JPH11344477A - Method and device for monitoring waste water of decomposition treatment device for hazardous organic substance - Google Patents

Method and device for monitoring waste water of decomposition treatment device for hazardous organic substance

Info

Publication number
JPH11344477A
JPH11344477A JP15340298A JP15340298A JPH11344477A JP H11344477 A JPH11344477 A JP H11344477A JP 15340298 A JP15340298 A JP 15340298A JP 15340298 A JP15340298 A JP 15340298A JP H11344477 A JPH11344477 A JP H11344477A
Authority
JP
Japan
Prior art keywords
sample
cartridge
water
waste water
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15340298A
Other languages
Japanese (ja)
Inventor
Akira Suzuki
明 鈴木
Tokuyuki Anjo
徳幸 安生
Tomoyuki Iwamori
智之 岩森
Masakazu Takahashi
正和 高橋
Yoshiaki Kosho
義明 古庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
GL Science Inc
Original Assignee
Organo Corp
GL Science Inc
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, GL Science Inc, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP15340298A priority Critical patent/JPH11344477A/en
Publication of JPH11344477A publication Critical patent/JPH11344477A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To directly measure hazardous substances, etc., in waste water actually discharged from an organic hazardous substance decomposition and treatment device and control the waste water based on the information obtained by the measurement by connecting a quantitative specimen collecting device, a solid-phase extractor, and a chromatograph to a waste water line in an on-line state. SOLUTION: The waste water from a decomposing and treating unit is sent to a sample collecting section 10 as a liquid sample and the section 10 stores a fixed amount of sample in a calibration loop 18. Then methanol is made to flow to an automatic cartridge supplying device 40 through a concentration and refinement introducing section 30 by operating a solvent change-over valve 21 and discharged to a drain 32 after the methanol removing stains from a solid-phase cartridge 41. Then the methanol in the cartridge 41 is replaced with water by making the water to flow by operating the valve 21. After the methanol in the cartridge 41 is replaced with the water, the sample stored in the calibration loop 18 is sent to the cartridge 41 and hazardous organic substances are collected and concentrated. The concentrated component is eluted and the eluate is detected by introducing the eluate to a chromatograph 50. Then the obtained data are processed and the instructive information for the discharge, storage, and retreatment of the treated water is transmitted by feeding back the information on the processed data.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】超臨界水酸化法、アルカリ加
水分解法等による有害有機物質の分解処理装置の排水の
モニタリング方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for monitoring waste water from an apparatus for decomposing harmful organic substances by a supercritical water oxidation method, an alkali hydrolysis method or the like.

【0002】[0002]

【従来の技術】PCB等の有害廃棄物の処理には完全分
解の他クローズド処理が必要である。超臨界水酸化法に
よる有害有機物質の分解処理はこの点において優れてお
り、注目されているが反応後の物質が存在する処理水を
排水するため、有害有機物質の残存量又は濃度が行政基
準値以下であるかどうか測定する必要がある。従来、排
水プラントのモニタリング装置としては、分光光度計、
化学発光光度計、pHメータ等種々のものが利用されて
いる。
2. Description of the Related Art The treatment of hazardous wastes such as PCBs requires closed treatment in addition to complete decomposition. Decomposition treatment of harmful organic substances by the supercritical water oxidation method is excellent in this respect, and it has been drawing attention, but since treated water containing substances after the reaction is drained, the remaining amount or concentration of harmful organic substances is subject to administrative standards. It is necessary to measure whether it is below the value. Conventionally, monitoring devices for drainage plants include spectrophotometers,
Various devices such as a chemiluminescence photometer and a pH meter are used.

【0003】又、超臨界水酸化法による有害有機物質の
分解処理において、排出流路を閉止し、又分岐流路によ
り予熱機に還流する安全停止回路を備えた装置及び該装
置を用いて、分解処理をする反応容器の温度、圧力、酸
素含有流体と有害有機物質等との流量比を測定し、これ
に基づいて該装置を運転する方法が提案されている。
(特開平7−275872号公報)
[0003] Further, in the decomposition treatment of harmful organic substances by the supercritical water oxidation method, an apparatus provided with a safety stop circuit for closing a discharge flow path and returning to a preheater through a branch flow path, and using the apparatus, There has been proposed a method of measuring the temperature and pressure of a reaction vessel for performing a decomposition treatment, the flow rate ratio between an oxygen-containing fluid and a harmful organic substance, and operating the apparatus based on the measured values.
(Japanese Unexamined Patent Publication No. Hei 7-275872)

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の前記排
水プラントのモニタリング装置では、例えば、PCBな
どに代表される有害有機物質は排水基準値も低く、測定
することは不可能に近い。PCBを例に挙げれば、一般
的な測定法では、JIS−K0093に代表されるよう
にサンプリング−液相抽出(又は固相抽出)−クリーン
ナップ−濃縮−電子捕獲検出器付きガスクロマトグラフ
(又はGC−MS)等多くの工程が必要であり、本目的
のためには分解処理装置に大きな排水溜めを必要とし実
用に適さない。
However, in the conventional monitoring apparatus for a drainage plant, for example, harmful organic substances such as PCBs have low drainage standard values and are almost impossible to measure. Taking PCB as an example, in a general measurement method, as represented by JIS-K0093, sampling-liquid phase extraction (or solid phase extraction) -cleanup-concentration-gas chromatograph (or GC-) with an electron capture detector MS), and many other steps are required. For this purpose, a large drainage reservoir is required for the decomposition treatment apparatus, which is not practical.

【0005】又、前記発明においては、分解処理装置の
温度、圧力、酸化剤含有流体と有害有機物質との流量比
により、間接的に装置の状況を知りうるだけで、実際に
どのような分解処理液が排出されているのかは知ること
ができない。したがって、処理された排水中に有害物質
が存在する場合には、そのまま自然環境中に還流する虞
があり、危険である。
Further, in the above invention, it is possible to know indirectly the condition of the apparatus by the temperature and pressure of the decomposition apparatus and the flow ratio of the oxidizing agent-containing fluid and the harmful organic substance. It is impossible to know whether the processing liquid has been discharged. Therefore, when a harmful substance is present in the treated wastewater, there is a risk that the harmful substance may return to the natural environment as it is, which is dangerous.

【0006】[0006]

【課題を解決するための手段】そこで本発明において
は、有害有機物質の分解処理において排出される分解液
中の各種情報を迅速に捕捉し、分解液の安全性を保証す
べく迅速な測定のためのモニタリングシステムを提案せ
んとするもので、有害有機物質の分解処理装置の排水ラ
インに定量検体採取装置と該採取授体より微量有害物質
を固相抽出する固相抽出装置と、固相抽出された上記成
分を分析処理するクロマトグラフとをオンライン接続す
ることを特徴とする。
Accordingly, in the present invention, various kinds of information in a decomposition solution discharged in the decomposition treatment of harmful organic substances are quickly captured, and a rapid measurement is performed to guarantee the safety of the decomposition solution. A solid-phase extraction device for solid-phase extraction of trace amounts of harmful substances from the collection line, and a solid-phase extraction system. The on-line connection is made to a chromatograph for analyzing and processing the above components.

【0007】[0007]

【発明の実施の形態】以下、図に示す超臨界水分解処理
装置を例にとって本発明を説明する。1は超臨界水分解
処理装置で、分解処理ユニット2と気液分離器3より構
成され、バルブ4より配水管5を経て排水される如く構
成される。超臨界水分解処理装置1は、特公平1−38
532号公報他により多数紹介され公知となっている。
該装置は、374℃以上の温度及び22MPa以上の圧
力で、有機物質、水及び酸素を含む気体、過酸化水素等
の酸化剤の混合物を均一液相にて反応させて有機物質を
酸化分解させるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to a supercritical water splitting apparatus shown in the drawings. Reference numeral 1 denotes a supercritical water decomposition apparatus, which includes a decomposition processing unit 2 and a gas-liquid separator 3, and is configured to be drained from a valve 4 through a water distribution pipe 5. The supercritical water decomposition apparatus 1 has a
No. 532 and other publications are widely known.
The apparatus reacts a mixture of an organic substance, a gas containing water and oxygen, and an oxidizing agent such as hydrogen peroxide in a uniform liquid phase at a temperature of 374 ° C. or more and a pressure of 22 MPa or more to oxidize and decompose the organic substance. Things.

【0008】その構成としては、被処理物である有機物
含有液(水)と、酸化剤溶液を夫々圧力下に予熱器に送
り、次いで高圧反応器にて前記超臨界条件に達するよう
に加熱される。そして、高圧反応器に入った混合物(流
体)は有機物の酸化反応により発熱昇温し、有機物は主
として二酸化炭素と水になり有機物中のヘテロ原子→
酸、塩、塩化物となる。例えば分解対象物をPCBとし
た場合には、二酸化炭素+水+塩素(無機塩)となる。
[0008] The constitution is such that an organic substance-containing liquid (water) as an object to be treated and an oxidizing agent solution are respectively sent to a preheater under pressure, and then heated in a high-pressure reactor to reach the supercritical condition. You. The mixture (fluid) that has entered the high-pressure reactor heats up due to the oxidation reaction of the organic matter, and the organic matter becomes mainly carbon dioxide and water, and the hetero atoms in the organic matter →
It becomes acid, salt and chloride. For example, when the decomposition target is PCB, it is carbon dioxide + water + chlorine (inorganic salt).

【0009】反応生成物の排出には気液分離器を使用す
る方法が一般的である。排ガスを伴う処理排水は、排出
管6より気液分離器3に入り、処理排水については排出
管5より系外に排出させ、排ガスについては排ガス管7
より排出させる。対象とする有害有機物は、前記PC
B、ダイオキシン、農薬、就中BHC、CNP等の毒性
の強い農薬等各種がある。
For discharging the reaction product, a method using a gas-liquid separator is generally used. The treated wastewater accompanying the exhaust gas enters the gas-liquid separator 3 through the discharge pipe 6, and the treated wastewater is discharged out of the system through the discharge pipe 5.
To drain more. The target harmful organic substances are PC
There are various types such as B, dioxin, pesticides, especially highly toxic pesticides such as BHC and CNP.

【0010】10は試料採取部で、その一例を挙げれ
ば、排水管5に分取管12を接続し、バルブ17、フィ
ルター13を介してポンプ14に連結し、該ポンプ14
はバルブ15の連通孔151に連通してある。バルブ1
5の連通孔152、同155間に検量ループ18を設け
てあり、連通孔156は気液分離器3への戻り管19を
設けてある。
Reference numeral 10 denotes a sampling section, for example, a sampling pipe 12 is connected to a drain pipe 5 and connected to a pump 14 via a valve 17 and a filter 13.
Communicates with the communication hole 151 of the valve 15. Valve 1
5 is provided with a calibration loop 18 between the communication holes 152 and 155, and the communication hole 156 is provided with a return pipe 19 to the gas-liquid separator 3.

【0011】20は溶媒供給部で、各種の溶媒を供給す
ることにより、各種の洗浄、送り出しの操作を行なう。
その一例として、溶媒切替バルブ21を用い、通孔21
1には例えばジクロロメタン、通孔212にはメタノー
ル、通孔213には水、通孔214にはアセトニトリル
/水等を夫々容器に連通させ、連通孔210はポンプ2
2を介してバルブ15の連通孔154に連通させてあ
る。又、バルブ15の連通孔153は、濃縮精製導入部
30の6方バルブ31の通孔311に連通してある。
試料採取部10としては、このように検量ループ18を
使用する方式の他にも各種の方式がある。
Reference numeral 20 denotes a solvent supply unit for performing various cleaning and feeding operations by supplying various solvents.
As an example, the solvent switching valve 21 is used, and the through hole 21 is used.
1, for example, dichloromethane, methanol in the through hole 212, water in the through hole 213, acetonitrile / water and the like in the through hole 214, respectively.
The valve 15 communicates with the communication hole 154 of the valve 15 through the second hole 2. The communication hole 153 of the valve 15 communicates with the communication hole 311 of the six-way valve 31 of the concentration / purification introduction unit 30.
As the sample collection unit 10, there are various methods other than the method using the calibration loop 18 as described above.

【0012】濃縮精製導入部30は試料採取部10にて
採取された試料を濃縮、精製してガスクロマトグラフ、
液体クロマトグラフ等の分析装置50に送入する機能を
有している。その一具体例を挙げれば、6方バルブ31
の通孔311は、バルブ15の連通孔153と連通し、
連通孔312はドレイン32に連通してある。連通孔3
13と連通孔316間には固相カートリッジ41,4
1,…を自動的に供給し、クランプするカートリッジ自
動供給装置40を設けてある。該カートリッジ自動供給
装置40は固相カートリッジ41を多数並列したホルダ
ーを移動させて固相カートリッジ41を次々にクランプ
部42,42間に自動的に持来たしクランプ部42,4
2間にクランプする。別のクランプ部を形成することに
より、固相カートリッジ41を手動にてクランプも可能
である。ホルダーの移動については、直列状或いはター
ンテーブル型の公知のものを使用することが可能であ
る。
The concentration / purification introduction unit 30 concentrates and purifies the sample collected by the sample collection unit 10 and performs gas chromatography,
It has a function of sending it to an analyzer 50 such as a liquid chromatograph. One specific example is the six-way valve 31.
Through hole 311 communicates with the communication hole 153 of the valve 15,
The communication hole 312 communicates with the drain 32. Communication hole 3
13 and the communication holes 316, the solid-phase cartridges 41, 4
An automatic cartridge supply device 40 for automatically supplying and clamping 1,... Is provided. The automatic cartridge supply device 40 automatically moves the solid-phase cartridge 41 between the clamp portions 42, 42 by automatically moving the holder in which many solid-phase cartridges 41 are arranged in parallel.
Clamp between two. By forming another clamp portion, the solid-phase cartridge 41 can also be manually clamped. As for the movement of the holder, it is possible to use a known serial type or turntable type.

【0013】捕集剤としては排出される液体の主成分が
水であること、酸化(以後、燃焼と云う)分解処理後の
燃焼物が無機物になること、又燃焼途中の中間体も極め
て酸化極性が高く、水溶性であることに着眼し、分析目
的物質の性質に応じた種類を選択する。例えば、環境水
中の環境汚染物質に指定されているフェノール類やナフ
タレンに代表されるような多環芳香族類が目的物質の場
合は、ベンゼンジビニルベンゼン系ポリマーを用いて構
成した固相カートリッジ41により捕集濃縮を行う。ア
ルキル硫酸塩を始めとするイオン性界面活性剤などの場
合は、イオン交換樹脂の固相カートリッジを、血液中の
微量薬物などの場合は、オクチル基やオクタデシル基、
フェニル基などをシリカゲルやポリマー材などに結合さ
せたいわゆる逆相系の固相カートリッジを使用する。固
相カートリッジの形状は、たとえば内径が1〜6mm、
長さが1〜30mmのパイプに2〜100ミクロンの充
填剤を詰めたものを使用する。又充填剤をテフロンやガ
ラス繊維で固定化したディスク状の補集材をアダプター
を用いて使用しても構わない。
[0013] As a trapping agent, the main component of the discharged liquid is water, the combustion products after oxidation (hereinafter referred to as "combustion") decomposition become inorganic, and the intermediates during combustion are also extremely oxidized. Focusing on high polarity and water solubility, select the type according to the properties of the target substance. For example, when the target substance is a polycyclic aromatic compound such as phenols and naphthalene designated as environmental pollutants in environmental water, a solid phase cartridge 41 composed of a benzenedivinylbenzene polymer is used. Collect and concentrate. In the case of ionic surfactants such as alkyl sulfates, a solid-phase cartridge of an ion exchange resin is used, and in the case of a trace drug in blood, an octyl group or an octadecyl group is used.
A so-called reverse phase solid phase cartridge in which a phenyl group or the like is bonded to silica gel or a polymer material is used. The shape of the solid phase cartridge is, for example, an inner diameter of 1 to 6 mm,
A pipe having a length of 1 to 30 mm and a filler of 2 to 100 microns is used. A disk-shaped collecting material in which the filler is fixed with Teflon or glass fiber may be used by using an adapter.

【0014】クロマトグラフとして、液体クロマトグラ
フを使用する場合、溶離液51に連通した液体クロマト
グラフ用ポンプ52を6方バルブ31の連通孔315に
連通してある。又連通孔314には分離カラム53、検
出器54等よりなる液体クロマトグラフ50を経てデー
タ処理部60に連通してある。
When a liquid chromatograph is used as the chromatograph, a liquid chromatograph pump 52 connected to the eluent 51 is connected to a communication hole 315 of the six-way valve 31. The communication hole 314 communicates with the data processing unit 60 through a liquid chromatograph 50 including a separation column 53, a detector 54, and the like.

【0015】次いで、その作動について説明すると、分
解処理ユニット2から排出される排出物を気液分離器3
を経由して、液体とし、この液体の試料を排出管5より
分取管12を経て試料採取部10に送る。試料採取部1
0に送られた試料は、バルブ15の連通孔151より連
通孔152を経て検量ループ18を通り、戻り管19を
経て気液分離器3に戻される。このようにして一定量の
試料が検量ループ18に蓄積される。
Next, the operation will be described. The discharge discharged from the decomposition processing unit 2 is supplied to the gas-liquid separator 3.
And a sample of the liquid is sent from the discharge pipe 5 to the sample collection unit 10 via the collection pipe 12. Sampling unit 1
The sample sent to 0 is returned from the communication hole 151 of the valve 15 through the communication hole 152 through the calibration loop 18 to the gas-liquid separator 3 through the return pipe 19. In this way, a fixed amount of sample is accumulated in the calibration loop 18.

【0016】次いで、溶媒切替バルブ21により通孔2
12を選択し、連通孔210からポンプ22によりメタ
ノールを流す。然るとき、メタノールはバルブ15の連
通孔154、同153を経て濃縮精製導入部30に入
る。このとき、6方バルブ31の切換により、連通孔3
11と同316が連通し、メタノールは連通孔316か
らカートリッジ自動供給装置40に入り、クランプしセ
ットしてある固相カートリッジ41の汚れを落すと同時
に空気を抜き、水と馴染み易くする。そして、6方バル
ブ31の連通孔313、同312を経てドレイン32に
排出される。
Next, the through holes 2 are formed by the solvent switching valve 21.
12 is selected, and methanol is caused to flow from the communication hole 210 by the pump 22. At that time, the methanol enters the concentration / purification introduction section 30 through the communication holes 154 and 153 of the valve 15. At this time, the switching of the six-way valve 31 causes the communication hole 3
11 and 316 communicate with each other, and methanol enters the automatic cartridge supply device 40 through the communication hole 316 to remove dirt from the clamped and set solid phase cartridge 41 and at the same time to release air, thereby facilitating compatibility with water. Then, the water is discharged to the drain 32 through the communication holes 313 and 312 of the six-way valve 31.

【0017】次に、同様に溶媒切替バルブ21の切換え
により水を流して固相カートリッジ内のメタノールを水
に置換する。そこでバルブ15を切換、検量ループ18
に収容した試料を固相カートリッジ41に送る。ここで
固相カートリッジ41に有機有害物質を捕集/濃縮す
る。溶媒切替バルブ21の切換えによりアセトニトリル
/水などの適当な混合液を送り、固相カートリッジ41
中の水溶性の分析妨害物質を洗い流す。
Next, similarly, water is flowed by switching the solvent switching valve 21 to replace methanol in the solid phase cartridge with water. Then, the valve 15 is switched, and the calibration loop 18
Is sent to the solid phase cartridge 41. Here, organic harmful substances are collected / concentrated in the solid phase cartridge 41. By switching the solvent switching valve 21, an appropriate mixed solution such as acetonitrile / water is sent,
Wash away any water-soluble interfering substances in it.

【0018】次いで、6方バルブ31を切換え、固相カ
ートリッジ41に濃縮されている成分を溶出し、液体ク
ロマトグラフ50に導入する。この際、溶出成分は分離
カラム53により分離され、検出器54により検出さ
れ、データ処理装置60に送られてデータ処理される。
データ処理により、この情報はフィードバックされ、処
理水の放出、貯蓄、再処理の判断を出し、超臨界水分解
処理装置1に夫々の指示情報を伝達する。その際、固相
カートリッジに濃縮した試料を効率よく送出すために、
バックフラッシュ方法をとることは推奨される。これは
6方バルブ31の連通孔314に液体クロマトグラフ用
ポンプ52を介して溶離液51を連結し、分離カラム5
3を連通孔315に連結して固相カートリッジの濃縮試
料を分離カラムに送る方法である。
Next, the six-way valve 31 is switched to elute the components concentrated in the solid phase cartridge 41 and introduce them into the liquid chromatograph 50. At this time, the eluted components are separated by the separation column 53, detected by the detector 54, sent to the data processing device 60, and subjected to data processing.
By the data processing, this information is fed back to determine the release, storage, and reprocessing of the treated water, and transmit the respective instruction information to the supercritical water decomposition treatment apparatus 1. At that time, in order to efficiently send the concentrated sample to the solid phase cartridge,
It is recommended to take a backflush method. In this method, the eluent 51 is connected to the communication hole 314 of the six-way valve 31 via the liquid chromatography pump 52,
3 is connected to the communication hole 315 and the concentrated sample in the solid phase cartridge is sent to the separation column.

【0019】又、試料採取部10の他例について図3に
より説明する。図1におけるポンプ14より戻り管19
への途中に分岐管191を設け、フィルター192を介
して溶媒切替バルブ21に連通させる。その連通管21
0は定流量ポンプ221を介して6方バルブ31に連通
させてある。その他は前述の図2の6方バルブ31、カ
ートリッジ自動供給装置40、液体クロマトグラフ50
は同じである。斯る装置においては、試料を直接溶媒切
替バルブ21に導入し、定流量ポンプ221の容量と作
動時間の設定により濃縮量を定めるもので、大量濃縮に
便利である。
Another example of the sampling section 10 will be described with reference to FIG. Return pipe 19 from pump 14 in FIG.
A branch pipe 191 is provided on the way to, and communicates with the solvent switching valve 21 via the filter 192. The communication pipe 21
0 is connected to the 6-way valve 31 via the constant flow pump 221. Other than the above, the six-way valve 31, the cartridge automatic supply device 40, and the liquid chromatograph 50 of FIG.
Is the same. In such an apparatus, the sample is directly introduced into the solvent switching valve 21, and the amount of concentration is determined by setting the capacity and the operation time of the constant flow pump 221. This is convenient for mass concentration.

【0020】図4に示す試料のガスクロマトグラフ50
への導入について説明すると、図4に示す装置は、溶媒
気化カラムを使用する方法を示すものである。6方バル
ブ31の連通孔315はバルブ70の通孔71に連結し
てある。通孔72には微量送液ポンプ75を介して溶媒
76を連結してある。又、通孔73は溶媒76に、通孔
74はキャリヤーガス78に連結してある。連通孔79
にはガスクロマトグラフ50のカラムと同程度の抵抗管
791を連通させてある。
The gas chromatograph 50 of the sample shown in FIG.
The apparatus shown in FIG. 4 shows a method using a solvent vaporization column. The communication hole 315 of the six-way valve 31 is connected to the communication hole 71 of the valve 70. A solvent 76 is connected to the through-hole 72 via a microfluidic pump 75. The through hole 73 is connected to the solvent 76, and the through hole 74 is connected to the carrier gas 78. Communication hole 79
Is connected to a resistance tube 791 of the same size as the column of the gas chromatograph 50.

【0021】ガスクロマトグラフ50は溶媒気化カラム
501、再保持カラム502を有し、排出口503を介
してメインカラム504に連通し、次いで検出器505
に連結し、この結果をデータ処理部60に送るように構
成してある。
The gas chromatograph 50 has a solvent vaporization column 501 and a re-holding column 502, communicates with a main column 504 via an outlet 503, and then a detector 505.
, And the result is sent to the data processing unit 60.

【0022】この作動について説明する。固相カートリ
ッジ41に捕集された分析対象成分を溶出させ、分離の
ため、メインカラム504たるキャピラリーカラムまで
搬送するには数10〜数100μlの溶媒が必要にな
る。この大量溶媒を全てキャピラリーカラムに送入する
と種々の問題が生ずる。このため、キャピラリーカラム
入口で気化させる。即ち、微量送液ポンプ75の作動に
より溶媒をバルブ70の通孔72、同71を経て6方バ
ルブ31に送る。然るとき、連通孔315、同316を
通り、溶媒は固相カートリッジ41に至り、そこで分析
対象成分を溶出して連通孔313、同314を経てガス
クロマトグラフ50に送られる。そして、溶媒気化カラ
ム501にて溶媒を気化させ、排出口503から排出さ
せるバルブ70を切換え、キャリヤーガスを通孔74、
同71を介して6方バルブ31の連通孔315、同31
4を経由してガスクロマトグラフ50に送入する。そこ
で、再保持カラム502に保持された分析対象成分は、
メインカラムたるキャピラリーカラム504に搬送され
る。そして、検出器505により検出される。
This operation will be described. In order to elute the components to be analyzed collected in the solid phase cartridge 41 and transport them to the capillary column as the main column 504 for separation, several tens to several hundreds of solvents are required. When all of this large amount of solvent is fed into the capillary column, various problems occur. For this purpose, it is vaporized at the entrance of the capillary column. That is, the solvent is sent to the six-way valve 31 through the through-holes 72 and 71 of the valve 70 by the operation of the small amount liquid sending pump 75. At that time, the solvent passes through the communication holes 315 and 316 and reaches the solid phase cartridge 41, where the component to be analyzed is eluted and sent to the gas chromatograph 50 through the communication holes 313 and 314. Then, the solvent is vaporized in the solvent vaporization column 501, and the valve 70 for discharging the solvent from the discharge port 503 is switched, so that the carrier gas through hole 74,
The communication holes 315 and 31 of the six-way valve 31 through the same 71
Then, it is sent to the gas chromatograph 50 via 4. Therefore, the analysis target component held in the re-holding column 502 is
It is conveyed to the capillary column 504 as a main column. Then, it is detected by the detector 505.

【0023】尚、この際、固相カートリッジ41内の水
分を乾燥させるために、窒素、ヘリウム等のパージガス
を流すことは推奨される。この一例として、バルブ80
を設け、その連通孔83にパージガスを連通させ、連通
孔82は6方バルブ31の連通孔311に連通させてあ
る。又、その連通孔81は6方バルブ15の連通孔15
3に連通させてある。このような機構により、固相カー
トリッジ41の乾燥を行う。
At this time, it is recommended to flow a purge gas such as nitrogen or helium in order to dry the water in the solid phase cartridge 41. As an example of this, the valve 80
The purge gas is communicated with the communication hole 83, and the communication hole 82 is communicated with the communication hole 311 of the six-way valve 31. The communication hole 81 is provided with the communication hole 15 of the six-way valve 15.
It is connected to 3. With such a mechanism, the solid phase cartridge 41 is dried.

【0024】クロマトグラフ50の分析を基に、データ
処理部60にて処理し、例えばPCBを対象物とした場
合には、PCB分解率(%)、脱塩素化率(%)、TO
C分解率(%)を算定し、安全基準に照らして、この処
理情報を分解処理装置の制御部にフィードバックする。
例えば、処理温度、処理圧力は勿論のこと、対象成分の
供給流量(時間当り)、SCW/PCB流量比、空気比
(供給したPCB廃液を理論的に100%酸化分解する
のに必要な空気量との比)等の各条件の見直し、その他
により分解処理装置の運行を追随させる。
Based on the analysis of the chromatograph 50, the data is processed by the data processing unit 60. For example, when PCB is used as the object, the PCB decomposition rate (%), the dechlorination rate (%), the TO
The C decomposition rate (%) is calculated, and this processing information is fed back to the control unit of the decomposition processing apparatus in accordance with safety standards.
For example, the processing temperature, the processing pressure, the supply flow rate of the target component (per hour), the SCW / PCB flow rate ratio, and the air ratio (the amount of air required to theoretically oxidize and decompose the supplied PCB waste liquid to 100%) The operation of the decomposer is followed by reviewing each condition such as the ratio of

【0025】[0025]

【発明の効果】上記の如き本発明によれば、有害有機物
質の分解処理装置の排水ラインに定量検体採取装置と該
採取授体より微量有害物質を固相抽出する固相抽出装置
と、固相抽出された上記成分を分析処理するクロマトグ
ラフとをオンライン接続するので、実際に排出される分
解処理液により、直接排水中の対象物質、有害物質が測
定でき、その測定情報に基づき、排水の排出停止を含む
制御をなし、自然環境への有害物質の還流を防止するこ
とができる。又、これら測定情報を基礎に分解処理装置
の運行状況を制御し、安全基準を満たす運行処理を行う
ことができる。然も、これらは経時変化に応じて即応態
勢を執ることができ、安全確保に万全を期すことができ
る。
According to the present invention as described above, a quantitative sample collection device and a solid phase extraction device for solid phase extraction of a trace amount of harmful substances from the collection donor are provided in a drain line of a toxic organic substance decomposition treatment device. The on-line connection with the chromatograph for analyzing and processing the above phase-extracted components enables the target substances and harmful substances in the wastewater to be measured directly by the decomposition treatment liquid that is actually discharged. Control including discharge stop can be performed, and the return of harmful substances to the natural environment can be prevented. In addition, the operation status of the disassembly processing device can be controlled based on the measurement information, and the operation process satisfying the safety standards can be performed. Of course, they can take an immediate response in response to changes over time, and can ensure safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明一実施例概略フロー説明図FIG. 1 is a schematic flow chart of one embodiment of the present invention.

【図2】同上要部回路説明図FIG. 2 is an explanatory diagram of a main circuit of the above.

【図3】他実施例一要部説明図FIG. 3 is an explanatory view of a main part of another embodiment.

【図4】同上ガスクロマトグラフ使用例概略説明図FIG. 4 is a schematic explanatory view of an example of use of the gas chromatograph of the above.

【符号の説明】[Explanation of symbols]

1 超臨界水分解処理装置 2 分解処理ユニット 3 気液分離器 4 バルブ 5 排水管 6 排出管 7 排ガス管 10 試料採取部 20 溶媒供給部 30 濃縮導入部 DESCRIPTION OF SYMBOLS 1 Supercritical water decomposition apparatus 2 Decomposition processing unit 3 Gas-liquid separator 4 Valve 5 Drain pipe 6 Discharge pipe 7 Exhaust gas pipe 10 Sampling section 20 Solvent supply section 30 Concentration introduction section

フロントページの続き (72)発明者 岩森 智之 東京都江東区新砂1丁目2番8号 オルガ ノ 株式会社内 (72)発明者 高橋 正和 埼玉県入間市狭山ヶ原237番地の2 ジー エルサイエンス 株式会社武蔵工場内 (72)発明者 古庄 義明 埼玉県入間市狭山ヶ原237番地の2 ジー エルサイエンス 株式会社武蔵工場内Continued on the front page (72) Inventor Tomoyuki Iwamori 1-2-8 Shinsuna, Koto-ku, Tokyo Organo Corporation (72) Inventor Masakazu Takahashi 237-2 Sayamagahara, Iruma City, Saitama Prefecture Inside the Musashi Factory (72) Inventor Yoshiaki Furusho 237-2 Sayamagahara, Iruma City, Saitama Prefecture G Musashi Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】有害有機物質の分解処理装置の排水ライン
に、検体採取装置と該採取検体より微量有害物質を抽出
し、濃縮する抽出装置と、抽出された上記成分を分析処
理するクロマトグラフとをオンライン接続することを特
徴とする有害有機物質の分解処理装置の排水のモニタリ
ング装置。
1. A sample collection device, an extraction device for extracting and concentrating a trace amount of harmful substances from the collected sample, and a chromatograph for analyzing and processing the extracted components in a drain line of a toxic organic substance decomposition treatment device. A wastewater monitoring device for a harmful organic substance decomposition treatment device, which is connected online.
【請求項2】抽出装置は固相カートリッジを順次試料供
給装置に持来し、試料供給自在とすることを特徴とする
請求項1に記載の有害有機物質の分解処理装置の排水の
モニタリング装置。
2. The effluent monitoring device according to claim 1, wherein the extraction device sequentially brings the solid phase cartridge to the sample supply device so that the sample can be supplied.
【請求項3】有害有機物質の分解処理後の排水中より検
体を採取し、固相抽出方法により微量有害物質を濃縮
し、これを溶出させてクロマトグラフに導入し、対象成
分の検出情報を基に有害有機物質の分解率等を算出し、
分解処理装置における処理状況と照合しつゝ分解処理装
置の処理状況に反映させることを特徴とする有害有機物
質処理の排水のモニタリング方法。
3. A sample is collected from the wastewater after the decomposition treatment of the harmful organic substance, a trace amount of the harmful substance is concentrated by a solid phase extraction method, and this is eluted and introduced into a chromatograph. Calculate the decomposition rate of harmful organic substances based on the group,
A method for monitoring effluent of harmful organic substances, wherein the method is compared with the processing status of the decomposition processing apparatus and reflected in the processing status of the decomposition processing apparatus.
JP15340298A 1998-06-02 1998-06-02 Method and device for monitoring waste water of decomposition treatment device for hazardous organic substance Pending JPH11344477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15340298A JPH11344477A (en) 1998-06-02 1998-06-02 Method and device for monitoring waste water of decomposition treatment device for hazardous organic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15340298A JPH11344477A (en) 1998-06-02 1998-06-02 Method and device for monitoring waste water of decomposition treatment device for hazardous organic substance

Publications (1)

Publication Number Publication Date
JPH11344477A true JPH11344477A (en) 1999-12-14

Family

ID=15561714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15340298A Pending JPH11344477A (en) 1998-06-02 1998-06-02 Method and device for monitoring waste water of decomposition treatment device for hazardous organic substance

Country Status (1)

Country Link
JP (1) JPH11344477A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002101376A1 (en) * 2001-06-06 2002-12-19 Mitsubishi Heavy Industries, Ltd. Device and method for detecting trace amounts of organic components
JP2003010671A (en) * 2001-06-28 2003-01-14 Mitsubishi Heavy Ind Ltd Operation control system of hazardous substance treating apparatus
KR100384684B1 (en) * 2000-05-09 2003-05-22 주식회사 웹사랑 Method for managing wastewater treatment process through internet
KR100387362B1 (en) * 2000-05-02 2003-06-12 주식회사 드림바이오스 Integrated water management system for real-time monitoring and automatic sampling of wastewater in remote sites
KR100419130B1 (en) * 2000-10-28 2004-02-25 농업기반공사 Integrated system of agricultural water quality management using a gis
WO2005071398A1 (en) * 2003-12-05 2005-08-04 Saika Technological Institute Foundation Method of analyzing organic chemical substance and apparatus for analysis
KR100522764B1 (en) * 2002-11-20 2005-10-24 (주) 팬지아이십일 Real time monitering apparatus of water quality and controlling method the same
JP2006064591A (en) * 2004-08-27 2006-03-09 Nomura Micro Sci Co Ltd Sampling device for underwater component determination, and sampling method
JPWO2006025143A1 (en) * 2004-08-30 2008-05-08 財団法人雑賀技術研究所 Method and apparatus for analyzing organic chemicals using solid phase cartridge

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100387362B1 (en) * 2000-05-02 2003-06-12 주식회사 드림바이오스 Integrated water management system for real-time monitoring and automatic sampling of wastewater in remote sites
KR100384684B1 (en) * 2000-05-09 2003-05-22 주식회사 웹사랑 Method for managing wastewater treatment process through internet
KR100419130B1 (en) * 2000-10-28 2004-02-25 농업기반공사 Integrated system of agricultural water quality management using a gis
WO2002101376A1 (en) * 2001-06-06 2002-12-19 Mitsubishi Heavy Industries, Ltd. Device and method for detecting trace amounts of organic components
JP2003010671A (en) * 2001-06-28 2003-01-14 Mitsubishi Heavy Ind Ltd Operation control system of hazardous substance treating apparatus
KR100522764B1 (en) * 2002-11-20 2005-10-24 (주) 팬지아이십일 Real time monitering apparatus of water quality and controlling method the same
WO2005071398A1 (en) * 2003-12-05 2005-08-04 Saika Technological Institute Foundation Method of analyzing organic chemical substance and apparatus for analysis
JPWO2005071398A1 (en) * 2003-12-05 2007-07-26 財団法人雑賀技術研究所 Organic chemical analysis method and analyzer
JP4492541B2 (en) * 2003-12-05 2010-06-30 財団法人雑賀技術研究所 Organic chemical analysis equipment
US8042379B2 (en) 2003-12-05 2011-10-25 Aisti Science Co., Ltd. Method of analyzing organic chemical substances and apparatus for analysis
JP2006064591A (en) * 2004-08-27 2006-03-09 Nomura Micro Sci Co Ltd Sampling device for underwater component determination, and sampling method
JPWO2006025143A1 (en) * 2004-08-30 2008-05-08 財団法人雑賀技術研究所 Method and apparatus for analyzing organic chemicals using solid phase cartridge
JP4697141B2 (en) * 2004-08-30 2011-06-08 財団法人雑賀技術研究所 Organic chemical analysis device using solid phase cartridge

Similar Documents

Publication Publication Date Title
Jönsson et al. Supported liquid membrane techniques for sample preparation and enrichment in environmental and biological analysis
US5468643A (en) Switching valve system for direct biological sample injection for LC analysis
JPH11344477A (en) Method and device for monitoring waste water of decomposition treatment device for hazardous organic substance
CN107533043B (en) Water quality analysis device
US5131266A (en) Method and apparatus for continuously measuring the concentration of organic compounds in an aqueous solution
CN112748190B (en) Interface system and corresponding method
Frenzel et al. Sample preparation techniques for ion chromatography
CN111272524B (en) Method for diluting a sample liquid and dilution unit for subsequent analysis
US4381408A (en) Method and apparatus for extraction of airborne amine compounds
JP2588168B2 (en) Environmental water analyzer
San Juan et al. On‐site and on‐line analysis of chlorinated solvents in ground water using pulse introduction membrane extraction gas chromatography (PIME‐GC)
JPH0812182B2 (en) Concentrator
EP0997732A1 (en) Method and equipment for continuous measurement of mineral oils in water by means of spectrophotometric detector
JP4346840B2 (en) Organic halide decomposition treatment system
EP0543608B1 (en) Automated analyzer for monitoring the chloride content of a process stream
JPH06288923A (en) Analyzer for silica content in water
Seubert et al. Sample preparation techniques for ion chromatography
RU2395804C2 (en) METHOD FOR SIMULTANEOUS DETERMINATION OF TOTAL CONTENT OF F-, Cl-, Br-, I- S- AND P-ORGANIC COMPOUNDS IN WATER AND AQUEOUS SOLUTIONS
JP2023080388A (en) METHOD AND DEVICE FOR SEPARATING As(III) AND As(V)
JP3340775B2 (en) Continuous analysis of slurry composition
JP2003185631A (en) Analyzer
JP2533585Y2 (en) Metal analyzer for reactor cooling water
JP2000354878A (en) Method and apparatus for treating liquid containing chemical substance having hormone-like activity
JPH0428051Y2 (en)
CN116242904A (en) Rapid specificity detection method for early warning of leakage of hydrazine hydrate in air

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040622

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040706

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405