JPH0428051Y2 - - Google Patents

Info

Publication number
JPH0428051Y2
JPH0428051Y2 JP1985117890U JP11789085U JPH0428051Y2 JP H0428051 Y2 JPH0428051 Y2 JP H0428051Y2 JP 1985117890 U JP1985117890 U JP 1985117890U JP 11789085 U JP11789085 U JP 11789085U JP H0428051 Y2 JPH0428051 Y2 JP H0428051Y2
Authority
JP
Japan
Prior art keywords
sample
buffer solution
constant flow
column
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985117890U
Other languages
Japanese (ja)
Other versions
JPS6225848U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985117890U priority Critical patent/JPH0428051Y2/ja
Publication of JPS6225848U publication Critical patent/JPS6225848U/ja
Application granted granted Critical
Publication of JPH0428051Y2 publication Critical patent/JPH0428051Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【考案の詳細な説明】 〔考案の属する技術分野〕 本考案は化学炎が原子化手段である原子吸光分
析装置の試料導入方法に係り、特に少量の試料溶
液の濃縮をオンラインで行うサクシヨンフロー分
析装置に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] This invention relates to a method for introducing a sample into an atomic absorption spectrometer in which chemical flame is the atomization means, and in particular a suction flow method for concentrating a small amount of sample solution online. Regarding analysis equipment.

〔従来技術とその問題点〕[Prior art and its problems]

化学炎が原子化手段である原子吸光分析装置は
多元素にわたつて高精度な分析が可能な装置とし
て現在広く普及している。
Atomic absorption spectrometers, which use chemical flame as an atomization means, are now widely used as devices capable of highly accurate analysis of multiple elements.

然し、環境汚染物質である鉛、カドミウム等の
重金属に対する感度が低い。そのため試料導入装
置について各種の考案がなされ、高感度化が謀ら
れているが、いづれも充分なものとは言い難い。
種々の方法のうち、分析装置に供給する以前の段
階で分析目的試料を化学的に濃縮するのが最も確
実且つ簡便な方法である。この濃縮手段として
は、有機溶媒抽出法、共沈法およびイオン交換樹
脂法がある。本題の原子吸光分析においては通常
3〜4mlの試料溶液を必要とする場合が多いが、
上述の方法で20倍以上の濃縮度を得るには20ml以
上の試料を使用しても濃縮後は1mlしか得られな
いため、試料によつてはこれらの濃縮方法が採用
できない場合も多々経験する。更に、従来のこれ
らの濃縮法はいづれも装置外で行われるバツチ式
手法であつて、人手により逐次その操作を行うも
のであるため、濃縮工程に時間と熟練を要し、個
人差を排除して高精度を維持するためには手法の
厳密な管理が必要である。また、上述のごとく最
終必要量に比べて多量の試料を扱うため、それに
必要な試薬の量も殖え、且つ複数個の試料の濃縮
処理を同時に行う場合には多量の器具をも要する
こととなるなど、従来技術には問題点が多かつ
た。
However, it has low sensitivity to heavy metals such as lead and cadmium, which are environmental pollutants. For this reason, various ideas have been made for sample introduction devices and attempts have been made to increase sensitivity, but none of them can be said to be sufficient.
Among various methods, the most reliable and simple method is to chemically concentrate the sample for analysis before supplying it to the analyzer. Examples of this concentration method include an organic solvent extraction method, a coprecipitation method, and an ion exchange resin method. In atomic absorption spectrometry, 3 to 4 ml of sample solution is usually required.
In order to obtain a concentration of 20 times or more using the above method, even if you use a sample of 20 ml or more, only 1 ml will be obtained after concentration, so depending on the sample, these concentration methods may not be applicable. . Furthermore, all of these conventional concentration methods are batch-type methods that are performed outside the device and are manually operated one after another, so the concentration process requires time and skill, and it is difficult to eliminate individual differences. Strict control of the method is necessary to maintain high accuracy. In addition, as mentioned above, since a large amount of samples are handled compared to the final required amount, the amount of reagents required increases, and when concentrating multiple samples at the same time, a large amount of equipment is also required. There were many problems with the conventional technology.

〔考案の目的〕[Purpose of invention]

本考案は、従来技術が有する上記の問題点を解
決するために、試料濃縮用のイオン交換樹脂カラ
ムを装置の試料処理系の中に取り込むことによつ
て、より少量の試料で、しかも迅速且つ高感度な
分析を可能とするオンライン・サクシヨンフロー
方式の化学炎を原子化手段とする原子吸光分析装
置を提供することにある。
In order to solve the above-mentioned problems of the prior art, the present invention incorporates an ion exchange resin column for sample concentration into the sample processing system of the device, thereby reducing the amount of sample and quickly and efficiently. An object of the present invention is to provide an atomic absorption spectrometer using an online suction flow type chemical flame as atomization means, which enables highly sensitive analysis.

〔考案の概要〕[Summary of the idea]

本考案の装置は、試料注入部、イオン交換樹脂
カラム、試薬および試料移送用ポンプ、ならびに
試料噴霧器を備えた原子吸光分析装置によつて構
成される。
The apparatus of the present invention includes an atomic absorption spectrometer equipped with a sample injection section, an ion exchange resin column, a reagent and sample transfer pump, and a sample atomizer.

イオン交換樹脂は、種類によつて元素の吸着・
イオン交換に関して選択性をもつものである。例
えば、キレート樹脂を使用した場合、試料が中性
ないしPH2くらいまでは、 重金属>アルカリ土類金属>アルカリ金属 の順に選択性がある。例えば海水はアルカリ金属
やアルカリ土類金属を主体としており、キレート
樹脂に海水を通した場合、海水中の微量の重金属
はアルカリ金属やアルカリ土類金属よりも優先的
にキレート樹脂に吸着される。キレート樹脂のこ
の選択性を重金属の捕集に利用するわけである。
即ち、このイオン交換樹脂が予めイオン交換容量
の限度までアルカリ金属やアルカリ土類金属を捕
集しているときでさえも上記選択性によりこれら
二者と重金属とのイオン交換が行われるために重
金属が優先捕集されるのである。而して重金属の
吸着後、極く少量の酸を流せば瞬時に水素とイオ
ン交換が行われ、重金属イオン(分析目的元素)
がキレート樹脂より解放(溶出)される。約言す
れば、多量の海水中の微量重金属成分が少量の酸
に溶解されるため濃縮度が大となる。
Depending on the type, ion exchange resins can adsorb elements or
It has selectivity regarding ion exchange. For example, when using a chelate resin, the selectivity is in the order of heavy metals>alkaline earth metals>alkali metals when the sample is neutral or has a pH of around 2. For example, seawater mainly contains alkali metals and alkaline earth metals, and when seawater is passed through a chelate resin, trace amounts of heavy metals in the seawater are preferentially adsorbed by the chelate resin over alkali metals and alkaline earth metals. This selectivity of chelate resins is utilized to collect heavy metals.
That is, even when this ion exchange resin has previously collected alkali metals and alkaline earth metals up to the limit of its ion exchange capacity, ion exchange between these two and heavy metals occurs due to the above-mentioned selectivity. are collected with priority. After adsorption of heavy metals, if a very small amount of acid is passed through, ion exchange with hydrogen occurs instantly, and heavy metal ions (elements of interest for analysis) are removed.
is released (eluted) from the chelate resin. In other words, trace amounts of heavy metal components in a large amount of seawater are dissolved in a small amount of acid, resulting in a high degree of concentration.

このキレート樹脂はイオン交換容量が比較的大
きい故、少量の樹脂量で多量の金属イオンを吸着
し、樹脂カラムは小容量のもので充分に目的を達
し得る。且つ小容量のカラムに捕集されるほど少
量の酸で重金属溶出が可能となり、溶出時の濃度
が高くなる。
Since this chelate resin has a relatively large ion exchange capacity, a small amount of resin can adsorb a large amount of metal ions, and a resin column with a small capacity can sufficiently achieve the purpose. In addition, the smaller the volume of the heavy metal collected in the column, the more it becomes possible to elute the heavy metal with a smaller amount of acid, and the higher the concentration at the time of elution.

具体的には、本考案は常に緩衝溶液(又は精製
水)の流れているカラムに分析試料を流入し、含
有する重金属イオンをイオン交換樹脂に吸着さ
せ、次に少量の酸を流入すれば吸着されたイオン
は速やかに溶出し、鋭いスパイク状ピークが発光
信号として得られる。従来のバツチ式に比べて濃
縮工程の所要時間が短く、且つ亦、既述のごとく
カラム容量が小さくて酸の使用量が少ないため、
緩衝溶液によつてイオン交換樹脂は再び重金属吸
着可能な状態に速やかに復帰する。上述の濃縮・
復帰の両工程の所要時間の短いことが分析時間を
短縮し、作業能率を向上させる。
Specifically, in this invention, an analytical sample is flowed into a column in which a buffer solution (or purified water) is constantly flowing, the heavy metal ions contained therein are adsorbed on an ion exchange resin, and then a small amount of acid is flowed in to adsorb the heavy metal ions. The emitted ions quickly elute, and a sharp spike-like peak is obtained as a luminescence signal. Compared to the conventional batch method, the time required for the concentration process is shorter, and as mentioned above, the column capacity is small and the amount of acid used is small.
The buffer solution quickly returns the ion exchange resin to a state in which it can adsorb heavy metals again. Concentration mentioned above
The short time required for both return processes shortens analysis time and improves work efficiency.

従来のバツチ式でイオン交換樹脂を使用した濃
縮方法は、自然滴下および酸により洗滌溶出を繰
り返す過程をすべて人手で行うもので、濃縮およ
び溶出だけで通常1時間に20試料を処理しうる程
度であり、これを分析装置に供するので更に分析
時間が約1時間プラスされる。従つて20試料の濃
縮および分析の所要時間は2時間となる。
In the conventional batch-type concentration method using ion exchange resin, the processes of natural dripping and repeated washing and elution with acid are all performed manually, and it is usually possible to process 20 samples per hour just by concentration and elution. Since this is submitted to an analyzer, the analysis time is added by approximately 1 hour. Therefore, the time required for concentration and analysis of 20 samples is 2 hours.

これに比べて、本考案の方法では2mlの試料溶
液を試料送入速度2ml/分でイオン交換樹脂カラ
ムを通過させた場合、その通過時間は約1分であ
る。カラム内のイオン交換樹脂に吸着された重金
属は微量の酸で溶出するが、カラム容量が微小で
あるため樹脂は速やかに重金属吸着可能なPHに復
帰する。このため本法による分析可能件数は1時
間に約20試料以上となり、上記バツチ式に比べて
極めて高能率である。
In comparison, in the method of the present invention, when 2 ml of sample solution is passed through an ion exchange resin column at a sample feeding rate of 2 ml/min, the passage time is about 1 minute. Heavy metals adsorbed on the ion exchange resin in the column are eluted with a trace amount of acid, but because the column capacity is minute, the resin quickly returns to a pH that allows heavy metal adsorption. Therefore, the number of samples that can be analyzed using this method is approximately 20 or more per hour, which is extremely efficient compared to the batch method described above.

〔考案の効果〕[Effect of idea]

従来の方法と比べて、本考案の方法によつて次
の効果が得られる。
Compared with conventional methods, the method of the present invention provides the following effects.

(1) 分析試料溶液が1ml以下の少量であつても分
析が可能である。
(1) Analysis is possible even when the sample solution to be analyzed is as small as 1 ml or less.

(2) 分析試料溶液が極めて高い酸性を呈している
場合でも一定量の試料溶液を充分な量の酸性度
調整溶液と混合して中性とすれば、分析に供す
ることができる。
(2) Even if the analysis sample solution exhibits extremely high acidity, it can be used for analysis if a certain amount of the sample solution is mixed with a sufficient amount of acidity adjustment solution to make it neutral.

(3) 従来のバツチ式濃縮法と比べて、本考案は濃
縮所要時間が短く、且つ緩衝溶液によるイオン
交換樹脂の原状復帰時間が短いため、分析時間
が短縮され作業能率が向上する。
(3) Compared to the conventional batch-type concentration method, the present invention requires less time for concentration and a shorter time for restoring the ion exchange resin to its original state by the buffer solution, which shortens analysis time and improves work efficiency.

(4) 本考案の方法は濃縮度が大きく、分析試料溶
液が5mlの場合でも、従来の方法に比べて分析
感度が約10倍以上向上し、更に多量の試料を使
用すれば更に感度が向上する。
(4) The method of this invention has a high degree of concentration, and even when the analysis sample solution is 5 ml, the analytical sensitivity is improved by about 10 times compared to the conventional method, and the sensitivity improves even more when a larger amount of sample is used. do.

(5) 緩衝液の流れの中に試料溶液にほか酸等を導
入するため、従来のバツチ式手作業に比べ操作
条件が一定して個人差が生ぜず、再現性に優れ
ている。従つて熟練を必要とせず、しかも分析
精度が高い。
(5) Since acids, etc. are introduced in addition to the sample solution into the flow of buffer solution, the operating conditions are constant compared to conventional batch-type manual processing, eliminating individual differences and providing excellent reproducibility. Therefore, no skill is required, and the analysis accuracy is high.

(6) 試料採取部に接続したオートサンプラーまた
はフラクシヨンコレクターの自動操作と、カラ
ムへの酸の注入およびカラムの洗浄を自動操作
するための制御部を採用することにより、試料
採取部から測光部まで一貫した分析操作の自動
化が可能である。
(6) By adopting a control unit that automatically operates the autosampler or fraction collector connected to the sample collection unit, as well as the injection of acid into the column and the washing of the column, the photometry unit can be easily operated from the sample collection unit. It is possible to automate consistent analysis operations.

〔考案の実施例〕[Example of idea]

以下本考案の一実施例を図面を参照して説明す
る。但し、第1図は本考案の原理的構成を示し、
第2図に本考案の一実施例を示す。第1図におい
ては通常5mlの試料溶液をマイクロピペツト等の
試料採取器で採取して試料注入部1に注入する
と、定流量ポンプ3を経て緩衝溶液(例えば0.1
モルクエン酸ナトリウム溶液)2の流れに導入さ
れ、イオン交カラム5を通過中に重金属はイオン
交換樹脂に捕集され、他のアルカリ金属またはア
ルカリ土類金属はカラムを通過して化学炎7に至
る。次に試料の代りに0.1モル塩酸を緩衝溶液2
の流れの中に定流量ポンプ3によつて導入すれ
ば、その混合液は強酸性となつてイオン交換カラ
ム5に入る。イオン交換樹脂はPH2.0以下におい
ては捕集した金属イオンを放出(溶出)するため
それらの金属イオンは噴霧器6を経て化学炎7に
噴霧される。化学炎の熱エネルギーによつて生成
された金属原子はその目的元素から成る中空放電
管から発する共鳴線を吸収する。その吸光度は金
属イオン存在量すなわち金属元素の含有量に比例
する。つまり原子吸光現象を原子吸光分析装置8
で測定する。
An embodiment of the present invention will be described below with reference to the drawings. However, Figure 1 shows the basic configuration of the present invention,
FIG. 2 shows an embodiment of the present invention. In FIG. 1, when a sample solution of 5 ml is normally collected with a sample collector such as a micropipette and injected into the sample injection part 1, it is passed through a constant flow pump 3 to a buffer solution (for example, 0.1
Introduced into the stream of molar sodium citrate solution) 2, while passing through the ion exchange column 5, heavy metals are captured on the ion exchange resin, while other alkali metals or alkaline earth metals pass through the column to the chemical flame 7. . Next, instead of the sample, add 0.1M hydrochloric acid to buffer solution 2.
The mixture becomes strongly acidic and enters the ion exchange column 5. Since the ion exchange resin releases (elutes) the collected metal ions when the pH is below 2.0, these metal ions are sprayed into the chemical flame 7 through the atomizer 6. The metal atoms produced by the thermal energy of the chemical flame absorb the resonance lines emanating from the hollow discharge tube of the target element. Its absorbance is proportional to the amount of metal ions present, that is, the content of metal elements. In other words, the atomic absorption phenomenon can be detected using an atomic absorption spectrometer 8.
Measure with.

第2図は、第1図の構成に自動化機構を加えた
本考案の実施例を示すもので、試料自動採取部1
2、試料検知器11、酸10と酸を導入するため
に定流量ポンプ4、およびタイマーからなる制御
器9を使用する。ここで、試料自動採取部12は
オートサンプラー又はフラクシヨンコレクターに
接続されており、制御器9が試料採取を制御す
る。同時に定流量ポンプによるカラムへの酸の注
入およびカラムへの洗浄用緩衝溶液の注入も制御
器9と試料検出器11によつて制御される。
Figure 2 shows an embodiment of the present invention in which an automation mechanism is added to the configuration of Figure 1.
2. Using a sample detector 11, an acid 10, a constant flow pump 4 for introducing the acid, and a controller 9 consisting of a timer. Here, the automatic sample collection section 12 is connected to an autosampler or a fraction collector, and a controller 9 controls sample collection. At the same time, the injection of acid into the column by the constant flow pump and the injection of a washing buffer solution into the column are also controlled by the controller 9 and the sample detector 11.

即ち、自動試料採取器12に接続された試料採
取用定流量ポンプ3により溶液試料および必要に
応じ試料採取器内を洗浄するために精製水が採取
され終つたとき、流路内の検知器11は試料導入
完了を検知する。この信号で制御器9が働いて、
定流量ポンプ3が停止する。試料溶液等の全部が
樹脂カラム5に導入され終つた時点で制御器9は
定流量ポンプ4に一定時間作動信号を送り、塩酸
が樹脂カラム5に送出される。この塩酸によつて
金属イオンは溶出して、噴霧器を経由し化学炎に
至り、原子吸光信号となる。
That is, when the sample collection constant flow pump 3 connected to the automatic sample collector 12 finishes collecting the solution sample and, if necessary, purified water for cleaning the inside of the sample collector, the detector 11 in the flow path detects the completion of sample introduction. The controller 9 operates based on this signal,
Constant flow pump 3 stops. When all of the sample solution, etc. has been introduced into the resin column 5, the controller 9 sends an activation signal to the constant flow pump 4 for a certain period of time, and hydrochloric acid is sent to the resin column 5. The metal ions are eluted by this hydrochloric acid and reach a chemical flame via an atomizer, resulting in an atomic absorption signal.

第3図は上記の作業工程を示す。Aは試料溶液
5ml、Bは1.0モル塩酸0.25ml、Cは緩衝溶液1
mlでありDはイオン吸着(濃縮)、Eは溶出、F
は洗浄の各工程をTは時間経過を示す。注入され
た試料溶液Aはイオン交換樹脂にその含有する金
属イオンが吸着され濃縮されるD。次にイオン交
換樹脂に導入された酢酸Bによつて金属イオンが
溶出Eし、その終了後に緩衝溶液Cによつてイオ
ン交換樹脂は洗浄Fされる。
FIG. 3 shows the above working steps. A is 5 ml of sample solution, B is 0.25 ml of 1.0M hydrochloric acid, and C is buffer solution 1.
ml, D is ion adsorption (concentration), E is elution, F
indicates each step of washing, and T indicates the passage of time. The metal ions contained in the injected sample solution A are adsorbed by the ion exchange resin and concentrated D. Next, the metal ions are eluted by acetic acid B introduced into the ion exchange resin, and after the elution is completed, the ion exchange resin is washed F by a buffer solution C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の原理的構成を示す流路図であ
り、第2図は本考案の一実施例について、その概
略構成を示す系統図である。第3図は本考案の説
明用工程図である。 1……試料注入部、2……緩衝溶液、3……定
流量ポンプ、4……定流量ポンプ、5……キレー
ト樹脂カラム、6……噴霧器、7……化学炎、8
……原子吸光分析装置、9……制御器、10……
塩酸、11……試料検出器、12……自動試料採
取部、13……定流量ポンプ、A……試料溶液、
B……塩酸、C……緩衝溶液(または精製水)、
D……イオン吸着(濃縮)、E……溶出、F……
洗浄、T……時間。
FIG. 1 is a flow path diagram showing the basic structure of the present invention, and FIG. 2 is a system diagram showing the schematic structure of an embodiment of the present invention. FIG. 3 is an explanatory process diagram of the present invention. DESCRIPTION OF SYMBOLS 1... Sample injection part, 2... Buffer solution, 3... Constant flow pump, 4... Constant flow pump, 5... Chelate resin column, 6... Sprayer, 7... Chemical flame, 8
... Atomic absorption spectrometer, 9 ... Controller, 10 ...
Hydrochloric acid, 11...sample detector, 12...automatic sample collection section, 13...constant flow pump, A...sample solution,
B... Hydrochloric acid, C... Buffer solution (or purified water),
D...Ion adsorption (concentration), E...Elution, F...
Washing, T...time.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 重金属を含む試料溶液を自動的に採取する試料
採取部と、緩衝溶液源及び塩酸からなる溶離液源
と、前記試料溶液、緩衝溶液及び溶離液をそれぞ
れ選択的に吸引するための複数の定流量ポンプ
と、前記定流量ポンプが排出する液を流通させる
ためのキレート樹脂カラムを含む前濃縮流路を構
成し、前記前濃縮流路の出口ラインを、原子吸光
分析装置の噴霧器に接続するとともに、前記試料
採取部に試料検出器を接続し、前記試料検出器の
試料検出信号に応答して前記複数の定流量ポンプ
をシーケンス制御する制御器を設けたことによ
り、連続的に流れる緩衝溶液に一定量の試料溶液
を合流させて前記キレート樹脂カラムに流入せし
めた後、前記溶離液を前記緩衝溶液に合流させて
前記キレート樹脂カラムに送り込み、そのカラム
から濃縮試料を溶出させるようにしたことを特徴
とする原子吸光分析装置。
A sample collection unit that automatically collects a sample solution containing heavy metals, an eluent source consisting of a buffer solution source and hydrochloric acid, and a plurality of constant flow rates for selectively sucking the sample solution, buffer solution, and eluent, respectively. configuring a preconcentration channel including a pump and a chelate resin column for circulating the liquid discharged by the constant flow pump, and connecting an outlet line of the preconcentration channel to a sprayer of an atomic absorption spectrometer; A sample detector is connected to the sample collecting section, and a controller is provided for sequentially controlling the plurality of constant flow pumps in response to a sample detection signal from the sample detector, so that a continuously flowing buffer solution has a constant flow rate. The method is characterized in that, after the sample solutions are combined and flowed into the chelate resin column, the eluent is combined with the buffer solution and sent to the chelate resin column, and the concentrated sample is eluted from the column. Atomic absorption spectrometer.
JP1985117890U 1985-07-30 1985-07-30 Expired JPH0428051Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985117890U JPH0428051Y2 (en) 1985-07-30 1985-07-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985117890U JPH0428051Y2 (en) 1985-07-30 1985-07-30

Publications (2)

Publication Number Publication Date
JPS6225848U JPS6225848U (en) 1987-02-17
JPH0428051Y2 true JPH0428051Y2 (en) 1992-07-07

Family

ID=31003827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985117890U Expired JPH0428051Y2 (en) 1985-07-30 1985-07-30

Country Status (1)

Country Link
JP (1) JPH0428051Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042895A (en) * 1973-08-20 1975-04-18
JPS5044896A (en) * 1973-08-24 1975-04-22

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042895A (en) * 1973-08-20 1975-04-18
JPS5044896A (en) * 1973-08-24 1975-04-22

Also Published As

Publication number Publication date
JPS6225848U (en) 1987-02-17

Similar Documents

Publication Publication Date Title
Fang et al. An efficient flow-injection system with on-line ion-exchange preconcentration for the determination of trace amounts of heavy metals by atomic absorption spectrometry
Balinova Solid-phase extraction followed by high-performance liquid chromatographic analysis for monitoring herbicides in drinking water
Pozebon et al. Determination of copper, cadmium, lead, bismuth and selenium (IV) in sea-water by electrothermal vaporization inductively coupled plasma mass spectrometry after on-line separation
US10942096B2 (en) Automated system for remote inline concentration of ultra-low concentrations in pure chemicals
US11249057B2 (en) Automated system for detection of silicon species in phosphoric acid
US20240112900A1 (en) Automated system for remote inline concentration and homogenization of ultra-low concentrations in pure chemicals
Liu et al. Automatic on-line preconcentration system for graphite furnace atomic absorption spectrometry for the determination of trace metals in sea water
CN104297367B (en) Device and method for amperometric detection of total cyanide and sulfide of wastewater by online photolysis dialysis/chromatographic separation
CN113702558A (en) Method for detecting trace estrogen substances in water environment
CN112326812A (en) Method for simultaneously detecting five pesticides in underground water by isotope dilution-ONLINESPE-HRMS
Sperling et al. Electrothermal atomic absorption spectrometric determination of lead in high-purity reagents with flow-injection on-line microcolumn preconcentration and separation using a macrocycle immobilized silica gel sorbent
Liu et al. Determination of lead in sea-water with a graphite furnace atomic absorption spectrometer and an improved automatic on-line pre-concentration system
JPH0428051Y2 (en)
CN113155991A (en) Method for rapidly determining sulfonamide antibiotics in water by full-automatic online extraction ultra-high performance liquid chromatography-tandem mass spectrometry
Tao et al. Electrothermal atomic absorption spectrometric determination of ultra-trace amounts of tin by in situ preconcentration in a graphite tube using flow injection hydride generation with on-line ion-exchange separation
JPH11344477A (en) Method and device for monitoring waste water of decomposition treatment device for hazardous organic substance
Jin et al. Flow injection semi-online sorbent extraction preconcentration for graphite furnace atomic absorption spectrometry
Preetha et al. On-line solid phase extraction preconcentration of ultratrace amounts of zinc in fractionated soil samples for determination by flow injection flame AAS
Renoe et al. Use of a flow-injection sample manipulator as an interface between a" high-performance" liquid chromatograph and an atomic absorption spectrophotometer.
JPS61223555A (en) Analysis of ion species and apparatus using the same
JPH052845Y2 (en)
RU2027167C1 (en) Device for preparing samples and atomizing them in atom-absorption analysis
CN116735767A (en) Method for rapidly detecting lincomycin, clindamycin, erythromycin, clarithromycin and roxithromycin in water
JP3340775B2 (en) Continuous analysis of slurry composition
JPH01143953A (en) Method and apparatus for simultaneous analysis of nitrogenous ion