WO2023140658A1 - 뇌유래신경성장인자를 이용한 패혈증 진단, 예방 또는 치료용 약학적 조성물 - Google Patents

뇌유래신경성장인자를 이용한 패혈증 진단, 예방 또는 치료용 약학적 조성물 Download PDF

Info

Publication number
WO2023140658A1
WO2023140658A1 PCT/KR2023/000970 KR2023000970W WO2023140658A1 WO 2023140658 A1 WO2023140658 A1 WO 2023140658A1 KR 2023000970 W KR2023000970 W KR 2023000970W WO 2023140658 A1 WO2023140658 A1 WO 2023140658A1
Authority
WO
WIPO (PCT)
Prior art keywords
bdnf
sepsis
brain
growth factor
nerve growth
Prior art date
Application number
PCT/KR2023/000970
Other languages
English (en)
French (fr)
Inventor
박대원
석혜리
송주현
전지훈
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2023140658A1 publication Critical patent/WO2023140658A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to a composition for diagnosing, preventing or treating sepsis comprising a primer specifically recognizing brain-derived nerve growth factor (BDNF) gene or an antibody of brain-derived nerve growth factor (BDNF).
  • BDNF brain-derived nerve growth factor
  • Sepsis is a condition in which a severe inflammatory response occurs throughout the body due to infection with microorganisms.
  • sepsis kills more than 200,000 people a year (Hoyert et al. Deaths: final data for 1997. Natl. Vital Stat. Rep. 47, 1-104, 1999), and sepsis is known to impair immune function by defects in internal immunity and excessive lymphocyte apoptosis. Immunosuppression has consequently been regarded as an important factor in death from sepsis, and recovery from deficiencies in immune function caused by high-dose chemotherapy or radiotherapy remains an important clinical problem.
  • Sepsis is a condition in which systemic symptoms such as high fever, joint pain, headache, and malaise along with chills are caused by microorganisms or toxins produced by such microorganisms when infected with microorganisms such as Pseudomonas aeruginosa, Escherichia coli, streptococci, Staphylococcus aureus, and pneumoniae.
  • microorganisms such as Pseudomonas aeruginosa, Escherichia coli, streptococci, Staphylococcus aureus, and pneumoniae.
  • the route of infection of microorganisms is unknown, but appendicitis, otitis media, skin suppuration, bedsores, lung diseases, cholecystitis, pyelonephritis, and osteomyelitis are known to be the cause of sepsis. Sepsis can be diagnosed through blood tests, urine tests, and cerebrospinal fluid tests.
  • Severe sepsis and septic shock are diseases with the third highest mortality rate in developed countries, despite advances in various intensive care including antibiotic therapy (Anderson, R.N. 2002; Andreu Ballester, J.C. et al., 2008; Angus, D.C. et al., 2001). Therefore, diagnosing and treating early sepsis symptoms before they lead to severe sepsis or septic shock can be a very important requirement for reducing such septic mortality.
  • Lysophosphatidylcholine is a major component of oxidized low-density lipoprotein, and has an in vitro stimulating effect on various immune cells including monocytes, macrophages, T lymphocytes and neutrophils, and is known to be useful for the treatment of sepsis (Yan et al., Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat. Med. 10, 161-16 7, 2004). It has been reported that this increases the production of IL-1 ⁇ in monocytes in vitro (Liu-Wu, Y., Hurt-Camejo, E. & Wiklund, O.
  • Lysophosphatidylcholine induces the production of IL1 beta by human monocytes. Atherosclerosis 137, 351-7. (1998)), and also increases the generation of superoxide anion in neutrophils in vitro (Savage, J.E. ., Theron, A. J. & Anderson, R. Activation of neutrophil membrane-associated oxidative metabolism by ultraviolet radiation. J Invest Dermatol 101, 532-6. (1993)).
  • LPC is known as a useful biomarker as a sepsis diagnostic marker as well as a therapeutic effect in sepsis, but research on this is insignificant.
  • PCT Procalcitonin
  • CRP C-reactive protein
  • Del-1 Developmental endothelial locus-1
  • Non-infectious diseases such as burns, trauma, adrenal insufficiency, pancreatitis, pulmonary embolism, ruptured aortic aneurysm, myocardial infarction, internal bleeding, cardiac tamponade, and drug addiction can also show clinical symptoms and signs similar to sepsis.
  • sepsis diagnosis by blood culture method shows negative culture in more than 50% of patients in the case of severe sepsis or septic shock, and even when the causative lesion of infection is estimated, it is reported that only 35% of cases are confirmed in culture. Therefore, there is difficulty in time or accuracy in diagnosing inflammatory diseases or sepsis by conventional methods.
  • Patent Document 1 Republic of Korea Patent Registration No. 10-1869509
  • the present invention provides a composition for diagnosing sepsis comprising an agent capable of confirming the expression level of brain-derived nerve growth factor (BDNF).
  • BDNF brain-derived nerve growth factor
  • kits for diagnosing sepsis which includes a composition including an agent capable of checking the expression level of brain-derived nerve growth factor (BDNF).
  • BDNF brain-derived nerve growth factor
  • a method for providing information necessary for diagnosing sepsis includes measuring the expression level of brain-derived nerve growth factor (BDNF) from a biological sample of an individual suspected of sepsis and comparing the expression level with the expression level of brain-derived nerve growth factor (BDNF) in a normal control sample.
  • BDNF brain-derived nerve growth factor
  • an object of the present invention is to provide a pharmaceutical composition for preventing or treating sepsis comprising brain-derived nerve growth factor (BDNF) as an active ingredient.
  • BDNF brain-derived nerve growth factor
  • Another aspect of the present invention aims to provide a health functional food for improving or alleviating sepsis containing brain-derived nerve growth factor (BDNF) as an active ingredient.
  • BDNF brain-derived nerve growth factor
  • One aspect of the present invention provides a pharmaceutical composition for diagnosing, preventing or treating sepsis comprising brain-derived nerve growth factor (BDNF) as an active ingredient.
  • BDNF brain-derived nerve growth factor
  • the brain-derived nerve growth factor may be 10 to 100 ng / mL, specifically 10 to 100 ng / mL or 50 to 100 ng / mL based on the total composition, and as an example, 10, 50, and 100 It may be included in any one concentration of ng / mL.
  • the brain-derived nerve growth factor is included at a concentration outside the above range, the desired effect of the present invention cannot be obtained.
  • the agent may be used in any one of polymerase chain reaction, reverse transcription polymerase reaction (RT-PCR), competitive reverse transcription polymerase reaction (Competitive RT-PCR), RNase protection assay (RNase, S1 nuclease assay), in situ hybridization, nucleic acid microarray, next-generation sequencing, and Northern blotting.
  • RT-PCR reverse transcription polymerase reaction
  • Competitive RT-PCR competitive reverse transcription polymerase reaction
  • RNase protection assay RNase, S1 nuclease assay
  • in situ hybridization nucleic acid microarray
  • next-generation sequencing and Northern blotting.
  • kits for diagnosing sepsis including a composition comprising an agent capable of checking the expression level of brain-derived nerve growth factor (BDNF).
  • BDNF brain-derived nerve growth factor
  • Another aspect of the present invention provides a method for providing information necessary for diagnosing sepsis, comprising measuring the expression level of brain-derived nerve growth factor (BDNF) from a biological sample of an individual suspected of sepsis and comparing the expression level with the expression level of brain-derived nerve growth factor (BDNF) in a normal control sample.
  • BDNF brain-derived nerve growth factor
  • the sample may be any one or more samples selected from the group consisting of blood, serum, plasma, saliva, sputum, synovial fluid, amniotic fluid, ascites, cervical or vaginal secretion, urine, and cerebrospinal fluid.
  • the pharmaceutical composition for preventing or treating sepsis according to the present invention may contain a pharmaceutically effective amount of brain-derived nerve growth factor alone or may include one or more pharmaceutically acceptable carriers.
  • the pharmaceutical composition of the present invention may be administered orally or parenterally, and is preferably applied by parenteral administration.
  • the pharmaceutical composition of the present invention may be formulated in various oral or parenteral dosage forms, but is not limited thereto.
  • the composition may inhibit the expression of pAMPK or IkB ⁇ .
  • Another aspect of the present invention provides a health functional food for improving or alleviating sepsis containing brain-derived nerve growth factor (BDNF) as an active ingredient.
  • BDNF brain-derived nerve growth factor
  • Another aspect of the present invention provides a method for reducing the expression levels of TNF- ⁇ , IL-6 and IL-1 ⁇ and increasing the expression of pAMPK relative to macrophages not treated with LPS by treating LPS-treated macrophages with BDNF in vitro.
  • Another aspect of the present invention provides a method for preventing or treating sepsis, comprising administering or treating BDNF to a subject in need of prevention or treatment of sepsis.
  • Another aspect of the present invention is the use of BDNF for the preparation of an agent (pharmaceutical) for preventing or treating sepsis; or the use of BDNF for the prevention or treatment of sepsis.
  • the BDNF and sepsis are as described above.
  • the pharmaceutical composition for diagnosis, prevention or treatment of sepsis including brain-derived nerve growth factor (BDNF) of the present invention can be usefully used for diagnosis and prognosis of sepsis by measuring the expression level of a gene or protein, and the functional food for improvement or alleviation has the effect of preventing, treating, improving or alleviating sepsis.
  • BDNF brain-derived nerve growth factor
  • Figure 1 shows the results of measuring brain-derived nerve growth factor (BDNF) levels in the serum of septic patients and healthy controls who visited the emergency room.
  • BDNF brain-derived nerve growth factor
  • FIG. 2 shows the results of measuring the serum brain-derived nerve growth factor (BDNF) levels in the recovery period or immediately before death of patients with sepsis.
  • BDNF serum brain-derived nerve growth factor
  • FIG 3 shows the results of measuring cell viability after treatment with brain-derived nerve growth factor (BDNF).
  • BDNF brain-derived nerve growth factor
  • Figure 4 shows the results of measuring cell viability after brain-derived nerve growth factor (BDNF) treatment and LPS stimulation.
  • BDNF brain-derived nerve growth factor
  • Figure 5 shows the results of ELISA analysis of the effect on the expression of pro-inflammatory cytokines when brain-derived nerve growth factor (BDNF) alone treatment without LPS stimulation in RAW264.7 cells.
  • BDNF brain-derived nerve growth factor
  • Figure 6 shows the results of ELISA analysis of the effect of brain-derived nerve growth factor (BDNF) treatment on the expression of pro-inflammatory cytokines induced by LPS stimulation in RAW264.7 cells.
  • BDNF brain-derived nerve growth factor
  • Figure 7 shows the results of Western blot evaluation of the effect of brain-derived nerve growth factor (BDNF) on the AMPK pathway in RAW264.7 cells.
  • BDNF brain-derived nerve growth factor
  • Figure 8 shows the results of Western blot evaluation of the effect of brain-derived nerve growth factor (BDNF) on the AMPK pathway in mouse peritoneal macrophages.
  • BDNF brain-derived nerve growth factor
  • Figure 9 shows the results of Western blot evaluation of the effect of brain-derived nerve growth factor (BDNF) on the NF-kB pathway in RAW264.7 cells.
  • BDNF brain-derived nerve growth factor
  • Figure 10 shows the results of Western blot evaluation of the effect of brain-derived nerve growth factor (BDNF) on the NF-kB pathway in mouse peritoneal macrophages.
  • BDNF brain-derived nerve growth factor
  • Figure 12 shows the results of evaluating the effect of AMPK knockdown by siRNA on the inhibitory effect of brain-derived nerve growth factor (BDNF) on the NF-kB signaling pathway induced by LPS in RAW264.7 cells.
  • BDNF brain-derived nerve growth factor
  • Figure 13 shows the results of evaluating whether treatment with brain-derived nerve growth factor (BDNF) restores the expression of pAMPK in RAW264.7 cells stimulated with LPS after pretreatment with Compound C.
  • BDNF brain-derived nerve growth factor
  • Figure 14 shows the results of evaluating the effect of brain-derived nerve growth factor (BDNF) treatment on the NF-kB signaling pathway in RAW264.7 cells stimulated with LPS after pretreatment with Compound C.
  • BDNF brain-derived nerve growth factor
  • Figure 15 shows the results of evaluating the effect of brain-derived nerve growth factor (BDNF) treatment on LPS-induced pro-inflammatory cytokine expression in RAW264.7 cells transfected with control siRNA and AMPK siRNA, respectively, by ELISA.
  • BDNF brain-derived nerve growth factor
  • 16 shows the result of confirming the level of activation of pAMPK in neutrophils according to the amount and time of BDNF by Western blotting.
  • 17 is a result showing whether or not neutrophils were changed when BDNF and LPS were treated individually or together.
  • Figure 19 shows the results of confirming the survival rate improvement effect of BDNF in sepsis animal models.
  • One aspect of the present invention provides a pharmaceutical composition for diagnosing, preventing or treating sepsis comprising brain-derived nerve growth factor (BDNF) as an active ingredient.
  • BDNF brain-derived nerve growth factor
  • the brain-derived neurotrophic factor is a glycoprotein, which is a nerve growth factor family of proteins, and is processed from a giant precursor to produce a neurotrophic factor that promotes the survival of a neuronal cell population (Jones K.R. et al., Proc. Natl. Acad. Sci USA, 87:8060-8064 (1990)).
  • the brain-derived nerve growth factor may be 10 to 100 ng / mL, specifically 10 to 100 ng / mL or 50 to 100 ng / mL based on the total composition, and as an example, 10, 50, and 100 It may be included in any one concentration of ng / mL.
  • the brain-derived nerve growth factor is included at a concentration outside the above range, the desired effect of the present invention cannot be obtained.
  • the expression level of the brain-derived nerve growth factor (BDNF) can be confirmed by measuring the expression level of the brain-derived nerve growth factor (BDNF) gene or its protein expression level.
  • Expression level measurement methods can be used in all common expression level methods used in the art, and examples of analysis methods include RT-PCR, competitive RT-PCR, real-time RT-PCR, RNase protection assay (RPA: RNase protection assay), northern blotting, DNA microarray chip, etc., but are not limited thereto.
  • the protein self-expression level measurement method may be used in any conventional method used in the art, such as Western blotting, enzyme-linked immunosorbent assay, radioimmunoassay (RIA), radioimmunoassay, oxteroni immunodiffusion method, rocket immunoelectrophoresis, immunohistochemistry, immunoprecipitation, complement fixation assay, flow cytometry (FACS), or There is a protein chip method and the like, but is not limited thereto.
  • the agent may be used in any one of polymerase chain reaction, reverse transcription polymerase reaction (RT-PCR), competitive reverse transcription polymerase reaction (Competitive RT-PCR), RNase protection assay (RNase, S1 nuclease assay), in situ hybridization, nucleic acid microarray, next-generation sequencing, and Northern blotting.
  • RT-PCR reverse transcription polymerase reaction
  • Competitive RT-PCR competitive reverse transcription polymerase reaction
  • RNase protection assay RNase, S1 nuclease assay
  • in situ hybridization nucleic acid microarray
  • next-generation sequencing and Northern blotting.
  • a primer may be used in the polymerase chain reaction.
  • the primer is a short single-stranded oligonucleotide that serves as a starting point for DNA synthesis.
  • the primer specifically binds to a polynucleotide, which is a template, in a suitable buffer and temperature conditions, and DNA is synthesized by DNA polymerase adding nucleoside triphosphate having a base complementary to the template DNA to the primer and linking them.
  • Primers generally consist of 15 to 30 nucleotide sequences, and the melting temperature (Tm) of binding to the template strand varies depending on the nucleotide composition and length.
  • primers for measuring the expression level of mRNA encoding brain-derived nerve growth factor (BDNF) do not have to have a sequence perfectly complementary to the brain-derived nerve growth factor (BDNF) gene sequence, and it is sufficient to have a length and complementarity suitable for the purpose of measuring the amount of brain-derived nerve growth factor (BDNF) mRNA by amplifying a specific section of brain-derived nerve growth factor (BDNF) mRNA or brain-derived nerve growth factor (BDNF) cDNA through DNA synthesis.
  • BDNF brain-derived nerve growth factor
  • the primers for the amplification reaction complementarily bind to the template (or sense, sense) and the opposite side (antisense, antisense) of both ends of a specific section of the brain-derived nerve growth factor (BDNF) mRNA to be amplified. It consists of a set (pair).
  • BDNF brain-derived nerve growth factor
  • Primers can be easily designed by those skilled in the art by referring to the mRNA or cDNA nucleotide sequence of brain-derived nerve growth factor (BDNF), and an example of the primer sequence of brain-derived nerve growth factor (BNDF) may be the nucleotide sequence of SEQ ID NO: 5'-GAG-CTG-AGC-GTG-TGT-GAC-AG-3' or 5'-GC-AAA-AAG-AGA-ATT-GGC-TGG-CG-3'.
  • BDNF brain-derived nerve growth factor
  • BNDF brain-derived nerve growth factor
  • the microarray may use as a probe any one selected from the group consisting of brain-derived nerve growth factor (BDNF) gene mRNA, brain-derived nerve growth factor (BDNF) protein, and fragments thereof.
  • BDNF brain-derived nerve growth factor
  • the term “probe” refers to a polynucleotide fragment such as RNA or DNA with a length of several to several hundred base pairs that can specifically bind to mRNA or cDNA (complementary DNA) of a specific gene, and is labeled, so that the presence or absence of the target mRNA or cDNA to be bound, the amount of expression, etc. can be confirmed.
  • a probe complementary to brain-derived nerve growth factor (BDNF) mRNA is subjected to hybridization with a sample of a subject to measure the expression level of brain-derived nerve growth factor (BDNF) mRNA. It can be used for diagnosis of infectious inflammatory disease. Probe selection and hybridization conditions can be appropriately selected according to techniques known in the art.
  • the BDNF-specific antibody used to measure the expression level of the BDNF protein through the enzyme-linked immunoassay used herein binds to the BDNF protein of the subject to confirm the presence and expression level of the target protein.
  • a method of detecting by binding a BDNF-specific antibody to a BDNF protein of a subject may be appropriately selected from a direct, indirect, or sandwich method.
  • sepsis includes, but is not limited to, all stages of sepsis, including, but not limited to, the onset of sepsis, severe sepsis, septic shock, and complications associated with the final stage of sepsis.
  • the sepsis may be sepsis caused by microbial infection, and more specifically, sepsis caused by infection with E.coli and/or staphylococcus aureus.
  • the sepsis may be sepsis caused by peritonitis, and more specifically, sepsis caused by traumatic peritonitis.
  • the traumatic peritonitis refers to peritonitis caused by external factors or physical damage.
  • diagnosis includes all activities of predicting and confirming the onset of sepsis by administering the composition.
  • prevention includes all actions that suppress or delay the onset of sepsis by administering the composition.
  • treatment means improvement or alleviation of symptoms, and specifically means treatment of sepsis or alleviation of symptoms.
  • the composition for diagnosing sepsis may be for analyzing and comparing the BDNF content of a normal control group and an individual suspected of sepsis. Specifically, the composition may be used to determine that sepsis is expressed or likely to occur when the average serum BDNF content (expression level) of individuals suspected of sepsis is 0.7 to 0.5, or 0.65 to 0.55, or 0.6 times the average serum BDNF content (expression level) of normal controls.
  • the composition can be used when it is determined that an individual suspected of sepsis is likely or likely to develop sepsis of a higher severity or stage when the average serum BDNF content (expression level) of an individual suspected of sepsis is at a level of 0.1 to 0.4, 0.2 to 0.3, or 0.25 times the average serum BDNF content (expression level) of a normal control group.
  • the composition when the average serum BDNF content (expression level) of an individual suspected of sepsis is 0.65 to 0.75 times higher than the average serum BDNF content (expression level) of a normal control group, the composition can be used to treat sepsis and determine that it is likely to be cured.
  • the composition can be used when the average serum BDNF content (expression level) of individuals suspected of sepsis is reduced to a level of 0.10 to 0.20-fold or 0.15-fold compared to the average serum BDNF content (expression level) of a normal control group.
  • kits for diagnosing sepsis including a composition comprising an agent capable of checking the expression level of brain-derived nerve growth factor (BDNF).
  • BDNF brain-derived nerve growth factor
  • Another aspect of the present invention provides a method for providing information necessary for diagnosing sepsis, comprising measuring the expression level of brain-derived nerve growth factor (BDNF) from a biological sample of an individual suspected of sepsis and comparing the expression level with the expression level of brain-derived nerve growth factor (BDNF) in a normal control sample.
  • BDNF brain-derived nerve growth factor
  • BDNF brain-derived nerve growth factor
  • the sample may be any one or more samples selected from the group consisting of blood, serum, plasma, saliva, sputum, synovial fluid, amniotic fluid, ascites, cervical or vaginal secretion, urine, and cerebrospinal fluid.
  • the method can diagnose actual sepsis in a suspected subject by comparing the expression level of brain-derived nerve growth factor (BDNF) in a normal control group with the expression level in a subject suspected of sepsis. If the brain-derived nerve growth factor (BDNF) protein expression level is lower than that of the normal control group, it is possible to predict the individual who provided the sample with sepsis.
  • BDNF brain-derived nerve growth factor
  • the information providing method may further include analyzing and comparing the BDNF content of a normal control group and an individual suspected of having sepsis. Specifically, the method may further include determining that sepsis has or is likely to occur when the average serum BDNF content (expression level) of individuals suspected of sepsis is 0.7 to 0.5, or 0.65 to 0.55, or 0.6 times higher than the average serum BDNF content (expression level) of normal controls.
  • the method may further include a step of determining that an individual suspected of sepsis is likely or likely to develop sepsis of a higher severity or stage when the average serum BDNF content (expression level) of an individual suspected of sepsis is at a level of 0.1 to 0.4, 0.2 to 0.3, or 0.25 times the average serum BDNF content (expression level) of a normal control group.
  • the method may further include a step of determining that sepsis is cured and possibly cured when the average serum BDNF content (expression level) of individuals suspected of sepsis is at a level of 0.65 to 0.75 times the average serum BDNF content (expression level) of normal controls.
  • the method may further include a step of determining that the severity of sepsis is high, the possibility of complete cure is not high, and the likelihood of the patient dying is relatively high when the average serum BDNF content (expression level) of individuals suspected of sepsis is reduced to a level of 0.10 to 0.20-fold or 0.15-fold compared to the average serum BDNF content (expression level) of normal controls.
  • the above determination is made by simply comparing the average serum BDNF content of the normal control group and the average serum BDNF content of individuals suspected of sepsis in the normal control group.
  • the pharmaceutical composition for preventing or treating sepsis according to the present invention may contain a pharmaceutically effective amount of brain-derived nerve growth factor alone or may include one or more pharmaceutically acceptable carriers.
  • the term "effective amount (or effective amount)” means an amount that is very sufficient to deliver desired effects but is small enough to sufficiently prevent serious side effects within the scope of medical judgment.
  • the amount of brain-derived nerve growth factor administered into the body by the composition of the present invention can be appropriately adjusted in consideration of the route of administration and the subject of administration.
  • pharmaceutically acceptable refers to a composition that is physiologically acceptable and does not cause allergic reactions such as gastrointestinal disorders and dizziness or similar reactions when administered to humans.
  • the pharmaceutically acceptable carriers are commonly used in formulation and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil, but are not limited thereto. No.
  • the pharmaceutical composition of the present invention may further include excipients, diluents, lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives, and the like, in addition to the above components.
  • the pharmaceutical composition of the present invention may be administered orally or parenterally, and is preferably applied by parenteral administration.
  • the pharmaceutical composition of the present invention may be formulated in various oral or parenteral dosage forms, but is not limited thereto.
  • Formulations for oral administration include, for example, tablets, pills, hard/soft capsules, solutions, suspensions, emulsifiers, and syrups. There are granules, elixirs, etc., and these formulations may use one or more diluents or excipients such as commonly used fillers, extenders, wetting agents, disintegrants, lubricants, binders, and surfactants in addition to the above active ingredients.
  • Agar, starch, alginic acid or its sodium salt, anhydrous calcium salt of monohydrogen phosphate, etc. may be used as the disintegrant, silica, talc, stearic acid or its magnesium salt or calcium salt, polyethylene glycol, etc.
  • magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, polyvinylpyrrolidine, low-substituted hydroxypropylcellulose, etc. can be used
  • lactose, dextrose, sucrose, mannitol, sorbitol, cellulose can be used as a diluent, and in some cases, generally known boiling mixtures, absorbents, coloring agents, flavoring agents, sweetening agents, and the like can be used together.
  • the pharmaceutical composition of the present invention may be administered to a subject one or more times daily.
  • Unit dosage means physically discrete units suitable for unitary administration to human subjects and other mammals, each unit containing a therapeutically effective amount of the composition of the present invention, including a suitable pharmaceutical carrier.
  • Routes of administration of the pharmaceutical composition according to the present invention include, but are not limited to, oral, intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intracardiac, transdermal, subcutaneous, intraperitoneal, intranasal, intestinal, topical, sublingual or rectal.
  • the pharmaceutical composition according to the present invention is preferably administered orally or parenterally.
  • parenteral administration this may include subcutaneous, intradermal, intravenous, intramuscular, intraarticular, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.
  • the dosage unit for parenteral administration to an adult patient may be one in which the brain-derived nerve growth factor of the present invention is administered at 5 to 10 mg/kg, and specifically, 5 mg/kg to 10 mg/kg may be administered once or 5 mg/kg may be administered repeatedly at an initial predetermined time.
  • the brain-derived nerve growth factor is administered at a concentration outside the above range, the desired effect of the present invention cannot be obtained.
  • the dosage is variable depending on the severity of the patient's sepsis and the brain-derived nerve growth factor and auxiliary active ingredients used.
  • the composition may inhibit the expression of pAMPK or IkB ⁇ .
  • the pAMPK is an activated form of AMPK (AMP-activated protein kinase), and AMPK is a heteromeric trimeric enzyme composed of a catalytic subunit and two regulatory subunits, and is a major regulator of cellular and whole-body energy homeostasis. It is known to adjust metabolic pathways to balance nutrient supply with energy demand (Yun H. et al., Expert Opin. Ther. Pat. 21(7):983-1005). The degree of activation of the AMPK pathway can be measured through the expression level of the pAMPK.
  • AMPK AMP-activated protein kinase
  • IkB ⁇ nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
  • IkB ⁇ binds to the nuclear localization signal (NLS) site of NF-kB and masks the nuclear localization signal site so that NF-kB remains in an inactive state in the cytoplasm. IkB ⁇ also prevents the binding of NF-kB translation factors to DNA required for NF-kB to function.
  • AMPK activation and increased IkBa expression reduce organ damage caused by sepsis with anti-inflammatory effects that inhibit the secretion of inflammatory cytokines by activating the Toll-like receptor-mediated signaling pathway by antigenic molecular patterns (ex, LPS, etc.) of pathogens in sepsis.
  • the composition of the present invention inhibits the expression of pAMPK or IkB ⁇ (Examples 1 to 7), and through this, it was confirmed that sepsis can be prevented or treated (Example 8).
  • Another aspect of the present invention provides a health functional food for improving or alleviating sepsis containing brain-derived nerve growth factor (BDNF) as an active ingredient.
  • BDNF brain-derived nerve growth factor
  • the health functional food refers to food that is designed and processed to sufficiently express the body's regulatory functions related to biological defense rhythm control, disease prevention and recovery, etc. of a food group or food composition in which added value is added so that the function of the food acts for a specific purpose by using physical, biochemical, or bioengineering methods.
  • the health functional food may include food additives acceptable in food science, and may further include appropriate carriers, excipients, and diluents commonly used in the manufacture of functional foods.
  • the health functional food includes a functional beverage
  • the functional beverage refers to a general term for drinking to quench thirst or enjoy the taste, and includes the composition for improving or alleviating sepsis as an essential component in the indicated ratio.
  • Other ingredients are not particularly limited, and, like conventional beverages, various flavors or natural carbohydrates may be included as additional ingredients.
  • the dietary functional food of the present invention is a flavor of various nutrients, vitamins, minerals (electrolytes), synthetic flavor and natural flavor agents, coloring agents (cheese, chocolate, etc.), pectic acid and salt thereof, alginic acid and alginic acid, organic acid, protective colloidal thickener It may contain, alcohol, carbonate used in carbonated drinks, and the components can be used independently or in combination.
  • the amount of brain-derived nerve growth factor may be included in an amount of 0.001% to 100% by weight, preferably 1% to 99% by weight, based on the total weight of the health functional food.
  • the active ingredient may be used in an amount greater than the above range because there is no problem in terms of safety, so it is not limited to the above range.
  • Another aspect of the present invention provides a method for reducing the expression levels of TNF- ⁇ , IL-6 and IL-1 ⁇ and increasing the expression of pAMPK relative to macrophages not treated with LPS by treating LPS-treated macrophages with BDNF in vitro.
  • Another aspect of the present invention provides a method for preventing or treating sepsis, comprising administering or treating BDNF to a subject in need of prevention or treatment of sepsis.
  • Another aspect of the present invention is the use of BDNF for the preparation of an agent (pharmaceutical) for preventing or treating sepsis; or the use of BDNF for the prevention or treatment of sepsis.
  • the subject may be an animal excluding or including humans.
  • BDNF may be administered or treated at 90 to 110 or 100 ng/mL, and administered or treated for 20 to 40 or 30 minutes.
  • the BDNF and sepsis are as described above.
  • Example 1 Confirmation of decreased expression of brain-derived nerve growth factor (BDNF) in sepsis patients
  • BDNF brain-derived neurotrophic factor
  • BDNF Brain-derived nerve growth factor
  • the average value of the control group was 19.91 ng / mL, and the average value of the septic patients was 11.78 ng / mL (###p ⁇ 0.001), and the serum brain-derived nerve growth factor (BDNF) expression was significantly reduced in the septic patients (Fig. 1).
  • BDNF serum brain-derived nerve growth factor
  • the average serum BDNF content of the patient is 0.7 to 0.5 times higher than the average serum BDNF content of the control group, it can be seen that sepsis may or may occur.
  • the average serum BDNF content of the patient was reduced to a level of 0.1 to 0.4 times that of the control group, it was confirmed that the patient had a high severity of sepsis.
  • Example 2 Brain-derived nerve growth factor (BDNF) expression level measurement results in the serum of convalescent patients and patients before death
  • Serum brain-derived nerve growth factor (BDNF) levels in 24 of 168 patients with sepsis were measured at discharge.
  • the average value of brain-derived nerve growth factor (BDNF) in 18 patients who recovered and was discharged was 13.86ng/mL, and the average value in 6 patients who died was 3.16ng/mL (*p ⁇ 0.05).
  • Brain-derived nerve growth factor (BDNF) levels were restored to normal levels in patients who recovered and were discharged, and brain-derived nerve growth factor (BDNF) levels were further reduced in deceased patients, showing a significant difference (FIG. 2).
  • the average serum BDNF content of the measured individual is 0.65 to 0.75 times higher than the average serum BDNF content of the control group, it can be determined that sepsis is treated and cured.
  • the average serum BDNF content of the measured individual is reduced to 0.10 to 0.20 times that of the control group, the severity of sepsis is high, the possibility of complete cure is not high, and the patient is more likely to die. It was confirmed that it can be judged to be high.
  • Example 3 Confirmation of cell viability upon treatment with brain-derived nerve growth factor (BDNF) and LPS
  • RAW264.7 cells a mouse macrophage cell line used in the experiment, were purchased from the Korea Cell Line Bank (KCLB), and Dulbecco's Modified Eagle Medium (DMEM) medium containing 10% FBS and 1% penicillin-streptomycin was used for cell culture. Cells were cultured in a CO 2 incubator (37° C., 5% CO 2 ).
  • KCLB Korea Cell Line Bank
  • DMEM Dulbecco's Modified Eagle Medium
  • LPS Lipopolysaccharide
  • BDNF Brain-derived nerve growth factor
  • LPS LPS treatment effects on cell viability of RAW264.7 cells were evaluated by CCK-8 assay.
  • BDNF brain-derived nerve growth factor
  • Example 4 Evaluation of the effect of brain-derived nerve growth factor (BDNF) on the expression of pro-inflammatory cytokines
  • BDNF brain-derived nerve growth factor
  • RAW264.7 cells were treated with brain-derived nerve growth factor (BDNF) at different concentrations (0, 10, 50 or 100 ng/mL) without LPS stimulation or in the presence of LPS stimulation with 100 ng/mL.
  • BDNF brain-derived nerve growth factor
  • the levels of TNF- ⁇ , IL-6, and IL-1 ⁇ in the culture supernatant were measured by ELISA.
  • BDNF brain-derived nerve growth factor
  • Example 5 Confirmation of the effect of brain-derived nerve growth factor (BDNF) on the AMPK pathway
  • BDNF brain-derived nerve growth factor
  • RAW164.7 cells and mouse peritoneal macrophages were pretreated with brain-derived nerve growth factor (BDNF) at different concentrations (0, 10, 50 or 100 ng/mL) for 30 minutes and then stimulated with 500 ng/mL of LPS for 30 minutes.
  • BDNF brain-derived nerve growth factor
  • Stimulation with LPS suppresses the expression of pAMPK
  • treatment with brain-derived nerve growth factor (BDNF) restores the expression of pAMPK to normal levels in both LPS-stimulated RAW264.7 cells (FIG. 7) and mouse peritoneal macrophages (FIG. 8).
  • BDNF brain-derived nerve growth factor
  • Example 6 Confirmation of the effect of brain-derived nerve growth factor (BDNF) on the NF-kB pathway
  • BDNF brain-derived nerve growth factor
  • RAW264.7 cells and mouse peritoneal macrophages were pretreated with brain-derived nerve growth factor (BDNF) at different concentrations (0, 10, 50 or 100 ng/mL) for 30 minutes and then stimulated with 100 ng/mL of LPS for 30 minutes.
  • BDNF brain-derived nerve growth factor
  • Example 7 Confirmation of the effect of AMPK knockdown on the inhibitory effect of brain-derived nerve growth factor (BDNF) on NF-kB activation
  • BDNF brain-derived nerve growth factor
  • AMPK siRNA The effect of AMPK siRNA on the inhibitory effect of brain-derived nerve growth factor (BDNF) on the NF-kB signaling pathway induced by LPS in RAW264.7 cells was evaluated.
  • BDNF brain-derived nerve growth factor
  • RAW264.7 cells were transfected with control siRNA or AMPK siRNA (5 nM) for 24 hours, treated with brain-derived nerve growth factor (BDNF) at different concentrations (0, 10, 50 or 100 ng/mL) and then stimulated with 100 ng/mL of LPS for 30 minutes.
  • BDNF brain-derived nerve growth factor
  • the expression level of IkBa was analyzed by Western blot.
  • AMPK siRNA inhibited the expression of AMPK (FIG. 11). It was found that treatment with brain-derived nerve growth factor (BDNF) in RAW264.7 cells transfected with AMPK siRNA and stimulated with LPS did not restore the expression level of IkBa (FIG. 12).
  • BDNF brain-derived nerve growth factor
  • Example 8 Confirmation of Effect on Treatment Effect of Brain-Derived Nerve Growth Factor (BDNF) upon AMPK Inhibition with Compound C
  • BDNF Brain-Derived Nerve Growth Factor
  • BDNF brain-derived nerve growth factor
  • RAW264.7 cells were pretreated for 30 minutes with various concentrations of brain-derived nerve growth factor (BDNF) (0, 10, 50 or 100 ng/mL) and compound C (20 uM), followed by stimulation with 100 or 500 ng/mL of LPS for 30 minutes.
  • BDNF brain-derived nerve growth factor
  • BDNF brain-derived nerve growth factor
  • BDNF brain-derived nerve growth factor
  • Cells were transfected with control siRNA (5 nM) or AMPK siRNA (5 nM) for 24 hours, then stimulated with LPS untreated or 100 ng/mL for 24 hours, and treated with various concentrations (0, 10, 50 or 100 ng/mL) of brain-derived nerve growth factor (BDNF).
  • control siRNA 5 nM
  • AMPK siRNA 5 nM
  • LPS untreated or 100 ng/mL
  • BDNF brain-derived nerve growth factor
  • the levels of TNF- ⁇ , IL-6, and IL-1 ⁇ in the culture supernatant were measured by ELISA.
  • Neutrophils were treated with concentrations of BDNF of 10, 100, and 200 (ng/mL) for 30 minutes, respectively, and the expression level of p-AMPK was confirmed. Thereafter, 100 ng/mL of BDNF, which was the most active in the treatment of each concentration of BDNF, was treated for 15, 30, and 60 minutes, respectively, and the expression level of p-AMPK was confirmed by Western blotting.
  • Example 11 Changes according to chemical stimulation of neutrophils during BDNF treatment
  • Neutrophils were treated with BDNF 100ng/ml and LPS 1 ⁇ g/ml, respectively, and BDNF and LPS were treated together.
  • Neutrophils (1X10 6 cell/well) were seeded on a 3 ⁇ m pore transwell in a 24well plate, and exposed to w-peptide for 1 hour below. Cells that migrated down were counted using a countess II cell counter.
  • Example 12 Confirmation of BDNF's ability to kill bacteria
  • Neutrophils (1X10 6 cells/ml) and bacteria E.coli, staphylococcus aureus - 1X10 8 CFU/ml were made into RPMI (serum free), and then treated with BDNF at each concentration and reacted at 37°C for 90 minutes. Then, 20 ⁇ L cells/bacteria were reacted with 480 ⁇ L of 0.1% Triton X-100 for 10 minutes to lyse neutrophils. After diluting the lysed neutrophils, they were smeared on TSA medium and cultured (37°C, overnight), and the number of bacterial colonies was counted.
  • Example 13 Confirmation of survival rate improvement of BDNF in sepsis animal model
  • mice 7-8 week old male C57BL/6N mice were divided into Sham group, CLP (cecal ligation and puncture) induced peritonitis group, and peritonitis induced group followed by BDNF administration.
  • CLP cecal ligation and puncture
  • peritonitis induced group followed by BDNF administration.
  • the abdominal wall was incised under inhalational anesthesia, the cecum was taken out, 25% of the cecum was ligated with 3-0 silk just below the ileocecal valve, and then the surface of the mesentery-free side of the cecum was pierced once with an 18-gauge syringe needle and squeezed to allow feces to flow through the perforated area.
  • BDNF (5 mg/kg) or physiological saline (100 ⁇ l) was intramuscularly injected.
  • the Sham group incised the abdominal wall, took out the appendix, exposed it to the air, placed it back into the abdominal cavity, administered 1cc of physiological saline intraperitoneally, and then sutured the peritoneum and the abdominal wall.
  • TNF- ⁇ an inflammatory marker in plasma
  • the pharmaceutical composition for diagnosing, preventing or treating sepsis including brain-derived nerve growth factor (BDNF) of the present invention, can be usefully used for diagnosing sepsis and predicting prognosis by measuring the expression level of a gene or protein, and the functional food for improvement or alleviation has the effect of preventing, treating, improving or mitigating sepsis, so it can be applied to sepsis patients.
  • BDNF brain-derived nerve growth factor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Analytical Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Rheumatology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Communicable Diseases (AREA)
  • Nutrition Science (AREA)
  • Cell Biology (AREA)

Abstract

본 발명은 뇌유래신경성장인자(BDNF)를 이용한 패혈증의 진단용 조성물과 진단 마커 검출 방법에 관한 것으로, 보다 상세하게는 뇌유래신경성장인자(BDNF) 단백질 또는 이를 암호화하는 mRNA의 발현 수준을 측정하는 제제를 포함하는 패혈증 진단용 조성물, 진단용 키트 및 이를 이용한 패혈증 진단방법에 관한 것이다. 따라서 뇌유래신경성장인자(BDNF) 발현수준을 분석함으로써 패혈증을 신속하고 정확하게 진단할 수 있을 뿐만 아니라 패혈증의 중등도 및 예후까지도 판단할 수 있다. 또한, 발명은 뇌유래 신경성장인자(BDNF)를 포함한 패혈증 예방 또는 치료용 약학적 조성물 또는 개선 또는 완화용 건강기능식품에 관한 것을 포함하며, 패혈증의 예방, 치료, 개선 또는 완화의 효과가 있어 패혈증 환자에 적용할 수 있다.

Description

뇌유래신경성장인자를 이용한 패혈증 진단, 예방 또는 치료용 약학적 조성물
본 발명은 뇌유래신경성장인자(BDNF) 유전자를 특이적으로 인식하는 프라이머 또는 뇌유래신경성장인자(BDNF)의 항체를 포함하는 패혈증 진단, 예방 또는 치료용 조성물에 관한 것이다.
패혈증은 미생물에 감염되어 전신에 심각한 염증 반응이 나타나는 상태를 말한다. 미국에서만 패혈증으로 1년에 200,000명이 넘는 사람이 사망하고 있으며 (Hoyert et al. Deaths: final data for 1997. Natl. Vital Stat. Rep. 47, 1-104, 1999), 패혈증은 내부 면역의 결함 및 과도한 림프구 아폽토시스에 의해 면역 기능을 손상시킨다고 알려져 있다. 면역억제는 결과적으로 패혈증에 의한 사망에 중요한 인자로서 여겨져 왔으며, 고용량의 화학치료 또는 방사선치료에 의한 면역기능의 결함으로부터의 회복은 중요한 임상적 문제로서 남아있다. 패혈증(sepsis, 敗血症)은 녹농균, 대장균, 연쇄상구균, 포도상구균, 폐렴균 같은 미생물에 감염되었을 때 미생물이나 그 미생물이 생산한 독소에 의해 오한과 함께 고열, 관절통, 두통, 권태감 등의 전신적인 증상이 나타나는 상태를 말한다. 이러한 증상이 심해지만 저혈압이 동반되고 소변량이 줄며 패혈성 쇼크가 나타나기도 한다 (Riedemann, N.C. et al., 2003). 미생물의 감염 경로를 잘 알 수 없는 경우도 있으나 맹장염, 중이염, 피부화농증, 욕창, 폐질환, 담낭염, 신우염, 골수염 등이 패혈증의 원인 병소로 알려져 있다. 혈액검사와 소변검사, 뇌척수액 검사 등을 통해 패혈증을 진단할 수 있으며 백혈구 수와 급성염증성물질이 증가한 경우도 패혈증을 진단하는데 도움을 준다.
아직까지 패혈증의 치료를 위한 근본적인 치료제는 확인되지 않은 상태이다. 중증 패혈증 및 패혈성 쇼크는 항생제 치료(antibiotic therapy)를 비롯한 다양한 집중 치료(intensive care)(Anderson, R.N. 2002; Andreu Ballester, J.C. et al., 2008; Angus, D.C. et al., 2001)의 발전에도 불구하고, 선진국에서 세번째로 사망률이 높은 질병이다. 따라서, 초기 패혈증 증상이 중증 패혈증이나 패혈성 쇼크로 이어지기 전에 이를 진단 및 치료하는 것이 이러한 패혈성 사망률을 낮추는 매우 중요한 요건이 될 수 있다.
라이소포스파티딜콜린(Lysophosphatidylcholine, LPC)은 산화된 저-밀도 지질 단백질의 주요 구성요소로, in vitro에서 단핵구, 대식세포, T 림프구 및 호중성 백혈구를 포함하는 다양한 면역 세포의 촉진 효과를 가지며, 패혈증 치료에 유용한 것으로 알려져 있다 (Yan et al., Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat. Med. 10, 161-167, 2004). 이는 시험관 내의 단핵세포에서 IL-1β의 생산을 증가시키고 (Liu-Wu, Y., Hurt-Camejo, E. & Wiklund, O. Lysophosphatidylcholine induces the production of IL1 beta by human monocytes. Atherosclerosis 137, 351-7.(1998)), 또한 시험관 내의 중성구에서 수퍼옥사이드 음이온 발생을 증가시킨다는 보고가 있다 (Savage, J.E., Theron, A.J.& Anderson, R. Activation of neutrophil membrane-associated oxidative metabolism by ultraviolet radiation. J Invest Dermatol 101, 532-6. (1993)). 또한, LPC는 패혈증에서 치료효과 뿐만 아니라 패혈증 진단 마커로써도 유용한 바이오마커 알려져 있으나, 이에 대한 연구는 미미한 상황이다.
현재 패혈증을 진단하기 위한 바이오마커로 PCT (Procalcitonin), CRP (C-reactive protein), Del-1 (Developmental endothelial locus-1) 등은 화상, 외상, 부신 기능부전, 췌장염, 폐색전증, 파열성 대동맥류, 심근경색, 내출혈, 심장눌림증(cardiac tamponade), 약물중독 등의 비감염성 질환도 패혈증과 유사한 임상 증상 및 징후를 나타낼 수 있다. 또한, 혈액배양 방법으로의 패혈증 진단은 중증 패혈증이나 패혈증 쇼크일 경우 환자의 50% 이상에서 배양 음성을 보이고, 감염의 원인 병소가 추정되는 경우에도 배양에서 확인되는 경우는 35%에 불과한 것으로 보고되고 있어 종래 방법으로 염증질환 또는 패혈증을 진단하는데는 시간이나 정확도에서 어려움이 있다.
그러므로, 패혈증을 확실하게 진단하는 마커가 잘 알려져 있지 않아 초기 패혈증 증상을 진단하는데 많은 어려움이 있다.
따라서, 패혈증을 진단 및 치료할 수 있는 소재에 대한 요구가 있어왔고, 본 발명의 발명자들은 지속적인 연구를 통해 뇌유래 신경성장인자가 패혈증 진단 가능성 및 치료능을 나타내는 것을 확인하여 본 발명을 완성하였다.
[선행기술문헌]
[특허문헌](특허문헌 1) 대한민국 등록특허 제10-1869509호
본 발명은 뇌유래신경성장인자(BDNF)의 발현량을 확인할 수 있는 제제를 포함하는 패혈증 진단용 조성물을 제공한다.
다른 구체예에 따르면 뇌유래신경성장인자(BDNF)의 발현량을 확인할 수 있는 제제를 포함하는 조성물을 포함하는 패혈증 진단용 키트를 제공한다.
또 다른 구체예에 따르면 패혈증이 의심되는 개체의 생물학적 시료로부터 뇌유래신경성장인자(BDNF)의 발현수준을 측정하는 단계 및 상기 발현수준을 정상 대조군 시료의 뇌유래신경성장인자(BDNF) 발현수준과 비교하는 단계를 포함하는 패혈증 진단에 필요한 정보를 제공하는 방법을 제공한다.
또한, 본 발명은 뇌유래 신경성장인자(BDNF)를 유효성분으로 포함하는 패혈증 예방 또는 치료용 약학적 조성물을 제공하는 것을 목적으로 한다.
본 발명의 다른 일 양상은 뇌유래 신경성장인자(BDNF)를 유효성분으로 포함하는 패혈증 개선 또는 완화용 건강기능식품을 제공하는 것을 목적으로 한다.
본 발명의 일 양상은 뇌유래 신경성장인자(BDNF)를 유효성분으로 포함하는 패혈증 진단, 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명의 일 구체예로 상기 뇌유래 신경성장인자는 조성물 전체 기준 10 내지 100ng/mL, 구체적으로 10 내지 100ng/mL 또는 50 내지 100ng/mL일 수 있고, 일 예시로, 10, 50 및 100ng/mL 중 어느 하나의 농도로 포함될 수 있다. 상기 범위 외의 농도로 뇌 유래 신경성장인자가 포함될 경우, 본 발명이 목적하는 효과를 얻을 수 없다.
일 구체예에 따르면, 상기 제제는 중합효소연쇄반응, 역전사 중합효소반응(RT-PCR), 경쟁적 역전사 중합효소반응(Competitive RT-PCR), RNase 보호 분석법(RNase, S1 nuclease assay), in situ 교잡법, 핵산 마이크로어레이, 차세대 염기서열분석 및 노던 블랏팅(Northern blotting) 중 어느 하나에서 사용되는 것일 수 있다.
본 발명의 다른 양상은 뇌유래신경성장인자(BDNF)의 발현량을 확인할 수 있는 제제를 포함하는 조성물을 포함하는 패혈증 진단용 키트를 제공한다.
본 발명의 또 다른 양상은 패혈증이 의심되는 개체의 생물학적 시료로부터 뇌유래신경성장인자(BDNF)의 발현수준을 측정하는 단계 및 상기 발현 수준을 정상 대조군 시료의 뇌유래신경성장인자(BDNF) 발현수준과 비교하는 단계를 포함하는 패혈증 진단에 필요한 정보를 제공하는 방법을 제공한다.
일 구체예에 따르면, 상기 시료는 혈액, 혈청, 혈장, 타액, 객담, 관절낭액, 양수, 복수, 자궁경부 또는 질 분비물, 소변 및 뇌척수액으로 이루어진 그룹에서 선택되는 어느 하나 이상의 시료일 수 있다.
본 발명에 따른 패혈증 예방 또는 치료용 약학적 조성물은 약학적으로 유효한 양의 뇌유래 신경성장인자 단독으로 포함하거나 하나 이상의 약학적으로 허용되는 담체를 포함할 수 있다.
본 발명의 약학적 조성물은 경구 또는 비경구 투여할 수 있으며, 바람직하게는 비경구 투여 방식으로 적용된다. 본 발명의 약학적 조성물은 하기의 다양한 경구 또는 비경구 투여 형태로 제형화할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구체예로 상기 조성물은 pAMPK 또는 IkBα발현을 억제하는 것일 수 있다.
본 발명의 다른 일 양상은 뇌유래 신경성장인자(BDNF)를 유효성분으로 포함하는 패혈증 개선 또는 완화용 건강기능식품을 제공한다.
본 발명의 다른 일 양상은, 시험관 내 조건에서 LPS 처리된 대식세포에 BDNF를 처리하여, LPS 처리되지 않은 대식세포를 기준으로 TNF-α, IL-6 및 IL-1β의 발현량을 감소시키고, pAMPK의 발현을 증가시키는 방법을 제공한다.
본 발명의 다른 일 양상은, 패혈증의 예방 또는 치료가 필요한 개체에 BDNF를 투여 또는 처리하는 단계를 포함하는, 패혈증의 예방 또는 치료방법을 제공한다.
본 발명의 다른 일 양상은, 패혈증의 예방 또는 치료용 제제(약제)의 제조를 위한 BDNF의 용도; 또는 BDNF의 패혈증의 예방 또는 치료 용도를 제공한다.
본 발명에 있어서, 상기 BDNF, 패혈증에 대해서는 상기 설명한 바와 같다.
본 발명의 뇌유래 신경성장인자(BDNF)를 포함한 패혈증 진단, 예방 또는 치료용 약학적 조성물은 유전자의 발현량 또는 단백질의 발현량을 측정하여 패혈증 진단 및 예후 예측 용도로 유용하게 사용될 수 있으며, 개선 또는 완화용 건강기능식품은 패혈증의 예방, 치료, 개선 또는 완화의 효과가 있다.
도 1은 응급실에 내원한 패혈증 환자와 건강한 대조군의 혈청 내 뇌유래신경성장인자(BDNF) 수치를 측정한 결과를 나타낸 것이다.
도 2는 패혈증 환자의 회복기 또는 사망 직전의 혈청 뇌유래신경성장인자(BDNF) 수치를 측정한 결과를 나타낸 것이다.
도 3은 뇌유래 신경성장인자(BDNF) 처리 후 세포 생존율을 측정한 결과를 나타낸 것이다.
도 4는 뇌유래 신경성장인자(BDNF) 처리 및 LPS 자극 후 세포 생존율을 측정한 결과를 나타낸 것이다.
도 5는 RAW264.7 세포에서 LPS 자극 없이 뇌유래 신경성장인자(BDNF) 단독 처리 시 전염증성 사이토카인의 발현에 미치는 영향을 ELISA로 분석한 결과를 나타낸 것이다.
도 6은 RAW264.7 세포에서 뇌유래 신경성장인자(BDNF) 처리가 LPS 자극으로 유발된 전염증성 사이토카인의 발현에 미치는 영향을 ELISA로 분석한 결과를 나타낸 것이다.
도 7은 RAW264.7 세포에서 AMPK 경로에 대한 뇌유래 신경성장인자(BDNF)의 효과를 웨스턴 블롯으로 평가한 결과를 나타낸 것이다.
도 8은 마우스 복막 대식세포에서 AMPK 경로에 대한 뇌유래 신경성장인자(BDNF)의 효과를 웨스턴 블롯으로 평가한 결과를 나타낸 것이다.
도 9는 RAW264.7 세포에서 NF-kB경로에 대한 뇌유래 신경성장인자(BDNF)의 효과를 웨스턴 블롯으로 평가한 결과를 나타낸 것이다.
도 10은 마우스 복막 대식세포에서 NF-kB 경로에 대한 뇌유래 신경성장인자(BDNF)의 효과를 웨스턴 블롯으로 평가한 결과를 나타낸 것이다.
도 11은 siRNA에 의한 AMPK 녹다운이 AMPK의 발현을 억제한 결과를 나타낸 것이다.
도 12는 RAW264.7 세포에서 LPS로 유도된 NF-kB 신호전달 경로에 대한 뇌유래 신경성장인자(BDNF)의 억제효과에 대하여 siRNA에 의한 AMPK 녹다운의 효과를 평가한 결과를 나타낸 것이다.
도 13은 화합물 C의 전처리 후 LPS로 자극된 RAW264.7 세포에서 뇌유래 신경성장인자(BDNF)의 처리가 pAMPK의 발현을 회복시키는지를 평가한 결과를 나타낸 것이다.
도 14는 화합물 C의 전처리 후 LPS로 자극된 RAW264.7 세포에서 뇌유래 신경성장인자(BDNF)의 처리가 NF-kB의 신호전달 경로에 대해 미치는 영향을 평가한 결과를 나타낸 것이다.
도 15는 대조군 siRNA, AMPK siRNA로 각각 형질감염된 RAW264.7 세포에서 LPS로 유도된 전염증성 사이토카인 발현에 대한 뇌유래 신경성장인자(BDNF) 처리 효과를 ELISA로 평가한 결과를 나타낸 것이다.
도 16은 BDNF의 양과 시간에 따른 호중구(neutrophils) 안에서의 pAMPK의 활성화 정도를 웨스턴블롯으로 확인한 결과이다.
도 17은 BDNF와 LPS를 각각 또는 함께 처리하였을 때 호중구의 변화 여부를 나타낸 결과이다.
도 18은 BDNF의 박테리아에 대한 사멸능을 확인한 결과이다.
도 19는 패혈증 동물모델에서 BDNF의 생존율 향상 효과를 확인한 결과를 나타낸 것이다.
도 20은 패혈증 동물의 혈청에서 BDNF에 의하여 감소된 TNF-α의 양을 확인한 결과이다.
본 발명의 일 양상은 뇌유래 신경성장인자(BDNF)를 유효성분으로 포함하는 패혈증 진단, 예방 또는 치료용 약학적 조성물을 제공한다.
상기 뇌유래 신경성장인자(Brain-derived neurotrophic factor, BDNF)는 단백질의 신경 성장 인자 패밀리인 당단백질로서, 거대 전구체로부터 처리되어 신경 세포 집단의 생존을 촉진하는 신경영양 인자를 산출한다(Jones K.R. et al., Proc. Natl. Acad. Sci U.S.A., 87:8060-8064(1990)).
본 발명의 일 구체예로 상기 뇌유래 신경성장인자는 조성물 전체 기준 10 내지 100ng/mL, 구체적으로 10 내지 100ng/mL 또는 50 내지 100ng/mL일 수 있고, 일 예시로, 10, 50 및 100ng/mL 중 어느 하나의 농도로 포함될 수 있다. 상기 범위 외의 농도로 뇌 유래 신경성장인자가 포함될 경우, 본 발명이 목적하는 효과를 얻을 수 없다.
상기 뇌유래신경성장인자(BDNF)의 발현량은 뇌유래신경성장인자(BDNF) 유전자의 발현 수준 또는 이의 단백질 발현 수준을 측정하여 확인할 수 있다. 발현 수준 측정 측정방법은 당업계에서 이용되는 통상의 발현 수준 방법 모두 사용될 수 있으며, 분석 방법의 예로 RT-PCR, 경쟁적 RT-PCR(competitive RT-PCR), 실시간 RT-PCR(Real-time RT-PCR), RNase 보호 분석법(RPA:RNase protection assay), 노던 블랏팅(northern blotting), DNA 마이크로어레이 칩 등이 있으나, 이들로 한정되는 것은 아니다. 또한, 단백질 자체 발현 수준 측정 방법은 당업계에서 사용하는 통상의 방법 모두 사용될 수 있으며, 그 예로 웨스턴 블럿팅(Western Blotting), 효소면역분석법(enzyme-linked immunosorbent assay), 방사능 면역분석법(RIA), 방사면역확산법, 오우크테로니 면역 확산법, 로케트 면역 전기영동, 면역조직화학, 면역침전법(immunoprecipitation), 보체 고정 분석법, 유세포 분석법(FACS) 또는 단백질 칩 방법 등이 있고, 이에 한정되는 것은 아니다.
일 구체예에 따르면, 상기 제제는 중합효소연쇄반응, 역전사 중합효소반응(RT-PCR), 경쟁적 역전사 중합효소반응(Competitive RT-PCR), RNase 보호 분석법(RNase, S1 nuclease assay), in situ 교잡법, 핵산 마이크로어레이, 차세대 염기서열분석 및 노던 블랏팅(Northern blotting) 중 어느 하나에서 사용되는 것일 수 있다.
상기 중합효소연쇄반응에서 프라이머가 사용될 수 있다. 상기 프라이머(primer)는 DNA 합성의 개시점(starting point)으로 작용하는 짧은 단일가닥 올리고뉴클레오티드(single strand oligonucleotide)이다. 프라이머는 적합한 완충액(buffer)와 온도 조건에서 주형(template)인 폴리뉴클레오티드에 특이적으로 결합하고, DNA 중합효소가 프라이머에 주형 DNA에 상보적인 염기를 갖는 뉴클레오사이드 트리포스페이트를 추가하여 연결함으로써 DNA가 합성된다. 프라이머는 일반적으로 15 내지 30개의 염기서열로 이루어져 있으며, 염기 구성과 길이에 따라 주형 가닥에 결합하는 온도(melting temperature, Tm)가 달라진다.
프라이머의 서열은 주형의 일부 염기 서열과 완전하게 상보적인 서열을 가질 필요는 없으며, 주형과 혼성화되어 프라이머 고유의 작용을 할 수 있는 범위 내에서의 충분한 상보성을 가지면 충분하다. 따라서 본 발명에서 뇌유래신경성장인자(BDNF)을 암호화하는 mRNA의 발현 수준을 측정하기 위한 프라이머는 뇌유래신경성장인자(BDNF) 유전자 서열에 완벽하게 상보적인 서열을 가질 필요는 없으며, DNA 합성을 통해 뇌유래신경성장인자(BDNF)의 mRNA 또는 뇌유래신경성장인자(BDNF)의 cDNA의 특정 구간을 증폭하여 뇌유래신경성장인자(BDNF)의 mRNA의 양을 측정하려는 목적에 맞는 길이와 상보성을 갖는 것이면 충분하다. 상기 증폭반응을 위한 프라이머는 증폭하고자 하는 뇌유래신경성장인자(BDNF)의 mRNA의 특정 구간의 양쪽 끝부분의 주형(또는 센스, sense)과 반대편(안티센스, antisense)에 각각 상보적으로 결합하는 한 세트(쌍)으로 구성된다. 프라이머는 당업자라면 뇌유래신경성장인자(BDNF)의 mRNA 또는 cDNA 염기서열을 참조하여 용이하게 디자인할 수 있으며, 뇌유래신경성장인자(BNDF)의 프라이머 서열의 일 예시는 서열번호 5'-GAG-CTG-AGC-GTG-TGT-GAC-AG-3' 또는 5'-GC-AAA-AAG-AGA-ATT-GGC-TGG-CG-3'의 염기서열일 수 있다.
상기 마이크로어레이는 뇌유래신경성장인자(BDNF) 유전자의 mRNA, 뇌유래신경성장인자(BDNF) 단백질 및 이들의 단편으로 이루어진 군에서 선택된 어느 하나를 프로브로 할 수 있다.
본 명세서에서 사용된 용어 “프로브(probe)”는 특정 유전자의 mRNA나 cDNA(complementary DNA)에 특이적으로 결합할 수 있는 짧게는 수개 내지 길게는 수백 개의 염기(base pair) 길이의 RNA 또는 DNA 등 폴리뉴클레오티드의 단편을 의미하며, 표지(labeling)되어 있어서 결합하는 대상 mRNA나 cDNA의 존재 유무, 발현양 등을 확인할 수 있다. 본 발명의 목적을 위해서는 뇌유래신경성장인자(BDNF)의 mRNA에 상보적인 프로브를 피검체의 시료와 혼성화 반응(hybridization)을 수행하여 뇌유래신경성장인자(BDNF)의 mRNA의 발현양을 측정함으로써 감염성 염증 질환의 진단에 이용할 수 있다. 프로브의 선택 및 혼성화 조건은 당업계에 공지된 기술에 따라 적절하게 선택할 수 있다.
본 명세서에 사용된 효소면역분석법을 통해 BDNF 단백질의 발현 정도를 측정하는 것에 사용되는 BDNF 특이 항체는 피검체의 BDNF 단백질과 결합하여 대상 단백질의 존재여부 및 발현 정도를 확인한다. BDNF 특이 항체를 피검체의 BDNF 단백질과 결합시켜 검출하는 방법은 직접, 간접 또는 샌드위치 방식을 적절하게 선택할 수 있다.
본 명세서에서 사용되는 “패혈증”은, 패혈증의 최종 단계와 관련된 패혈증, 중증 패혈증, 패혈증성 쇼크 및 상기 패혈증의 합병증의 발병을 포함하나, 이에 제한되지 않으며 패혈증의 모든 단계를 포함한다.
본 발명에 있어서, 상기 패혈증은 미생물 감염으로 인한 패혈증인 것일 수 있고, 보다 구체적으로 E.coli 및/또는 staphylococcus aureus의 감염으로 인한 패혈증인 것일 수 있다. 또한, 상기 패혈증은 복막염 유발로 인한 패혈증일 수 있고, 보다 구체적으로 외상성 복막염으로 인한 패혈증인 것일 수 있다. 상기 외상성 복막염은 외부 요인 또는 물리적 손상으로 인한 복막염을 의미한다.
본 발명에 있어서, “진단”이란 상기 조성물의 투여로 패혈증의 발병을 예측하고 확인하는 모든 행위를 포함한다.
본 발명에 있어서, "예방"이란 상기 조성물의 투여로 패혈증의 발병을 억제 또는 지연시키는 모든 행위를 포함한다.
본 발명에 있어서, "치료"란 개선 또는 증상의 경감을 의미하고, 구체적으로는 패혈증의 치료 또는 증상의 경감을 의미한다.
본 발명에 있어서, 상기 패혈증 진단용 조성물은 정상 대조군과, 패혈증이 의심되는 개체의 BDNF 함량을 분석 및 비교하기 위한 것일 수 있다. 구체적으로, 상기 조성물은 정상 대조군의 평균 혈청 BDNF의 함량(발현량)에 비해, 패혈증이 의심되는 개체의 평균 혈청 BDNF의 함량(발현량)이 0.7 내지 0.5, 또는 0.65 내지 0.55, 또는 0.6배의 수준일 경우, 패혈증이 발현되거나 발현될 가능성이 있는 것으로 판단되는 데에 이용되는 것일 수 있다.
본 발명에 있어서, 상기 조성물은 정상 대조군의 평균 혈청 BDNF의 함량(발현량)에 비해, 패혈증이 의심되는 개체의 평균 혈청 BDNF의 함량(발현량)이 0.1 내지 0.4, 0.2 내지 0.3 또는 0.25배의 수준일 경우, 패혈증이 의심되는 개체에서 중증도 또는 단계가 높은 패혈증이 발생할 가능성이 있거나 높을 것으로 판단되는 데에 이용될 수 있다.
본 발명에 있어서, 상기 조성물은 정상 대조군의 평균 혈청 BDNF의 함량(발현량)에 비해, 패혈증이 의심되는 개체의 평균 혈청 BDNF의 함량(발현량)이 0.65 내지 0.75배의 수준인 경우, 패혈증이 치료되어 완치될 가능성이 있는 것으로 판단되는 데에 이용될 수 있다.
본 발명에 있어서, 상기 조성물은 정상 대조군의 평균 혈청 BDNF의 함량(발현량)에 비해, 패혈증이 의심되는 개체의 평균 혈청 BDNF의 함량(발현량)이 0.10 내지 0.20배 또는 0.15배 수준으로 감소된 경우, 패혈증의 중증도가 높으며 완치될 가능성이 높지 않고, 환자가 사망에 이를 가능성이 상대적으로 높을 것으로 판단되는 데에 이용될 수 있다.
본 발명의 다른 양상은 뇌유래신경성장인자(BDNF)의 발현량을 확인할 수 있는 제제를 포함하는 조성물을 포함하는 패혈증 진단용 키트를 제공한다.
본 발명의 또 다른 양상은 패혈증이 의심되는 개체의 생물학적 시료로부터 뇌유래신경성장인자(BDNF)의 발현수준을 측정하는 단계 및 상기 발현 수준을 정상 대조군 시료의 뇌유래신경성장인자(BDNF) 발현수준과 비교하는 단계를 포함하는 패혈증 진단에 필요한 정보를 제공하는 방법을 제공한다.
뇌유래신경성장인자(BDNF) 발현 수준 측정 및 발현 수준의 차이에 따른 패혈증 중증도 또는 사망률에 대한 판단은 전술한 바와 같다.
일 구체예에 따르면, 상기 시료는 혈액, 혈청, 혈장, 타액, 객담, 관절낭액, 양수, 복수, 자궁경부 또는 질 분비물, 소변 및 뇌척수액으로 이루어진 그룹에서 선택되는 어느 하나 이상의 시료일 수 있다.
상기 방법은 정상 대조군에서의 뇌유래신경성장인자(BDNF) 발현 수준을 패혈증 의심 개체에서의 발현 수준과 비교함으로써 의심 개체의 실제 패혈증 여부를 진단할 수 있다. 뇌유래신경성장인자(BDNF) 단백질 발현 수준이 정상 대조군의 것보다 낮을 경우, 시료를 제공한 개체를 패혈증으로 예측할 수 있는 것이다.
본 발명에 있어서, 상기 정보 제공 방법은 정상 대조군과, 패혈증이 의심되는 개체의 BDNF 함량을 분석 및 비교하는 단계를 추가로 포함할 수 있다. 구체적으로, 상기 방법은 정상 대조군의 평균 혈청 BDNF의 함량(발현량)에 비해, 패혈증이 의심되는 개체의 평균 혈청 BDNF의 함량(발현량)이 0.7 내지 0.5, 또는 0.65 내지 0.55, 또는 0.6배의 수준일 경우, 패혈증이 발현되거나 발현될 가능성이 있는 것으로 판단하는 단계를 추가로 포함할 수 있다.
본 발명에 있어서, 상기 방법은 정상 대조군의 평균 혈청 BDNF의 함량(발현량)에 비해, 패혈증이 의심되는 개체의 평균 혈청 BDNF의 함량(발현량)이 0.1 내지 0.4, 0.2 내지 0.3 또는 0.25배의 수준일 경우, 패혈증이 의심되는 개체에서 중증도 또는 단계가 높은 패혈증이 발생할 가능성이 있거나 높을 것으로 판단하는 단계를 추가로 포함할 수 있다.
본 발명에 있어서, 상기 방법은 정상 대조군의 평균 혈청 BDNF의 함량(발현량)에 비해, 패혈증이 의심되는 개체의 평균 혈청 BDNF의 함량(발현량)이 0.65 내지 0.75배의 수준인 경우, 패혈증이 치료되어 완치될 가능성이 있는 것으로 판단하는 단계를 추가로 포함할 수 있다.
본 발명에 있어서, 상기 방법은 정상 대조군의 평균 혈청 BDNF의 함량(발현량)에 비해, 패혈증이 의심되는 개체의 평균 혈청 BDNF의 함량(발현량)이 0.10 내지 0.20배 또는 0.15배 수준으로 감소된 경우, 패혈증의 중증도가 높으며 완치될 가능성이 높지 않고, 환자가 사망에 이를 가능성이 상대적으로 높을 것으로 판단하는 단계를 추가로 포함할 수 있다.
본 발명에서, 상기와 같은 판단은 정상 대조군의 정상 대조군의 평균 혈청 BDNF의 함량과 패혈증이 의심되는 개체의 평균 혈청 BDNF의 함량을 단순 비교하여 이루어지는 것으로서, 산업상 이용 가능성의 판단과 관련하여 의사의 임상적 판단을 필수적으로 요구하지 않는 단계에 해당한다.
본 발명에 따른 패혈증 예방 또는 치료용 약학적 조성물은 약학적으로 유효한 양의 뇌유래 신경성장인자 단독으로 포함하거나 하나 이상의 약학적으로 허용되는 담체를 포함할 수 있다.
본 발명에서, 용어 "유효량(또는, 유효한 양)"은 바람직한 효과를 전달하기에는 매우 충분하지만 의학적 판단 범위 내에서 심각한 부작용을 충분히 방지할 정도로 적은 양을 의미한다. 본 발명의 조성물에 의하여 체내에 투여되는 뇌유래 신경성장인자의 양은 투여 경로, 투여 대상을 고려하여 적절하게 조정될 수 있다.
또한, 상기에서 "약학적으로 허용되는"이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다.
상기 약학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로오스, 폴리비닐피롤리돈, 셀룰로오스, 물, 시럽, 메틸 셀룰로오스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 제한되는 것은 아니다. 본 발명의 약학적 조성물은 상기 성분들 이외에 부형제, 희석제, 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.
본 발명의 약학적 조성물은 경구 또는 비경구 투여할 수 있으며, 바람직하게는 비경구 투여 방식으로 적용된다. 본 발명의 약학적 조성물은 하기의 다양한 경구 또는 비경구 투여 형태로 제형화할 수 있으나, 이에 한정되는 것은 아니다.
경구 투여용 제형으로는 예를 들면 정제, 환제, 경/연질 캅셀제, 액제, 현탁제, 유화제, 시럽제. 과립제, 엘릭시르제 등이 있는데, 이들 제형은 상기 유효성분 이외에 통상적으로 사용되는 충진제, 증량제, 습윤제, 붕해제, 활택제, 결합제, 계면활성제 등의 희석제 또는 부형제를 1종 이상 사용할 수 있다. 붕해제로는 한천, 전분, 알긴산 또는 이의 나트륨염, 무수인산일수소 칼슘염 등이 사용될 수 있고, 활택제로는 실리카, 탈크, 스테아르산 또는 이의 마그네슘염 또는 칼슘염, 폴리에틸렌 글리콜 등이 사용될 수 있으며, 결합제로는 마그네슘 알루미늄 실리케이트, 전분 페이스트, 젤라틴, 트라가칸스, 메틸셀룰로오스, 나트륨카복시메틸셀룰로오스, 폴리비닐피롤리딘, 저치환도 하이드록시프로필셀룰로오스 등이 사용될 수 있다. 이외에도 락토즈, 덱스트로오스, 수크로오스, 만니톨, 소르비톨, 셀룰로오스. 글리신 등을 희석제로 사용할 수 있으며, 경우에 따라서는 일반적으로 알려진 비등 혼합물, 흡수제, 착색제, 향미제, 감미제 등을 함께 사용할 수 있다.
본 발명의 약학적 조성물은 대상 개체에 매일 일회 이상 투여될 수 있다. 단위 투여량은 사람 피험자 및 다른 포유동물을 위한 단위 투여에 적합하게 물리적으로 분리된 단위를 의미하며, 각 단위는 적절한 약학적 담체를 포함하며 치료 효과를 나타내는 본 발명 조성물된 양을 함유한다.
본 발명에 따른 약학적 조성물의 투여 경로는 구강, 정맥내, 근육내, 동맥내, 골수내, 경막내, 심장내, 경피, 피하, 복강내, 비강내, 장관, 국소, 설하 또는 직장이 포함되나, 이에 한정하지는 않는다. 본 발명에 따른 약학적 조성물은 경구 또는 비경구 투여가 바람직하다. 비경구 투여의 경우, 피하, 피내, 정맥내, 근육내, 관절내, 활액낭내, 흉골내, 경막내, 병소내 및 두개골 내 주사 또는 주입기술을 포함할 수 있다.
성인 환자의 비경구 투여용 투여 단위는 본 발명의 일 구체예로 본 발명의 뇌유래 신경성장인자는 5 내지 10 ㎎/kg 투여되는 것일 수 있고, 구체적으로 5 ㎎/kg 내지 10 ㎎/kg 을 일회 투여 또는 5 ㎎/kg 을 초기 일정 시간을 두고 반복 투여될 수 있다. 상기 범위 외의 농도로 뇌 유래 신경성장인자가 투여될 경우, 본 발명이 목적하는 효과를 얻을 수 없다. 그러나, 상기 투여량은 환자의 패혈증의 심각도 및 사용되는 뇌유래 신경성장인자와 보조 유효 성분에 따라 가변적이다.
본 발명의 일 구체예로 상기 조성물은 pAMPK 또는 IkBα발현을 억제하는 것일 수 있다.
상기 pAMPK는 AMPK(AMP-activated protein kinase)의 활성화 형태로서 AMPK는 촉매 서브유닛 및 2개의 조절 서브유닛들로 구성되는 이종성 3량체 효소이고, 세포 및 전신 에너지 항상성의 주요 조절제로, 이는 에너지 요구와 함께 영양 공급을 균형잡기 위하여 대사 경로를 조정하는 것으로 알려져 있다(Yun H. et al., Expert Opin. Ther. Pat. 21(7):983~1005). 상기 pAMPK의 발현량을 통해 AMPK 경로의 활성화 정도를 측정할 수 있다.
또한, 상기 IkBα(nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) 단백질은 NF-кB의 활성을 저해하는 제어소단위의 한 종류이다. IkBα는 NF-kB의 핵위치신호(NLS) 부위에 결합하여 핵위치신호 부위를 가림으로써 NF-kB가 세포질 내에서 불활성화 상태로 유지되도록 한다. 또한 IkBα는 NF-kB의 번역 인자가 NF-kB이 기능하기 위해 필요한 DNA에 결합하는 것을 막는다.
AMPK 활성화와 IkBa 발현 증가는 패혈증에서 병원균의 항원분자패턴 (ex, LPS etc)에 의한 Toll like receptor 매개성 신호전달경로 활성화로 염증사이토카인의 분비를 억제하는 항염증효과로 패혈증에 의한 장기손상을 감소시킨다. 이와 관련하여 본 발명의 상기 조성물은 pAMPK 또는 IkBα발현을 억제시키는 것을 확인하였고 (실시예 1 내지 7), 이를 통해 패혈증이 예방 또는 치료될 수 있다는 것을 확인하였다 (실시예 8).
본 발명의 다른 일 양상은 뇌유래 신경성장인자(BDNF)를 유효성분으로 포함하는 패혈증 개선 또는 완화용 건강기능식품을 제공한다.
상기 건강기능식품이란 식품에 물리적, 생화학적, 생물공학적 수법 등을 이용하여 해당 식품의 기능을 특정 목적에 작용, 발현하도록 부가가치를 부여한 식품군이나 식품 조성이 갖는 생체방어리듬조절, 질병방지와 회복 등에 관한 체내조절기능을 생체에 대하여 충분히 발현하도록 설계하여 가공한 식품을 의미한다. 상기 건강기능성식품에는 식품학적으로 허용 가능한 식품 보조 첨가제를 포함할 수 있으며, 기능성 식품의 제조에 통상적으로 사용되는 적절한 담체, 부형제 및 희석제를 더욱 포함할 수 있다.
본 발명에서 상기 건강기능식품은 기능성 음료를 포함하며, 기능성 음료란 갈증을 해소하거나 맛을 즐기기 위하여 마시는 것의 총칭을 의미하며, 지시된 비율로 필수 성분으로서 상기 패혈증 개선 또는 완화용 조성물을 포함하는 것 외에 다른 성분에는 특별한 제한이 없으며 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다.
나아가 상기 기술한 것 이외에 본 발명의 건강기능식품은 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 충진제(치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산 음료에 사용되는 탄산화제 등을 함유할 수 있으며, 상기 성분은 독립적으로 또는 조합하여 사용할 수 있다.
본 발명의 건강기능식품에 있어서, 뇌유래 신경성장인자의 양은 전체 건강기능식품 중량의 0.001중량% 내지 100중량%로 포함할 수 있으며, 바람직하게는 1중량% 내지 99중량%로 포함할 수 있고, 음료의 경우, 100ml를 기준으로 0.001g 내지 10g, 바람직하게는 0.01g 내지 1g의 비율로 포함할 수 있으나, 건강 및 위생을 목적으로 하거나 건강 조절을 목적으로 하는 장기간 섭취의 경우에는 상기 범위 이하일 수 있으며, 유효 성분은 안전성 면에서 아무런 문제가 없기 때문에 상기 범위 이상의 양으로 사용될 수 있으므로 상기 범위에 한정되는 것은 아니다.
본 발명의 다른 일 양상은, 시험관 내 조건에서 LPS 처리된 대식세포에 BDNF를 처리하여, LPS 처리되지 않은 대식세포를 기준으로 TNF-α, IL-6 및 IL-1β의 발현량을 감소시키고, pAMPK의 발현을 증가시키는 방법을 제공한다.
본 발명의 다른 일 양상은, 패혈증의 예방 또는 치료가 필요한 개체에 BDNF를 투여 또는 처리하는 단계를 포함하는, 패혈증의 예방 또는 치료방법을 제공한다.
본 발명의 다른 일 양상은, 패혈증의 예방 또는 치료용 제제(약제)의 제조를 위한 BDNF의 용도; 또는 BDNF의 패혈증의 예방 또는 치료 용도를 제공한다.
상기 방법에 있어서, 개체는 인간을 제외하거나 포함하는 동물일 수 있다.
상기 방법에 있어서, BDNF는 90 내지 110 또는 100ng/mL로 투여 또는 처리되는 것일 수 있고, 20 내지 40 또는 30분 간 투여 또는 처리되는 것일 수 있다.
본 발명에 있어서, 상기 BDNF, 패혈증에 대해서는 상기 설명한 바와 같다.
이하 하나 이상의 구체예를 실시예를 통해 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 패혈증 환자에서 혈청 뇌유래신경성장인자(BDNF) 발현 감소 확인
1-1. 실험참여 환자 및 측정방법
건강한 지원자 42명이 대조군의 역할을 하였고, 2017년 12월부터 2018년 12월까지 1년동안 응급실을 방문한 168명의 패혈증 환자를 대상으로 혈청 뇌유래신경성장인자(Brain-derived neurotrophic factor, BDNF)의 수치를 측정하고, 회복 및 퇴원 또는 사망 전 환자의 뇌유래신경성장인자(BDNF)의 수치를 측정하였다.
1-2. 뇌유래신경성장인자(BDNF) 수치 측정 결과
대조군의 평균 값은 19.91ng/mL, 패혈증 환자의 평균값은 11.78ng/mL로 측정되었으며(###p < 0.001) 패혈증 환자에서 혈청 뇌유래신경성장인자(BDNF) 발현이 유의미하게 감소되어 있는 것으로 나타났다(도 1).
따라서 대조군의 평균 혈청 BDNF의 함량 대비, 환자 개체의 평균 혈청 BDNF의 함량이 0.7 내지 0.5배 수준일 경우, 패혈증이 발현되거나 발현될 가능성이 있음을 알 수 있다. 특히, 환자 개체의 평균 혈청 BDNF의 함량이 대조군 대비 0.1 내지 0.4배 수준으로 감소될 경우, 특히 패혈증의 중증도가 높은 환자인 것으로 확인되었다.
실시예 2: 회복기 환자와 사망 전 환자의 혈청에서의 뇌유래신경성장인자(BDNF) 발현 수치 측정 결과
168명의 패혈증 환자 중 24명의 환자의 혈청 뇌유래신경성장인자(BDNF) 수준이 퇴원 시 측정되었다. 회복 및 퇴원한 18명의 환자의 뇌유래신경성장인자(BDNF) 수치의 평균값은 13.86ng/mL 이고, 사망한 6명의 환자의 평균값은 3.16ng/mL로 측정되었다(*p < 0.05). 회복 및 퇴원한 환자에서 뇌유래신경성장인자(BDNF) 수준이 정상수준으로 회복되었고, 사망한 환자에서는 뇌유래신경성장인자(BDNF) 수준이 더욱 감소되어 유의미한 차이를 나타냈다 (도 2).
이를 통해, 정상군인 대조군의 평균 혈청 BDNF의 함량 대비, 측정된 개체의 평균 혈청 BDNF의 함량이 0.65 내지 0.75배의 수준인 경우, 패혈증이 치료되어 완치될 가능성이 있는 것으로 판단할 수 있으며, 반면 측정된 개체의 평균 혈청 BDNF의 함량이 대조군 대비 0.10 내지 0.20배 수준으로 감소된 경우, 패혈증의 중증도가 높으며 완치될 가능성이 높지 않고, 환자가 사망에 이를 가능성이 상대적으로 높을 것으로 판단할 수 있음을 확인하였다.
실시예 3: 뇌유래 신경성장인자(BDNF) 및 LPS 처리 시 세포 생존율 확인
3-1. 재료 준비
실험에 사용한 마우스의 대식세포주인 RAW264.7 세포는 한국세포주은행(KCLB)에서 분양 받았으며, 세포배양을 위해 10% FBS과 1% penicillin-streptomycin을 포함하는 Dulbecco's Modified Eagle Medium(DMEM) 배지를 사용하였다. 세포는 CO2 배양기(37℃, 5% CO2)에서 배양하였다.
LPS(lipopolysaccharide) 는 SIGMA(St.Louis, USA) 사에서 구입하였다.
3-2. 실험 방법
RAW264.7 세포의 세포 생존율에 대한 뇌유래 신경성장인자(BDNF) 및 LPS 처리 효과는 CCK-8 assay 로 평가하였다. RAW264.7 세포는 24시간 동안 LPS 무처리 또는 처리(100 ng/mL) 상태에서 다양한 농도의 뇌유래 신경성장인자(BDNF) (0, 10, 50, 100 ng/mL)로 처리되었다.
3-3. 실험 결과
세포 생존율은 뇌유래 신경성장인자(BDNF) 처리 유무 또는 처리 농도에 따라 유의미한 차이가 없는 것으로 나타났다(도 3). LPS 자극 및 뇌유래 신경성장인자(BDNF)처리 시 세포 생존율이 70% 수준으로 측정되었다(도 4).
실시예 4: 전염증성 사이토카인 발현에 대한 뇌유래 신경성장인자(BDNF)의 영향 평가
4-1. 실험 방법
RAW264.7 세포에서 LPS로 유도된 전염증성 사이토카인 발현에 대한 뇌유래 신경성장인자(BDNF)처리의 효과를 ELISA로 평가하였다.
RAW264.7 세포를 LPS의 자극 없이 또는 LPS 100 ng/mL 의 자극 존재 하에 뇌유래 신경성장인자(BDNF)를 서로 다른 농도(0, 10, 50 또는 100 ng/mL)로 처리하였다. 배양 상층액의 TNF-α, IL-6, IL-1β 수준을 ELISA로 측정하였다.
4-2. 실험 결과
LPS 자극 없이 뇌유래 신경성장인자(BDNF)만 처리된 경우 전염증성 사이토카인의 발현에 영향이 없는 것으로 나타났다(도 5). LPS 자극으로 유도된 전염증성 사이토카인 (TNF-α, IL-6, IL-1β)의 발현은 뇌유래 신경성장인자(BDNF)처리에 의하여 억제된 것으로 나타났다(도 6).
실시예 5: AMPK 경로에 대한 뇌유래 신경성장인자(BDNF)의 영향 확인
5-1. 실험 방법
RAW264.7 세포 및 마우스 복막 대식세포에서 AMPK(AMP-activated kinase)경로에 대한 뇌유래 신경성장인자(BDNF)의 영향을 웨스턴 블롯으로 확인하였다.
RAW164.7 세포 및 마우스 복막 대식세포를 뇌유래 신경성장인자(BDNF)를 서로 다른 농도(0, 10, 50 또는 100 ng/mL)로 30분 동안 전처리한 후 LPS 500 ng/mL로 30분 동안 자극하였다.
5-2. 실험 결과
LPS의 자극은 pAMPK의 발현을 억제하고, 뇌유래 신경성장인자(BDNF)의 처리는 LPS로 자극된 RAW264.7 세포(도 7) 및 마우스 복막 대식세포(도 8) 모두에서 pAMPK의 발현을 정상수준으로 회복시키는 것으로 나타났다.
실시예 6: NF-kB 경로에 미치는 뇌유래 신경성장인자(BDNF)의 영향 확인
6-1. 실험 방법
RAW264.7 세포 및 마우스 복막 대식세포에서 NF-kB의 경로에 대한 뇌유래 신경성장인자(BDNF) 처리의 효과를 웨스턴 블롯으로 평가하였다.
RAW264.7 세포 및 마우스 복막 대식세포를 뇌유래 신경성장인자(BDNF)의 서로 다른 농도(0, 10, 50 또는 100 ng/mL)로 30분 동안 전처리 한 후 LPS 100 ng/mL 로 30분 동안 자극하였다.
6-2. 실험 결과
LPS의 자극은 IkBα의 발현을 억제하고, 뇌유래 신경성장인자(BDNF)의 처리는 LPS로 자극된 RAW264.7 세포(도 9) 및 마우스 복막 대식세포(도 10)에서 IkBα의 발현을 회복시키는 것으로 나타났다.
실시예 7: AMPK 녹다운이 NF-kB 활성화에 대한 뇌유래 신경성장인자(BDNF)의 억제효과에 미치는 영향 확인
7-1. 실험 방법
RAW264.7 세포에서 LPS로 유도된 NF-kB 신호전달경로에 대한 뇌유래 신경성장인자(BDNF)의 억제효과에 대한 AMPK siRNA의 영향을 평가하였다.
RAW264.7 세포에 대조군 siRNA 또는 AMPK siRNA(5 nM)를 24시간 동안 형질감염 시킨 후, 뇌유래 신경성장인자(BDNF)를 서로 다른 농도(0, 10, 50 또는 100 ng/mL)로 처리한 후 LPS 100 ng/mL 로 30분 동안 자극하였다.
IkBα의 발현 수준은 웨스턴 블롯으로 분석하였다.
7-2. 실험 결과
AMPK siRNA는 AMPK의 발현을 억제함을 확인하였다(도 11). AMPK siRNA로 형질감염되고 LPS로 자극된 RAW264.7세포에서 뇌유래 신경성장인자(BDNF)의 처리는 IkBα의 발현 수준을 회복시키지 않는 것으로 나타났다(도 12).
실시예 8: 화합물 C (Compound C)로 AMPK 억제 시 뇌유래 신경성장인자(BDNF)의 처리 효과에 미치는 영향 확인
8-1. 실험 방법
AMPK 억제제인 화합물 C (Compound C)로 AMPK 억제 시 뇌유래 신경성장인자(BDNF)의 pAMPK의 발현 회복에 미치는 영향과 LPS로 유도된 NF-kB 신호전달경로에 대한 뇌유래 신경성장인자(BDNF)의 억제효과에 미치는 영향을 평가하였다.
RAW264.7 세포를 뇌유래 신경성장인자(BDNF)의 여러 농도(0, 10, 50 또는 100 ng/mL) 및 화합물 C(20 uM)으로 30분 동안 전처리한 후 LPS 100 또는 500 ng/mL 로 30분 동안 자극하였다.
pAMPK, AMPK 및 IkBα의 발현수준은 웨스턴 블롯으로 평가되었다.
8-2. 실험 결과
화합물 C로 전처리 후 LPS로 자극된 RAW264.7 세포에서 뇌유래 신경성장인자(BDNF)의 처리는 pAMPK의 발현을 회복시키지 않는 것으로 나타났다(도 13). 화합물 C로 전처리 후 LPS로 자극된 RAW 264.7 세포에서 뇌유래 신경성장인자(BDNF)의 처리는 IkBα의 발현 수준을 회복시키지 않는 것으로 나타났다(도 14).
실시예 9: AMPK 녹다운이 전염증성 사이토카인의 발현에 미치는 영향 확인
9-1. 실험 방법
siRNA로 형질감염된 RAW264.7 세포에서 LPS로 유도된 전염증성 사이토카인 발현에 대한 뇌유래 신경성장인자(BDNF)의 처리효과를 평가하였다.
대조군 siRNA (5 nM) 또는 AMPK siRNA(5 nM)을 24시간 동안 세포에 형질감염 시킨 후 24시간 동안 LPS 무처리 또는 100 ng/mL로 자극하고 뇌유래 신경성장인자(BDNF)의 여러 농도(0, 10, 50 또는 100 ng/mL)로 처리하였다.
배양 상층액의 TNF-α, IL-6, IL-1β 수준을 ELISA로 측정하였다.
9-2. 실험 결과
대조군 siRNA가 형질감염된 세포에서는 뇌유래 신경성장인자(BDNF)의 처리에 의하여 LPS로 유도된 전염증성 사이토카인의 발현 억제 효과가 관찰되었으나, AMPK siRNA가 형질감염된 세포에서는 뇌유래 신경성장인자(BDNF)의 처리에 의하여 LPS로 유도된 전염증성 사이토카인의 발현 억제 효과가 나타나지 않았다 (도 15).
실시예 10: 호중구에서의 BDNF에 따른 p-AMPK의 변화 확인
10-1. 실험 방법
호중구에 BDNF의 농도를 각각 10, 100, 200(ng/mL)씩 30분간 처리하여 p-AMPK의 발현량을 확인하였다. 그 후 BDNF의 농도별 처리시 가장 활성이 뛰어났던 BDNF 100ng/mL를 이용하여 시간별로 각각 15, 30, 60분을 처리하뒤 p-AMPK의 발현량을 웨스턴 블롯을 통하여 확인하였다.
10-2. 실험 결과
호중구에 BDNF를 각각 10, 100, 200(ng/mL)씩 30분간 처리한 결과 p-AMPK의 활성화 정도가 100ng/mL에서 가장 높게 측정되었고, 이를 이용하여 호중구에 BDNF를 100ng/mL를 시간별로 각각 15, 30, 60분을 처리한 결과 30분에서 가장 높은 p-AMPK를 확인할 수 있었다(도 16).
실시예 11: BDNF 처리시 호중구의 화학적 자극에 따른 변화
11-1. 실험 방법
호중구에 BDNF 100ng/ml, LPS 1μg/ml를 각각 처리하고 BDNF와 LPS를 함께 처리를 하였다. 호중구(1X106 cell/well)는 24well plate안에 3μm pore transwell을 넣고 그 위에 분주하였고, 아래에는 w-peptide에 1시간 동안 노출시켰다. 아래로 이동한 세포는 countess II 세포 계수기를 사용하여 계수되었다.
11-2. 실험 결과
대조군에 비하여 BDNF만을 처리한 호중구의 양은 변화가 미비하였으나 LPS만을 처리한 호중구의 양은 상당한 양의 세포의 이주가 관찰되었다. BDNF와 LPS를 동시에 처리한 호중구의 경우 LPS만 처리하였던 것에 비하여 적은 양의 이주가 관찰되었다(도 17).
실시예 12: BDNF의 박테리아에 대한 사멸능 확인
12-1. 실험 방법
호중구(1X106 cells/ml)와 박테리아(E.coli, staphylococcus aureus - 1X108 CFU/ml)을 함께 RPMI(serum free)로 만든 뒤 BDNF을 농도별로 처리하여 37℃에서 90분간 반응시켰다. 그 후 20μL 세포/박테리아에 0.1% Triton X-100 480μL로 10분 동안 반응해 호중구를 용해시켰다. 용해시킨 호중구를 희석한 뒤 TSA배지에 도말하여 배양(37℃,overnight)하고, 박테리아 군집체의 수를 카운팅한다.
12-2. 실험 결과
E.coli staphylococcus aureus에 BDNF 100ng/mL를 처리한 결과 대조군에 비하여 BDNF를 처리한 박테리아 군집체의 양이 상당량 감소한 것을 확인할 수 있었다(도 18).
실시예 13: 패혈증 동물모델에서 BDNF의 생존율 향상 확인
13-1. 실험 방법
7 ~ 8 주령의 C57BL/6N mouse 수컷을 사용하여 Sham군과 CLP (cecal ligation and puncture)로 복막염을 유발군과 복막염을 유발 후 BDNF를 투여한 군으로 나누었다. Mouse에서 복막염 유발은 흡입마취 상태에서 복벽을 절개하고 맹장을 꺼내어 회장맹장 판막 직하부에서 맹장의 25%를 3-0 silk로 결찰 한 후 맹장의 장간막이 없는 쪽 표면에 18-게이지 주사기 바늘로 한 차례 관통시키고 짜서 천공된 부위를 통해 분변이 흘러 나오도록 한 후 다시 맹장을 복강내에 위치시키고 복강내로 1cc의 생리식염수를 투여 후 복막과 복벽을 봉합하였다. 복막염 유발 후 BDNF (5 ㎎/kg) 또는 생리식염수 (100 ㎕) 를 근육 주사하였다.
Sham군은 복벽을 절개하여 맹장을 꺼내어 공기중에 노출 후 다시 복강내에 위치시키고 복강내 1cc의 생리식염수를 투여 후 복막과 복벽을 봉합하였다.
수술이 끝난 개체는 사육시설에 넣어 물과 사료를 주고 생존율을 1주일 간 관찰하였다.
또한, 복막에서 추출한 혈장을 통해 혈장 내의 염증 지표인 TNF-α의 양을 확인하였다.
13-2. 실험 결과
Sham 군에서는 사망한 쥐는 없었고, 복막염 유발 후 BDNF 투여 한 군에서 통계적으로 유의하게 복막염 유발군에 비해 생존율이 높은 것을 확인하였다 (60% vs 20%, p=0.001) (도 19).
또한, 복막에서 추출한 혈장을 이용하여 혈장 내 염증유발로 인한 TNF-α의 양을 측정한 결과 sham군에서는 TNF-α가 거의 나오지 않았으며 복막염 유발군에서는 상당량의 TNF-α가 분비되었지만, BDNF를 처리한 개체의 혈장에서는 복막염만 유발된 군에 비하여 적은 양의 TNF-α가 생성됨을 확인할 수 있었다(도 20).
본 발명의 뇌유래 신경성장인자(BDNF)를 포함한 패혈증 진단, 예방 또는 치료용 약학적 조성물은 유전자의 발현량 또는 단백질의 발현량을 측정하여 패혈증 진단 및 예후 예측 용도로 유용하게 사용될 수 있으며, 개선 또는 완화용 건강기능식품은 패혈증의 예방, 치료, 개선 또는 완화의 효과가 있어 패혈증 환자에 적용할 수 있다.

Claims (11)

  1. 뇌유래신경성장인자(BDNF)의 발현량을 확인할 수 있는 제제를 포함하는 패혈증 진단용 조성물.
  2. 청구항 1에 있어서,
    상기 제제는 중합효소연쇄반응, 역전사 중합효소반응(RT-PCR), 경쟁적 역전사 중합효소반응(Competitive RT-PCR), RNase 보호 분석법(RNase, S1 nuclease assay), in situ 교잡법, 핵산 마이크로어레이, 차세대 염기서열분석 및 노던 블랏팅(Northern blotting) 중 어느 하나에서 사용되는 것을 특징으로 하는 패혈증 진단용 조성물.
  3. 청구항 1의 조성물을 포함하는 패혈증 진단용 키트.
  4. (a) 패혈증이 의심되는 개체의 생물학적 시료로부터 청구항 1의 조성물로 뇌유래신경성장인자(BDNF)의 발현수준을 측정하는 단계; 및
    (b) 상기 발현 수준을 정상 대조군 시료의 뇌유래신경성장인자(BDNF) 발현수준과 비교하는 단계를 포함하는 패혈증 진단에 필요한 정보를 제공하는 방법.
  5. 청구항 4에 있어서, 상기 시료는 혈액, 혈청, 혈장, 타액, 객담, 관절낭액, 양수, 복수, 자궁경부 또는 질 분비물, 소변 및 뇌척수액으로 이루어진 그룹에서 선택되는 어느 하나 이상의 시료인 것을 특징으로 하는 방법.
  6. 청구항 4에 있어서, 패혈증이 의심되는 개체의 생물학적 시료의 BDNF 발현 수준이, 정상 대조군 시료의 BDNF 발현 수준에 비해 0.7 내지 0.5배인 경우, 패혈증이 발현되거나 발현될 가능성이 있는 것으로 판단되는 것인, 방법.
  7. 뇌유래 신경성장인자(BDNF)를 유효성분으로 포함하는 패혈증 예방 또는 치료용 약학적 조성물.
  8. 청구항 7에 있어서,
    상기 뇌유래 신경성장인자는 조성물 전체 기준 10 내지 100ng/mL인 약학적 조성물.
  9. 청구항 7에 있어서,
    상기 뇌유래 신경성장인자는 5 내지 10 ㎎/kg 투여되는 것인 약학적 조성물.
  10. 청구항 7에 있어서,
    상기 조성물은 pAMPK 또는 IkBα발현을 억제하는 것인 약학적 조성물.
  11. 뇌유래 신경성장인자(BDNF)를 유효성분으로 포함하는 패혈증 개선 또는 완화용 건강기능식품.
PCT/KR2023/000970 2022-01-24 2023-01-19 뇌유래신경성장인자를 이용한 패혈증 진단, 예방 또는 치료용 약학적 조성물 WO2023140658A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220009657 2022-01-24
KR10-2022-0009657 2022-01-24
KR20220022343 2022-02-21
KR10-2022-0022343 2022-02-21

Publications (1)

Publication Number Publication Date
WO2023140658A1 true WO2023140658A1 (ko) 2023-07-27

Family

ID=87348496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000970 WO2023140658A1 (ko) 2022-01-24 2023-01-19 뇌유래신경성장인자를 이용한 패혈증 진단, 예방 또는 치료용 약학적 조성물

Country Status (1)

Country Link
WO (1) WO2023140658A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050196817A1 (en) * 2004-01-20 2005-09-08 Molecular Staging Inc. Biomarkers for sepsis
JP2005537236A (ja) * 2002-06-13 2005-12-08 ユニバーシティ・カレッジ・コークーナショナル・ユニバーシティ・オブ・アイルランド,コーク プロバイオティック治療
WO2013138374A2 (en) * 2012-03-15 2013-09-19 Curna, Inc. Treatment of brain derived neurotrophic factor (bdnf) related diseases by inhibition of natural antisense transcript to bdnf
JP2014522993A (ja) * 2011-08-08 2014-09-08 カリス ライフ サイエンシズ ルクセンブルク ホールディングス エス.アー.エール.エル. バイオマーカー組成物および方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537236A (ja) * 2002-06-13 2005-12-08 ユニバーシティ・カレッジ・コークーナショナル・ユニバーシティ・オブ・アイルランド,コーク プロバイオティック治療
US20050196817A1 (en) * 2004-01-20 2005-09-08 Molecular Staging Inc. Biomarkers for sepsis
JP2014522993A (ja) * 2011-08-08 2014-09-08 カリス ライフ サイエンシズ ルクセンブルク ホールディングス エス.アー.エール.エル. バイオマーカー組成物および方法
WO2013138374A2 (en) * 2012-03-15 2013-09-19 Curna, Inc. Treatment of brain derived neurotrophic factor (bdnf) related diseases by inhibition of natural antisense transcript to bdnf

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZENG NI, XU JUNMEI, YAO WEIFENG, LI SUOBEI, RUAN WEI, XIAO FENG: "Brain-Derived Neurotrophic Factor Attenuates Septic Myocardial Dysfunction via eNOS/NO Pathway in Rats", OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, HINDAWI PUBLISHING CORPORATION, US, vol. 2017, 1 January 2017 (2017-01-01), US , pages 1 - 11, XP093078246, ISSN: 1942-0900, DOI: 10.1155/2017/1721434 *

Similar Documents

Publication Publication Date Title
Dumond et al. Evidence for a key role of leptin in osteoarthritis
Marzetti et al. Multiple pathways to the same end: mechanisms of myonuclear apoptosis in sarcopenia of aging
Gandhi et al. Lenalidomide inhibits proliferation of Namalwa CSN. 70 cells and interferes with Gab1 phosphorylation and adaptor protein complex assembly
Chen et al. Hydrogen alleviates mitochondrial dysfunction and organ damage via autophagy‑mediated NLRP3 inflammasome inactivation in sepsis
WO2013169077A1 (ko) 악액질 예방 또는 치료용 조성물
WO2019098810A2 (ko) 신규 유산균 및 이의 용도
WO2016126054A1 (ko) 변형된 dkk2 단백질 또는 그 유전자를 포함하는 발기부전 예방 또는 치료용 조성물 및 이를 이용한 방법
WO2017078405A1 (ko) 글루코코르티코이드계 화합물을 포함하는 폐암 치료용 약학 조성물
Baus-Loncar et al. Cytokine regulation of the trefoil factor family binding protein GKN2 (GDDR/TFIZ1/blottin) in human gastrointestinal epithelial cells
Scholven et al. Intestinal expression of TFF and related genes during postnatal development in a piglet probiotic trial
WO2023140658A1 (ko) 뇌유래신경성장인자를 이용한 패혈증 진단, 예방 또는 치료용 약학적 조성물
Fenster et al. The role of CD4-dependent signaling in interleukin-16 induced c-Fos expression and facilitation of neurite outgrowth in cerebellar granule neurons
Penkowa et al. Increased demyelination and axonal damage in metallothionein I+ II-deficient mice during experimental autoimmune encephalomyelitis
WO2020226438A1 (ko) 염증성 장질환의 예방 또는 치료용 펩타이드
WO2021177518A1 (ko) 혈중 콜레스테롤 저하용, 심혈관 대사질환의 예방 또는 치료용 및 항염용 약학적 조성물
WO2023140664A1 (ko) 리포칼린 2 또는 이의 수용체의 발현 억제제를 유효성분으로 함유하는 비알코올성지방간염에 의해 유도된 간섬유화 예방 또는 치료용 약학 조성물
WO2020071795A1 (ko) If1 을 유효성분으로 함유하는 항암용 약학 조성물
WO2017213435A1 (ko) Slit-robo 시스템을 이용한 근감소증 예방 또는 치료용 조성물
US7041638B2 (en) Surfactant prevention of vaginitis and lung complications from cancer chemotherapy
WO2021096217A1 (ko) 재조합 안정화 갈렉틴 9 단백질을 포함하는 류마티스 관절염 및 골질환 예방 또는 치료용 약학적 조성물
WO2019035522A1 (ko) 트리아졸로피리딘계 유도체를 유효성분으로 함유하는 암 예방 또는 치료용 조성물
WO2020197304A1 (ko) 테트라스파닌-2 억제제를 유효성분으로 포함하는 췌장암 예방, 개선 또는 치료용 조성물
WO2019245269A1 (ko) Flt3 억제제를 유효성분으로 포함하는 만성 골수성 백혈병 약물 내성 억제용 조성물
WO2021091009A1 (ko) 알오알알파를 표적으로 하는 염증성 장질환 치료제 스크리닝 방법
WO2021118298A1 (ko) 페오포르바이드계 화합물을 유효성분으로 포함하는 섬유증의 예방 또는 치료용 약학적 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743502

Country of ref document: EP

Kind code of ref document: A1