WO2023142350A1 - 一种无风式纺丝冷却成形工艺、装置及纺丝设备 - Google Patents

一种无风式纺丝冷却成形工艺、装置及纺丝设备 Download PDF

Info

Publication number
WO2023142350A1
WO2023142350A1 PCT/CN2022/100321 CN2022100321W WO2023142350A1 WO 2023142350 A1 WO2023142350 A1 WO 2023142350A1 CN 2022100321 W CN2022100321 W CN 2022100321W WO 2023142350 A1 WO2023142350 A1 WO 2023142350A1
Authority
WO
WIPO (PCT)
Prior art keywords
spinning
mist
cooling
box
windless
Prior art date
Application number
PCT/CN2022/100321
Other languages
English (en)
French (fr)
Inventor
朱斌
Original Assignee
盐城市力马空调工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盐城市力马空调工程有限公司 filed Critical 盐城市力马空调工程有限公司
Priority to CN202280044089.4A priority Critical patent/CN117580979A/zh
Publication of WO2023142350A1 publication Critical patent/WO2023142350A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • D01D5/0885Cooling filaments, threads or the like, leaving the spinnerettes by means of a liquid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/096Humidity control, or oiling, of filaments, threads or the like, leaving the spinnerettes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Definitions

  • the invention belongs to the technical field of chemical fiber spinning and forming, and specifically relates to a cooling forming method, a cooling forming device and spinning equipment which subvert the traditional cooling forming method of using cooling wind and adopt an airless cooling forming method instead.
  • the cooling condition of the melt spinning fiber forming process is one of the main factors affecting the fiber forming and quality. It is directly related to the fiber structure shape, performance and quality. In order to obtain fibers with good spinnability and underdrawing properties, in the spinning process, before the fibers are completely solidified, cooling from the spinneret to the section about 1.2 meters below is particularly important. During the spinning process, the melt exits the spinneret hole and enters the air medium of the silk bin. The temperature of the melt is about 268°C. The heat of the melt passes through radiation, conduction, and convection, and is gradually cooled and solidified.
  • the fiber forming When the temperature and humidity of the surrounding air medium fluctuate abnormally, the fiber forming is in an unstable state, which will affect its temperature gradient, the change of velocity gradient and diameter gradient is unstable, and the position of the solidification point of fiber forming is high and low, resulting in primary The orientation degree and crystallinity of the long chain molecules of the fiber, the difference between the structure of the fiber skin and the inner core, and the irregular or irregular state of the shape and structure of the fiber.
  • This kind of unstable spinning is finally reflected in poor fiber availability, low intrinsic quality, large unevenness in fiber count, elongation, strength, etc., and uneven dyeing.
  • the subsequent process is difficult to process, and there are many broken ends of understretched wool, high labor intensity and low output.
  • the cooling and forming process in the spinning industry basically adopts side blowing or surrounding blowing to cool and shape the tow.
  • the melted chemical fiber enters the puffing zone, cooling zone, forming zone, oiling point from the spinneret, and enters the next process (weaving, cleaning) after forming tow and winding.
  • the process is as follows: the melted chemical fiber is extruded from the spinning box and spinneret by the extruder to expand through the windless area, cooled and formed by the cold air generated by high-power refrigeration equipment, and then enters the oiling point Proceed with oiling.
  • the purpose of the oiling agent is to prevent static electricity, promote multi-root cohesion and increase smoothness.
  • the oiling point is provided with an upper oiler or a nozzle.
  • the above oiler is an example.
  • the upper oiler rotates in the oil tank containing the spinning oil, and the tow is attached to the spinning oil after contacting the upper oiler.
  • the present invention adopts the following technical scheme: a windless spinning cooling forming process, comprising the following steps:
  • the melt passes through the spinneret to form filaments, and after puffing, it enters the fog zone to cool.
  • the cooling mist makes the spinning oil adhere to the filaments, oiling the filaments,
  • the filaments After the filaments are cooled and shaped, they form tows and enter the next process.
  • the mist area is located in a semi-closed cavity, and the collected spinning finish liquid is discarded or recycled for use after treatment.
  • the cooling of the mist zone is divided into multiple stages, and the atomization device sends cooling mist to the fog zone through the fog ports, and the number and size of the fog ports of each stage are different according to the requirements of the forming process.
  • it also includes a temperature adjustment step of the aqueous spinning finish solution, before entering the atomizing device or in the atomizing device, the temperature of the spinning finish aqueous solution is adjusted.
  • a windless spinning cooling forming device which adopts the above-mentioned spinning cooling forming process, including an atomized liquid container, an atomized generator, a mist box, and an oil collecting assembly,
  • the atomizing generator is located below the spinning box, the atomizing generator is connected to the atomizing liquid container, and the spinning oil and water are mixed in the atomizing liquid container;
  • the mist box is in the shape of a cone, with openings on the top and bottom.
  • the melted and spun filaments pass through the mist box to form tows. wire contact,
  • the oil collection component includes a pump and a water pipe, and collects the excess atomized liquid at the bottom of the fog box, and recycles it after being discarded or treated.
  • mist port of the atomization generator is connected to the mist box through a pipe.
  • the upper part of the mist box is provided with a circular hole, the size of which is the same as the area occupied by the thread group, and the bottom of the mist box is provided with a hole for the thread to pass through and a channel connected with the oil collecting assembly.
  • an airless spinning equipment including a spinning box, a spinneret and the above-mentioned airless spinning cooling forming device.
  • the invention redesigns the cooling and forming process of chemical fiber spinning without refrigeration equipment, and uses the mist generated by the atomization generator to cool the chemical fibers that need to be cooled, which greatly saves the cost of equipment procurement, production and maintenance, and can save a lot of money in the country. metal materials and electric energy;
  • the water mist generated by the atomization generator contains the oil agent required by the spinning process, so there is no need for oiling;
  • the airless spinning cooling process and equipment of the present invention improves the quality of spinning and forming due to the absence of wind.
  • Fig. 1 is the traditional spinning cooling forming method described in the background of the present invention
  • Fig. 2 is the schematic diagram of the principle, device and spinning equipment of the windless spinning cooling forming process of the present invention
  • Fig. 3 is a schematic flow chart of the windless spinning cooling forming process according to the present invention.
  • a windless spinning cooling forming device includes: an atomizing liquid container (1), a mist box (2), and an oil collecting assembly. Water and spinning oil are mixed and stored in the atomizing liquid container.
  • the atomization generator (2) is located below the spinning box, and the atomization port of the atomization generator (1) is connected to the atomization box (2) through a pipe. The above mixed liquid is atomized to form cooling mist.
  • the mist box (2) is in the shape of a cone, with openings on the top and bottom, and the melted and spun filaments pass through the mist box (2) to form tow; the atomization generator (1) and the mist box (2) pass through multiple The mist port is connected, and the cooling mist generated by the atomization generator (1) enters the mist box (2) and contacts the filament.
  • the oil collecting component collects the collected atomized liquid at the bottom of the mist box (2), discards or treats the excess atomized liquid and recycles it.
  • the upper part of the mist box (2) has a circular hole, the size of which is the same as the area occupied by the thread group, and the bottom of the mist box (2) is provided with a hole for the thread to pass through and a channel connected with the oil collection assembly.
  • a spinning equipment of an airless spinning cooling forming device comprising a spinning box body, a spinneret and the aforementioned airless spinning cooling forming device.
  • the focus of the present invention is to provide a subversive spinning cooling forming process, as shown in Figures 2 and 3, the process includes atomization, cooling, and oiling. Its working process is as follows: the molten body passes through the spinneret to form filaments, and after puffing, it enters the fog zone for cooling; after mixing the spinning oil and water according to a certain ratio, the mixing ratio can be 1:9, or other more suitable Proportion.
  • the generated water mist enters the atomizing device to cool down the filament; the water mist also makes the spinning oil adhere to the filament and oils the filament. After the filaments are cooled and shaped, they form tows and enter the next process.
  • the excess cooling mist will gather and fall to the bottom of the mist box 2. At this time, the excess cooling mist needs to be recovered, otherwise it will cause pollution or waste.
  • the mist area is located in a semi-closed cavity, and the collected spinning oil liquid is discarded or recycled after treatment.
  • the cooling of the fog zone is divided into multiple stages, and the atomization device sends cooling fog to the fog zone through the fog port.
  • the number and size of the fog ports in each stage are different according to the requirements of the forming process.
  • the temperature drops from 268°C to 150°C, and the upper part needs to generate more fog.
  • a large amount of cooling fog is passed to cool down to 120°C.
  • the strands are gradually formed in the fog zone, and the temperature drops to room temperature. (around 20°C).
  • it In order to adapt to the working conditions in extremely cold and hot regions, it also includes a temperature adjustment step for the aqueous solution of spinning oil. melting effect and cooling effect.
  • the molten body is extruded from the spinning box and spinneret by the extruder to be cooled and formed.
  • the forming process requires proper cooling.
  • the existing cooling method is to use high-power refrigeration equipment Generated cold air for cooling and forming. Even if the cold air contacts the filaments at a wind speed of 0.5-0.6m/s according to the highest requirement of constant wind speed in actual working conditions, the temperature is still high and soft after the filaments are expanded from 268°C to 150°C.
  • the silk sliver will vibrate at the wind speed of 0.5-0.6m/s, and the cooling and shaping process will affect the quality of the silk.
  • each spinning station needs 3.5kw power consumption, which consumes a lot of power.
  • the atomizing generator that the present invention adopts each spinning station only needs 300w power consumption.
  • the refrigeration equipment is removed, and the atomizing generator atomizes the mixture of oil and water in large quantities, and the mist produced continuously reaches the mist box through the mist opening, and the high-temperature chemical fiber is cooled by the mist through the mist box.
  • the mixed solution of spinning oil and water used in the present invention taking one of the examples as an example, the ratio of water to spinning oil is 9:1, and the thermal specific capacity of water is much greater than that of air, and the cooling mist is formed at the same time , make full contact with the filament, and the cooling efficiency is higher.
  • the cooling mist contacts the filaments in the absence of wind, which avoids the influence of traditional industrial air-conditioning air supply methods on the quality of the filaments.
  • the amount of mist produced is set according to the process of chemical fiber yarns. Since chemical fiber yarns need to be cooled in sections during the forming process, the present invention adjusts the number and size of fog ports to meet the requirements of the chemical fiber forming process.
  • the chemical fiber spinning process also needs an oiling agent.
  • the purpose of the oiling agent is anti-static, multi-fiber cohesion and increasing smoothness.
  • the oiling process is carried out separately after the cooling is completed, but now the amount of oil required for the spinning process is contained in the fog-cooled fog. No oiling required. Increased oiling uniformity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

本发明公开了一种无风式纺丝冷却成形工艺、装置与纺丝设备,工艺包括熔融体经过喷丝板形成丝条,膨化后进入雾区冷却;将纺丝油剂与水按照一定比例混合后,进入雾化装置,形成冷却雾,冷却雾对丝条进行降温;冷却雾同时使纺丝油剂附着在丝条上,对丝条进行上油;丝条冷却、成形后形成丝束,进入下道工艺。装置包括雾化液容器、雾化发生器、雾箱、集油组件,雾箱呈锥筒状,上部和底部开口,熔融、喷丝后的丝条穿过雾箱形成丝束,雾化发生器与雾箱通过多个雾口连接,产生的冷却雾进入雾箱与丝条接触。纺丝设备包括上述冷却成形装置。本发明大大的节约设备采购与生产、维保成本,无需上油环节,同时由于无风冷却,提高了纺丝成形的质量。

Description

一种无风式纺丝冷却成形工艺、装置及纺丝设备 技术领域
本发明属于化学纤维纺丝成形技术领域,具体涉及一种颠覆传统利用冷却风冷却成形方式,改为采用无风冷却成形方式的冷却成形方法、冷却成形装置及纺丝设备。
背景技术
熔融纺丝纤维成形过程的冷却条件,是影响纤维成形和质量的主要因素之一。它直接关系到纤维结构形态、性能和质量。要获得可纺性与欠伸性能良好的纤维,在纺丝流程中,纤维尚未完全固化之前,从喷丝板至下面约1.2米的区段中的冷却显得尤为重要。在纺丝过程中熔融体出喷丝板孔,进入丝仓空气介质中,熔体温度约在268°C左右,熔体热量经过辐射,传导,对流而散发逐渐冷却凝固成形。当其周围空气介质温度湿度气流波动变化不正常,纤维成形处于非稳定状态之中则影响其温度梯度,速度梯度、直径梯度的变化不稳,纤维成形的固化点位置时高时低,造成初生纤维长链分子的取向度,结晶度,纤维皮层与内芯结构的差异,以及影响纤维外形形态结构出现不规整或异形状态等。此种不稳定纺丝,最终反映于纤维可欠性差,内在质量低,纤维的支数,伸长,强力等不匀率大,染色不均匀。后道工序加工困难,欠伸毛丝断头多,劳动强度高,产量低等。
目前纺丝行业的冷却成形过程基本采用侧吹风或环吹风,对丝束进行冷却定型。如说明书附图1所示,熔融的化纤从喷丝板依次进入膨化区、冷却区、成形区、上油点、形成丝束卷绕后进入下道工艺(织造、清洗)。其工艺过程为:化纤熔融体由挤压机从纺丝箱、喷丝板挤出丝束经过无风区进行膨化,采用大功率制冷设备产生的冷风来进行冷却、成形,再进入上油点进行上油。上油剂的目的是防静电、促进多根抱合与增加平滑性。上油点设置上油轮或喷嘴,以上油轮举例,上油轮在装有纺丝油剂的油槽内旋转,丝束与上油轮接触后附着纺丝油剂。
这种工艺对冷却设备要求较高,一般采用工业空调,每个工位需要3.5kw的功耗,工业空调产生的冷风必须恒温、恒湿、恒速、高洁净。中国专利CN202101383U 纺丝冷却空调、CN103884060A 一种纺丝空调系统及纺丝送风压力稳定切换方法、CN2615607Y 纺丝用高压空调机组、CN104197486A 一种纺丝空调机组侧吹风稳定保护装置、CN204176823U 纺丝机和纺丝车间空调通风系统,都对这种工艺方式及工业空调的特性进行了介绍。
技术问题
传统纺丝工艺的缺陷如下:
1、由于风冷过程中需冷却的丝会因吹风出现抖动,影响了丝的品质;
2、工作过程中耗能较大,不利于创建低碳社会及降低制造成本;
3、工业空调采购成本高昂,维护成本也较高。
技术解决方案
本发明采用如下技术方案:一种无风式纺丝冷却成形工艺,包括以下步骤:
熔融体经过喷丝板形成丝条,膨化后进入雾区冷却,
将纺丝油剂与水按照一定比例混合后,进入雾化装置,形成冷却雾,冷却雾对丝条进行降温,
冷却雾同时使纺丝油剂附着在丝条上,对丝条进行上油,
丝条冷却、成形后形成丝束,进入下道工艺。
进一步地,还包括对含有纺丝油剂液体的回收步骤,为了方便收集,雾区位于半封闭腔体内,收集后的纺丝油剂液体废弃或处理后循环使用。
进一步地,根据化纤丝条成型特性,雾区冷却分为多段进行,雾化装置通过雾口向雾区输送冷却雾,每段的雾口数量与大小根据成形工艺要求有所区别。
进一步地,为了适应极寒与炎热地区的工作状况,还包括纺丝油剂水溶液的温度调节步骤,在进入雾化装置前,或在雾化装置内,对纺丝油剂水溶液进行温度调节。
相应地,公开一种无风式纺丝冷却成形装置,采用上述纺丝冷却成形工艺,包括雾化液容器、雾化发生器、雾箱、集油组件,
所述雾化发生器位于纺丝箱体下方,雾化发生器与雾化液容器连接,纺丝油剂与水在雾化液容器内混合;
雾箱呈锥筒状,上部和底部开口,熔融、喷丝后的丝条穿过雾箱形成丝束,雾化发生器与雾箱通过多个雾口连接,产生的冷却雾进入雾箱与丝条接触,
集油组件包括泵、水管,在雾箱底部收集汇聚后多余的雾化液,废弃或处理后循环使用。
进一步地,所述雾化发生器的雾口与雾箱通过管道连接。
进一步地,所述雾箱上部开有圆形孔,大小与丝条组占据的面积相同,雾箱底部设置有供丝束穿过的孔、与集油组件连接的孔道。
相应地,公开一种无风式纺丝设备,包括纺丝箱体、喷丝板及上述无风式纺丝冷却成形装置。
有益效果
1、本发明重新设计化纤纺丝冷却成形的工艺,无需制冷设备,利用雾化发生器产生的雾对需要冷却的化纤进行冷却,大大的节约设备采购与生产、维保成本,可以节省国家大量的金属材料与电能;
2、雾化发生器生成的水雾中含有纺丝工艺要求的油剂,无需上油环节;
3、本发明所述的无风式纺丝冷却工艺与设备,由于无风,提高了纺丝成形的质量。
附图说明
图1为本发明背景所述的传统纺丝冷却成形方法;
图2为本发明所述的无风式纺丝冷却成形工艺的原理、装置与纺丝设备的结构示意图;
图3为为本发明所述的无风式纺丝冷却成形工艺的流程示意图。
图中,1、雾化液容器;2、雾化发生器;3、雾箱。
本发明的最佳实施方式
如图2所示,一种无风式纺丝冷却成形装置,包括:雾化液容器(1)、雾箱(2)、集油组件。水与纺丝油剂在雾化液容器中混合、存放。雾化发生器(2),位于纺丝箱体下方,所述雾化发生器(1)的雾口与雾箱(2)通过管道连接。对上述混合液进行雾化,形成冷却雾。雾箱(2)呈锥筒状,上部和底部开口,熔融、喷丝后的丝条穿过雾箱(2)形成丝束;雾化发生器(1)与雾箱(2)通过多个雾口连接,雾化发生器(1)产生的冷却雾进入雾箱(2)与丝条接触。集油组件,在雾箱(2)底部收集汇聚后的雾化液,对多余的雾化液废弃或处理后循环使用。
所述雾箱(2)上部开有圆形孔,大小与丝条组占据的面积相同,雾箱(2)底部设置有供丝束穿过的孔、与集油组件连接的孔道。
本发明的实施方式
一种无风式纺丝冷却成形装置的纺丝设备,包括纺丝箱体、喷丝板及上述无风式纺丝冷却成形装置。
本发明重点在于提供一种颠覆性的纺丝冷却成形工艺,如图2、3所示,工序包括雾化、冷却、上油。其工作过程如下:熔融体经过喷丝板形成丝条,膨化后进入雾区冷却;将纺丝油剂与水按照一定比例混合后,混合比例可以为1:9,也可以为其他更合适的比例。产生的水雾进入雾化装置,对丝条进行降温;水雾同时使纺丝油剂附着在丝条上,对丝条进行上油。丝条冷却、成形后形成丝束,进入下道工艺。
冷却雾除了附着在丝条上,多余的冷却雾会汇聚、掉落至雾箱2底部,此时需要对多余的冷却雾回收,不然会造成污染或浪费。为了方便收集,雾区位于半封闭腔体内,收集后的纺丝油剂液体废弃或处理后循环使用。
如图2所示,根据化纤丝条成型特性,雾区冷却分为多段进行,雾化装置通过雾口向雾区输送冷却雾,每段的雾口数量与大小根据成形工艺要求有所区别。丝条经过膨化区后,温度从268℃降至150℃,上部需要产生的雾量更多,在冷却区通过大量冷却雾,降温至120℃,丝条逐步在雾区成形,温度降低至室温(20℃左右)。
为了适应极寒与炎热地区的工作状况,还包括纺丝油剂水溶液的温度调节步骤,在进入雾化装置前,或在雾化装置内,对纺丝油剂水溶液进行温度调节,以免影响雾化效果以及冷却效果。
本发明的工作原理:
如图1所示,现有的化纤纺丝,熔融体由挤压机从纺丝箱、喷丝板挤出冷却成形,成形过程需要适当的冷却,现有的冷却方法是采用大功率制冷设备产生的冷风来进行冷却成形。冷风即使按照实际工况中风速恒速的最高要求,以0.5—0.6m/s的风速与丝条接触,由于丝条在膨化后,由268℃降至150℃,但温度依然较高,柔软的丝条在0.5—0.6m/s的风速也会发生抖动,冷却定型过程影响了丝的品质。
同时,工业空调造价高昂,需要安装各类冷却、送风、除湿、降温、除尘设备,消耗大量铜材、铝材、不锈钢型材。同时传统纺丝冷却成形工艺,为了满足常年保持恒温、恒湿、恒速、高洁净的要求,造价与维护成本高昂。在实际使用过程中,每个纺丝工位需要3.5kw功耗,消耗大量电能。而本发明采用的雾化发生器,每个纺丝工位仅需要300w功耗。
而本发明,去掉制冷设备,雾化发生器将油剂与水的混合液进行大量雾化,不断产生的雾经雾口到达雾箱,高温的化纤丝经雾箱由雾对它进行冷却。本发明所采用的纺丝油剂与水的混合液,以其中一个实施例举例,水与纺丝油剂比值为9:1,而水的热比容远远大于空气,同时形成冷却雾后,与丝条进行充分接触,冷却效率更高。
由于无需风机,冷却雾与丝条在无风状况下接触,避免传统工业空调送风方式对丝条品质的影响。
需要注意的,产生的雾量根据化纤丝的工艺进行设定,由于化纤丝在成形过程中需要分段冷却,本发明通过调整雾口数量和大小进行,达到化纤成形工艺要求。
化纤纺丝过程中除了需要冷却外还需要上油剂,上油剂的目的是防静电、多根抱合与增加平滑性。原有的风冷是冷却完成后单独进行上油工序,现在雾冷雾中就有纺丝工艺要求的油量。无需上油环节。增加了上油的均匀性。
本发明创新性改变工艺后,除了取消上油点,通过雾化接触使上油更均匀。更重要的目的在于节省纺丝冷却环节的成本,这些成本降低包括工业空调转变为雾化发生器的采购与安装调试环节、正常工作时的能耗环节、维护保养环节。
以上显示和描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,上述实施方式只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。
工业实用性
本发明创新性改变工艺后,除了取消上油点,通过雾化接触使上油更均匀。更重要的目的在于节省纺丝冷却环节的成本,这些成本降低包括工业空调转变为雾化发生器的采购与安装调试环节、正常工作时的能耗环节、维护保养环节。

Claims (8)

  1. 一种无风式纺丝冷却成形工艺,其特征在于:包括以下步骤:
    S1.熔融体经过喷丝板形成丝条,膨化后进入雾区冷却,
    S2.将纺丝油剂与水按照一定比例混合后,进入雾化装置,形成冷却雾,冷却雾对丝条进行降温,
    S3.冷却雾同时使纺丝油剂附着在丝条上,对丝条进行上油,
    S4.丝条冷却、成形后形成丝束,进入下道工艺。
  2. 根据权利要求1所述的一种无风式纺丝冷却成形工艺,其特征在于:还包括对含有纺丝油剂液体的回收步骤,为了方便收集,雾区位于半封闭腔体内,收集后的纺丝油剂液体废弃或处理后循环使用。
  3. 根据权利要求1所述的一种无风式纺丝冷却成形工艺,其特征在于:根据化纤丝条成型特性,雾区冷却分为多段进行,雾化装置通过雾口向雾区输送冷却雾,每段的雾口数量与大小根据成形工艺要求有所区别。
  4. 根据权利要求1所述的一种无风式纺丝冷却成形工艺,其特征在于:为了适应极寒与炎热地区的工作状况,还包括纺丝油剂水溶液的温度调节步骤,在进入雾化装置前,或在雾化装置内,对纺丝油剂水溶液进行温度调节。
  5. 根据权利要求1-4任一项所述的一种无风式纺丝冷却成形工艺的冷却成形装置,其特征在于:包括
    雾化液容器(1),存放水与纺丝油剂的混合液,
    雾化发生器(2),位于纺丝箱体下方,与雾化液容器(1)连接,对上述混合液进行雾化,形成冷却雾,
    雾箱(2),呈锥筒状,上部和底部开口,熔融、喷丝后的丝条穿过雾箱(2)形成丝束;雾化发生器(1)与雾箱(2)通过多个雾口连接,雾化发生器(1)产生的冷却雾进入雾箱(2)与丝条接触,
    集油组件,在雾箱(2)底部收集汇聚后的雾化液,对多余的雾化液废弃或处理后循环使用。
  6. 根据权利要求1所述的一种无风式纺丝冷却成形装置,其特征在于:所述雾化发生器(1)的雾口与雾箱(2)通过管道连接。
  7. 根据权利要求1所述的一种无风式纺丝冷却成形装置,其特征在于:所述雾箱(2)上部开有圆形孔,大小与丝条组占据的面积相同,雾箱(2)底部设置有供丝束穿过的孔、与集油组件连接的孔道。
  8. 采用权利要求5-7任一项所述的一种无风式纺丝冷却成形装置的纺丝设备,包括纺丝箱体、喷丝板及上述无风式纺丝冷却成形装置。
PCT/CN2022/100321 2022-06-18 2022-06-22 一种无风式纺丝冷却成形工艺、装置及纺丝设备 WO2023142350A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280044089.4A CN117580979A (zh) 2022-06-18 2022-06-22 一种无风式纺丝冷却成形工艺、装置及纺丝设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210693698.4A CN114875503A (zh) 2022-06-18 2022-06-18 一种无风式纺丝冷却成形工艺、装置及纺丝设备
CN202210693698.4 2022-06-18

Publications (1)

Publication Number Publication Date
WO2023142350A1 true WO2023142350A1 (zh) 2023-08-03

Family

ID=82682081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100321 WO2023142350A1 (zh) 2022-06-18 2022-06-22 一种无风式纺丝冷却成形工艺、装置及纺丝设备

Country Status (2)

Country Link
CN (2) CN114875503A (zh)
WO (1) WO2023142350A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204828A (en) * 1978-08-01 1980-05-27 Allied Chemical Corporation Quench system for synthetic fibers using fog and flowing air
EP0040482A1 (en) * 1980-05-13 1981-11-25 Celanese Corporation Process and apparatus for melt spinning filaments in which quench gas and finishing liquid are introduced to the filaments through the fibre pack and spinneret
CN1544719A (zh) * 2003-11-10 2004-11-10 忠 黄 聚酯纤维熔融纺中的水冷却方法
CN202193882U (zh) * 2011-07-25 2012-04-18 桐乡市中辰化纤有限公司 喷雾加湿纺丝装置
CN204111954U (zh) * 2014-03-19 2015-01-21 福建省长乐市山力化纤有限公司 一种带有横向风冷的纺丝甬道
CN112709007A (zh) * 2020-12-31 2021-04-27 佛山市南海必得福无纺布有限公司 一种亲水熔喷无纺布生产装置
CN214400925U (zh) * 2020-11-30 2021-10-15 广东金发科技有限公司 熔喷法非织造布系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204828A (en) * 1978-08-01 1980-05-27 Allied Chemical Corporation Quench system for synthetic fibers using fog and flowing air
EP0040482A1 (en) * 1980-05-13 1981-11-25 Celanese Corporation Process and apparatus for melt spinning filaments in which quench gas and finishing liquid are introduced to the filaments through the fibre pack and spinneret
CN1544719A (zh) * 2003-11-10 2004-11-10 忠 黄 聚酯纤维熔融纺中的水冷却方法
CN202193882U (zh) * 2011-07-25 2012-04-18 桐乡市中辰化纤有限公司 喷雾加湿纺丝装置
CN204111954U (zh) * 2014-03-19 2015-01-21 福建省长乐市山力化纤有限公司 一种带有横向风冷的纺丝甬道
CN214400925U (zh) * 2020-11-30 2021-10-15 广东金发科技有限公司 熔喷法非织造布系统
CN112709007A (zh) * 2020-12-31 2021-04-27 佛山市南海必得福无纺布有限公司 一种亲水熔喷无纺布生产装置

Also Published As

Publication number Publication date
CN114875503A (zh) 2022-08-09
CN117580979A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
CN101487144B (zh) 一种用于生产多孔细旦poy丝的纺丝设备
CN107012522A (zh) 生产三维卷曲中空型涤纶短纤的生产线及其生产工艺
CN102134759B (zh) 生产聚酯工业丝的环吹冷却装置
CN104480555A (zh) 一种高伸度特性涤纶预取向纤维的生产工艺
CN206204493U (zh) 一种化纤纺丝冷却系统
WO2023142350A1 (zh) 一种无风式纺丝冷却成形工艺、装置及纺丝设备
CN218115685U (zh) 一种微风液体雾化式冷却纺丝机构
CN220079269U (zh) 一种冷却风多孔板及一种侧吹风箱
CN107034533A (zh) 一种涤纶fdy多辊式无油全牵伸纤维的生产工艺方法
CN217600924U (zh) 一种半消光超低f牵伸丝的生产设备
CN106367822B (zh) 一种化纤纺丝冷却系统及其应用
CN111118638A (zh) 一种锦纶6fdy全消光水晶纱生产方法
CN112011838A (zh) 一种纺丝机的循环冷却装置
CN116202307A (zh) 一种碳纤维上浆后的干燥装置及其控制方法
CN105648552A (zh) 一种hoy弹簧丝的制备方法
CN201864807U (zh) 一种熔体直纺冷却加湿装置
CN212669869U (zh) 一种用于生产超细纤维的侧吹风装置
CN114574980A (zh) 一种多孔纤维的生产设备和制备方法
CN203923484U (zh) 高速纺丝交络一步法生产聚酰胺6poy/fdy复合纤维的设备
CN210796726U (zh) 聚乳酸涤纶全拉伸丝的生产设备
CN106978635A (zh) 一种高强力低缩涤纶工业丝的加工工艺
CN208266316U (zh) 一种聚酯细旦涤纶工业丝纺牵联合设备
CN213013184U (zh) 一种纺丝侧吹风冷装置
CN111719189A (zh) 一种极细旦单板环吹5d或7d的poy纺丝线设备
CN220520703U (zh) 一种闪蒸法纺丝用可伸缩回风装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923159

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280044089.4

Country of ref document: CN