WO2023142422A1 - 单进多出式水冷结晶器电渣重熔装置及电渣重熔的方法 - Google Patents

单进多出式水冷结晶器电渣重熔装置及电渣重熔的方法 Download PDF

Info

Publication number
WO2023142422A1
WO2023142422A1 PCT/CN2022/110356 CN2022110356W WO2023142422A1 WO 2023142422 A1 WO2023142422 A1 WO 2023142422A1 CN 2022110356 W CN2022110356 W CN 2022110356W WO 2023142422 A1 WO2023142422 A1 WO 2023142422A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
crystallizer
pool
height
outlet
Prior art date
Application number
PCT/CN2022/110356
Other languages
English (en)
French (fr)
Inventor
侯栋
王德永
岳俊英
姜周华
屈天鹏
田俊
胡绍岩
李向龙
周星志
潘鹏
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202220239042.0U external-priority patent/CN216786226U/zh
Priority claimed from CN202210108325.6A external-priority patent/CN114438337B/zh
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023142422A1 publication Critical patent/WO2023142422A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting

Definitions

  • the invention belongs to the technical field of iron and steel metallurgy, and in particular relates to an electroslag remelting device and a use method of a single-inlet and multi-outlet water-cooled crystallizer.
  • Electroslag remelting is an equipment process for producing large-size forgings and high-alloy steels.
  • problems such as solidification segregation and coarse grains still exist in the center of large-size electroslag ingots.
  • large-scale electroslag ingots such as stainless steel, nickel-based alloys, and tool and die steels, element segregation and harmful precipitation during the solidification process have seriously affected the large-scale production of electroslag ingots. Therefore, reducing solidification segregation and refining grains are the key to producing large-size forgings.
  • the production process of electroslag remelting is as follows: in the initial stage of electroslag remelting, a small amount of pre-melted slag is placed on the bottom of the crystallizer, and the slag is gradually melted under the arc heat of the metal electrode and the bottom plate, and then the remaining slag is continuously added for melting ;
  • the metal electrode is inserted into the liquid slag pool, under the action of Joule heat in the liquid slag pool and the water-cooled crystallizer, the metal electrode is continuously melted into droplets and passes through the liquid slag pool, Under the action of the water-cooled crystallizer, it is solidified into an electroslag ingot. With the continuous melting of the metal electrode and the continuous rise of the electroslag ingot, the preparation of the whole electroslag ingot is completed.
  • electroslag remelting in the prior art can increase the solidification rate of molten steel compared with continuous casting slabs, there are still relatively serious solidification segregation and coarse grains in the solidification process for large-sized electroslag ingots of high-alloy steel types.
  • electroslag ingots with electroslag remelting diameters greater than 60 cm the solidification rate of the molten metal pool and the surface quality of electroslag ingots are inversely related.
  • by optimizing the cooling intensity of the water-cooled crystallizer although a better internal quality can be obtained under the premise of ensuring the surface quality of the electroslag ingot, its internal quality still cannot meet the requirements of large-scale electroslag ingots and high-performance products.
  • the technical problem to be solved by the present invention is to simultaneously improve the surface quality and internal quality of electroslag ingots, reduce solidification segregation, refine structure grains, reduce harmful precipitates such as TiN, MnS, AlN, etc., and provide high-quality electroslag ingots for large forging products .
  • the present invention provides an electroslag remelting device and using method of a single-inlet and multiple-outlet water-cooled crystallizer.
  • the present invention adopts the following technical solution: a single-inlet and multiple-outlet water-cooled crystallizer
  • the electroslag remelting device includes a single-inlet and multiple-outlet water-cooled crystallizer, which is used for re-melting and re-solidification of metal electrodes.
  • the single-inlet and multiple-outlet water-cooled crystallizer includes a lower water inlet and multiple water outlets; The water outlets are arranged up and down along the height of the crystallizer.
  • the invention discloses the application of the electroslag remelting device of the above-mentioned single-inlet and multiple-outlet water-cooled crystallizer in electroslag remelting.
  • the single-inlet and multiple-outlet water-cooled crystallizer includes a lower water inlet and multiple water outlets; The water outlets are arranged up and down along the height of the crystallizer.
  • the invention discloses the application of the electroslag remelting device of the above-mentioned single-inlet and multi-outlet water-cooling crystallizer to simultaneously improve the surface and internal quality of electroslag remelting ingots and electroslag ingots.
  • the single-inlet and multi-outlet water-cooling crystallizer includes a lower Water inlet, multiple water outlets; multiple water outlets are arranged up and down along the crystallizer height.
  • the electroslag remelting device of the single-inlet and multi-outlet water-cooled crystallizer of the present invention has the basic components and structures of a conventional electroslag remelting device, such as power supply, water-cooled cable, metal electrode, bottom water tank, liquid slag pool, water-cooled crystallizer devices and molten metal pools.
  • the outer layer and the inner layer of the water-cooled crystallizer form an interlayer for water flow.
  • the water-cooled crystallizer is provided with a water inlet and a water outlet, which communicate with the interlayer of the water-cooled crystallizer, and the circulating flow realizes the cooling of the crystallizer.
  • the water inlet is located at the water-cooled In the lower part of the crystallizer, multiple water outlets are arranged up and down along the height direction of the water-cooled crystallizer.
  • multiple water outlets are vertically arranged up and down along the height direction of the water-cooled crystallizer.
  • each water outlet is provided with a flow regulating valve, the water outlet at the top of the crystallizer is equipped with a liquid flow meter, and all the water outlets are finally connected to the total return water circuit, and the total return water circuit is equipped with a liquid flow meter.
  • the cooling water of each water outlet of the crystallizer is adjusted to open and close separately, so that the V-shaped zone of the metal molten pool becomes shallower, the solidification rate of the metal molten pool becomes faster, the microstructure and grain of the electroslag ingot are refined, and the surface quality of the electroslag ingot is improved at the same time.
  • the water outlets there are 2 to 15 water outlets, preferably 5 to 12 water outlets; the water outlets are located above the water inlets and arranged vertically at different heights of the crystallizer.
  • the distance between the lowermost water outlet and the bottom surface of the crystallizer is greater than 20 cm, preferably greater than 20 cm and less than 40 cm; The distance between them is greater than 25 cm, preferably greater than 25 cm and less than 55 cm, that is, the top water outlet is located at the top of the crystallizer, and the distance between the second top water outlet and the top water outlet is greater than 25 cm; among the multiple water outlets, the bottom outlet
  • the water outlets and the water outlets between the water outlets adjacent to the top water outlet are evenly distributed, that is, the remaining water outlets are evenly distributed between the bottom water outlet and the second top water outlet according to the height, and the spacing is kept consistent.
  • the interlayer of the single-inlet and multiple-outlet water-cooled crystallizer is provided with an intermediate layer, and the intermediate layer is installed on the inner wall of the interlayer through a partition, and is specifically installed on the inner wall of the outer layer;
  • the number of water outlets is the same, and the water outlets are arranged at intervals with the partitions;
  • the middle layer is provided with annular water outlets, and the number of annular water outlets is the same as the number of water outlets of the single-inlet and multi-outlet water-cooled crystallizer, and the annular water outlets are arranged at intervals with the partitions.
  • the setting of the middle layer makes the water cooling effect better.
  • the invention discloses a method for electroslag remelting using the electroslag remelting device of the above-mentioned single-inlet and multiple-outlet water-cooled crystallizer, which includes the following steps:
  • the method for performing electroslag remelting in a melting device comprises the following steps: the bottom water tank of the electroslag remelting device is turned on for water cooling, the water inlet of the crystallizer and the uppermost water outlet are opened, the electroslag remelting is started, and the water cooling and crystallization of the bottom water tank
  • the water inlet and the uppermost water outlet of the device continue to be opened until the end of electroslag remelting; when the liquid slag pool-metal molten pool interface in the crystallizer reaches 4-6 cm above the water outlet, the water outlet is opened, and the other water outlets are closed until Electroslag remelting is complete.
  • an interlayer is provided on the side wall of the water-cooled crystallizer, an interlayer is arranged in the interlayer, an annular water outlet is arranged on the interlayer for circulating water cooling, and a bottom water tank is arranged at the bottom for bottom water cooling.
  • the water-cooled crystallizer of the present invention is composed of a lower water inlet and a plurality of water outlets vertically arranged along the height direction of the crystallizer. The opening and closing of each water outlet can be adjusted, and the water flow rate of all water outlets is preferably the same.
  • the water outlet at the top of the crystallizer is always open so that the liquid slag pool and the upper metal molten pool cylindrical area are always in a reasonable cooling mode, and the slag shell on the surface of the electroslag ingot becomes thinner; as a preferred example, when the liquid slag pool-metal molten pool interface reaches When the current water outlet is opened at 5 cm above the current water outlet, the water flow rate in the crystallizer lower than the current water outlet height increases, and the cooling intensity of the V-shaped zone of the lower part of the metal molten pool and the formed electroslag ingot corresponding to the height increase significantly.
  • the invention In order to control the opening and closing time of each water outlet at different heights of the crystallizer, the invention also discloses a method for calculating the interface height of the liquid slag pool-metal molten pool according to the height of the metal electrode drop, which is used to control the crystallization according to the drop height of the metal electrode.
  • the opening and closing of each water outlet of the crystallizer wherein the diameter of the upper round mouth of the crystallizer is smaller than the diameter of the lower round mouth, has a certain taper, which is common sense.
  • the relationship between the drop height of the metal electrode and the height of the interface between the liquid slag pool and the molten metal pool can be divided into the following three calculation methods: (1) When the metal electrode is a cylinder, the lower end of the metal electrode touches the The bottom of the crystallizer is zero. The relationship between the drop height of the metal electrode and the height of the interface between the liquid slag pool and the molten metal pool is expressed as formula (1): .
  • the radius of the metal electrode is a
  • the radius of the upper round mouth of the crystallizer is r
  • the radius of the lower round mouth of the mold is R
  • the height of the mold is L
  • the height of the interface between the liquid slag pool and the molten metal pool is H
  • the descending height of the metal electrode is h
  • the thickness of the liquid slag pool is p .
  • the metal electrode is a round rod with a larger diameter than the lower circle and a certain taper
  • the big end faces up and the small end faces down
  • the bottom of the crystallizer is taken as the zero point when the lower end of the metal electrode touches the bottom of the crystallizer.
  • the relationship between the falling height of the metal electrode and the height of the interface between the liquid slag pool and the molten metal pool is shown in formula (2): .
  • the radius of the small circle of the metal electrode is a
  • the radius of the big circle is A
  • the length of the metal electrode is n
  • the radius of the upper circle of the crystallizer is r
  • the radius of the lower circle of the mold is R
  • the height of the mold is L
  • the liquid slag pool-metal melting The height at the pool interface is H
  • the drop height of the metal electrode is h
  • the thickness of the liquid slag pool is p .
  • the metal electrode is a round rod with a diameter of the upper circle smaller than that of the lower circle and with a certain taper, the big end faces down and the small end faces up, and the bottom of the crystallizer is taken as the zero point when the lower end of the metal electrode touches the bottom of the crystallizer.
  • the relationship between the drop height of the metal electrode and the height of the interface between the liquid slag pool and the molten metal pool is shown in formula (3): .
  • the radius of the small circle of the metal electrode is a
  • the radius of the big circle is A
  • the length of the metal electrode is n
  • the radius of the upper circle of the crystallizer is r
  • the radius of the lower circle of the mold is R
  • the height of the mold is L
  • the liquid slag pool-metal melting The height at the pool interface is H
  • the drop height of the metal electrode is h
  • the thickness of the liquid slag pool is p .
  • Thickness of liquid slag pool p (weight of added slag/density of slag melt)/( ⁇ R 2 ).
  • the prior art does not need the height parameter at the liquid slag pool-metal molten pool interface, nor does it involve the method of adjusting the cooling according to the height.
  • the present invention considers the shapes of three conventional metal electrodes, and according to the descending height of the metal electrodes tested, for the first time
  • the height at the interface between the liquid slag pool and the molten metal pool is disclosed, combined with the single-inlet and multi-outlet water-cooled crystallizer of the present invention, the goal of simultaneously improving the internal quality and surface quality of the electroslag ingot is achieved; effectively solving the problem that the existing technology cannot make the electroslag
  • the advantages and technical effects of the present invention are as follows: First, the single-inlet and multi-outlet water-cooled crystallizer and its use method are adopted, so that the cooling intensity of the V-shaped area of the lower metal molten pool and the formed electroslag ingot is significantly increased , the depth of the V-shaped zone of the lower metal molten pool becomes shallower, the solidification rate of the metal molten pool is accelerated, the segregation of the electroslag ingot is improved, and the structure and grain are refined.
  • the single-inlet and multi-outlet water-cooled crystallizer and its use method are adopted. Under the condition that the cooling intensity of the V-shaped area of the lower molten metal pool and the formed electroslag ingot are significantly increased, the cylindrical area of the upper molten metal pool and the liquid slag pool are in a state of Reasonable water cooling strength is conducive to the thinning of the surface slag shell in the cylindrical area of the metal molten pool, that is, the thinning of the slag shell on the surface of the electroslag ingot, and the improvement of the surface quality of the electroslag ingot.
  • the present invention first discloses the calculation method of the metal electrode drop height and the liquid slag pool-metal molten pool interface height, and can automatically control the opening of each water outlet of the crystallizer according to the indication of the electrode drop height on the electroslag furnace console and off.
  • the present invention discloses a single-inlet and multiple-outlet water-cooled crystallizer and its usage method for the first time.
  • the upward water flow is fast in the lower crystallizer with the water outlet currently open, and slow in the upper crystallizer with the water outlet currently open, so as to achieve the goal of improving the internal quality and surface quality of the electroslag ingot at the same time.
  • Figure 1 is a schematic structural view of a single-inlet and multiple-outlet water-cooled crystallizer with interlayer and middle layer.
  • Figure 2 is a schematic diagram of the structure of an electroslag remelting device with a single-inlet and multiple-outlet water-cooled crystallizer (characteristics of a shallow V-shaped metal molten pool).
  • Fig. 3 is a structural schematic diagram of an electroslag remelting device of a conventional single-inlet and single-outlet water-cooled crystallizer.
  • Fig. 4 is a structural schematic diagram of an electroslag remelting device of a single-inlet and multi-outlet water-cooled crystallizer in application embodiment 1, with dimensional parameter marks.
  • Fig. 5 shows the electroslag ingot prepared in Example 1, with smooth surface and good quality.
  • Fig. 6 is the morphology of the molten metal pool in the electroslag remelting process of the application example 1.
  • Fig. 7 is the microstructure of the central part of the electroslag ingot prepared in Example 1, and the lamellar spacing of pearlite is small.
  • Fig. 8 is the electroslag ingot prepared in Comparative Example 1, the surface is smooth and the quality is good.
  • Fig. 9 is the morphology of the molten metal pool during the electroslag remelting process of Comparative Example 1.
  • Fig. 10 is the microstructure of the central part of the electroslag ingot prepared in Comparative Example 1, and the lamellar spacing of pearlite is large.
  • Fig. 11 is the electroslag ingot prepared in Comparative Example 2, the surface is corrugated and the quality is poor.
  • Fig. 12 is the morphology of the molten metal pool in the electroslag remelting process of Comparative Example 2.
  • Fig. 13 is the microstructure of the central part of the electroslag ingot prepared in Comparative Example 2, and the lamellar spacing of pearlite is relatively large.
  • Fig. 14 is a schematic diagram of the structure of an electroslag remelting device with a single-inlet and single-outlet water-cooled crystallizer with water outlets on the same plane.
  • Fig. 15 is a schematic structural view of a single-inlet and multiple-outlet water-cooled crystallizer without a steel intermediate layer.
  • the invention discloses an electroslag remelting device and a use method of a single-inlet and multi-outlet water-cooled crystallizer, which can simultaneously refine the internal structure grains of the electroslag ingot and improve the surface quality of the electroslag ingot. For this reason, the present invention has developed a single-inlet and multiple-outlet water-cooled crystallizer, which is composed of a lower water inlet, a water outlet at the top of the crystallizer, and a plurality of water outlets arranged vertically along the height direction of the crystallizer.
  • the opening and closing of each water outlet is dynamically adjusted according to the height of the electroslag ingot in the mold; The height of the slag ingot is opened and closed sequentially.
  • the flow rate of all water outlets is the same.
  • the device and process make the liquid slag pool and the cylindrical area of the upper part of the molten metal pool always in a reasonable cooling mode, and the slag shell on the surface of the electroslag ingot becomes thinner; at the same time, the crystallization of the V-shaped area of the lower part of the molten metal pool and the corresponding height of the formed electroslag ingot.
  • the cooling intensity of the device is significantly increased, which makes the V-shaped zone of the metal molten pool shallower, the solidification rate becomes faster, the grains of the electroslag ingot are refined, and the center segregation of the electroslag ingot is reduced, achieving the goal of improving the surface and internal quality of the electroslag ingot at the same time Purpose.
  • the existing technology adopts a single-inlet and single-outlet water-cooled crystallizer. No matter how the water-cooling system of the crystallizer is changed, there is always the problem that the internal quality of the electroslag ingot or the poor surface quality cannot be improved at the same time.
  • the single-inlet and multi-outlet water-cooled crystallizer developed by the invention simultaneously obtains the optimal surface and internal quality of the electroslag ingot.
  • Embodiment 1 As shown in Figure 1, an electroslag remelting device of a single-inlet and multiple-outlet water-cooled crystallizer, including a water-cooled crystallizer and other conventional components, wherein the water-cooled crystallizer is single-input and multiple-outlet according to the way of circulating water Type water-cooled crystallizer, with 1# water outlet 1, 2# water outlet 2, 3# water outlet 3, 4# water outlet 4, 5# water outlet 5, 1# water outlet electric control valve 6, 2# water outlet
  • the electric regulating valve 7 of the 3# water outlet, the electric regulating valve 8 of the 3# water outlet, the electric regulating valve 9 of the 4# water outlet, the electric regulating valve 10 of the 5# water outlet, and the crystallizer water inlet 11 are all connected with the interlayer of the crystallizer.
  • the copper inner layer 13 and the steel outer layer 12 of the water-cooled crystallizer are provided with a steel middle layer 21, and the steel middle layer 21 is installed on the inner wall of the outer layer 12 through the partition 22, and the number of partitions is the same as that of a single inlet.
  • the number of water outlets of the out-type water-cooled crystallizer is the same, and the water outlets are arranged at intervals with the partition; the middle layer is provided with an annular water outlet 23, and the number of annular water outlets is consistent with the number of water outlets of the single-inlet and multi-outlet water-cooled crystallizer.
  • the gap between the inner layer and the lower surface of the middle layer is for water intake
  • the uppermost annular water outlet is the gap between the inner layer and the upper surface of the middle layer. Cooling water enters between the inner layer and the middle layer from the water inlet 11, and exits through the annular water outlet 23 on the middle layer, and its setting makes the water cooling effect of the copper inner layer better.
  • Five water outlets are vertically arranged up and down.
  • the electroslag remelting device also has a conventional liquid slag pool 16, a metal electrode 17, a bottom water tank 18, and a power supply.
  • the single-inlet and multiple-outlet water-cooled crystallizer is placed on the bottom water tank, as shown in Fig. External liquid flow meter.
  • the metal electrodes are melted under the Joule heat of the liquid slag pool, and are re-solidified into electroslag ingots under the cooling of the water-cooled crystallizer.
  • Each water outlet of the water-cooled crystallizer can be opened and closed by a regulating valve.
  • the pre-melted slag is added to the single-inlet and multi-outlet water-cooled crystallizer of the electroslag furnace, and an arc is formed between the lower end of the metal electrode and the bottom water tank after power is applied to melt the pre-melted slag and form liquid slag Then the lower end of the metal electrode is inserted into the liquid slag pool to form a power supply circuit, which melts under the resistance Joule heat of the liquid slag pool to form molten droplets, passes through the slag pool and forms an electroslag ingot under the cooling of the water-cooled crystallizer.
  • This is a conventional technology.
  • the circulating cooling water of the bottom water tank is always in the open mode
  • the water outlet at the top of the water-cooled crystallizer is always in the open mode
  • the other water outlets are opened and closed in sequence according to the height of the interface between the liquid slag pool and the molten metal pool .
  • the circulating cooling water of the bottom water tank is always in the open mode, and the water-cooled crystallizer adopts the cooling mode of single-inlet and single-outlet with water inflow from the lower water inlet, water outflow from the top water outlet, and the rest of the water outlets are closed;
  • the electroslag ingot continues to rise, when the liquid slag pool-metal molten pool interface reaches 5cm above the first water outlet, the first water outlet and the top water outlet are in the open mode, and the rest of the water outlets are in the closed mode; when the liquid state When the slag pool-metal molten pool interface reaches 5cm above the second water outlet, the second water outlet and the top water outlet are in the open mode, and the other water outlets are in the closed mode; and so on, when the liquid slag pool-metal molten pool When the interface reaches 5cm above the third and fourth water outlets, open the third and fourth water outlets and close the remaining water outlets sequential
  • the water outlet on the top of the crystallizer makes the liquid slag pool and the upper metal molten pool cylindrical area always in a reasonable cooling mode, and the slag shell on the surface of the electroslag ingot becomes thinner; heat transfer.
  • the current water outlet is opened, so that the cooling intensity of the V-shaped area of the lower part of the metal molten pool and the formed electroslag ingot at the corresponding height are significantly increased, which is beneficial to the metal molten pool V
  • the type zone becomes shallower, and the local solidification time of the metal molten pool becomes faster, which reduces the secondary dendrite spacing inside the electroslag ingot, refines the grains of the internal structure of the electroslag ingot, and achieves the goal of simultaneously improving the surface and internal quality of the electroslag ingot .
  • the electroslag furnace used in the present invention is an existing commercially available product, and it is only necessary to replace the existing water-cooled crystallizer with the single-inlet and multiple-outlet water-cooled crystallizer of the present invention, and to control the opening and closing of each electric regulating valve of the water outlet. Yes; the specific operation method and test method are conventional methods in this field, and the influent water is normal temperature water.
  • the azimuth relationship in the present invention is the positional relationship during actual production.
  • Embodiment 2 On the basis of Embodiment 1, the five water outlets are adjusted to nine water outlets vertically arranged up and down, and the rest remain unchanged. After the electroslag ingot is obtained, the as-cast structure of the electroslag ingot at the corresponding height between two adjacent water outlets is detected, and the secondary dendrite spacing inside the electroslag ingot and the grains of the structure are fine.
  • Comparative example 1 As shown in Figure 3, the five water outlets are adjusted to one water outlet, which is located at the top, and is the existing single-inlet and single-outlet water cooling, and the obtained electroslag ingot has a large secondary dendrite spacing and a coarse grain structure .
  • Application Example 1 Referring to Figure 4, a single-inlet and five-outlet water-cooled crystallizer is adopted. The height of each water outlet from the bottom of the crystallizer is shown in Table 1. The inner diameter of the lower mouth of the crystallizer is 64cm, the inner diameter of the upper mouth is 56cm, and the height is 190cm.
  • the metal electrode is a cylindrical 40Cr steel continuous casting slab with a diameter of 45 cm at both ends.
  • the pre-melted slag (mass ratio) of CaF 2 : CaO: Al 2 O 3 60: 20: 20, and the amount of slag used is 125kg, which is added to the single-inlet and five-outlet water-cooled crystallizer of the electroslag furnace for the metal electrode.
  • the current and voltage during the electroslag remelting process are 12500A and 60V respectively
  • the electrode melting rate is 400kg/h
  • the thickness of the liquid slag pool is 15cm
  • the flow rate of argon gas into the protective atmosphere electroslag furnace is 30 NL/ min.
  • the water flow of 1# water outlet is 70 m 3 /h, and the water flow of water outlet 2#, 3#, 4#, 5# is 70 m 3 /h when the water outlet is opened; when the metal electrode descending height is 0 ⁇ H ⁇ 28cm, The water inlet flow rate of the water-cooled crystallizer is 70 m 3 /h; when the drop height of the metal electrode H>28cm, the water inlet flow rate of the water-cooled crystallizer is 140 m 3 /h; the flow rate of the circulating cooling water of the bottom tank is 25 m 3 / h.
  • the height of the electroslag ingot gradually increases as the metal electrode descends.
  • formula (1) the corresponding relationship between the electrode drop height and the liquid slag pool-metal molten pool interface height is obtained, as shown in Table 1.
  • the distance from each water outlet position of the crystallizer to the bottom of the crystallizer is shown in Table 1.
  • Table 1 The distance from each water outlet position of the crystallizer to the bottom of the crystallizer is shown in Table 1.
  • the bottom water tank and outlet 1# at the top of the crystallizer are always in the open mode.
  • the water outlet 1# is in the open mode, and the water outlets 2#, 3#, 4#, and 5# are in the closed mode;
  • the liquid slag pool-metal molten pool interface height is 45-75cm, water outlets 5# and 1# are in open mode, and water outlets 2#, 3#, 4# are in closed mode;
  • the liquid slag pool-metal molten pool interface height is 75-105cm, the water outlet 4# and 1# are in open mode, water outlets 2#, 3#, and 5# are in closed mode;
  • the liquid slag pool-metal molten pool interface height is 105-135cm, water outlets 3# and 1# are in open mode, Water outlets 2#, 4#, and 5# are in closed mode;
  • the central part of the electroslag ingot with a height of 140 cm was sampled, and the secondary dendrite spacing was determined to be 196 ⁇ m by metallographic microscope observation. Further, the lamellar spacing of the pearlite was observed and measured by a scanning electron microscope to be 0.21 ⁇ m, as shown in FIG. 7 . It shows that the electroslag ingot has a good solidification structure.
  • Comparative application example 1 On the basis of application example 1, the single-inlet and five-outlet water-cooled crystallizer is replaced with the single-cavity water-cooled crystallizer shown in Figure 3, and the water flow rate at the water inlet and water outlet is 70 m 3 /h. The flow rate of circulating cooling water in the bottom water tank is 25 m 3 /h, and the rest remain unchanged. The same electroslag remelting of 40Cr steel was carried out to obtain the surface quality of the electroslag ingot as shown in Figure 8, the surface is smooth and the quality is better but worse than that of the application example.
  • the depth of the metal molten pool measured by the sulfur printing experiment is 365 mm, as shown in Figure 9; the central part of the electroslag ingot with a height of 140 cm is sampled, and the secondary dendrite spacing is determined to be 245 ⁇ m by metallographic microscope observation; further, The lamellar spacing of the pearlite was observed and measured by a scanning electron microscope to be 0.46 ⁇ m, as shown in Figure 10, which indicated that the solidification structure of the electroslag ingot was poor.
  • Comparative application example 2 On the basis of application example 1, the single-inlet and five-outlet water-cooled crystallizer is replaced with the single-cavity water-cooled crystallizer shown in Figure 3, and the water flow rate at the water inlet and water outlet is 140 m 3 /h. The flow rate of circulating cooling water in the bottom water tank is 25 m 3 /h, and the rest remain unchanged. The same electroslag remelting of 40Cr steel was carried out to obtain the surface quality of the electroslag ingot as shown in Figure 11. The surface was corrugated and of poor quality.
  • the depth of the metal molten pool measured by the sulfur printing test is 244 mm, as shown in Figure 12; the central part of the electroslag ingot with a height of 140 cm is sampled, and the secondary dendrite spacing is determined to be 214 ⁇ m by using a metallographic microscope; further, The lamellar spacing of the pearlite was observed and measured by a scanning electron microscope to be 0.31 ⁇ m, as shown in FIG. 13 .
  • Comparative application example 3 On the basis of application example 1, the single-inlet and five-outlet water-cooled crystallizer is replaced with the single-cavity water-cooled crystallizer shown in Figure 3, and the water flow rate at the water inlet and water outlet is 100 m 3 /h. The flow rate of circulating cooling water in the bottom water tank is 25 m 3 /h, and the rest remain unchanged. The same electroslag remelting of 40Cr steel was carried out to obtain micro ripples visible to the naked eye in the surface quality of the electroslag ingot.
  • the depth of the metal molten pool measured by the sulfur printing test is 318mm; the central part of the electroslag ingot with a height of 140 cm is sampled, and the secondary dendrite spacing is observed and determined by a metallographic microscope to be 231 ⁇ m; further, the scanning electron microscope is used to observe and measure The lamellar spacing of its pearlite is 0.39 ⁇ m. Show that its coagulation structure is not as good as the comparative application example two, and even worse than the application example.
  • the comparative example proves the superiority of the single-input multi-outlet water-cooled crystallization to refine the grain size of the electroslag ingot structure proposed by the present invention.
  • the invention adopts single-inlet and multi-outlet water-cooling crystallization, and can obtain electroslag ingots with smooth surface and excellent internal quality at the same time. Further, the present invention adopts single-inlet and multi-outlet water-cooling crystallization, so that the liquid slag pool and the upper metal molten pool are in a reasonable cooling mode, and the lower metal molten pool and the formed electroslag ingot are in a strong water-cooling mode, and the electroslag is refined at the same time
  • the ingot organizes grains and improves surface quality. This has important practical significance for the production of large forgings.
  • the existing electroslag remelting device is shown in Figure 3.
  • the cooling intensity of the water-cooled crystallizer is too small, the solidification rate of the molten metal pool will slow down, resulting in a large number of segregated inclusions and coarse grains, which seriously affect the electroslag ingot.
  • Internal quality when the cooling intensity of the water-cooled crystallizer is too large, the slag shell on the surface of the electroslag ingot becomes thicker and the surface quality is poor; because there is a solidified slag shell between the liquid slag pool and the wall of the crystallizer.
  • the inability to melt the slag shell solidified above during the rising of the molten pool is one of the causes of the thickening and corrugated surface of the slag shell on the surface of the electroslag ingot.
  • the heat transfer between the electroslag ingot and the crystallizer wall is also related, which affects the internal quality; even if a water outlet is opened symmetrically on the same horizontal plane on the basis of the existing water-cooled crystallizer as shown in Figure 14, the effect of electroslag remelting is the same as that in Figure 3 Almost; specifically, the water flow rate at the water inlet is 140 m 3 /h, the water flow rate at the water outlet is 70 m 3 /h+70 m 3 /h, and the flow rate of the circulating cooling water in the bottom tank is 25 m 3 /h.
  • the depth of the metal molten pool measured by the sulfur printing test is 240mm; Samples were taken, and the secondary dendrite spacing was determined to be 213 ⁇ m using a metallographic microscope; further, the lamellar spacing of pearlite was measured to be 0.30 ⁇ m using a scanning electron microscope.
  • Application Example 2 On the basis of Application Example 1, when the liquid slag pool-metal molten pool interface height reaches 4cm above the corresponding water outlet, the corresponding water outlet is in the opening and closing mode, and the rest are the same, and the electroslag of 40Cr steel is obtained ingot.
  • the depth of the metal molten pool measured by the sulfur printing test is 195mm; the central part of the electroslag ingot with a height of 140 cm is sampled, and the secondary dendrite spacing is observed and determined by a metallographic microscope to be 197 ⁇ m; further, the scanning electron microscope is used to observe and measure
  • the interlamellar spacing of the pearlite is 0.21 ⁇ m, and the solidification structure is not much different from that of the application example 1.
  • the surface smoothness of the obtained electroslag ingot decreases, and its surface quality is worse than that of the application example, but better than that of the comparative application.
  • Application Example 3 On the basis of Application Example 1, when the height of the liquid slag pool-metal molten pool interface reaches 6 cm above the corresponding water outlet, the corresponding water outlet is in the opening and closing mode, and the rest are the same, and the 40Cr steel with smooth surface is obtained , the surface of the electroslag ingot is smooth and of good quality; the depth of the molten metal pool measured by the sulfur printing test is 205 mm; the central part of the electroslag ingot at a height of 140 cm is sampled, and the secondary dendrite spacing is measured to be 203 ⁇ m by using a metallographic microscope ; Further, using a scanning electron microscope to observe and measure the lamellar spacing of the pearlite is 0.24 ⁇ m.
  • the coagulation structure is worse than that of the application example, and better than that of the comparative application.
  • Application Example 4 On the basis of Application Example 1, when the liquid slag pool-metal molten pool interface height reaches 2cm above the corresponding water outlet, the corresponding water outlet is in the opening and closing mode, and the rest are the same, and the electroslag of 40Cr steel is obtained ingot.
  • the surface smoothness of the electroslag ingot decreases, and its surface quality is obviously worse than that of the comparative application example 1, which does not conform to the simultaneous refinement of the electroslag ingot structure and grain and the improvement of the surface quality.
  • Application Example 5 On the basis of Application Example 1, when the liquid slag pool-metal molten pool interface height reaches 8cm above the corresponding water outlet, the corresponding water outlet is in the opening and closing mode, and the rest are the same, and the electroslag of 40Cr steel is obtained ingot.
  • the depth of the metal molten pool measured by the sulfur printing experiment is 220mm; the central part of the electroslag ingot with a height of 140 cm is sampled, and the secondary dendrite spacing is observed and determined by a metallographic microscope to be 210 ⁇ m; further, the scanning electron microscope is used to observe and measure
  • the interlamellar spacing of the pearlite is 0.28 ⁇ m, which is not suitable for simultaneously refining the grains of the electroslag ingot structure and improving the surface quality.
  • the surface of the electroslag ingot is smooth, free of defects, and of good quality; the depth of the molten metal pool measured by the sulfur printing test is 195mm; the central part of the electroslag ingot at a height of 140 cm is sampled, and the secondary dendrites are observed and determined by a metallographic microscope The spacing is 197 ⁇ m; further, the interlamellar spacing of the pearlite is observed and determined to be 0.22 ⁇ m using a scanning electron microscope.
  • the surface of the electroslag ingot is smooth, free of defects, and of good quality; the depth of the molten metal pool measured by the sulfur printing test is 194mm; the central part of the electroslag ingot with a height of 140 cm is sampled, and the secondary dendrite is observed and determined by a metallographic microscope The spacing is 196 ⁇ m; further, the interlamellar spacing of the pearlite is observed and determined to be 0.21 ⁇ m using a scanning electron microscope.
  • Application Example 8 On the basis of Example 1, the separator is omitted, that is, no steel intermediate layer is provided as shown in Figure 15.
  • the electroslag ingot has a smooth surface, no defects, and good quality;
  • the depth of the metal molten pool measured by the sulfur printing experiment is 201 mm;
  • the central part of the electroslag ingot with a height of 140 cm is sampled, and the secondary dendrite spacing is observed and determined by a metallographic microscope to be 203 ⁇ m; further, the scanning electron microscope is used to observe and measure its The lamellar spacing of pearlite is 0.23 ⁇ m.
  • the present invention has developed a novel electroslag remelting technology for a single-inlet and multiple-outlet water-cooled crystallizer.
  • electroslag remelting as the electroslag ingot continues to rise, when the liquid slag pool-metal molten pool interface reaches 4-6cm above the first water outlet, open the first water outlet and the top water outlet of the crystallizer , and the rest of the water outlets are closed mode.
  • This water outlet pattern makes the cooling water flow in the upper part of the crystallizer higher than the first water outlet a reasonable pattern, and the cooling water flow in the lower part of the crystallizer lower than the first water outlet increases significantly: that is, higher than the first water outlet
  • the liquid slag pool at one water outlet and the cylindrical zone of the upper molten metal pool present a reasonable cooling pattern, and the cooling intensity of the V-shaped zone of the lower molten metal pool and the formed electroslag ingot lower than the first water outlet increases significantly.
  • the liquid slag pool and the cylindrical area of the upper metal molten pool are the formation areas of the slag shell on the surface of the electroslag ingot, and the reasonable cooling mode makes the surface of the electroslag ingot obtain good surface quality;
  • the V-shaped area of the lower metal molten pool is the solidification area of the metal molten pool, Increasing the cooling intensity of the V-shaped zone of the molten metal pool makes the solidification rate of the molten metal pool faster, thereby reducing the center segregation of the electroslag ingot and refining the structure and grain.
  • Fine-grain strengthening is an effective way to simultaneously improve the ductility and strength of steel. Fine-grain strengthening, that is, one of the methods to refine the grain of the structure is to increase the solidification rate of molten steel. Therefore, increasing the solidification rate can not only refine the grains, but also reduce the large-size inclusions such as TiN, MnS, and AlN caused by solidification segregation, and obtain a good solidified structure.
  • the present invention discloses for the first time the relationship between the drop height of the metal electrode and the height of the interface between the liquid slag pool and the molten metal pool. Actual production verifies that this method has significant technical progress and provides a feasibility guarantee for industrial production.

Abstract

本发明公开了一种单进多出式水冷结晶器的电渣重熔装置及使用方法,可以达到同时细化电渣锭内部组织晶粒、改善电渣锭表面质量的目的。为此,本发明开发了单进多出式水冷结晶器,其由一个下进水口、一个结晶器最顶部的出水口、多个沿结晶器高度方向上竖直排列的出水口组成。电渣重熔时,各个出水口的开闭根据结晶器内的电渣锭高度进行动态调节;电渣重熔过程中,水冷结晶器最顶部的出水口始终呈开启模式,其余出水口根据电渣锭高度依次开启和关闭。现有单进单出水冷结晶器,无论如何改变结晶器的水冷制度,始终存在电渣锭内部质量差或表面质量差二者不能同时改善的问题。本发明开发的单进多出式水冷结晶器,同时获得了最优的电渣锭表面和内部质量。

Description

单进多出式水冷结晶器电渣重熔装置及电渣重熔的方法 技术领域
本发明属于钢铁冶金技术领域,具体涉及一种单进多出式水冷结晶器的电渣重熔装置和使用方法。
背景技术
随着电渣锭直径和合金钢中元素含量的不断提高,改善大尺寸电渣锭的中心偏析、细化晶粒尺寸是生产大尺寸锻件的重要途径。电渣重熔作为生产大尺寸锻件和高合金钢种的装备工艺,虽然一定程度上改善了电渣锭质量,但大尺寸电渣锭的中心仍存在凝固偏析、晶粒粗大等问题。尤其对于大尺寸的不锈钢、镍基合金、工模具钢等电渣锭,其凝固过程中产生的元素偏析及有害析出相等严重影响了电渣锭的大型化生产。因此,降低凝固偏析、细化组织晶粒是生产大尺寸锻件的关键。
目前电渣重熔的生产工艺为,电渣重熔初期先将少量的预熔渣置于结晶器底,在金属电极与底板的电弧热下熔渣逐步熔化,随后持续加入剩余熔渣进行熔化;当全部熔渣熔化完后形成液态渣池,将金属电极插入到液态渣池中,在液态渣池焦耳热和水冷结晶器的作用下,金属电极不断熔化成液滴穿过液态渣池,在水冷结晶器的作用下凝固成电渣锭,随着金属电极的不断熔化和电渣锭的不断升高,完成了整支电渣锭的制备。
现有技术的电渣重熔相比连铸坯虽然能够提升钢液的凝固速率,但对于高合金钢种的大尺寸电渣锭在凝固过程中仍存在较为严重的凝固偏析、晶粒粗大,尤其对于电渣重熔直径大于60cm的电渣锭,其金属熔池的凝固速率和电渣锭表面质量呈相反的关系。此外,通过优化水冷结晶器的冷却强度,虽然能够在保证电渣锭表面质量的前提下获得较好的内部质量,但其内部质量仍无法满足电渣锭大型化和产品高性能化的要求。
综上所述,电渣重熔中同时改善电渣锭内部质量和表面质量对于生产大型锻件具有重要的意义。
技术问题
本发明要解决的技术问题是同时提升电渣锭表面质量和内部质量,减轻凝固偏析、细化组织晶粒、降低TiN、MnS、AlN等有害析出相,为大型锻件产品提供优质的电渣锭。
技术解决方案
为了解决上述技术问题,本发明提供了一种单进多出式水冷结晶器的电渣重熔装置和使用方法,具体的,本发明采用如下技术方案:一种单进多出式水冷结晶器的电渣重熔装置,包括单进多出式水冷结晶器,其内部用于金属电极的重新熔化与再凝固,单进多出式水冷结晶器包括一个下进水口、多个出水口;多个出水口沿结晶器高度上下排列。
本发明公开了上述单进多出式水冷结晶器的电渣重熔装置在电渣重熔中的应用,该单进多出式水冷结晶器包括一个下进水口、多个出水口;多个出水口沿结晶器高度上下排列。
本发明公开了上述单进多出式水冷结晶器的电渣重熔装置在同时改善电渣重熔铸锭电渣锭表面和内部质量中的应用,该单进多出式水冷结晶器包括一个下进水口、多个出水口;多个出水口沿结晶器高度上下排列。
作为常识,本发明单进多出式水冷结晶器的电渣重熔装置具有常规电渣重熔装置的基础部件以及结构,比如电源、水冷电缆、金属电极、底水箱、液态渣池、水冷结晶器以及金属熔池。水冷结晶器的外层和内层构成夹层,用于水流,水冷结晶器设有进水口、出水口,与水冷结晶器夹层连通,循环流动实现结晶器的冷却,本发明中,进水口位于水冷结晶器的下部,多个出水口沿着水冷结晶器的高度方向上下排列。优选的,多个出水口沿着水冷结晶器的高度方向上下竖直排列。进一步优选的,每个出水口设有流量调节阀,结晶器最顶部的出水口装有液体流量计,所有出水口最终全部接入回水总回路,回水总回路带有液体流量计。结晶器各个出水口的冷却水各自调节开闭,从而使得金属熔池V型区变浅、金属熔池凝固速率变快,细化电渣锭组织晶粒,同时改善电渣锭表面质量。
本发明中,多个出水口为2~15个,优选5~12个;出水口位于进水口上方,呈垂直排列在结晶器的不同高度上。多个出水口中,最下方的出水口与结晶器底面的距离大于20厘米,优选大于20厘米小于40厘米;多个出水口中,最上方的出水口、与最上方出水口相邻的出水口之间的距离大于25厘米,优选大于25厘米小于55厘米,即最顶部出水口位于结晶器最上端,次顶部出水口距离最顶部出水口的距离大于25厘米;多个出水口中,最下方的出水口、与最上方出水口相邻的出水口之间的出水口均匀分布,即其余出水口按高度平均分布在最下方出水口和次顶部出水口之间,保持间距一致。
优选的,单进多出式水冷结晶器的夹层内设有中间层,所述中间层通过隔板安装于夹层内壁,具体安装于外层内壁;隔板数量与单进多出式水冷结晶器的出水口数量一致,出水口与隔板间隔排列;中间层设有环形通水口,环形通水口数量与单进多出式水冷结晶器的出水口数量一致,环形通水口与隔板间隔排列。中间层的设置使得水冷效果更好。
本发明公开了使用上述单进多出式水冷结晶器的电渣重熔装置进行电渣重熔的方法,包括以下步骤:本发明公开了使用上述单进多出式水冷结晶器的电渣重熔装置进行电渣重熔的方法,包括以下步骤,电渣重熔装置的底水箱开启水冷,开启结晶器进水口与最上方的出水口,开始电渣重熔,且底水箱的水冷、结晶器进水口与最上方的出水口持续开启直至电渣重熔结束;当结晶器中液态渣池-金属熔池界面到达出水口上方4~6cm时,该出水口开启,其余出水口关闭,直至电渣重熔完成。
具体的:(1)采用上述由一个下进水口、一个最顶部出水口、多个沿结晶器高度方向上竖直排列的出水口组成的水冷结晶器,电渣重熔时,各个出水口的开闭根据结晶器内的液态渣池-金属熔池界面高度进行调节;(2)电渣重熔过程中,底水箱的循环冷却水始终呈开启模式、水冷结晶器最顶部的出水口始终呈开启冷却模式,其余出水口根据液态渣池-金属熔池界面高度依次开启和关闭;(3)电渣重熔开始,底水箱的循环冷却水呈开启模式、水冷结晶器采用下进水口进水、最顶部出水口出水、其余出水口关闭的单进单出的冷却模式;(4)随着电渣锭的不断升高,当液态渣池-金属熔池界面到达结晶器最下方的出水口上方4~6cm时,该出水口(结晶器下端第一个出水口)和最顶部出水口呈开启模式,其余出水口呈关闭模式;(5)当液态渣池-金属熔池界面到达从结晶器下方数第二个出水口上方4~6cm时,该结晶器第二个出水口和最顶部出水口呈开启模式,其余出水口呈关闭模式;(6)当液态渣池-金属熔池界面到达从结晶器下方数第三个出水口上方4~6cm时,该结晶器第三个出水口和最顶部出水口呈开启模式,其余出水口呈关闭模式;(7)当液态渣池-金属熔池界面到达从结晶器下方数第四、五等出水口上方4~6cm时,以此类推、依次循环开启第四、五出水口和闭合其余出水口,保持结晶器的当前出水口和顶部出水口呈开启模式,其余出水口呈关闭模式。
本发明中,水冷结晶器侧壁设有夹层,夹层内设有中间层,中间层上设有环形通水口,用于循环水冷,底部设有底水箱,用于底部水冷。采用本发明由一个下进水口、多个沿结晶器高度方向上竖直排列的出水口组成的水冷结晶器,每个出水口的开闭能够调节,优选所有出水口水流量一样。
结晶器顶部的出水口一直开启使得液态渣池和上部分金属熔池圆柱区始终处于合理的冷却模式、电渣锭表面渣壳变薄;作为优选示例,当液态渣池-金属熔池界面到达当前出水口上方5 cm时打开当前出水口,使得低于当前出水口高度的结晶器中水流量增加,对应高度的下部分金属熔池V型区和成型电渣锭的冷却强度显著增加,有利于金属熔池V型区变浅、金属熔池的凝固速率变快,降低了电渣锭中心偏析、细化组织晶粒,实现同时改善电渣锭表面和内部质量的目标。
为了控制结晶器不同高度上的各个出水口的开合时间,本发明还公开了一种根据金属电极下降高度计算液态渣池-金属熔池界面高度的方法,用于根据金属电极下降高度控制结晶器各个出水口的开合,其中结晶器的上圆口直径小于下圆口的直径,具有一定的锥度,其为常识。根据金属电极形状的不同,金属电极下降高度和液态渣池-金属熔池界面高度的关系可分为以下三种计算方法:(1)当金属电极为圆柱体时,以金属电极下端触碰到结晶器底部为零点。金属电极下降高度与液态渣池-金属熔池界面高度的变化关系为式(1):       。
其中金属电极半径为 a,结晶器上圆口半径为 r,结晶器下圆口半径为 R,结晶器高度为 L,液态渣池-金属熔池界面处的高度为 H,金属电极下降高度为 h,液态渣池的厚度为 p
(2)当金属电极为上圆直径大于下圆直径、带有一定锥度的圆棒时,大头朝上、小头朝下,以金属电极下端触碰到结晶器底部为零点。金属电极下降高度与液态渣池-金属熔池界面高度的变化关系如式(2):
其中金属电极小圆半径为 a、大圆半径为 A,金属电极长度为 n,结晶器上圆口半径为 r,结晶器下圆口半径为 R,结晶器高度为 L,液态渣池-金属熔池界面处的高度为 H,金属电极下降高度为 h,液态渣池的厚度为 p
(3)当金属电极为上圆直径小于下圆直径、带有一定锥度的圆棒时,大头朝下、小头朝上,以金属电极下端触碰到结晶器底部为零点。金属电极下降高度与液态渣池-金属熔池界面高度的变化关系如式(3):
其中金属电极小圆半径为 a、大圆半径为 A,金属电极长度为 n,结晶器上圆口半径为 r,结晶器下圆口半径为 R,结晶器高度为 L,液态渣池-金属熔池界面处的高度为 H,金属电极下降高度为 h,液态渣池的厚度为 p
液态渣池的厚度 p=(加入渣的重量/渣熔体的密度)/(π× R 2)。
有益效果
现有技术不需要液态渣池-金属熔池界面处的高度参数,也不涉及根据该高度调节冷却的方法,本发明以为三种常规金属电极的形状,根据测试的金属电极的下降高度,首次公开了液态渣池-金属熔池界面处的高度,结合本发明单进多出式水冷结晶器,实现同时提高电渣锭内部质量和表面质量的目标;有效解决了现有技术无法使得电渣锭内部质量和表面质量同时改善的电渣重熔产品的问题。
本发明相较于现有技术的优点和技术效果如下:其一、采用单进多出式水冷结晶器及其使用方法,使得下部金属熔池V型区及成型电渣锭的冷却强度显著增加,下部金属熔池V型区的深度变浅、金属熔池凝固速率加快,改善电渣锭偏析、细化组织晶粒等。
其二、采用单进多出式水冷结晶器及其使用方法,在保证下部金属熔池V型区及成型电渣锭冷却强度显著增加的情况下,上部金属熔池圆柱区和液态渣池处于合理的水冷强度,有利于金属熔池圆柱区的表面渣壳变薄,即电渣锭表面渣壳变薄,改善电渣锭表面质量。
其三、本发明首次公开了金属电极下降高度和液态渣池-金属熔池界面高度的计算方法,根据电渣炉操控台上的电极下降高度示数就能够自动控制结晶器各个出水口的开启和关闭。
与现有技术相比,本发明的创造性在于:1)本发明首次公开了单进多出式水冷结晶器及其使用方法,其各个出水口的冷却水可以各自调节开闭,使得结晶器轴向上的水流量呈当前开启出水口的下部结晶器水流量快、当前开启出水口的上部结晶器的水流量慢,实现同时提高电渣锭内部质量和表面质量的目标。
附图说明
图1为带有夹层、中间层的单进多出式水冷结晶器结构示意图。
图2为单进多出式水冷结晶器的电渣重熔装置结构示意图(浅V型金属熔池特征)。
图3为现有单进单出式水冷结晶器的电渣重熔装置结构示意图。
图4为应用实施例一单进多出式水冷结晶器的电渣重熔装置结构示意图,带有尺寸参数标记。
其中:1-1#出水口,2-2#出水口,3-3#出水口,4-4#出水口,5-5#出水口,6-1#出水口的电动调节阀,7-2#出水口的电动调节阀,8-3#出水口的电动调节阀,9-4#出水口的电动调节阀,10-5#出水口的电动调节阀,11-结晶器主进水口,12-水冷结晶器钢制外层,13-水冷结晶器铜制内层,14-电渣锭,15-上部金属熔池圆柱区,20-下部金属熔池V型区,16-液态渣池,17-金属电极,18-底水箱,19-液体流量计,21-水冷结晶器钢制中间层,22-水冷结晶器中间层隔断,23-水冷结晶器中间层的环形通水口。
图5为应用实施例一制备的电渣锭,表面光滑、质量好。
图6为应用实施例一的电渣重熔过程中的金属熔池形貌。
图7为应用实施例一制备的电渣锭中心部位微观组织,珠光体的片层间距小。
图8为对比实施例一制备的电渣锭,表面平整、质量较好。
图9为对比实施例一的电渣重熔过程中的金属熔池形貌。
图10为对比实施例一制备的电渣锭中心部位微观组织,珠光体的片层间距大。
图11为对比实施例二制备的电渣锭,表面呈波纹状、质量差。
图12为对比实施例二的电渣重熔过程中的金属熔池形貌。
图13为对比实施例二制备的电渣锭中心部位微观组织,珠光体的片层间距较大。
图14为单进单出式水冷结晶器的电渣重熔装置增加同平面出水口结构示意图。
图15为不设置钢制中间层的单进多出式水冷结晶器结构示意图。
本发明的实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。本发明涉及的具体部件以及部件的具体连接方法为现有常规方法,比如出水口阀门的安装与控制等。本发明具体实验以及测试方法为现有技术,间距为平均值。
本发明公开了一种单进多出式水冷结晶器的电渣重熔装置及使用方法,可以达到同时细化电渣锭内部组织晶粒、改善电渣锭表面质量的目的。为此,本发明开发了单进多出式水冷结晶器,其由一个下进水口、一个结晶器最顶部的出水口、多个沿结晶器高度方向上竖直排列的出水口组成。电渣重熔时,各个出水口的开闭根据结晶器内的电渣锭高度进行动态调节;电渣重熔过程中,水冷结晶器最顶部的出水口始终呈开启模式,其余出水口根据电渣锭高度依次开启和关闭。随着电渣锭的不断升高,当液态渣池-金属熔池界面到达第一个出水口上方4~6cm时,第一个出水口和顶部出水口呈开启模式,其余出水口呈关闭模式;当液态渣池-金属熔池界面到达第二个出水口上方4~6cm时,第二个出水口和顶部出水口呈开启模式,其余出水口呈关闭模式;到达第三、四等出水口上方4~6cm时以此类推、依次循环开启和闭合各个出水口,保持当前出水口和顶部出水口呈开启模式,其余出水口呈关闭模式,优选的,所有出水口流量一样。本装置和工艺使得液态渣池和上部分金属熔池圆柱区始终处于合理的冷却模式、电渣锭表面渣壳变薄;同时下部分金属熔池V型区和成型电渣锭对应高度的结晶器的冷却强度显著增加,使得金属熔池V型区变浅、凝固速率变快、电渣锭组织晶粒细化、减轻电渣锭中心偏析,达到了同时改善电渣锭表面和内部质量的目的。现有技术采用单进单出水冷结晶器,无论如何改变结晶器的水冷制度,始终存在电渣锭内部质量差或表面质量差二者不能同时改善的问题。本发明开发的单进多出式水冷结晶器,同时获得了最优的电渣锭表面和内部质量。
实施例一:如图1所示,一种单进多出式水冷结晶器的电渣重熔装置,包括水冷结晶器及其他常规部件,其中水冷结晶器根据循环水的方式为单进多出式水冷结晶器,具有1#出水口1、2#出水口2、3#出水口3、4#出水口4、5#出水口5、1#出水口的电动调节阀6、2#出水口的电动调节阀7、3#出水口的电动调节阀8、4#出水口的电动调节阀9、5#出水口的电动调节阀10、结晶器进水口11,都与结晶器自带的夹层连通,该水冷结晶器铜制内层13、钢制外层12之间设置钢制中间层21,钢制中间层21通过隔板22安装于外层12的内壁,隔板数量与单进多出式水冷结晶器的出水口数量一致,出水口与隔板间隔排列;中间层设有环形通水口23,环形通水口数量与单进多出式水冷结晶器的出水口数量一致,环形通水口与隔板间隔排列,内层与中间层的上下表面都有空隙,内层与中间层下表面的空隙为了进水,最上方的环形通水口为内层与中间层上表面的空隙。冷却水从进水口11进入内层与中间层之间,通过中间层上的环形通水口23出水,其设置使得铜制内层的水冷效果更好。五个出水口竖直上下排列。
另外,电渣重熔装置还有常规的液态渣池16、金属电极17、底水箱18以及电源,单进多出式水冷结晶器放置于底水箱上,如图2所示,1#出水口外接液体流量计。
电渣重熔时,金属电极在液态渣池的焦耳热下进行熔化,并在水冷结晶器的冷却下重新凝固为电渣锭,水冷结晶器的每个出水口能够通过调节阀调节开闭。具体的,电渣重熔时,将预熔渣加入到电渣炉的单进多出式水冷结晶器内,通电后在金属电极下端和底水箱之间形成电弧熔化预熔渣并形成液态渣池,随后金属电极下端插入液态渣池形成供电回路,在液态渣池的电阻焦耳热下熔化呈熔滴、穿过渣池并在水冷结晶器的冷却下形成电渣锭,此为常规技术。电渣重熔过程中,底水箱的循环冷却水始终为开启模式、水冷结晶器最顶部的出水口始终呈开启模式,其余出水口根据液态渣池-金属熔池界面处的高度依次开启和关闭。作为示例,电渣重熔初期,底水箱的循环冷却水始终为开启模式、水冷结晶器采用下进水口进水、顶部出水口出水、其余出水口关闭的单进单出的冷却模式;随着电渣锭的不断升高,当液态渣池-金属熔池界面到达第一个出水口上方5cm时,第一个出水口和最顶部出水口呈开启模式,其余出水口呈关闭模式;当液态渣池-金属熔池界面到达第二个出水口上方5cm时,第二个出水口和最顶部出水口呈开启模式,其余出水口呈关闭模式;以此类推、当液态渣池-金属熔池界面到达第三、四出水口上方5cm时,依次循环开启第三、四出水口和闭合其余出水口。
结晶器顶部的出水口使得液态渣池和上部分金属熔池圆柱区始终处于合理的冷却模式、电渣锭表面渣壳变薄;表面渣壳变薄有利于成型电渣锭与水冷结晶器间的传热。当液态渣池-金属熔池界面到达当前出水口上方5cm时打开当前出水口,使得对应高度的下部分金属熔池V型区和成型电渣锭的冷却强度显著增加,有利于金属熔池V型区变浅、金属熔池的局部凝固时间变快,降低了电渣锭内部的二次枝晶间距、细化电渣锭内部组织晶粒,实现同时改善电渣锭表面和内部质量的目标。
本发明采用的电渣炉为现有市售产品,只需要将现有的水冷结晶器替换为本发明的单进多出式水冷结晶器、并配备出水口的各个电动调节阀控制开闭即可;具体操作方法以及测试方法都为本领域常规方法,进水为常温水。本发明的方位关系为实际生产时的位置关系。
实施例二:在实施例一的基础上,将五个出水口调整为竖直上下排列的九个出水口,其余不变。得到的电渣锭后,检测两相邻出水口之间对应高度的电渣锭的铸态组织,其电渣锭内部的二次枝晶间距、组织晶粒细小。
对比例一:如图3所示,将五个出水口调整为一个出水口,位于最上方,为现有单进单出水冷,得到的电渣锭的二次枝晶间距、组织晶粒粗大。
应用实施例一:参见图4,采用单进五出式水冷结晶器,各个出水口距离结晶器底部的高度见表1,结晶器下口内径为64cm、上口内径为56cm、高为190cm。金属电极为两头直径均为45cm的圆柱形40Cr钢连铸坯。
使用CaF 2∶CaO∶Al 2O 3=60∶20∶20的预熔渣(质量比),用渣量为125kg,加入到电渣炉的单进五出式水冷结晶器内进行金属电极的重熔,电渣重熔过程中的电流、电压分别为12500A、60V,电极熔化速率为400kg/h,液态渣池的厚度为15cm,保护气氛电渣炉的氩气通入流量为30 NL/min。1#出水口的水流量为70 m 3/h, 出水口2#、3#、4#、5#打开时的水流量为70 m 3/h;金属电极下降高度0≤H≤28cm时,水冷结晶器的进水流量为70 m 3/h;金属电极下降高度H>28cm时,水冷结晶器的进水流量为140 m 3/h;底水箱的循环冷却水的流量为25 m 3/h。液态渣池的厚度 p=(125000/2.6)/(π×32 2)=15cm。
电渣重熔过程中,随着金属电极的下降、电渣锭的高度逐渐增加。根据公式(1)计算得到电极下降高度与液态渣池-金属熔池界面高度的对应关系,如表1所示。结晶器各个出水口位置到结晶器底部的距离如表1所示。当液态渣池-金属熔池界面高度到达对应出水口上方5cm时,对应的出水口呈开启模式,具体的结晶器各个出水口的开合模式与电极下降高度(液态渣池-金属熔池界面高度)的对应关系如表1所示。
电渣重熔中,底水箱和结晶器最顶部出水口1#始终呈开启模式。当液态渣池-金属熔池界面高度低于等于45cm时,出水口1#呈开启模式,出水口2#、3#、4#、5#呈关闭模式;当液态渣池-金属熔池界面高度在45~75cm时,出水口5#和1#呈开启模式,出水口2#、3#、4#呈关闭模式;当液态渣池-金属熔池界面高度在75~105cm时,出水口4#和1#呈开启模式,出水口2#、3#、5#呈关闭模式;当液态渣池-金属熔池界面高度在105~135cm时,出水口3#和1#呈开启模式,出水口2#、4#、5#呈关闭模式;当液态渣池-金属熔池界面高度到达135cm时,出水口2#和1#呈开启模式,出水口3#、4#、5#呈关闭模式;电渣重熔结束后脱模,得到4000kg的表面光滑的40Cr钢,电渣锭表面光滑、无缺陷、质量良好,参见图5。
为了测定电渣重熔中金属熔池的深度,在冶炼结束前向渣池中均匀地加入4kg的FeS粉末,进而采用硫印实验对金属熔池的形状进行标定。对电渣锭上部40cm高的铸锭沿直径进行纵剖、进行硫印实验,硫印实验得到的金属熔池的形貌如图6所示,其金属熔池深度为195mm。
对电渣锭140厘米高的中心部位取样,利用金相显微镜观察并测定其二次枝晶间距为196μm。进一步的,利用扫描电镜观察并测定其珠光体的片层间距为0.21μm,如图7所示。表明该电渣锭具有良好的凝固组织。
对比应用例一:在应用实施例一的基础上,将单进五出式水冷结晶器换为图3的单腔体水冷结晶器,进水口、出水口的水流量为70 m 3/h,底水箱的循环冷却水的流量为25 m 3/h,其余不变。同样的进行电渣重熔40Cr钢,得到电渣锭表面质量如图8所示,表面平整,质量较好但较应用实施例一差些。
通过硫印实验测定的金属熔池深度为365mm,如图9所示;对电渣锭140厘米高度的中心部位取样,利用金相显微镜观察并测定其二次枝晶间距为245μm;进一步的,利用扫描电镜观察并测定其珠光体的片层间距为0.46μm,如图10所示,表明该电渣锭的凝固组织差。
对比应用例二:在应用实施例一的基础上,将单进五出式水冷结晶器换为图3的单腔体水冷结晶器,进水口、出水口的水流量为140 m 3/h,底水箱的循环冷却水的流量为25 m 3/h,其余不变。进行同样的电渣重熔40Cr钢,得到电渣锭表面质量如图11所示,表面呈波纹状、质量差。
通过硫印实验测定的金属熔池深度为244mm,如图12所示;对电渣锭140厘米高度的中心部位取样,利用金相显微镜观察并测定其二次枝晶间距为214μm;进一步的,利用扫描电镜观察并测定其珠光体的片层间距为0.31μm,如图13所示。
对比应用例三:在应用实施例一的基础上,将单进五出式水冷结晶器换为图3的单腔体水冷结晶器,进水口、出水口的水流量为100 m 3/h,底水箱的循环冷却水的流量为25 m 3/h,其余不变。进行同样的电渣重熔40Cr钢,得到电渣锭表面质量肉眼可见微小波纹。通过硫印实验测定的金属熔池深度为318mm;对电渣锭140厘米高度的中心部位取样,利用金相显微镜观察并测定其二次枝晶间距为231μm;进一步的,利用扫描电镜观察并测定其珠光体的片层间距为0.39μm。表明其凝固组织不如对比应用例二,更不如应用实施例。
对比例证明了本发明提出的单进多出式水冷结晶细化电渣锭组织晶粒尺寸的优越性。
本发明采用单进多出式水冷结晶,能同时获得表面光滑和内部质量优异的电渣锭。进一步的,本发明采用单进多出式水冷结晶,使得液态渣池和上部分金属熔池部位处于合理冷却模式,下部分金属熔池和成型电渣锭处于强水冷模式,同时细化电渣锭组织晶粒和改善表面质量。这对于生产大型锻件具有重要的实践生产意义。
现有的电渣重熔装置如图3所示,当水冷结晶器冷却强度过小时,金属熔池凝固速率变慢,产生了大量的偏析夹杂物、组织晶粒粗大、严重影响了电渣锭内部质量;当水冷结晶器的冷却强度过大时,造成了电渣锭表面渣壳变厚且表面质量很差等问题;因为在液态渣池-结晶器壁间存在凝固的渣壳,在金属熔池上升中存在不能够将上方凝固的渣壳熔化,为电渣锭表面渣壳变厚、波纹状表面的成因之一,同时电渣锭表面渣壳与下部金属熔池V型区及成型电渣锭与结晶器壁间的传热也有关系,从而影响内部质量;即使如图14,在现有水冷结晶器基础上在同水平面开设对称的一个出水口,电渣重熔效果与图3差不多;具体的,进水口的水流量为140 m 3/h、出水口的水流量为70 m 3/h+70 m 3/h,底水箱的循环冷却水的流量为25 m 3/h,其余不变,进行同样的电渣重熔40Cr钢,得到电渣锭表面质量与对比应用例二差不多,通过硫印实验测定的金属熔池深度为240mm;对电渣锭140厘米高度的中心部位取样,利用金相显微镜观察并测定其二次枝晶间距为213μm;进一步的,利用扫描电镜观察并测定其珠光体的片层间距为0.30μm。
电渣重熔的动态过程复杂,涉及传热和电渣锭凝固的动态变化,因此现有技术无法满足电渣锭大型化和产品高性能化的要求。
应用实施例二:在应用实施例一的基础上,选择液态渣池-金属熔池界面高度到达对应出水口上方4cm时,对应的出水口呈开合模式,其余一样,得到40Cr钢的电渣锭。通过硫印实验测定的金属熔池深度为195mm;对电渣锭140厘米高度的中心部位取样,利用金相显微镜观察并测定其二次枝晶间距为197μm;进一步的,利用扫描电镜观察并测定其珠光体的片层间距为0.21μm,其凝固组织与应用实施例一相差不大。但是得到的电渣锭表面光滑度下降、其表面质量较应用实施例一差,但是优于对比应用。
应用实施例三:在应用实施例一的基础上,选择液态渣池-金属熔池界面高度到达对应出水口上方6cm时,对应的出水口呈开合模式,其余一样,得到表面光滑的40Cr钢,电渣锭表面光滑、质量良好;通过硫印实验测定的金属熔池深度为205mm;对电渣锭140厘米高度的中心部位取样,利用金相显微镜观察并测定其二次枝晶间距为203μm;进一步的,利用扫描电镜观察并测定其珠光体的片层间距为0.24μm。凝固组织较应用实施例一差,优于对比应用。
应用实施例四:在应用实施例一的基础上,选择液态渣池-金属熔池界面高度到达对应出水口上方2cm时,对应的出水口呈开合模式,其余一样,得到40Cr钢的电渣锭。电渣锭表面光滑度下降,其表面质量明显较对比应用例一差,不符合同时细化电渣锭组织晶粒和改善表面质量。
应用实施例五:在应用实施例一的基础上,选择液态渣池-金属熔池界面高度到达对应出水口上方8cm时,对应的出水口呈开合模式,其余一样,得到40Cr钢的电渣锭。通过硫印实验测定的金属熔池深度为220mm;对电渣锭140厘米高度的中心部位取样,利用金相显微镜观察并测定其二次枝晶间距为210μm;进一步的,利用扫描电镜观察并测定其珠光体的片层间距为0.28μm,不符合同时细化电渣锭组织晶粒和改善表面质量。
应用实施例六:金属电极为带有一定锥度的圆棒时,上圆直径47cm,下圆直径43cm,长度330cm,根据公式(2)通过电极下降高度计算液态渣池-金属熔池界面高度,采用应用实施例一一样的出水口控制方法,具体的结晶器各个出水口的开合模式与电极下降高度(液态渣池-金属熔池界面高度)的对应关系如表2所示。得到电渣锭表面光滑、无缺陷、质量良好;通过硫印实验测定的金属熔池深度为195mm;对电渣锭140厘米高度的中心部位取样,利用金相显微镜观察并测定其二次枝晶间距为197μm;进一步的,利用扫描电镜观察并测定其珠光体的片层间距为0.22μm。
应用实施例七:金属电极为带有一定锥度的圆棒时,上圆直径43cm,下圆直径47cm,长度330cm,根据公式(3)通过电极下降高度计算液态渣池-金属熔池界面高度,采用应用实施例一一样的出水口控制方法,具体的结晶器各个出水口的开合模式与电极下降高度(液态渣池-金属熔池界面高度)的对应关系如表3所示。得到电渣锭表面光滑、无缺陷、质量良好;通过硫印实验测定的金属熔池深度为194mm;对电渣锭140厘米高度的中心部位取样,利用金相显微镜观察并测定其二次枝晶间距为196μm;进一步的,利用扫描电镜观察并测定其珠光体的片层间距为0.21μm。
应用实施例八:在实施例一的基础上省略隔板即图15所示的不设置钢制中间层,根据应用实施例一的方法,得到电渣锭表面光滑、无缺陷、质量良好;通过硫印实验测定的金属熔池深度为201mm;对电渣锭140厘米高度的中心部位取样,利用金相显微镜观察并测定其二次枝晶间距为203μm;进一步的,利用扫描电镜观察并测定其珠光体的片层间距为0.23μm。
根据以上描述,本发明开发了一种新型的单进多出式水冷结晶器的电渣重熔技术。电渣重熔中,随着电渣锭的不断升高,当液态渣池-金属熔池界面到达第一个出水口上方4~6cm时,开启结晶器第一个出水口和最顶部出水口,其余出水口均为关闭模式。这种出水模式使得高于第一个出水口的上部分结晶器中冷却水的流量呈合理模式,低于第一个出水口的下部分结晶器中冷却水的流量显著增加:即高于第一个出水口的液态渣池和上部金属熔池圆柱区呈合理的冷却模式,低于第一个出水口的下部金属熔池V型区和成型电渣锭的冷却强度显著增加。液态渣池和上部金属熔池圆柱区为电渣锭表面渣壳的形成区,合理冷却模式使得电渣锭表面获得良好的表面质量;下部金属熔池V型区为金属熔池的凝固区,增加金属熔池V型区的冷却强度使得金属熔池凝固速率变快,从而降低了电渣锭中心偏析、细化组织晶粒。
综上所述,在保证电渣锭表面渣壳薄而光滑的前提下,提升金属熔池的凝固速度不仅可以改善凝固偏析和细化晶粒,对锻件产品还可以起到细晶强化的作用,提升产品的力学性能。细晶强化是同时提高钢的塑韧性和强度的有效途径。细晶强化,即细化组织晶粒的方法之一就是提升钢液的凝固速率。因此,提升凝固速率不仅能够细化晶粒、还能够降低因凝固偏析产生的TiN、MnS、AlN等大尺寸夹杂物,获得良好的凝固组织。尤其是,本发明首次公开了金属电极下降高度与液态渣池-金属熔池界面高度的变化关系,实际生产验证该方法具有显著的技术进步,为工业生产提供可行性保障。

Claims (10)

  1. 一种单进多出式水冷结晶器的电渣重熔装置,包括单进多出式水冷结晶器,其特征在于:所述单进多出式水冷结晶器包括一个下进水口、多个出水口;多个出水口沿结晶器高度上下排列。
  2. 根据权利要求1所述单进多出式水冷结晶器的电渣重熔装置,其特征在于,所述出水口装有电动调节阀;所述单进多出式水冷结晶器最顶部的出水口装有液体流量计;多个出水口中,最下方的出水口与结晶器底面的距离大于20厘米;多个出水口中,最上方的出水口、与最上方出水口相邻的出水口之间的距离大于25厘米;所述出水口为2~15个,出水口位于进水口上方。
  3. 根据权利要求2所述单进多出式水冷结晶器的电渣重熔装置,其特征在于,多个出水口中,最下方的出水口、与最上方出水口相邻的出水口之间的出水口均匀分布;多个出水口中,最下方的出水口与结晶器底面的距离大于20厘米小于40厘米;多个出水口中,最上方的出水口、与最上方出水口相邻的出水口之间的距离大于25厘米小于55厘米。
  4. 根据权利要求1所述单进多出式水冷结晶器的电渣重熔装置,其特征在于,所述单进多出式水冷结晶器的外层和内层之间设有中间层,所述中间层通过隔板安装于外层内壁。
  5. 权利要求4所述单进多出式水冷结晶器的电渣重熔装置,其特征在于,所述隔板数量与单进多出式水冷结晶器的出水口数量一致,出水口与隔板间隔排列;中间层设有环形通水口。
  6. 一种利用权利要求1所述单进多出式水冷结晶器的电渣重熔装置进行电渣重熔的方法,其特征在于,所述电渣重熔包括以下步骤:水冷结晶器开启进水口与最上方的出水口,开始电渣重熔,且持续开启直至电渣重熔结束;当结晶器中液态渣池-金属熔池界面到达出水口上方时,该出水口开启,其余出水口关闭,直至电渣重熔完成。
  7. 根据权利要求6所述利用单进多出式水冷结晶器的电渣重熔装置进行电渣重熔的方法,其特征在于,电渣重熔装置中的底水箱一直开启水冷;当结晶器中液态渣池-金属熔池界面到达出水口上方4~6cm时,该出水口开启。
  8. 根据权利要求6所述利用单进多出式水冷结晶器的电渣重熔装置进行电渣重熔的方法,其特征在于,当金属电极为圆柱体时,以金属电极触碰到结晶器底部为零点,金属电极下降高度与液态渣池-金属熔池界面高度的变化关系如下:
    其中金属电极半径为a,结晶器上圆口半径为r,结晶器下圆口半径为R,结晶器高度为L,液态渣池-金属熔池界面处的高度为H,金属电极下降高度为h,液态渣池的厚度为p; 当金属电极为上圆直径大于下圆直径、带有一定锥度的圆棒时,以金属电极触碰到结晶器底部为零点,金属电极下降高度与液态渣池-金属熔池界面高度的变化关系如下:
    其中金属电极小圆半径为a、大圆半径为A,金属电极长度为n,结晶器上圆口半径为r,结晶器下圆口半径为R,结晶器高度为L,液态渣池-金属熔池界面处的高度为H,金属电极下降高度为h,液态渣池的厚度为p; 当金属电极为上圆直径小于下圆直径、带有一定锥度的圆棒时,以金属电极触碰到结晶器底部为零点,金属电极下降高度与液态渣池-金属熔池界面高度的变化关系如下:
    其中金属电极小圆半径为a、大圆半径为A,金属电极长度为n,结晶器上圆口半径为r,结晶器下圆口半径为R,结晶器高度为L,液态渣池-金属熔池界面处的高度为H,金属电极下降高度为h,液态渣池的厚度为p。
  9. 一种液态渣池-金属熔池界面高度的计算方法,其特征在于,当金属电极为圆柱体时,以金属电极触碰到结晶器底部为零点,金属电极下降高度与液态渣池-金属熔池界面高度的变化关系如下:
    其中金属电极半径为a,结晶器上圆口半径为r,结晶器下圆口半径为R,结晶器高度为L,液态渣池-金属熔池界面处的高度为H,金属电极下降高度为h,液态渣池的厚度为p; 当金属电极为上圆直径大于下圆直径、带有一定锥度的圆棒时,以金属电极触碰到结晶器底部为零点,金属电极下降高度与液态渣池-金属熔池界面高度的变化关系如下:
    其中金属电极小圆半径为a、大圆半径为A,金属电极长度为n,结晶器上圆口半径为r,结晶器下圆口半径为R,结晶器高度为L,液态渣池-金属熔池界面处的高度为H,金属电极下降高度为h,液态渣池的厚度为p; 当金属电极为上圆直径小于下圆直径、带有一定锥度的圆棒时,以金属电极触碰到结晶器底部为零点,金属电极下降高度与液态渣池-金属熔池界面高度的变化关系如下:
    其中金属电极小圆半径为a、大圆半径为A,金属电极长度为n,结晶器上圆口半径为r,结晶器下圆口半径为R,结晶器高度为L,液态渣池-金属熔池界面处的高度为H,金属电极下降高度为h,液态渣池的厚度为p。
  10. 权利要求1所述单进多出式水冷结晶器的电渣重熔装置在电渣重熔中的应用,或者在同时改善电渣重熔铸锭电渣锭表面和内部质量中的应用。
PCT/CN2022/110356 2022-01-28 2022-08-04 单进多出式水冷结晶器电渣重熔装置及电渣重熔的方法 WO2023142422A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210108325.6 2022-01-28
CN202220239042.0U CN216786226U (zh) 2022-01-28 2022-01-28 一种单进多出式水冷结晶器的电渣重熔装置
CN202220239042.0 2022-01-28
CN202210108325.6A CN114438337B (zh) 2022-01-28 2022-01-28 单进多出式水冷结晶器电渣重熔装置进行电渣重熔的方法

Publications (1)

Publication Number Publication Date
WO2023142422A1 true WO2023142422A1 (zh) 2023-08-03

Family

ID=87470307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110356 WO2023142422A1 (zh) 2022-01-28 2022-08-04 单进多出式水冷结晶器电渣重熔装置及电渣重熔的方法

Country Status (1)

Country Link
WO (1) WO2023142422A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235062A (ja) * 1987-03-20 1988-09-30 Hitachi Ltd エレクトロスラグ再溶解による方向性凝固鋳塊の製造方法
US20080115909A1 (en) * 2006-11-15 2008-05-22 Inteco Special Melting Technologies Gmbh Process for electroslag remelting of metals and ingot mould therefor
CN201400710Y (zh) * 2008-12-04 2010-02-10 江苏华久特钢工具有限公司 用于高速钢生产的电渣重熔结晶器
CN203451592U (zh) * 2013-09-22 2014-02-26 山西太钢不锈钢股份有限公司 一种提高电渣重熔钢锭质量的冷却水装置
CN108984918A (zh) * 2018-07-20 2018-12-11 辽宁石油化工大学 一种电渣重熔自耗电极熔化速率的预测方法
CN209923406U (zh) * 2019-05-23 2020-01-10 江苏浙宏科技股份有限公司 一种制备电渣锭用电渣重熔分段结晶器
CN114438337A (zh) * 2022-01-28 2022-05-06 苏州大学 单进多出式水冷结晶器电渣重熔装置进行电渣重熔的方法
CN216786226U (zh) * 2022-01-28 2022-06-21 苏州大学 一种单进多出式水冷结晶器的电渣重熔装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235062A (ja) * 1987-03-20 1988-09-30 Hitachi Ltd エレクトロスラグ再溶解による方向性凝固鋳塊の製造方法
US20080115909A1 (en) * 2006-11-15 2008-05-22 Inteco Special Melting Technologies Gmbh Process for electroslag remelting of metals and ingot mould therefor
CN201400710Y (zh) * 2008-12-04 2010-02-10 江苏华久特钢工具有限公司 用于高速钢生产的电渣重熔结晶器
CN203451592U (zh) * 2013-09-22 2014-02-26 山西太钢不锈钢股份有限公司 一种提高电渣重熔钢锭质量的冷却水装置
CN108984918A (zh) * 2018-07-20 2018-12-11 辽宁石油化工大学 一种电渣重熔自耗电极熔化速率的预测方法
CN209923406U (zh) * 2019-05-23 2020-01-10 江苏浙宏科技股份有限公司 一种制备电渣锭用电渣重熔分段结晶器
CN114438337A (zh) * 2022-01-28 2022-05-06 苏州大学 单进多出式水冷结晶器电渣重熔装置进行电渣重熔的方法
CN216786226U (zh) * 2022-01-28 2022-06-21 苏州大学 一种单进多出式水冷结晶器的电渣重熔装置

Similar Documents

Publication Publication Date Title
CN102380588B (zh) 中频感应定向凝固铸锭方法及其装置
CN113547102B (zh) 导电结晶器电渣重熔法制备大型钢锭的装置及方法
CN111590054B (zh) 一种抽锭式电渣重熔法制备双金属覆合轧辊的装置及方法
CN108359836A (zh) 一种基于亚快速凝固的Cu-Cr-Zr合金薄带的制备方法
CN105803152A (zh) 30CrMo圆管坯钢铸坯的中心疏松控制方法
CN106636861A (zh) 高合金热作模具钢的制备工艺
CN114438337B (zh) 单进多出式水冷结晶器电渣重熔装置进行电渣重熔的方法
CN106381409B (zh) 一种铝合金制造过程中添加合金细化剂的工艺
CN216786226U (zh) 一种单进多出式水冷结晶器的电渣重熔装置
CN108500238A (zh) 一种基于电渣重熔双金属复合轧辊的生产方法
CN204474735U (zh) 一种防打火结晶器
CN108067596B (zh) 一种薄带铸轧制备TiAl合金均匀组织板坯的方法
CN108660320A (zh) 一种低铝高钛型高温合金电渣重熔工艺
CN112301230B (zh) 一种空心电渣重熔自耗电极及其制备方法和电渣重熔方法
CN103436709A (zh) 管式电极附加自耗搅拌器制备电渣重熔钢锭的装置及方法
CN105624540A (zh) 30CrMo圆管坯钢铸坯的等轴晶率控制方法
CN202945301U (zh) 一种电渣重熔结晶器的冷却装置
WO2023142422A1 (zh) 单进多出式水冷结晶器电渣重熔装置及电渣重熔的方法
CN219010411U (zh) 一种全真空大尺寸电渣重熔装置
CN112091191B (zh) 一种非真空下引半连铸铜锰合金扁锭的制备方法及其装置
CN114438338B (zh) 防止铸锭应力开裂及改善铸锭内部质量的电弧重熔方法
CN209773439U (zh) 电渣炼钢用自耗电极模具
CN209923406U (zh) 一种制备电渣锭用电渣重熔分段结晶器
CN114700481B (zh) 一种细化铸锭组织和改善铸锭表面质量的装置及方法
CN114178499A (zh) 一种均质难混溶合金材料的连续化制备方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923226

Country of ref document: EP

Kind code of ref document: A1