80.00 200.45
IH 3.432 3.432 3.432
TTL 3.96 3.96 4.45
f 2.76 2.71 2.78
∑CT12/TTL 0.13 0.13 0.13
TTL/f 1.44 1.46 1.43
Fno 2.40 2.40 2.40
f1/f 2.09 2.13 2.08
f2/f 76.39 77.70 75.91
(R 3+R 3)/(R 3-R 3) 1.80 1.80 1.80
Yl/IH 0.84 0.84 0.84
IH/TTL 0.87 0.87 0.87
MaxY12/IH 0.34 0.33 0.34
Fov(°) 101.55 101.72 101.49
在表3c中,第一结构、第二结构和第三结构,分别是光学镜头200对位于三种不同距离的物体进行拍摄时的参数。
Yl为光学镜头200的最后一片透镜的像侧面的有效通光口径;在本实施例中,也即第五透镜L5的像侧面的有效通光口径。
表3c中符号的含义和表1c相同,这里不再赘述。
以下对本实施例中的光学镜头200的参数进行分析,和以上实施例中的说明的部分请参见以上实施例中的说明,为了避免重复,本实施例不再赘述。
在本实施例中,光学镜头200能够通过焦距的调节,实现对于不同拍摄距离的物体的清晰地成像。如表3c所示,OBJ为400mm、150mm和1200mm时,光学镜头200的焦距分别为3.70mm、3.44mm和3.82mm。
光学镜头200具有较小的TTL/f,使得光学镜头200具有较小的轴向尺寸,并且能够对于拍摄距离较远的物体实现清晰成像。
光学镜头200具有较大的最大视场角(表3c中的Fov),拍摄得到的图像包含的信息丰富。
光学镜头200的光圈值较小,进入光学镜头200的光线强度大,使得在较暗的拍摄环境中,光学镜头200具有较好的成像效果。
根据以上的说明,光学镜头200同时具有较小的光圈值和较大的视场角。
第一透镜L1具有正曲折力,实现对于入射光线的会聚,能够压缩光学镜头200的镜头头部尺寸,减小在终端屏幕上开孔的尺寸。
第一透镜L1的物侧面于近光轴处为凸面,第一透镜L1的像侧面于近光轴处为凹面,使得第一透镜L1物侧面和像侧面的光线之间的角度较小,从而使得光线走势平缓,有助于校正像散等像差。
光学镜头200的f1/f较小,使得光学镜头200在轴向的尺寸较小,也即有利于压缩整个光学系统的总长,实现光学镜头尺寸的小型化。
当第一透镜L1的焦距和光学透镜200的焦距之比较小时,光学系统对于公差的敏感度较低。
根据以上说明,光学镜头200能够在实现较广视野范围拍摄,同时对公差的敏感度较低。
第二透镜L2具有正屈折力,有利于收纳入射光线,降低光学镜头的头部尺寸。
第二透镜物侧面于近轴处为凸面,第二透镜像侧面于近轴处为凹面。
第三透镜L3为第二透镜组的最前端,且位于光焦度可调元件G的后端。
第三透镜L3具有正曲折力。第三透镜物侧面于近轴处为凸面,第三透镜像侧面于近轴处为凹面。
第三透镜L3具有较小的曲率半径,能够缓冲光线入射到后续透镜的入射角度,平滑光线走势,降低系统对于公差的敏感度。
第四透镜L4具有正屈折力,第四透镜物侧面于近轴处为凹面,第四透镜像侧面于近轴处为凸面。
第五透镜L5具有负屈折力,第五透镜物侧面于近轴处为凸面,第五透镜像侧面于近轴处为凹面。
Y1为光学镜头200最后一片透镜(第五透镜L5)的像侧面的有效通光口径,IH为光学镜头200成像的半像高,光学镜头200具有较小的Yl/IH,能够降低光学镜头后端的尺寸,有利于光学镜头200的结构小型化;在增加光学镜头200和感光元件(例如电荷耦合元件等)之间的轴向距离的同时,增加成像的靶面尺寸,从而提升光学镜头200对于物体细节的分辨能力。
光学镜头200具有较小的IH/TTL,能够降低光学镜头200的尺寸同时具有得到较高像素的成像结果,也即提高成像的清晰度。
光学镜头200具有较小的MaxY12/IH,能够在适配光学镜头200不同的头部尺寸时,在一定程度上保证系统的进光量,从而丰富被测物体细节信息。
相比于以上实施例的光学镜头的第二透镜组包括一个透镜,本实施例的光学镜头200的第二透镜组包括三个透镜。
光学镜头200的入瞳直径为1.12mm,镜头头部的横向尺寸较小。
以下为本实施例的光学镜头200的部分光学特性测试结果。
以光学镜头200的场曲、畸变和像差为例,对光学镜头200的光学特性进行分析。
参见图5b,图5b为本申请另一实施例提供的光学镜头的场曲曲线的示意图。
如图5b所示,546nm波长的光经过光学镜头200成像,T为子午方向的场曲曲线,S为弧矢方向的场曲曲线。
如图5b所示,光学镜头200成像的子午方向和弧矢方向场曲具有较小的绝对值,且子午方向和弧矢方向场曲曲线较为接近,因此,光学镜头200具有较小的像散,成像效果较好。
参见图5c,图5c为本申请另一实施例提供的光学镜头的轴向像差的示意图。
光学镜头200中元件的参数如表3a所示。
如图5c所示,在波长分别为656nm、587nm、546nm、486nm、及435nm时,光学镜头200成像的轴向像差。
如图5c所示,利用上述多个波长的光波进行测试,光学镜头的成像的像差(轴上和轴外的色像差)较小,也即具有较好的成像效果。
综上,光学镜头200能够通过光焦度可调元件进行焦距的调节,对于不同拍摄距离的物体进行清晰成像。
第一透镜L1和第二透镜L2的尺寸较小,具有较大尺寸的光焦度可调元件G、第三透镜、第四透镜L4和第五透镜L5位于光学镜头200靠后的位置。相比于光焦度可调元件G、第三透镜L3、第四透镜L4和第五透镜L5来说,第一透镜L1和第二透镜L2具有较小的横向尺寸。因此,光学透镜300的镜头头部具有较小的横向尺寸,能够实现较小的开孔大小。
相比于以上实施例,本实施例中的光学镜头的第一透镜组中的第二透镜的屈折力为正有利于收纳入射光线,降低光学镜头200的镜头头部的横向尺寸,从而降低终端设备屏幕上开孔尺寸。
本实施例中光学镜头200的第二透镜组包括三个透镜,具有较多的透镜数,有利于修正成像的像差。
在以上实施例中,光学镜头的第二透镜组中的第四透镜像面侧于近轴处为凸面,以下以第四透镜像面侧于近轴处为凹面对光学镜头进行说明。
本申请实施例还提供了另一种光学镜头。
参见图6a,图6a为本申请另一实施例提供的光学镜头的结构示意图。
如图6a所示,镜头模组200沿光轴方向从物侧到像侧依次包括:第一透镜组201、光焦度可调元件G和第二透镜组202。
第一透镜组201沿光轴方向从物侧到像侧依次包括:第一透镜L1和第二透镜L2,第二透镜组202沿光轴方向从物侧到像侧依次包括:第三镜透镜L3、第四透镜L4和第五透镜L5。
光焦度可调元件G位于第二透镜L2和第三透镜L3之间。
为了减小电子设备上开孔的尺寸,需要减小镜头头部的横向尺寸。
在一种可能的实现方式中,光学镜头200还可以包含光学滤光片GF,光学滤光片GF位于第二透镜组202的后方。
在一些可能的情况中,上述透镜可以采用塑料材质。
在本实施例中,镜头模组200沿光轴方向从物侧到像侧依次包括的元件为:第一透镜L1、第二透镜L2、光焦度可调元件G、第三透镜L3、第四透镜L4、第五透镜L5,以及光学滤光片GF。
S为光圈;Si为像面。
本实施例提供的光学镜头中元件的参数请参见表4a。
表4a:光学镜头中元件的参数
Figure PCTCN2022142498-appb-000008
在表4a中,其余符号的含义和表2a相同,这里不再赘述。
各个透镜的非球面的透镜面,使用以上实施例中的公式(1)得到的非球面。
本实施例提供的光学镜头200中的透镜的圆锥系数k和非球面系数的数值,参见表4b。
表4b:光学镜头中元件的圆锥系数和非球面系数
Figure PCTCN2022142498-appb-000009
在表4b中,符号的含义和表4a相同,这里不再赘述。
在本实施例的光学镜头200中元件的参数如表4a所述时,光学镜头200的部分参数请参见表4c。
表4c:光学镜头的参数
参数 第一结构 第二结构 第三结构
OBJ(mm) 400 150 1200
fG(mm) 90.20 64.43 106.12
IH 3.432 3.432 3.432
TTL 3.88 3.88 3.88
f 2.14 2.12 2.15
∑CT12/TTL 0.08 0.08 0.08
TTL/f 1.81 1.83 1.81
Fno 2.40 2.40 2.40
f1/f 2.31 2.33 2.31
f2/f -5.28 -5.32 -5.26
(R 3+R 3)/(R 3-R 3) 0.81 0.81 0.81
Yl/IH 0.79 0.79 0.79
IH/TTL 0.88 0.88 0.88
MaxY12/IH 0.26 0.26 0.26
FOV(°) 120.24 120.53 120.14
在表4c中,第一结构、第二结构和第三结构,分别是光学镜头200对位于三种不同距离的物体进行拍摄时的参数。
Yl为光学镜头200的最后一片透镜的像侧面的有效通光口径;在本实施例中,也即第五透镜L5的像侧面的有效通光口径。
表4c中符号的含义和表1c相同,这里不再赘述。
以下对本实施例中的光学镜头200的参数进行分析,和以上实施例中的说明的部分请参见以上实施例中的说明,为了避免重复,本实施例不再赘述。
在本实施例中,光学镜头200能够通过焦距的调节,实现对于不同拍摄距离的物体的清晰地成像。如表4c所示,OBJ为400mm、150mm和1200mm时,光学镜头200的焦距分别为3.70mm、3.44mm和3.82mm。
由于第一镜头L1和第二镜头L2的横向尺寸相比于光焦度可调元件G较小,而且第一透镜L1和第二镜头L2占据整个光学镜头200尺寸的比例较大(∑CT12/TTL较大),因此,镜头头部具有较小的横向尺寸,使得开孔尺寸较小,从而提高终端的屏占比。
另外,当∑CT12/TTL较大时,对于光学镜头200来说,镜头头部在光轴方向具有较大的尺寸,也即,光学镜头200具有较深的镜头头部,光线经过光学镜头200时走势较平滑,从而增加光线进入光学系统的平滑度。
镜头头部具有较小的横向尺寸,能够降低光学镜头200的镜头头部所占的空间。
光学镜头200具有较小的TTL/f,使得光学镜头200具有较小的轴向尺寸,并且能够对于拍摄距离较远的物体实现清晰成像。
光学镜头200具有较大的全视场角(表4c中的Fov),拍摄得到的图像包含的信息丰富。
光学镜头200的光圈值较小,进入光学镜头200的光线强度大,使得在较暗的拍摄环 境中,光学镜头200具有较好的成像效果。
根据以上的说明,光学镜头200同时具有较小的光圈值和较大的视场角。
第一透镜L1具有正曲折力,实现对于入射光线的会聚汇聚,能够压缩光学镜头200的镜头头部尺寸,减小在终端屏幕上开孔的尺寸。
第一透镜L1的物侧面于近光轴处为凸面,第一透镜L1的像侧面于近光轴处为凹面,使得第一透镜L1物侧面和像侧面的光线之间的角度较小,从而使得光线走势平缓,有助于校正像散等像差。
光学镜头200的f1/f较小,使得光学镜头200在轴向的尺寸较小,也即有利于压缩整个光学系统的总长,实现光学镜头尺寸的小型化。
当第一透镜L1的焦距和光学透镜200的焦距之比较小时,光学系统对于公差的敏感度较低。
根据以上说明,光学镜头200能够在实现较广视野范围拍摄,同时对公差的敏感度较低。
第二透镜L2具有负屈折力,有利于校正畸变,修正像差。
第二透镜L2物侧面于近轴处为凸面,第二透镜像侧面于近轴处为凹面。
第三透镜L3为第二透镜组的最前端,且位于光焦度可调元件G的后端。
第三透镜L3具有正曲折力,第三透镜L3物侧面于近轴处为凸面,第三透镜像侧面于近轴处为凹面。
第三透镜L3具有较小的曲率半径,能够缓冲光线入射到后续透镜的入射角度,平滑光线走势,降低系统对于公差的敏感度。
第四透镜L4具有正屈折力,第四透镜物侧面于近轴处为凹面,第四透镜像侧面于近轴处为凹面。
第五透镜L5具有负屈折力,第五透镜物侧面于近轴处为凸面,第五透镜像侧面于近轴处为凹面。
Y1为光学镜头200最后一片透镜(第五透镜L5)的像侧面的有效通光口径,IH为光学镜头200成像的半像高,光学镜头200具有较小的Yl/IH,能够降低光学镜头后端的尺寸,有利于光学镜头200的结构小型化;在增加光学镜头200和感光元件(例如电荷耦合元件等)之间的轴向距离的同时,增加成像的靶面尺寸,从而提升光学镜头200对于物体细节的分辨能力。
光学镜头200具有较小的IH/TTL,能够降低光学镜头200的尺寸同时具有得到较高像素的成像结果,也即提高成像的清晰度。
光学镜头200具有较小的MaxY12/IH,能够在适配光学镜头200不同的头部尺寸时,在一定程度上保证系统的进光量,从而丰富被测物体细节信息。
相比于以上实施例的光学镜头的第二透镜组包括一个透镜,本实施例的光学镜头200的第二透镜组包括三个透镜。
光学镜头200的入瞳直径为1.54mm,镜头头部的横向尺寸较小。
以下为本实施例的光学镜头200的部分光学特性测试结果。
以光学镜头200的场曲、畸变和像差为例,对光学镜头200的光学特性进行分析。
参见图6b,图6b为本申请另一实施例提供的光学镜头的场曲曲线的示意图。
如图6b所示,546nm波长的光经过光学镜头200成像,T为子午方向的场曲曲线,S为弧矢方向的场曲曲线。
如图6b所示,光学镜头200成像的子午方向和弧矢方向场曲具有较小的绝对值,且子午方向和弧矢方向场曲曲线较为接近,因此,光学镜头200具有较小的像散,成像效果较好。
参见图6c,图6c为本申请另一实施例提供的光学镜头的轴向像差的示意图。
光学镜头200中元件的参数如表4a所示。
如图6c所示,在波长分别为656nm、587nm、546nm、486nm、及435nm时,光学镜头200成像的轴向像差。
如图6c所示,利用上述多个波长的光波进行测试,光学镜头的成像的像差(轴上和轴外的色像差)较小,也即具有较好的成像效果。
综上,光学镜头200能够通过光焦度可调元件进行焦距的调节,对于不同拍摄距离的物体进行清晰成像。
第一透镜L1和第二透镜L2的尺寸较小,具有较大尺寸的光焦度可调元件G、第三透镜、第四透镜L4和第五透镜L5位于光学镜头200靠后的位置。相比于光焦度可调元件G、第三透镜L3、第四透镜L4和第五透镜L5来说,第一透镜L1和第二透镜L2具有较小的横向尺寸。因此,光学透镜300的镜头头部具有较小的横向尺寸,能够实现较小的开孔大小。
在以上实施例中,光学镜头的第一透镜组中的第二透镜的屈折力为负,有利于校正畸变和修正像差。
相比于以上实施例中光学镜头200的第四透镜像侧面近轴处为凸面,本实施例中光学镜头200的第四透镜像面侧于近轴处为凹面。
相比于以上实施例中光学镜头200的第二透镜组包括一个透镜,本实施例中光学镜头200的第二透镜组包括三个透镜,具有更多的透镜数,有利于修正成像的像差。
在一些可能的实现方式中,光学镜头的第二透镜组还可以包括四个透镜。
本申请实施例还提供了另一种光学镜头。
参见图7a,图7a为本申请另一实施例提供的光学镜头的结构示意图。
如图7a所示,镜头模组200沿光轴方向从物侧到像侧依次包括:第一透镜组201、光焦度可调元件G和第二透镜组202。
第一透镜组201沿光轴方向从物侧到像侧依次包括:第一透镜L1和第二透镜L2,第二透镜组202沿光轴方向从物侧到像侧依次包括:第三镜透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
光焦度可调元件G位于第二透镜L2和第三透镜L3之间。
为了减小电子设备上开孔的尺寸,需要减小镜头头部的横向尺寸。
在一种可能的实现方式中,光学镜头200还可以包含光学滤光片GF,光学滤光片GF位于第二透镜组202的后方。
在一些可能的情况中,上述透镜可以采用塑料材质。
在本实施例中,镜头模组200沿光轴方向从物侧到像侧依次包括的元件为:第一透镜L1、第二透镜L2、光焦度可调元件G、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6,以及光学滤光片GF。
S为光圈;Si为像面。
本实施例提供的光学镜头中元件的参数请参见表5a。
表5a:光学镜头中元件的参数
Figure PCTCN2022142498-appb-000010
在表5a中,各符号的含义如下:
R_物6:第六透镜L6的物侧面的中心曲率半径;
R_像6:第六透镜L6的像侧面的中心曲率半径;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6到光学滤光片GF的物侧面的轴上距离;
d13:光学滤光片GF的轴上厚度;
d14:光学滤光片GF的像侧面到像面Si的轴上距离;
nd6:第六透镜L6的d线的折射率(d线为波长为550nm的绿光);
v6:第六透镜L6的阿贝数。
在表5a中,其余符号的含义和表1a相同,这里不再赘述。
各个透镜的非球面的透镜面,使用以上实施例中的公式(1)得到的非球面。
本实施例提供的光学镜头200中的透镜的圆锥系数k和非球面系数的数值,参见表5b.
在表5b中,符号的含义和表2a相同,这里不再赘述。
表5b:光学镜头中元件的圆锥系数和非球面系数
Figure PCTCN2022142498-appb-000011
在表5b中,符号的含义和表5a相同,这里不再赘述。
在本实施例的光学镜头200中元件的参数如表5a所述时,光学镜头200的部分参数请参见表5c。
表5c:光学镜头的参数
参数 第一结构 第二结构 第三结构
OBJ(mm) 400 150 1200
fG(mm) 171.81 90.20 257.72
IH 3.432 3.432 3.432
TTL 4.51 4.51 4.51
f 2.81 2.75 2.83
∑CT12/TTL 0.12 0.12 0.12
TTL/f 1.60 1.64 1.59
Fno 2.90 2.90 2.90
f1/f 1.95 1.99 1.94
f2/f -52.52 -53.57 -52.13
(R 3+R 3)/(R 3-R 3) 6.84 6.84 6.84
Yl/IH 1.45 1.45 1.45
IH/TTL 0.76 0.76 0.76
MaxY12/IH 0.34 0.33 0.34
Fov(°) 91.64 91.80 91.59
在表5c中,第一结构、第二结构和第三结构,分别是光学镜头200对位于三种不同距离的物体进行拍摄时的参数。
Yl为光学镜头200的最后一片透镜的像侧面的有效通光口径;在本实施例中,也即第六透镜L6的像侧面的有效通光口径。
表5c中符号的含义和表1c相同,这里不再赘述。
以下对本实施例中的光学镜头200的参数进行分析,和以上实施例中的说明的部分请参见以上实施例中的说明,为了避免重复,本实施例不再赘述。
在本实施例中,光学镜头200能够通过焦距的调节,实现对于不同拍摄距离的物体的清晰地成像。如表5c所示,OBJ为400mm、150mm和1200mm时,光学镜头200的焦距分别为3.70mm、3.44mm和3.82mm。
由于第一镜头L1和第二镜头L2的横向尺寸相比于光焦度可调元件G较小,而且第一透镜L1和第二镜头L2占据整个光学镜头200尺寸的比例较大(∑CT12/TTL较大),因此,镜头头部具有较小的横向尺寸,使得开孔尺寸较小,从而提高终端的屏占比。
另外,当∑CT12/TTL较大时,对于光学镜头200来说,镜头头部在光轴方向具有较大的尺寸,也即,光学镜头200具有较深的镜头头部,光线经过光学镜头200时走势较平滑,从而增加光线进入光学系统的平滑度。
镜头头部具有较小的横向尺寸,能够降低光学镜头200的镜头头部所占的空间。
光学镜头200具有较小的TTL/f,使得光学镜头200具有较小的轴向尺寸,并且能够对于拍摄距离较远的物体实现清晰成像。
光学镜头200具有较大的最大视场角(表5c中的Fov),拍摄得到的图像包含的信息丰富。
通过增加光学镜头中包括的透镜的数量,能够增加全视场角的大小。
不同的视场角能够针对不同的视野范围进行拍摄。当视场角较大时,拍摄得到的图像包含的信息越丰富,例如当Fov<120°,能够对更广视野的物体进行成像,提供更加丰富的图像信息,成像结果的视觉冲击较强;当视场角较小时,例如当Fov<100°,能够实现小视场角下较为深入的畸变校正。
虽然通过增加光学镜头中包括的透镜的数量,能够增加全视场角的大小,但在实际优化光学镜头参数的过程中,还需要考虑视场角增加引入的图像畸变等像差。
光学镜头200的光圈值较小,进入光学镜头200的光线强度大,使得在较暗的拍摄环境中,光学镜头200具有较好的成像效果。
根据以上的说明,光学镜头200同时具有较小的光圈值和较大的视场角。
第一透镜L1具有正曲折力,实现对于入射光线的会聚汇聚,能够压缩光学镜头200的镜头头部尺寸,减小在终端屏幕上开孔的尺寸。
第一透镜L1的物侧面于近光轴处为凸面,第一透镜L1的像侧面于近光轴处为凹面,使得第一透镜L1物侧面和像侧面的光线之间的角度较小,从而使得光线走势平缓,有助于校正像散等像差。
光学镜头200的f1/f较小,使得光学镜头200在轴向的尺寸较小,也即有利于压缩整个光学系统的总长,实现光学镜头尺寸的小型化。
当第一透镜L1的焦距和光学透镜200的焦距之比较小时,光学系统对于公差的敏感度较低。
根据以上说明,光学镜头200能够在实现较广视野范围拍摄,同时对公差的敏感度较低。
第二透镜L2具有负屈折力,有利于校正畸变,修正像差。
第二透镜L2的物侧面于近光轴处为凸面,第二透镜L2的像侧面于近光轴处为凹面。
第三透镜L3为第二透镜组的最前端,且位于光焦度可调元件G的后端。
第三透镜L3具有正曲折力,第三透镜L3物侧面于近轴处为凸面,第三透镜像侧面于近轴处为凹面。
第三透镜L3具有较小的曲率半径,能够缓冲光线入射到后续透镜的入射角度,平滑光线走势,降低系统对于公差的敏感度。
第四透镜L4具有正屈折力,第四透镜L4的物侧面于近轴处为凸面,第四透镜像侧面于近轴处为凸面。
第五透镜L5具有正屈折力,第五透镜L5物侧面于近轴处为凹面,第五透镜L5像侧面于近轴处为凸面;
第六透镜L6具有负屈折力,第六透镜L6物侧面于近轴处为凸面,第六透镜L6像侧面于近轴处为凹面。
Y1为光学镜头200最后一片透镜(第六透镜L6)的像侧面的有效通光口径,IH为光学镜头200成像的半像高,光学镜头200具有较小的Yl/IH,能够降低光学镜头后端的尺寸,有利于光学镜头200的结构小型化;在增加光学镜头200和感光元件(例如电荷耦合元件等)之间的轴向距离的同时,增加成像的靶面尺寸,从而提升光学镜头200对于物体细节的分辨能力。
光学镜头200具有较小的IH/TTL,能够降低光学镜头200的尺寸同时具有得到较高像素的成像结果,也即提高成像的清晰度。
光学镜头200具有较小的MaxY12/IH,能够在适配光学镜头200不同的头部尺寸时,在一定程度上保证系统的进光量,从而丰富被测物体细节信息。
相比于以上实施例的光学镜头的第二透镜组包括一个透镜,本实施例的光学镜头200的第二透镜组包括四个透镜。
光学镜头200的入瞳直径为1.17mm,镜头头部的横向尺寸较小。
以下为本实施例的光学镜头200的部分光学特性测试结果。
参见图7b,图7b为本申请另一实施例提供的光学镜头的场曲曲线的示意图。
如图7b所示,546nm波长的光经过光学镜头200成像,T为子午方向的场曲曲线,S为弧矢方向的场曲曲线。
如图7b所示,光学镜头200成像的子午方向和弧矢方向场曲具有较小的绝对值,且子午方向和弧矢方向场曲曲线较为接近,因此,光学镜头200具有较小的像散,成像效果较好。
参见图7c,图7c为本申请另一实施例提供的光学镜头的轴向像差的示意图。
光学镜头200中元件的参数如表5a所示。
如图7c所示,在波长分别为656nm、587nm、546nm、486nm、及435nm时,光学镜头200成像的轴向像差。
如图7c所示,利用上述多个波长的光波进行测试,光学镜头的成像的像差(轴上和轴外的色像差)较小,也即具有较好的成像效果。
综上,光学镜头200能够通过光焦度可调元件进行焦距的调节,对于不同拍摄距离的物体进行清晰成像。
第一透镜L1和第二透镜L2的尺寸较小,具有较大尺寸的光焦度可调元件G、第三透镜、第四透镜L4、第五透镜L5和第六透镜L6位于光学镜头200靠后的位置。相比于光焦度可调元件G、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6来说,第一透镜L1和第二透镜L2具有较小的横向尺寸。因此,光学透镜300的镜头头部具有较小的横向尺寸,能够实现较小的开孔大小。
相比于以上实施例中光学镜头200的第二透镜组包括一个透镜,本实施例中光学镜头200的第二透镜组包括四个透镜,具有更多的透镜数,有利于修正成像的像差。
在以上实施例中,以第二透镜组包括一个透镜、三个透镜为例,对光学镜头进行说明,光学镜头中第二透镜组还可以包括其他数量的透镜,例如,第二透镜组包括两个、四个或四个以上数量的透镜,具体实现方式和以上实施例中的类似,在此不再赘述。
在以上实施例中,以第一透镜组包括两个透镜为例,对光学镜头进行说明,光学镜头中第二透镜组还可以包括其他数量的透镜,以下实施例以第一透镜组包括三个透镜为例,对光学镜头进行说明。
本申请实施例还提供了另一种光学镜头。
参见图8a,图8a为本申请另一实施例提供的光学镜头的结构示意图。
如图8a所示,镜头模组200沿光轴方向从物侧到像侧依次包括:第一透镜组201、光 焦度可调元件G和第二透镜组202。
第一透镜组201沿光轴方向从物侧到像侧依次包括:第一透镜L1、第二透镜L2和第三镜透镜L3,第二透镜组202沿光轴方向从物侧到像侧依次包括:第四透镜L4、第五透镜L5和第六透镜L6。
光焦度可调元件G位于第三透镜L3和第四透镜L4之间。
为了减小电子设备上开孔的尺寸,需要减小镜头头部的横向尺寸。
在一种可能的实现方式中,光学镜头200还可以包含光学滤光片GF,光学滤光片GF位于第二透镜组202的后方。
在一些可能的情况中,上述透镜可以采用塑料材质。
在本实施例中,镜头模组200沿光轴方向从物侧到像侧依次包括的元件为:第一透镜L1、第二透镜L2、光焦度可调元件G、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6,以及光学滤光片GF。
S为光圈;Si为像面。
本实施例提供的光学镜头中元件的参数请参见表6a。
表6a:光学镜头中元件的参数
Figure PCTCN2022142498-appb-000012
在表6a中,各符号的含义和表5a相同,这里不再赘述。
各个透镜的非球面的透镜面,使用以上实施例中的公式(1)得到的非球面。
本实施例提供的光学镜头200中的透镜的圆锥系数k和非球面系数的数值,参见表6b。
表6b:光学镜头中元件的圆锥系数和非球面系数
Figure PCTCN2022142498-appb-000013
在表6b中,符号的含义和表6a相同,这里不再赘述。
在本实施例的光学镜头200中元件的参数如表6a所述时,光学镜头200的部分参数请参见表6c。
表6c:光学镜头的参数
参数 第一结构 第二结构 第三结构
OBJ(mm) 400 150 1200
fG(mm) -2349.89 234.99 -626.63
IH 3.432 3.432 3.432
TTL 4.24 4.24 4.24
f 3.65 3.48 3.70
∑CT12/TTL 0.11 0.11 0.11
TTL/f 1.16 1.22 1.14
Fno 2.40 2.40 2.40
f1/f 0.89 0.94 0.88
f2/f -3.23 -3.39 -3.19
(R 3+R 3)/(R 3-R 3) -98.57 -98.57 -98.57
Yl/IH 1.38 1.38 1.38
IH/TTL 0.81 0.81 0.81
MaxY12/IH 0.44 0.44 0.44
FOV(°) 82.20 82.08 82.37
在表6c中,第一结构、第二结构和第三结构,分别是光学镜头200对位于三种不同距离的物体进行拍摄时的参数。
Yl为光学镜头200的最后一片透镜的像侧面的有效通光口径;在本实施例中,也即第六透镜L6的像侧面的有效通光口径。
表6c中符号的含义和表1c相同,这里不再赘述。
以下对本实施例中的光学镜头200的参数进行分析,和以上实施例中的说明的部分请参见以上实施例中的说明,为了避免重复,本实施例不再赘述。
在本实施例中,光学镜头200能够通过焦距的调节,实现对于不同拍摄距离的物体的清晰地成像。如表6c所示,OBJ为400mm、150mm和1200mm时,光学镜头200的焦距分别为3.70mm、3.44mm和3.82mm。
由于第一镜头L1和第二镜头L2的横向尺寸相比于光焦度可调元件G较小,而且第一透镜L1和第二镜头L2占据整个光学镜头200尺寸的比例较大(∑CT12/TTL较大),因此,镜头头部具有较小的横向尺寸,使得开孔尺寸较小,从而提高终端的屏占比。
另外,当∑CT12/TTL较大时,对于光学镜头200来说,镜头头部在光轴方向具有较大的尺寸,也即,光学镜头200具有较深的镜头头部,光线经过光学镜头200时走势较平滑,从而增加光线进入光学系统的平滑度。
镜头头部具有较小的横向尺寸,能够降低光学镜头200的镜头头部所占的空间。
光学镜头200具有较小的TTL/f,使得光学镜头200具有较小的轴向尺寸,并且能够对于拍摄距离较远的物体实现清晰成像。
光学镜头200具有较大的最大视场角(表6c中的Fov),拍摄得到的图像包含的信息丰富。
光学镜头200的光圈值较小,进入光学镜头200的光线强度大,使得在较暗的拍摄环 境中,光学镜头200具有较好的成像效果。
根据以上的说明,光学镜头200同时具有较小的光圈值和较大的视场角。
第一透镜L1具有正曲折力,实现对于入射光线的会聚汇聚,能够压缩光学镜头200的镜头头部尺寸,减小在终端屏幕上开孔的尺寸。
第一透镜L1的物侧面于近光轴处为凸面,第一透镜L1的像侧面于近光轴处为凹面,使得第一透镜L1物侧面和像侧面的光线之间的角度较小,从而使得光线走势平缓,有助于校正像散等像差。
光学镜头200的f1/f较小,使得光学镜头200在轴向的尺寸较小,也即有利于压缩整个光学系统的总长,实现光学镜头尺寸的小型化。
当第一透镜L1的焦距和光学透镜200的焦距之比较小时,光学系统对于公差的敏感度较低。
根据以上说明,光学镜头200能够在实现较广视野范围拍摄,同时对公差的敏感度较低。
第二透镜L2具有负屈折力,有利于校正畸变,修正像差。
第二透镜L2物侧面于近轴处为凸面,第二透镜L2像侧面于近轴处为凹面。
第三透镜L3具有正曲折力,第三透镜L3物侧面于近轴处为凸面,第三透镜像侧面于近轴处为凹面。
第四透镜L4为第二透镜组的最前端,且位于光焦度可调元件G的后端。
第四透镜L4具有正屈折力,第四透镜L4的物侧面于近轴处为凸面,第四透镜像侧面于近轴处为凹面。
第四透镜L4具有较小的曲率半径,能够缓冲光线入射到后续透镜的入射角度,平滑光线走势,降低系统对于公差的敏感度。
第五透镜L5具有正屈折力,第五透镜L5物侧面于近轴处为凹面,第五透镜L5像侧面于近轴处为凸面;
第六透镜L6具有负屈折力,第六透镜L6物侧面于近轴处为凸面,第六透镜L6像侧面于近轴处为凹面。
Y1为光学镜头200最后一片透镜(第六透镜L6)的像侧面的有效通光口径,IH为光学镜头200成像的半像高,光学镜头200具有较小的Yl/IH,能够降低光学镜头后端的尺寸,有利于光学镜头200的结构小型化;在增加光学镜头200和感光元件(例如电荷耦合元件等)之间的轴向距离的同时,增加成像的靶面尺寸,从而提升光学镜头200对于物体细节的分辨能力。
光学镜头200具有较小的IH/TTL,能够降低光学镜头200的尺寸同时具有得到较高像素的成像结果,也即提高成像的清晰度。
光学镜头200具有较小的MaxY12/IH,能够在适配光学镜头200不同的头部尺寸时,在一定程度上保证系统的进光量,从而丰富被测物体细节信息。
相比于以上实施例的光学镜头的第二透镜组包括一个透镜,本实施例的光学镜头200的第二透镜组包括四个透镜。
光学镜头200的入瞳直径为1.52mm,镜头头部的横向尺寸较小。
以下为本实施例的光学镜头200的部分光学特性测试结果。
以光学镜头200的场曲、畸变和像差为例,对光学镜头200的光学特性进行分析。
参见图8b,图8b为本申请另一实施例提供的光学镜头的场曲曲线的示意图。
如图8b所示,546nm波长的光经过光学镜头200成像,T为子午方向的场曲曲线,S为弧矢方向的场曲曲线。
如图8b所示,光学镜头200成像的子午方向和弧矢方向场曲具有较小的绝对值,且子午方向和弧矢方向场曲曲线较为接近,因此,光学镜头200具有较小的像散,成像效果较好。
参见图8c,图8c为本申请另一实施例提供的光学镜头的轴向像差的示意图。
光学镜头200中元件的参数如表6a所示。
如图8c所示,在波长分别为656nm、587nm、546nm、486nm、及435nm时,光学镜头200成像的轴向像差。
如图8c所示,利用上述多个波长的光波进行测试,光学镜头的成像的像差(轴上和轴外的色像差)较小,也即具有较好的成像效果。
综上,光学镜头200能够通过光焦度可调元件进行焦距的调节,对于不同拍摄距离的物体进行清晰成像。
第一透镜L1和第二透镜L2的尺寸较小,具有较大尺寸的光焦度可调元件G、第三透镜、第四透镜L4、第五透镜L5和第六透镜L6位于光学镜头200靠后的位置。相比于光焦度可调元件G、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6来说,第一透镜L1和第二透镜L2具有较小的横向尺寸。因此,光学透镜300的镜头头部具有较小的横向尺寸,能够实现较小的开孔大小。
本实施例中光学镜头200的第一透镜组包括三个透镜,光学镜头200的第二透镜组包括三个透镜,具有较多的透镜数,有利于修正成像的像差。
在以上实施例中,以第一透镜组包括两个透镜、三个透镜为例,对光学镜头进行说明;在光学镜头中,第一透镜组还包括其他数量的透镜,例如一个透镜或者三个以上数量的透镜,具体实现原理和以上实施例中的实现原理类似,在此不再赘述。
当光学镜头包括透镜的数量较多时,能够提升对于像差的校正效果。
参见表7,表7为图3a、图4a、图5a、图6a、图7a和图8a中各透镜屈折力的统计表,显示了图3a、图4a、图5a、图6a、图7a和图8a中光学镜头中各透镜的屈折力的正负情况。
表7:图3a、图4a、图5a、图6a、图7a和图8a中各透镜屈折力的统计表
Figure PCTCN2022142498-appb-000014
在表7中,图3a、图4a、图5a、图6a、图7a和图8a分别指的是图3a、图4a、图5a、图6a、图7a和图8a中的光学镜头;
L1-L6分别指的是图3a、图4a、图5a、图6a、图7a和图8a中的光学镜头中的第一透镜至第6透镜,当光学镜头中不存在该透镜时,表中用“\”表示。
参见表8,表8为图3a、图4a、图5a、图6a、图7a和图8a中各透镜两侧光轴处面型凹凸统计表,显示了图3a、图4a、图5a、图6a、图7a和图8a中光学镜头中各透镜物侧面和像侧面光轴处面型的凹凸情况。
表8:图3a、图4a、图5a、图6a、图7a和图8a中各透镜两侧光轴处面型凹凸统计表
Figure PCTCN2022142498-appb-000015
在表8中,图3a、图4a、图5a、图6a、图7a和图8a分别指的是图3a、图4a、图5a、图6a、图7a和图8a中的光学镜头;
L1-L6分别指的是图3a、图4a、图5a、图6a、图7a和图8a中的光学镜头中的第一透镜至第六透镜,当光学镜头中不存在该透镜时,表中用“\”表示。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元及模块可以是或者也可以不是物理上分开的。另外,还可以根据实际的需要选择其中的部分或者全部单元和模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (22)

  1. 一种光学镜头,其特征在于,所述光学镜头沿光轴方向,从物侧到像侧依次包括:第一透镜组、光焦度可调元件和第二透镜组:
    所述光焦度可调元件用于改变所述光学镜头的焦距;
    所述第一透镜组中包括至少两个透镜;
    所述第二透镜组中包括至少一个透镜。
  2. 根据权利要求1所述的光学镜头,其特征在于,从物侧到像侧,所述第一透镜组至少依次包括第一透镜和第二透镜;
    (∑CT12)/TTL≥0.08,其中,∑CT12为所述第一透镜的物侧面至第二透镜的像侧面的轴上距离,TTL为所述第一透镜的物侧面至所述光学镜头的成像面的轴上距离。
  3. 根据权利要求1所述的光学镜头,其特征在于,从物侧到像侧,所述第一透镜组至少依次包括第一透镜和第二透镜;
    TTL/f≤1.83,其中,TTL为所述第一透镜的物侧面至所述光学镜头的成像面的轴上距离,f为所述光学镜头的焦距。
  4. 根据权利要求1所述的光学镜头,其特征在于,从物侧到像侧,所述第一透镜组至少依次包括第一透镜和第二透镜;
    所述第一透镜的物侧面于近轴处为凸面,所述第一透镜的像侧面于近轴处为凹面;
    f1/f≤2.33,其中,f1为所述第一透镜的焦距,f为所述光学镜头的焦距。
  5. 根据权利要求1所述的光学镜头,其特征在于,从物侧到像侧,所述第一透镜组至少依次包括第一透镜和第二透镜;
    -53.57≤f2/f≤77.70,其中,f2为所述第二透镜的焦距,f为所述光学镜头的焦距。
  6. 根据权利要求1所述的光学镜头,其特征在于,-98.57≤(R5+R6)/(R5-R6)≤6.84,其中,R5为所述光学镜头从物侧到像侧第三个透镜的物侧面的中心曲率半径,R6为所述光学镜头从物侧到像侧第三个透镜的像侧面的中心曲率半径。
  7. 根据权利要求1所述的光学镜头,其特征在于,Yl/IH≤1.75,其中,Yl为所述光学镜头从物侧到像侧的最后一片透镜的像侧面有效通光口径,IH为所述光学镜头的半像高。
  8. 根据权利要求1所述的光学镜头,其特征在于,从物侧到像侧,所述第一透镜组至少依次包括第一透镜和第二透镜;
    IH/TTL≤0.88,其中,IH为所述光学镜头的半像高,TTL为所述第一透镜的物侧面至所述光学镜头的成像面的轴上距离。
  9. 根据权利要求1所述的光学镜头,其特征在于,从物侧到像侧,所述第一透镜组至少依次包括第一透镜和第二透镜;
    MaxY12/IH≤0.89,其中,MaxY12为所述第一透镜和第二透镜的通光孔径中的最大通光孔径,IH为所述光学镜头的全视场角的半像高。
  10. 根据权利要求1所述的光学镜头,其特征在于,Fno≤2.9,其中,所述Fno为所述光学镜头的光圈值。
  11. 根据权利要求1所述的光学镜头,其特征在于,Fov≥74.35°,其中,所述Fov为所述光学镜头的全视场角。
  12. 一种电子设备,其特征在于,所述电子设备上至少包括如权利要求1-11任一项的光学镜头。
  13. 一种光学镜头,其特征在于,所述光学镜头沿光轴方向,从物侧到像侧依次由第一透镜组、光焦度可调元件和第二透镜组构成;
    所述光焦度可调元件用于改变所述光学镜头的焦距;
    所述第一透镜组中包括两个透镜或三个透镜;所述第二透镜组中包括至少一个透镜;
    第一透镜具有正屈折力,其中,所述第一透镜为所述光学镜头中从物侧到像侧的第一个透镜;
    Yl/IH≤1.75,其中,Yl为所述光学镜头从物侧到像侧的最后一片透镜的像侧面有效通光口径,IH为所述光学镜头的半像高。
  14. 根据权利要求13所述的光学镜头,其特征在于,从物侧到像侧,所述第一透镜组至少依次包括所述第一透镜和第二透镜;
    (∑CT12)/TTL≥0.08,其中,∑CT12为所述第一透镜的物侧面至第二透镜的像侧面的轴上距离,TTL为所述第一透镜的物侧面至所述光学镜头的成像面的轴上距离。
  15. 根据权利要求13所述的光学镜头,其特征在于,从物侧到像侧,所述第一透镜组至少依次包括所述第一透镜和第二透镜;
    TTL/f≤1.83,其中,TTL为所述第一透镜的物侧面至所述光学镜头的成像面的轴上距离,f为所述光学镜头的焦距。
  16. 根据权利要求13所述的光学镜头,其特征在于,从物侧到像侧,所述第一透镜组至少依次包括所述第一透镜和第二透镜;
    所述第一透镜的物侧面于近轴处为凸面,所述第一透镜的像侧面于近轴处为凹面;
    f1/f≤2.33,其中,f1为所述第一透镜的焦距,f为所述光学镜头的焦距。
  17. 根据权利要求13所述的光学镜头,其特征在于,从物侧到像侧,所述第一透镜组至少依次包括所述第一透镜和第二透镜;
    -53.57≤f2/f≤77.70,其中,f2为所述第二透镜的焦距,f为所述光学镜头的焦距。
  18. 根据权利要求13所述的光学镜头,其特征在于,-98.57≤(R5+R6)/(R5-R6)≤6.84,其中,R5为所述光学镜头从物侧到像侧第三个透镜的物侧面的中心曲率半径,R6为所述光学镜头从物侧到像侧第三个透镜的像侧面的中心曲率半径。
  19. 根据权利要求13所述的光学镜头,其特征在于,Fov≥79.94°,其中,所述Fov为所述光学镜头的全视场角。
  20. 根据权利要求13所述的光学镜头,其特征在于,从物侧到像侧,所述第一透镜组至少依次包括所述第一透镜和第二透镜;
    IH/TTL≤0.88,其中,IH为所述光学镜头的半像高,TTL为所述第一透镜的物侧面至所述光学镜头的成像面的轴上距离。
  21. 根据权利要求13所述的光学镜头,其特征在于,从物侧到像侧,所述第一透镜组至少依次包括所述第一透镜和第二透镜;
    MaxY12/IH≤0.89,其中,MaxY12为所述第一透镜和第二透镜的通光孔径中的最大通光孔径,IH为所述光学镜头的全视场角的半像高。
  22. 根据权利要求13所述的光学镜头,其特征在于,Fno≤2.9,其中,所述Fno为所述光学镜头的光圈值。
PCT/CN2022/142498 2022-01-25 2022-12-27 一种光学镜头以及电子设备 WO2023142841A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22905457.2A EP4249980A1 (en) 2022-01-25 2022-12-27 Optical lens and electronic device
US18/266,910 US20240210654A1 (en) 2022-01-25 2022-12-27 Optical lens and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210083260.4 2022-01-25
CN202210083260.4A CN114114646B (zh) 2022-01-25 2022-01-25 一种光学镜头以及电子设备

Publications (1)

Publication Number Publication Date
WO2023142841A1 true WO2023142841A1 (zh) 2023-08-03

Family

ID=80360853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142498 WO2023142841A1 (zh) 2022-01-25 2022-12-27 一种光学镜头以及电子设备

Country Status (4)

Country Link
US (1) US20240210654A1 (zh)
EP (1) EP4249980A1 (zh)
CN (1) CN114114646B (zh)
WO (1) WO2023142841A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114114646B (zh) * 2022-01-25 2022-08-05 荣耀终端有限公司 一种光学镜头以及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109659A (zh) * 2009-12-24 2011-06-29 索尼公司 光学单元及摄像装置
CN113287049A (zh) * 2019-01-07 2021-08-20 Lg伊诺特有限公司 图像捕获透镜
CN113296242A (zh) * 2021-06-21 2021-08-24 宁波永新光学股份有限公司 一种液体透镜辅助调焦的自动对焦成像镜头
CN113885167A (zh) * 2021-09-01 2022-01-04 苏州协尔智能光电有限公司 一种定焦成像系统及定焦成像镜头
CN114114646A (zh) * 2022-01-25 2022-03-01 荣耀终端有限公司 一种光学镜头以及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109659A (zh) * 2009-12-24 2011-06-29 索尼公司 光学单元及摄像装置
CN113287049A (zh) * 2019-01-07 2021-08-20 Lg伊诺特有限公司 图像捕获透镜
CN113296242A (zh) * 2021-06-21 2021-08-24 宁波永新光学股份有限公司 一种液体透镜辅助调焦的自动对焦成像镜头
CN113885167A (zh) * 2021-09-01 2022-01-04 苏州协尔智能光电有限公司 一种定焦成像系统及定焦成像镜头
CN114114646A (zh) * 2022-01-25 2022-03-01 荣耀终端有限公司 一种光学镜头以及电子设备

Also Published As

Publication number Publication date
US20240210654A1 (en) 2024-06-27
EP4249980A1 (en) 2023-09-27
CN114114646A (zh) 2022-03-01
CN114114646B (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
US11347030B2 (en) Imaging lens system
US11614600B2 (en) Optical lens assembly including seven lenses of -+++-+ refractive powers, and electronic device comprising same
CN103048774B (zh) 成像光学系统、具有该系统的摄像装置、信息处理装置
US11899176B2 (en) Wide field of view five element lens system
TW201809793A (zh) 攝像鏡頭及攝像裝置
TWI830731B (zh) 透鏡系統、照相機及成像系統
WO2023050610A1 (zh) 一种镜头组件、摄像头模组及电子设备
CN102411190A (zh) 摄像光学系统和具有该摄像光学系统的摄像装置
WO2021223598A1 (zh) 光学镜头及成像设备
WO2023142841A1 (zh) 一种光学镜头以及电子设备
US11500176B2 (en) Lens assembly and electronic device including the same
CN103064176B (zh) 成像光学系统、具有该系统的摄像装置以及信息处理装置
US11726301B2 (en) Lens assembly and electronic device including the same
CN114167583A (zh) 光学镜头、摄像模组及电子设备
CN212540863U (zh) 光学成像系统、取像模组和电子装置
CN111983786A (zh) 光学成像系统、取像模组和电子装置
CN114326022B (zh) 光学系统、摄像模组及电子设备
CN212989754U (zh) 光学镜头、摄像模组及电子设备
CN211528808U (zh) 一种7片式广角高像素摄像镜头
US20240192467A1 (en) Optical lens, camera module, and electronic device
US20230051248A1 (en) Lens assembly and electronic device including the same
WO2022088087A1 (zh) 光学成像系统、取像装置及电子装置
WO2022052050A1 (zh) 光学成像系统、取像模组和电子装置
JP4766908B2 (ja) 小型の撮影光学系を備えた電子撮像装置
WO2021046698A1 (zh) 光学成像系统、取像装置及电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022905457

Country of ref document: EP

Effective date: 20230619

WWE Wipo information: entry into national phase

Ref document number: 18266910

Country of ref document: US