WO2023140562A1 - Apparatus and method for separating radioactive strontium from seawater using cation exchange resin - Google Patents

Apparatus and method for separating radioactive strontium from seawater using cation exchange resin Download PDF

Info

Publication number
WO2023140562A1
WO2023140562A1 PCT/KR2023/000537 KR2023000537W WO2023140562A1 WO 2023140562 A1 WO2023140562 A1 WO 2023140562A1 KR 2023000537 W KR2023000537 W KR 2023000537W WO 2023140562 A1 WO2023140562 A1 WO 2023140562A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
unit
strontium
seawater
column
Prior art date
Application number
PCT/KR2023/000537
Other languages
French (fr)
Korean (ko)
Inventor
김철수
강유겸
Original Assignee
한국원자력안전기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력안전기술원 filed Critical 한국원자력안전기술원
Publication of WO2023140562A1 publication Critical patent/WO2023140562A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/362Cation-exchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/80Arrangements for signal processing

Definitions

  • the present invention relates to an apparatus for separating radioactive strontium from seawater, and more particularly, to an apparatus and method for separating radioactive strontium (Sr-90) from seawater using a cation exchange resin.
  • Sr-90 in seawater is present in extremely small amounts, and most of these Sr-90 have been introduced into the environment by nuclear experiments in the past 50-60 years, and since the amount of Sr-90 in seawater is very low, it is a trace amount of artificial radionuclide that is detected only through precise radioactivity analysis using a large amount of seawater.
  • Sr-90 is a nuclide that emits beta rays and has a very low concentration, concentration through chemical separation and pure separation are required for detection.
  • the separation method using the difference in solubility of Ca nitrate and Sr nitrate according to the nitric acid content is used in many laboratories, but this method is very dangerous because it uses a large amount of fuming nitric acid (95%) with a high nitric acid concentration.
  • this resin uses a method that can easily separate Sr from Ca, but in the case of samples with high Ca and Sr content, the chemical recovery rate is significantly lowered. Since the price of the resin is too expensive, it is difficult to apply when a large amount of seawater is used.
  • HDEHP di-(2-ethylhexyl) hydrogen phosphoric acid
  • Heptane a solvent extraction method using HDEHP (di-(2-ethylhexyl) hydrogen phosphoric acid) and Heptane
  • HDEHP di-(2-ethylhexyl) hydrogen phosphoric acid
  • Heptane a solvent extraction method using Heptane
  • Registered Patent Publication No. 10-1656475 suggests a method for separating Sr by a method for recovering strontium contained in seawater, but this is a method of recovering Sr in the form of cyclic strontium crystals after removing Ca and Mg, which are +divalent cations present in large amounts in seawater, through hydroxide precipitation.
  • No. 9-001347 is a high-purity recovery method for strontium in seawater.
  • initial Ca and Mg are removed by hydroxyl precipitation and oxalate precipitation, and then Sr is separated using an ion exchange resin. Specific detailed conditions for the Sr separation method using an ion exchange resin are not presented, the separation process is complicated, and no technology for using the device in the column separation process is presented.
  • Publication No. 10-2016-0007228 discloses a method for manufacturing 4A-Ba composite zeolite for treatment of radioactive Sr contaminated water and a method for treating contaminated water using the same
  • Patent Publication No. 10-2020-0080181 discloses an Sr ion adsorbent using layered vanadosilicate and a method for removing Sr ions using the same
  • a technical problem to be achieved by an embodiment of the present invention is to provide an apparatus and method for separating radioactive strontium from seawater that can be automated to safely and quickly separate radioactive strontium (Sr-90) from seawater and increase the efficiency of the separation by obtaining a recovered strontium solution by injecting a strontium elution solution into the column portion after completion of sequentially injecting a resin activating liquid, a seawater sample, and a washing liquid into a column portion containing a cation exchange resin.
  • an apparatus for separating radioactive strontium in seawater includes a first transfer unit that transfers a resin activating liquid, a seawater sample, a washing liquid, and a strontium eluting liquid separately contained in a plurality of solution containers; A second transfer unit for transferring the solution selected from the second transfer unit, a column unit containing a predetermined amount of cation exchange resin in advance and injecting the solution transferred from the second transfer unit, a second solution selector connected to the column unit and selecting waste liquid or strontium recovery liquid, a third transfer unit connected to the second solution selector to transfer the waste liquid or strontium recovery liquid to a recovery container, a pump unit connected to the second transfer unit and transferring the solution, and a control unit for controlling the first and second solution selectors and the pump unit.
  • the controller may control the first and second solution selectors and the pump to sequentially inject the resin activating liquid, the seawater sample, and the washing liquid into the column part and discharge the waste liquid from the column part, and when the resin activating liquid, the seawater sample, and the washing liquid are sequentially injected into the column part, the first and second solution selecting parts and the pump part may inject the strontium eluate into the column part and discharge the recovered strontium liquid from the column part.
  • the present invention may further include a solution container including a first solution container containing the resin activating solution, a second solution container containing the seawater sample, a third solution container containing the washing solution, and a fourth solution container containing the strontium eluate.
  • the resin activating solution may include 0.2M HCl
  • the washing solution may include a washing solution in which 2M ammonium acetate (NH 4 CH 3 CO 2 ) and methanol are mixed in a ratio of 1:1
  • the strontium eluate may include 2M ammonium acetate (NH 4 CH 3 CO 2 ).
  • the first transfer unit includes: a first suction tubing inserted in the first solution container to transfer the resin activating liquid to the first solution selector; a second suction tubing inserted in the second solution container to transfer the seawater sample to the first solution selector; a third suction tubing inserted in the third solution container to transfer the washing liquid to the first solution selector; and a strontium eluate inserted in the fourth solution container. It may include a fourth suction tubing for transferring to the first solution selector.
  • the present invention further includes a first sensor unit for sensing the flow of the solution flowing in the first transfer unit, and a second sensor unit for detecting the level of the solution contained in the column unit, wherein the control unit determines whether the transfer of the solution contained in the solution container is completed based on the sensing signal received from the first sensor unit, controls the first and second solution selection units and the pump unit, and controls the first and second solution selection units and the pump unit based on the sensing signal received from the second sensor unit.
  • the pump unit may be controlled by determining the level of the solution contained in the unit.
  • the first sensor unit may include a first photoelectric sensor disposed around the suction tubing of the first transfer unit to primarily sense the flow of the solution, and a second photoelectric sensor disposed around the intake tubing of the first transfer unit to be spaced apart from the first photoelectric sensor by a predetermined distance to secondarily sense the flow of the first-detected solution.
  • the second sensor unit may include a water level sensor inserted at an upper end of the column unit to detect a level of a solution injected into the column unit.
  • the control unit controls the first solution selector to select the resin activating liquid when a user input requesting separation of strontium is received, controls the second solution selector to select the waste liquid of the column unit at the same time, controls the pump unit to transfer and injects the selected resin activating liquid into the column unit, and controls the first solution selector to select the seawater sample when the injection of the resin activating liquid is completed; control the pump unit to transfer and inject the seawater sample, control the first solution selector to select the washing liquid when the injection of the seawater sample is completed, control the pump unit to transfer and inject the selected washing liquid to the column unit, and control the first solution selector to select the strontium elution solution and simultaneously control the second solution selector to select the strontium recovery solution of the column unit, and transfer and inject the selected strontium elution solution into the column unit.
  • the pump unit is controlled and the injection of the strontium eluate is completed, separation and recovery of strontium may be completed
  • control unit may fill the suction tubing of the first transfer unit up to the front end of the first solution selection unit with the resin activating liquid, the seawater sample, the cleaning liquid, and the strontium eluate contained in the plurality of solution containers before receiving a user input requesting separation of strontium.
  • a method for separating radioactive strontium from seawater is a method for separating radioactive strontium from seawater of a radioactive strontium separation device including a control unit for controlling first and second solution selection units and a pump unit.
  • control unit controls the first solution selector to select the seawater sample when the injection of the resin activating liquid is completed, and controls the pump unit to transport and inject the selected seawater sample into the column unit
  • control unit controls the first solution selector to select the washing liquid when the injection of the seawater sample is completed, and controls the pump unit to transfer and inject the selected washing liquid into the column unit
  • the control unit may control the first solution selector to select the strontium eluate when the injection of the washing solution is completed, simultaneously control the second solution selector to select the strontium recovery solution of the column unit, and control the pump unit to transport and inject the selected strontium eluate into the column unit, and (e) the control unit to complete separation and recovery of strontium when the injection of the strontium eluate is completed.
  • the strontium elution solution is injected into the column unit to obtain a recovered strontium solution, thereby enabling automation to safely and quickly separate radioactive strontium (Sr-90) from seawater and increase the efficiency of the separation.
  • the present invention by directly injecting seawater into a column to separate Sr without chemical pretreatment, can ensure the rapidity and safety of chemical separation, and by injecting a certain amount of separation solution at a constant rate, the accuracy and reproducibility of Sr separation are improved. It is expected to contribute to the improvement of analytical ability and quality of domestic nuclear operators and marine research-related laboratories that analyze Sr-90 in seawater.
  • the present invention has the advantage of significantly improving the safety of analysts and laboratories and reducing the generation of acid waste by using a safe reagent instead of the existing toxic fuming nitric acid.
  • the cation exchange resin since the physical safety of the cation exchange resin is high and the chemical reactivity to the separation solutions is low, it can be used repeatedly by using a regeneration process based on an ion exchange method, so there is no need to use a large amount of resin, thereby reducing economic costs.
  • the present invention is expected to be widely used in other radionuclide separations using a similar separation method by automating the element separation process using a column and a separation solution.
  • FIG. 1 is a block diagram illustrating an apparatus for separating radioactive strontium from seawater according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating an apparatus for separating radioactive strontium from seawater according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method for separating radioactive strontium from seawater according to an embodiment of the present invention.
  • FIG. 1 is a block configuration diagram for explaining an apparatus for separating radioactive strontium in seawater according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram for explaining an apparatus for separating radioactive strontium in seawater according to an embodiment of the present invention.
  • the present invention is connected to the first transfer unit 100 for transferring the resin activating liquid 62, the seawater sample 64, the washing liquid 66, and the strontium eluate 68 separately contained in a plurality of solution containers.
  • a first solution selector 200 for selecting any one of the solutions a second transfer unit 300 connected to the first solution selector 200 and transporting the solution selected from the first solution selector 200, a column unit 400 containing a predetermined amount of cation exchange resin 410 in advance and injecting a solution transferred from the second transfer unit 300, and a waste liquid 32 or strontium recovery liquid 3 connected to the column unit 400
  • the second solution selector 500 for selecting 4) the third transfer unit 600 connected to the second solution selector 500 to transfer the waste liquid 32 or the strontium recovery liquid 34 to the recovery container, the pump unit 700 connected to the second transfer unit 300 to transport the solution, and the control unit 800 to control the first and second solution selectors 200 and 500 and the pump unit 700.
  • the control unit 800 to control the first and second solution selectors 200 and 500 and the pump unit 700.
  • the present invention may further include a solution container 90 including a first solution container 92 containing the resin activating liquid 62, a second solution container 94 containing the seawater sample 64, a third solution container 96 containing the cleaning solution 66, and a fourth solution container 98 containing the strontium eluate 68.
  • a solution container 90 including a first solution container 92 containing the resin activating liquid 62, a second solution container 94 containing the seawater sample 64, a third solution container 96 containing the cleaning solution 66, and a fourth solution container 98 containing the strontium eluate 68.
  • the resin activating solution 62 may include about 0.2M HCl
  • the washing solution 66 may include a washing solution in which about 2M ammonium acetate (NH 4 CH 3 CO 2 ) and methanol are mixed in a ratio of 1:1
  • the strontium eluent 68 may include about 2M ammonium acetate (NH 4 CH 3 CO 2 ), which is only an example and is not limited thereto. does not
  • the first transfer unit 100 includes a first suction tubing 110 inserted into the first solution container 92 to transfer the resin activation liquid 62 to the first solution selector 200, a second suction tubing 120 inserted into the second solution container 94 to transfer the seawater sample 64 to the first solution selector 200, and a washing liquid 66 inserted into the third solution container 96 to the first solution selector It may include a third suction tubing 130 that transfers to 200, and a fourth suction tubing 140 that is inserted into the fourth solution container 98 and transfers the strontium eluate 68 to the first solution selector 200.
  • ends of the first to fourth suction tubings 110 , 120 , 130 , and 140 may be placed in contact with the bottoms of the first to fourth solution containers 92 , 94 , 96 , and 98 .
  • first, third, and fourth suction tubings 110, 130, and 140 may be fixed by fixing nuts 50 disposed above the first, third, and fourth solution containers 92, 96, and 98, and the second suction tubing 120 may be fixed by a guide tube support 40 disposed above the second solution container 94.
  • the present invention the first sensor unit 910 for detecting the flow of the solution flowing in the first transfer unit 100, and the second sensor unit 920 for detecting the water level of the solution contained in the column unit 400 It may further include.
  • the first sensor unit 910 may include a first photoelectric sensor 912 disposed around the suction tubing of the first transfer unit 100 to firstly sense the flow of the solution, and a second photoelectric sensor 914 disposed around the suction tubing of the first transfer unit 100 to be spaced apart from the first photoelectric sensor 912 by a predetermined distance to secondarily sense the firstly sensed flow of the solution. only, but not limited thereto.
  • the reason for disposing the first sensor unit 910 is to determine whether the transfer of the solution contained in the solution container is complete.
  • control unit 800 of the present invention can control the first solution selection unit 200 by determining whether or not the transfer of the solution contained in the solution container is completed based on the sensing signal received from the first sensor unit 910.
  • the control unit 800 may determine that the transfer of the solution contained in the solution container has not been completed and maintain the first solution selector 200 that has selected the current solution as it is, and the sensing signal of the first photoelectric sensor 912 primarily senses the flow of air. signal, and when the signal sensed by the second photoelectric sensor 914 is a signal obtained by secondarily detecting air flow, the first solution selector 200 may be controlled to select another solution by determining that the transfer of the solution contained in the solution container is complete.
  • the control unit 800 may determine that the transfer of the solution contained in the solution container is incomplete and maintain the first solution selector 200 that has selected the current solution as it is, and the sensing signal of the first photoelectric sensor 912 primarily senses the flow of air If it is a signal and the sensing signal of the second photoelectric sensor 914 is a signal that secondarily senses the flow of the solution, it is determined that the transfer of the solution contained in the solution container is incomplete, and the first solution selector 200 that currently selects the solution can be maintained.
  • the second sensor unit 920 may include a water level sensor inserted into the upper end of the column unit 400 to detect the level of the solution injected into the column unit 400, which is only one embodiment, but is not limited thereto.
  • the water level sensor may be positioned higher than the surface height of the cation exchange resin 410 contained in the column unit 400.
  • the reason for arranging the second sensor unit 920 is to determine the level of the solution injected into the column unit 400 and prevent the risk of an excessive increase in the solution in the column unit 400 due to the abnormal operation of the automatic separator.
  • control unit 800 may control the pump unit 700 by determining the water level of the solution contained in the column unit 400 based on the sensing signal received from the second sensor unit 920 .
  • control unit 800 may control the pump unit 700 to stop operation of the pump unit 700 when the sensing signal of the water level sensor is a signal that increases above a certain level of the solution injected into the column unit 400.
  • the second transport unit 300 may include an elastic tubing for transporting the solution selected from the first solution selector 200 .
  • the pump unit 700 may transfer the solution in one direction at a predetermined speed using pressure generated by compressing the elastic tubing of the second transfer unit 300 while the roller of the pump rotates.
  • the third transfer unit 600 may include a waste transfer unit 610 that is connected to the second solution selector 500 and transfers the waste liquid 32 to the waste liquid container 42, and a recovery liquid transfer unit 620 that is connected to the second solution selector 500 and transfers the recovered strontium liquid 34 to the recovery container 44.
  • control unit 800 controls the first and second solution selection units 200 and 500 and the pump unit 700 to discharge the waste liquid 32 from the column unit 400 by sequentially injecting the resin activating liquid 62, the seawater sample 64, and the washing liquid 66 into the column unit 400, and the resin activating liquid 62, the seawater sample 64, and the washing liquid 66 are sequentially supplied to the column unit ( 400), the first and second solution selection units 200 and 500 and the pump unit 700 can be controlled to inject the strontium eluate 68 into the column unit 400 and discharge the strontium recovery liquid 34 from the column unit 400.
  • control unit 800 includes a main power circuit breaker 810 that turns on/off the power supply, a pump speed controller 820 that controls the operation of the pump unit 700 and the solution transfer speed, a first operation controller 830 that controls the solution selection operation of the first solution selector 200, a second operation controller 840 that controls the solution selection operation of the second solution selector 500, and an overall operation for automatic separation of strontium. It may include an automatic separation operation button 850 for turning on/off, which is only one embodiment, but is not limited thereto.
  • the controller 800 controls the first solution selector 200 to select the resin activating liquid 62 when a user input requesting separation of strontium is received, and simultaneously controls the second solution selector 500 to select the waste liquid 32 of the column part 400, and controls the pump part 700 to transfer and inject the selected resin activating liquid 62 into the column part 400, and injection of the resin activating liquid 62 is completed.
  • the first solution selector 200 is controlled to select the seawater sample 64
  • the pump unit 700 is controlled so that the selected seawater sample 64 is transported and injected into the column unit 400.
  • the first solution selector 200 is controlled to select the washing liquid 66, and the pump unit 700 is controlled so that the selected washing liquid 66 is transferred and injected into the column unit 400,
  • the first solution selector 200 is controlled to select the strontium eluate 68, and the second solution selector 500 is controlled to select the strontium recovery solution 34 of the column unit 400. Separation and recovery of strontium may be completed by controlling the operation of the pump unit 700 .
  • control unit 800 when checking whether the injection of any one of the resin activating liquid 62, the seawater sample 64, the cleaning liquid 66, and the strontium eluate 68 has been completed, can confirm whether the injection of the solution has been completed based on the first sensing signal for firstly sensing the flow of the solution and the second sensing signal for secondarily sensing the firstly sensed flow of the solution.
  • the controller 800 may determine that the injection of the solution is completed, and if both the first and second sensing signals are signals for detecting the flow of the solution, the controller 800 may determine that the injection of the solution is incomplete.
  • control unit 800 may control the pump unit 700 to stop operation of the pump unit 700 based on a sensing signal that detects the level of the solution injected into the column unit 400 when transferring and injecting any one of the resin activating liquid 62, the seawater sample 64, the washing liquid 66, and the strontium eluate 68 into the column unit 400.
  • the control unit 800 can control the pump unit 700 to stop the operation of the pump unit 700 based on this.
  • control unit 800 may fill the resin activating liquid 62, the seawater sample 64, the cleaning liquid 66, and the strontium eluting liquid 68 separately contained in a plurality of solution containers into the suction tubing of the first transfer unit 100 up to the front end of the first solution selection unit 200.
  • control unit 800 controls the first solution selector 200 and the pump unit 700 to fill the first suction tubing 110 of the first transfer unit 100 inserted into the first solution container 92 and connected to the first solution selector 200 with the resin activating liquid 62, inserted into the second solution container 94 and connected to the first solution selector 200, the first transfer unit 100
  • the seawater sample 64 is filled in the second suction tubing 120 of the third solution container 96 and the washing liquid 66 is filled in the third suction tubing 130 of the first transfer unit 100 connected to the first solution selector 200, and the fourth suction tubing 140 of the first transfer unit 100 is inserted into the fourth solution container 98 and connected to the first solution selector 200.
  • a strontium eluate (68) may be charged.
  • control unit 800 may regenerate the cation exchange resin by injecting a cation removal solution into the column unit 400 when the separation and recovery of strontium is completed.
  • the cation removal solution may include about 2M HCl, which is only an example, but is not limited thereto.
  • the configuration of the present invention relates to a method for separating strontium (Sr) from seawater based on a cation exchange resin and an automated separation method for Sr from seawater using the same.
  • a solution container capable of containing seawater sample, resin activation solution, washing solution, Sr-eluate solution, waste solution, and Sr-recovery solution is prepared, and the solution container including these solution containers is placed at the lower end of the automatic separation device 80.
  • the automatic separation device 80 of the present invention includes a Teflon tubing connecting the injection solution to the final recovery container, a tubing pump for transporting the solution, a seawater sample suction tubing guide tube support and a nut for fixing the separation solution suction tubing, a primary solution selection valve for switching the injection solution flow path, a secondary solution selection valve for switching the final recovery solution flow path, a cation exchange resin and an acrylic column containing it, and an optical sensor for detecting the flow of the injection solution It consists of a front sensor, a water level sensor that detects the height of the solution in the column part, a main power breaker for the separation device, a pump operation and pump speed controller, a first solution selection valve passage control, a second solution selection valve passage adjustment, and a control panel that includes the entire process operation function, so that radioactive strontium (Sr-90) can be automatically separated from a large amount of seawater sample.
  • a front sensor a water level sensor that detects the height of the solution in the column part
  • a radionuclide in seawater For the analysis of Sr-90, a radionuclide in seawater, a method of chemically separating stable Sr in seawater and measuring the separated radioactive Sr together with stable Sr with a radioactivity meter can be used.
  • a cation exchange resin (Dowex 50W-8X, 100-150 mesh) was used, and this method is a method of selectively separating only Sr using a washing and elution solution after adsorbing cations including Sr present in seawater to the resin.
  • the core of the separation technology is to remove Ca, which is present in a large amount in seawater, is difficult to separate due to similar chemical behavior to Sr, and causes interference in measuring Sr recovery rate and measuring radioactivity.
  • the amount of cation resin used was 1.7 L (based on hydrated resin), which is sufficient for Ca separation and Sr recovery, considering the amount of seawater sample (40 L) and the adsorption capacity of the cation resin.
  • the sample injection rate was determined to be about 30 ml per minute with a balance of inflow and outflow considering the resin capacity (internal diameter: 9 cm, height: 26 cm) and the particle diameter of the resin particles (100 to 150 mesh) in the column. Based on this, it took about 21 hours to inject about 40 L of seawater.
  • the main purpose of the washing solution injection after sample injection was to remove Ca, and a 1:1 mixture of about 2M ammonium acetate (NH 4 CH 3 CO 2 ) and methanol was used. In this process, some adsorbed Mg and most of Ca are removed.
  • hydrochloric acid or other saline solutions including ammonium can be used as an eluent for Sr, but since elution using strong acid recovers all cations, an additional separation process for Sr is required and a large amount of strong acid must be treated.
  • 2M ammonium acetate (NH 4 CH 3 CO 2 ) has a similar washing solution and solution composition compared to other salts, and has the advantage of high selectivity for Sr elution, and the optimal elution amount is about 4.8 L in the resin standard used (internal diameter: 9 cm, height: 26 cm).
  • the technical core is to accurately inject the injection amount of the separation solution as well as the seawater sample into the resin.
  • the separation solution activation, Ca removal, Sr recovery
  • the separation solution was accurately measured and injected into each solution box as an automatic separation preparation step.
  • the hydrated cation exchange resin was filled in a circular acrylic column (outer diameter, inner diameter, height (cm): 10 ⁇ 9 ⁇ 40) to a height of about 26 cm, and then the upper lid was fastened.
  • the second solution selection valve that is, the flow path of the second solution selection unit 500 as the first (waste liquid) flow path
  • the first solution selection valve that is, the first solution selecting unit 200
  • the first flow path activation solution
  • operate the tubing pump and when the solution is injected up to the first solution selection valve, change the flow path to No. 2 to select the seawater sample, and then select the third flow path to prepare the washing liquid
  • select flow path 4 to inject the Sr-eluent to the selection valve, and return the flow path to flow path 1 to complete all preparations.
  • automatic separation proceeds with pressing the automatic separation operation button on the control panel.
  • resin activating solution along with the operation of the tubing pump, seawater sample, cleaning solution, and final strontium elution solution (Sr-elution solution) are sequentially injected along with the flow path change of the first solution selection valve.
  • the control for each solution injection is carried out by the first solution selection valve, i.e., the first solution selection unit 200 and the flow rate sensors (first and second photoelectric sensors) installed between the plurality of solution containers detect the inflow of air after all the solutions are injected, and send this signal to the first solution selection valve to switch to the next solution.
  • the first solution selection valve i.e., the first solution selection unit 200 and the flow rate sensors (first and second photoelectric sensors) installed between the plurality of solution containers detect the inflow of air after all the solutions are injected, and send this signal to the first solution selection valve to switch to the next solution.
  • the suction tubing that sucks each solution uses a screw tubing clamp coupled to the lid of the solution container, so that the end of the suction tubing is fixedly positioned on the bottom of the container so that all the solutions in the container are injected while the pump is running.
  • a tubing guide pipe is installed on the upper wall of the container so that the long suction tubing can be stably adhered to the bottom of the container when injected.
  • the first and second photoelectric sensors used in this case are arranged in series so that a switching signal is transmitted to the valve only when a signal is received from two at the same time in order to prevent malfunction due to one momentary air bubble, thereby improving the safety of operation.
  • the solution connector first to fourth suction tubing
  • it can also be applied to some translucent Teflon tubing, so it can be applied to all tubing of various sizes and materials.
  • a difference in inflow and discharge may occur in some solutions due to a change in the pore size between resins.
  • a water level sensor capable of measuring the height of the solution is installed at the top of the column part 400 to prevent this, when the solution increases above a certain level, It is an automatic separation device including the safety of the separation system that operates automatically by stopping the operation of the tubing pump.
  • the tubing pump that is, the pump unit 700
  • the tubing pump unit 700 is a speed-adjustable pump capable of supplying up to about 50 mL per minute.
  • the elastic tubing for the pump is applicable to about 2M hydrochloric acid and about 50% methanol solutions by using tubing that can also be used for acid solutions and organic solvents.
  • the control unit of the present invention is fixed to the panel and consists of a main power circuit breaker, a tubing pump operation and speed controller, a primary solution selector (first solution selector) selection, a secondary solution selector (second solution selector) selection, and an automatic separation operation button. Since the pump operates only when the solution in the tubing is filled during initial solution injection, a process of injecting each solution into the tubing using the control unit before the start of automatic separation is required, and this can be easily operated from the control unit. .
  • the cation exchange resin used in the present invention has very high physical and chemical safety under strong acid and organic solvent conditions, it can be regenerated and activated by removing some of the cations remaining in the resin with about 2M hydrochloric acid after Sr separation is completed, so that it can be used repeatedly as long as the recovery rate for Sr does not decrease.
  • the strontium eluate is injected into the column unit to obtain the recovered strontium solution, thereby enabling automation to safely and quickly separate radioactive strontium (Sr-90) from seawater and increase the efficiency of the separation.
  • FIG. 3 is a flowchart illustrating a method for separating radioactive strontium from seawater according to an embodiment of the present invention.
  • the resin activating liquid, the seawater sample, the cleaning liquid, and the strontium eluate which are separately contained in a plurality of solution containers, can be filled into the suction tubing connected between the solution container and the first solution selector, respectively (S10).
  • the present invention may check whether a user input requesting separation of strontium is received (S20).
  • the first solution selector is controlled to select the resin activating liquid
  • the second solution selector is controlled to select the waste liquid of the column unit at the same time
  • the pump unit is controlled to transfer and inject the selected resin activating liquid into the column unit (S30).
  • the present invention based on the first sensing signal for primarily detecting the flow of the resin activating liquid in the suction tubing and the second sensing signal for secondarily detecting the first detected flow of the resin activating liquid, whether or not injection of the resin activating liquid is completed can be confirmed.
  • the first solution selection unit may be controlled to select a seawater sample
  • the pump unit may be controlled to transport and inject the selected seawater sample into the column unit (S50).
  • the present invention can check whether the injection of the seawater sample has been completed (S60).
  • the present invention based on the first sensing signal for firstly detecting the flow of the seawater sample in the suction tubing and the second sensing signal for secondarily sensing the flow of the firstly sensed seawater sample, whether or not the seawater sample is injected can be confirmed.
  • the first solution selector may be controlled to select the washing solution
  • the pump may be controlled to transport and inject the selected washing solution into the column unit (S70).
  • the present invention may check whether the injection of the washing solution is completed (S80).
  • the present invention it is possible to determine whether or not the injection of the washing liquid is completed based on a first sensing signal for primarily detecting the flow of the washing liquid in the suction tubing and a second sensing signal for secondarily detecting the primarily detected flow of the washing liquid.
  • the first solution selector is controlled to select the strontium elution solution
  • the second solution selector is controlled to select the strontium recovery solution of the column unit at the same time
  • the pump unit is controlled to transfer and inject the selected strontium elution solution into the column unit (S90).
  • the present invention based on the first sensing signal for primarily detecting the flow of the strontium eluate in the suction tubing and the second sensing signal for secondarily sensing the flow of the strontium eluate that has been primarily sensed, it is possible to check whether the injection of the strontium eluate has been completed.
  • the strontium separation and recovery process can be completed (S110).
  • the separation of Sr-90 from a 40L seawater sample is performed automatically in the automatic separation step through the initial sample, separation solution, column preparation step, and automatic separation device operability check step, and Sr separation is completed.
  • An example for this is as follows.
  • the flow path of the 1st solution selection valve is changed sequentially with the pump operation, filling the activating solution, sample, washing solution, and elution solution up to the front of the 1st solution selection valve, and then operating the automatic separation action button.
  • an activation solution (0.2M HCl - 5L) is injected along flow path 1 at a rate of 30 ml/min for about 170 minutes, and the chemical form at the end of the reactor of the cation exchange resin is converted to H + form, and the composition is changed so that cations can be adsorbed.
  • seawater sample injection starts and it takes about 21 hours to inject all 40L.
  • the first solution selection valve flow path is switched to number 3 in the same manner as in the previous step, and a 1:1 mixed solution of 2M ammonium acetate (NH 4 CH 3 CO 2 ) and methanol (CH 3 OH) is injected. In this process, some Mg 2+ and most of Ca 2+ adsorbed during the sample injection process are removed.
  • the first solution selection valve flow path is switched to No. 4, and upon receiving this signal, the second solution selection valve is switched to No. 2 flow path, and the injection and recovery of 4.8 L of 2M ammonium acetate (NH 4 CH 3 CO 2 ) begins.
  • the present invention can safely and quickly separate radioactive strontium (Sr-90) from seawater and increase the efficiency of the separation by injecting the strontium eluate into the column portion to obtain a recovered strontium solution after the resin activating solution, the seawater sample, and the cleaning solution are sequentially injected into the column portion containing the cation exchange resin.
  • radioactive strontium Sr-90
  • the present invention has industrial applicability in that it is possible to safely and quickly separate radioactive strontium (Sr-90) from seawater and to increase the efficiency of the separation by obtaining a recovered strontium solution by injecting a strontium elution solution into the column portion after completion of sequentially injecting the resin activating solution, the seawater sample, and the washing solution into the column portion containing the cation exchange resin.
  • radioactive strontium Sr-90

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Signal Processing (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

The present invention relates to an apparatus and a method for separating radioactive strontium (SR-90) from seawater using a cation exchange resin, the invention comprising: a first transfer unit for transferring a resin activation solution, a seawater sample, a washing solution and a strontium eluate; a first solution selection unit; a second transfer unit; a column unit in which a prescribed amount of a cation exchange resin is pre-filled and to which the solution transferred from the second transfer unit is injected; a second solution selection unit for selecting a waste liquid or a strontium recovery solution; a pump unit for transferring the solution; and a control unit for controlling the first and second solution selection units and the pump unit, wherein the control unit may control the first and second solution selection units and the pump unit to sequentially inject the resin activation solution, the seawater sample and the washing solution into the column unit in order to discharge the waste liquid, and to inject the strontium eluate into the column unit in order to discharge the strontium recovery solution from the column unit.

Description

양이온교환수지를 이용한 해수 중 방사성스트론튬 분리 장치 및 방법Apparatus and method for separating radioactive strontium from seawater using cation exchange resin
본 발명은 해수 중 방사성스트론튬 분리 장치에 관한 것으로, 보다 상세하게는 양이온교환수지를 이용한 해수 중 방사성스트론튬(Sr-90) 분리 장치 및 방법에 관한 것이다.The present invention relates to an apparatus for separating radioactive strontium from seawater, and more particularly, to an apparatus and method for separating radioactive strontium (Sr-90) from seawater using a cation exchange resin.
일반적으로, 해수 중 Sr-90은, 매우 극미량이 존재하며, 이들 Sr-90은, 대부분 과거 50-60년대 핵실험에 의해서 환경으로 유입된 것으로, 해수 중 존재량이 매우 낮기 때문에 다량의 해수를 사용하여 정밀한 방사능분석을 통해서만 검출되는 미량의 인공방사성핵종이다.In general, Sr-90 in seawater is present in extremely small amounts, and most of these Sr-90 have been introduced into the environment by nuclear experiments in the past 50-60 years, and since the amount of Sr-90 in seawater is very low, it is a trace amount of artificial radionuclide that is detected only through precise radioactivity analysis using a large amount of seawater.
Sr-90은, 원자로 가동으로 인하여 생성되며 물리적 반감기가 길며 방사선 위해성이 높기 때문에, 원자력이용시설 운영자뿐만 아니라 관련 규제기관은, 시설 주변 환경시료에 대하여 Sr-90을 조사하고 있으며, 이들 환경시료 중 해수는, 중요한 조사대상 중 하나이다.Since Sr-90 is generated during the operation of a nuclear reactor, has a long physical half-life, and has a high radiation risk, operators of nuclear power facilities as well as related regulatory agencies are investigating Sr-90 in environmental samples around facilities, and among these environmental samples, seawater is one of the important targets of investigation.
또한, 일본의 후쿠시마 원전사고 이후 해양으로 오염에 대한 우려가 증가함에 따라 국내주변 해역의 해수 중 Sr-90 분석을 주기적으로 수행하고 있다.In addition, as concerns about pollution to the sea have increased since the Fukushima nuclear power plant accident in Japan, Sr-90 analysis in seawater in the waters around Korea is being periodically performed.
Sr-90은, 베타선을 방출하는 핵종이고 농도가 매우 낮기 때문에, 검출을 위해서는 화학적 분리를 통한 농축과 순수분리가 필요하며, 이 과정에서 화학적 거동이 비슷하고 해수 중에 다량 존재하는 칼슘(Ca) 제거가 필수적이며, 이를 위하여 다양한 분리방법들이 사용되고 있다.Since Sr-90 is a nuclide that emits beta rays and has a very low concentration, concentration through chemical separation and pure separation are required for detection.
가장 일반적인 방법으로는, 질산함량에 따른 Ca질산염과 Sr질산염 용해도 차이를 이용한 분리방법을 많은 실험실에서 사용하고 있으나, 이 방법은 질산농도가 높은 발연질산(95%)을 다량 사용하기 때문에 매우 위험하고 분리과정에서 많은 산 폐액이 발생하는 단점을 지니고 있다.As the most common method, the separation method using the difference in solubility of Ca nitrate and Sr nitrate according to the nitric acid content is used in many laboratories, but this method is very dangerous because it uses a large amount of fuming nitric acid (95%) with a high nitric acid concentration.
또한, 발연질산을 사용하기 전 다량의 해수를 탄산염 또는 옥살산염 침전을 통하여 부피를 줄여야 하는 사전 과정이 요구된다.In addition, a preliminary process of reducing the volume of a large amount of seawater through carbonate or oxalate precipitation is required before using fuming nitric acid.
이 외 Sr에 특이성을 가진 Sr-Spec 수지를 이용한 칼럼분리법으로, 이 수지는, Ca으로부터 Sr을 손쉽게 분리할 수 있는 방법이 사용되고 있으나 Ca 및 Sr 함량이 높은 시료의 경우, 화학적 회수율이 현저히 떨어지며, 수지 가격이 너무 비싸기 때문에 다량의 해수를 사용하는 경우 적용하기가 어렵다.In addition, as a column separation method using Sr-Spec resin, which has specificity for Sr, this resin uses a method that can easily separate Sr from Ca, but in the case of samples with high Ca and Sr content, the chemical recovery rate is significantly lowered. Since the price of the resin is too expensive, it is difficult to apply when a large amount of seawater is used.
또한, HDEHP(di-(2-ethylhexyl) hydrogen phosphoric acid)와 Heptane를 이용한 용매추출법이 사용될 수 있으나, 이 방법도 해수와 같이 다량의 시료를 처리하는데 적합하지 않다.In addition, a solvent extraction method using HDEHP (di-(2-ethylhexyl) hydrogen phosphoric acid) and Heptane may be used, but this method is also not suitable for processing a large amount of samples such as seawater.
기타, 등록특허공보 등록번호 제10-1656475호에는, 해수 내에 포함된 스트론튬회수방법에 의한 Sr을 분리하는 방법이 제시되어 있으나 이는 해수 중에 다량으로 존재하는 +2가 양이온인 Ca과 Mg을 수산화 침전을 통하여 제거한 후 Sr을 환상스트론튬 결정의 형태로 회수하는 방법으로 전처리 공정이 복잡하고 Sr에 대한 회수율이 낮고 과정을 자동화하는데 한계가 있는 방법이고, 공개번호 제10-2019-001347호는, 해수 내 스트론튬의 고순도 회수방법으로서 제10-1656475호와 유사한 방법으로 초기 Ca, Mg을 수산화침전과 옥살산염 침전으로 제거한 후 이온교환수지를 이용하여 Sr을 분리하는 방법으로써 이온교환수지를 이용한 Sr 분리방법에 대한 구체적인 상세조건이 제시되어 있지 않으며, 분리공정이 복잡하고 칼럼분리 공정에서 장치사용에 대한 기술이 제시되어 있지 않다.In addition, Registered Patent Publication No. 10-1656475 suggests a method for separating Sr by a method for recovering strontium contained in seawater, but this is a method of recovering Sr in the form of cyclic strontium crystals after removing Ca and Mg, which are +divalent cations present in large amounts in seawater, through hydroxide precipitation. No. 9-001347 is a high-purity recovery method for strontium in seawater. In a method similar to No. 10-1656475, initial Ca and Mg are removed by hydroxyl precipitation and oxalate precipitation, and then Sr is separated using an ion exchange resin. Specific detailed conditions for the Sr separation method using an ion exchange resin are not presented, the separation process is complicated, and no technology for using the device in the column separation process is presented.
그 외 공개번호 제10-2016-0007228호에는, 방사성 Sr 오염수 처리를 위한 4A-Ba 복합제올라이트의 제조방법 및 이를 이용한 오염수의 처리방법과, 공개특허공보 공개번호 제10-2020-0080181호에는 층상 바나도실리케이트를 이용한 Sr 이온 흡착제 및 이를 이용한 Sr 이온의 제거방법, 공개특허공보 공개번호 제10-2020-0080181호에는 층상방사성폐기물에 함유되어 있는 규제핵종 Tc-99, Sr-90, Fe-55, Nb-94 및 Ni-59(Ni-63)의 정량을 위한 분리방법이 공개되어 있으나, 이들 방법은 농도가 높은 방사성폐기물 및 해수와 다른 용액조성과 조건에 대한 분리방법으로서 해수에 적용하는데 한계를 지니고 있다.In addition, Publication No. 10-2016-0007228 discloses a method for manufacturing 4A-Ba composite zeolite for treatment of radioactive Sr contaminated water and a method for treating contaminated water using the same, and Patent Publication No. 10-2020-0080181 discloses an Sr ion adsorbent using layered vanadosilicate and a method for removing Sr ions using the same, and Laid-Open Patent Publication No. 10-2020-0080 No. 181 discloses a separation method for the quantification of regulatory nuclides Tc-99, Sr-90, Fe-55, Nb-94 and Ni-59 (Ni-63) contained in layered radioactive waste, but these methods have limitations in application to seawater as a separation method for high-concentration radioactive waste and seawater and other solution compositions and conditions.
따라서, 향후, 해수 중 방사성스트론튬(Sr-90)을 안전하고 신속하게 분리하고 분리의 효율성을 높일 수 있도록 자동화가 가능한 방사성스트론튬 분리 기술의 개발이 요구되고 있다.Therefore, in the future, it is required to develop a technology for separating radioactive strontium (Sr-90) from seawater that can be automated to safely and quickly separate Sr-90 and increase the efficiency of the separation.
본 발명의 일실시예가 이루고자 하는 기술적 과제는, 수지 활성화액, 해수 시료, 그리고 세척액을 순차적으로 양이온교환수지가 담겨진 칼럼부에 모두 주입 완료된 이후에 스트론튬 용출액을 칼럼부에 주입하여 스트론튬 회수액을 획득함으로써, 해수 중 방사성스트론튬(Sr-90)을 안전하고 신속하게 분리하고 분리의 효율성을 높일 수 있도록 자동화가 가능한 해수 중 방사성스트론튬 분리 장치 및 방법을 제공하고자 한다.A technical problem to be achieved by an embodiment of the present invention is to provide an apparatus and method for separating radioactive strontium from seawater that can be automated to safely and quickly separate radioactive strontium (Sr-90) from seawater and increase the efficiency of the separation by obtaining a recovered strontium solution by injecting a strontium elution solution into the column portion after completion of sequentially injecting a resin activating liquid, a seawater sample, and a washing liquid into a column portion containing a cation exchange resin.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned will be clearly understood by those skilled in the art from the description below.
상기와 같은 기술적 과제를 해결하기 위하여, 본 발명의 일실시예에 의한 해수 중 방사성스트론튬 분리 장치는, 다수의 용액 용기에 분리되어 담겨진 수지 활성화액, 해수 시료, 세척액, 그리고 스트론튬 용출액을 각각 이송하는 제1 이송부, 상기 제1 이송부에 연결되어 상기 수지 활성화액, 해수 시료, 세척액, 그리고 스트론튬 용출액 중 어느 하나의 용액을 선택하는 제1 용액 선택부, 상기 제1 용액 선택부에 연결되어 상기 제1 용액 선택부로부터 선택한 용액을 이송하는 제2 이송부, 소정량의 양이온교환수지가 미리 담겨지고, 상기 제2 이송부로부터 이송되는 용액이 주입되는 칼럼부, 상기 칼럼부에 연결되어 폐액 또는 스트론튬 회수액을 선택하는 제2 용액 선택부, 상기 제2 용액 선택부에 연결되어 상기 폐액 또는 스트론튬 회수액을 회수 용기로 이송하는 제3 이송부, 상기 제2 이송부에 연결되어 용액을 이송시키는 펌프부, 그리고 상기 제1, 제2 용액 선택부 및 펌프부를 제어하는 제어부를 포함하고, 상기 제어부는, 상기 수지 활성화액, 해수 시료, 그리고 세척액을 순차적으로 상기 칼럼부에 주입하여 상기 칼럼부로부터 폐액을 배출하도록 상기 제1, 제2 용액 선택부와 펌프부를 제어하고, 상기 수지 활성화액, 해수 시료, 그리고 세척액이 순차적으로 상기 칼럼부에 모두 주입 완료되면 상기 스트론튬 용출액을 상기 칼럼부에 주입하여 상기 칼럼부로부터 스트론튬 회수액을 배출하도록 상기 제1, 제2 용액 선택부와 펌프부를 제어할 수 있다.In order to solve the above technical problems, an apparatus for separating radioactive strontium in seawater according to an embodiment of the present invention includes a first transfer unit that transfers a resin activating liquid, a seawater sample, a washing liquid, and a strontium eluting liquid separately contained in a plurality of solution containers; A second transfer unit for transferring the solution selected from the second transfer unit, a column unit containing a predetermined amount of cation exchange resin in advance and injecting the solution transferred from the second transfer unit, a second solution selector connected to the column unit and selecting waste liquid or strontium recovery liquid, a third transfer unit connected to the second solution selector to transfer the waste liquid or strontium recovery liquid to a recovery container, a pump unit connected to the second transfer unit and transferring the solution, and a control unit for controlling the first and second solution selectors and the pump unit. The controller may control the first and second solution selectors and the pump to sequentially inject the resin activating liquid, the seawater sample, and the washing liquid into the column part and discharge the waste liquid from the column part, and when the resin activating liquid, the seawater sample, and the washing liquid are sequentially injected into the column part, the first and second solution selecting parts and the pump part may inject the strontium eluate into the column part and discharge the recovered strontium liquid from the column part.
해수 중 방사성스트론튬 분리 장치의 대안적인 실시예에서, 본 발명은, 상기 수지 활성화액이 담겨진 제1 용액 용기, 상기 해수 시료가 담겨진 제2 용액 용기, 상기 세척액이 담겨진 제3 용액 용기, 그리고 상기 스트론튬 용출액이 담겨진 제4 용액 용기를 포함하는 용액 용기부를 더 포함할 수 있다.In an alternative embodiment of the apparatus for separating radioactive strontium from seawater, the present invention may further include a solution container including a first solution container containing the resin activating solution, a second solution container containing the seawater sample, a third solution container containing the washing solution, and a fourth solution container containing the strontium eluate.
해수 중 방사성스트론튬 분리 장치의 대안적인 실시예에서, 상기 수지 활성화액은, 0.2M HCl을 포함하고, 상기 세척액은, 2M 암모늄아세테이트(NH4CH3CO2)와 메탄올이 1:1 비율로 혼합된 세척액을 포함하며, 상기 스트론튬 용출액은, 2M 암모늄아세테이트(NH4CH3CO2)를 포함할 수 있다.In an alternative embodiment of the apparatus for separating radioactive strontium in seawater, the resin activating solution may include 0.2M HCl, the washing solution may include a washing solution in which 2M ammonium acetate (NH 4 CH 3 CO 2 ) and methanol are mixed in a ratio of 1:1, and the strontium eluate may include 2M ammonium acetate (NH 4 CH 3 CO 2 ).
해수 중 방사성스트론튬 분리 장치의 대안적인 실시예에서, 상기 제1 이송부는, 상기 제1 용액 용기 내에 삽입되어 상기 수지 활성화액을 상기 제1 용액 선택부로 이송하는 제1 흡입튜빙, 상기 제2 용액 용기 내에 삽입되어 상기 해수 시료를 상기 제1 용액 선택부로 이송하는 제2 흡입튜빙, 상기 제3 용액 용기 내에 삽입되어 상기 세척액을 상기 제1 용액 선택부로 이송하는 제3 흡입튜빙, 그리고 상기 제4 용액 용기 내에 삽입되어 스트론튬 용출액을 상기 제1 용액 선택부로 이송하는 제4 흡입튜빙을 포함할 수 있다.In an alternative embodiment of the device for separating radioactive strontium from seawater, the first transfer unit includes: a first suction tubing inserted in the first solution container to transfer the resin activating liquid to the first solution selector; a second suction tubing inserted in the second solution container to transfer the seawater sample to the first solution selector; a third suction tubing inserted in the third solution container to transfer the washing liquid to the first solution selector; and a strontium eluate inserted in the fourth solution container. It may include a fourth suction tubing for transferring to the first solution selector.
해수 중 방사성스트론튬 분리 장치의 대안적인 실시예에서, 본 발명은, 상기 제1 이송부에 흐르는 용액의 흐름을 감지하는 제1 센서부, 그리고 상기 칼럼부에 담겨진 용액의 수위를 감지하는 제2 센서부를 더 포함하고, 상기 제어부는, 상기 제1 센서부로부터 수신되는 센싱신호를 기반으로 상기 용액 용기에 담겨진 용액의 이송 완료 여부를 판단하여 상기 제1, 제2 용액 선택부와 펌프부를 제어하고, 상기 제2 센서부로부터 수신되는 센싱신호를 기반으로 상기 칼럼부에 담겨진 용액의 수위를 판단하여 상기 펌프부를 제어할 수 있다.In an alternative embodiment of the apparatus for separating radioactive strontium from seawater, the present invention further includes a first sensor unit for sensing the flow of the solution flowing in the first transfer unit, and a second sensor unit for detecting the level of the solution contained in the column unit, wherein the control unit determines whether the transfer of the solution contained in the solution container is completed based on the sensing signal received from the first sensor unit, controls the first and second solution selection units and the pump unit, and controls the first and second solution selection units and the pump unit based on the sensing signal received from the second sensor unit. The pump unit may be controlled by determining the level of the solution contained in the unit.
해수 중 방사성스트론튬 분리 장치의 대안적인 실시예에서, 상기 제1 센서부는, 상기 제1 이송부의 흡입 튜빙 주변에 배치되어 용액의 흐름을 1차 감지하는 제1 광전센서, 그리고 상기 제1 광전센서로부터 소정 간격 이격되도록 상기 제1 이송부의 흡입 튜빙 주변에 배치되어 1차 감지된 용액의 흐름을 2차 감지하는 제2 광전센서를 포함할 수 있다.In an alternative embodiment of the device for separating radioactive strontium from seawater, the first sensor unit may include a first photoelectric sensor disposed around the suction tubing of the first transfer unit to primarily sense the flow of the solution, and a second photoelectric sensor disposed around the intake tubing of the first transfer unit to be spaced apart from the first photoelectric sensor by a predetermined distance to secondarily sense the flow of the first-detected solution.
해수 중 방사성스트론튬 분리 장치의 대안적인 실시예에서, 상기 제2 센서부는, 상기 칼럼부의 상단에 삽입되어 상기 칼럼부에 주입되는 용액의 수위를 감지하는 수위감지센서를 포함할 수 있다.In an alternative embodiment of the apparatus for separating radioactive strontium from seawater, the second sensor unit may include a water level sensor inserted at an upper end of the column unit to detect a level of a solution injected into the column unit.
해수 중 방사성스트론튬 분리 장치의 대안적인 실시예에서, 상기 제어부는, 상기 스트론튬 분리를 요청하는 사용자 입력이 수신되면 상기 수지 활성화액을 선택하도록 상기 제1 용액 선택부를 제어함과 동시에 상기 칼럼부의 폐액을 선택하도록 상기 제2 용액 선택부를 제어하며, 상기 선택한 수지 활성화액이 상기 칼럼부로 이송 및 주입되도록 상기 펌프부를 제어하고, 상기 수지 활성화액의 주입이 완료되면 상기 해수 시료를 선택하도록 상기 제1 용액 선택부를 제어하며, 상기 선택한 해수 시료가 상기 칼럼부로 이송 및 주입되도록 상기 펌프부를 제어하고, 상기 해수 시료의 주입이 완료되면 상기 세척액을 선택하도록 상기 제1 용액 선택부를 제어하며, 상기 선택한 세척액이 상기 칼럼부로 이송 및 주입되도록 상기 펌프부를 제어하고, 상기 세척액의 주입이 완료되면 상기 스트론튬 용출액을 선택하도록 상기 제1 용액 선택부를 제어함과 동시에 상기 칼럼부의 스트론튬 회수액을 선택하도록 상기 제2 용액 선택부를 제어하며, 상기 선택한 스트론튬 용출액이 상기 칼럼부로 이송 및 주입되도록 상기 펌프부를 제어하고, 상기 스트론튬 용출액의 주입이 완료되면 스트론튬 분리 및 회수를 완료할 수 있다.In an alternative embodiment of the apparatus for separating radioactive strontium from seawater, the control unit controls the first solution selector to select the resin activating liquid when a user input requesting separation of strontium is received, controls the second solution selector to select the waste liquid of the column unit at the same time, controls the pump unit to transfer and injects the selected resin activating liquid into the column unit, and controls the first solution selector to select the seawater sample when the injection of the resin activating liquid is completed; control the pump unit to transfer and inject the seawater sample, control the first solution selector to select the washing liquid when the injection of the seawater sample is completed, control the pump unit to transfer and inject the selected washing liquid to the column unit, and control the first solution selector to select the strontium elution solution and simultaneously control the second solution selector to select the strontium recovery solution of the column unit, and transfer and inject the selected strontium elution solution into the column unit. When the pump unit is controlled and the injection of the strontium eluate is completed, separation and recovery of strontium may be completed.
해수 중 방사성스트론튬 분리 장치의 대안적인 실시예에서, 상기 제어부는, 상기 스트론튬 분리를 요청하는 사용자 입력을 수신하기 이전에 상기 다수의 용액 용기에 분리되어 담겨진 수지 활성화액, 해수 시료, 세척액, 그리고 스트론튬 용출액을 상기 제1 용액 선택부의 전단까지 상기 제1 이송부의 흡입튜빙 내에 채울 수 있다.In an alternative embodiment of the apparatus for separating radioactive strontium from seawater, the control unit may fill the suction tubing of the first transfer unit up to the front end of the first solution selection unit with the resin activating liquid, the seawater sample, the cleaning liquid, and the strontium eluate contained in the plurality of solution containers before receiving a user input requesting separation of strontium.
한편, 본 발명의 일실시예에 의한 해수 중 방사성스트론튬 분리 방법은, 제1, 제2 용액 선택부 및 펌프부를 제어하는 제어부를 포함하는 해수 중 방사성스트론튬 분리 장치의 해수 중 방사성스트론튬 분리 방법으로서, (a) 상기 제어부가, 상기 스트론튬 분리를 요청하는 사용자 입력이 수신되면 상기 수지 활성화액을 선택하도록 상기 제1 용액 선택부를 제어함과 동시에 칼럼부의 폐액을 선택하도록 상기 제2 용액 선택부를 제어하고, 상기 선택한 수지 활성화액이 상기 칼럼부로 이송 및 주입되도록 상기 펌프부를 제어하는 단계, (b) 상기 제어부가, 상기 수지 활성화액의 주입이 완료되면 상기 해수 시료를 선택하도록 상기 제1 용액 선택부를 제어하고, 상기 선택한 해수 시료가 상기 칼럼부로 이송 및 주입되도록 상기 펌프부를 제어하는 단계, (c) 상기 제어부가, 상기 해수 시료의 주입이 완료되면 상기 세척액을 선택하도록 상기 제1 용액 선택부를 제어하고, 상기 선택한 세척액이 상기 칼럼부로 이송 및 주입되도록 상기 펌프부를 제어하는 단계, (d) 상기 제어부가, 상기 세척액의 주입이 완료되면 상기 스트론튬 용출액을 선택하도록 상기 제1 용액 선택부를 제어함과 동시에 상기 칼럼부의 스트론튬 회수액을 선택하도록 상기 제2 용액 선택부를 제어하고, 상기 선택한 스트론튬 용출액이 상기 칼럼부로 이송 및 주입되도록 상기 펌프부를 제어하는 단계, 및 (e) 상기 제어부가, 상기 스트론튬 용출액의 주입이 완료되면 스트론튬 분리 및 회수를 완료하는 단계를 포함할 수 있다.On the other hand, a method for separating radioactive strontium from seawater according to an embodiment of the present invention is a method for separating radioactive strontium from seawater of a radioactive strontium separation device including a control unit for controlling first and second solution selection units and a pump unit. (b) the control unit controls the first solution selector to select the seawater sample when the injection of the resin activating liquid is completed, and controls the pump unit to transport and inject the selected seawater sample into the column unit, (c) the control unit controls the first solution selector to select the washing liquid when the injection of the seawater sample is completed, and controls the pump unit to transfer and inject the selected washing liquid into the column unit, (d) The control unit may control the first solution selector to select the strontium eluate when the injection of the washing solution is completed, simultaneously control the second solution selector to select the strontium recovery solution of the column unit, and control the pump unit to transport and inject the selected strontium eluate into the column unit, and (e) the control unit to complete separation and recovery of strontium when the injection of the strontium eluate is completed.
본 발명에 따른 해수 중 방사성스트론튬 분리 장치 및 방법의 효과에 대해 설명하면 다음과 같다.Effects of the device and method for separating radioactive strontium from seawater according to the present invention are as follows.
본 발명은, 수지 활성화액, 해수 시료, 그리고 세척액을 순차적으로 양이온교환수지가 담겨진 칼럼부에 모두 주입 완료된 이후에 스트론튬 용출액을 칼럼부에 주입하여 스트론튬 회수액을 획득함으로써, 해수 중 방사성스트론튬(Sr-90)을 안전하고 신속하게 분리하고 분리의 효율성을 높일 수 있도록 자동화가 가능하다.In the present invention, after injection of the resin activating liquid, seawater sample, and washing liquid sequentially into the column unit containing the cation exchange resin, the strontium elution solution is injected into the column unit to obtain a recovered strontium solution, thereby enabling automation to safely and quickly separate radioactive strontium (Sr-90) from seawater and increase the efficiency of the separation.
즉, 본 발명은, 해수를 화학적 전처리 없이 칼럼에 직접 주입하여 Sr분리함으로써, 화학분리의 신속성과 안전성을 확보할 수 있고, 일정량의 분리용액을 일정한 속도로 주입함으로써, Sr분리의 정확성과 재현성을 향상하여 해수 중 Sr-90을 분석하는 국내 원자력운영자 및 해양조사 관련 실험실의 분석능력 및 품질향상에 이바지할 것으로 기대된다.That is, the present invention, by directly injecting seawater into a column to separate Sr without chemical pretreatment, can ensure the rapidity and safety of chemical separation, and by injecting a certain amount of separation solution at a constant rate, the accuracy and reproducibility of Sr separation are improved. It is expected to contribute to the improvement of analytical ability and quality of domestic nuclear operators and marine research-related laboratories that analyze Sr-90 in seawater.
또한, 본 발명은, 기존의 유독성 발연질산 대신에 안전한 시약을 사용함으로써, 분석자 및 실험실의 안전성을 대폭 개선하였으며 산 폐액 발생을 줄일 수 있는 장점을 지니고 있다.In addition, the present invention has the advantage of significantly improving the safety of analysts and laboratories and reducing the generation of acid waste by using a safe reagent instead of the existing toxic fuming nitric acid.
또한, 본 발명은, 컴퓨터 기반 프로그래밍 없이도, 설계된 작동순서에 따라 제어판의 자동분리 작동버튼 조작만으로 분석자의 개입 없이 모든 분리과정이 순서대로 진행되어 최종 Sr분리액까지 회수함으로써, 사용자의 편리성을 도모할 수 있어, 초기 사용자라도 쉽게 사용할 수 있다.In addition, according to the present invention, without computer-based programming, all separation processes proceed in order without the intervention of an analyst by manipulating the automatic separation operation button on the control panel according to the designed operation sequence, and even the final Sr separation solution is recovered, so that user convenience can be promoted, and even first-time users can use it easily.
또한, 본 발명은, 양이온교환수지의 물리적 안전성이 높고, 분리용액들에 대한 화학적 반응성이 낮기 때문에, 이온교환 방식에 기반을 둔 재생공정을 사용하여 반복사용이 가능하므로 다량의 수지를 사용할 필요가 없어 경제적 소요 비용도 줄일 수 있다.In addition, in the present invention, since the physical safety of the cation exchange resin is high and the chemical reactivity to the separation solutions is low, it can be used repeatedly by using a regeneration process based on an ion exchange method, so there is no need to use a large amount of resin, thereby reducing economic costs.
또한, 본 발명은, 칼럼과 분리용액을 이용하여 원소 분리 과정을 자동화시킴으로써, 이와 유사한 분리방식을 사용하는 다른 방사성핵종 분리에도 폭 넓게 활용될 것으로 기대된다.In addition, the present invention is expected to be widely used in other radionuclide separations using a similar separation method by automating the element separation process using a column and a separation solution.
본 발명의 적용 가능성의 추가적인 범위는 이하의 상세한 설명을 통해 명백해질 것이다. 그러나 본 발명의 사상 및 범위 내에서 다양한 변경 및 수정은 당업자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 본 발명의 바람직한 실시 예와 같은 특정 실시 예는 단지 예시로 주어진 것으로 이해되어야 한다.A further scope of the applicability of the present invention will become apparent from the detailed description that follows. However, since various changes and modifications within the spirit and scope of the present invention can be clearly understood by those skilled in the art, it should be understood that the detailed description and specific examples such as preferred embodiments of the present invention are given as examples only.
도 1은, 본 발명의 일 실시예에 따른 해수 중 방사성스트론튬 분리 장치를 설명하기 위한 블럭 구성도이다.1 is a block diagram illustrating an apparatus for separating radioactive strontium from seawater according to an embodiment of the present invention.
도 2는, 본 발명의 일 실시예에 따른 해수 중 방사성스트론튬 분리 장치를 설명하기 위한 개략도이다.2 is a schematic diagram illustrating an apparatus for separating radioactive strontium from seawater according to an embodiment of the present invention.
도 3은, 본 발명의 일 실시예에 따른 해수 중 방사성스트론튬 분리 방법을 설명하기 위한 순서도이다.3 is a flowchart illustrating a method for separating radioactive strontium from seawater according to an embodiment of the present invention.
이하에서는 도면을 참조하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 단순히 본 명세서 작성의 용이함을 고려하여 부여되는 것으로서, 상기 "모듈" 및 "부"는 서로 혼용되어 사용될 수도 있다.The suffixes "module" and "unit" for components used in the following description are simply given in consideration of the ease of writing the present specification, and the "module" and "unit" may be used interchangeably.
나아가, 이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 실시예를 상세하게 설명하지만, 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다.Furthermore, embodiments of the present invention will be described in detail below with reference to the accompanying drawings and the contents described in the accompanying drawings, but the present invention is not limited or limited by the embodiments.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 관례 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 그 의미를 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는, 단순한 용어의 명칭이 아닌 그 용어가 가지는 실질적인 의미와 본 명세서의 전반에 걸친 내용을 토대로 해석되어야 함을 밝혀두고자 한다.The terminology used in this specification has been selected as a general term that is currently widely used as much as possible while considering the function in the present invention, but it may vary according to the intention or custom of a person skilled in the art or the emergence of new technology. In addition, in a specific case, there is also a term arbitrarily selected by the applicant, and in this case, the meaning will be described in the description of the invention. Therefore, it should be clarified that the terms used in this specification should be interpreted based on the actual meaning of the term and the overall content of this specification, rather than simply the name of the term.
도 1은, 본 발명의 일 실시예에 따른 해수 중 방사성스트론튬 분리 장치를 설명하기 위한 블럭 구성도이고, 도 2는, 본 발명의 일 실시예에 따른 해수 중 방사성스트론튬 분리 장치를 설명하기 위한 개략도이다.1 is a block configuration diagram for explaining an apparatus for separating radioactive strontium in seawater according to an embodiment of the present invention, and FIG. 2 is a schematic diagram for explaining an apparatus for separating radioactive strontium in seawater according to an embodiment of the present invention.
도 1 및 도 2에 도시된 바와 같이, 본 발명은, 다수의 용액 용기에 분리되어 담겨진 수지 활성화액(62), 해수 시료(64), 세척액(66), 그리고 스트론튬 용출액(68)을 각각 이송하는 제1 이송부(100), 제1 이송부(100)에 연결되어 수지 활성화액(62), 해수 시료(64), 세척액(66), 그리고 스트론튬 용출액(68) 중 어느 하나의 용액을 선택하는 제1 용액 선택부(200), 제1 용액 선택부(200)에 연결되어 제1 용액 선택부(200)로부터 선택한 용액을 이송하는 제2 이송부(300), 소정량의 양이온교환수지(410)가 미리 담겨지고 제2 이송부(300)로부터 이송되는 용액이 주입되는 칼럼부(400), 칼럼부(400)에 연결되어 폐액(32) 또는 스트론튬 회수액(34)을 선택하는 제2 용액 선택부(500), 제2 용액 선택부(500)에 연결되어 폐액(32) 또는 스트론튬 회수액(34)을 회수 용기로 이송하는 제3 이송부(600), 제2 이송부(300)에 연결되어 용액을 이송시키는 펌프부(700), 그리고 제1, 제2 용액 선택부(200, 500) 및 펌프부(700)를 제어하는 제어부(800)를 포함할 수 있다.As shown in FIGS. 1 and 2, the present invention is connected to the first transfer unit 100 for transferring the resin activating liquid 62, the seawater sample 64, the washing liquid 66, and the strontium eluate 68 separately contained in a plurality of solution containers. A first solution selector 200 for selecting any one of the solutions, a second transfer unit 300 connected to the first solution selector 200 and transporting the solution selected from the first solution selector 200, a column unit 400 containing a predetermined amount of cation exchange resin 410 in advance and injecting a solution transferred from the second transfer unit 300, and a waste liquid 32 or strontium recovery liquid 3 connected to the column unit 400 The second solution selector 500 for selecting 4), the third transfer unit 600 connected to the second solution selector 500 to transfer the waste liquid 32 or the strontium recovery liquid 34 to the recovery container, the pump unit 700 connected to the second transfer unit 300 to transport the solution, and the control unit 800 to control the first and second solution selectors 200 and 500 and the pump unit 700. can include
또한, 본 발명은, 수지 활성화액(62)이 담겨진 제1 용액 용기(92), 해수 시료(64)가 담겨진 제2 용액 용기(94), 세척액(66)이 담겨진 제3 용액 용기(96), 그리고 스트론튬 용출액(68)이 담겨진 제4 용액 용기(98)를 포함하는 용액 용기부(90)를 더 포함할 수도 있다.In addition, the present invention may further include a solution container 90 including a first solution container 92 containing the resin activating liquid 62, a second solution container 94 containing the seawater sample 64, a third solution container 96 containing the cleaning solution 66, and a fourth solution container 98 containing the strontium eluate 68.
일 예로, 수지 활성화액(62)은 약 0.2M HCl을 포함할 수 있고, 세척액(66)은 약 2M 암모늄아세테이트(NH4CH3CO2)와 메탄올이 1:1 비율로 혼합된 세척액을 포함할 수 있으며, 스트론튬 용출액(68)은 약 2M 암모늄아세테이트(NH4CH3CO2)를 포함할 수 있는데, 이는 일 실시예일 뿐 이에 한정되지는 않는다.For example, the resin activating solution 62 may include about 0.2M HCl, the washing solution 66 may include a washing solution in which about 2M ammonium acetate (NH 4 CH 3 CO 2 ) and methanol are mixed in a ratio of 1:1, and the strontium eluent 68 may include about 2M ammonium acetate (NH 4 CH 3 CO 2 ), which is only an example and is not limited thereto. does not
그리고, 제1 이송부(100)는, 제1 용액 용기(92) 내에 삽입되어 수지 활성화액(62)을 제1 용액 선택부(200)로 이송하는 제1 흡입튜빙(110), 제2 용액 용기(94) 내에 삽입되어 해수 시료(64)를 제1 용액 선택부(200)로 이송하는 제2 흡입튜빙(120), 제3 용액 용기(96) 내에 삽입되어 세척액(66)을 제1 용액 선택부(200)로 이송하는 제3 흡입튜빙(130), 그리고 제4 용액 용기(98) 내에 삽입되어 스트론튬 용출액(68)을 제1 용액 선택부(200)로 이송하는 제4 흡입튜빙(140)을 포함할 수 있다.In addition, the first transfer unit 100 includes a first suction tubing 110 inserted into the first solution container 92 to transfer the resin activation liquid 62 to the first solution selector 200, a second suction tubing 120 inserted into the second solution container 94 to transfer the seawater sample 64 to the first solution selector 200, and a washing liquid 66 inserted into the third solution container 96 to the first solution selector It may include a third suction tubing 130 that transfers to 200, and a fourth suction tubing 140 that is inserted into the fourth solution container 98 and transfers the strontium eluate 68 to the first solution selector 200.
여기서, 제1 내지 제4 흡입튜빙(110, 120, 130, 140)의 끝단은, 제1 내지 제4 용액 용기(92, 94, 96, 98)의 바닥에 접촉되도록 위치할 수 있다.Here, ends of the first to fourth suction tubings 110 , 120 , 130 , and 140 may be placed in contact with the bottoms of the first to fourth solution containers 92 , 94 , 96 , and 98 .
또한, 제1, 제3, 제4 흡입튜빙(110, 130, 140)은, 제1, 제3, 제4 용액 용기(92, 96, 98)의 상부에 배치되는 고정용 너트(50)에 의해 고정되고, 제2 흡입튜빙(120)은, 제2 용액 용기(94)의 상부에 배치되는 안내관 지지대(40)에 의해 고정될 수 있다.In addition, the first, third, and fourth suction tubings 110, 130, and 140 may be fixed by fixing nuts 50 disposed above the first, third, and fourth solution containers 92, 96, and 98, and the second suction tubing 120 may be fixed by a guide tube support 40 disposed above the second solution container 94.
그리고, 본 발명은, 제1 이송부(100)에 흐르는 용액의 흐름을 감지하는 제1 센서부(910), 그리고 칼럼부(400)에 담겨진 용액의 수위를 감지하는 제2 센서부(920)를 더 포함할 수 있다.And, the present invention, the first sensor unit 910 for detecting the flow of the solution flowing in the first transfer unit 100, and the second sensor unit 920 for detecting the water level of the solution contained in the column unit 400 It may further include.
일 예로, 제1 센서부(910)는, 제1 이송부(100)의 흡입 튜빙 주변에 배치되어 용액의 흐름을 1차 감지하는 제1 광전센서(912), 그리고 제1 광전센서(912)로부터 소정 간격 이격되도록 제1 이송부(100)의 흡입 튜빙 주변에 배치되어 1차 감지된 용액의 흐름을 2차 감지하는 제2 광전센서(914)를 포함할 수 있는데, 이는 일 실시예일 뿐, 이에 한정되지 않는다.For example, the first sensor unit 910 may include a first photoelectric sensor 912 disposed around the suction tubing of the first transfer unit 100 to firstly sense the flow of the solution, and a second photoelectric sensor 914 disposed around the suction tubing of the first transfer unit 100 to be spaced apart from the first photoelectric sensor 912 by a predetermined distance to secondarily sense the firstly sensed flow of the solution. only, but not limited thereto.
본 발명에서, 제1 센서부(910)를 배치하는 이유는, 용액 용기에 담겨진 용액의 이송 완료 여부를 판단하기 위함이다.In the present invention, the reason for disposing the first sensor unit 910 is to determine whether the transfer of the solution contained in the solution container is complete.
즉, 본 발명의 제어부(800)는, 제1 센서부(910)로부터 수신되는 센싱신호를 기반으로 용액 용기에 담겨진 용액의 이송 완료 여부를 판단하여 제1 용액 선택부(200)를 제어할 수 있다.That is, the control unit 800 of the present invention can control the first solution selection unit 200 by determining whether or not the transfer of the solution contained in the solution container is completed based on the sensing signal received from the first sensor unit 910.
예를 들면, 제어부(800)는, 제1 광전센서(912)의 센싱신호가 용액의 흐름을 1차 감지한 신호이고 제2 광전센서(914)의 센싱신호가 용액의 흐름을 2차 감지한 신호이면 용액 용기에 담겨진 용액의 이송 미완료로 판단하여 현재 용액을 선택한 제1 용액 선택부(200)를 그대로 유지시킬 수 있고, 제1 광전센서(912)의 센싱신호가 공기의 흐름을 1차 감지한 신호이고 제2 광전센서(914)의 센싱신호가 공기의 흐름을 2차 감지한 신호이면 용액 용기에 담겨진 용액의 이송 완료로 판단하여 다른 용액을 선택하도록 제1 용액 선택부(200)를 제어할 수 있다.For example, if the sensing signal of the first photoelectric sensor 912 is a signal of primarily detecting the flow of the solution and the sensing signal of the second photoelectric sensor 914 is a signal of secondary sensing of the flow of the solution, the control unit 800 may determine that the transfer of the solution contained in the solution container has not been completed and maintain the first solution selector 200 that has selected the current solution as it is, and the sensing signal of the first photoelectric sensor 912 primarily senses the flow of air. signal, and when the signal sensed by the second photoelectric sensor 914 is a signal obtained by secondarily detecting air flow, the first solution selector 200 may be controlled to select another solution by determining that the transfer of the solution contained in the solution container is complete.
다른 일 예로, 제어부(800)는, 제1 광전센서(912)의 센싱신호가 용액의 흐름을 1차 감지한 신호이고 제2 광전센서(914)의 센싱신호가 공기의 흐름을 2차 감지한 신호이면 용액 용기에 담겨진 용액의 이송 미완료로 판단하여 현재 용액을 선택한 제1 용액 선택부(200)를 그대로 유지시킬 수 있고, 제1 광전센서(912)의 센싱신호가 공기의 흐름을 1차 감지한 신호이고 제2 광전센서(914)의 센싱신호가 용액의 흐름을 2차 감지한 신호이면 용액 용기에 담겨진 용액의 이송 미완료로 판단하여 현재 용액을 선택한 제1 용액 선택부(200)를 그대로 유지시킬 수 있다.As another example, if the sensing signal of the first photoelectric sensor 912 is a signal of primarily detecting the flow of the solution and the sensing signal of the second photoelectric sensor 914 is a signal of secondary sensing of the flow of air, the control unit 800 may determine that the transfer of the solution contained in the solution container is incomplete and maintain the first solution selector 200 that has selected the current solution as it is, and the sensing signal of the first photoelectric sensor 912 primarily senses the flow of air If it is a signal and the sensing signal of the second photoelectric sensor 914 is a signal that secondarily senses the flow of the solution, it is determined that the transfer of the solution contained in the solution container is incomplete, and the first solution selector 200 that currently selects the solution can be maintained.
또한, 제2 센서부(920)는, 칼럼부(400)의 상단에 삽입되어 칼럼부(400)에 주입되는 용액의 수위를 감지하는 수위감지센서를 포함할 수 있는데, 이는 일 실시예일 뿐, 이에 한정되지 않는다.In addition, the second sensor unit 920 may include a water level sensor inserted into the upper end of the column unit 400 to detect the level of the solution injected into the column unit 400, which is only one embodiment, but is not limited thereto.
여기서, 수위감지센서는, 칼럼부(400)에 담겨진 양이온교환수지(410)의 표면 높이보다 더 높이 위치할 수 있다.Here, the water level sensor may be positioned higher than the surface height of the cation exchange resin 410 contained in the column unit 400.
본 발명에서, 제2 센서부(920)를 배치하는 이유는, 칼럼부(400)에 주입되는 용액의 수위를 판단하여 자동분리장치의 비정상 작동에 의한 칼럼부(400) 내 용액의 과도한 증가에 따른 위험성을 방지하기 위함이다.In the present invention, the reason for arranging the second sensor unit 920 is to determine the level of the solution injected into the column unit 400 and prevent the risk of an excessive increase in the solution in the column unit 400 due to the abnormal operation of the automatic separator.
즉, 제어부(800)는, 제2 센서부(920)로부터 수신되는 센싱신호를 기반으로 칼럼부(400)에 담겨진 용액의 수위를 판단하여 펌프부(700)를 제어할 수 있다.That is, the control unit 800 may control the pump unit 700 by determining the water level of the solution contained in the column unit 400 based on the sensing signal received from the second sensor unit 920 .
예를 들면, 제어부(800)는, 수위감지센서의 센싱신호가 칼럼부(400)에 주입되는 용액의 일정 수위 이상으로 증가하는 신호이면 펌프부(700)의 가동을 중단하도록 펌프부(700)를 제어할 수 있다.For example, the control unit 800 may control the pump unit 700 to stop operation of the pump unit 700 when the sensing signal of the water level sensor is a signal that increases above a certain level of the solution injected into the column unit 400.
다음, 제2 이송부(300)는, 제1 용액 선택부(200)로부터 선택한 용액을 이송하는 탄성튜빙을 포함할 수 있다.Next, the second transport unit 300 may include an elastic tubing for transporting the solution selected from the first solution selector 200 .
그리고, 펌프부(700)는, 펌프의 롤러가 회전하면서 제2 이송부(300)의 탄성튜빙을 압착하여 생성된 압력을 이용하여 한 방향으로 용액을 소정 속도로 이송시킬 수 있다.In addition, the pump unit 700 may transfer the solution in one direction at a predetermined speed using pressure generated by compressing the elastic tubing of the second transfer unit 300 while the roller of the pump rotates.
또한, 제3 이송부(600)는, 제2 용액 선택부(500)에 연결되어 폐액(32)을 폐액 용기(42)로 이송하는 폐액 이송부(610)과, 제2 용액 선택부(500)에 연결되어 스트론튬 회수액(34)을 회수 용기(44)로 이송하는 회수액 이송부(620)를 포함할 수 있다.In addition, the third transfer unit 600 may include a waste transfer unit 610 that is connected to the second solution selector 500 and transfers the waste liquid 32 to the waste liquid container 42, and a recovery liquid transfer unit 620 that is connected to the second solution selector 500 and transfers the recovered strontium liquid 34 to the recovery container 44.
이어, 제어부(800)는, 수지 활성화액(62), 해수 시료(64), 그리고 세척액(66)을 순차적으로 칼럼부(400)에 주입하여 칼럼부(400)로부터 폐액(32)을 배출하도록 제1, 제2 용액 선택부(200, 500)와 펌프부(700)를 제어하고, 수지 활성화액(62), 해수 시료(64), 그리고 세척액(66)이 순차적으로 칼럼부(400)에 모두 주입 완료되면 스트론튬 용출액(68)을 칼럼부(400)에 주입하여 칼럼부(400)로부터 스트론튬 회수액(34)을 배출하도록 제1, 제2 용액 선택부(200, 500)와 펌프부(700)를 제어할 수 있다.Next, the control unit 800 controls the first and second solution selection units 200 and 500 and the pump unit 700 to discharge the waste liquid 32 from the column unit 400 by sequentially injecting the resin activating liquid 62, the seawater sample 64, and the washing liquid 66 into the column unit 400, and the resin activating liquid 62, the seawater sample 64, and the washing liquid 66 are sequentially supplied to the column unit ( 400), the first and second solution selection units 200 and 500 and the pump unit 700 can be controlled to inject the strontium eluate 68 into the column unit 400 and discharge the strontium recovery liquid 34 from the column unit 400.
일 예로, 제어부(800)는, 전원 공급을 온/오프하는 주 전원 차단기(810), 펌프부(700)의 동작과 용액 이송 속도를 조절하는 펌프 속도 조절기(820), 제1 용액 선택부(200)의 용액 선택 작동을 제어하는 제1 작동제어기(830), 제2 용액 선택부(500)의 용액 선택 작동을 제어하는 제2 작동제어기(840), 그리고 스트론튬 자동분리를 위한 전체 작동을 온/오프하는 자동분리 작동 버튼(850)을 포함할 수 있는데, 이는 일 실시예일 뿐, 이에 한정되지 않는다.For example, the control unit 800 includes a main power circuit breaker 810 that turns on/off the power supply, a pump speed controller 820 that controls the operation of the pump unit 700 and the solution transfer speed, a first operation controller 830 that controls the solution selection operation of the first solution selector 200, a second operation controller 840 that controls the solution selection operation of the second solution selector 500, and an overall operation for automatic separation of strontium. It may include an automatic separation operation button 850 for turning on/off, which is only one embodiment, but is not limited thereto.
여기서, 제어부(800)는, 스트론튬 분리를 요청하는 사용자 입력이 수신되면 수지 활성화액(62)을 선택하도록 제1 용액 선택부(200)를 제어함과 동시에 칼럼부(400)의 폐액(32)을 선택하도록 제2 용액 선택부(500)를 제어하며, 선택한 수지 활성화액(62)이 칼럼부(400)로 이송 및 주입되도록 펌프부(700)를 제어하고, 수지 활성화액(62)의 주입이 완료되면 해수 시료(64)를 선택하도록 제1 용액 선택부(200)를 제어하며, 선택한 해수 시료(64)가 칼럼부(400)로 이송 및 주입되도록 펌프부(700)를 제어하고, 해수 시료(64)의 주입이 완료되면 세척액(66)을 선택하도록 제1 용액 선택부(200)를 제어하며, 선택한 세척액(66)이 칼럼부(400)로 이송 및 주입되도록 펌프부(700)를 제어하고, 세척액의 주입이 완료되면 스트론튬 용출액(68)을 선택하도록 제1 용액 선택부(200)를 제어함과 동시에 칼럼부(400)의 스트론튬 회수액(34)을 선택하도록 제2 용액 선택부(500)를 제어하며, 선택한 스트론튬 용출액(68)이 칼럼부(400)로 이송 및 주입되도록 펌프부(700)를 제어하고, 스트론튬 용출액(68)의 주입이 완료되면 펌프부(700)의 가동을 제어하여 스트론튬 분리 및 회수를 완료할 수 있다.Here, the controller 800 controls the first solution selector 200 to select the resin activating liquid 62 when a user input requesting separation of strontium is received, and simultaneously controls the second solution selector 500 to select the waste liquid 32 of the column part 400, and controls the pump part 700 to transfer and inject the selected resin activating liquid 62 into the column part 400, and injection of the resin activating liquid 62 is completed. When the seawater sample 64 is selected, the first solution selector 200 is controlled to select the seawater sample 64, and the pump unit 700 is controlled so that the selected seawater sample 64 is transported and injected into the column unit 400. When the injection of the seawater sample 64 is completed, the first solution selector 200 is controlled to select the washing liquid 66, and the pump unit 700 is controlled so that the selected washing liquid 66 is transferred and injected into the column unit 400, When the injection of the cleaning solution is completed, the first solution selector 200 is controlled to select the strontium eluate 68, and the second solution selector 500 is controlled to select the strontium recovery solution 34 of the column unit 400. Separation and recovery of strontium may be completed by controlling the operation of the pump unit 700 .
이때, 제어부(800)는, 수지 활성화액(62), 해수 시료(64), 세척액(66), 그리고 스트론튬 용출액(68) 중 어느 하나의 용액 주입이 완료되었는지를 확인할 때, 용액의 흐름을 1차 감지하는 제1 센싱신호와 1차 감지된 용액의 흐름을 2차 감지하는 제2 센싱신호를 기반으로 용액 주입의 완료 여부를 확인할 수 있다.At this time, the control unit 800, when checking whether the injection of any one of the resin activating liquid 62, the seawater sample 64, the cleaning liquid 66, and the strontium eluate 68 has been completed, can confirm whether the injection of the solution has been completed based on the first sensing signal for firstly sensing the flow of the solution and the second sensing signal for secondarily sensing the firstly sensed flow of the solution.
일 예로, 제어부(800)는, 제1, 제2 센싱신호가 모두 공기의 흐름을 감지하는 신호이면 용액 주입의 완료로 확인하고, 제1, 제2 센싱신호가 모두 용액의 흐름을 감지하는 신호이면 용액 주입의 미완료로 확인하며, 제1, 제2 센싱신호 중 어느 하나가 용액의 흐름을 감지하는 신호이고 다른 하나가 공기의 흐름을 감지하는 신호이면 용액 주입의 미완료로 확인할 수 있다.For example, if the first and second sensing signals are both signals for detecting the flow of air, the controller 800 may determine that the injection of the solution is completed, and if both the first and second sensing signals are signals for detecting the flow of the solution, the controller 800 may determine that the injection of the solution is incomplete.
또한, 제어부(800)는, 수지 활성화액(62), 해수 시료(64), 세척액(66), 그리고 스트론튬 용출액(68) 중 어느 하나의 용액을 칼럼부(400)로 이송 및 주입할 때, 칼럼부(400)에 주입된 용액의 수위를 감지하는 센싱신호를 기반으로 펌프부(700)의 가동을 중단하도록 펌프부(700)를 제어할 수 있다.In addition, the control unit 800 may control the pump unit 700 to stop operation of the pump unit 700 based on a sensing signal that detects the level of the solution injected into the column unit 400 when transferring and injecting any one of the resin activating liquid 62, the seawater sample 64, the washing liquid 66, and the strontium eluate 68 into the column unit 400.
일 예로, 칼럼부(400)에 주입된 용액이 일정수위 이상으로 증가하면 칼럼부(400)의 수위감지센서가 이를 인지하여 이에 대한 센싱신호를 발생하고, 제어부(800)는, 이를 기반으로 펌프부(700)의 가동을 중단하도록 펌프부(700)를 제어할 수 있다.For example, when the solution injected into the column unit 400 increases above a certain level, the water level sensor of the column unit 400 recognizes this and generates a sensing signal for this, and the control unit 800 can control the pump unit 700 to stop the operation of the pump unit 700 based on this.
또한, 제어부(800)는, 스트론튬 분리를 요청하는 사용자 입력을 수신하기 이전에 다수의 용액 용기에 분리되어 담겨진 수지 활성화액(62), 해수 시료(64), 세척액(66), 그리고 스트론튬 용출액(68)을 제1 용액 선택부(200)의 전단까지 제1 이송부(100)의 흡입튜빙 내에 채울 수 있다.In addition, before receiving a user input requesting separation of strontium, the control unit 800 may fill the resin activating liquid 62, the seawater sample 64, the cleaning liquid 66, and the strontium eluting liquid 68 separately contained in a plurality of solution containers into the suction tubing of the first transfer unit 100 up to the front end of the first solution selection unit 200.
일 예로, 제어부(800)는, 제1 용액 선택부(200) 및 펌프부(700)를 제어하여, 제1 용액 용기(92) 내에 삽입되어 제1 용액 선택부(200)에 연결되는 제1 이송부(100)의 제1 흡입튜빙(110) 내에 수지 활성화액(62)을 채우고, 제2 용액 용기(94) 내에 삽입되어 제1 용액 선택부(200)에 연결되는 제1 이송부(100)의 제2 흡입튜빙(120) 내에 해수 시료(64)를 채우며, 제3 용액 용기(96) 내에 삽입되어 제1 용액 선택부(200)에 연결되는 제1 이송부(100)의 제3 흡입튜빙(130) 내에 세척액(66)을 채우고, 제4 용액 용기(98) 내에 삽입되어 제1 용액 선택부(200)에 연결되는 제1 이송부(100)의 제4 흡입튜빙(140) 내에 스트론튬 용출액(68)을 채울 수 있다.For example, the control unit 800 controls the first solution selector 200 and the pump unit 700 to fill the first suction tubing 110 of the first transfer unit 100 inserted into the first solution container 92 and connected to the first solution selector 200 with the resin activating liquid 62, inserted into the second solution container 94 and connected to the first solution selector 200, the first transfer unit 100 The seawater sample 64 is filled in the second suction tubing 120 of the third solution container 96 and the washing liquid 66 is filled in the third suction tubing 130 of the first transfer unit 100 connected to the first solution selector 200, and the fourth suction tubing 140 of the first transfer unit 100 is inserted into the fourth solution container 98 and connected to the first solution selector 200. A strontium eluate (68) may be charged.
또한, 제어부(800)는, 스트론튬 분리 및 회수를 완료하면 칼럼부(400)에 양이온 제거 용액을 주입하여 양이온교환수지를 재생할 수도 있다.In addition, the control unit 800 may regenerate the cation exchange resin by injecting a cation removal solution into the column unit 400 when the separation and recovery of strontium is completed.
여기서, 양 이온 제거 용액은, 약 2M HCl을 포함할 수 있는데, 이는 일 실시예일 뿐, 이에 한정되지 않는다.Here, the cation removal solution may include about 2M HCl, which is only an example, but is not limited thereto.
이처럼, 본 발명의 구성은, 양이온교환수지에 기반을 둔 해수 중 스트론튬(Sr) 분리방법 및 그를 적용한 해수 중 Sr 분리 자동화에 관한 것이다.As such, the configuration of the present invention relates to a method for separating strontium (Sr) from seawater based on a cation exchange resin and an automated separation method for Sr from seawater using the same.
본 발명은, 해수시료, 수지 활성화액, 세척액, Sr-용출액, 폐액, Sr-회수액을 담을 수 있는 용액용기를 준비하고, 이들 용액용기를 포함하는 용액용기를 자동분리장치(80) 하단부에 배치할 수 있다.In the present invention, a solution container capable of containing seawater sample, resin activation solution, washing solution, Sr-eluate solution, waste solution, and Sr-recovery solution is prepared, and the solution container including these solution containers is placed at the lower end of the automatic separation device 80.
그리고, 본 발명의 자동분리장치(80)에는, 주입용액으로부터 최종 회수용기까지를 연결하는 테프론 튜빙(tubing), 용액을 이송하는 튜빙펌프, 해수시료 흡입튜빙 안내관 지지대와 분리용액 흡입튜빙 고정용 너트, 주입용액의 유로를 전환하는 1차 용액선택밸브, 최종 회수액의 유로를 전환하는 2차 용액선택밸브, 양이온교환수지와 이를 담고 있는 아크릴 재질의 칼럼부, 주입용액의 흐름을 감지하는 광전센서, 칼럼부 내 용액높이를 감지하는 수위감지센서, 그리고 분리장치의 주 전원차단기, 펌프 작동 및 펌프속도 조절기, 1차 용액선택밸브 유로 조절, 2차 용액선택밸브 유로 조절, 전체공정 작동 기능을 포함하고 있는 제어패널로 구성되어, 다량의 해수시료중 방사성스트론튬(Sr-90)을 자동으로 분리할 수 있다.In addition, the automatic separation device 80 of the present invention includes a Teflon tubing connecting the injection solution to the final recovery container, a tubing pump for transporting the solution, a seawater sample suction tubing guide tube support and a nut for fixing the separation solution suction tubing, a primary solution selection valve for switching the injection solution flow path, a secondary solution selection valve for switching the final recovery solution flow path, a cation exchange resin and an acrylic column containing it, and an optical sensor for detecting the flow of the injection solution It consists of a front sensor, a water level sensor that detects the height of the solution in the column part, a main power breaker for the separation device, a pump operation and pump speed controller, a first solution selection valve passage control, a second solution selection valve passage adjustment, and a control panel that includes the entire process operation function, so that radioactive strontium (Sr-90) can be automatically separated from a large amount of seawater sample.
해수 중 방사성핵종인 Sr-90 분석은, 해수 중 안정 Sr을 화학적으로 분리하여 안정 Sr과 함께 분리된 방사성 Sr을 방사능계측기로 측정하는 방법을 사용할 수 있다.For the analysis of Sr-90, a radionuclide in seawater, a method of chemically separating stable Sr in seawater and measuring the separated radioactive Sr together with stable Sr with a radioactivity meter can be used.
이를 위하여 본 발명은, 해수로부터 Sr을 분리하는 방법으로서, 양이온교환수지(Dowex 50W-8X, 100-150 mesh)를 이용하였으며, 이 방법은, 해수 중에 존재하는 Sr을 포함한 양이온들을 수지에 흡착시킨 후, 세척 및 용출용액을 이용하여 Sr만을 선택적으로 분리하는 방법이다.To this end, in the present invention, as a method of separating Sr from seawater, a cation exchange resin (Dowex 50W-8X, 100-150 mesh) was used, and this method is a method of selectively separating only Sr using a washing and elution solution after adsorbing cations including Sr present in seawater to the resin.
본 발명은, 해수 중 다량 존재하고, Sr과 화학적 거동이 유사하여 분리가 어려우며, Sr 회수율 측정 및 방사능 계측에 방해를 일으키는 Ca을 제거하는 것이 분리 기술의 핵심이다.In the present invention, the core of the separation technology is to remove Ca, which is present in a large amount in seawater, is difficult to separate due to similar chemical behavior to Sr, and causes interference in measuring Sr recovery rate and measuring radioactivity.
본 발명은, 해수 중 양이온을 흡착시키기 위하여 수지 활성화가 필요한데, 이를 위해서 양이온교환수지를 약 0.2M 염산 4L를 주입하여 수지의 반응기를 H+ 형으로 변환하여 양이온을 흡착할 수 있도록 하였다.In the present invention, in order to adsorb cations in seawater, activation of the resin is required. For this purpose, 4 L of about 0.2M hydrochloric acid was injected into the cation exchange resin to convert the reactive group of the resin to H + type so that cations could be adsorbed.
그리고, 사용된 양이온수지 함량은, 해수 시료량(40L)과 양이온 수지의 흡착능력을 고려하여 Ca 분리와 Sr 회수에 충분한 1.7L(수화된 수지 기준)를 사용하였다.In addition, the amount of cation resin used was 1.7 L (based on hydrated resin), which is sufficient for Ca separation and Sr recovery, considering the amount of seawater sample (40 L) and the adsorption capacity of the cation resin.
시료 주입속도는, 컬럼내 수지의 용량(내경: 9 cm, 높이: 26 cm)과 수지 입자의 입경(100 ~ 150 mesh)을 고려 유입량 대비 유출량이 균형을 갖는 분당 약 30 ml로 결정하였으며, 이를 기준으로 해수 약 40L 주입에 약 21시간이 소요되었다.The sample injection rate was determined to be about 30 ml per minute with a balance of inflow and outflow considering the resin capacity (internal diameter: 9 cm, height: 26 cm) and the particle diameter of the resin particles (100 to 150 mesh) in the column. Based on this, it took about 21 hours to inject about 40 L of seawater.
해수 주입시, 음이온 원소와 +1 전하를 양이온 그리고 알카리토금속 원소중 원소번호가 낮은 Mg2+ 상당부분은 수지에 흡착하지 못하고 제거된다.When seawater is injected, a significant part of Mg 2+ having a low atomic number among the negative ion elements and +1 charged cations and alkaline earth metal elements is not adsorbed to the resin and is removed.
시료주입 후 세척액 주입은, Ca 제거가 주 목적으로서, 약 2M 암모늄아세테이트(NH4CH3CO2)와 메탄올이 1:1로 혼합한 용액을 사용하였으며, 이 과정에서 일부 흡착된 Mg과 대부분의 Ca이 제거된다.The main purpose of the washing solution injection after sample injection was to remove Ca, and a 1:1 mixture of about 2M ammonium acetate (NH 4 CH 3 CO 2 ) and methanol was used. In this process, some adsorbed Mg and most of Ca are removed.
세척액의 주입액이 증가할수록 Ca 제거율은, 100%에 가까워지나 Sr 손실도 점차 증가하기 때문에 Ca을 최대한 제거하고 Sr 손실을 최소화할 수 있는 적정 세척액량을 선택하여야 한다.As the injection amount of the cleaning solution increases, the Ca removal rate approaches 100%, but the Sr loss gradually increases. Therefore, it is necessary to select an appropriate amount of cleaning solution that can remove Ca as much as possible and minimize Sr loss.
세척액 3.1L에서 Ca의 약 95% 이상이 제거되었으며, Sr의 손실은, 약 10% 이내였다.About 95% or more of Ca was removed from 3.1 L of the washing solution, and the loss of Sr was within about 10%.
최종 Sr 회수에는, 2M 암모늄아세테이트(NH4CH3CO2)를 사용하였다.For final Sr recovery, 2M ammonium acetate (NH 4 CH 3 CO 2 ) was used.
여기서, 염산, 또는 암모늄을 포함한 다른 염류성 용액을 Sr 용출액으로도 사용 가능하지만, 강산을 이용한 용출은, 모든 양이온을 회수하므로 Sr에 대한 추가적인 분리과정이 필요로 하며 다량의 강산을 처리해야 하는 어려움이 있다.Here, hydrochloric acid or other saline solutions including ammonium can be used as an eluent for Sr, but since elution using strong acid recovers all cations, an additional separation process for Sr is required and a large amount of strong acid must be treated.
그리고, 2M 암모늄아세테이트(NH4CH3CO2)는 타 염류에 비하여 세척액과 용액조성이 유사하며, Sr 용출에 대한 선택성이 높은 장점을 지니고 있으며, 최적 용출량은, 사용된 수지규격(내경: 9 cm, 높이: 26 cm)에서 약 4.8L로 흡착된 수지에 흡착된 Sr에 대하여 약 95% 이상의 회수율을 얻을 수 있었다.In addition, 2M ammonium acetate (NH 4 CH 3 CO 2 ) has a similar washing solution and solution composition compared to other salts, and has the advantage of high selectivity for Sr elution, and the optimal elution amount is about 4.8 L in the resin standard used (internal diameter: 9 cm, height: 26 cm).
본 발명은, 해수시료뿐만 아니라 분리용액 주입량을 정확히 수지에 주입하는 것이 기술적 핵심으로서, 전체 분리공정을 시작하기에 앞서 해수시료 그리고 Sr 분리에 사용되는 분리용액(활성화, Ca 제거, Sr 회수)은, 분리 방법에서 최적화된 용량을 정확히 계량하여 각각의 용액함에 주입하는 것을 자동분리의 준비단계로 하였다.In the present invention, the technical core is to accurately inject the injection amount of the separation solution as well as the seawater sample into the resin. Prior to starting the entire separation process, the separation solution (activation, Ca removal, Sr recovery) used for separation of the seawater sample and Sr was accurately measured and injected into each solution box as an automatic separation preparation step.
칼럼부 준비로는, 수화된 양이온교환수지를 아크릴 재질의 원형칼럼(외경, 내경, 높이(cm): 10 × 9 × 40)에 높이가 약 26cm가 되도록 채운 후 상부 뚜껑을 체결하였다.To prepare the column part, the hydrated cation exchange resin was filled in a circular acrylic column (outer diameter, inner diameter, height (cm): 10 × 9 × 40) to a height of about 26 cm, and then the upper lid was fastened.
분리장치의 준비단계로는, 주 전원을 올린 후 2차 용액선택밸브, 즉 제2 용액 선택부(500)의 유로를 1번(폐액)유로로 선택한 다음, 1차 용액선택밸브, 즉 제1 용액 선택부(200)를 1번 유로(활성화 용액)로 선택한 후 튜빙펌프를 가동하여 용액이 1차 용액선택밸브까지 주입되면 유로를 2번으로 변경하여 해수시료를 선택, 다음은 3번 유로를 선택하여 세척액을, 마지막으로 4번 유로를 선택하여 Sr-용출액이 선택밸브까지 주입되게 한 후 유로를 다시 1번으로 되돌려 모든 준비 과정을 완료한다.In the preparation step of the separation device, after turning on the main power, select the second solution selection valve, that is, the flow path of the second solution selection unit 500 as the first (waste liquid) flow path, and then select the first solution selection valve, that is, the first solution selecting unit 200, as the first flow path (activation solution), operate the tubing pump, and when the solution is injected up to the first solution selection valve, change the flow path to No. 2 to select the seawater sample, and then select the third flow path to prepare the washing liquid, Finally, select flow path 4 to inject the Sr-eluent to the selection valve, and return the flow path to flow path 1 to complete all preparations.
이어, 자동분리는, 제어패널의 자동분리 동작버튼을 누름과 함께 진행되며, 튜빙펌프의 가동과 함께 수지 활성화액을 시작으로, 해수시료, 세척액 그리고 최종 스트론튬 용출액(Sr-용출용액)이 1차 용액선택밸브의 유로변경과 함께 순차적으로 주입된다.Next, automatic separation proceeds with pressing the automatic separation operation button on the control panel. Starting with the resin activating solution, along with the operation of the tubing pump, seawater sample, cleaning solution, and final strontium elution solution (Sr-elution solution) are sequentially injected along with the flow path change of the first solution selection valve.
이때, 각 용액주입에 대한 제어는, 1차 용액선택밸브, 즉 제1 용액 선택부(200)와 다수의 용액용기 사이에 설치된 유량흐름 센서(제1 및 제2 광전센서)가 용액이 모두 주입된 후, 유입되는 공기유입을 감지하고, 이 신호를 1차 용액선택밸브에 보냄으로서, 다음 용액으로 전환할 수 있다.At this time, the control for each solution injection is carried out by the first solution selection valve, i.e., the first solution selection unit 200 and the flow rate sensors (first and second photoelectric sensors) installed between the plurality of solution containers detect the inflow of air after all the solutions are injected, and send this signal to the first solution selection valve to switch to the next solution.
각 용액을 흡입하는 흡입튜빙은, 용액용기 뚜껑에 결합된 나사선 튜빙조임관을 이용함으로써, 흡입튜빙 끝단이 용기 바닥에 고정적으로 위치하게 함으로써 펌프 가동 중에는 용기 내 모든 용액이 모두 주입되도록 하였으며, 해수시료의 경우 깊이가 깊은 대형용기를 사용함에 따라 길이가 긴 흡입튜빙을 주입시 안정적으로 용기 바닥에 밀착되도록 튜빙안내관을 용기 상부 벽면에 설치하였다.The suction tubing that sucks each solution uses a screw tubing clamp coupled to the lid of the solution container, so that the end of the suction tubing is fixedly positioned on the bottom of the container so that all the solutions in the container are injected while the pump is running. In the case of seawater samples, as a large container with a deep depth is used, a tubing guide pipe is installed on the upper wall of the container so that the long suction tubing can be stably adhered to the bottom of the container when injected.
또한, 본 발명은, Sr-용출액을 회수하기 위하여 최종 Sr-용출액이 주입되고 1차 용액선택밸브의 유로가 4번으로 전환될 때, 동시에 2차 용액선택밸브의 유로가 2번으로 전환되게 하였으며, 모든 Sr-용출액이 주입된 후 이를 감지하게 되면 튜빙펌프의 작동을 정지하여 모든 분리공정이 멈추도록 하는 자동분리장치이다.In addition, in the present invention, in order to recover the Sr-eluate, when the final Sr-eluate is injected and the flow path of the first solution selection valve is switched to No. 4, the flow path of the second solution selection valve is switched to No. 2 at the same time.
이때, 사용된 제1 및 제2 광전센서는, 2개를 직렬로 배열함으로써 1개의 순간적인 공기방울에 의한 오작동을 방지하기 위하여 2개에서 동시에 신호를 받을 경우에만 전환신호를 밸브로 전송하도록 하여 동작의 안전성을 향상하였으며, 용액 연결관(제1 내지 제4 흡입튜빙)의 경우 일부 반투명 테프론 튜빙에도 적용할 수 있어 다양한 크기와 재질의 튜빙에 모두 적용 가능하다.At this time, the first and second photoelectric sensors used in this case are arranged in series so that a switching signal is transmitted to the valve only when a signal is received from two at the same time in order to prevent malfunction due to one momentary air bubble, thereby improving the safety of operation. In the case of the solution connector (first to fourth suction tubing), it can also be applied to some translucent Teflon tubing, so it can be applied to all tubing of various sizes and materials.
또한, 본 발명은, 많은 양의 수지를 사용하고 주입용액의 화학조성 변경에 따른 수지의 구조가 변경됨에 따라, 수지 간 공극크기의 변화에 따라 일부 용액의 경우 유입량과 배출량의 차이가 발생하는 현상이 발생할 수 있으며, 이에 따른 칼럼부(400) 내 압력 증가와 이로 인한 용액누수가 발생할 수 있기 때문에, 이를 방지하는 칼럼부(400) 내부 상단에 용액높이를 측정할 수 있는 수위감지 센서를 설치하여 용액이 일정 수위 이상으로 증가할 경우, 튜빙펌프의 작동을 정지시켜 자동으로 작동하는 분리시스템의 안전성을 포함한 자동분리장치이다.In addition, according to the present invention, as a large amount of resin is used and the structure of the resin is changed due to a change in the chemical composition of the injection solution, a difference in inflow and discharge may occur in some solutions due to a change in the pore size between resins. As a result, since pressure in the column part 400 and solution leakage may occur due to this, a water level sensor capable of measuring the height of the solution is installed at the top of the column part 400 to prevent this, when the solution increases above a certain level, It is an automatic separation device including the safety of the separation system that operates automatically by stopping the operation of the tubing pump.
여기서, 튜빙펌프, 즉 펌프부(700)는, 최대 분당 약 50mL까지 공급할 수 있는 속도조절이 가능한 펌프로서, 펌프의 롤러가 회전하면서 탄성튜빙을 압착하여 만들어진 압력을 이용하여 한방향으로 용액을 이송하는 원리로서, 펌프용 탄성튜빙은, 산용액 및 유기용매에도 사용가능한 튜빙을 사용함으로써, 약 2M 염산과 약 50% 메탄올 용액에도 적용가능하다.Here, the tubing pump, that is, the pump unit 700, is a speed-adjustable pump capable of supplying up to about 50 mL per minute. As the principle of transporting the solution in one direction using pressure created by compressing the elastic tubing while the rollers of the pump rotate, the elastic tubing for the pump is applicable to about 2M hydrochloric acid and about 50% methanol solutions by using tubing that can also be used for acid solutions and organic solvents.
본 발명의 제어부는, 패널에 고정되어 있으며, 주 전원 차단기, 튜빙펌프 작동 및 속도조절기, 1차 용액선별기(제1 용액 선택부) 선택, 2차 용액선택기(제2 용액 선택부) 선택, 자동분리 작동버튼으로 구성되어 있으며, 초기 용액주입시 튜빙내 용액이 채워져 있어야 펌프가 동작하기 때문에 자동분리시작 전 제어부를 이용하여 각 용액이 튜빙에 용액을 주입하는 과정이 필요하며 이를 제어부에서 간단히 동작시킬 수 있는 장점이 있다.The control unit of the present invention is fixed to the panel and consists of a main power circuit breaker, a tubing pump operation and speed controller, a primary solution selector (first solution selector) selection, a secondary solution selector (second solution selector) selection, and an automatic separation operation button. Since the pump operates only when the solution in the tubing is filled during initial solution injection, a process of injecting each solution into the tubing using the control unit before the start of automatic separation is required, and this can be easily operated from the control unit. .
본 발명에서 사용되는 양이온교환수지는, 강산 및 유기용매 조건에서 물리 및 화학적 안전성이 매우 높기 때문에 Sr 분리 완료 후 수지에 남아 있는 일부 양이온을 약 2M 염산을 이용하여 모두 제거하여 재생과 활성화가 가능하므로, Sr에 대한 회수율이 떨어지지 않는 한 반복사용이 가능하다.Since the cation exchange resin used in the present invention has very high physical and chemical safety under strong acid and organic solvent conditions, it can be regenerated and activated by removing some of the cations remaining in the resin with about 2M hydrochloric acid after Sr separation is completed, so that it can be used repeatedly as long as the recovery rate for Sr does not decrease.
이와 같이, 본 발명은, 수지 활성화액, 해수 시료, 그리고 세척액을 순차적으로 양이온교환수지가 담겨진 칼럼부에 모두 주입 완료된 이후에 스트론튬 용출액을 칼럼부에 주입하여 스트론튬 회수액을 획득함으로써, 해수 중 방사성스트론튬(Sr-90)을 안전하고 신속하게 분리하고 분리의 효율성을 높일 수 있도록 자동화가 가능하다.As described above, in the present invention, after injection of the resin activating liquid, the seawater sample, and the washing liquid into the column unit containing the cation exchange resin is completed, the strontium eluate is injected into the column unit to obtain the recovered strontium solution, thereby enabling automation to safely and quickly separate radioactive strontium (Sr-90) from seawater and increase the efficiency of the separation.
도 3은, 본 발명 일 실시예에 따른 해수 중 방사성스트론튬 분리 방법을 설명하기 위한 순서도이다.3 is a flowchart illustrating a method for separating radioactive strontium from seawater according to an embodiment of the present invention.
도 3에 도시된 바와 같이, 본 발명은, 다수의 용액 용기에 분리되어 담겨진 수지 활성화액, 해수 시료, 세척액, 그리고 스트론튬 용출액을 각각 용액 용기와 제1 용액 선택부 사이에 연결된 흡입튜빙 내에 채우는 전처리 과정을 수행할 수 있다(S10).As shown in FIG. 3, in the present invention, the resin activating liquid, the seawater sample, the cleaning liquid, and the strontium eluate, which are separately contained in a plurality of solution containers, can be filled into the suction tubing connected between the solution container and the first solution selector, respectively (S10).
이어, 본 발명은, 스트론튬 분리를 요청하는 사용자 입력이 수신되는지를 확인할 수 있다(S20).Subsequently, the present invention may check whether a user input requesting separation of strontium is received (S20).
다음, 본 발명은, 스트론튬 분리를 요청하는 사용자 입력이 수신되면 수지 활성화액을 선택하도록 제1 용액 선택부를 제어함과 동시에 칼럼부의 폐액을 선택하도록 제2 용액 선택부를 제어하고, 선택한 수지 활성화액이 칼럼부로 이송 및 주입되도록 펌프부를 제어할 수 있다(S30).Next, in the present invention, when a user input requesting separation of strontium is received, the first solution selector is controlled to select the resin activating liquid, and the second solution selector is controlled to select the waste liquid of the column unit at the same time, and the pump unit is controlled to transfer and inject the selected resin activating liquid into the column unit (S30).
그리고, 본 발명은, 수지 활성화액의 주입이 완료되었는지를 확인할 수 있다(S40).And, in the present invention, it is possible to check whether injection of the resin activating liquid has been completed (S40).
여기서, 본 발명은, 흡입튜빙 내 수지 활성화액의 흐름을 1차 감지하는 제1 센싱신호와 1차 감지된 수지 활성화액의 흐름을 2차 감지하는 제2 센싱신호를 기반으로 수지 활성화액 주입의 완료 여부를 확인할 수 있다.Here, in the present invention, based on the first sensing signal for primarily detecting the flow of the resin activating liquid in the suction tubing and the second sensing signal for secondarily detecting the first detected flow of the resin activating liquid, whether or not injection of the resin activating liquid is completed can be confirmed.
이어, 본 발명은, 수지 활성화액의 주입이 완료되면 해수 시료를 선택하도록 제1 용액 선택부를 제어하고, 선택한 해수 시료가 칼럼부로 이송 및 주입되도록 펌프부를 제어할 수 있다(S50).Subsequently, in the present invention, when the injection of the resin activating liquid is completed, the first solution selection unit may be controlled to select a seawater sample, and the pump unit may be controlled to transport and inject the selected seawater sample into the column unit (S50).
다음, 본 발명은, 해수 시료의 주입이 완료되었는지를 확인할 수 있다(S60).Next, the present invention can check whether the injection of the seawater sample has been completed (S60).
여기서, 본 발명은, 흡입튜빙 내 해수 시료의 흐름을 1차 감지하는 제1 센싱신호와 1차 감지된 해수 시료의 흐름을 2차 감지하는 제2 센싱신호를 기반으로 해수 시료 주입의 완료 여부를 확인할 수 있다.Here, in the present invention, based on the first sensing signal for firstly detecting the flow of the seawater sample in the suction tubing and the second sensing signal for secondarily sensing the flow of the firstly sensed seawater sample, whether or not the seawater sample is injected can be confirmed.
그리고, 본 발명은, 해수 시료의 주입이 완료되면 세척액을 선택하도록 제1 용액 선택부를 제어하고, 선택한 세척액이 칼럼부로 이송 및 주입되도록 펌프부를 제어할 수 있다(S70).In the present invention, when the injection of the seawater sample is completed, the first solution selector may be controlled to select the washing solution, and the pump may be controlled to transport and inject the selected washing solution into the column unit (S70).
이어, 본 발명은, 세척액의 주입이 완료되었는지를 확인할 수 있다(S80).Subsequently, the present invention may check whether the injection of the washing solution is completed (S80).
여기서, 본 발명은, 흡입튜빙 내 세척액의 흐름을 1차 감지하는 제1 센싱신호와 1차 감지된 세척액의 흐름을 2차 감지하는 제2 센싱신호를 기반으로 세척액 주입의 완료 여부를 확인할 수 있다.Here, according to the present invention, it is possible to determine whether or not the injection of the washing liquid is completed based on a first sensing signal for primarily detecting the flow of the washing liquid in the suction tubing and a second sensing signal for secondarily detecting the primarily detected flow of the washing liquid.
다음, 본 발명은, 세척액의 주입이 완료되면 스트론튬 용출액을 선택하도록 제1 용액 선택부를 제어함과 동시에 칼럼부의 스트론튬 회수액을 선택하도록 제2 용액 선택부를 제어하고, 선택한 스트론튬 용출액이 칼럼부로 이송 및 주입되도록 펌프부를 제어할 수 있다(S90).Next, in the present invention, when the injection of the cleaning solution is completed, the first solution selector is controlled to select the strontium elution solution, and the second solution selector is controlled to select the strontium recovery solution of the column unit at the same time, and the pump unit is controlled to transfer and inject the selected strontium elution solution into the column unit (S90).
그리고, 본 발명은, 스트론튬 용출액의 주입이 완료되었는지를 확인할 수 있다(S100).And, in the present invention, it is possible to check whether the injection of the strontium elution solution is completed (S100).
여기서, 본 발명은, 흡입튜빙 내 스트론튬 용출액의 흐름을 1차 감지하는 제1 센싱신호와 1차 감지된 스트론튬 용출액의 흐름을 2차 감지하는 제2 센싱신호를 기반으로 스트론튬 용출액 주입의 완료 여부를 확인할 수 있다.Here, in the present invention, based on the first sensing signal for primarily detecting the flow of the strontium eluate in the suction tubing and the second sensing signal for secondarily sensing the flow of the strontium eluate that has been primarily sensed, it is possible to check whether the injection of the strontium eluate has been completed.
이어, 본 발명은, 스트론튬 용출액의 주입이 완료되면 스트론튬 분리 및 회수 과정을 완료할 수 있다(S110).Next, in the present invention, when the injection of the strontium eluate is completed, the strontium separation and recovery process can be completed (S110).
이에, 본 발명에서 40L 해수시료에 대하여 Sr-90 분리는 초기의 시료, 분리용액 및 칼럼부 준비 단계와 자동분리장치 작동성 점검 단계를 거쳐 자동분리단계에서 자동으로 진행되어 Sr 분리가 완료되며 이에 대한 실시 예는 아래와 같다.Accordingly, in the present invention, the separation of Sr-90 from a 40L seawater sample is performed automatically in the automatic separation step through the initial sample, separation solution, column preparation step, and automatic separation device operability check step, and Sr separation is completed. An example for this is as follows.
제1 공정(시료, 분리용액 및 칼럼부 준비단계)1st process (sample, separation solution and column part preparation step)
채취한 해수를 잔유물을 제거하기 위하여 5C 여과지를 이용하여 여과한 후 40L를 테프론 코팅된 스테인리스 시료함에 넣은 후, 강염산 80mL를 첨가하여 용액조성을 0.2M 염산으로 조절한다.After filtering the collected seawater using a 5C filter paper to remove residues, 40L is placed in a Teflon-coated stainless sample box, and then 80mL of strong hydrochloric acid is added to adjust the solution composition to 0.2M hydrochloric acid.
그리고, 칼럼분리과정에 사용되는 활성화액 0.2M HCl-5L, 세척액 (2M 암모늄아세테이트(NH4CH3CO2)과 메탄올 혼합액 (1:1))-3.1L, Sr-용출액-4.8L를 각각의 용액 함에 채우고, 수화된 양이온교환수지(Dowex 50W-8X, 100-150 mesh)를 대형 아크릴 칼럼부(외경, 내경, 높이 (cm): 10 × 9 × 40)에 26cm 높이로 충진한 후 칼럼부 상단부를 결합한다.In addition, 0.2M HCl-5L of the activation solution used in the column separation process, washing solution (2M ammonium acetate (NH 4 CH 3 CO 2 ) and methanol mixture (1:1))-3.1L, and Sr-eluent-4.8L were filled into each solution box, and hydrated cation exchange resin (Dowex 50W-8X, 100-150 mesh) was placed in a large acrylic column part (outer diameter, inner diameter, Height (cm): 10 × 9 × 40) after filling to a height of 26 cm, connect the upper part of the column part.
이어, 주입용액(활성화액, 시료, 세척액, Sr-용출액) 각각의 용액함에 흡입튜빙 하단이 용기 바닥에 위치하도록 깊이를 조절하여 고정한 후, 이를 테프론 용액튜빙(1/8")과 연결하며, 이들 용액 튜빙이 2개의 광전센서 사이에 정확히 위치시킨다.Next, after fixing the injection solution (activation solution, sample, washing solution, Sr-eluent solution) by adjusting the depth so that the bottom of the suction tubing is located at the bottom of the container, it is connected to a Teflon solution tubing (1/8 "), and these solution tubings are precisely positioned between the two photoelectric sensors.
제2 공정(작동성 점검단계)2nd process (operability check step)
제1 공정을 통하여 칼럼분리에 필요한 수지와 주입용액을 준비한 후, 제어판의 주 전원을 넣은 후, 제어판의 수동동작 버튼을 이용하여 펌프작동 및 용액주입속도를 30ml/분, 1차, 2차 용액선택밸브의 유로선택, 광전센서, 수위 감지센서의 작동성을 각각 확인한다.After preparing the resin and injection solution required for column separation through the first process, turn on the main power on the control panel, and then use the manual operation button on the control panel to operate the pump and set the solution injection speed to 30 ml/min.
제3 공정(자동분리단계)3rd process (automatic separation step)
제2 공정에서 작동성을 확인한 후, 펌프작동과 함께 1차 용액선택밸브의 유로를 순차적으로 변경하면서 활성화액, 시료, 세척액, 용출액을 1차 용액선택밸브 전단까지 채운 다음 자동분리 동작버튼을 작동시킨다.After confirming the operability in the second process, the flow path of the 1st solution selection valve is changed sequentially with the pump operation, filling the activating solution, sample, washing solution, and elution solution up to the front of the 1st solution selection valve, and then operating the automatic separation action button.
자동분리과정은, 튜빙펌프의 동작과 함께 활성화액(0.2M HCl - 5L)이 1번 유로를 따라 30 ml/분 속도로 약 170분간 주입하여, 양이온 교환수지의 반응기 끝단의 화학물 형태를 H+형으로 변환하여 양이온을 흡착할 수 있도록 조성이 변하게 된다.In the automatic separation process, along with the operation of the tubing pump, an activation solution (0.2M HCl - 5L) is injected along flow path 1 at a rate of 30 ml/min for about 170 minutes, and the chemical form at the end of the reactor of the cation exchange resin is converted to H + form, and the composition is changed so that cations can be adsorbed.
활성화액 용기에 있는 모든 용액이 주입되면, 연이어 공기가 관을 타고 광전센서(PES-1)로 이동하면 감지된 신호를 1차 용액선택밸브에 보내 밸브의 연결 유로는 2번으로 전환시킨다.When all the solutions in the activating liquid container are injected, the air continuously travels through the tube to the photoelectric sensor (PES-1), sends the detected signal to the primary solution selection valve, and switches the connection path of the valve to No. 2.
이에 따라 해수시료주입이 시작되고 40L를 모두 주입하는데 약 21시간이 소요된다.Accordingly, seawater sample injection starts and it takes about 21 hours to inject all 40L.
이 과정을 통하여 해수 중에 다량 함유된 음이온, +1가 양이온 그리고 상당량의 Mg2+이 수지에 흡착되지 않고 제거된다.Through this process, a large amount of anions, +1 valent cations, and a significant amount of Mg 2+ in seawater are added to the resin. It is removed without being adsorbed.
시료용기에 있는 모든 해수가 주입된 후, 앞 단계와 같이 방식으로 1차 용액선택밸브 유로는 3번으로 전환되고 세척액인 2M 암모늄아세테이트(NH4CH3CO2)와 메탄올(CH3OH) 1:1 혼합액이 주입이 시작되며, 이 과정에서는, 시료주입 과정에서 흡착된 일부 Mg2+과 대부분의 Ca2+가 제거된다.After all the seawater in the sample container is injected, the first solution selection valve flow path is switched to number 3 in the same manner as in the previous step, and a 1:1 mixed solution of 2M ammonium acetate (NH 4 CH 3 CO 2 ) and methanol (CH 3 OH) is injected. In this process, some Mg 2+ and most of Ca 2+ adsorbed during the sample injection process are removed.
세척액 3.1L는, 약 100분간 주입된 후, 1차 용액선택밸브 유로는, 4번으로 전환되고 이 신호를 받아 2차 용액선택밸브는, 2번 유로로 전환되어 용출액인 2M 암모늄아세테이트(NH4CH3CO2) 4.8L의 주입과 회수가 시작된다.After 3.1 L of washing liquid is injected for about 100 minutes, the first solution selection valve flow path is switched to No. 4, and upon receiving this signal, the second solution selection valve is switched to No. 2 flow path, and the injection and recovery of 4.8 L of 2M ammonium acetate (NH 4 CH 3 CO 2 ) begins.
회수된 용출액으로부터 Sr 회수 및 분리는 탄산염침전 및 질산염침전을 통하여 추가적인 작업이 필요하나 대용량의 해수에 대한 화학분리는 대부분 이 자동화과정을 통하여 완성된다.The recovery and separation of Sr from the recovered eluate requires additional work through carbonate precipitation and nitrate precipitation, but most of the chemical separation of large-capacity seawater is completed through this automated process.
제4 공정(수지 재생단계)4th process (resin regeneration step)
제3공정(자동분리단계)을 통하여 칼럼부에서 Sr 분리가 완료된 후, 사용된 수지는, 2M 염산용액 약 4L를 수동으로 주입하여 양이온 교환수지에 남아있는 일부 양이온 원소를 모두 제거하여 다음 시료분리에 사용하는 재생 과정으로 다음 공정을 시작할 수 있다. After the Sr separation is completed in the column part through the third process (automatic separation step), about 4 L of 2M hydrochloric acid solution is manually injected into the used resin to remove some of the cation elements remaining in the cation exchange resin. The next process can be started with a regeneration process used for the next sample separation.
이와 같이, 본 발명은, 수지 활성화액, 해수 시료, 그리고 세척액을 순차적으로 양이온교환수지가 담겨진 칼럼부에 모두 주입 완료된 이후에 스트론튬 용출액을 칼럼부에 주입하여 스트론튬 회수액을 획득함으로써, 해수 중 방사성스트론튬(Sr-90)을 안전하고 신속하게 분리하고 분리의 효율성을 높일 수 있도록 자동화가 가능하다.As described above, the present invention can safely and quickly separate radioactive strontium (Sr-90) from seawater and increase the efficiency of the separation by injecting the strontium eluate into the column portion to obtain a recovered strontium solution after the resin activating solution, the seawater sample, and the cleaning solution are sequentially injected into the column portion containing the cation exchange resin.
이상에서 본 발명들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The features, structures, effects, etc. described in the present inventions above are included in at least one embodiment of the present invention, and are not necessarily limited to only one embodiment. Furthermore, the features, structures, and effects illustrated in each embodiment can be combined or modified with respect to other embodiments by those skilled in the art in the field to which the embodiments belong. Therefore, contents related to these combinations and variations should be construed as being included in the scope of the present invention.
또한, 이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.In addition, although the embodiments have been described above, these are only examples and do not limit the present invention, and those skilled in the art to which the present invention belongs will be able to know that various modifications and applications not exemplified above are possible without departing from the essential characteristics of the present embodiment. For example, each component specifically shown in the embodiment can be modified and implemented. And differences related to these modifications and applications should be construed as being included in the scope of the present invention as defined in the appended claims.
본 발명은 수지 활성화액, 해수 시료, 그리고 세척액을 순차적으로 양이온교환수지가 담겨진 칼럼부에 모두 주입 완료된 이후에 스트론튬 용출액을 칼럼부에 주입하여 스트론튬 회수액을 획득함으로써, 해수 중 방사성스트론튬(Sr-90)을 안전하고 신속하게 분리하고 분리의 효율성을 높일 수 있도록 자동화가 가능한 측면에서 산업상 이용가능성이 있다.The present invention has industrial applicability in that it is possible to safely and quickly separate radioactive strontium (Sr-90) from seawater and to increase the efficiency of the separation by obtaining a recovered strontium solution by injecting a strontium elution solution into the column portion after completion of sequentially injecting the resin activating solution, the seawater sample, and the washing solution into the column portion containing the cation exchange resin.

Claims (10)

  1. 다수의 용액 용기에 분리되어 담겨진 수지 활성화액, 해수 시료, 세척액, 그리고 스트론튬 용출액을 각각 이송하는 제1 이송부;A first transfer unit for transporting the resin activating liquid, the seawater sample, the washing liquid, and the strontium eluate, which are separately contained in a plurality of solution containers;
    상기 제1 이송부에 연결되어 상기 수지 활성화액, 해수 시료, 세척액, 그리고 스트론튬 용출액 중 어느 하나의 용액을 선택하는 제1 용액 선택부;a first solution selection unit that is connected to the first transfer unit and selects one of the resin activating liquid, the seawater sample, the cleaning liquid, and the strontium eluate;
    상기 제1 용액 선택부에 연결되어 상기 제1 용액 선택부로부터 선택한 용액을 이송하는 제2 이송부;a second transfer unit connected to the first solution selector and transporting the solution selected from the first solution selector;
    소정량의 양이온교환수지가 미리 담겨지고, 상기 제2 이송부로부터 이송되는 용액이 주입되는 칼럼부;a column unit containing a predetermined amount of cation exchange resin in advance and injecting the solution transferred from the second transfer unit;
    상기 칼럼부에 연결되어 폐액 또는 스트론튬 회수액을 선택하는 제2 용액 선택부;a second solution selection unit connected to the column unit to select waste liquid or strontium recovery liquid;
    상기 제2 용액 선택부에 연결되어 상기 폐액 또는 스트론튬 회수액을 회수 용기로 이송하는 제3 이송부;a third transfer unit connected to the second solution selection unit and transporting the waste liquid or the strontium recovery liquid to a recovery container;
    상기 제2 이송부에 연결되어 용액을 이송시키는 펌프부; 그리고,a pump unit that is connected to the second transfer unit and transfers the solution; and,
    상기 제1, 제2 용액 선택부 및 펌프부를 제어하는 제어부를 포함하고,A control unit for controlling the first and second solution selectors and the pump unit;
    상기 제어부는,The control unit,
    상기 수지 활성화액, 해수 시료, 그리고 세척액을 순차적으로 상기 칼럼부에 주입하여 상기 칼럼부로부터 폐액을 배출하도록 상기 제1, 제2 용액 선택부와 펌프부를 제어하고, 상기 수지 활성화액, 해수 시료, 그리고 세척액이 순차적으로 상기 칼럼부에 모두 주입 완료되면 상기 스트론튬 용출액을 상기 칼럼부에 주입하여 상기 칼럼부로부터 스트론튬 회수액을 배출하도록 상기 제1, 제2 용액 선택부와 펌프부를 제어하는 것을 특징으로 하는 해수 중 방사성스트론튬 분리 장치.The first and second solution selection portions and pumps are controlled to inject the waste solution from the column unit sequentially injecting the resin activation solution, seawater sample, and the washing liquid, and when the resin activation solution, seawater sample, and the washing liquid are injected into the column portion sequentially, the strone lithium dissolution liquid is injected into the column unit. Thus, the first and second solution selection portion and the pump part are controlled to discharge the strontium recovery solution from the column unit, characterized in that the radioactive strontium -separated device.
  2. 제1 항에 있어서,According to claim 1,
    상기 수지 활성화액이 담겨진 제1 용액 용기;a first solution container containing the resin activating solution;
    상기 해수 시료가 담겨진 제2 용액 용기;A second solution container containing the seawater sample;
    상기 세척액이 담겨진 제3 용액 용기; 그리고,a third solution container containing the washing solution; and,
    상기 스트론튬 용출액이 담겨진 제4 용액 용기를 포함하는 용액 용기부를 더 포함하는 것을 특징으로 하는 해수 중 방사성스트론튬 분리 장치.The apparatus for separating radioactive strontium in seawater, characterized in that it further comprises a solution container unit including a fourth solution container containing the strontium elution solution.
  3. 제2 항에 있어서,According to claim 2,
    상기 수지 활성화액은,The resin activating solution,
    0.2M HCl을 포함하고,0.2M HCl,
    상기 세척액은,The washing liquid is
    2M 암모늄아세테이트(NH4CH3CO2)와 메탄올이 1:1 비율로 혼합된 세척액을 포함하며,It includes a washing solution in which 2M ammonium acetate (NH 4 CH 3 CO 2 ) and methanol are mixed in a 1:1 ratio,
    상기 스트론튬 용출액은,The strontium eluate,
    2M 암모늄아세테이트(NH4CH3CO2)를 포함하는 것을 특징으로 하는 해수 중 방사성스트론튬 분리 장치.An apparatus for separating radioactive strontium in seawater, comprising 2M ammonium acetate (NH 4 CH 3 CO 2 ).
  4. 제2 항에 있어서,According to claim 2,
    상기 제1 이송부는,The first transfer part,
    상기 제1 용액 용기 내에 삽입되어 상기 수지 활성화액을 상기 제1 용액 선택부로 이송하는 제1 흡입튜빙;a first suction tubing inserted into the first solution container and transporting the resin activating liquid to the first solution selector;
    상기 제2 용액 용기 내에 삽입되어 상기 해수 시료를 상기 제1 용액 선택부로 이송하는 제2 흡입튜빙;a second suction tubing inserted into the second solution container and transporting the seawater sample to the first solution selector;
    상기 제3 용액 용기 내에 삽입되어 상기 세척액을 상기 제1 용액 선택부로 이송하는 제3 흡입튜빙; 그리고,a third suction tubing that is inserted into the third solution container and transfers the cleaning solution to the first solution selector; and,
    상기 제4 용액 용기 내에 삽입되어 스트론튬 용출액을 상기 제1 용액 선택부로 이송하는 제4 흡입튜빙을 포함하는 것을 특징으로 하는 해수 중 방사성스트론튬 분리 장치.and a fourth suction tubing inserted into the fourth solution container to transport the strontium eluate to the first solution selector.
  5. 제1 항에 있어서,According to claim 1,
    상기 제1 이송부에 흐르는 용액의 흐름을 감지하는 제1 센서부; 그리고,a first sensor unit sensing a flow of the solution flowing in the first transfer unit; and,
    상기 칼럼부에 담겨진 용액의 수위를 감지하는 제2 센서부를 더 포함하고,Further comprising a second sensor unit for detecting the level of the solution contained in the column unit,
    상기 제어부는,The control unit,
    상기 제1 센서부로부터 수신되는 센싱신호를 기반으로 상기 용액 용기에 담겨진 용액의 이송 완료 여부를 판단하여 상기 제1, 제2 용액 선택부 및 펌프부를 제어하고,Controlling the first and second solution selection units and the pump unit by determining whether the transfer of the solution contained in the solution container is completed based on the sensing signal received from the first sensor unit;
    상기 제2 센서부로부터 수신되는 센싱신호를 기반으로 상기 칼럼부에 담겨진 용액의 수위를 판단하여 상기 펌프부를 제어하는 것을 특징으로 하는 해수 중 방사성스트론튬 분리 장치.Radioactive strontium separation device in seawater, characterized in that for controlling the pump unit by determining the level of the solution contained in the column unit based on the sensing signal received from the second sensor unit.
  6. 제5 항에 있어서,According to claim 5,
    상기 제1 센서부는,The first sensor unit,
    상기 제1 이송부의 흡입 튜빙 주변에 배치되어 용액의 흐름을 1차 감지하는 제1 광전센서; 그리고,a first photoelectric sensor disposed around the suction tubing of the first transfer unit to primarily sense the flow of the solution; and,
    상기 제1 광전센서로부터 소정 간격 이격되도록 상기 제1 이송부의 흡입 튜빙 주변에 배치되어 1차 감지된 용액의 흐름을 2차 감지하는 제2 광전센서를 포함하는 것을 특징으로 하는 해수 중 방사성스트론튬 분리 장치.A device for separating radioactive strontium in seawater, characterized in that it comprises a second photoelectric sensor disposed around the suction tubing of the first transfer unit to be spaced apart from the first photoelectric sensor by a predetermined distance and secondarily detecting the flow of the firstly sensed solution.
  7. 제5 항에 있어서,According to claim 5,
    상기 제2 센서부는,The second sensor unit,
    상기 칼럼부의 상단에 삽입되어 상기 칼럼부에 주입되는 용액의 수위를 감지하는 수위감지센서를 포함하는 것을 특징으로 하는 해수 중 방사성스트론튬 분리 장치.Radioactive strontium separation device in seawater, characterized in that it comprises a water level sensor inserted at the top of the column unit to detect the level of the solution injected into the column unit.
  8. 제1 항에 있어서,According to claim 1,
    상기 제어부는,The control unit,
    상기 스트론튬 분리를 요청하는 사용자 입력이 수신되면 상기 수지 활성화액을 선택하도록 상기 제1 용액 선택부를 제어함과 동시에 상기 칼럼부의 폐액을 선택하도록 상기 제2 용액 선택부를 제어하며, 상기 선택한 수지 활성화액이 상기 칼럼부로 이송 및 주입되도록 상기 펌프부를 제어하고, 상기 수지 활성화액의 주입이 완료되면 상기 해수 시료를 선택하도록 상기 제1 용액 선택부를 제어하며, 상기 선택한 해수 시료가 상기 칼럼부로 이송 및 주입되도록 상기 펌프부를 제어하고, 상기 해수 시료의 주입이 완료되면 상기 세척액을 선택하도록 상기 제1 용액 선택부를 제어하며, 상기 선택한 세척액이 상기 칼럼부로 이송 및 주입되도록 상기 펌프부를 제어하고, 상기 세척액의 주입이 완료되면 상기 스트론튬 용출액을 선택하도록 상기 제1 용액 선택부를 제어함과 동시에 상기 칼럼부의 스트론튬 회수액을 선택하도록 상기 제2 용액 선택부를 제어하며, 상기 선택한 스트론튬 용출액이 상기 칼럼부로 이송 및 주입되도록 상기 펌프부를 제어하고, 상기 스트론튬 용출액의 주입이 완료되면 스트론튬 분리 및 회수를 완료하는 것을 특징으로 하는 해수 중 방사성스트론튬 분리 장치.When a user input requesting separation of strontium is received, the first solution selector controls the first solution selector to select the resin activating liquid and the second solution selector controls the second solution selector to select the waste liquid of the column part at the same time, controls the pump part to transfer and injects the selected resin activating liquid into the column part, controls the first solution selector to select the seawater sample when the injection of the resin activating liquid is completed, controls the pump part to transfer and injects the selected seawater sample into the column part, and controls the pump unit to transfer and inject the selected seawater sample into the column part. The first solution selector controls the first solution selector to select the washing solution, controls the pump unit to transfer and injects the selected wash solution into the column unit, controls the first solution selector to select the strontium eluate when the injection of the wash solution is completed, and simultaneously controls the second solution selector to select the strontium recovery solution of the column unit, controls the pump unit to transfer and injects the selected strontium eluate into the column unit, and controls the pump unit to transfer and inject the selected strontium eluate into the column unit. An apparatus for separating radioactive strontium in seawater, characterized in that it completes separation and recovery of rontium.
  9. 제8 항에 있어서,According to claim 8,
    상기 제어부는,The control unit,
    상기 스트론튬 분리를 요청하는 사용자 입력을 수신하기 이전에 상기 다수의 용액 용기에 분리되어 담겨진 수지 활성화액, 해수 시료, 세척액, 그리고 스트론튬 용출액을 상기 제1 용액 선택부의 전단까지 상기 제1 이송부의 흡입튜빙 내에 채우는 것을 특징으로 하는 해수 중 방사성스트론튬 분리 장치.Prior to receiving a user input requesting separation of strontium, the resin activating solution, the seawater sample, the cleaning solution, and the strontium eluate contained in the plurality of solution containers are filled into the suction tubing of the first transfer unit up to the front end of the first solution selection unit. Radioactive strontium separation device in seawater, characterized in that.
  10. 제1, 제2 용액 선택부 및 펌프부를 제어하는 제어부를 포함하는 해수 중 방사성스트론튬 분리 장치의 해수 중 방사성스트론튬 분리 방법에 있어서,A method for separating radioactive strontium from seawater in an apparatus for separating radioactive strontium from seawater, including a control unit for controlling first and second solution selectors and a pump unit,
    (a) 상기 제어부가, 상기 스트론튬 분리를 요청하는 사용자 입력이 수신되면 상기 수지 활성화액을 선택하도록 상기 제1 용액 선택부를 제어함과 동시에 칼럼부의 폐액을 선택하도록 상기 제2 용액 선택부를 제어하고, 상기 선택한 수지 활성화액이 상기 칼럼부로 이송 및 주입되도록 상기 펌프부를 제어하는 단계;(a) when the control unit receives a user input requesting separation of strontium, controlling the first solution selector to select the resin activating liquid and simultaneously controlling the second solution selector to select the waste liquid of the column unit, and controlling the pump unit to transfer and inject the selected resin activating liquid into the column unit;
    (b) 상기 제어부가, 상기 수지 활성화액의 주입이 완료되면 상기 해수 시료를 선택하도록 상기 제1 용액 선택부를 제어하고, 상기 선택한 해수 시료가 상기 칼럼부로 이송 및 주입되도록 상기 펌프부를 제어하는 단계;(b) controlling, by the control unit, the first solution selection unit to select the seawater sample when the injection of the resin activating liquid is completed, and controlling the pump unit to transport and inject the selected seawater sample into the column unit;
    (c) 상기 제어부가, 상기 해수 시료의 주입이 완료되면 상기 세척액을 선택하도록 상기 제1 용액 선택부를 제어하고, 상기 선택한 세척액이 상기 칼럼부로 이송 및 주입되도록 상기 펌프부를 제어하는 단계;(c) controlling, by the controller, the first solution selection unit to select the washing liquid when the injection of the seawater sample is completed, and controlling the pump unit to transport and inject the selected washing liquid into the column unit;
    (d) 상기 제어부가, 상기 세척액의 주입이 완료되면 상기 스트론튬 용출액을 선택하도록 상기 제1 용액 선택부를 제어함과 동시에 상기 칼럼부의 스트론튬 회수액을 선택하도록 상기 제2 용액 선택부를 제어하고, 상기 선택한 스트론튬 용출액이 상기 칼럼부로 이송 및 주입되도록 상기 펌프부를 제어하는 단계; 및(d) when the injection of the cleaning solution is completed, the controller controls the first solution selector to select the strontium eluted solution and at the same time controls the second solution selector to select the strontium recovery solution of the column unit, and controls the pump unit to transfer and inject the selected strontium eluted solution into the column unit; and
    (e) 상기 제어부가, 상기 스트론튬 용출액의 주입이 완료되면 스트론튬 분리 및 회수를 완료하는 단계를 포함하는 것을 특징으로 하는 해수 중 방사성스트론튬 분리 방법.(e) the controller completes the separation and recovery of strontium when the injection of the strontium eluate is completed.
PCT/KR2023/000537 2022-01-18 2023-01-12 Apparatus and method for separating radioactive strontium from seawater using cation exchange resin WO2023140562A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0007472 2022-01-18
KR1020220007472A KR102595776B1 (en) 2022-01-18 2022-01-18 Apparatus and method for radioactive strontium separation in seawater using cation exchange resin

Publications (1)

Publication Number Publication Date
WO2023140562A1 true WO2023140562A1 (en) 2023-07-27

Family

ID=87348938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000537 WO2023140562A1 (en) 2022-01-18 2023-01-12 Apparatus and method for separating radioactive strontium from seawater using cation exchange resin

Country Status (2)

Country Link
KR (1) KR102595776B1 (en)
WO (1) WO2023140562A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161374A (en) * 2015-03-02 2016-09-05 清水建設株式会社 Method for analyzing radiostrontium
KR20170127234A (en) * 2016-05-11 2017-11-21 한국원자력연구원 Automated concentrator for large volume of sample
KR20180089177A (en) * 2017-01-31 2018-08-08 한국원자력연구원 Automated sequential radionuclides separator
KR102079021B1 (en) * 2018-11-29 2020-02-19 (주) 비앤비 Automated radionuclide chemical separation method for characterization of radioactive material
KR20220006289A (en) * 2020-07-08 2022-01-17 한국원자력연구원 Fluid transfer device and radionuclide separation system having same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161374A (en) * 2015-03-02 2016-09-05 清水建設株式会社 Method for analyzing radiostrontium
KR20170127234A (en) * 2016-05-11 2017-11-21 한국원자력연구원 Automated concentrator for large volume of sample
KR20180089177A (en) * 2017-01-31 2018-08-08 한국원자력연구원 Automated sequential radionuclides separator
KR102079021B1 (en) * 2018-11-29 2020-02-19 (주) 비앤비 Automated radionuclide chemical separation method for characterization of radioactive material
KR20220006289A (en) * 2020-07-08 2022-01-17 한국원자력연구원 Fluid transfer device and radionuclide separation system having same

Also Published As

Publication number Publication date
KR20230111519A (en) 2023-07-25
KR102595776B1 (en) 2023-10-30

Similar Documents

Publication Publication Date Title
US4952386A (en) Method and apparatus for purifying hydrogen fluoride
EP0230307B1 (en) Ion chromatography method and apparatus
WO2007083856A1 (en) Automated simultaneous separation system for radionuclides in multiple samples and a method for automatically separating uranium (u) using the same
WO2023140562A1 (en) Apparatus and method for separating radioactive strontium from seawater using cation exchange resin
US20150380117A1 (en) Concentrate Treatment System
CN113908587B (en) Device and method for simultaneously separating and purifying iron and copper elements
CN110787634A (en) Three-column trans-selective molybdenum 99-technetium 99m generator device and separation method
JPH11344477A (en) Method and device for monitoring waste water of decomposition treatment device for hazardous organic substance
WO2020106058A1 (en) Nuclide separating device
Hoshi et al. Elemental groups separation for high-level waste partitioning using a novel silica-based CMPO extraction-resin
CN211636025U (en) Three-column trans-selection type molybdenum 99-technetium 99m generator device
Ramanujam et al. Extraction chromatographic separation of promethium from high active waste solutions of purex origin
CN213580803U (en) Single-channel ion chromatograph leacheate fast switching device
Lamb et al. Ion chromatographic separation for analysis of radiostrontium in nuclear reprocessing solutions of high ionic strength
CN117606893A (en) Sample separation and purification device
JP4114076B2 (en) Actinide element separation method
CN116130137A (en) Method for reducing alpha radioactivity level of waste liquid discharged from secondary condensation
JP3420543B2 (en) Cleanup method and apparatus for trace fat-soluble component analysis
Long et al. Study on the combined analytical method for separation of uranium and plutonium by TEVA+ DGA and TEVA+ UTEVA resin ICP-MS
CN116594053A (en) The radioactive solution contains transuranic alpha nuclide, 90 Sr and 137 cs separation system and device
Watanabe et al. DEVELOPMENT OF ENGINEERING SCALE EXTRACTION CHROMATOGRAPHY SEPARATION SYSTEM (1) OVERVIEW OF DEVELOPMENTS IN ENGINEERING SCALE SYSTEM
JP2014115110A (en) α NUCLIDE SEPARATION METHOD FROM SODIUM CHLORIDE-CONTAINING WASTE LIQUID, AND α NUCLIDE SEPARATION SYSTEM FROM SODIUM CHLORIDE-CONTAINING WASTE LIQUID
CN115406995A (en) Device, method and application for nuclear fuel burnup analysis and fission product preparation
Hoshikawa et al. A new concept of nuclear fuel reprocessing by applying ion-exchange technology
Yang et al. Isolation and determination of trace amounts of calcium, iron, europium, dysprosium and lead in phosphoric acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743410

Country of ref document: EP

Kind code of ref document: A1