WO2020106058A1 - Nuclide separating device - Google Patents

Nuclide separating device

Info

Publication number
WO2020106058A1
WO2020106058A1 PCT/KR2019/015942 KR2019015942W WO2020106058A1 WO 2020106058 A1 WO2020106058 A1 WO 2020106058A1 KR 2019015942 W KR2019015942 W KR 2019015942W WO 2020106058 A1 WO2020106058 A1 WO 2020106058A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
column
sample
unit
washing solution
Prior art date
Application number
PCT/KR2019/015942
Other languages
French (fr)
Korean (ko)
Inventor
김현철
임종명
최상도
김선하
장미
김창종
이진형
이완로
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180144557A external-priority patent/KR102096801B1/en
Priority claimed from KR1020190132518A external-priority patent/KR102261634B1/en
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to EP19887211.1A priority Critical patent/EP3886116A4/en
Publication of WO2020106058A1 publication Critical patent/WO2020106058A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/007Recovery of isotopes from radioactive waste, e.g. fission products
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Definitions

  • the present invention relates to a device for separating nuclides, and more particularly, to a device for separating nuclides of interest from a sample for performing radioactive property evaluation such as radioactive waste and decommissioning waste.
  • radioactive waste eg, solid, soil, water, etc.
  • decommissioned waste concrete, metal, etc.
  • disposal strategies and disposal costs vary depending on the radioactive concentrations derived through the evaluation of radioactive properties.
  • the evaluation of radioactive properties of radioactive and decomposed waste is based on the results of gamma nuclide analysis and alpha / beta nuclide analysis.
  • alpha / beta nuclides require chemical separation due to their radioactive and detector characteristics.
  • the chemical separation technique used in recent years is based on an extraction chromatography method.
  • the extraction chromatography method is a method of separating a nuclide of interest and an interfering ion after filling a column with resin.
  • the automatic separation device for nuclides has a limitation in terms of throughput, such that the maximum number of samples that can be continuously separated is eight. Accordingly, there is a need to develop a nuclide separation device capable of increasing the efficiency of a process in which a large number of samples are generated, such as a process for evaluating radioactive characteristics of decomposed wastes in which 40 or more samples are generated per day.
  • the present invention is to solve the problems of the prior art described above, the present invention is to provide a nuclide separation apparatus capable of continuously performing nuclide separation for a number of samples.
  • a column arrangement unit in which a plurality of columns are disposed; A first flow path through which reagents or samples to be introduced into the column arranged in the column arrangement section are transferred; A second flow path for delivering purified sample or waste discharged from the column to a collection unit; A flow path forming part connecting or separating the first flow path and the second flow path with any column disposed in the column arrangement part; The reagent or the sample is introduced into the first flow path, the main pump for supplying pressure so that the purified sample or waste material is discharged from the column, and the other optional columns and the flow passages in which the flow path forming unit is disposed in the column arrangement unit.
  • a nuclide separation device including a transfer unit for transporting the flow path forming portion so as to connect or separate the one flow path and the second flow path.
  • the transfer part may transfer the flow path forming part back and forth, left and right.
  • the flow path forming portion, the flow path forming portion, the first flow path connecting portion disposed on the upper portion of the column to connect or separate the upper portion of the first flow path and the column;
  • a second flow path connection part disposed at the lower portion of the column to connect or separate the second flow path and the lower portion of the column, and the first flow path connection portion to descend or rise to connect or separate the first flow path and the upper portion of the column
  • to connect or separate the lower portion of the column and the second flow path may include a driving unit for raising or lowering the second flow path connection.
  • the collection part includes a purification sample collection container in which the purified sample is collected, and a waste collection container in which the waste is collected, and the flow path forming part comprises any one of the purified sample collection container and the waste collection container in the second flow path connection part. It may further include a discharge selection valve that selectively connects with one.
  • the nuclide separation apparatus a reagent supply unit for selecting any of a plurality of reagents and supplying them to the first flow path;
  • a sample supply unit for supplying the sample to the first flow path and an inflow selection valve disposed in the first flow path to selectively connect the first flow path to any one of the reagent supply portion and the sample supply portion may be further included.
  • the sample supply unit a needle that penetrates into the sample container containing the sample; It may include a sample supply flow path formed between the needle and the inlet valve and a needle transfer unit for transferring the needle.
  • the sample supply unit further includes a washing solution container containing a washing solution for washing the sample supply channel, the first channel, and the second channel, and the needle transport unit transports the needle into the washing solution container.
  • a washing solution container containing a washing solution for washing the sample supply channel, the first channel, and the second channel
  • the needle transport unit transports the needle into the washing solution container.
  • Can infiltrate can infiltrate.
  • the sample supply unit includes a plurality of sample containers containing different samples, and the needle and the needle transfer unit are controlled in a predetermined manner, so that a sample in a plurality of sample containers and a cleaning solution in the cleaning solution container are defined. In order to be supplied to the sample supply flow path.
  • the collection unit further includes a purification sample collection container in which the purified sample is collected and a waste collection container in which the waste is collected, and a residual washing solution discharge unit for transferring the remaining washing solution in the washing solution container to the waste collection container. It can contain.
  • the residual washing solution discharge unit a washing solution discharge passage formed between the washing solution container and the waste collection container and the residual washing solution discharge pump for supplying pressure so that the residual cleaning solution flows into the washing solution discharge passage It may include.
  • extraction of a plurality of columns may be efficiently performed through a flow path forming part connecting or separating from any column disposed in the column arrangement part and a transport part transferring the flow passage forming part.
  • FIG. 1 is a configuration diagram of a nuclide separation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing an implementation of a column arrangement unit according to an embodiment of the present invention.
  • Figure 3 is a view showing an embodiment of the flow path forming unit of the nuclide separation device according to an embodiment of the present invention.
  • FIG. 4 is a view briefly showing the arrangement of the columns and the transfer of the flow path forming unit in the nuclide separation apparatus according to an embodiment of the present invention.
  • 5 and 6 are perspective views of a nuclide separation apparatus according to another embodiment of the present invention.
  • FIG. 7 is a perspective view of a flow path structure of a separation portion of a nuclide separation device according to another embodiment of the present invention.
  • FIG 8 and 9 are views showing the operation of the nuclide separation apparatus according to another embodiment of the present invention.
  • FIG. 1 is a configuration diagram of a nuclide separation apparatus according to an embodiment of the present invention.
  • An apparatus for separating nuclides is intended to be used in the analysis of radionuclides required for the evaluation of radioactive properties of radioactive waste and decommissioned waste, and may be used for chemical separation of alpha / beta nuclides. More specifically, the nuclide separation apparatus according to an embodiment of the present invention, after filling the column with resin (Resin), chemical separation according to the extraction chromatography method of separating the nuclides of interest and the interference ions to a number of samples It can be performed continuously.
  • resin Resin
  • the nuclide separation apparatus 1a includes a column arrangement unit 10, a first flow path 20, a second flow path 30, a reagent supply unit 40, and a sample supply unit (50), inlet selection valve 60, flow path forming unit 70, main pump 80, transfer unit 90, collection unit 100, washing solution supply unit 110 and residual washing solution discharge unit 120 It includes.
  • a plurality of columns C1 to Cn are arranged in the column arrangement unit 10.
  • the column arrangement unit 10 allows a plurality of columns C1 to Cn to be simultaneously disposed so that separation of a plurality of samples can be continuously performed.
  • the column arranging unit 10 may be formed of a tray having a plurality of column arranging holes 11 formed in a form penetrated up and down to expose the upper and lower parts of the arranged column. 2, in one embodiment of the present invention, the column arrangement 10 is formed of a rectangular tray. In addition, depending on the shape of the transfer unit 90 to be described later, the column arrangement unit 10 may be formed of a tray of another type such as an annular shape.
  • One column C1 to Cn is disposed in each column arrangement hole 11 of the column arrangement unit 10.
  • Columns (C1 to Cn) are members into which reagents and samples are introduced. Resin is filled in the columns (C1 to Cn), and reagents and samples are introduced therein to separate the purified sample containing the nuclide of interest and other wastes.
  • the first flow path 20 is a flow path through which reagents or samples to be introduced into the column disposed in the column arrangement unit 10 are transferred.
  • the first flow path 20 is connected to the reagent supply unit 40, the sample supply unit 50 and the inflow selection valve 60. Depending on the operation of the inflow selection valve 60, the first flow path 20 may be selectively connected to any one of the reagent supply unit 40 and the sample supply unit 50.
  • the second flow path 30 delivers the purified sample or waste discharged from the column to the collection unit 100.
  • the second flow path 30 has one end connected to the flow path forming part 70 and the other end connected to the collecting part 100.
  • the second flow path 30 is a purification sample collection container 101 of the discharge selection valve 74 of the flow path forming part 70 and the collection part 100 of the 2-1 flow path through which the purification sample or waste discharged from the column flows.
  • the reagent supply unit 40 selects any of a plurality of reagents and supplies them to the first flow path 20.
  • the reagent supply unit 40 may supply six reagents R1 to R6, and the reagent selection valve 41 selects one of them and supplies them to the first flow path.
  • the first reagent (R1) is for column optimization
  • the second reagent (R2) is for washing and removal of interfering nuclides
  • the third Reagent (R3) may be for extracting the nuclide of interest.
  • reagent supply unit 40 when there are many interfering nuclides, more reagents may be used for washing and removing interfering nuclides, and accordingly, more reagents may be used. Furthermore, the number of reagents that the reagent supply unit 40 can supply or the form of the reagent selection valve 41 may be changed as necessary.
  • the sample supply unit 50 supplies the sample to the first flow path 20.
  • the sample is obtained from radioactive waste, decommissioning waste, and is an object that needs to be determined whether the nuclide of interest is included and the amount included.
  • the sample supply unit 50 includes a plurality of sample containers S1 to Sn containing a sample, a needle 51 penetrating into the sample container containing the sample, a sample supply flow path formed between the needle 51 and the inflow selection valve 60 It may include a 52 and a needle transfer unit 53 for transferring the needle.
  • the needle transfer unit 53 transfers the needle 51 so that the sample contained in the other sample container is the first flow path (20).
  • the sample supply unit 50 may further include a washing solution container V containing a washing solution for washing the flow path.
  • a washing solution container V containing a washing solution for washing the flow path.
  • the needle transfer unit 53 may transport the needle 51 to penetrate into the washing solution container V.
  • the sample supply unit 50 may be automated by a computer program.
  • the needle 51 and the needle transfer unit 53 are controlled by a computer program to continuously separate the nuclides of interest for a plurality of samples, so that the sample and washing solution containers in the plurality of sample containers S1 to Sn It may be driven to supply the washing solution in (V) to the flow path in a predetermined order.
  • the inflow selection valve 60 selectively connects the first flow path 20 to any one of the reagent supply unit 40 and the sample supply unit 50.
  • the inflow selection valve 60 is connected to one end of the first flow path 20 to connect the first flow path 20 to the reagent supply unit 40 or the sample supply unit 50.
  • the flow path forming unit 70 connects or separates the first flow path 20 and the second flow path 30 from any columns arranged in the column arrangement unit 10.
  • the flow path forming portion 70 includes a first flow path connection portion 71, a second flow path connection portion 72, a driving portion 73 and a discharge selection valve 74.
  • the first flow path connecting portion 71 is disposed on the top of the column to connect or separate the first flow path 20 and the top of the column.
  • the second flow path connection portion 73 is disposed at the bottom of the column to connect or separate the second flow path 30 and the bottom of the column.
  • the driving unit 73 lowers or raises the first flow path connecting portion 71 to connect or separate the first flow path 20 and the upper portion of the column, and connects or separates the second flow path 30 and the lower portion of the column.
  • the second flow path connecting portion 72 is raised or lowered.
  • the discharge selection valve 74 selectively connects the second flow path connecting portion 72 with any one of the purification sample collection container 101 and the waste collection container 102 of the collection unit 100. More specifically, the discharge selection valve 74 connects the second flow path connection portion 72 to the waste collection container 102 in the process of optimizing the column and separating the nuclides, and the second flow path connection portion 72 in the process of extracting the nuclides of interest. Is connected to the purified sample collection container 101.
  • Figure 3 is a view showing an embodiment of the flow path forming unit of the nuclide separation device according to an embodiment of the present invention.
  • the flow path forming unit 70 is formed in a 'c' shape and is implemented on a plate 701 in a form in which a column can be arranged between the top and bottom of one side.
  • the first flow path connection portion 71, the second flow path connection portion 72, and the discharge selection valve 74 are disposed in connection with the driving portion 73.
  • the driving unit 73 is a guide rail 731 provided in the vertical direction on the other side of the plate 701, the upper drive body 732 and the guide rail 731 disposed in a form that can be raised and lowered from the top of the guide rail 731 It includes a lower driving body 733 disposed in a form that can be raised and lowered from the bottom. At this time, the upper driving body 732 and the lower driving body 733 may include a servo motor.
  • the first flow path connection portion 71 is coupled to a portion of the upper drive body 732 that extends to one side of the plate 701, and a second flow path to a portion of the lower drive body 733 that extends to one side of the plate 701.
  • the connection portion 72 is coupled.
  • the discharge selection valve 74 may be coupled to the lower driving body 733 to be integrally operated with the lower driving body 733.
  • the first flow path connection portion 71 and the second flow path connection portion 72 are coupled to the upper and lower portions of the column, respectively, and the column and the first flow path ( 20) and the connection of the second flow path 30 is made.
  • the reagent or sample is supplied to the column, and optimization of the column, removal of interfering nuclides, extraction and washing of the nuclides of interest are performed.
  • the flow path forming unit 70 may be transferred to any other column disposed in the column arrangement unit 10 by the transfer unit 90.
  • the main pump 80 supplies pressure so that the reagent or sample flows into the first flow path 20 and the purified sample or waste is discharged from the column.
  • the main pump 80 may be disposed on the first flow path 20.
  • the main pump 80 supplies the reagent to the first flow passage 20, and the inflow selection valve 60 is removed.
  • the main pump 80 supplies the sample to the first flow path 20 in a state where one flow path 20 is connected to the sample supply portion 50.
  • the transfer part 90 is a flow path forming part (70) so that the flow path forming part (70) can connect or separate the first flow passage (20) and the second flow passage (30) from any other column arranged in the column arrangement part (10). 70).
  • the transfer unit 90 may transfer the flow path forming unit 70 to the front and rear, left and right in a state in which the flow path forming portion 70 is separated from the first flow path 20 and the second flow path 30. have.
  • the transfer unit 90 moves the plate 701 of the flow path forming unit 70 through a ball screw method, a method using a motor and a guide rail, and the like. Can be transferred to. That is, the transfer unit 90 may be formed of a ball screw structure, a motor and a guide rail structure.
  • FIG. 4 is a view briefly showing the arrangement of the columns and the transfer of the flow path forming unit in the nuclide separation apparatus according to an embodiment of the present invention.
  • the transfer unit 90 extraction of a nuclide of interest for one column C1 is performed, and the first flow path connection portion 71 and the second flow path connection portion 72 of the flow path forming portion 70 are In a state separated from the column C1, the flow path forming unit 70 may be transported along the X-axis or Y-axis. Accordingly, the flow path forming unit 70 is transferred to one column C1 and a column C2 arranged adjacent to the X-axis direction or a column C3 arranged adjacent to the Y-axis direction, and the corresponding column C2 or C3) and the first flow path 20 and the second flow path 30 may be connected. Accordingly, continuous extraction for a plurality of columns can be efficiently performed.
  • the collection unit 100 is a part for collecting purified samples or waste discharged through the second flow path 30.
  • the collection unit 100 includes a purified sample collection container 101 in which purified samples are collected and a waste collection container 102 in which wastes are collected.
  • the purification sample collection container 101 may be arranged to correspond one-to-one with the column disposed in the column arrangement unit 10. That is, the purification sample collection container 101 may be arranged in a tray-type purification sample collection unit (not shown) having a purification sample collection container insertion hole at a position corresponding to a column position of the column arrangement unit 10. Through this arrangement, the separation of successive nuclides for multiple samples can be more efficiently performed.
  • the washing solution supply unit 110 supplies the washing solution to the washing solution container V of the sample supply unit 50.
  • the washing solution supply unit 110 includes a washing solution tank 111, a washing solution supply flow passage 112, and a washing solution supply pump 113.
  • the washing solution container V may include an inner container V1 and an outer container V2 surrounding the inner container V1.
  • the inner container V1 is a portion in which the cleaning solution for washing the sample supply channel 52, the first channel 20 and the second channel 30 is stored
  • the outer container V2 is the inner container V1. This is where the excess cleaning solution is stored.
  • the cleaning solution supply flow passage 112 is formed as the inner container V1 of the cleaning solution container V in the cleaning solution tank 111. That is, the washing solution in the washing solution tank 111 is supplied to the inner container V1 according to the operation of the washing solution supply pump 113.
  • the remaining washing solution discharge unit 120 transfers the remaining washing solution in the washing solution container V to the waste collection container 102.
  • the remaining washing solution means a washing solution overflowing from the inner container V1 and remaining in the outer container V2.
  • washing is performed once, and the extraction of the nuclides of interest for one sample is performed, and then washing before extraction of the nuclides of interest for another sample, using the remaining washing solution remaining in the previous washing is a risk of contamination.
  • a cleaning solution supplied freshly from the cleaning solution tank 111 it is preferable to use a cleaning solution supplied freshly from the cleaning solution tank 111.
  • the remaining washing solution discharge unit 120 blocks the possibility of contamination during the next washing by transferring the remaining washing solution in the outer container V2 of the washing solution container V to the waste collection container 102 of the collection unit 100. .
  • the remaining washing solution discharge unit 120 is disposed in the washing solution discharge passage 121 and the washing solution discharge passage 121 formed between the washing solution container V and the waste collection container 102 so that the residual washing solution is the washing solution. It may include a residual washing solution discharge pump 122 for supplying pressure to flow into the discharge passage 121.
  • the residual washing solution is discharged to the waste collection container 102 of the collection unit 100 rather than a separate waste collection container. Accordingly, the size of the device can be reduced, and space efficiency can be secured.
  • the inflow selection valve 60 is the sample supply unit 50 It is connected with. At this time, the washing solution is supplied through the sample supply unit 50 to wash the first flow path 20, the main pump 80, the column, the second flow path 30, and the discharge selection valve 74.
  • the washing solution in the washing solution tank 111 is supplied to the inner container V1 according to the operation of the washing solution supply pump 113, and the remaining washing solution in the outer container V2 is the washing solution discharge pump 122 According to the operation of the washing solution discharged through the flow path 121 is discharged to the waste collection container 102 of the collection unit 100.
  • the needle 51 of the sample supply unit 50 is transferred to the outside of the washing solution container V so that air is sucked into the flow path so that the flow path is dried.
  • the inlet selection valve 60 is connected to the reagent supply unit 40, the reagent for optimization of the column according to the operation of the main pump 80, that is, the first reagent is supplied to the column, the waste discharged to the bottom of the column Silver is collected in the waste collection container 102 of the collection unit 100.
  • the inflow selection valve 60 is connected to the sample supply unit 50, and the sample is injected into the column according to the operation of the main pump 80.
  • the inlet selection valve 60 is connected to the reagent supply unit 40 again, and according to the operation of the main pump 80, one or more reagents for the removal of disturbed nuclides are supplied to the column, and waste discharged to the bottom of the column Collected in the waste collection container 102 of the collection unit 100.
  • the sample supply unit 50 supplies reagents for separation of the nuclides of interest, and the purified sample is discharged to the bottom of the column according to the operation of the main pump 80.
  • the discharge selection valve 74 forms a flow path so that the purified sample flows into the purified sample collection container 101 of the collection unit 100.
  • the inflow selection valve 60 is connected to the sample supply unit 50 and again the washing of the flow path using the washing solution proceeds as described above.
  • the flow path forming part 70 and the first flow passage 20, the column and the second flow passage 30 are separated from each other, and the flow path forming part 70 is different by the transfer part 90. It is transferred to the column.
  • the flow path forming unit 70 is transferred to another column, the first flow path 20, the other column, and the second flow path 30 are connected by the flow path forming unit 70 and may proceed from column optimization.
  • the nuclide separation apparatus 1a connects the upper and lower portions of the column with other components while the first flow path connection portion 71 and the second flow path connection portion 72 are driven, or By releasing, the flow path is formed or released.
  • the transfer unit 90 transfers the flow path forming unit 70 while the flow path is released. Accordingly, extraction may be continuously performed by connecting an arbitrary column to the sample and connecting another column to the sample after extraction is completed.
  • nuclide separation device 1b according to another embodiment of the present invention will be described.
  • nuclide separation apparatus 1b is for use in the analysis of nuclides required for the evaluation of radioactive properties of radioactive wastes and decommissioned wastes, as in the embodiment of the present invention, in particular, alpha / beta nuclides It can be used for chemical separation of.
  • the nuclide separation apparatus 1b includes a column holding part 1010 in which a column 1011 is disposed, and a collection tube holding in which a collection tube 1021 is disposed. It includes a portion 1020, a waste discharge portion 1030, a separation portion 1040, a connection portion 1050 and a transfer portion 1060.
  • the column 1011 is a member through which reagents and samples are introduced.
  • the column 1011 is filled with resin, and reagents and samples are introduced therein to separate the purification sample containing the nuclide of interest and other wastes.
  • Samples and reagents may be stored in separate sample tanks (not shown) and reagent tanks (not shown), respectively, and they may be transported by a pump (not shown) and introduced into the column 1011.
  • a plurality of columns 1011 are disposed in the column holding unit 1010.
  • the column holding unit 1010 allows a plurality of columns 1011 to be simultaneously disposed so that separation of a plurality of samples can be continuously performed.
  • the column holding unit 1010 may be formed such that a plurality of columns 1011 are arranged in an annular shape.
  • the column holding unit 1010 may include any one of a disc-shaped member, an annular member, and a toothed member, and may be configured to be fixed by inserting the column 1011 at regular intervals along its rim.
  • the column holding unit 1010 may be configured such that 20 columns are simultaneously disposed along its edge.
  • the column holding part 1010 may be integrally connected to the collection tube holding part 1020 through the support part 1070.
  • the column holding part 1010 may be integrally moved with the collection tube holding part 1020 by being connected to the collection tube holding part 1020 through the support part 1070.
  • the collection tube 1021 is a container in which the purified sample that has passed through the column 1011, in other words, the purified sample extracted from the column 1011 is collected.
  • the collection tube 1021 is disposed corresponding to the lower portion of each column 1011 disposed in the column holding portion 1010. That is, the collection tube 1021 is disposed in a one-to-one correspondence to the bottom of each column 1011 so that the purified sample extracted from one column 1011 can be collected from the bottom.
  • the collection tube holding unit 1020 is arranged to be spaced apart from the lower portion of the column holding unit 1010, so that the collection tube 1021 is disposed corresponding to the lower portion of each column 1011 disposed in the column holding unit 1010.
  • the collection tube holding part 1020 may be configured such that the collection tube 1021 corresponding to each column 1011 is arranged in an annular shape, like the column holding part 1010.
  • the column holding portion 1010 is configured to simultaneously arrange 20 columns 1011 in an annular shape
  • the collection tube holding portion 1020 correspondingly has 20 collecting tubes 1021 arranged in an annular shape It can be configured as possible.
  • the collection tube holding portion 1020 may include any one of a disc-shaped member, an annular member, and a toothed member. Looking more specifically, the collection tube holding unit 1020 is a disc-shaped upper plate 1022 supporting the upper portion of the collection tube 1021 and a lower plate in the form of a cog wheel supporting the lower end of the collection tube 1021. It may include (1023).
  • the collection tube holding part 1020 may be integrally connected to the column holding part 1010 through the support part 1070.
  • the support part 1070 is a column member connecting the lower plate 1023 of the collecting tube holding part 1020 with the upper plate 1022 and the upper plate 1022 and the column holding part of the collecting tube holding part 1020
  • a column member connecting the 1010 may be included, and a plurality of them may be provided at regular intervals for stable coupling between the column holding portion 1010 and the collecting tube holding portion 1020.
  • the centers of the column holding portion 1010 and the collecting tube holding portion 1020 are disposed on the same axis, and the column holding portion 1010 and the collecting tube holding portion 1020 are It has a form that can be rotated integrally around an axis.
  • the waste discharge unit 1030 discharges waste discharged from the column 1011 to the outside. Separation of the purified sample and waste is made in the column 1011, and the purified sample is collected in the collection tube 1021, and the waste is discharged to the outside through the waste discharge unit 1030.
  • the waste discharge unit 1030 is formed of a discharge pipe connected to the valve 1042 of the separation unit 1040, and the waste discharge unit 1030 is connected to a waste storage tank (not shown). Can be.
  • the separation part 1040 is disposed between the column holding part 1010 and the collection tube holding part 1020, and when connected to the column 1011 and the collection tube 1021, the purified sample flows into the collection tube 1021, The waste is separated to be discharged to the waste discharge unit 1030.
  • the separation portion 1040 includes a flow path structure 1041 and a valve 1042.
  • the flow path structure 1041 has a rectangular block shape as a whole.
  • the flow path structure 1041 includes a column connection portion 1411, a first flow path 1412, a second flow path 1412, and a collection tube connection portion 1414.
  • the column connecting portion 1411 is formed on the upper portion of the flow path structure 1041 and has a hole shape that can be connected to the lower portion of the column 1011.
  • the first flow path 1412 is a flow path formed toward the valve 1042 from the column connection portion 1411 so that purified sample or waste material flowing through the column connection portion 1411 can be transferred to the valve 1042.
  • the second flow path 1413 is a flow path formed between the valve 1042 and the collection tube connection portion 1414 so that the purified sample passing through the valve 1412 can be introduced into the collection tube 1021.
  • the collection tube connecting portion 1414 is formed on the lower portion of the flow path structure 1041, and has a shape of a tube that can be connected to the upper portion of the collection tube 1021. The collection tube connection 1414 communicates with the second flow path 1413.
  • the flow path structure 1041 is connected to the frame F and is installed on a plate 1043 disposed between the column holding portion 1010 and the collecting tube holding portion 1020. More specifically, the flow path structure 1041 is provided with through holes 1415 penetrated in the vertical direction at each corner, and a guide pin member 1431 coupled to the plate 1043 is inserted into each through hole 1415. Through this, the flow path structure 1041 has a shape that can be slid up and down on the plate 1043.
  • the valve 1042 separates the purification sample and waste introduced from the column 1011 through the first flow passage 1412 when the flow path structure 1041 is connected to the column 1011 and the collection tube 1021, but the purification sample is It is sent to the collection tube 1021 through the second flow path 1413, and the waste is discharged to the waste discharge unit 1030. That is, the valve 1042 is connected to a first flow path 1412 serving as an input flow path, a second flow path 1413 serving as an output flow path, and a waste discharge unit 1030, and flows through the first flow path 1412. In the case where the purified fluid is a purified sample, a flow path is formed through the second flow path 1413, and when the fluid flowing through the first flow path 1412 is waste, a flow path is formed through the waste discharge unit 1030.
  • connection part 1050 allows connection between the column 1011, the separation part 1040, and the collection tube 1021 for separation, and when separation is completed, the column 1011, the separation part 1040, and the collection tube ( 1021).
  • the connecting portion 1050 raises the collecting tube 1021 to make a connection between the flow path structure 1041 and the column 1011 and the collecting tube 1021, and the collecting tube 1021 ) Allows the connection between the flow path structure 1041 and the column 1011 and the collection tube 1021 to be released.
  • the connection portion 1050 includes an actuator 1051, a power transmission portion 1052, a ball screw portion 1053, and a lifting portion 1054.
  • the actuator 1051 may be formed of a servo motor, and the power transmission unit 1052 may transmit rotational driving force to the ball screw unit 1053 through pulleys and belts.
  • the ball screw unit 1053 includes a screw rotating by the power transmitted through the power transmission unit 1052, and a ball nut coupled to the screw and linearly moving according to the rotation of the screw, but the ball nut is vertically oriented. It can be arranged to move along.
  • the lifting portion 1054 is connected to the ball screw portion 53 and is arranged to rise or fall along the vertical direction, and has a form capable of gripping the collection tube 21.
  • the lifting portion 1054 may include a gripping portion 1451 for gripping the collection tube 1021 and an actuator 1542 that transmits power to the gripping portion 1451.
  • the gripping portion 1541 is formed in a form that can pass through the space between the teeth of the lower plate 1023 in the form of a cog wheel that supports the lower end of the collection tube 1021.
  • the transfer unit 1060 separates the other column 1011 and the collection tube 1021 disposed in correspondence with the separation unit 1040 when separation for one column 1011 is completed so that separation for a plurality of samples is continuously performed. Transfer it to a connectable location.
  • the transfer part 1060 may be configured to rotate the collection tube holding part 1020 and the column holding part 1010 integrally connected together, and may include an actuator disposed under the collection tube holding part 1020. .
  • the centers of the column holding part 1010 and the collection tube holding part 1020 are disposed on the same axis, and the transfer part 1060 holds the collection tube about the axis.
  • the part 1020 is rotated, and accordingly, the column holding part 1010 can also rotate integrally with the collection tube holding part 1020 about the axis.
  • FIG 8 and 9 are views showing the operation of the nuclide separation apparatus according to another embodiment of the present invention. Referring to Figures 8 and 9 will be described the operation of the nuclide separation device 1b according to another embodiment of the present invention.
  • the lifting part 1054 of the connection part 1050 grips the collection tube 1021 in a state in which the column 1011 to be separated and the collection tube 1021 corresponding thereto are disposed on the upper and lower portions, respectively. ) As the actuator 1051 rotates in one direction, the lifting portion 1054 is raised. As a result, the open top of the collection tube 1021 is coupled to the collection tube coupling portion 1414 formed at the bottom of the flow path structure 1041 of the separation portion 1040, and at the same time, the column coupling formed at the top of the flow path structure 1041 The lower portion of the column 1011 is inserted into the portion 1411. At this time, as the collection tube 1021 rises, the flow path structure 1041 is also pushed up, and the collection tube 1021, the flow path structure 1041, and the column 1011 may be combined.
  • samples and reagents may be introduced through the upper portion of the column 1011.
  • the inflow of the sample and the reagent into the column 1011 is made through the inlet part 1080.
  • the inlet part 1080 is an actuator 1081, a power transmission part 1082, and a ball screw part as shown in FIG. 1083 and an injection unit 1084.
  • the actuator 1081 may be formed of a servo motor, and the power transmission unit 1082 may transmit rotational driving force to the ball screw unit 1083 through pulleys and belts.
  • the ball screw portion 1083 includes a screw rotating by the power transmitted through the power transmission unit 1082, and a ball nut coupled to the screw and linearly moving according to the rotation of the screw, wherein the ball nut is vertically oriented. It can be arranged to move along.
  • the injection portion 1084 is connected to the ball screw portion 1083 and is arranged to rise or fall along a vertical direction, and may be connected to a flow path (not shown) through which samples and reagents are introduced.
  • the injection portion 1084 descends, and accordingly, the injection portion 1084 is combined with the upper portion of the column 1011.
  • the coupling between the column 1011 and the flow path structure 1041 of the separation unit 1040 is more stably performed while the column 1011 is pressed downward as the injection unit 1084 descends.
  • the lifting portion 1054 is lowered as the actuator 1051 of the connection portion 1050 rotates in the other direction.
  • the coupling of the collection tube 1021 and the collection tube coupling portion 1414 is released, and at the same time, the lower portion of the column 11 is also detached from the column coupling portion 1411 formed on the upper portion of the flow path structure 1041.
  • the flow path structure 1041 is also lowered by its own weight as the collection tube 1021 descends, and the coupling of the collection tube 1021, the flow path structure 1041, and the column 1011 is released.
  • the lifting portion 1054 descends to the bottom of the lower plate 1023 of the collecting tube holding portion 1020. Accordingly, the collection tube holding part 1020 and the column holding part 1010 can be rotated by the transfer part 1060, and as a result, separation for the next column 1011 is prepared.
  • the injection part 1084 is also spaced apart from the upper part of the column 1011, and the coupling between the injection part 1084 and the column 1011 is also released. do.
  • the nuclide separation apparatus 1b has different configurations of the upper and lower portions of the column through the inlet portion 80 disposed at the upper portion of the column and the connection portion 50 disposed at the lower portion of the column.
  • the connection part 50 connects or releases the separation part 40 and the lower part of the column
  • the inlet part 80 is connected to the upper part of the column in a descending state so that reagent or sample is injected into the column and rises. In the state, it is separated from the top of the column. Accordingly, after transferring the extracted column connected to the sample from the flow path forming position, another column to be newly extracted can be disposed at the flow path forming position.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

A nuclide separating device is disclosed. A nuclide separating device according to one aspect of the present invention comprises: a column arrangement part in which a plurality of columns are arranged; a first fluid channel through which a reagent or a sample to be introduced into each of the columns arranged in the column arrangement part is transferred; a second fluid channel through which a purified sample or waste discharged from the column is delivered to a collection part; a fluid channel forming part for connecting or disconnecting the first fluid channel and the second fluid channel to or from a random column arranged in the column arrangement part; a main pump for supplying pressure to introduce the reagent or the sample into the first fluid channel and to discharge the purified sample or waste from the column; and a transfer part for transferring the fluid channel forming part so that the fluid channel forming part can connect or disconnect the first fluid channel and the second fluid channel to or from another random column arranged in the column arrangement part.

Description

핵종 분리 장치Nuclide separation device
본 발명은 핵종 분리 장치에 관한 것으로, 더욱 상세하게는, 방사성폐기물, 해체 폐기물 등의 방사성 특성평가의 수행을 위해 시료로부터 관심핵종을 분리하여 주는 핵종 분리 장치에 관한 것이다.The present invention relates to a device for separating nuclides, and more particularly, to a device for separating nuclides of interest from a sample for performing radioactive property evaluation such as radioactive waste and decommissioning waste.
방사성폐기물(잡고체, 토양, 물 등)이나 해체폐기물(콘크리트, 금속 등)의 방사성특성 평가는 방사성폐기물 처리나 원자력발전소 해체에서 매우 중요한 요소이다. 방사성특성 평가를 통해 도출된 방사성농도에 따라 처분 전략 및 처분 비용이 달라지기 때문이다.The evaluation of radioactive properties of radioactive waste (eg, solid, soil, water, etc.) or decommissioned waste (concrete, metal, etc.) is a very important factor in the disposal of radioactive waste or nuclear power plant decommissioning. This is because disposal strategies and disposal costs vary depending on the radioactive concentrations derived through the evaluation of radioactive properties.
방사성폐기물, 해체폐기물의 방사성특성 평가는 감마 핵종 분석과 알파/베타 핵종 분석 결과에 바탕을 둔다. 이 가운데 알파/베타 핵종의 경우 방사선적 특성과 검출기 특성상 반드시 화학 분리가 요구된다. 근래에 사용되고 있는 화학 분리 기술은 추출크로마토그래피법을 기반으로 하고 있는데, 추출크로마토그래피법은 컬럼에 레진(Resin)을 충진한 후, 관심핵종과 방해이온을 분리하는 방식이다.The evaluation of radioactive properties of radioactive and decomposed waste is based on the results of gamma nuclide analysis and alpha / beta nuclide analysis. Among these, alpha / beta nuclides require chemical separation due to their radioactive and detector characteristics. The chemical separation technique used in recent years is based on an extraction chromatography method. The extraction chromatography method is a method of separating a nuclide of interest and an interfering ion after filling a column with resin.
이와 같은 화학 분리 과정은 절차가 복잡하여 시간이 오래 걸리고, 분석자의 숙련도에 따라 분리 효율의 차이가 크게 나타나기도 한다. 이러한 문제를 해결하고자 화학 분리 기술을 이용한 핵종 분리를 자동으로 수행하는 핵종 자동 분리 장치가 선보이고 있다.The chemical separation process is complicated and takes a long time, and the difference in separation efficiency may be large depending on the skill of the analyst. In order to solve such a problem, an automatic nuclide separation device that automatically performs nuclide separation using chemical separation technology has been introduced.
그러나 종래 기술에 따른 핵종 자동 분리 장치는 연속적으로 분리할 수 있는 시료의 최대 개수가 8개 정도로 처리량 측면에서 제약을 갖고 있다. 따라서 하루에 40 개 이상의 시료가 발생하는 해체폐기물 방사성특성 평가 공정 등과 같이 다수의 시료가 발생하는 공정의 효율을 높여줄 수 있는 핵종 분리 장치의 개발이 요구되고 있는 실정이다.However, the automatic separation device for nuclides according to the prior art has a limitation in terms of throughput, such that the maximum number of samples that can be continuously separated is eight. Accordingly, there is a need to develop a nuclide separation device capable of increasing the efficiency of a process in which a large number of samples are generated, such as a process for evaluating radioactive characteristics of decomposed wastes in which 40 or more samples are generated per day.
본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명은 다수의 시료에 대한 핵종 분리를 연속적으로 수행할 수 있는 핵종 분리 장치를 제공하고자 한다.The present invention is to solve the problems of the prior art described above, the present invention is to provide a nuclide separation apparatus capable of continuously performing nuclide separation for a number of samples.
본 발명의 일 측면에 따르면, 다수의 컬럼이 배치되는 컬럼 배치부; 상기 컬럼 배치부에 배치된 컬럼에 유입될 시약 또는 시료가 이송되는 제 1 유로; 상기 컬럼에서 배출되는 정제시료 또는 폐기물을 수집부로 전달하는 제 2 유로; 상기 제 1 유로 및 상기 제 2 유로를 상기 컬럼 배치부에 배치된 임의의 컬럼과 연결 또는 분리시키는 유로 형성부; 상기 시약 또는 상기 시료가 상기 제 1 유로로 유입되고, 상기 컬럼에서 상기 정제시료 또는 폐기물이 배출되도록 압력을 공급하는 메인 펌프 및 상기 유로 형성부가 상기 컬럼 배치부에 배치된 다른 임의의 컬럼과 상기 제 1 유로 및 상기 제 2 유로를 연결 또는 분리시킬 수 있도록 상기 유로 형성부를 이송하는 이송부를 포함하는 핵종 분리 장치가 제공된다.According to an aspect of the present invention, a column arrangement unit in which a plurality of columns are disposed; A first flow path through which reagents or samples to be introduced into the column arranged in the column arrangement section are transferred; A second flow path for delivering purified sample or waste discharged from the column to a collection unit; A flow path forming part connecting or separating the first flow path and the second flow path with any column disposed in the column arrangement part; The reagent or the sample is introduced into the first flow path, the main pump for supplying pressure so that the purified sample or waste material is discharged from the column, and the other optional columns and the flow passages in which the flow path forming unit is disposed in the column arrangement unit. There is provided a nuclide separation device including a transfer unit for transporting the flow path forming portion so as to connect or separate the one flow path and the second flow path.
이때, 상기 이송부는 상기 유로 형성부를 전후좌우로 이송시킬 수 있다.At this time, the transfer part may transfer the flow path forming part back and forth, left and right.
또한, 상기 유로 형성부는, 상기 유로 형성부는, 상기 컬럼의 상부에 배치되어 상기 제 1 유로와 상기 컬럼의 상부를 연결 또는 분리시키는 제 1 유로 연결부; 상기 컬럼의 하부에 배치되어 상기 제 2 유로와 상기 컬럼의 하부를 연결 또는 분리시키는 제 2 유로 연결부 및 상기 제 1 유로와 상기 컬럼의 상부를 연결 또는 분리시키기 위해 상기 제 1 유로 연결부를 하강 또는 상승시키고, 상기 제 2 유로와 상기 컬럼의 하부를 연결 또는 분리시키기 위해 상기 제 2 유로 연결부를 상승 또는 하강시키는 구동부를 포함할 수 있다.In addition, the flow path forming portion, the flow path forming portion, the first flow path connecting portion disposed on the upper portion of the column to connect or separate the upper portion of the first flow path and the column; A second flow path connection part disposed at the lower portion of the column to connect or separate the second flow path and the lower portion of the column, and the first flow path connection portion to descend or rise to connect or separate the first flow path and the upper portion of the column And, to connect or separate the lower portion of the column and the second flow path may include a driving unit for raising or lowering the second flow path connection.
또한, 상기 수집부는 상기 정제시료가 수집되는 정제시료 수집 용기 및 상기 폐기물이 수집되는 폐기물 수집 용기를 포함하고, 상기 유로 형성부는 상기 제 2 유로 연결부를 상기 정제시료 수집용기 및 상기 폐기물 수집용기 중 어느 하나와 선택적으로 연결하는 배출 선택 밸브를 더 포함할 수 있다.In addition, the collection part includes a purification sample collection container in which the purified sample is collected, and a waste collection container in which the waste is collected, and the flow path forming part comprises any one of the purified sample collection container and the waste collection container in the second flow path connection part. It may further include a discharge selection valve that selectively connects with one.
또한, 상기 핵종 분리 장치는, 다수의 시약 중 임의의 시약을 선택하여 상기 제 1 유로로 공급하는 시약 공급부; 상기 시료를 상기 제 1 유로로 공급하는 시료 공급부 및 상기 제 1 유로에 배치되어 상기 제 1 유로를 상기 시약 공급부 및 상기 시료 공급부 중 어느 하나와 선택적으로 연결하는 유입 선택 밸브를 더 포함할 수 있다.In addition, the nuclide separation apparatus, a reagent supply unit for selecting any of a plurality of reagents and supplying them to the first flow path; A sample supply unit for supplying the sample to the first flow path and an inflow selection valve disposed in the first flow path to selectively connect the first flow path to any one of the reagent supply portion and the sample supply portion may be further included.
또한, 상기 시료 공급부는, 상기 시료가 담긴 시료 용기 내에 침투하는 니들; 상기 니들과 상기 유입 밸브 사이에 형성되는 시료 공급 유로 및 상기 니들을 이송하는 니들 이송부를 포함할 수 있다.In addition, the sample supply unit, a needle that penetrates into the sample container containing the sample; It may include a sample supply flow path formed between the needle and the inlet valve and a needle transfer unit for transferring the needle.
또한, 상기 시료 공급부는 상기 시료 공급 유로, 상기 제 1 유로 및 상기 제 2 유로의 세척을 위한 세척 용액이 담긴 세척 용액 용기를 더 포함하고, 상기 니들 이송부는 상기 니들을 이송하여 상기 세척 용액 용기 내로 침투시킬 수 있다.In addition, the sample supply unit further includes a washing solution container containing a washing solution for washing the sample supply channel, the first channel, and the second channel, and the needle transport unit transports the needle into the washing solution container. Can infiltrate.
또한, 상기 시료 공급부는 각기 다른 시료가 담긴 다수의 시료 용기를 포함하고, 상기 니들 및 상기 니들 이송부는 사전에 설정된 방식으로 제어되어, 다수개의 시료 용기 내의 시료 및 상기 세척 용액 용기 내의 세척 용액이 정해진 순서에 따라 상기 시료 공급 유로에 공급될 수 있다.In addition, the sample supply unit includes a plurality of sample containers containing different samples, and the needle and the needle transfer unit are controlled in a predetermined manner, so that a sample in a plurality of sample containers and a cleaning solution in the cleaning solution container are defined. In order to be supplied to the sample supply flow path.
또한, 상기 수집부는 상기 정제시료가 수집되는 정제시료 수집 용기 및 상기 폐기물이 수집되는 폐기물 수집 용기를 포함하고, 상기 세척 용액 용기 내의 잔존 세척 용액을 상기 폐기물 수집용기로 이송시키는 잔존 세척 용액 배출부를 더 포함할 수 있다.In addition, the collection unit further includes a purification sample collection container in which the purified sample is collected and a waste collection container in which the waste is collected, and a residual washing solution discharge unit for transferring the remaining washing solution in the washing solution container to the waste collection container. It can contain.
또한, 상기 잔존 세척 용액 배출부는, 상기 세척 용액 용기와 상기 폐기물 수집용기 사이에 형성되는 세척 용액 배출 유로 및 상기 잔존 세척 용액이 상기 상기 세척 용액 배출 유로로 유입되도록 압력을 공급하는 잔존 세척 용액 배출 펌프를 포함할 수 있다.In addition, the residual washing solution discharge unit, a washing solution discharge passage formed between the washing solution container and the waste collection container and the residual washing solution discharge pump for supplying pressure so that the residual cleaning solution flows into the washing solution discharge passage It may include.
본 발명의 일 실시예에 따르면, 컬럼 배치부에 배치된 임의의 컬럼과 연결 또는 분리시키는 유로 형성부 및 유로 형성부를 이송하는 이송부를 통해 다수의 컬럼에 대한 추출이 효율적으로 이루어질 수 있다.According to an embodiment of the present invention, extraction of a plurality of columns may be efficiently performed through a flow path forming part connecting or separating from any column disposed in the column arrangement part and a transport part transferring the flow passage forming part.
도 1은 본 발명의 일 실시예에 따른 핵종 분리 장치의 구성도이다.1 is a configuration diagram of a nuclide separation apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 컬럼 배치부의 구현예를 나타낸 도면이다.2 is a view showing an implementation of a column arrangement unit according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 핵종 분리 장치의 유로 형성부의 구현예를 나타낸 도면이다.Figure 3 is a view showing an embodiment of the flow path forming unit of the nuclide separation device according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 핵종 분리 장치에서의 컬럼의 배치와 유로 형성부의 이송을 간략하게 나타낸 도면이다.4 is a view briefly showing the arrangement of the columns and the transfer of the flow path forming unit in the nuclide separation apparatus according to an embodiment of the present invention.
도 5 및 도 6은 본 발명의 다른 일 실시예에 따른 핵종 분리 장치의 사시도이다.5 and 6 are perspective views of a nuclide separation apparatus according to another embodiment of the present invention.
도 7은 본 발명의 다른 일 실시예에 따른 핵종 분리 장치의 분리부의 유로 구조체의 사시도이다.7 is a perspective view of a flow path structure of a separation portion of a nuclide separation device according to another embodiment of the present invention.
도 8 및 도 9는 본 발명의 다른 일 실시예에 따른 핵종 분리 장치의 작동 과정을 나타낸 도면이다.8 and 9 are views showing the operation of the nuclide separation apparatus according to another embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 본 발명을 명확하게 설명하기 위해서 도면에서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art to which the present invention pertains can easily practice. The present invention can be implemented in many different forms and is not limited to the embodiments described herein. In order to clearly describe the present invention, parts not related to the description in the drawings are omitted, and like reference numerals are assigned to the same or similar elements throughout the specification.
본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this specification, terms such as “include” or “have” are intended to indicate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, and that one or more other features are present. It should be understood that the existence or addition possibilities of fields or numbers, steps, actions, components, parts or combinations thereof are not excluded in advance.
도 1은 본 발명의 일 실시예에 따른 핵종 분리 장치의 구성도이다.1 is a configuration diagram of a nuclide separation apparatus according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 핵종 분리 장치는 방사성폐기물, 해체폐기물의 방사성특성 평가를 위해 필요한 핵종 분석에 사용되기 위한 것으로, 특히, 알파/베타 핵종의 화학 분리를 위해 사용될 수 있다. 더욱 구체적으로, 본 발명의 일 실시예에 따른 핵종 분리 장치는 컬럼에 레진(Resin)을 충진한 후, 관심핵종과 방해이온을 분리하는 방식의 추출크로마토그래피법에 따른 화학 분리를 다수의 시료에 대해 연속적으로 수행할 수 있게 해준다.An apparatus for separating nuclides according to an embodiment of the present invention is intended to be used in the analysis of radionuclides required for the evaluation of radioactive properties of radioactive waste and decommissioned waste, and may be used for chemical separation of alpha / beta nuclides. More specifically, the nuclide separation apparatus according to an embodiment of the present invention, after filling the column with resin (Resin), chemical separation according to the extraction chromatography method of separating the nuclides of interest and the interference ions to a number of samples It can be performed continuously.
도 1을 참조하면, 본 발명의 일 실시예에 따른 핵종 분리 장치(1a)는 컬럼 배치부(10), 제 1 유로(20), 제 2 유로(30), 시약 공급부(40), 시료 공급부(50), 유입 선택 밸브(60), 유로 형성부(70), 메인 펌프(80), 이송부(90), 수집부(100), 세척 용액 공급부(110) 및 잔존 세척 용액 배출부(120)를 포함한다.1, the nuclide separation apparatus 1a according to an embodiment of the present invention includes a column arrangement unit 10, a first flow path 20, a second flow path 30, a reagent supply unit 40, and a sample supply unit (50), inlet selection valve 60, flow path forming unit 70, main pump 80, transfer unit 90, collection unit 100, washing solution supply unit 110 and residual washing solution discharge unit 120 It includes.
컬럼 배치부(10)에는 다수의 컬럼(C1~Cn)이 배치된다. 컬럼 배치부(10)는 다수개의 시료에 대한 분리가 연속적으로 이루어질 수 있도록 다수개의 컬럼(C1~Cn)이 동시에 배치될 수 있게 해준다.A plurality of columns C1 to Cn are arranged in the column arrangement unit 10. The column arrangement unit 10 allows a plurality of columns C1 to Cn to be simultaneously disposed so that separation of a plurality of samples can be continuously performed.
컬럼 배치부(10)는 배치된 컬럼의 상부와 하부를 노출시키도록 상하로 관통된 형태로 형성된 다수개의 컬럼 배치홀(11)을 구비하는 트레이로 이루어질 수 있다. 도 2를 참조하면, 본 발명의 일 실시예에서, 컬럼 배치부(10)는 사각의 트레이로 형성되어 있다. 이밖에도 후술하는 이송부(90)의 형태에 따라 컬럼 배치부(10)는 환형 등 다른 형태의 트레이로 이루어질 수도 있다.The column arranging unit 10 may be formed of a tray having a plurality of column arranging holes 11 formed in a form penetrated up and down to expose the upper and lower parts of the arranged column. 2, in one embodiment of the present invention, the column arrangement 10 is formed of a rectangular tray. In addition, depending on the shape of the transfer unit 90 to be described later, the column arrangement unit 10 may be formed of a tray of another type such as an annular shape.
컬럼 배치부(10)의 각 컬럼 배치홀(11)에는 컬럼(C1~Cn)이 하나씩 배치된다. 컬럼(C1~Cn)은 시약과 시료가 유입되는 부재이다. 컬럼(C1~Cn)에는 레진이 충진되어 있으며, 그 내부에 시약과 시료가 유입되어 관심 핵종을 포함하는 정제시료와 그밖의 폐기물의 분리가 이루어지게 된다.One column C1 to Cn is disposed in each column arrangement hole 11 of the column arrangement unit 10. Columns (C1 to Cn) are members into which reagents and samples are introduced. Resin is filled in the columns (C1 to Cn), and reagents and samples are introduced therein to separate the purified sample containing the nuclide of interest and other wastes.
제 1 유로(20)는 컬럼 배치부(10)에 배치된 컬럼에 유입될 시약 또는 시료가 이송되는 유로이다. 제 1 유로(20)는 시약 공급부(40), 시료 공급부(50) 및 유입 선택 밸브(60)와 연결된다. 유입 선택 밸브(60)의 작동에 따라 제 1 유로(20)는 시약 공급부(40) 및 시료 공급부(50) 중 어느 하나와 선택적으로 연결될 수 있다.The first flow path 20 is a flow path through which reagents or samples to be introduced into the column disposed in the column arrangement unit 10 are transferred. The first flow path 20 is connected to the reagent supply unit 40, the sample supply unit 50 and the inflow selection valve 60. Depending on the operation of the inflow selection valve 60, the first flow path 20 may be selectively connected to any one of the reagent supply unit 40 and the sample supply unit 50.
제 2 유로(30)는 컬럼에서 배출되는 정제시료 또는 폐기물을 수집부(100)로 전달한다. 제 2 유로(30)는 일단이 유로 형성부(70)와 연결되고, 타단이 수집부(100)와 연결된다.The second flow path 30 delivers the purified sample or waste discharged from the column to the collection unit 100. The second flow path 30 has one end connected to the flow path forming part 70 and the other end connected to the collecting part 100.
제 2 유로(30)는 컬럼에서 배출되는 정제시료 또는 폐기물이 유입되는 제 2-1 유로, 유로 형성부(70)의 배출 선택 밸브(74)와 수집부(100)의 정제시료 수집 용기(101)를 연결하는 제 2-2 유로(32) 및 유로 형성부(70)의 배출 선택 밸브(74)와 수집부(100)의 폐기물 수집 용기(102)를 연결하는 제 2-3 유로(33)를 포함한다.The second flow path 30 is a purification sample collection container 101 of the discharge selection valve 74 of the flow path forming part 70 and the collection part 100 of the 2-1 flow path through which the purification sample or waste discharged from the column flows. 2-2 flow path 32 connecting the) and the discharge selection valve 74 of the flow path forming portion 70 and the 2-3 flow path 33 connecting the waste collection container 102 of the collecting portion 100 It includes.
시약 공급부(40)는 다수의 시약 중 임의의 시약을 선택하여 제 1 유로(20)로 공급한다. 본 발명의 일 실시예에서, 시약 공급부(40)는 6개의 시약(R1~R6)을 공급할 수 있고, 시약 선택 밸브(41)는 이들 가운데 한가지 시약을 선택하여 제 1 유로로 공급한다.The reagent supply unit 40 selects any of a plurality of reagents and supplies them to the first flow path 20. In one embodiment of the present invention, the reagent supply unit 40 may supply six reagents R1 to R6, and the reagent selection valve 41 selects one of them and supplies them to the first flow path.
본 발명의 일 실시예에 따른 핵종 분리 장치에서 3가지 시약이 사용된다고 할 때, 첫번째 시약(R1)은 컬럼의 최적화를 위한 것이고, 두번째 시약(R2)은 세척 및 방해핵종 제거를 위한 것이고, 세번째 시약(R3)은 관심핵종을 추출하기 위한 것이 될 수 있다.Assuming that three reagents are used in the nuclide separation apparatus according to an embodiment of the present invention, the first reagent (R1) is for column optimization, the second reagent (R2) is for washing and removal of interfering nuclides, and the third Reagent (R3) may be for extracting the nuclide of interest.
한편, 방해핵종이 많은 경우 더 많은 시약이 세척 및 방해핵종 제거를 위해 사용될 수 있고, 이에 따라 더 많은 시약이 사용될 수도 있다. 더 나아가, 시약 공급부(40)가 공급할 수 있는 시약의 개수 또는 시약 선택 밸브(41)의 형태는 필요에 따라 변경될 수 있다.On the other hand, when there are many interfering nuclides, more reagents may be used for washing and removing interfering nuclides, and accordingly, more reagents may be used. Furthermore, the number of reagents that the reagent supply unit 40 can supply or the form of the reagent selection valve 41 may be changed as necessary.
시료 공급부(50)는 시료를 제 1 유로(20)로 공급한다. 여기서, 시료는 방사성폐기물, 해체폐기물로부터 얻어진 것으로 관심핵종의 포함 여부 및 포함량 등이 판별될 필요가 있는 대상이다.The sample supply unit 50 supplies the sample to the first flow path 20. Here, the sample is obtained from radioactive waste, decommissioning waste, and is an object that needs to be determined whether the nuclide of interest is included and the amount included.
시료 공급부(50)는 시료가 담긴 다수개의 시료 용기(S1~Sn), 시료가 담긴 시료 용기 내에 침투하는 니들(51), 니들(51)과 유입 선택 밸브(60) 사이에 형성되는 시료 공급 유로(52) 및 니들을 이송하는 니들 이송부(53)를 포함할 수 있다.The sample supply unit 50 includes a plurality of sample containers S1 to Sn containing a sample, a needle 51 penetrating into the sample container containing the sample, a sample supply flow path formed between the needle 51 and the inflow selection valve 60 It may include a 52 and a needle transfer unit 53 for transferring the needle.
어느 하나의 시료 용기에 담긴 시료가 제 1 유로(20)로 공급되고, 관심핵종의 추출이 이루어진 경우, 니들 이송부(53)는 니들(51)을 이송하여 다른 시료 용기 내에 담긴 시료가 제 1 유로(20)로 공급될 수 있게 해준다.When the sample contained in any one sample container is supplied to the first flow path 20, and the extraction of the nuclides of interest is made, the needle transfer unit 53 transfers the needle 51 so that the sample contained in the other sample container is the first flow path (20).
시료 공급부(50)는 유로의 세척을 위한 세척 용액이 담긴 세척 용액 용기(V)를 더 포함할 수 있다. 정확한 분석을 위해서는 하나의 시료에 대한 관심핵종 추출이 이루어진 후 다른 시료를 제 1 유로(20)에 공급하기 전에 시료 공급 유로(52), 제 1 유로(20) 및 제 2 유로(30) 등을 세척하는 것이 필요한데, 니들 이송부(53)는 니들(51)을 이송하여 세척 용액 용기(V) 내로 침투시킬 수 있다.The sample supply unit 50 may further include a washing solution container V containing a washing solution for washing the flow path. For accurate analysis, after extracting a nuclide of interest for one sample, before supplying another sample to the first flow path 20, the sample supply flow path 52, the first flow path 20, the second flow path 30, etc. Although it is necessary to wash, the needle transfer unit 53 may transport the needle 51 to penetrate into the washing solution container V.
한편, 시료 공급부(50)는 컴퓨터 프로그램에 의해 자동화될 수 있다. 예를 들면, 니들(51) 및 니들 이송부(53)는 다수의 시료에 대해 연속적인 관심핵종의 분리가 진행되도록 컴퓨터 프로그램에 의해 제어됨으로써 다수개의 시료 용기(S1~Sn) 내의 시료 및 세척 용액 용기(V) 내의 세척 용액을 정해진 순서에 따라 유로에 공급하도록 구동될 수 있다.Meanwhile, the sample supply unit 50 may be automated by a computer program. For example, the needle 51 and the needle transfer unit 53 are controlled by a computer program to continuously separate the nuclides of interest for a plurality of samples, so that the sample and washing solution containers in the plurality of sample containers S1 to Sn It may be driven to supply the washing solution in (V) to the flow path in a predetermined order.
유입 선택 밸브(60)는 제 1 유로(20)를 시약 공급부(40) 및 시료 공급부(50) 중 어느 하나와 선택적으로 연결한다. 유입 선택 밸브(60)는 제 1 유로(20)의 일단에 연결되어 제 1 유로(20)를 시약 공급부(40) 또는 시료 공급부(50)와 연결할 수 있다.The inflow selection valve 60 selectively connects the first flow path 20 to any one of the reagent supply unit 40 and the sample supply unit 50. The inflow selection valve 60 is connected to one end of the first flow path 20 to connect the first flow path 20 to the reagent supply unit 40 or the sample supply unit 50.
유로 형성부(70)는 제 1 유로(20) 및 제 2 유로(30)를 컬럼 배치부(10)에 배치된 임의의 컬럼과 연결 또는 분리시킨다. 본 발명의 일 실시예에에서, 유로 형성부(70)는 제 1 유로 연결부(71), 제 2 유로 연결부(72), 구동부(73) 및 배출 선택 밸브(74)를 포함한다.The flow path forming unit 70 connects or separates the first flow path 20 and the second flow path 30 from any columns arranged in the column arrangement unit 10. In one embodiment of the present invention, the flow path forming portion 70 includes a first flow path connection portion 71, a second flow path connection portion 72, a driving portion 73 and a discharge selection valve 74.
제 1 유로 연결부(71)는 컬럼의 상부에 배치되어 제 1 유로(20)와 컬럼의 상부를 연결 또는 분리시킨다. 제 2 유로 연결부(73)는 컬럼의 하부에 배치되어 제 2 유로(30)와 컬럼의 하부를 연결 또는 분리시킨다. 구동부(73)는 제 1 유로(20)와 컬럼의 상부를 연결 또는 분리시키기 위해 제 1 유로 연결부(71)를 하강 또는 상승시키고, 제 2 유로(30)와 컬럼의 하부를 연결 또는 분리시키기 위해 제 2 유로 연결부(72)를 상승 또는 하강시킨다.The first flow path connecting portion 71 is disposed on the top of the column to connect or separate the first flow path 20 and the top of the column. The second flow path connection portion 73 is disposed at the bottom of the column to connect or separate the second flow path 30 and the bottom of the column. The driving unit 73 lowers or raises the first flow path connecting portion 71 to connect or separate the first flow path 20 and the upper portion of the column, and connects or separates the second flow path 30 and the lower portion of the column. The second flow path connecting portion 72 is raised or lowered.
한편, 배출 선택 밸브(74)는 제 2 유로 연결부(72)를 수집부(100)의 정제시료 수집용기(101) 및 폐기물 수집용기(102) 중 어느 하나와 선택적으로 연결한다. 더욱 상세하게, 배출 선택 밸브(74)는 컬럼의 최적화, 방해핵종 분리 과정에서는 제 2 유로 연결부(72)를 폐기물 수집용기(102)로 연결하고, 관심핵종 추출 과정에서는 제 2 유로 연결부(72)를 정제시료 수집용기(101)와 연결한다.On the other hand, the discharge selection valve 74 selectively connects the second flow path connecting portion 72 with any one of the purification sample collection container 101 and the waste collection container 102 of the collection unit 100. More specifically, the discharge selection valve 74 connects the second flow path connection portion 72 to the waste collection container 102 in the process of optimizing the column and separating the nuclides, and the second flow path connection portion 72 in the process of extracting the nuclides of interest. Is connected to the purified sample collection container 101.
도 3은 본 발명의 일 실시예에 따른 핵종 분리 장치의 유로 형성부의 구현예를 나타낸 도면이다.Figure 3 is a view showing an embodiment of the flow path forming unit of the nuclide separation device according to an embodiment of the present invention.
도 3을 참조하면, 유로 형성부(70)는 'ㄷ'모양으로 형성되어 일측의 상단과 하단 사이에 컬럼의 배치가 가능한 형태의 플레이트(701) 상에 구현되어 있다. 제 1 유로 연결부(71), 제 2 유로 연결부(72) 및 배출 선택 밸브(74)는 구동부(73)와 연결되어 배치된다.Referring to FIG. 3, the flow path forming unit 70 is formed in a 'c' shape and is implemented on a plate 701 in a form in which a column can be arranged between the top and bottom of one side. The first flow path connection portion 71, the second flow path connection portion 72, and the discharge selection valve 74 are disposed in connection with the driving portion 73.
구동부(73)는 플레이트(701)의 타측에 상하 방향으로 구비된 가이드 레일(731), 가이드 레일(731) 상부에서 상승 및 하강 가능한 형태로 배치되는 상부 구동체(732) 및 가이드 레일(731) 하부에서 상승 및 하강 가능한 형태로 배치되는 하부 구동체(733)를 포함한다. 이때, 상부 구동체(732) 및 하부 구동체(733)는 서보 모터를 포함할 수 있다.The driving unit 73 is a guide rail 731 provided in the vertical direction on the other side of the plate 701, the upper drive body 732 and the guide rail 731 disposed in a form that can be raised and lowered from the top of the guide rail 731 It includes a lower driving body 733 disposed in a form that can be raised and lowered from the bottom. At this time, the upper driving body 732 and the lower driving body 733 may include a servo motor.
상부 구동체(732) 중 플레이트(701)의 일측으로 연장된 부분에 제 1 유로 연결부(71)가 결합되고, 하부 구동체(733) 중 플레이트(701)의 일측으로 연장된 부분에 제 2 유로 연결부(72)가 결합된다. 또한, 배출 선택 밸브(74)는 하부 구동체(733)에 결합되어 하부 구동체(733)와 일체로 거동할 수 있다.The first flow path connection portion 71 is coupled to a portion of the upper drive body 732 that extends to one side of the plate 701, and a second flow path to a portion of the lower drive body 733 that extends to one side of the plate 701. The connection portion 72 is coupled. In addition, the discharge selection valve 74 may be coupled to the lower driving body 733 to be integrally operated with the lower driving body 733.
상부 구동체(732)가 하강하고 하부 구동체(733)가 상승하면 제 1 유로 연결부(71)가 및 제 2 유로 연결부(72)가 컬럼의 상부 및 하부에 각각 결합하면서 컬럼과 제 1 유로(20) 및 제 2 유로(30)의 연결이 이루어진다. 이와 같이 연결이 이루어진 상태에서, 컬럼에 시약 또는 시료가 공급되고 컬럼의 최적화, 방해핵종 제거, 관심핵종의 추출 및 세척 등이 이루어진다.When the upper drive body 732 descends and the lower drive body 733 rises, the first flow path connection portion 71 and the second flow path connection portion 72 are coupled to the upper and lower portions of the column, respectively, and the column and the first flow path ( 20) and the connection of the second flow path 30 is made. In this state, the reagent or sample is supplied to the column, and optimization of the column, removal of interfering nuclides, extraction and washing of the nuclides of interest are performed.
상부 구동체(732)가 상승하고 하부 구동체(733)가 하강하면 제 1 유로 연결부(71)가 및 제 2 유로 연결부(72)가 컬럼의 상부 및 하부에서 각각 분리되면서 컬럼과 제 1 유로(20) 및 제 2 유로(30)의 분리가 이루어진다. 이와 같이 분리가 이루어진 상태에서, 유로 형성부(70)는 이송부(90)에 의해 컬럼 배치부(10)에 배치된 다른 임의의 컬럼으로 이송될 수 있다.When the upper drive body 732 rises and the lower drive body 733 descends, the first flow path connection portion 71 and the second flow path connection portion 72 are separated from the upper and lower portions of the column, respectively, and the column and the first flow path ( 20) and the second flow path 30 are separated. In this state of separation, the flow path forming unit 70 may be transferred to any other column disposed in the column arrangement unit 10 by the transfer unit 90.
메인 펌프(80)는 시약 또는 시료가 제 1 유로(20)로 유입되고, 컬럼에서 정제시료 또는 폐기물이 배출되도록 압력을 공급한다. 메인 펌프(80)는 제 1 유로(20) 상에 배치될 수 있다.The main pump 80 supplies pressure so that the reagent or sample flows into the first flow path 20 and the purified sample or waste is discharged from the column. The main pump 80 may be disposed on the first flow path 20.
유입 선택 밸브(60)가 제 1 유로(20)를 시약 공급부(40)와 연결한 상태에서 메인 펌프(80)는 시약을 제 1 유로(20)로 공급하고, 유입 선택 밸브(60)가 제 1 유로(20)를 시료 공급부(50)와 연결한 상태에서 메인 펌프(80)는 시료를 제 1 유로(20)로 공급한다.In the state where the inflow selection valve 60 connects the first flow passage 20 with the reagent supply part 40, the main pump 80 supplies the reagent to the first flow passage 20, and the inflow selection valve 60 is removed. The main pump 80 supplies the sample to the first flow path 20 in a state where one flow path 20 is connected to the sample supply portion 50.
이송부(90)는 유로 형성부(70)가 컬럼 배치부(10)에 배치된 다른 임의의 컬럼과 제 1 유로(20) 및 제 2 유로(30)를 연결 또는 분리시킬 수 있도록 유로 형성부(70)를 이송한다.The transfer part 90 is a flow path forming part (70) so that the flow path forming part (70) can connect or separate the first flow passage (20) and the second flow passage (30) from any other column arranged in the column arrangement part (10). 70).
본 발명의 일 실시예서, 이송부(90)는 유로 형성부(70)가 제 1 유로(20) 및 제 2 유로(30)와 분리된 상태에서 유로 형성부(70)를 전후좌우로 이송시킬 수 있다. 유로 형성부(70)가 도 3과 같은 방식으로 구현되었을 때, 이송부(90)는 유로 형성부(70)의 플레이트(701)를 볼스크류 방식, 모터와 가이드 레일을 이용한 방식 등을 통해 전후좌우로 이송시킬 수 있다. 즉, 이송부(90)는 볼스크류 구조체, 모터와 가이드 레일 구조체 등으로 이루어질 수 있다.In one embodiment of the present invention, the transfer unit 90 may transfer the flow path forming unit 70 to the front and rear, left and right in a state in which the flow path forming portion 70 is separated from the first flow path 20 and the second flow path 30. have. When the flow path forming unit 70 is implemented in the same manner as in FIG. 3, the transfer unit 90 moves the plate 701 of the flow path forming unit 70 through a ball screw method, a method using a motor and a guide rail, and the like. Can be transferred to. That is, the transfer unit 90 may be formed of a ball screw structure, a motor and a guide rail structure.
도 4는 본 발명의 일 실시예에 따른 핵종 분리 장치에서의 컬럼의 배치와 유로 형성부의 이송을 간략하게 나타낸 도면이다.4 is a view briefly showing the arrangement of the columns and the transfer of the flow path forming unit in the nuclide separation apparatus according to an embodiment of the present invention.
도 4를 참조하면, 이송부(90)는 하나의 컬럼(C1)에 대한 관심핵종의 추출이 이루어지고, 유로 형성부(70)의 제 1 유로 연결부(71) 및 제 2 유로 연결부(72)가 컬럼(C1)과 분리된 상태에서 유로 형성부(70)를 X축 또는 Y축을 따라 이송할 수 있다. 이에 따라 유로 형성부(70)는 하나의 컬럼(C1)과 X축 방향으로 인접하여 배치된 컬럼(C2) 또는 Y축 방향으로 인접하여 배치된 컬럼(C3)으로 이송되며, 해당 컬럼(C2 또는 C3)과 제 1 유로(20) 및 제 2 유로(30)를 연결할 수 있다. 이에 따라 다수의 컬럼에 대한 연속적인 추출이 효율적으로 진행될 수 있다.Referring to FIG. 4, in the transfer unit 90, extraction of a nuclide of interest for one column C1 is performed, and the first flow path connection portion 71 and the second flow path connection portion 72 of the flow path forming portion 70 are In a state separated from the column C1, the flow path forming unit 70 may be transported along the X-axis or Y-axis. Accordingly, the flow path forming unit 70 is transferred to one column C1 and a column C2 arranged adjacent to the X-axis direction or a column C3 arranged adjacent to the Y-axis direction, and the corresponding column C2 or C3) and the first flow path 20 and the second flow path 30 may be connected. Accordingly, continuous extraction for a plurality of columns can be efficiently performed.
수집부(100)는 제 2 유로(30)를 통해 배출되는 정제시료 또는 폐기물을 수집하는 부분이다. 수집부(100)는 정제시료가 수집되는 정제시료 수집 용기(101) 및 폐기물이 수집되는 폐기물 수집 용기(102)를 포함한다.The collection unit 100 is a part for collecting purified samples or waste discharged through the second flow path 30. The collection unit 100 includes a purified sample collection container 101 in which purified samples are collected and a waste collection container 102 in which wastes are collected.
본 발명의 일 실시예에서, 정제시료 수집 용기(101)는 컬럼 배치부(10)에 배치된 컬럼과 일대일로 대응되도록 배치될 수 있다. 즉, 정제시료 수집 용기(101)는 컬럼 배치부(10)의 컬럼 위치에 대응되는 위치에 정제시료 수집 용기 삽입홀을 구비한 트레이 형태의 정제시료 수집부(미도시)에 배치될 수 있다. 이와 같은 배치를 통해 다수의 시료에 대한 연속적인 관심핵종의 분리가 더욱 효율적으로 진행될 수 있다.In one embodiment of the present invention, the purification sample collection container 101 may be arranged to correspond one-to-one with the column disposed in the column arrangement unit 10. That is, the purification sample collection container 101 may be arranged in a tray-type purification sample collection unit (not shown) having a purification sample collection container insertion hole at a position corresponding to a column position of the column arrangement unit 10. Through this arrangement, the separation of successive nuclides for multiple samples can be more efficiently performed.
세척 용액 공급부(110)는 시료 공급부(50)의 세척 용액 용기(V)로 세척 용액을 공급한다. 세척 용액 공급부(110)는 세척 용액 탱크(111), 세척 용액 공급 유로(112) 및 세척 용액 공급 펌프(113)를 포함한다.The washing solution supply unit 110 supplies the washing solution to the washing solution container V of the sample supply unit 50. The washing solution supply unit 110 includes a washing solution tank 111, a washing solution supply flow passage 112, and a washing solution supply pump 113.
본 발명의 일 실시예에서, 세척 용액 용기(V)는 내측 용기(V1)와 내측 용기(V1)를 둘러싸며 이루어진 외측 용기(V2)를 포함하여 이루어질 수 있다. 내측 용기(V1)는 시료 공급 유로(52), 제 1 유로(20) 및 제 2 유로(30)의 세척을 위한 세척 용액이 저장되는 부분이고, 외측 용기(V2)는 내측 용기(V1)에서 넘치는 세척 용액이 저장되는 부분이다.In one embodiment of the present invention, the washing solution container V may include an inner container V1 and an outer container V2 surrounding the inner container V1. The inner container V1 is a portion in which the cleaning solution for washing the sample supply channel 52, the first channel 20 and the second channel 30 is stored, and the outer container V2 is the inner container V1. This is where the excess cleaning solution is stored.
세척 용액 용기(V)가 위와 같이 구성됨을 전제로 세척 용액 공급 유로(112)는 세척 용액 탱크(111)에서 세척 용액 용기(V)의 내측 용기(V1)로 형성되어 있다. 즉, 세척 용액 공급 펌프(113)의 작동에 따라 세척 용액 탱크(111) 내의 세척 용액은 내측 용기(V1)로 공급된다.On the premise that the cleaning solution container V is configured as above, the cleaning solution supply flow passage 112 is formed as the inner container V1 of the cleaning solution container V in the cleaning solution tank 111. That is, the washing solution in the washing solution tank 111 is supplied to the inner container V1 according to the operation of the washing solution supply pump 113.
잔존 세척 용액 배출부(120)는 세척 용액 용기(V) 내의 잔존 세척 용액을 폐기물 수집용기(102)로 이송시킨다. 여기서, 잔존 세척 용액은 내측 용기(V1)에서 넘쳐 외측 용기(V2)에 남아 있는 세척 용액을 의미한다.The remaining washing solution discharge unit 120 transfers the remaining washing solution in the washing solution container V to the waste collection container 102. Here, the remaining washing solution means a washing solution overflowing from the inner container V1 and remaining in the outer container V2.
일단 1회 세척이 이루어지고, 하나의 시료에 대한 관심핵종의 추출이 이루어진 후 다른 시료에 대한 관심핵종 추출 전 세척이 수행될 때, 이전 세척 시 남아있는 잔존 세척 용액을 사용하는 것은 오염의 위험이 있으며, 세척 용액 탱크(111)에서 새롭게 공급되는 세척 용액을 사용하는 것이 바람직하다.Once washing is performed once, and the extraction of the nuclides of interest for one sample is performed, and then washing before extraction of the nuclides of interest for another sample, using the remaining washing solution remaining in the previous washing is a risk of contamination. There is, it is preferable to use a cleaning solution supplied freshly from the cleaning solution tank 111.
잔존 세척 용액 배출부(120)는 세척 용액 용기(V)의 외측 용기(V2) 내의 잔존 세척 용액을 수집부(100)의 폐기물 수집용기(102)로 이송시킴으로써 다음 세척 시 오염의 가능성을 차단한다.The remaining washing solution discharge unit 120 blocks the possibility of contamination during the next washing by transferring the remaining washing solution in the outer container V2 of the washing solution container V to the waste collection container 102 of the collection unit 100. .
잔존 세척 용액 배출부(120)는 세척 용액 용기(V)와 폐기물 수집용기(102) 사이에 형성되는 세척 용액 배출 유로(121) 및 세척 용액 배출 유로(121)에 배치되어 잔존 세척 용액이 세척 용액 배출 유로(121)로 유입되도록 압력을 공급하는 잔존 세척 용액 배출 펌프(122)를 포함할 수 있다.The remaining washing solution discharge unit 120 is disposed in the washing solution discharge passage 121 and the washing solution discharge passage 121 formed between the washing solution container V and the waste collection container 102 so that the residual washing solution is the washing solution. It may include a residual washing solution discharge pump 122 for supplying pressure to flow into the discharge passage 121.
본 발명의 일 실시예에 따르면, 잔존 세척 용액이 별도의 폐기물 수집용기가 아닌 수집부(100)의 폐기물 수집용기(102)로 배출된다. 이에 따라 장치의 크기를 줄일 수 있으며, 공간 효율성을 확보할 수 있다.According to an embodiment of the present invention, the residual washing solution is discharged to the waste collection container 102 of the collection unit 100 rather than a separate waste collection container. Accordingly, the size of the device can be reduced, and space efficiency can be secured.
본 발명의 일 실시예에 따른 핵종 분리 장치의 작동 과정을 설명하면 다음과 같다.When explaining the operation of the nuclide separation device according to an embodiment of the present invention.
우선, 첫번째 시료의 분석을 시작하는 경우 유로 형성부(70)에 의해 제 1 유로(20), 컬럼 및 제 2 유로(30)가 연결된 상태에서, 유입 선택 밸브(60)가 시료 공급부(50)와 연결된다. 이때, 시료 공급부(50)를 통해 세척 용액이 공급되어 제 1 유로(20), 메인 펌프(80), 컬럼, 제 2 유로(30), 배출 선택 밸브(74)에 대한 세척이 진행된다.First, when the analysis of the first sample is started, in the state in which the first flow path 20, the column, and the second flow path 30 are connected by the flow path forming unit 70, the inflow selection valve 60 is the sample supply unit 50 It is connected with. At this time, the washing solution is supplied through the sample supply unit 50 to wash the first flow path 20, the main pump 80, the column, the second flow path 30, and the discharge selection valve 74.
세척 과정에서 세척 용액 공급 펌프(113)의 작동에 따라 세척 용액 탱크(111) 내의 세척 용액이 내측 용기(V1)로 공급되고, 외측 용기(V2) 내의 잔존 세척 용액은 세척 용액 배출 펌프(122)의 작동에 따라 세척 용액 배출 유로(121)를 통해 수집부(100)의 폐기물 수집 용기(102)로 배출된다.In the washing process, the washing solution in the washing solution tank 111 is supplied to the inner container V1 according to the operation of the washing solution supply pump 113, and the remaining washing solution in the outer container V2 is the washing solution discharge pump 122 According to the operation of the washing solution discharged through the flow path 121 is discharged to the waste collection container 102 of the collection unit 100.
한편, 세척 과정의 마지막에 시료 공급부(50)의 니들(51)을 세척 용액 용기(V) 외부로 이송하여 공기가 유로로 흡입되도록 함으로써 유로의 건조가 이루어지도록 할 수 있다.On the other hand, at the end of the washing process, the needle 51 of the sample supply unit 50 is transferred to the outside of the washing solution container V so that air is sucked into the flow path so that the flow path is dried.
다음으로, 유입 선택 밸브(60)가 시약 공급부(40)와 연결되고, 메인 펌프(80)의 작동에 따라 컬럼의 최적화를 위한 시약 즉, 첫번째 시약이 컬럼으로 공급되며, 컬럼 하부로 배출되는 폐기물은 수집부(100)의 폐기물 수집 용기(102)로 수집된다.Next, the inlet selection valve 60 is connected to the reagent supply unit 40, the reagent for optimization of the column according to the operation of the main pump 80, that is, the first reagent is supplied to the column, the waste discharged to the bottom of the column Silver is collected in the waste collection container 102 of the collection unit 100.
이어서, 유입 선택 밸브(60)가 시료 공급부(50)와 연결되고, 메인 펌프(80)의 작동에 따라 컬럼에 시료가 주입된다. 또한, 유입 선택 밸브(60)가 다시 시약 공급부(40)와 연결되고, 메인 펌프(80)의 작동에 따라 방해핵종의 제거를 위한 하나 이상의 시약이 컬럼에 공급되며, 컬럼 하부로 배출되는 폐기물은 수집부(100)의 폐기물 수집 용기(102)로 수집된다.Subsequently, the inflow selection valve 60 is connected to the sample supply unit 50, and the sample is injected into the column according to the operation of the main pump 80. In addition, the inlet selection valve 60 is connected to the reagent supply unit 40 again, and according to the operation of the main pump 80, one or more reagents for the removal of disturbed nuclides are supplied to the column, and waste discharged to the bottom of the column Collected in the waste collection container 102 of the collection unit 100.
그 후에, 시료 공급부(50)는 관심핵종의 분리를 위한 시약을 공급하며, 메인 펌프(80)의 작동에 따라 컬럼 하부로 정제시료가 배출된다. 이때, 배출 선택 밸브(74)는 정제시료가 수집부(100)의 정제시료 수집 용기(101)로 유입되도록 유로를 형성한다.Thereafter, the sample supply unit 50 supplies reagents for separation of the nuclides of interest, and the purified sample is discharged to the bottom of the column according to the operation of the main pump 80. At this time, the discharge selection valve 74 forms a flow path so that the purified sample flows into the purified sample collection container 101 of the collection unit 100.
그 후에, 유입 선택 밸브(60)가 시료 공급부(50)와 연결되고 다시금 세척 용액을 이용한 유로의 세척이 전술한 바와 같이 진행된다.After that, the inflow selection valve 60 is connected to the sample supply unit 50 and again the washing of the flow path using the washing solution proceeds as described above.
마지막으로, 세척이 이루어진 후에는 유로 형성부(70)와 제 1 유로(20), 컬럼 및 제 2 유로(30)가 분리된 상태에서, 이송부(90)에 의해 유로 형성부(70)가 다른 컬럼으로 이송된다. 유로 형성부(70)가 다른 컬럼으로 이송된 후에는 유로 형성부(70)에 의해 제 1 유로(20), 다른 컬럼 및 제 2 유로(30)가 연결되고 컬럼의 최적화부터 진행될 수 있다.Finally, after washing, the flow path forming part 70 and the first flow passage 20, the column and the second flow passage 30 are separated from each other, and the flow path forming part 70 is different by the transfer part 90. It is transferred to the column. After the flow path forming unit 70 is transferred to another column, the first flow path 20, the other column, and the second flow path 30 are connected by the flow path forming unit 70 and may proceed from column optimization.
이상 살펴본 바와 같이, 본 발명의 일 실시예에 따른 핵종 분리 장치(1a)는 제 1 유로 연결부(71) 및 제 2 유로 연결부(72)가 구동되면서 컬럼의 상부 및 하부를 다른 구성들과 연결 또는 해제함으로써 유로를 형성 또는 해제한다. 또한, 이송부(90)는 유로가 해제된 상태에서 유로 형성부(70)를 이송한다. 이에 따라 임의의 컬럼을 시료와 연결하고 추출이 완료된 후 다른 컬럼이 시료와 연결되도록 함으로써 추출이 연속적으로 이루어질 수 있다.As described above, the nuclide separation apparatus 1a according to an embodiment of the present invention connects the upper and lower portions of the column with other components while the first flow path connection portion 71 and the second flow path connection portion 72 are driven, or By releasing, the flow path is formed or released. In addition, the transfer unit 90 transfers the flow path forming unit 70 while the flow path is released. Accordingly, extraction may be continuously performed by connecting an arbitrary column to the sample and connecting another column to the sample after extraction is completed.
이하에서는 본 발명의 다른 일 실시예에 따른 핵종 분리 장치(1b)에 관하여 살펴본다.Hereinafter, a nuclide separation device 1b according to another embodiment of the present invention will be described.
도 5 및 도 6에는 본 발명의 다른 일 실시예에 따른 핵종 분리 장치의 사시도가 도시되어 있다. 본 발명의 다른 일 실시예에 따른 핵종 분리 장치(1b)는 본 발명의 일 실시예와 마찬가지로 방사성폐기물, 해체폐기물의 방사성특성 평가를 위해 필요한 핵종 분석에 사용되기 위한 것으로, 특히, 알파/베타 핵종의 화학 분리를 위해 사용될 수 있다.5 and 6 are perspective views of a nuclide separation device according to another embodiment of the present invention. The nuclide separation apparatus 1b according to another embodiment of the present invention is for use in the analysis of nuclides required for the evaluation of radioactive properties of radioactive wastes and decommissioned wastes, as in the embodiment of the present invention, in particular, alpha / beta nuclides It can be used for chemical separation of.
도 5 및 도 6을 참조하면, 본 발명의 다른 일 실시예에 따른 핵종 분리 장치(1b)는 컬럼(1011)이 배치되는 컬럼 홀딩부(1010), 수집 튜브(1021)가 배치되는 수집 튜브 홀딩부(1020), 폐기물 배출부(1030), 분리부(1040), 연결부(1050) 및 이송부(1060)를 포함한다.5 and 6, the nuclide separation apparatus 1b according to another embodiment of the present invention includes a column holding part 1010 in which a column 1011 is disposed, and a collection tube holding in which a collection tube 1021 is disposed. It includes a portion 1020, a waste discharge portion 1030, a separation portion 1040, a connection portion 1050 and a transfer portion 1060.
컬럼(1011)은 시약과 시료가 유입되는 부재이다. 컬럼(1011)에는 레진이 충진되어 있으며, 그 내부에 시약과 시료가 유입되어 관심 핵종을 포함하는 정제시료와 그밖의 폐기물의 분리가 이루어지게 된다. 시료 및 시약은 각각 별도의 시료 탱크(미도시) 및 시약 탱크(미도시)에 저장되어 있을 수 있으며, 이들이 펌프(미도시)에 의해 이송되어 컬럼(1011)으로 유입될 수 있다.The column 1011 is a member through which reagents and samples are introduced. The column 1011 is filled with resin, and reagents and samples are introduced therein to separate the purification sample containing the nuclide of interest and other wastes. Samples and reagents may be stored in separate sample tanks (not shown) and reagent tanks (not shown), respectively, and they may be transported by a pump (not shown) and introduced into the column 1011.
컬럼 홀딩부(1010)에는 다수개의 컬럼(1011)이 배치된다. 컬럼 홀딩부(1010)는 다수개의 시료에 대한 분리가 연속적으로 이루어질 수 있도록 다수개의 컬럼(1011)이 동시에 배치될 수 있게 해준다. 컬럼 홀딩부(1010)는 다수개의 컬럼(1011)이 환형으로 배치되도록 이루어질 수 있다. 구체적으로 컬럼 홀딩부(1010)는 원판형 부재, 환형 부재 및 톱니 바퀴형 부재 중 어느 하나를 포함할 수 있으며, 그 테두리부를 따라 일정 간격으로 컬럼(1011)이 삽입되어 고정되도록 구성될 수 있다. 예를 들어, 컬럼 홀딩부(1010)는 그 테두리부를 따라 동시에 20개의 컬럼이 배치되도록 구성될 수 있다.A plurality of columns 1011 are disposed in the column holding unit 1010. The column holding unit 1010 allows a plurality of columns 1011 to be simultaneously disposed so that separation of a plurality of samples can be continuously performed. The column holding unit 1010 may be formed such that a plurality of columns 1011 are arranged in an annular shape. Specifically, the column holding unit 1010 may include any one of a disc-shaped member, an annular member, and a toothed member, and may be configured to be fixed by inserting the column 1011 at regular intervals along its rim. For example, the column holding unit 1010 may be configured such that 20 columns are simultaneously disposed along its edge.
한편, 컬럼 홀딩부(1010)는 지지부(1070)를 통해 수집 튜브 홀딩부(1020)와 일체로 연결될 수 있다. 컬럼 홀딩부(1010)는 지지부(1070)를 통해 수집 튜브 홀딩부(1020)와 연결됨으로써 수집 튜브 홀딩부(1020)와 일체로 움직일 수 있다.Meanwhile, the column holding part 1010 may be integrally connected to the collection tube holding part 1020 through the support part 1070. The column holding part 1010 may be integrally moved with the collection tube holding part 1020 by being connected to the collection tube holding part 1020 through the support part 1070.
수집 튜브(1021)는 컬럼(1011)을 통과한 정제시료, 다른 말로 하면 컬럼(1011)에서 추출된 정제시료가 수집되는 용기이다. 수집 튜브(1021)는 컬럼 홀딩부(1010)에 배치된 각 컬럼(1011)의 하부에 대응되어 배치된다. 즉, 수집 튜브(1021)는 하나의 컬럼(1011)에서 추출된 정제시료를 그 하부에서 수집할 수 있도록 각 컬럼(1011)의 하부에 일대일로 대응되어 배치된다.The collection tube 1021 is a container in which the purified sample that has passed through the column 1011, in other words, the purified sample extracted from the column 1011 is collected. The collection tube 1021 is disposed corresponding to the lower portion of each column 1011 disposed in the column holding portion 1010. That is, the collection tube 1021 is disposed in a one-to-one correspondence to the bottom of each column 1011 so that the purified sample extracted from one column 1011 can be collected from the bottom.
수집 튜브 홀딩부(1020)는 컬럼 홀딩부(1010)의 하부에 이격되어 배치되되 수집 튜브(1021)가 컬럼 홀딩부(1010)에 배치된 각 컬럼(1011)의 하부에 대응되어 배치되도록 해준다. 본 발명의 다른 일 실시예에서, 수집 튜브 홀딩부(1020)는 컬럼 홀딩부(1010)와 마찬가지로 각 컬럼(1011)에 대응되는 수집 튜브(1021)가 환형으로 배치되도록 이루어질 수 있다. 예를 들면, 컬럼 홀딩부(1010)가 동시에 20개의 컬럼(1011)을 환형으로 배치할 수 있도록 구성될 경우 수집 튜브 홀딩부(1020)는 이에 대응하여 20개의 수집 튜브(1021)가 환형으로 배치되도록 구성될 수 있다.The collection tube holding unit 1020 is arranged to be spaced apart from the lower portion of the column holding unit 1010, so that the collection tube 1021 is disposed corresponding to the lower portion of each column 1011 disposed in the column holding unit 1010. In another embodiment of the present invention, the collection tube holding part 1020 may be configured such that the collection tube 1021 corresponding to each column 1011 is arranged in an annular shape, like the column holding part 1010. For example, when the column holding portion 1010 is configured to simultaneously arrange 20 columns 1011 in an annular shape, the collection tube holding portion 1020 correspondingly has 20 collecting tubes 1021 arranged in an annular shape It can be configured as possible.
수집 튜브 홀딩부(1020)는 원판형 부재, 환형 부재 및 톱니 바퀴형 부재 중 어느 하나를 포함할 수 있다. 더욱 구체적으로 살펴보면, 수집 튜브 홀딩부(1020)는 수집 튜브(1021)의 상부를 지지하여 주는 원판형의 상부 플레이트(1022)와 수집 튜브(1021)의 하단을 지지하여 주는 톱니 바퀴 형태의 하부 플레이트(1023)를 포함할 수 있다.The collection tube holding portion 1020 may include any one of a disc-shaped member, an annular member, and a toothed member. Looking more specifically, the collection tube holding unit 1020 is a disc-shaped upper plate 1022 supporting the upper portion of the collection tube 1021 and a lower plate in the form of a cog wheel supporting the lower end of the collection tube 1021. It may include (1023).
전술한 바와 같이, 수집 튜브 홀딩부(1020)는 지지부(1070)를 통해 컬럼 홀딩부(1010)와 일체로 연결될 수 있다. 이때, 지지부(1070)는 수집 튜브 홀딩부(1020)의 하부 플레이트(1023)를 상부 플레이트(1022)와 연결하여 주는 기둥 부재와 수집 튜브 홀딩부(1020)의 상부 플레이트(1022)와 컬럼 홀딩부(1010)를 연결하여 주는 기둥 부재를 포함할 수 있으며, 이들은 컬럼 홀딩부(1010)와 수집 튜브 홀딩부(1020) 사이의 안정적인 결합을 위해 일정 간격으로 다수개가 구비될 수 있다.As described above, the collection tube holding part 1020 may be integrally connected to the column holding part 1010 through the support part 1070. At this time, the support part 1070 is a column member connecting the lower plate 1023 of the collecting tube holding part 1020 with the upper plate 1022 and the upper plate 1022 and the column holding part of the collecting tube holding part 1020 A column member connecting the 1010 may be included, and a plurality of them may be provided at regular intervals for stable coupling between the column holding portion 1010 and the collecting tube holding portion 1020.
본 발명의 다른 일 실시예에서, 컬럼 홀딩부(1010) 및 수집 튜브 홀딩부(1020)의 중심은 동일 축 상에 배치되어 있으며, 컬럼 홀딩부(1010) 및 수집 튜브 홀딩부(1020)는 상기 축을 중심으로 일체로 회전할 수 있는 형태를 갖고 있다.In another embodiment of the present invention, the centers of the column holding portion 1010 and the collecting tube holding portion 1020 are disposed on the same axis, and the column holding portion 1010 and the collecting tube holding portion 1020 are It has a form that can be rotated integrally around an axis.
폐기물 배출부(1030)는 컬럼(1011)에서 배출되는 폐기물을 외부로 배출한다. 컬럼(1011)에서 정제시료 및 폐기물의 분리가 이루어지게 되는데, 정제시료는 수집 튜브(1021)에서 수집되며, 폐기물은 폐기물 배출부(1030)를 통해 외부로 배출된다. 본 발명의 다른 일 실시예에서, 폐기물 배출부(1030)는 분리부(1040)의 밸브(1042)와 연결된 배출관으로 형성되어 있으며, 폐기물 배출부(1030)는 폐기물 저장 탱크(미도시)와 연결될 수 있다.The waste discharge unit 1030 discharges waste discharged from the column 1011 to the outside. Separation of the purified sample and waste is made in the column 1011, and the purified sample is collected in the collection tube 1021, and the waste is discharged to the outside through the waste discharge unit 1030. In another embodiment of the present invention, the waste discharge unit 1030 is formed of a discharge pipe connected to the valve 1042 of the separation unit 1040, and the waste discharge unit 1030 is connected to a waste storage tank (not shown). Can be.
분리부(1040)는 컬럼 홀딩부(1010)와 수집 튜브 홀딩부(1020) 사이에 배치되며, 컬럼(1011) 및 수집 튜브(1021)와 연결 시 정제시료는 수집 튜브(1021)로 유입되고, 폐기물은 폐기물 배출부(1030)로 배출되도록 분리하여 준다. 분리부(1040)는 유로 구조체(1041) 및 밸브(1042)를 포함한다.The separation part 1040 is disposed between the column holding part 1010 and the collection tube holding part 1020, and when connected to the column 1011 and the collection tube 1021, the purified sample flows into the collection tube 1021, The waste is separated to be discharged to the waste discharge unit 1030. The separation portion 1040 includes a flow path structure 1041 and a valve 1042.
도 7에는 본 발명의 다른 일 실시예에 따른 핵종 분리 장치의 분리부의 유로 구조체의 사시도가 나타나 있다. 도 7을 참조하면, 유로 구조체(1041)는 전체적으로 사각의 블록 형태를 갖고 있다. 유로 구조체(1041)는 컬럼 연결부(1411), 제1 유로(1412), 제2 유로(1412) 및 수집 튜브 연결부(1414)를 포함한다. 컬럼 연결부(1411)는 유로 구조체(1041)의 상부에 형성되어 있으며, 컬럼(1011)의 하부와 연결될 수 있는 홀의 형태를 갖는다. 제1 유로(1412)는 컬럼 연결부(1411)를 통해 유입되는 정제시료 또는 폐기물이 밸브(1042)로 이송될 수 있도록 컬럼 연결부(1411)에서 밸브(1042)를 향해 형성된 유로이다. 또한, 제2 유로(1413)는 밸브(1412)를 통과한 정제시료가 수집 튜브(1021)로 유입될 수 있도록 밸브(1042)와 수집 튜브 연결부(1414) 사이에 형성된 유로이다. 한편, 수집 튜브 연결부(1414)는 유로 구조체(1041)의 하부에 형성되어 있으며, 수집 튜브(1021)의 상부와 연결될 수 있는 관의 형태를 갖는다. 수집 튜브 연결부(1414)는 제2 유로(1413)와 연통된다.7 is a perspective view of a flow path structure of a separation unit of a nuclide separation device according to another embodiment of the present invention. Referring to FIG. 7, the flow path structure 1041 has a rectangular block shape as a whole. The flow path structure 1041 includes a column connection portion 1411, a first flow path 1412, a second flow path 1412, and a collection tube connection portion 1414. The column connecting portion 1411 is formed on the upper portion of the flow path structure 1041 and has a hole shape that can be connected to the lower portion of the column 1011. The first flow path 1412 is a flow path formed toward the valve 1042 from the column connection portion 1411 so that purified sample or waste material flowing through the column connection portion 1411 can be transferred to the valve 1042. In addition, the second flow path 1413 is a flow path formed between the valve 1042 and the collection tube connection portion 1414 so that the purified sample passing through the valve 1412 can be introduced into the collection tube 1021. On the other hand, the collection tube connecting portion 1414 is formed on the lower portion of the flow path structure 1041, and has a shape of a tube that can be connected to the upper portion of the collection tube 1021. The collection tube connection 1414 communicates with the second flow path 1413.
본 발명의 다른 일 실시예에서, 유로 구조체(1041)는 프레임(F)에 연결되어 컬럼 홀딩부(1010) 및 수집 튜브 홀딩부(1020) 사이에 배치된 플레이트(1043) 상에 설치되어 있다. 더욱 상세하게, 유로 구조체(1041)는 각 코너에 상하 방향으로 관통된 관통홀(1415)을 구비하고, 플레이트(1043)에 결합된 가이드 핀부재(1431)가 각 관통홀(1415)에 삽입되어 있으며, 이를 통해 유로 구조체는(1041)는 플레이트(1043) 상에서 상하 방향으로 슬라이딩 가능한 형태를 갖고 있다.In another embodiment of the present invention, the flow path structure 1041 is connected to the frame F and is installed on a plate 1043 disposed between the column holding portion 1010 and the collecting tube holding portion 1020. More specifically, the flow path structure 1041 is provided with through holes 1415 penetrated in the vertical direction at each corner, and a guide pin member 1431 coupled to the plate 1043 is inserted into each through hole 1415. Through this, the flow path structure 1041 has a shape that can be slid up and down on the plate 1043.
밸브(1042)는 유로 구조체(1041)가 컬럼(1011) 및 수집 튜브(1021)와 연결 시 제1 유로(1412)를 통해 컬럼(1011)으로부터 유입되는 정제시료 및 폐기물을 분리하되, 정제시료는 제2 유로(1413)를 통해 수집 튜브(1021)로 보내고, 폐기물은 폐기물 배출부(1030)로 배출한다. 즉, 밸브(1042)는 입력 유로가 되는 제1 유로(1412)와, 출력 유로가 되는 제2 유로(1413) 및 폐기물 배출부(1030)와 연결되어 있으며, 제1 유로(1412)를 통해 유입된 유체가 정제시료인 경우 제2 유로(1413)로 유로를 형성하여 주고, 제1 유로(1412)를 통해 유입된 유체가 폐기물인 경우 폐기물 배출부(1030)로 유로를 형성하여 준다.The valve 1042 separates the purification sample and waste introduced from the column 1011 through the first flow passage 1412 when the flow path structure 1041 is connected to the column 1011 and the collection tube 1021, but the purification sample is It is sent to the collection tube 1021 through the second flow path 1413, and the waste is discharged to the waste discharge unit 1030. That is, the valve 1042 is connected to a first flow path 1412 serving as an input flow path, a second flow path 1413 serving as an output flow path, and a waste discharge unit 1030, and flows through the first flow path 1412. In the case where the purified fluid is a purified sample, a flow path is formed through the second flow path 1413, and when the fluid flowing through the first flow path 1412 is waste, a flow path is formed through the waste discharge unit 1030.
연결부(1050)는 분리를 위해 컬럼(1011), 분리부(1040) 및 수집 튜브(1021) 사이의 연결이 이루어지도록 하고, 분리가 완료된 경우 컬럼(1011), 분리부(1040) 및 수집 튜브(1021) 사이의 연결이 해제되도록 한다. 본 발명의 다른 일 실시예에서, 연결부(1050)는 수집 튜브(1021)를 상승시킴으로써 유로 구조체(1041)와 컬럼(1011) 및 수집 튜브(1021) 사이의 연결이 이루어지도록 하고, 수집 튜브(1021)를 하강시킴으로써 유로 구조체(1041)와 컬럼(1011) 및 수집 튜브(1021) 사이의 연결이 해제되도록 해준다.The connection part 1050 allows connection between the column 1011, the separation part 1040, and the collection tube 1021 for separation, and when separation is completed, the column 1011, the separation part 1040, and the collection tube ( 1021). In another embodiment of the present invention, the connecting portion 1050 raises the collecting tube 1021 to make a connection between the flow path structure 1041 and the column 1011 and the collecting tube 1021, and the collecting tube 1021 ) Allows the connection between the flow path structure 1041 and the column 1011 and the collection tube 1021 to be released.
도 6을 참조하면, 본 발명의 다른 일 실시예에서, 연결부(1050)는 액추에이터(1051), 동력전달부(1052), 볼스크류부(1053) 및 리프팅부(1054)를 포함한다. 액추에이터(1051)는 서보 모터로 이루어질 수 있으며, 동력전달부(1052)는 풀리와 벨트를 통해 회전 구동력을 볼스크류부(1053)로 전달할 수 있다. 또한, 볼스크류부(1053)는 동력전달부(1052)를 통해 전달되는 동력에 의해 회전하는 스크류와, 스크류에 결합되어 스크류의 회전에 따라 직선 운동하는 볼 너트를 포함하되, 볼 너트가 수직 방향을 따라 이동하도록 배치될 수 있다. 한편, 리프팅부(1054)는 볼스크류부(53)에 연결되어 수직 방향을 따라 상승 또는 하강하도록 배치되며, 수집 튜브(21)를 파지할 수 있는 형태를 가진다.Referring to FIG. 6, in another embodiment of the present invention, the connection portion 1050 includes an actuator 1051, a power transmission portion 1052, a ball screw portion 1053, and a lifting portion 1054. The actuator 1051 may be formed of a servo motor, and the power transmission unit 1052 may transmit rotational driving force to the ball screw unit 1053 through pulleys and belts. In addition, the ball screw unit 1053 includes a screw rotating by the power transmitted through the power transmission unit 1052, and a ball nut coupled to the screw and linearly moving according to the rotation of the screw, but the ball nut is vertically oriented. It can be arranged to move along. On the other hand, the lifting portion 1054 is connected to the ball screw portion 53 and is arranged to rise or fall along the vertical direction, and has a form capable of gripping the collection tube 21.
본 발명의 다른 일 실시예에서, 리프팅부(1054)는 수집 튜브(1021)의 파지를 위한 파지부(1541) 및 파지부(1541)에 동력을 전달하는 액추에이터(1542)를 포함할 수 있다. 이때, 파지부(1541)는 수집 튜브(1021)의 하단을 지지하여 주는 톱니 바퀴 형태의 하부 플레이트(1023)의 톱니 사이의 공간을 통과할 수 있는 형태로 이루어진다.In another embodiment of the present invention, the lifting portion 1054 may include a gripping portion 1451 for gripping the collection tube 1021 and an actuator 1542 that transmits power to the gripping portion 1451. At this time, the gripping portion 1541 is formed in a form that can pass through the space between the teeth of the lower plate 1023 in the form of a cog wheel that supports the lower end of the collection tube 1021.
이송부(1060)는 다수의 시료에 대한 분리가 연속적으로 이루어지도록 하나의 컬럼(1011)에 대한 분리 완료 시 다른 컬럼(1011) 및 그에 대응되어 배치되는 수집 튜브(1021)를 분리부(1040)와 연결 가능한 위치로 이송시킨다. 이송부(1060)는 일체로 연결된 수집 튜브 홀딩부(1020)와 컬럼 홀딩부(1010)를 함께 회전시키도록 구성될 수 있으며, 수집 튜브 홀딩부(1020)의 하부에 배치된 액추에이터를 포함할 수 있다.The transfer unit 1060 separates the other column 1011 and the collection tube 1021 disposed in correspondence with the separation unit 1040 when separation for one column 1011 is completed so that separation for a plurality of samples is continuously performed. Transfer it to a connectable location. The transfer part 1060 may be configured to rotate the collection tube holding part 1020 and the column holding part 1010 integrally connected together, and may include an actuator disposed under the collection tube holding part 1020. .
앞서 살펴본 바와 같이, 본 발명의 다른 일 실시예에서, 컬럼 홀딩부(1010) 및 수집 튜브 홀딩부(1020)의 중심은 동일 축 상에 배치되는데, 이송부(1060)는 상기 축을 중심으로 수집 튜브 홀딩부(1020)를 회전시키며, 이에 따라 컬럼 홀딩부(1010)도 상기 축을 중심으로 수집 튜브 홀딩부(1020)와 일체로 회전할 수 있게 된다.As described above, in another embodiment of the present invention, the centers of the column holding part 1010 and the collection tube holding part 1020 are disposed on the same axis, and the transfer part 1060 holds the collection tube about the axis. The part 1020 is rotated, and accordingly, the column holding part 1010 can also rotate integrally with the collection tube holding part 1020 about the axis.
도 8 및 도 9는 본 발명의 다른 일 실시예에 따른 핵종 분리 장치의 작동 과정을 나타낸 도면이다. 도 8 및 도 9를 참조하면서 본 발명의 다른 일 실시예에 따른 핵종 분리 장치(1b)의 작동 과정을 설명하면 다음과 같다.8 and 9 are views showing the operation of the nuclide separation apparatus according to another embodiment of the present invention. Referring to Figures 8 and 9 will be described the operation of the nuclide separation device 1b according to another embodiment of the present invention.
우선, 도 8을 참조하여 핵종 분리 장치(1b)에서 컬럼(1011), 분리부(1040) 및 수집 튜브(1021) 사이의 연결이 이루어지는 과정을 설명한다.First, a process in which the connection between the column 1011, the separation unit 1040 and the collection tube 1021 is performed in the nuclide separation device 1b will be described with reference to FIG. 8.
분리가 이루어질 컬럼(1011)과 그에 대응되는 수집 튜브(1021)가 각각 상부 및 하부에 배치된 상태에서 연결부(1050)의 리프팅부(1054)는 수집 튜브(1021)를 파지하게 되며, 연결부(1050)의 액추에이터(1051)가 일방향으로 회전함에 따라 리프팅부(1054)가 상승하게 된다. 그 결과 수집 튜브(1021)의 개구된 상단이 분리부(1040)의 유로 구조체(1041)의 하부에 형성된 수집 튜브 결합부(1414)에 결합되며, 동시에 유로 구조체(1041)의 상부에 형성된 컬럼 결합부(1411)에 컬럼(1011) 하부의 삽입이 이루어지게 된다. 이때, 수집 튜브(1021)의 상승에 따라 유로 구조체(1041) 역시 함께 밀려 올라가면서 수집 튜브(1021), 유로 구조체(1041) 및 컬럼(1011)의 결합이 이루어질 수도 있다.The lifting part 1054 of the connection part 1050 grips the collection tube 1021 in a state in which the column 1011 to be separated and the collection tube 1021 corresponding thereto are disposed on the upper and lower portions, respectively. ) As the actuator 1051 rotates in one direction, the lifting portion 1054 is raised. As a result, the open top of the collection tube 1021 is coupled to the collection tube coupling portion 1414 formed at the bottom of the flow path structure 1041 of the separation portion 1040, and at the same time, the column coupling formed at the top of the flow path structure 1041 The lower portion of the column 1011 is inserted into the portion 1411. At this time, as the collection tube 1021 rises, the flow path structure 1041 is also pushed up, and the collection tube 1021, the flow path structure 1041, and the column 1011 may be combined.
이와 동시에 또는 순차적으로 컬럼(1011)의 상부를 통해 시료 및 시약이 유입될 수 있다. 컬럼(1011) 내로의 시료 및 시약의 유입은 유입부(1080)를 통해 이루어지게 되는데, 유입부(1080)는 도 6에 나타난 바와 같이 액추에이터(1081), 동력전달부(1082), 볼스크류부(1083) 및 주입부(1084)를 포함할 수 있다.Simultaneously or sequentially, samples and reagents may be introduced through the upper portion of the column 1011. The inflow of the sample and the reagent into the column 1011 is made through the inlet part 1080. The inlet part 1080 is an actuator 1081, a power transmission part 1082, and a ball screw part as shown in FIG. 1083 and an injection unit 1084.
액추에이터(1081)는 서보 모터로 이루어질 수 있으며, 동력전달부(1082)는 풀리와 벨트를 통해 회전 구동력을 볼스크류부(1083)로 전달할 수 있다. 또한, 볼스크류부(1083)는 동력전달부(1082)를 통해 전달되는 동력에 의해 회전하는 스크류와, 스크류에 결합되어 스크류의 회전에 따라 직선 운동하는 볼 너트를 포함하되, 볼 너트가 수직 방향을 따라 이동하도록 배치될 수 있다. 한편, 주입부(1084)는 볼스크류부(1083)에 연결되어 수직 방향을 따라 상승 또는 하강하도록 배치되며, 시료와 시약이 유입되는 유로(미도시)와 연결될 수 있다.The actuator 1081 may be formed of a servo motor, and the power transmission unit 1082 may transmit rotational driving force to the ball screw unit 1083 through pulleys and belts. In addition, the ball screw portion 1083 includes a screw rotating by the power transmitted through the power transmission unit 1082, and a ball nut coupled to the screw and linearly moving according to the rotation of the screw, wherein the ball nut is vertically oriented. It can be arranged to move along. Meanwhile, the injection portion 1084 is connected to the ball screw portion 1083 and is arranged to rise or fall along a vertical direction, and may be connected to a flow path (not shown) through which samples and reagents are introduced.
액추에이터(1081)가 일방향으로 회전하면서 주입부(1084)의 하강이 이루어지게 되고, 이에 따라 주입부(1084)가 컬럼(1011)의 상부와 결합된다. 또한, 주입부(1084)의 하강에 따라 컬럼(1011)이 하방향으로 가압되면서 컬럼(1011)과 분리부(1040)의 유로 구조체(1041) 사이의 결합이 더욱 안정적으로 이루어지게 된다.As the actuator 1081 rotates in one direction, the injection portion 1084 descends, and accordingly, the injection portion 1084 is combined with the upper portion of the column 1011. In addition, the coupling between the column 1011 and the flow path structure 1041 of the separation unit 1040 is more stably performed while the column 1011 is pressed downward as the injection unit 1084 descends.
다음으로, 도 9를 참조하여 핵종 분리 장치(1b)에서 컬럼(1011), 분리부(1040) 및 수집 튜브(1021) 사이의 연결이 해제되는 과정을 설명한다.Next, a process in which the connection between the column 1011, the separation unit 1040 and the collection tube 1021 in the nuclide separation device 1b is released will be described with reference to FIG. 9.
하나의 컬럼(1011)에 대한 분리가 완료되면, 연결부(1050)의 액추에이터(1051)가 타방향으로 회전함에 따라 리프팅부(1054)가 하강하게 된다. 그 결과 수집 튜브(1021)와 수집 튜브 결합부(1414)의 결합이 해제되며, 동시에 유로 구조체(1041)의 상부에 형성된 컬럼 결합부(1411)에서 컬럼(11) 하부도 이탈되게 된다. 이때, 수집 튜브(1021)의 하강에 따라 유로 구조체(1041) 역시 자중에 의해 하강하면서 수집 튜브(1021), 유로 구조체(1041) 및 컬럼(1011)의 결합이 해제된다.When the separation for one column 1011 is completed, the lifting portion 1054 is lowered as the actuator 1051 of the connection portion 1050 rotates in the other direction. As a result, the coupling of the collection tube 1021 and the collection tube coupling portion 1414 is released, and at the same time, the lower portion of the column 11 is also detached from the column coupling portion 1411 formed on the upper portion of the flow path structure 1041. At this time, the flow path structure 1041 is also lowered by its own weight as the collection tube 1021 descends, and the coupling of the collection tube 1021, the flow path structure 1041, and the column 1011 is released.
이때, 도 9에 나타난 바와 같이, 리프팅부(1054)는 수집 튜브 홀딩부(1020)의 하부 플레이트(1023)의 아래까지 하강하게 된다. 이에 따라 이송부(1060)에 의해 수집 튜브 홀딩부(1020) 및 컬럼 홀딩부(1010)가 회전할 수 있게 되고, 그 결과 다음 컬럼(1011)에 대한 분리가 준비된다.At this time, as shown in FIG. 9, the lifting portion 1054 descends to the bottom of the lower plate 1023 of the collecting tube holding portion 1020. Accordingly, the collection tube holding part 1020 and the column holding part 1010 can be rotated by the transfer part 1060, and as a result, separation for the next column 1011 is prepared.
한편, 이와 동시에 또는 순차적으로 유입부(1080)의 액추에이터가 타방향으로 회전하면서 주입부(1084)도 컬럼(1011)의 상부와 이격되며 주입부(1084)와 컬럼(1011) 사이의 결합도 해제된다.Meanwhile, simultaneously or sequentially, as the actuator of the inflow part 1080 rotates in the other direction, the injection part 1084 is also spaced apart from the upper part of the column 1011, and the coupling between the injection part 1084 and the column 1011 is also released. do.
본 발명의 다른 일 실시예에 따른 핵종 분리 장치(1b)는 컬럼의 상부에 배치되는 유입부(80) 및 컬럼의 하부에 배치되는 연결부(50)를 통해 컬럼의 상부 및 하부를 각각 다른 구성과 연결 또는 분리함으로써 유로가 형성 또는 해제될 수 있게 해준다. 더욱 상세하게, 연결부(50)는 분리부(40)와 컬럼의 하부를 연결 또는 해제하여 주고, 유입부(80)는 하강 상태에서 컬럼의 상부와 연결되어 시약 또는 시료가 컬럼으로 주입되도록 하고 상승 상태에서 컬럼의 상부와 분리된다. 이에 따라 시료와 연결되어 추출이 완료된 컬럼을 유로 형성 위치로부터 이송한 후 새롭게 추출이 진행될 다른 컬럼을 유로 형성 위치에 배치할 수 있게 된다.The nuclide separation apparatus 1b according to another embodiment of the present invention has different configurations of the upper and lower portions of the column through the inlet portion 80 disposed at the upper portion of the column and the connection portion 50 disposed at the lower portion of the column. By connecting or disconnecting, the flow path can be formed or released. In more detail, the connection part 50 connects or releases the separation part 40 and the lower part of the column, and the inlet part 80 is connected to the upper part of the column in a descending state so that reagent or sample is injected into the column and rises. In the state, it is separated from the top of the column. Accordingly, after transferring the extracted column connected to the sample from the flow path forming position, another column to be newly extracted can be disposed at the flow path forming position.
본 발명의 일 실시예들에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시예들에 의해 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described, the spirit of the present invention is not limited by the embodiments presented herein, and those skilled in the art to understand the spirit of the present invention, within the scope of the same spirit, components Other embodiments can be easily proposed by addition, modification, deletion, addition, etc., but it will be said that this also falls within the scope of the present invention.

Claims (10)

  1. 다수의 컬럼이 배치되는 컬럼 배치부;A column arrangement unit in which a plurality of columns are disposed;
    상기 컬럼 배치부에 배치된 컬럼에 유입될 시약 또는 시료가 이송되는 제 1 유로;A first flow path through which reagents or samples to be introduced into the column arranged in the column arrangement section are transferred;
    상기 컬럼에서 배출되는 정제시료 또는 폐기물을 수집부로 전달하는 제 2 유로;A second flow path for delivering purified sample or waste discharged from the column to a collection unit;
    상기 제 1 유로 및 상기 제 2 유로를 상기 컬럼 배치부에 배치된 임의의 컬럼과 연결 또는 분리시키는 유로 형성부;A flow path forming part connecting or separating the first flow path and the second flow path with any column disposed in the column arrangement part;
    상기 시약 또는 상기 시료가 상기 제 1 유로로 유입되고, 상기 컬럼에서 상기 정제시료 또는 폐기물이 배출되도록 압력을 공급하는 메인 펌프 및 A main pump for supplying pressure such that the reagent or the sample flows into the first flow path, and the purified sample or waste is discharged from the column;
    상기 유로 형성부가 상기 컬럼 배치부에 배치된 다른 임의의 컬럼과 상기 제 1 유로 및 상기 제 2 유로를 연결 또는 분리시킬 수 있도록 상기 유로 형성부를 이송하는 이송부를 포함하는 핵종 분리 장치.A nuclide separation device including a transfer portion for transferring the flow path forming portion so that the flow path forming portion may connect or separate the first flow path and the second flow path from any other column disposed in the column arrangement portion.
  2. 제 1 항에 있어서,According to claim 1,
    상기 이송부는 상기 유로 형성부를 전후좌우로 이송시킬 수 있는 핵종 분리 장치.The transfer unit is a nuclide separation device capable of transferring the flow path forming portion back and forth, left and right.
  3. 제 1 항에 있어서,According to claim 1,
    상기 유로 형성부는,The flow path forming unit,
    상기 컬럼의 상부에 배치되어 상기 제 1 유로와 상기 컬럼의 상부를 연결 또는 분리시키는 제 1 유로 연결부;A first flow path connection part disposed on the column to connect or separate the first flow path and the top of the column;
    상기 컬럼의 하부에 배치되어 상기 제 2 유로와 상기 컬럼의 하부를 연결 또는 분리시키는 제 2 유로 연결부 및 A second flow path connection part disposed at a lower portion of the column to connect or separate the second flow path and the lower portion of the column;
    상기 제 1 유로와 상기 컬럼의 상부를 연결 또는 분리시키기 위해 상기 제 1 유로 연결부를 하강 또는 상승시키고, 상기 제 2 유로와 상기 컬럼의 하부를 연결 또는 분리시키기 위해 상기 제 2 유로 연결부를 상승 또는 하강시키는 구동부를 포함하는 핵종 분리 장치.The first flow path connection portion is lowered or raised to connect or separate the first flow path and the upper portion of the column, and the second flow path connection portion is raised or lowered to connect or separate the second flow path and the lower portion of the column. Nuclide separation device comprising a driving unit.
  4. 제 3 항에 있어서,The method of claim 3,
    상기 수집부는 상기 정제시료가 수집되는 정제시료 수집 용기 및 상기 폐기물이 수집되는 폐기물 수집 용기를 포함하고,The collection unit includes a purification sample collection container in which the purified sample is collected and a waste collection container in which the waste is collected,
    상기 유로 형성부는 상기 제 2 유로 연결부를 상기 정제시료 수집용기 및 상기 폐기물 수집용기 중 어느 하나와 선택적으로 연결하는 배출 선택 밸브를 더 포함하는 핵종 분리 장치.The flow path forming unit further comprises a discharge selection valve for selectively connecting the second flow path connection part to any one of the purification sample collection container and the waste collection container.
  5. 제 1 항에 있어서,According to claim 1,
    다수의 시약 중 임의의 시약을 선택하여 상기 제 1 유로로 공급하는 시약 공급부;A reagent supply unit for selecting any reagent among a plurality of reagents and supplying the reagent to the first flow path;
    상기 시료를 상기 제 1 유로로 공급하는 시료 공급부 및Sample supply unit for supplying the sample to the first flow path and
    상기 제 1 유로에 배치되어 상기 제 1 유로를 상기 시약 공급부 및 상기 시료 공급부 중 어느 하나와 선택적으로 연결하는 유입 선택 밸브를 더 포함하는 핵종 분리 장치.The nuclide separation device further comprises an inflow selection valve disposed in the first flow path and selectively connecting the first flow path to any one of the reagent supply section and the sample supply section.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 시료 공급부는,The sample supply unit,
    상기 시료가 담긴 시료 용기 내에 침투하는 니들;A needle penetrating into the sample container containing the sample;
    상기 니들과 상기 유입 밸브 사이에 형성되는 시료 공급 유로 및A sample supply flow path formed between the needle and the inflow valve, and
    상기 니들을 이송하는 니들 이송부를 포함하는 핵종 분리 장치.Nuclide separation device comprising a needle transport for transporting the needle.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 시료 공급 유로, 상기 제 1 유로 및 상기 제 2 유로의 세척을 위한 세척 용액이 담긴 세척 용액 용기를 더 포함하고,Further comprising a washing solution container containing a cleaning solution for washing the sample supply passage, the first passage and the second passage,
    상기 니들 이송부는 상기 니들을 이송하여 상기 세척 용액 용기 내로 침투시킬 수 있는 핵종 분리 장치.The needle transport unit is a nuclide separation device capable of transporting the needle and penetrating into the washing solution container.
  8. 제 7 항에 있어서,The method of claim 7,
    상기 시료 공급부는 각기 다른 시료가 담긴 다수의 시료 용기를 포함하고,The sample supply unit includes a plurality of sample containers containing different samples,
    상기 니들 및 상기 니들 이송부는 사전에 설정된 방식으로 제어되어, 다수개의 시료 용기 내의 시료 및 상기 세척 용액 용기 내의 세척 용액이 정해진 순서에 따라 상기 시료 공급 유로에 공급되는 핵종 분리 장치.The needle and the needle transport unit is controlled in a predetermined manner, a nuclide separation device for supplying the sample in the plurality of sample containers and the cleaning solution in the cleaning solution container to the sample supply flow path in a predetermined order.
  9. 제 7 항에 있어서,The method of claim 7,
    상기 수집부는 상기 정제시료가 수집되는 정제시료 수집 용기 및 상기 폐기물이 수집되는 폐기물 수집 용기를 포함하고,The collection unit includes a purification sample collection container in which the purified sample is collected and a waste collection container in which the waste is collected,
    상기 세척 용액 용기 내의 잔존 세척 용액을 상기 폐기물 수집용기로 이송시키는 잔존 세척 용액 배출부를 더 포함하는 핵종 분리 장치.A nuclide separation device further comprising a residual washing solution discharge unit for transferring the remaining washing solution in the washing solution container to the waste collection container.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 잔존 세척 용액 배출부는,The residual washing solution discharge unit,
    상기 세척 용액 용기와 상기 폐기물 수집용기 사이에 형성되는 세척 용액 배출 유로 및A washing solution discharge passage formed between the washing solution container and the waste collection container, and
    상기 잔존 세척 용액이 상기 상기 세척 용액 배출 유로로 유입되도록 압력을 공급하는 잔존 세척 용액 배출 펌프를 포함하는 핵종 분리 장치.And a residual washing solution discharge pump that supplies pressure so that the residual washing solution flows into the washing solution discharge passage.
PCT/KR2019/015942 2018-11-21 2019-11-20 Nuclide separating device WO2020106058A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19887211.1A EP3886116A4 (en) 2018-11-21 2019-11-20 Nuclide separating device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0144557 2018-11-21
KR1020180144557A KR102096801B1 (en) 2018-11-21 2018-11-21 Radionuclide extraction apparatus
KR1020190132518A KR102261634B1 (en) 2019-10-23 2019-10-23 Radionuclide extraction apparatus
KR10-2019-0132518 2019-10-23

Publications (1)

Publication Number Publication Date
WO2020106058A1 true WO2020106058A1 (en) 2020-05-28

Family

ID=70773554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015942 WO2020106058A1 (en) 2018-11-21 2019-11-20 Nuclide separating device

Country Status (2)

Country Link
EP (1) EP3886116A4 (en)
WO (1) WO2020106058A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111942632A (en) * 2020-06-23 2020-11-17 上海大学 Automatic nuclide split charging device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242181A (en) * 2000-02-29 2001-09-07 Shimadzu Corp Auto injector
KR100742639B1 (en) * 2006-01-19 2007-07-25 한국원자력안전기술원 An automatic simultaneous separation system for radionuclides in multiple samples and its application to automatic uranium (u)separation
JP2012068233A (en) * 2010-08-25 2012-04-05 Arkray Inc Analysis device and analysis method
KR20170127234A (en) * 2016-05-11 2017-11-21 한국원자력연구원 Automated concentrator for large volume of sample
JP6269848B2 (en) * 2014-09-17 2018-01-31 株式会社島津製作所 Gas-liquid separator and supercritical fluid device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157036A (en) * 1998-12-02 2000-12-05 Cedars-Sinai Medical Center System and method for automatically eluting and concentrating a radioisotope
GB201401010D0 (en) * 2014-01-21 2014-03-05 Nat Nuclear Lab Ltd Improved separation apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242181A (en) * 2000-02-29 2001-09-07 Shimadzu Corp Auto injector
KR100742639B1 (en) * 2006-01-19 2007-07-25 한국원자력안전기술원 An automatic simultaneous separation system for radionuclides in multiple samples and its application to automatic uranium (u)separation
JP2012068233A (en) * 2010-08-25 2012-04-05 Arkray Inc Analysis device and analysis method
JP6269848B2 (en) * 2014-09-17 2018-01-31 株式会社島津製作所 Gas-liquid separator and supercritical fluid device
KR20170127234A (en) * 2016-05-11 2017-11-21 한국원자력연구원 Automated concentrator for large volume of sample

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3886116A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111942632A (en) * 2020-06-23 2020-11-17 上海大学 Automatic nuclide split charging device and method

Also Published As

Publication number Publication date
EP3886116A4 (en) 2022-07-20
EP3886116A1 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
WO2017111230A1 (en) Automatic needle separating and collecting device using lifting-type syringe-input apparatus
JP6843826B2 (en) Chemiluminescence detector and its detection method
WO2020106058A1 (en) Nuclide separating device
WO2016167515A1 (en) Liquid specimen smear processing device
CN113265328A (en) Integrated full-automatic nucleic acid detection equipment
WO2015056876A1 (en) Automated cell smear system and control method therefor
CN115112912A (en) Multi-project body fluid analyzer
CN210964039U (en) Full-automatic solid phase extraction device for radiochemistry
WO2021172621A1 (en) Mobile compression and melting composite volume reduction system and method for treating non-combustible waste of dismantled nuclear power plant
CN116622494A (en) Automated molecular diagnostic test apparatus and method
CN114752491A (en) Gene extraction module and gene detection equipment
KR102096801B1 (en) Radionuclide extraction apparatus
KR102261634B1 (en) Radionuclide extraction apparatus
WO2023287082A1 (en) Cartridge system for extraction of complex sample, and complex sample extracting method
CN216274071U (en) Nucleic acid extraction apparatus
WO2023018193A1 (en) Nucleic acid extraction apparatus in which reagents are dispensed in bulk
CN115609258A (en) Intelligent automatic assembly line of chromatographic column
CN216051055U (en) Soil organic matter detection pretreatment device
WO2021187735A1 (en) Saw and placement system
WO2023234483A1 (en) Reagent injection device
CN113640535A (en) Integrated form nucleic acid sample automatic processing equipment
WO2017191905A1 (en) Automated soil contamination analysis device
CN207730532U (en) Core sample automatic separating apparatus
WO2023140562A1 (en) Apparatus and method for separating radioactive strontium from seawater using cation exchange resin
CN217931701U (en) Multi-project body fluid analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019887211

Country of ref document: EP

Effective date: 20210621