WO2023142416A1 - 脉冲调制器及其充电方法 - Google Patents

脉冲调制器及其充电方法 Download PDF

Info

Publication number
WO2023142416A1
WO2023142416A1 PCT/CN2022/109490 CN2022109490W WO2023142416A1 WO 2023142416 A1 WO2023142416 A1 WO 2023142416A1 CN 2022109490 W CN2022109490 W CN 2022109490W WO 2023142416 A1 WO2023142416 A1 WO 2023142416A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
power supply
supercapacitor
charging
voltage
Prior art date
Application number
PCT/CN2022/109490
Other languages
English (en)
French (fr)
Inventor
查皓
施嘉儒
温仪
陈怀璧
唐传祥
刘耀红
刘晋升
张亮
王浩坤
贾玮
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2023142416A1 publication Critical patent/WO2023142416A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback

Definitions

  • the present application relates to the technical field of pulse modulators, in particular to a pulse modulator and a charging method thereof.
  • ultra-high dose rate radiotherapy techniques need to increase the dose rate by 2-3 orders of magnitude while shortening the irradiation time to the order of hundreds of milliseconds.
  • the three-phase power supply drives the pulse modulator through the power supply system and the control system, and the pulse modulator converts the obtained DC high voltage into a high-power pulse high voltage to supply the magnetron/klystron.
  • the pulse modulator is mainly composed of a high-voltage DC power supply unit, a MARX generator, and a pulse transformer.
  • the high-voltage DC power supply unit generally includes a three-phase four-wire 380V voltage regulating transformer, a high-voltage transformer and a high-voltage rectifier diode assembly.
  • the present application provides a pulse modulator and a charging method thereof, which replaces the direct-current power supply method in the related art and reduces the demand for power supply.
  • the embodiment of the first aspect of the present application provides a pulse modulator, including:
  • a pulse generator for generating pulsed high voltage energy
  • a pulse transformer for discharging a preset power source based on the pulsed high-voltage energy to generate a pulsed voltage
  • a charging unit the charging unit includes at least one supercapacitor, and after the at least one supercapacitor is charged to be in a pre-discharge state, the charging unit supplies power to the pulse generator, using the pulse voltage generated by the pulse transformer .
  • the charging unit also includes:
  • a pre-charge charging power supply the input terminal of the pre-charge charging power supply is connected to the mains power supply terminal, and the output terminal of the pre-charge charging power supply is connected to the at least one supercapacitor to charge the at least one supercapacitor;
  • a charging power supply the input end of the charging power supply is connected to the at least one supercapacitor, the output end of the charging power supply is connected to the pulse generator, and supplies power to the pulse generator.
  • the switch assembly is arranged between the charging unit and the pulse generator, to control the charge or discharge of the pulse generator based on the switching state of the switch assembly.
  • the embodiment of the second aspect of the present application provides a charging method for a pulse modulator, using the above-mentioned pulse modulator, wherein the method includes the following steps:
  • the pulse transformer discharges the preset power source based on the pulse high-voltage energy to generate the pulse voltage.
  • the energy supply of the pulse modulator is completed, and then the radiotherapy technology with an ultra-high dose rate is realized, replacing the radiotherapy technology in the related art.
  • the direct power supply method of the direct current power supply reduces the demand for power supply.
  • FIG. 1 is a schematic block diagram of a pulse modulator provided according to an embodiment of the present application
  • FIG. 2 is a schematic block diagram of a pulse modulator according to a specific embodiment of the present application.
  • FIG. 3 is a schematic diagram of a circuit principle of a pulse generator according to an embodiment of the present application when storing energy
  • FIG. 4 is a schematic diagram of a circuit principle when a pulse generator discharges according to an embodiment of the present application
  • Fig. 5 is a flowchart of a charging method for a linear accelerator according to an embodiment of the present application.
  • FIG. 1 is a schematic block diagram of a pulse modulator provided by an embodiment of the present application.
  • the pulse modulator 10 includes: a pulse generator 100 , a pulse transformer 200 and a charging unit 300 .
  • the pulse generator 100 is used to generate pulsed high-voltage energy; the pulse transformer 200 is used to discharge a preset power source based on the pulsed high-voltage energy to generate a pulsed voltage; After the supercapacitor 301 is charged to be in a pre-discharge state, it supplies power to the pulse generator 100 to generate a pulse voltage by using the pulse transformer 100 .
  • the supercapacitor energy storage process is reversible, and it can be repeatedly charged and discharged hundreds of thousands of times, which is safe and reliable.
  • supercapacitors have high power density and can be used as power assist devices to supply large currents.
  • the charging unit 300 further includes: a pre-charging charging power source 302 and a charging power source 303 .
  • the input terminal of the pre-charging power supply 302 is connected with the mains power supply terminal, and the output terminal of the pre-charging power supply 302 is connected with at least one supercapacitor 301 to charge at least one supercapacitor 301;
  • the input terminal of the charging power supply 303 is connected to at least one A supercapacitor 301 is connected, and the output terminal of the charging power supply 303 is connected with the pulse generator 100 to provide power for the pulse generator 100 .
  • the pulse modulator 10 of the embodiment of the present application further includes: a switch component, the switch component is arranged between the charging unit 300 and the pulse generator 100, so as to control the pulse based on the switching state of the switch component Generator 100 is charged or discharged.
  • the pulse generator 100 may be a MARX generator
  • the charging unit 300 uses at least one supercapacitor 301 to discharge high power in a short time to provide electric energy for the pulse generator 100 .
  • the embodiment of the present application can use the pre-charge charging power supply 302 to charge at least one supercapacitor 301 to enter the pre-discharge state, so that when it needs to be activated, at least one supercapacitor 301 can be used
  • the supercapacitor 301 supplies energy to the subsequent charging power supply module (ie, the charging power supply 303 ).
  • the pre-stage device of the pulse transformer 200 discharges the subsequent power source through the pulse transformer 200 to further increase the pulse voltage, and at the same time isolates the DC potential between the pulse modulator 10 and the load, so that the pre-stage device can use a relatively low operating voltage , for easy control.
  • FIG. 3 and Figure 4 are schematic diagrams of the circuit principle of the MARX generator for energy storage and discharge respectively, when the switch is turned off, the current direction is the direction of the arrow in Figure 3, 14 groups of energy storage capacitors set in the energy storage device) to charge in parallel; when the switch is turned on, the current direction is the direction of the arrow in Figure 4, and the 14 groups of energy storage capacitors are discharged in series, forming a negative high voltage at the output terminal, and its magnitude is the voltage of each energy storage capacitor Sum. Therefore, through the MARX generator, the energy charged by the charging unit on the energy storage capacitor is converted into pulsed high-voltage energy, so as to meet the requirements of high dose rate and short discharge time of the new radiation therapy technology.
  • the embodiment of the present application uses at least one supercapacitor, auxiliary charging power supply and switch components to replace the high-voltage DC power supply unit in the traditional pulse modulator, and completes the precharging of the supercapacitor module before starting the medical electronic linear accelerator system. At that time, the short-term discharge of the supercapacitor can realize a radiotherapy technology with an ultra-high dose rate.
  • pulse modulator for radiotherapy is only exemplary and not a limitation of the present application.
  • Those skilled in the art can use all accelerators that require high-power work in a short period of time according to the actual situation.
  • Applications for example, research on radiation resistance of electronic devices, realization of fast non-destructive testing, and development of accelerator-based flash light sources, etc.
  • the pulse modulator proposed in the embodiment of the present application by setting at least one supercapacitor, and using at least one supercapacitor for short-term, high-power discharge, the energy supply of the pulse modulator is completed, and then the radiation of ultra-high dose rate is realized.
  • the treatment technology replaces the direct-current power supply method in the related art, and reduces the demand for power supply.
  • the embodiment of the present application also proposes a charging method for a pulse modulator, using the above-mentioned pulse modulator, wherein the method includes the following steps:
  • the pulse transformer discharges the preset power source based on the pulse high-voltage energy to generate a pulse voltage.
  • At least one supercapacitor is provided, and the short-time and high-power discharge of at least one supercapacitor is used to complete the energy supply of the pulse modulator, thereby realizing an ultra-high dose rate
  • the radiotherapy technology replaces the direct power supply method of direct current power in the related art, and reduces the demand for power supply.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “N” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • Any process or method description in a flowchart or otherwise described herein may be understood to represent a module, segment or portion of code comprising one or more executable instructions for implementing a custom logical function or step of a process , and the scope of preferred embodiments of the present application includes additional implementations in which functions may be performed out of the order shown or discussed, including in substantially simultaneous fashion or in reverse order depending on the functions involved, which shall It should be understood by those skilled in the art to which the embodiments of the present application belong.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate or transmit a program for use in or in conjunction with an instruction execution system, device, or device.
  • Non-exhaustive list of computer readable media include the following: electrical connection with one or N wires (electronic device), portable computer disk case (magnetic device), random access memory (RAM), Read Only Memory (ROM), Erasable and Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, as it may be possible, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable processing if necessary.
  • the program is processed electronically and stored in computer memory.
  • each part of the present application may be realized by hardware, software, firmware or a combination thereof.
  • the N steps or methods may be implemented by software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware as in another embodiment, it can be implemented by any one or a combination of the following techniques known in the art: a discrete Logic circuits, ASICs with suitable combinational logic gates, Programmable Gate Arrays (PGA), Field Programmable Gate Arrays (FPGA), etc.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are implemented in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, and the like.

Abstract

本申请涉及脉冲调制器技术领域,特别涉及一种脉冲调制器及其充电方法,其中,脉冲调制器包括:脉冲发生器,用于生成脉冲高压能量;脉冲变压器,用于基于脉冲高压能量对预设功率源放电,以生成脉冲电压;充电单元,充电单元包括至少一个超级电容,充电单元在至少一个超级电容充能以处于预备放电状态后,为脉冲发生器供电,利用脉冲变压器生成脉冲电压。根据本申请实施例的脉冲调制器,替代了相关技术中的直流电源直接供电方法,降低了供电功率需求。

Description

脉冲调制器及其充电方法
相关申请的交叉引用
本申请基于申请号为202210116269.0,申请日为2022年01月30日申请的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及脉冲调制器技术领域,特别涉及一种脉冲调制器及其充电方法。
背景技术
近年来,随着加速器技术的不断发展,出现了对于加速器新的工作模式的需求,即期望加速器系统在短时间内大功率工作。最近一大医疗领域的研究热点即超高剂量率放射治疗就需要医用加速器系统工作在瞬时大功率的模式之下,除此之外,对于电子器件的抗辐射研究、快速无损检测的实现以及研制基于加速器的闪光光源都需要加速器系统采用这样的工作模式。
以超高剂量率放射治疗为例,随着医用电子直线加速器系统相关技术的趋于成熟,放射治疗技术的飞速发展在医疗领域备受关注,对于放疗设备的小型化、高剂量等新需求的出现为研究人员带来了新的挑战,也为医用电子直线加速器的发展指明了新的方向。
根据近年的生物学实验结果,有望在不久的将来实现超高剂量率的放射治疗技术。相较于常规的放疗技术,超高剂量率放射治疗技术需将剂量率提高2-3个量级,同时将照射时间缩短至百毫秒量级。
在医用电子直线加速器系统中,三相动力电通过电源系统和控制系统驱动脉冲调制器,脉冲调制器将得到的直流高压转变为大功率脉冲高压供给磁控管/速调管。脉冲调制器主要由高压直流电源单元、MARX发生器、脉冲变压器等组成,其中,高压直流电源单元一般包括三相四线380V调压变压器、高压变压器和高压整流二极管组件。
然而,由于超高剂量率的放射治疗技术的剂量率大大提高且照射时间仅有百毫秒量级,仅使用高压直流电源单元大大提高了对于供电功率的需求。
发明内容
本申请提供一种脉冲调制器及其充电方法,替代了相关技术中的直流电源直接供电方法,降低了供电功率需求。
本申请第一方面实施例提供一种脉冲调制器,包括:
脉冲发生器,用于生成脉冲高压能量;
脉冲变压器,用于基于所述脉冲高压能量对预设功率源放电,以生成脉冲电压;以及
充电单元,所述充电单元包括至少一个超级电容,所述充电单元在所述至少一个超级电容充能以处于预备放电状态后,为所述脉冲发生器供电,利用所述脉冲变压器生成的脉冲电压。
可选地,所述充电单元还包括:
预充充电电源,所述预充充电电源的输入端与市电供电端相连,所述预充充电电源的输出端与所述至少一个超级电容相连,为所述至少一个超级电容充能;
充电电源,所述充电电源的输入端与所述至少一个超级电容相连,所述充电电源的输出端与所述脉冲发生器相连,为所述脉冲发生器供电。
可选地,还包括:
开关组件,所述开关组件设置于所述充电单元和所述脉冲发生器之间,以基于所述开关组件的开关状态控制所述脉冲发生器充电或者放电。
本申请第二方面实施例提供一种脉冲调制器的充电方法,利用上述的脉冲调制器,其中,方法包括以下步骤:
在所述至少一个超级电容充能以处于预备放电状态后,为所述脉冲发生器供电;
通过所述脉冲发生器生成脉冲高压能量;
所述脉冲变压器基于所述脉冲高压能量对所述预设功率源放电,以产生所述脉冲电压。
由此,通过设置有至少一个超级电容,并利用至少一个超级电容的短时间、大功率的放电,完成脉冲调制器的供能,进而实现超高剂量率的放射治疗技术,替代了相关技术中的直流电源直接供电方法,降低了供电功率需求。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本申请实施例提供的一种脉冲调制器的方框示意图;
图2为根据本申请一个具体实施例的脉冲调制器的方框示意;
图3为根据本申请一个实施例的脉冲发生器储能时的电路原理示意图;
图4为根据本申请一个实施例的脉冲发生器放电时的电路原理示意图;
图5为根据本申请实施例的直线加速器的充电方法的流程图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的脉冲调制器及其充电方法。针对上述背景技术中心提到的相关技术中使用高压直流电源单元供电不仅会浪费能源,而且降低效率的问题,本申请提供了一种脉冲调制器,通过设置有至少一个超级电容,并利用至少一个超级电容的短时间、大功率的放电,完成脉冲调制器的供能,进而实现超高剂量率的放射治疗技术,替代了相关技术中的直流电源直接供电方法,降低了供电功率需求。
具体而言,图1为本申请实施例所提供的一种脉冲调制器的方框示意图。
如图1所示,该脉冲调制器10包括:脉冲发生器100、脉冲变压器200和充电单元300。
其中,脉冲发生器100用于生成脉冲高压能量;脉冲变压器200用于基于脉冲高压能量对预设功率源放电,以生成脉冲电压;充电单元300包括至少一个超级电容301,充电单元300在至少一个超级电容301充能以处于预备放电状态后,为脉冲发生器100供电,以利用脉冲变压器100生成脉冲电压。其中,超级电容储能过程可逆,可反复地稳定充放电数十万次,安全可靠。同时,超级电容功率密度高,可作为功率辅助器供给大电流。可选地,在一些实施例中,如图2所示,充电单元300还包括:预充充电电源302和充电电源303。其中,预充充电电源302的输入端与市电供电端相连,预充充电电源302的输出端与至少一个超级电容301相连,为至少一个超级电容301充能;充电电源303的输入端与至少一个超级电容301相连,充电电源303的输出端与脉冲发生器100相连,为脉冲发生器100供电。
可选地,在一些实施例中,本申请实施例的脉冲调制器10,还包括:开关组件,开关组件设置于充电单元300和脉冲发生器100之间,以基于开关组件的开关状态控制脉冲发生器100充电或者放电。
应当理解的是,脉冲发生器100可以为MARX发生器,充电单元300利用至少一个超级电容301短时间内的大功率放电来为脉冲发生器100提供电能。在每次需要启用超高剂量率放疗技术之前,本申请实施例可以利用预充充电电源302给至少一个超级电容301充能,使其进入预备放电状态,从而在需要启用之时,利用至少一个超级电容301给后续充电电源模组(即充电电源303)供能。脉冲变压器200的前级装置通过脉冲变压器200对后续 功率源放电,进一步升高脉冲电压,同时隔离了脉冲调制器10与负载之间的直流电位,使得前级装置能够采用相对较低的工作电压,便于控制处理。
进一步地,为便于本领域技术人员进一步了解本申请实施例的脉冲调制器100,下面结合图3进行详细说明MARX发生器的工作原理。如图3和图4所示,图3和图4分别为MARX发生器储能和放电时的电路原理示意图,当开关断开时,电流方向为图3中箭头方向,14组储能电容(设置在储能器件内)并联充电;当开关导通时,电流方向为图4中箭头方向,14组储能电容串联放电,在输出端形成负高压,其幅度值为各储能电容的电压之和。由此,通过MARX发生器,将充电单元充在储能电容上的能量转化为脉冲高压能量,从而满足新型放射治疗技术的高剂量率、短放电时间的要求。
由此,本申请实施例利用至少一个超级电容以及辅助充电电源和开关组件替代传统脉冲调制器中的高压直流电源单元,在启用医用电子直线加速器系统之前完成超级电容模组的预充电,在启动之时利用超级电容的短时间放电即可实现一次超高剂量率的放射治疗技术。
需要说明的是,上述将脉冲调制器针对于放疗仅为示例性的,不作为本申请的限制,本领域技术人员可以根据实际情况在实际加速器领域中所有需要短时间内大功率工作的都可以运用,例如,电子器件的抗辐射研究、快速无损检测的实现以及研制基于加速器的闪光光源等。
根据本申请实施例提出的脉冲调制器,通过设置有至少一个超级电容,并利用至少一个超级电容的短时间、大功率的放电,完成脉冲调制器的供能,进而实现超高剂量率的放射治疗技术,替代了相关技术中的直流电源直接供电方法,降低了供电功率需求。
此外,如图5所示,本申请实施例还提出一种脉冲调制器的充电方法,利用上述的脉冲调制器,其中,方法包括以下步骤:
S501,在至少一个超级电容充能以处于预备放电状态后,为脉冲发生器供电;
S502,通过脉冲发生器生成脉冲高压能量;
S503,脉冲变压器基于脉冲高压能量对预设功率源放电,以产生脉冲电压。
根据本申请实施例的脉冲调制器的充电方法,过设置有至少一个超级电容,并利用至少一个超级电容的短时间、大功率的放电,完成脉冲调制器的供能,进而实现超高剂量率的放射治疗技术,替代了相关技术中的直流电源直接供电方法,降低了供电功率需求。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材 料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或N个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“N个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更N个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或N个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,N个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可 编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (4)

  1. 一种脉冲调制器,其特征在于,包括:
    脉冲发生器,用于生成脉冲高压能量;
    脉冲变压器,用于基于所述脉冲高压能量对预设功率源放电,以生成脉冲电压;以及
    充电单元,所述充电单元包括至少一个超级电容,所述充电单元在所述至少一个超级电容充能以处于预备放电状态后,为所述脉冲发生器供电,利用所述脉冲变压器生成脉冲电压。
  2. 根据权利要求1所述的脉冲调制器,其特征在于,所述充电单元还包括:
    预充充电电源,所述预充充电电源的输入端与市电供电端相连,所述预充充电电源的输出端与所述至少一个超级电容相连,为所述至少一个超级电容充能;
    充电电源,所述充电电源的输入端与所述至少一个超级电容相连,所述充电电源的输出端与所述脉冲发生器相连,为所述脉冲发生器供电。
  3. 根据权利要求1所述的脉冲调制器,其特征在于,还包括:
    开关组件,所述开关组件设置于所述充电单元和所述脉冲发生器之间,以基于所述开关组件的开关状态控制所述脉冲发生器充电或者放电。
  4. 一种脉冲调制器的充电方法,其特征在于,利用所述权利要求1-3任一项所述的脉冲调制器,其中,方法包括以下步骤:
    在所述至少一个超级电容充能以处于预备放电状态后,为所述脉冲发生器供电;
    通过所述脉冲发生器生成脉冲高压能量;
    所述脉冲变压器基于所述脉冲高压能量对所述预设功率源放电,以产生所述脉冲电压。
PCT/CN2022/109490 2022-01-30 2022-08-01 脉冲调制器及其充电方法 WO2023142416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210116269.0 2022-01-30
CN202210116269.0A CN114470536B (zh) 2022-01-30 2022-01-30 脉冲调制器及其充电方法

Publications (1)

Publication Number Publication Date
WO2023142416A1 true WO2023142416A1 (zh) 2023-08-03

Family

ID=81478904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109490 WO2023142416A1 (zh) 2022-01-30 2022-08-01 脉冲调制器及其充电方法

Country Status (2)

Country Link
CN (1) CN114470536B (zh)
WO (1) WO2023142416A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114470536B (zh) * 2022-01-30 2023-06-13 清华大学 脉冲调制器及其充电方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905646A (en) * 1996-12-20 1999-05-18 Scanditronix Medical Ab Power modulator
CN102067449A (zh) * 2008-06-23 2011-05-18 斯堪的诺维亚系统公司 功率开关分组
CN113659864A (zh) * 2021-08-13 2021-11-16 四川英杰电气股份有限公司 一种多脉冲输出固态调制器电路及其控制方法
CN114470536A (zh) * 2022-01-30 2022-05-13 清华大学 脉冲调制器及其充电方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1363386B1 (en) * 2002-05-13 2005-01-05 Luxon Energy Devices Corporation High current pulse generator
DE60202516T2 (de) * 2002-05-13 2006-01-12 Luxon Energy Devices Corp. Leistungsmodul zur erzeugung von impulsen von hohem strom
WO2005063520A1 (en) * 2003-12-30 2005-07-14 Hydrogenics Corporation Hybrid electric propulsion system, hybrid electric power pack and method of optimizing duty cycle
CN200987235Y (zh) * 2006-10-11 2007-12-05 清华大学 多能倍频粒子加速器
DE102009058316A1 (de) * 2009-12-15 2011-06-16 Giesecke & Devrient Gmbh Vorrichtung zum Erzeugen einer gestützten Gleichspannung
CN102739201B (zh) * 2012-06-29 2014-12-31 西北核技术研究所 基于SOS的百kHz超宽谱脉冲发生器
US11374502B2 (en) * 2017-03-31 2022-06-28 Case Western Reserve University Power management for wireless nodes
CN108390665B (zh) * 2018-03-23 2021-05-25 中国人民解放军国防科技大学 一种全固态方波脉冲发生器
CN208522518U (zh) * 2018-08-15 2019-02-19 武汉康奥斯机电装备有限公司 一种利用超级电容的地铁门式起重机
KR102259948B1 (ko) * 2020-02-25 2021-06-01 주식회사 아이피트 자성비파괴 측정에서의 슈퍼 커패시터를 이용한 고출력 펄스 발생장치
CN111999529B (zh) * 2020-08-05 2021-04-13 山东省产品质量检验研究院 一种电气工程师电器连接检测工作台
CN112510805A (zh) * 2020-12-08 2021-03-16 上海健康医学院 一种除颤储能电容器及充电电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905646A (en) * 1996-12-20 1999-05-18 Scanditronix Medical Ab Power modulator
CN102067449A (zh) * 2008-06-23 2011-05-18 斯堪的诺维亚系统公司 功率开关分组
CN113659864A (zh) * 2021-08-13 2021-11-16 四川英杰电气股份有限公司 一种多脉冲输出固态调制器电路及其控制方法
CN114470536A (zh) * 2022-01-30 2022-05-13 清华大学 脉冲调制器及其充电方法

Also Published As

Publication number Publication date
CN114470536B (zh) 2023-06-13
CN114470536A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2023142416A1 (zh) 脉冲调制器及其充电方法
JPH1094271A (ja) 高圧パルス発生回路
Borage et al. Constant-current, constant-voltage half-bridge resonant power supply for capacitor charging
Lam et al. A modified valley fill electronic ballast having a current source resonant inverter with improved line-current total harmonic distortion (THD), high power factor, and low lamp crest factor
Yu et al. Comparisons of three inductive pulse power supplies
KR960030506A (ko) 고속 충전이 가능한 플래시 장치
CN102958252B (zh) 点亮装置
US6774576B2 (en) Switch mode energy recovery for electro-luminescent lamp panels
Pfeffer et al. High Burst Rate Charging System for the Lithium Lens Power Supply
JPH0710150B2 (ja) 電流可逆チヨッパの運転方法
Eckoldt et al. Power supplies for TESLA modulators
MXPA02003404A (es) Aparato de abastecimiento de energia de sistemas de iluminacion utilizando microondas.
JP2011517026A (ja) フラッシュランプ等のための制御回路
CN103390532B (zh) 操作用于产生微波辐射的设备的方法
SU875653A1 (ru) Устройство дл управлени излучением в импульсном режиме
CN104247562B (zh) 光源、驱动器的使用和用于驱动的方法
Dallago et al. The power supply for the beam chopper magnets of a medical synchrotron
JPS63248097A (ja) 変圧器式x線発生装置
Solley et al. Prototype development and testing of the alternate topology HVCM modulator to support the proton power upgrade (PPU) at SNS
Jeong et al. Development of Power Supply System for Medical Ruby Laser
CN116345512A (zh) 一种光储系统及缓启动方法
Dolgov et al. Improved characteristics of HV pulse modulators for technological accelerators
Tallerico et al. The RF power system for the SNS linac
KR20210035403A (ko) 듀오 플라즈마트론 이온원에 적용되는 펄스 전원 공급 장치 및 방법
KR20230046653A (ko) 둘 이상의 어플리케이터를 포함하는 자기 자극 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923221

Country of ref document: EP

Kind code of ref document: A1