WO2023140354A1 - 弾性波装置及びフィルタ装置 - Google Patents

弾性波装置及びフィルタ装置 Download PDF

Info

Publication number
WO2023140354A1
WO2023140354A1 PCT/JP2023/001709 JP2023001709W WO2023140354A1 WO 2023140354 A1 WO2023140354 A1 WO 2023140354A1 JP 2023001709 W JP2023001709 W JP 2023001709W WO 2023140354 A1 WO2023140354 A1 WO 2023140354A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
resonator
mass addition
electrode fingers
region
Prior art date
Application number
PCT/JP2023/001709
Other languages
English (en)
French (fr)
Inventor
克也 大門
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023140354A1 publication Critical patent/WO2023140354A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves

Definitions

  • the present invention relates to elastic wave devices and filter devices.
  • acoustic wave devices have been widely used in filters for mobile phones.
  • an elastic wave device using a thickness-shear mode bulk wave as described in Patent Document 1 below.
  • a piezoelectric layer is provided on a support.
  • a pair of electrodes is provided on the piezoelectric layer.
  • the paired electrodes face each other on the piezoelectric layer and are connected to different potentials.
  • an AC voltage between the electrodes By applying an AC voltage between the electrodes, a thickness-shear mode bulk wave is excited.
  • Patent Document 2 discloses an example of an elastic wave device that utilizes a piston mode.
  • an IDT electrode Interdigital Transducer
  • the IDT electrode has a central region and a pair of edge regions. The pair of edge regions are opposed to each other across the central region in the direction in which the plurality of electrode fingers extend.
  • a dielectric layer or the like is provided on the IDT electrodes in the pair of edge regions.
  • the present inventor focused on the fact that loss degradation can be suppressed by providing a dielectric layer as a mass-addition film in the edge region of an acoustic wave device that utilizes bulk waves in the thickness-shear mode, while unnecessary waves are generated near the resonance frequency and the anti-resonance frequency.
  • An object of the present invention is to provide an acoustic wave device and a filter device that can suppress unwanted waves near the resonance frequency or near the anti-resonance frequency even when a mass addition film is provided in the edge region.
  • An acoustic wave device includes a support member including a support substrate, a piezoelectric layer made of lithium tantalate or lithium niobate and provided on the support member, and an IDT electrode provided on the piezoelectric layer and having a pair of bus bars and a plurality of electrode fingers.
  • d is the layer thickness and p is the center-to-center distance between adjacent electrode fingers
  • d/p is 0.5 or less
  • some of the plurality of electrode fingers are connected to one bus bar of the pair of bus bars, the remaining electrode fingers of the plurality of electrode fingers are connected to the other bus bar, the some of the electrode fingers connected to the one bus bar and the remaining electrode fingers connected to the other bus bar are interdigitated, and the plurality of electrode fingers are connected to each other.
  • a direction in which the electrode fingers extend is defined as an electrode finger extending direction
  • a direction orthogonal to the electrode finger extending direction is defined as an electrode finger facing direction.
  • the filter device has at least one series arm resonator and at least one parallel arm resonator
  • the filter device includes at least one first elastic wave resonator included in the at least one series arm resonator, and at least one second elastic wave resonator included in the at least one parallel arm resonator
  • the first elastic wave resonator and the second elastic wave resonator are each configured according to the present invention.
  • the thickness of the plurality of mass addition films of the acoustic wave resonator is thinner than the thickness of the plurality of mass addition films of the first acoustic wave resonator.
  • the filter device has at least one series arm resonator and at least one parallel arm resonator
  • the filter device includes at least one first elastic wave resonator included in the at least one series arm resonator, and at least one second elastic wave resonator included in the at least one parallel arm resonator
  • the first elastic wave resonator and the second elastic wave resonator are configured according to the present invention. is larger than the average value of the areas of the plurality of mass addition films of the first acoustic wave resonator in plan view.
  • the filter device has a plurality of elastic wave resonators including at least one series arm resonator and at least one parallel arm resonator, wherein at least one of the series arm resonator and the parallel arm resonator is an elastic wave device configured according to the present invention.
  • an elastic wave device and a filter device that can suppress unwanted waves near the resonance frequency or near the anti-resonance frequency even when the edge region is provided with a mass addition film.
  • FIG. 1 is a schematic plan view of an elastic wave device according to a first embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II in FIG.
  • FIG. 3 is a schematic plan view of an elastic wave device of a first comparative example.
  • FIG. 4 is a diagram showing admittance-frequency characteristics in the first embodiment, first comparative example, and second comparative example of the present invention.
  • FIG. 5 is a diagram showing excitation intensity of unnecessary waves in the first comparative example.
  • FIG. 6 is a schematic plan view for explaining the dimensions of the mass addition film.
  • FIG. 7 is a diagram showing the relationship between the dimension along the extending direction of the electrode fingers of the portion of the mass addition film located in the gap region and the admittance frequency characteristic.
  • FIG. 1 is a schematic plan view of an elastic wave device according to a first embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II in FIG.
  • FIG. 3 is a schematic plan view of an
  • FIG. 8 is a diagram showing the relationship between the dimension along the extending direction of the electrode fingers of the portion of the mass addition film located in the gap region and the return loss.
  • FIG. 9 is a diagram showing the return loss when silicon oxide is used as the mass addition film material in the first embodiment, when tantalum oxide is used, and in the first comparative example.
  • FIG. 10 is a schematic front cross-sectional view of an acoustic wave device according to a modification of the first embodiment of the invention.
  • FIG. 11 is a diagram showing admittance frequency characteristics when silicon oxide is used as the material of the mass addition film in the second embodiment and the first comparative example of the present invention.
  • FIG. 12 is a diagram showing admittance frequency characteristics when tantalum oxide is used as the material of the mass adding film in the second embodiment and the first comparative example of the present invention.
  • FIG. 13 is a diagram showing the relationship between the dimension of the gap region along the extending direction of the electrode fingers and the admittance frequency characteristic.
  • FIG. 14 is a schematic plan view of an elastic wave device according to a third embodiment of the invention.
  • FIG. 15 is a schematic plan view of an elastic wave device according to a fourth embodiment of the invention.
  • FIG. 16 is a diagram showing admittance-frequency characteristics in modifications of the second and fourth embodiments of the present invention.
  • FIG. 17 is a schematic plan view of an elastic wave device according to a fifth embodiment of the invention.
  • FIG. 18 is a schematic plan view of an elastic wave device according to a sixth embodiment of the invention.
  • FIG. 19 is a schematic plan view of the elastic wave device of the first reference example.
  • FIG. 20 is a diagram showing admittance-frequency characteristics in the first embodiment, the sixth embodiment, and the first reference example of the present invention.
  • FIG. 21 is a schematic plan view of an elastic wave device according to a seventh embodiment of the invention.
  • FIG. 22 is a schematic plan view of an elastic wave device according to an eighth embodiment of the invention.
  • FIG. 23 is a schematic plan view of an elastic wave device according to a modification of the eighth embodiment of the invention.
  • FIG. 24 is a circuit diagram of a filter device according to a ninth embodiment of the invention.
  • FIG. 25 is a circuit diagram of a filter device according to a tenth embodiment of the invention.
  • FIG. 26 is a schematic plan view of a fourth elastic wave resonator according to the tenth embodiment of the invention.
  • FIG. 27 is a diagram showing admittance frequency characteristics of the third elastic wave resonator and the fourth elastic wave resonator in the tenth embodiment of the present invention.
  • FIG. 28 is a schematic plan view of a fifth elastic wave resonator according to the eleventh embodiment of the invention.
  • FIG. 29 is a diagram showing admittance frequency characteristics in the fifth elastic wave resonator according to the eleventh embodiment of the present invention and the elastic wave resonators of the second and third reference examples.
  • FIG. 26 is a schematic plan view of a fourth elastic wave resonator according to the tenth embodiment of the invention.
  • FIG. 27 is a diagram showing admittance frequency characteristics of the third elastic wave resonator and the fourth elastic wave resonator in the tenth embodiment of
  • FIG. 30 is a schematic plan view of a sixth elastic wave resonator according to the twelfth embodiment of the invention.
  • FIG. 31 is a diagram showing admittance frequency characteristics in the third elastic wave resonator, the fifth elastic wave resonator, and the sixth elastic wave resonator according to the twelfth embodiment of the present invention.
  • FIG. 32(a) is a schematic perspective view showing the external appearance of an elastic wave device that utilizes a thickness shear mode bulk wave
  • FIG. 32(b) is a plan view showing an electrode structure on a piezoelectric layer.
  • FIG. 33 is a cross-sectional view of a portion taken along line AA in FIG. 32(a).
  • FIG. 34(a) is a schematic front cross-sectional view for explaining a Lamb wave propagating through a piezoelectric film of an acoustic wave device
  • FIG. 34(b) is a schematic front cross-sectional view for explaining a thickness shear mode bulk wave propagating through a piezoelectric film in the acoustic wave device.
  • FIG. 35 is a diagram showing amplitude directions of bulk waves in the thickness shear mode.
  • FIG. 36 is a diagram showing resonance characteristics of an elastic wave device that utilizes a thickness-shear mode bulk wave.
  • FIG. 37 is a diagram showing the relationship between d/p and the fractional bandwidth of the resonator, where p is the center-to-center distance between adjacent electrodes and d is the thickness of the piezoelectric layer.
  • FIG. 38 is a plan view of an elastic wave device that utilizes thickness shear mode bulk waves.
  • FIG. 39 is a diagram showing resonance characteristics of an elastic wave device of a reference example in which spurious appears.
  • FIG. 40 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious.
  • FIG. 41 is a diagram showing the relationship between d/2p and metallization ratio MR.
  • FIG. 42 is a diagram showing a map of fractional bandwidth with respect to Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is brought infinitely close to 0.
  • FIG. 43 is a front cross-sectional view of an elastic wave device having an acoustic multilayer film.
  • FIG. 1 is a schematic plan view of an elastic wave device according to the first embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II in FIG.
  • the acoustic wave device 10 has a piezoelectric substrate 12 and an IDT electrode 11.
  • the piezoelectric substrate 12 has a support member 13 and a piezoelectric layer 14 .
  • the support member 13 includes a support substrate 16 and an insulating layer 15 .
  • An insulating layer 15 is provided on the support substrate 16 .
  • a piezoelectric layer 14 is provided on the insulating layer 15 .
  • the support member 13 may be composed of only the support substrate 16 .
  • the piezoelectric layer 14 has a first main surface 14a and a second main surface 14b.
  • the first main surface 14a and the second main surface 14b face each other.
  • the second principal surface 14b is located on the support member 13 side.
  • the piezoelectric layer 14 is, for example, a lithium niobate layer such as a LiNbO3 layer or a lithium tantalate layer such as a LiTaO3 layer.
  • the piezoelectric layer 14 has X-axis, Y-axis and Z-axis as crystal axes.
  • the insulating layer 15 is provided with recesses.
  • a piezoelectric layer 14 is provided on the insulating layer 15 so as to close the recess.
  • a hollow portion is thus formed.
  • This hollow portion is the hollow portion 10a.
  • the support member 13 and the piezoelectric layer 14 are arranged such that a portion of the support member 13 and a portion of the piezoelectric layer 14 face each other with the hollow portion 10a interposed therebetween.
  • the recess in the support member 13 may be provided over the insulating layer 15 and the support substrate 16 .
  • the recess provided only in the support substrate 16 may be closed with the insulating layer 15 .
  • the recess may be provided in the piezoelectric layer 14 .
  • the hollow portion 10 a may be a through hole provided in the support member 13 .
  • the IDT electrode 11 has a pair of busbars and a plurality of electrode fingers.
  • a pair of busbars is specifically a first busbar 26 and a second busbar 27 .
  • the first busbar 26 and the second busbar 27 face each other.
  • the plurality of electrode fingers are specifically a plurality of first electrode fingers 28 and a plurality of second electrode fingers 29 .
  • One ends of the plurality of first electrode fingers 28 are each connected to the first bus bar 26 .
  • One ends of the plurality of second electrode fingers 29 are each connected to the second bus bar 27 .
  • the plurality of first electrode fingers 28 and the plurality of second electrode fingers 29 are interleaved with each other.
  • the IDT electrode 11 may be composed of a single-layer metal film, or may be composed of a laminated metal film.
  • first busbar 26 and the second busbar 27 may be simply referred to as busbars.
  • the first electrode finger 28 and the second electrode finger 29 may be simply referred to as electrode fingers.
  • the electrode finger extending direction and the electrode finger facing direction are orthogonal.
  • a region where adjacent electrode fingers overlap each other is an intersecting region F when viewed from the direction in which the electrode fingers are opposed.
  • the intersection region F is a region of the piezoelectric layer 14 defined based on the configuration of the IDT electrodes 11 .
  • the intersection region F has a central region H and a pair of edge regions. The pair of edge regions are arranged so as to sandwich the central region H in the extending direction of the electrode fingers.
  • a pair of edge regions is specifically a first edge region Ea and a second edge region Eb.
  • the first edge region Ea is located on the first bus bar 26 side.
  • the second edge region Eb is located on the second bus bar 27 side.
  • a region located between the intersection region F and the pair of busbars is a pair of gap regions.
  • a pair of gap regions is specifically a first gap region Ga and a second gap region Gb.
  • the first gap region Ga is located between the first busbar 26 and the first edge region Ea.
  • the second gap region Gb is located between the second busbar 27 and the second edge region Eb.
  • Each gap region like the intersection region F, is a region of the piezoelectric layer 14 defined based on the configuration of the IDT electrodes 11 .
  • first edge region Ea and the second edge region Eb may be simply referred to as edge regions.
  • first gap region Ga and the second gap region Gb may be simply referred to as gap regions.
  • planar view refers to viewing from the direction corresponding to the upper side in FIG. In FIG. 2, for example, of the support substrate 16 and the piezoelectric layer 14, the piezoelectric layer 14 side is the upper side.
  • the first main surface 14a of the piezoelectric layer 14 is provided with a plurality of mass adding films.
  • the plurality of mass addition films are specifically a first mass addition film 24 and a plurality of second mass addition films 25 . More specifically, the plurality of first mass adding films 24 are provided over the first edge region Ea and the first gap region Ga. The plurality of first mass addition films 24 are arranged along the electrode finger facing direction.
  • a plurality of mass-applying films are arranged along the electrode-finger facing direction means that the plurality of mass-applying films are arranged in the electrode-finger facing direction when viewed from the electrode-finger extending direction.
  • a virtual line connecting the centers of the plurality of first mass adding films 24 extends parallel to the direction in which the electrode fingers are opposed.
  • the positions of the centers of the adjacent first mass adding films 24 in the extending direction of the electrode fingers may be different from each other.
  • a plurality of second mass addition films 25 are provided over the second edge region Eb and the second gap region Gb.
  • the plurality of second mass adding films 25 are arranged along the electrode finger facing direction. At least one of the plurality of first mass addition films 24 and the plurality of second mass addition films 25 may be provided.
  • the first mass addition film 24 and the second mass addition film 25 may be simply referred to as mass addition films.
  • the period of the plurality of mass addition films arranged in the electrode finger facing direction is not particularly limited.
  • the electrode fingers overlapping the mass adding film in plan view may be all the electrode fingers, or may be every other electrode finger in the electrode finger facing direction.
  • each first mass adding film 24 is provided so as to cover the tip of each second electrode finger 29 .
  • Each second mass addition film 25 is provided so as to cover the tip of each first electrode finger 28 .
  • the plurality of first mass addition films 24 and the plurality of second mass addition films 25 are provided so as not to be positioned at least partly between adjacent electrode fingers. In other words, neither the first mass addition film 24 nor the second mass addition film 25 is provided at least partly between adjacent electrode fingers. That is, in the first edge region Ea, at least part of the portion of the piezoelectric layer 14 located between the electrode fingers is exposed from the first mass adding film 24 . Similarly, in the second edge region Eb, at least part of the portion of the piezoelectric layer 14 located between the electrode fingers is exposed from the second mass adding film 25 . More specifically, in the present embodiment, only one electrode finger overlaps each mass addition film in plan view.
  • the elastic wave device 10 of the present embodiment is an elastic wave resonator configured to be able to use bulk waves in thickness-shear mode. More specifically, in the elastic wave device 10, d/p is 0.5 or less, where d is the thickness of the piezoelectric layer 14 and p is the center-to-center distance between adjacent electrode fingers. As a result, thickness-shear mode bulk waves are preferably excited. Note that when viewed from the electrode finger facing direction, the region where the adjacent electrode fingers overlap each other and the region between the centers of the adjacent electrode fingers is the excitation region. In each excitation region, a thickness-shear mode bulk wave is excited. The excitation region is specifically the region of the piezoelectric layer 14 defined based on the configuration of the IDT electrodes 11 .
  • a hollow portion 10a shown in FIG. 2 is an acoustic reflection portion in the present invention.
  • the acoustic reflector can effectively confine the energy of the elastic wave to the piezoelectric layer 14 side.
  • the acoustic reflection portion may be provided at a position on the support member that overlaps at least a portion of the IDT electrode in plan view.
  • an acoustic reflection film such as an acoustic multilayer film, which will be described later, may be provided as an acoustic reflection portion on the surface of the support member.
  • a feature of the present embodiment is that the plurality of mass-applying films are provided so as not to be located at least partly between adjacent electrode fingers. Thereby, unwanted waves caused by the provision of the mass addition film can be suppressed. The unwanted wave is generated near the resonance frequency or near the anti-resonance frequency. Therefore, in this embodiment, even when the edge region is provided with the mass addition film, unnecessary waves can be suppressed near the resonance frequency or near the anti-resonance frequency. Details of this effect will be described below by comparing the present embodiment with the first and second comparative examples.
  • the first comparative example differs from the first embodiment in that a pair of mass addition films 114 and 115 are provided entirely between adjacent electrode fingers. Specifically, in the first comparative example, the mass addition film 114 is provided over the first edge region Ea and the first gap region Ga. The mass addition film 115 is provided over the second edge region Eb and the second gap region Gb. Each mass adding film is continuously provided so as to overlap the plurality of electrode fingers and the regions between the electrode fingers in plan view.
  • the second comparative example differs from the first embodiment in that no mass addition film is provided. Admittance frequency characteristics were measured for each of the elastic wave device having the configuration of the first embodiment, the elastic wave device of the first comparative example, and the elastic wave device of the second comparative example.
  • FIG. 4 is a diagram showing admittance frequency characteristics in the first embodiment, the first comparative example, and the second comparative example.
  • the admittance in the vicinity of the frequency band surrounded by the two-dot chain line in FIG. 4 is small, the loss of the elastic wave resonator is small.
  • the position of the two-dot chain line is only an example, and frequencies other than the two-dot chain line may also have a correlation with the magnitude of the loss of the elastic wave resonator.
  • An arrow M1 in FIG. 4 indicates a frequency near the resonance frequency at which unwanted waves are generated.
  • An arrow M2 indicates a frequency near the anti-resonance frequency at which unwanted waves are generated. The same is true for diagrams showing other frequency characteristics.
  • FIG. 5 is a diagram showing excitation intensity of unwanted waves in the first comparative example.
  • the excitation intensity of unwanted waves is particularly high in the region where the mass addition film is provided between the electrode fingers.
  • the excitation intensity of unwanted waves is small.
  • the plurality of first mass addition films 24 and the plurality of second mass addition films 25 are provided so as not to be positioned at least partially between adjacent electrode fingers. Thereby, unwanted waves caused by the provision of the mass addition film can be suppressed. That is, unwanted waves can be suppressed near the resonance frequency and near the anti-resonance frequency.
  • a plurality of elastic wave devices having the configuration of the first embodiment were prepared.
  • the dimensions of the first mass addition films 24 are different from each other, and the dimensions of the second mass addition films 25 are also different from each other.
  • the dimension L1 of the first mass adding film 24 shown in FIG. 6 is different from each other.
  • the dimension L1 is the dimension along the extending direction of the electrode fingers of the portion of the first mass addition film 24 located in the first gap region Ga.
  • the dimension L1 of the second mass addition film 25 is also the dimension along the extending direction of the electrode fingers of the portion of the second mass addition film 25 located in the second gap region Gb.
  • the dimension L1 of the first mass addition film 24 and the second mass addition film 25 was set to 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, or 7 ⁇ m in each of the plurality of elastic wave devices.
  • the dimension L2 of the first mass adding film 24 shown in FIG. 6 is the same. More specifically, the dimension L2 is the dimension along the electrode finger facing direction of the portion of the first mass addition film 24 located in the region between the electrode fingers.
  • the first mass addition film 24 shown in FIG. 6 is provided over the area between one electrode finger, the area overlapping the electrode finger in plan view, and the area between the other electrode finger.
  • the dimension L2 is the dimension of the portion of the first mass adding film 24 located in one of the regions between the two electrode fingers.
  • the dimension L2 of the second mass addition film 25 is also the dimension along the electrode finger facing direction of the portion of the second mass addition film 25 located in the region between the electrode fingers.
  • the dimension L2 of the second mass adding film 25 is the same.
  • the dimension L2 of the first mass addition film 24 and the second mass addition film 25 was set to 0.5 ⁇ m.
  • the thickness of the first mass adding film 24 is the same.
  • the thickness of the second mass adding film 25 is the same.
  • the thickness of the first mass addition film 24 and the second mass addition film 25 was set to 50 nm. The admittance frequency characteristics and return loss of the prepared elastic wave devices were measured.
  • FIG. 7 is a diagram showing the relationship between the dimension of the portion of the mass addition film located in the gap region along the electrode finger extension direction and the admittance frequency characteristic.
  • FIG. 8 is a diagram showing the relationship between the dimension along the extending direction of the electrode fingers of the portion of the mass addition film located in the gap region and the return loss. 7 and 8 show the relationship between the dimension L1, the admittance frequency characteristic and the return loss.
  • the dimension along the extending direction of the electrode fingers of the portion of the mass addition film located in the gap region is 2 ⁇ m or more.
  • the piezoelectric layer 14, the electrode fingers and the mass addition film are laminated in the order of the piezoelectric layer 14, the electrode fingers and the mass addition film in the portion where the mass addition film and the electrode fingers are laminated.
  • the piezoelectric layer 14, the mass addition film and the electrode fingers may be laminated in the order of the piezoelectric layer 14, the mass addition film and the electrode fingers.
  • the first mass addition film 24 overlaps only the second electrode finger 29 of the first electrode finger 28 and the second electrode finger 29 in plan view.
  • the second mass addition film 25 overlaps only the first electrode finger 28 of the first electrode finger 28 and the second electrode finger 29 in plan view. Note that the first mass addition film 24 may overlap the first electrode finger 28 in plan view.
  • the second mass addition film 25 may overlap the second electrode fingers 29 in plan view.
  • the results of the first embodiment shown in FIGS. 4, 7 and 8 are obtained when the first mass addition film 24 and the second mass addition film 25 as mass addition films are made of silicon oxide.
  • the term "a certain member is made of a certain material” includes the case where a minute amount of impurity is contained to such an extent that the electrical characteristics of the elastic wave device are not deteriorated.
  • the first mass addition film 24 and the second mass addition film 25 may be made of, for example, at least one material selected from the group consisting of silicon oxide, tantalum oxide, niobium oxide, tungsten oxide, and hafnium oxide.
  • the materials of the first mass addition film 24 and the second mass addition film 25 are not limited to the above.
  • the return loss was compared between the case where silicon oxide was used as the material of the mass addition film and the case where tantalum oxide was used. More specifically, the return loss was compared between the case of using SiO 2 and the case of using Ta 2 O 5 as the material of the first mass addition film 24 and the second mass addition film 25 .
  • the return loss of the first comparative example shown in FIG. 3 is also shown.
  • FIG. 9 is a diagram showing the return loss when silicon oxide is used as the mass addition film material in the first embodiment, when tantalum oxide is used, and in the first comparative example.
  • the return loss in the vicinity of the frequency band surrounded by the two-dot chain line in FIG. 9 is small, the loss of the elastic wave resonator is small.
  • the position of the two-dot chain line is an example.
  • the unwanted waves near the resonance frequency indicated by the arrow M1 in FIG. 9 are suppressed more than in the first comparative example, regardless of whether the material of the mass addition film is silicon oxide or tantalum oxide.
  • the material of the mass addition film is tantalum oxide, unnecessary waves are further suppressed.
  • the material of the mass addition film is silicon oxide and when it is tantalum oxide, the magnitude of loss is the same.
  • the thickness of the portion of the mass addition film that is laminated with the electrode fingers is preferably 5 nm or more and 100 nm or less. Similarly, the thickness of the portion of the mass addition film that is not laminated with the electrode fingers is preferably 5 nm or more and 100 nm or less.
  • silicon oxide is used as the material of the mass addition film
  • the thickness of each of the above portions is more preferably 25 nm or more and 75 nm or less.
  • tantalum oxide is used as the material of the mass addition film, the thickness of each of the above portions is more preferably 5 nm or more and 35 nm or less.
  • the dimension L2 of the first mass adding film 24 shown in FIG. 6 is not zero.
  • the dimension L2 of the first mass addition film 24 and the second mass addition film 25 may be zero.
  • the dimension L2 of the mass adding film should be smaller than the dimension of the region between the electrode fingers along the electrode finger facing direction.
  • the IDT electrode 11 is provided directly on the first main surface 14a of the piezoelectric layer 14. As shown in FIG. However, it is not limited to this.
  • a dielectric film 33 is provided on the first main surface 14a of the piezoelectric layer 14. As shown in FIG. An IDT electrode 11 is provided on the dielectric film 33 . In this case, by adjusting the thickness of the dielectric film 33, the relative bandwidth of the acoustic wave device can be easily adjusted.
  • silicon oxide, silicon nitride, or silicon oxynitride can be used as a material for the dielectric film 33.
  • silicon oxide, silicon nitride, or silicon oxynitride can be used as a material for the dielectric film 33.
  • unwanted waves due to the provision of the mass addition film can be suppressed. Therefore, unwanted waves can be suppressed near the resonance frequency or near the anti-resonance frequency.
  • the configuration in which the IDT electrode 11 is indirectly provided on the first main surface 14a of the piezoelectric layer 14 via the dielectric film 33 in this modification can also be applied to configurations other than this modification according to the present invention.
  • the piezoelectric layer 14 is made of Z-cut lithium niobate.
  • the piezoelectric layer 14 may be made of rotated Y-cut lithium niobate.
  • An example of this is illustrated by the second embodiment. Note that the elastic wave device of the second embodiment has the same configuration as the elastic wave device 10 of the first embodiment except for the material of the piezoelectric layer 14 .
  • the admittance frequency characteristics of the elastic wave device having the configuration of the second embodiment and the first comparative example shown in FIG. 3 were compared.
  • the above comparison was made in the case of using SiO 2 and Ta 2 O 5 as the material of the mass addition film.
  • the piezoelectric layer in the first comparative example consists of rotated Y-cut lithium niobate.
  • FIG. 11 is a diagram showing admittance frequency characteristics when silicon oxide is used as the material of the mass addition film in the second embodiment and the first comparative example.
  • FIG. 12 is a diagram showing admittance frequency characteristics when tantalum oxide is used as the material of the mass addition film in the second embodiment and the first comparative example.
  • a plurality of elastic wave devices having the configuration of the second embodiment were prepared.
  • the gap regions have different dimensions along the extending direction of the electrode fingers.
  • the first gap region Ga and the second gap region Gb have the same dimension along the extending direction of the electrode fingers.
  • the dimension along the electrode finger extension direction of the first gap region Ga and the second gap region Gb was 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, or 2.5 ⁇ m.
  • the admittance frequency characteristics of the above elastic wave devices were measured.
  • FIG. 13 is a diagram showing the relationship between the dimension of the gap region along the electrode finger extending direction and the admittance frequency characteristic.
  • the larger the dimension of the gap region along the extending direction of the electrode fingers the smaller the loss.
  • the loss is small when the dimension of the gap region along the extending direction of the electrode fingers is 1 ⁇ m or more. For this reason, it is preferable that the dimension of the gap region along the extending direction of the electrode fingers is 1 ⁇ m or more. As a result, loss degradation can be effectively suppressed.
  • the areas of the plurality of mass addition films in plan view are all the same. Further, the plurality of mass addition films do not overlap the busbar in plan view. However, it is not limited to these. Examples in which the configuration of the mass addition film is different from those in the first and second embodiments will be described below as third and fourth embodiments.
  • the elastic wave devices of the third and fourth embodiments have the same configuration as the elastic wave device 10 of the first embodiment.
  • unnecessary waves due to the provision of the mass addition film can be suppressed. Therefore, unwanted waves can be suppressed near the resonance frequency or near the anti-resonance frequency.
  • FIG. 14 is a schematic plan view of an elastic wave device according to the third embodiment.
  • the dimensions of the plurality of first mass adding films 24 along the extending direction of the electrode fingers are different from each other. Therefore, the areas of the plurality of first mass addition films 24 in plan view are different from each other.
  • the dimensions along the extending direction of the electrode fingers of the plurality of second mass adding films 25 are different from each other. Therefore, the areas of the plurality of second mass adding films 25 in plan view are different from each other.
  • the plurality of first mass addition films 24 include at least one first mass addition film 24 having different areas in plan view.
  • the plurality of second mass addition films 25 may include at least one second mass addition film 25 having different areas in plan view.
  • the frequency of the unwanted wave generated differs for each mass addition film. Since the frequency of the unwanted waves can be varied in this manner, the unwanted waves can be suppressed as a whole.
  • the surface acoustic waves are excited by the entirety of the plurality of electrode fingers.
  • the portion where the piezoelectric layer 14 is provided with a pair of the first electrode finger 28 and the second electrode finger 29 functions as one resonator.
  • the configuration of the elastic wave device corresponds to a configuration in which a plurality of such resonators are connected in parallel. Therefore, in the present invention, even if the area of the mass addition film is not uniform, the waveform in the frequency characteristics is less likely to collapse. That is, unnecessary waves can be suppressed without deteriorating electrical characteristics.
  • FIG. 15 is a schematic plan view of an elastic wave device according to the fourth embodiment.
  • the plurality of first mass adding films 24 extends from the first gap region Ga to a portion overlapping the first bus bar 26 in plan view. More specifically, the plurality of first mass adding films 24 are provided over the area where the first edge region Ea, the first gap region Ga and the first bus bar 26 are provided. Similarly, the plurality of second mass addition films 25 overlap the second busbars 27 in plan view.
  • the piezoelectric layer 14, the busbars and the mass addition film are laminated in the order of the piezoelectric layer 14, the busbars and the mass addition film.
  • the piezoelectric layer 14, the mass addition film and the bus bar may be laminated in the order of the piezoelectric layer 14, the mass addition film and the bus bar.
  • Z-cut lithium niobate is used as the material of the piezoelectric layer 14 in the third and fourth embodiments.
  • rotated Y-cut lithium niobate may be used as the material of the piezoelectric layer 14 .
  • lithium tantalate may be used as the material of the piezoelectric layer 14 .
  • an elastic wave device having a configuration of a modified example of the fourth embodiment was prepared, which differed from the fourth embodiment only in that the piezoelectric layer 14 was made of rotated Y-cut lithium niobate. Furthermore, an elastic wave device having the configuration of the second embodiment was prepared. These admittance frequency characteristics were measured.
  • FIG. 16 is a diagram showing admittance frequency characteristics in modifications of the second embodiment and the fourth embodiment.
  • the position of the mass addition film may be shifted due to misalignment when the mass addition film is provided.
  • the mass addition film overlaps with the busbar in plan view.
  • unnecessary waves caused by the mass adding film can be suppressed.
  • the influence of misalignment during manufacturing can be reduced.
  • the mass adding film is laminated with the tips of the electrode fingers.
  • the piezoelectric layer 14 the electrode fingers and the mass adding films are laminated in this order.
  • Examples in which the configuration of the mass addition film is different from those in the first to fourth embodiments will be described below as fifth to seventh embodiments.
  • the elastic wave devices of the fifth to seventh embodiments have the same configuration as the elastic wave device 10 of the first embodiment except for the mass addition film.
  • unnecessary waves due to the provision of the mass addition film can be suppressed. Therefore, unwanted waves can be suppressed near the resonance frequency or near the anti-resonance frequency.
  • FIG. 17 is a schematic plan view of an elastic wave device according to the fifth embodiment.
  • the first mass adding film 24 surrounds the tips of the second electrode fingers 29 in three directions in plan view.
  • the first mass addition film 24 is in contact with the second electrode fingers 29 .
  • the first mass addition film 24 does not overlap the second electrode finger 29 in plan view.
  • the shape of the first mass addition film 24 in plan view is a U shape.
  • the plurality of electrode fingers has a first surface 11a, a second surface 11b, and side surfaces 11c.
  • the first surface 11a and the second surface 11b face each other in the thickness direction.
  • the second surface 11b is the surface on the piezoelectric layer 14 side.
  • the side surface 11c is connected to the first surface 11a and the second surface 11b.
  • the first mass addition film 24 is in contact with the side surface 11 c of the second electrode finger 29 .
  • the second mass addition film 25 surrounds the tips of the first electrode fingers 28 in three directions in plan view.
  • the second mass addition film 25 is in contact with the side surface 11c of the first electrode finger 28. As shown in FIG. However, the second mass adding film 25 does not overlap the first electrode finger 28 in plan view.
  • the shape of the second mass addition film 25 in plan view is a U shape.
  • the plurality of mass application films should include at least one mass application film that surrounds the tips of the electrode fingers in three directions in plan view.
  • the mass application film does not overlap the tips of the electrode fingers in plan view. This reduces the mass addition at the tip of the electrode finger. Thereby, the power durability of the elastic wave device can be improved.
  • FIG. 18 is a schematic plan view of an elastic wave device according to the sixth embodiment.
  • the first mass adding film 24 surrounds the tips of the second electrode fingers 29 in three directions in plan view. However, the first mass addition film 24 is not in contact with the second electrode finger 29 . The first mass addition film 24 does not overlap the second electrode finger 29 in plan view.
  • the second mass addition film 25 surrounds the tips of the first electrode fingers 28 in three directions in plan view.
  • the second mass adding film 25 is not in contact with the side surfaces of the first electrode fingers 28 .
  • the second mass adding film 25 does not overlap the first electrode finger 28 in plan view.
  • the power durability of the acoustic wave device can be enhanced.
  • the first reference example differs from the first embodiment in that the mass addition film 124 and the mass addition film 125 are not provided in the edge region, as shown in FIG.
  • the mass addition film 124 and the mass addition film 125 are provided in the gap region as in the first embodiment.
  • FIG. 20 is a diagram showing admittance frequency characteristics in the first embodiment, the sixth embodiment, and the first reference example.
  • FIG. 21 is a schematic plan view of an elastic wave device according to the seventh embodiment.
  • the first mass adding film 24 overlaps the tips of the second electrode fingers 29 in plan view. More specifically, in the portion where the first mass addition film 24 and the second electrode finger 29 are stacked, the piezoelectric layer 14, the first mass addition film 24 and the second electrode finger 29 are stacked in the order of the piezoelectric layer 14, the first mass addition film 24 and the second electrode finger 29.
  • the second mass addition film 25 overlaps the tip of the first electrode finger 28 in plan view. More specifically, the piezoelectric layer 14, the second mass addition film 25 and the first electrode fingers 28 are laminated in this order in the portion where the second mass addition film 25 and the first electrode fingers 28 are laminated.
  • a mass adding film is provided between the piezoelectric layer 14 and the tip of the electrode finger. This suppresses the electric field applied to the electrode fingers. Thereby, the power durability of the elastic wave device can be improved.
  • Z-cut lithium niobate is used as the material of the piezoelectric layer 14, as in the first embodiment.
  • rotated Y-cut lithium niobate may be used as the material of the piezoelectric layer 14 .
  • lithium tantalate may be used as the material of the piezoelectric layer 14 .
  • FIG. 22 is a schematic plan view of an elastic wave device according to the eighth embodiment.
  • This embodiment differs from the first embodiment in that a dielectric film 45 is provided on the piezoelectric layer 14 .
  • a dielectric film 45 covers the IDT electrode 11 and a plurality of mass adding films. Therefore, the piezoelectric layer 14, the mass adding film and the dielectric film 45 are stacked in the order of the piezoelectric layer 14, the mass adding film and the dielectric film 45 in the portion where the mass adding film and the dielectric film 45 are stacked.
  • the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • the IDT electrode 11 is protected by the dielectric film 45 . As a result, the IDT electrode 11 is less likely to be damaged.
  • the frequency can also be easily adjusted by adjusting the thickness of the dielectric film 45 .
  • unwanted waves due to the provision of the mass addition film can be suppressed. Therefore, unwanted waves can be suppressed near the resonance frequency or near the anti-resonance frequency.
  • silicon oxide, silicon nitride, or silicon oxynitride can be used for the dielectric film 45 .
  • the material of the dielectric film 45 is not limited to the above.
  • the order of lamination of the mass addition film and the dielectric film 45 is not limited to the above.
  • the piezoelectric layer 14, the dielectric film 45 and the mass addition film are stacked in the order of the piezoelectric layer 14, the dielectric film 45 and the mass addition film in the portion where the mass addition film and the dielectric film 45 are stacked.
  • unnecessary waves can be suppressed near the resonance frequency or near the anti-resonance frequency.
  • Z-cut lithium niobate is used as the material of the piezoelectric layer 14, as in the first embodiment.
  • rotated Y-cut lithium niobate may be used as the material of the piezoelectric layer 14 .
  • lithium tantalate may be used as the material of the piezoelectric layer 14 .
  • the elastic wave device according to the present invention can be used, for example, in a filter device.
  • a filter device An example of this is given below.
  • FIG. 24 is a circuit diagram of a filter device according to the ninth embodiment of the present invention.
  • the filter device 50 is a ladder filter.
  • the filter device 50 has a first signal terminal 52 and a second signal terminal 53, a plurality of series arm resonators and a plurality of parallel arm resonators.
  • all series arm resonators and all parallel arm resonators are elastic wave resonators.
  • All elastic wave resonators are elastic wave devices according to the present invention.
  • at least one elastic wave resonator in the filter device 50 may be the elastic wave device according to the present invention.
  • the first signal terminal 52 and the second signal terminal 53 may be configured as electrode pads or may be configured as wiring.
  • the second signal terminal 53 is an antenna terminal. An antenna terminal is connected to the antenna.
  • the plurality of series arm resonators of the filter device 50 are specifically a series arm resonator S1, a series arm resonator S2 and a series arm resonator S3.
  • the plurality of parallel arm resonators are specifically a parallel arm resonator P1 and a parallel arm resonator P2.
  • the series arm resonator S1, the series arm resonator S2, and the series arm resonator S3 are connected in series with each other.
  • a parallel arm resonator P1 is connected between the connection point between the series arm resonators S1 and S2 and the ground potential.
  • a parallel arm resonator P2 is connected between the connection point between the series arm resonators S2 and S3 and the ground potential. Note that the circuit configuration of the filter device 50 is not limited to the above. When the filter device 50 according to the present invention is a ladder filter, the filter device 50 should have at least one series arm resonator and at least one parallel arm resonator.
  • the filter device 50 may include, for example, a longitudinally coupled resonator type elastic wave filter.
  • the filter device 50 may include, for example, series arm resonators or parallel arm resonators connected to the longitudinally coupled resonator type acoustic wave filter.
  • the series arm resonator or the parallel arm resonator may be the acoustic wave device according to the present invention.
  • all elastic wave resonators share the piezoelectric substrate.
  • the piezoelectric layer in the piezoelectric substrate may be, for example, of Z-cut lithium niobate or of rotated Y-cut lithium niobate.
  • the piezoelectric layer may consist of lithium tantalate.
  • Each acoustic wave resonator may have a separate piezoelectric substrate.
  • the anti-resonant frequency of the parallel arm resonators forming the passband of the filter device 50 is located within the passband of the filter device 50 . Therefore, unwanted waves generated near the anti-resonance frequency of the parallel arm resonator have a large influence on the electrical characteristics within the passband of the filter device 50 .
  • the resonance frequency of the series arm resonators forming the passband of filter device 50 is located within the passband of filter device 50 . Therefore, unwanted waves generated in the vicinity of the resonance frequency of the series arm resonator have a large influence on the electrical characteristics within the passband of the filter device 50 .
  • each parallel arm resonator and each series arm resonator are elastic wave devices according to the present invention.
  • an acoustic wave device capable of suppressing unwanted waves near the anti-resonance frequency may be used.
  • an acoustic wave device capable of suppressing unwanted waves near the resonance frequency may be used.
  • the elastic wave device of the first embodiment or the like is used as a series arm resonator or a parallel arm resonator, loss deterioration can be suppressed in the elastic wave resonator. Therefore, deterioration of filter characteristics of the filter device 50 can be suppressed.
  • the series arm resonator that is the elastic wave device according to the present invention is referred to as a first elastic wave resonator.
  • the parallel arm resonator which is the elastic wave device according to the present invention is referred to as a second elastic wave resonator.
  • the filter device 50 has at least one first acoustic wave resonator and at least one second acoustic wave resonator. As a result, deterioration of filter characteristics can be suppressed more reliably.
  • the thickness of the plurality of mass addition films of the second acoustic wave resonator is thinner than the thickness of the plurality of mass addition films of the first acoustic wave resonator.
  • the thickness of the mass addition film is thin, unnecessary waves caused by the mass addition film are suppressed near the anti-resonance frequency. Therefore, in the present embodiment, deterioration of filter characteristics can be effectively suppressed.
  • the effect on filter characteristics is greater than when an unwanted wave occurs at a higher frequency in a series arm resonator.
  • the average value of the areas of the mass addition films of the second acoustic wave resonator in plan view is larger than the average value of the areas of the mass addition films of the first acoustic wave resonator in plan view.
  • FIG. 25 is a circuit diagram of the filter device according to the tenth embodiment.
  • the filter device 60 is a ladder filter. This embodiment differs from the ninth embodiment in the circuit configuration and the configuration of each elastic wave resonator.
  • the plurality of series arm resonators of the filter device 60 are specifically a series arm resonator S11, a series arm resonator S12, a series arm resonator S13 and a series arm resonator S14.
  • the plurality of parallel arm resonators are specifically a parallel arm resonator P11, a parallel arm resonator P12 and a parallel arm resonator P13.
  • the series arm resonator S11, the series arm resonator S12, the series arm resonator S13, and the series arm resonator S14 are connected in series with each other.
  • a parallel arm resonator P11 is connected between a connection point between the series arm resonator S11 and the series arm resonator S12 and the ground potential.
  • a parallel arm resonator P12 is connected between the connection point between the series arm resonator S12 and the series arm resonator S13 and the ground potential.
  • a parallel arm resonator P13 is connected between the connection point between the series arm resonator S13 and the series arm resonator S14 and the ground potential.
  • all elastic wave resonators share the piezoelectric substrate. More specifically, the piezoelectric layer of the piezoelectric substrate in this embodiment is made of rotated Y-cut lithium niobate.
  • an elastic wave resonator which is an elastic wave device according to the present invention and has a piezoelectric layer made of lithium niobate in a rotated Y-cut, is referred to as a third elastic wave resonator.
  • the third elastic wave resonator is the elastic wave device according to the second embodiment.
  • all parallel arm resonators are third elastic wave resonators.
  • the first mass adding film 24 is provided over the first edge region Ea and the first gap region Ga.
  • the first mass adding film 24 is provided in the entire first gap region Ga in the direction in which the electrode fingers extend. Therefore, the dimension along the electrode finger extension direction of the portion of the first mass addition film 24 provided in the first gap region Ga is the same as the dimension along the electrode finger extension direction of the first gap region Ga.
  • a second mass adding film 25 is provided over the second edge region Eb and the second gap region Gb.
  • the dimension along the electrode finger extension direction of the portion of the second mass addition film 25 provided in the second gap region Gb is the same as the dimension along the electrode finger extension direction of the second gap region Gb.
  • Each mass addition film may be provided in a part of each gap region in the direction in which the electrode fingers extend.
  • an elastic wave resonator that has a piezoelectric layer made of lithium niobate in a rotated Y-cut and does not have a mass adding film is an elastic wave resonator that is a fourth elastic wave resonator.
  • the fourth elastic wave resonator has IDT electrodes 11, like the third elastic wave resonator.
  • all series arm resonators are fourth elastic wave resonators.
  • the dimension of the gap region in the third acoustic wave resonator along the electrode finger extension direction is larger than the dimension of the gap region in the fourth acoustic wave resonator along the electrode finger extension direction.
  • a single third acoustic wave resonator and a fourth acoustic wave resonator were prepared, and their admittance frequency characteristics were measured.
  • FIG. 27 is a diagram showing admittance frequency characteristics of the third elastic wave resonator and the fourth elastic wave resonator in the tenth embodiment.
  • the third elastic wave resonator is the elastic wave device according to the second embodiment, and as shown in FIG. 27, unnecessary waves are suppressed near the resonance frequency. Furthermore, in the third elastic wave resonator, unnecessary waves are suppressed in the vicinity of 7000 MHz, and the loss is small including the high frequency side in the vicinity of 7600 MHz. This is because in the third acoustic wave resonator, the gap region has a large dimension along the extending direction of the electrode fingers. More specifically, as shown in FIG. 13, in the third acoustic wave resonator, the larger the dimension of the gap region along the extending direction of the electrode fingers, the more the deterioration of the loss can be suppressed.
  • the third elastic wave resonator When the third elastic wave resonator is used in the filter device as in this embodiment, it is preferable to use the third elastic wave resonator as a parallel arm resonator.
  • the parallel arm resonator has a large frequency loss on the high frequency side, the effect on the filter characteristics is greater than when the series arm resonator has a large frequency loss on the high frequency side.
  • the third parallel-arm resonator is used as the parallel-arm resonator, it is possible to suppress loss of frequencies on the high-frequency side in the parallel-arm resonator. Filter characteristics can thereby be improved.
  • the dimension along the electrode finger extension direction of the gap region in the third elastic wave resonator used as the parallel arm resonator is larger than the dimension along the electrode finger extension direction of the gap region in the fourth elastic wave resonator used as the series arm resonator.
  • the fourth acoustic wave resonator does not have a mass-adding film, no unwanted wave is generated due to the mass-adding film. Therefore, as shown in FIG. 27, the intensity of unwanted waves near the resonance frequency is small.
  • the loss is not particularly degraded at frequencies other than the high frequency side near 7600 MHz. This is because the rotated Y-cut lithium niobate is used for the piezoelectric layer of the fourth elastic wave resonator.
  • the mass addition film is not provided. More specifically, this is because the mass-applying film does not overlap the tip of the electrode finger in plan view. Since the fourth elastic wave resonator is used as the series arm resonator, the filter characteristics of the filter device 60 are less likely to deteriorate.
  • At least one parallel arm resonator may be the third elastic wave resonator, and at least one series arm resonator may be the fourth elastic wave resonator.
  • the third acoustic wave resonator in the filter device 60 can suppress unwanted waves near the resonance frequency or near the anti-resonance frequency. Further, deterioration of filter characteristics of the filter device 60 can be suppressed.
  • all the fourth acoustic wave resonators are series arm resonators. In this case, deterioration of the filter characteristics of the filter device 60 can be suppressed more reliably.
  • each elastic wave resonator may have a separate piezoelectric substrate.
  • all parallel arm resonators are third elastic wave resonators, as in the tenth embodiment.
  • all series arm resonators are fifth elastic wave resonators.
  • the third elastic wave resonator which is the elastic wave device according to the present invention
  • unwanted waves can be suppressed near the resonance frequency or the anti-resonance frequency.
  • the third elastic wave resonator is used as the parallel arm resonator. As a result, deterioration of filter characteristics of the filter device according to the eleventh embodiment can be suppressed.
  • the fifth elastic wave resonator will be described below.
  • FIG. 28 is a schematic plan view of a fifth elastic wave resonator in the eleventh embodiment.
  • the piezoelectric layer 14 of the piezoelectric substrate 12 is made of rotated Y-cut lithium niobate.
  • a fifth acoustic wave resonator has an IDT electrode 11 and a pair of mass addition films 104 and 105 .
  • the mass addition film 104 and the mass addition film 105 have strip-like shapes.
  • the mass addition film 104 is provided in the first gap region Ga and not provided in the intersecting region F.
  • the mass adding film 104 is continuously provided so as to overlap the plurality of electrode fingers and the regions between the electrode fingers in plan view.
  • the mass addition film 104 is provided in the entire first gap region Ga in the direction in which the electrode fingers extend. Therefore, the dimension of the mass addition film 104 along the electrode finger extension direction is the same as the dimension of the first gap region Ga along the electrode finger extension direction.
  • the mass addition film 105 is provided in the second gap region Gb and not provided in the intersecting region F.
  • the mass adding film 105 is continuously provided so as to overlap the plurality of electrode fingers and the regions between the electrode fingers in plan view.
  • the dimension of the mass addition film 105 along the electrode finger extension direction is the same as the dimension of the second gap region Gb along the electrode finger extension direction.
  • each mass addition film may be provided in a part of each gap region in the extending direction of the electrode fingers.
  • at least one of the mass addition films 104 and 105 may overlap the busbar in plan view.
  • the mass addition film should be provided in at least one of the first gap region Ga and the second gap region Gb.
  • a single fifth elastic wave resonator was prepared, and the admittance frequency characteristics were measured.
  • the effect of positional displacement of the mass-applying film on the admittance frequency characteristics was investigated.
  • elastic wave resonators of the second reference example and the third reference example were prepared, and the admittance frequency characteristics of each elastic wave resonator were measured. Note that the above positional deviation is caused by misalignment or the like when providing the mass addition film.
  • each mass addition film is provided in the entire gap region and part of the edge region. More specifically, in the elastic wave resonator, the mass adding film is continuously provided in a part of the edge region so as to overlap the plurality of electrode fingers and the region between the electrode fingers when viewed from above. More specifically, the dimension of the mass addition film in the elastic wave resonator along the electrode finger extension direction is 150 nm larger than the dimension of the gap region along the electrode finger extension direction.
  • the mass adding film is provided in a part of the gap region in the extending direction of the electrode fingers. More specifically, in the acoustic wave resonator, the mass adding film is in contact with the tips of the electrode fingers and is not in contact with the busbar. More specifically, the dimension of the mass addition film in the elastic wave resonator along the electrode finger extension direction is 150 nm smaller than the dimension of the gap region along the electrode finger extension direction.
  • FIG. 29 is a diagram showing admittance frequency characteristics in the fifth elastic wave resonator of the eleventh embodiment, and the elastic wave resonators of the second and third reference examples.
  • the loss is not particularly degraded at frequencies other than the high frequency side around 7600 MHz. This is because the piezoelectric layer of the fifth acoustic wave resonator is made of rotated Y-cut lithium niobate. Furthermore, in the fifth acoustic wave resonator, the mass addition film does not overlap the tips of the electrode fingers when viewed from above.
  • loss degradation is small at frequencies other than the high frequency side around 7600 MHz. From these facts, it can be seen that if the displacement of the mass addition film is about 150 nm, the difference in characteristics is small.
  • the series arm resonator Even if the loss on the high frequency side is large, the effect on the filter characteristics is small. And, as described above, in the fifth acoustic wave resonator, the loss is not particularly degraded at frequencies other than the high frequency side around 7600 MHz. Therefore, the use of the fifth elastic wave resonator as a series arm resonator hardly degrades the filter characteristics.
  • the thickness of the mass addition film that can effectively improve the loss and the dimension of the gap region along the extending direction of the electrode fingers were studied.
  • the loss can be effectively improved when the dimension of the gap region along the extending direction of the electrode fingers is about 1.5 ⁇ m. Further, when the thickness of the mass addition film is 25 nm or more and 35 nm or less, the loss can be effectively improved.
  • the loss can be effectively reduced when the dimension of the gap region along the extending direction of the electrode fingers is about 3 ⁇ m. Further, when the thickness of the mass addition film is 15 nm or more and 25 nm or less, the loss can be effectively improved.
  • the thickness of the mass addition film of the third acoustic wave resonator is preferably thicker than the thickness of the mass addition film of the fifth acoustic wave resonator, which is a series arm resonator. It is preferable that the dimension along the electrode finger extension direction of the gap region in the third elastic wave resonator, which is a parallel arm resonator, is equal to or smaller than the dimension along the electrode finger extension direction of the gap region in the fifth elastic wave resonator, which is a series arm resonator. Thereby, loss can be improved in the third elastic wave resonator and the fifth elastic wave resonator. As a result, filter characteristics in the filter device can be improved.
  • At least one third elastic wave resonator is a parallel arm resonator.
  • the third elastic wave resonator may be a series arm resonator.
  • at least one fifth acoustic wave resonator is preferably a series arm resonator.
  • the fifth elastic wave resonator may be a parallel arm resonator.
  • a sixth elastic wave resonator is provided in addition to the third to fifth elastic wave resonators.
  • the series arm resonator S11 and the parallel arm resonator P11 are the third elastic wave resonators.
  • the series arm resonator S12 is the fourth elastic wave resonator.
  • the series arm resonator S13 and the parallel arm resonator P12 are fifth elastic wave resonators.
  • the series arm resonator S14 and the parallel arm resonator P13 are sixth elastic wave resonators.
  • the sixth elastic wave resonator may be used as a series arm resonator or as a parallel arm resonator.
  • the arrangement of the third to sixth elastic wave resonators shown here is merely an example, and the arrangement of the third to sixth elastic wave resonators is not limited to the above.
  • the filter device of the twelfth embodiment also uses the third elastic wave resonator, which is the elastic wave device according to the present invention, as in the tenth and eleventh embodiments. Therefore, unwanted waves can be suppressed in the vicinity of the resonance frequency or the anti-resonance frequency of the acoustic wave resonator in the filter device. Therefore, deterioration of filter characteristics can be suppressed.
  • the sixth elastic wave resonator will be described below.
  • FIG. 30 is a schematic plan view of the sixth elastic wave resonator in the twelfth embodiment.
  • the piezoelectric layer 14 of the piezoelectric substrate 12 is made of rotated Y-cut lithium niobate.
  • a sixth acoustic wave resonator has an IDT electrode 11 and a pair of mass addition films 114 and 115 .
  • the mass addition film 114 and the mass addition film 115 have strip-like shapes.
  • the mass addition film 114 is provided over the first edge region Ea and the first gap region Ga.
  • the mass adding film 114 is continuously provided so as to overlap the plurality of electrode fingers and the regions between the electrode fingers in plan view.
  • the mass adding film 114 is provided in the entire first gap region Ga in the electrode finger extending direction. Therefore, the dimension along the electrode finger extension direction of the portion of the mass addition film 114 provided in the first gap region Ga is the same as the dimension along the electrode finger extension direction of the first gap region Ga.
  • the mass addition film 115 is provided over the second edge region Eb and the second gap region Gb.
  • the mass adding film 115 is continuously provided so as to overlap the plurality of electrode fingers and the regions between the electrode fingers in plan view.
  • the dimension along the electrode finger extension direction of the portion of the mass addition film 115 provided in the second gap region Gb is the same as the dimension along the electrode finger extension direction of the second gap region Gb.
  • each mass addition film provided in each gap region may be located in a part of each gap region in the direction in which the electrode fingers extend.
  • at least one of the mass addition films 114 and 115 may overlap the busbar in plan view.
  • the mass addition film should be provided over at least one of the pair of edge regions and the gap region adjacent to the edge region.
  • a single sixth elastic wave resonator was prepared, and the admittance frequency characteristics were measured. The admittance frequency characteristics of the third elastic wave resonator and the fifth elastic wave resonator are also shown.
  • FIG. 31 is a diagram showing admittance frequency characteristics in the third elastic wave resonator, the fifth elastic wave resonator, and the sixth elastic wave resonator in the twelfth embodiment.
  • third to fifth elastic wave resonators are provided in addition to the sixth elastic wave resonator.
  • the influence of unwanted waves on filter characteristics can be reduced.
  • the loss is small in the sixth elastic wave resonator. Therefore, in the present embodiment, deterioration of filter characteristics in the filter device can be suppressed.
  • the thickness of the mass-addition film that can effectively improve the loss and the dimension of the gap region along the extending direction of the electrode fingers were studied.
  • the loss can be effectively reduced when the dimension of the gap region along the extending direction of the electrode fingers is about 3 ⁇ m. Further, when the thickness of the mass addition film is 10 nm or more and 20 nm or less, the loss can be effectively improved.
  • the loss can be effectively reduced when the dimension of the gap region along the extending direction of the electrode fingers is about 3 ⁇ m. Further, when the thickness of the mass addition film is 15 nm or more and 25 nm or less, the loss can be effectively improved.
  • the thickness of the mass addition film of the sixth acoustic wave resonator is preferably thinner than the thickness of the mass addition film of the fifth acoustic wave resonator.
  • the loss can be effectively improved when the dimension of the gap region along the extending direction of the electrode fingers is about 3 ⁇ m. If the dimension of the gap region along the electrode finger extending direction is long, it is easy to increase the area of the mass adding film. When the area of the mass addition film is large, unnecessary waves generated at frequencies on the high frequency side are suppressed.
  • the dimension of the gap region in the sixth elastic wave resonator, which is a parallel arm resonator, along the electrode finger extending direction is equal to or greater than the dimension of the gap region in the fifth elastic wave resonator, which is a series arm resonator, along the electrode finger extending direction.
  • Electrodes in the IDT electrodes to be described later correspond to electrode fingers in the present invention.
  • the supporting member in the following examples corresponds to the supporting substrate in the present invention.
  • FIG. 32(a) is a schematic perspective view showing the external appearance of an elastic wave device that utilizes bulk waves in the thickness-shear mode
  • FIG. 32(b) is a plan view showing the electrode structure on the piezoelectric layer
  • FIG. 33 is a cross-sectional view along line AA in FIG. 32(a).
  • the acoustic wave device 1 has a piezoelectric layer 2 made of LiNbO 3 .
  • the piezoelectric layer 2 may consist of LiTaO 3 .
  • the cut angle of LiNbO 3 and LiTaO 3 is Z-cut, but may be rotational Y-cut or X-cut.
  • the thickness of the piezoelectric layer 2 is not particularly limited, it is preferably 40 nm or more and 1000 nm or less, more preferably 50 nm or more and 1000 nm or less, in order to effectively excite the thickness-shear mode.
  • the piezoelectric layer 2 has first and second major surfaces 2a and 2b facing each other. Electrodes 3 and 4 are provided on the first main surface 2a.
  • the electrode 3 is an example of the "first electrode” and the electrode 4 is an example of the "second electrode”.
  • the multiple electrodes 3 are multiple first electrode fingers connected to the first bus bar 5 .
  • the multiple electrodes 4 are multiple second electrode fingers connected to the second bus bar 6 .
  • the plurality of electrodes 3 and the plurality of electrodes 4 are interleaved with each other.
  • the electrodes 3 and 4 have a rectangular shape and have a length direction.
  • the electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to the length direction.
  • Both the length direction of the electrodes 3 and 4 and the direction orthogonal to the length direction of the electrodes 3 and 4 are directions crossing the thickness direction of the piezoelectric layer 2 . Therefore, it can be said that the electrode 3 and the adjacent electrode 4 face each other in the direction crossing the thickness direction of the piezoelectric layer 2 .
  • the length direction of the electrodes 3 and 4 may be interchanged with the direction orthogonal to the length direction of the electrodes 3 and 4 shown in FIGS. 32(a) and 32(b). That is, in FIGS. 32(a) and 32(b), the electrodes 3 and 4 may extend in the direction in which the first busbar 5 and the second busbar 6 extend.
  • the first busbar 5 and the second busbar 6 extend in the direction in which the electrodes 3 and 4 extend in FIGS. 32(a) and 32(b).
  • a plurality of pairs of adjacent electrodes 3 connected to one potential and electrodes 4 connected to the other potential are provided in a direction orthogonal to the length direction of the electrodes 3 and 4 .
  • the electrodes 3 and 4 are adjacent to each other, not when the electrodes 3 and 4 are arranged so as to be in direct contact, but when the electrodes 3 and 4 are arranged with a gap therebetween.
  • no electrodes connected to the hot electrode or the ground electrode, including the other electrodes 3 and 4 are arranged between the electrodes 3 and 4.
  • the logarithms need not be integer pairs, but may be 1.5 pairs, 2.5 pairs, or the like.
  • the center-to-center distance or pitch between the electrodes 3 and 4 is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less.
  • the width of the electrodes 3 and 4, that is, the dimension of the electrodes 3 and 4 in the facing direction is preferably in the range of 50 nm or more and 1000 nm or less, more preferably in the range of 150 nm or more and 1000 nm or less.
  • the center-to-center distance between the electrodes 3 and 4 is the distance between the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the center of the dimension (width dimension) of the electrode 4 in the direction orthogonal to the length direction of the electrode 4.
  • the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2 .
  • “perpendicular” is not limited to being strictly perpendicular, but may be substantially perpendicular (the angle formed by the direction perpendicular to the length direction of the electrodes 3 and 4 and the polarization direction is, for example, within the range of 90° ⁇ 10°).
  • a supporting member 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an insulating layer 7 interposed therebetween.
  • the insulating layer 7 and the support member 8 have a frame shape and, as shown in FIG. 33, have through holes 7a and 8a.
  • a cavity 9 is thereby formed.
  • the cavity 9 is provided so as not to disturb the vibration of the excitation region C of the piezoelectric layer 2 . Therefore, the support member 8 is laminated on the second main surface 2b with the insulating layer 7 interposed therebetween at a position not overlapping the portion where at least one pair of electrodes 3 and 4 are provided. Note that the insulating layer 7 may not be provided. Therefore, the support member 8 can be directly or indirectly laminated to the second main surface 2b of the piezoelectric layer 2 .
  • the insulating layer 7 is made of silicon oxide. However, in addition to silicon oxide, suitable insulating materials such as silicon oxynitride and alumina can be used.
  • the support member 8 is made of Si. The plane orientation of the surface of Si on the piezoelectric layer 2 side may be (100), (110), or (111). It is desirable that the Si constituting the support member 8 has a high resistivity of 4 k ⁇ cm or more. However, the supporting member 8 can also be constructed using an appropriate insulating material or semiconductor material.
  • piezoelectric materials such as aluminum oxide, lithium tantalate, lithium niobate, and crystal
  • various ceramics such as alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, steatite, and forsterite, dielectrics such as diamond and glass, and semiconductors such as gallium nitride can be used.
  • the plurality of electrodes 3, 4 and the first and second bus bars 5, 6 are made of appropriate metals or alloys such as Al, AlCu alloys.
  • the electrodes 3, 4 and the first and second bus bars 5, 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesion layer other than the Ti film may be used.
  • d/p is 0.5 or less, where d is the thickness of the piezoelectric layer 2 and p is the center-to-center distance between any one of the pairs of electrodes 3 and 4 adjacent to each other. Therefore, the thickness-shear mode bulk wave is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the elastic wave device 1 Since the elastic wave device 1 has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in an attempt to reduce the size, the Q value is unlikely to decrease. This is because the propagation loss is small even if the number of electrode fingers in the reflectors on both sides is reduced. The reason why the number of electrode fingers can be reduced is that the thickness-shear mode bulk wave is used. The difference between the Lamb wave used in the acoustic wave device and the thickness shear mode bulk wave will be described with reference to FIGS.
  • FIG. 34(a) is a schematic front cross-sectional view for explaining Lamb waves propagating through a piezoelectric film of an elastic wave device as described in Japanese Unexamined Patent Publication No. 2012-257019.
  • waves propagate through the piezoelectric film 201 as indicated by arrows.
  • the first main surface 201a and the second main surface 201b face each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction.
  • the X direction is the direction in which the electrode fingers of the IDT electrodes are arranged.
  • the Lamb wave propagates in the X direction as shown.
  • the wave propagates and resonates substantially in the direction connecting the first main surface 2a and the second main surface 2b of the piezoelectric layer 2, that is, in the Z direction. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Further, since resonance characteristics are obtained by propagating waves in the Z direction, propagation loss is unlikely to occur even if the number of electrode fingers of the reflector is reduced. Furthermore, even if the number of electrode pairs consisting of the electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
  • FIG. 35 schematically shows a bulk wave when a voltage is applied between the electrodes 3 and 4 so that the potential of the electrode 4 is higher than that of the electrode 3 .
  • the first region 451 is a region of the excitation region C between the first main surface 2a and a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2 .
  • the second region 452 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
  • the elastic wave device 1 at least one pair of electrodes consisting of the electrodes 3 and 4 is arranged.
  • the number of electrode pairs consisting of the electrodes 3 and 4 need not be plural. That is, it is sufficient that at least one pair of electrodes is provided.
  • the electrode 3 is an electrode connected to a hot potential
  • the electrode 4 is an electrode connected to a ground potential.
  • electrode 3 may also be connected to ground potential and electrode 4 to hot potential.
  • at least one pair of electrodes is the electrode connected to the hot potential or the electrode connected to the ground potential as described above, and no floating electrode is provided.
  • FIG. 36 is a diagram showing resonance characteristics of the elastic wave device shown in FIG.
  • the design parameters of the elastic wave device 1 with this resonance characteristic are as follows.
  • Insulating layer 7 Silicon oxide film with a thickness of 1 ⁇ m.
  • Support member 8 Si.
  • the length of the excitation region C is the dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
  • the inter-electrode distances of the electrode pairs consisting of the electrodes 3 and 4 are all equal in a plurality of pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
  • d/p is 0.5 or less, more preferably 0.24 or less, as described above. This will be described with reference to FIG.
  • FIG. 37 is a diagram showing the relationship between this d/p and the fractional bandwidth of the acoustic wave device as a resonator.
  • FIG. 38 is a plan view of an elastic wave device that utilizes thickness-shear mode bulk waves.
  • elastic wave device 80 a pair of electrodes having electrode 3 and electrode 4 is provided on first main surface 2 a of piezoelectric layer 2 .
  • K in FIG. 38 is the crossing width.
  • the number of pairs of electrodes may be one. Even in this case, if d/p is 0.5 or less, bulk waves in the thickness-shear mode can be effectively excited.
  • the metallization ratio MR of the adjacent electrodes 3 and 4 with respect to the excitation region C which is the region where any of the adjacent electrodes 3 and 4 overlap when viewed in the facing direction, satisfies MR ⁇ 1.75 (d/p)+0.075. In that case, spurious can be effectively reduced.
  • the metallization ratio MR will be explained with reference to FIG. 32(b).
  • the excitation region C is the portion surrounded by the dashed-dotted line.
  • the excitation region C is a region where the electrode 3 overlaps with the electrode 4, a region where the electrode 4 overlaps with the electrode 3, and a region between the electrodes 3 and 4 where the electrodes 3 and 4 overlap.
  • the area of the electrodes 3 and 4 in the excitation region C with respect to the area of the excitation region C is the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallization portion to the area of the excitation region C.
  • MR may be the ratio of the metallization portion included in the entire excitation region to the total area of the excitation region.
  • FIG. 40 is a diagram showing the relationship between the fractional bandwidth when many elastic wave resonators are configured according to the form of the elastic wave device 1 and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious.
  • the ratio band was adjusted by changing the film thickness of the piezoelectric layer and the dimensions of the electrodes.
  • FIG. 40 shows the results when a Z-cut LiNbO 3 piezoelectric layer is used, but the same tendency is obtained when piezoelectric layers with other cut angles are used.
  • the spurious is as large as 1.0.
  • the fractional band exceeds 0.17, that is, exceeds 17%, a large spurious with a spurious level of 1 or more appears in the passband even if the parameters constituting the fractional band are changed. That is, like the resonance characteristic shown in FIG. 39, a large spurious component indicated by arrow B appears within the band. Therefore, the specific bandwidth is preferably 17% or less. In this case, by adjusting the film thickness of the piezoelectric layer 2 and the dimensions of the electrodes 3 and 4, the spurious response can be reduced.
  • FIG. 41 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth.
  • various elastic wave devices having different d/2p and MR were constructed, and the fractional bandwidth was measured.
  • the hatched portion on the right side of the dashed line D in FIG. 41 is the area where the fractional bandwidth is 17% or less.
  • FIG. 42 is a diagram showing a map of fractional bandwidth with respect to Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is brought infinitely close to 0.
  • FIG. The hatched portion in FIG. 42 is a region where a fractional bandwidth of at least 5% or more is obtained, and the range of the region is approximated by the following formulas (1), (2), and (3).
  • Equation (1) (0° ⁇ 10°, 20° to 80°, 0° to 60° (1-( ⁇ -50) 2/900 ) 1/2 ) or (0° ⁇ 10°, 20° to 80°, [180°-60° (1-( ⁇ -50) 2/900 ) 1/2 ] to 180°) Equation (2)
  • Equation (3) (0° ⁇ 10°, [180°-30°(1-( ⁇ -90) 2 /8100) 1/2 ] ⁇ 180°, arbitrary ⁇ ) Equation (3)
  • the fractional band can be sufficiently widened, which is preferable.
  • the piezoelectric layer 2 is a lithium tantalate layer.
  • FIG. 43 is a front cross-sectional view of an elastic wave device having an acoustic multilayer film.
  • an acoustic multilayer film 82 is laminated on the second main surface 2 b of the piezoelectric layer 2 .
  • the acoustic multilayer film 82 has a laminated structure of low acoustic impedance layers 82a, 82c, 82e with relatively low acoustic impedance and high acoustic impedance layers 82b, 82d with relatively high acoustic impedance.
  • the thickness shear mode bulk wave can be confined in the piezoelectric layer 2 without using the cavity 9 in the acoustic wave device 1 .
  • the elastic wave device 81 by setting d/p to 0.5 or less, it is possible to obtain resonance characteristics based on bulk waves in the thickness-shear mode.
  • the number of lamination of the low acoustic impedance layers 82a, 82c, 82e and the high acoustic impedance layers 82b, 82d is not particularly limited. At least one of the high acoustic impedance layers 82b, 82d should be arranged farther from the piezoelectric layer 2 than the low acoustic impedance layers 82a, 82c, 82e.
  • the low acoustic impedance layers 82a, 82c, 82e and the high acoustic impedance layers 82b, 82d can be made of appropriate materials as long as the acoustic impedance relationship is satisfied.
  • Examples of materials for the low acoustic impedance layers 82a, 82c, 82e include silicon oxide and silicon oxynitride.
  • Materials for the high acoustic impedance layers 82b and 82d include alumina, silicon nitride, and metals.
  • an acoustic multilayer film 82 shown in FIG. 43 may be provided as an acoustic reflecting film between the supporting member and the piezoelectric layer.
  • the support member and the piezoelectric layer may be arranged such that at least a portion of the support member and at least a portion of the piezoelectric layer face each other with the acoustic multilayer film 82 interposed therebetween.
  • low acoustic impedance layers and high acoustic impedance layers may be alternately laminated in the acoustic multilayer film 82 .
  • the acoustic multilayer film 82 may be an acoustic reflector in the elastic wave device.
  • d/p is preferably 0.5 or less, more preferably 0.24 or less, as described above. Thereby, even better resonance characteristics can be obtained. Furthermore, in the excitation regions of the elastic wave devices of the first to eighth embodiments and modifications using thickness-shear mode bulk waves, it is preferable to satisfy MR ⁇ 1.75(d/p)+0.075 as described above. In this case, spurious can be suppressed more reliably.
  • the piezoelectric layer in the elastic wave devices of the first to eighth embodiments and modifications using thickness shear mode bulk waves is preferably a lithium niobate layer or a lithium tantalate layer.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of lithium niobate or lithium tantalate forming the piezoelectric layer are preferably within the range of the above formula (1), formula (2), or formula (3). In this case, the fractional bandwidth can be widened sufficiently.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

エッジ領域に質量付加膜が設けられた構成とした場合にも、共振周波数付近または反共振周波数付近において、不要波を抑制することができる、弾性波装置を提供する。 本発明に係る弾性波装置10は、支持基板を含む支持部材と、支持部材上に設けられており、タンタル酸リチウムまたはニオブ酸リチウムからなる圧電層14と、圧電層14上に設けられており、1対のバスバー(第1,第2のバスバー26,27)と、複数の電極指(複数の第1,第2の電極指28,29)とを有するIDT電極11とを備える。支持部材及び圧電層14の積層方向に沿って見た平面視において、支持部材における、IDT電極11の少なくとも一部と重なる位置に音響反射部が設けられている。圧電層14の厚みをd、隣り合う電極指同士の中心間距離をpとした場合、d/pが0.5以下である。一対のバスバーの一方のバスバーに複数の電極指のうち一部の電極指が接続されている。他方のバスバーに複数の電極指のうち残りの電極指が接続されている。一方のバスバーに接続されている一部の電極指、及び他方のバスバーに接続されている残りの電極指が互いに間挿し合っている。複数の電極指が延びる方向を電極指延伸方向、電極指延伸方向と直交する方向を電極指対向方向とし、電極指対向方向から見たときに、隣り合う電極指同士が重なり合う領域が交叉領域Fである。交叉領域Fと1対のバスバーとの間に位置する領域が1対のギャップ領域(第1,第2のギャップ領域Ga,Gb)である。交叉領域Fが、中央領域Hと、中央領域Hを電極指延伸方向において挟むように配置されている1対のエッジ領域(第1,第2のエッジ領域Ea,Eb)とを有する。弾性波装置10は、1対のエッジ領域のうち少なくとも一方のエッジ領域及び該エッジ領域と隣接しているギャップ領域にわたり設けられており、かつ電極指対向方向に沿って並んでいる複数の質量付加膜(第1,第2の質量付加膜24,25)をさらに備える。複数の質量付加膜が、隣り合う電極指間の少なくとも一部に位置しないように設けられている。

Description

弾性波装置及びフィルタ装置
 本発明は、弾性波装置及びフィルタ装置に関する。
 従来、弾性波装置は、携帯電話器のフィルタなどに広く用いられている。近年においては、下記の特許文献1に記載のような、厚み滑りモードのバルク波を用いた弾性波装置が提案されている。この弾性波装置においては、支持体上に圧電層が設けられている。圧電層上に、対となる電極が設けられている。対となる電極は圧電層上において互いに対向しており、かつ互いに異なる電位に接続される。上記電極間に交流電圧を印加することにより、厚み滑りモードのバルク波を励振させている。
 下記の特許文献2においては、ピストンモードを利用する弾性波装置の例が開示されている。この弾性波装置では、圧電基板上にIDT電極(Interdigital Transducer)が設けられている。IDT電極は、中央領域及び1対のエッジ領域を有する。1対のエッジ領域は、複数の電極指が延びる方向において、中央領域を挟み互いに対向している。1対のエッジ領域においては、IDT電極上に、誘電体層などが設けられている。これにより、複数の電極指が延びる方向において、音速が異なる複数の領域を構成することによって、ピストンモードを成立させる。それによって、横モードの抑制が図られている。
米国特許第10491192号明細書 特開2012-186808号公報
 本発明者は、厚み滑りモードのバルク波を利用する弾性波装置におけるエッジ領域に、質量付加膜としての誘電体層を設けることにより、ロスの劣化を抑制できる一方で、共振周波数付近及び反共振周波数付近において、不要波が生じることに着目した。
 本発明の目的は、エッジ領域に質量付加膜が設けられた構成とした場合にも、共振周波数付近または反共振周波数付近において、不要波を抑制することができる、弾性波装置及びフィルタ装置を提供することにある。
 本発明に係る弾性波装置は、支持基板を含む支持部材と、前記支持部材上に設けられており、タンタル酸リチウムまたはニオブ酸リチウムからなる圧電層と、前記圧電層上に設けられており、1対のバスバーと、複数の電極指とを有するIDT電極とを備え、前記支持部材及び前記圧電層の積層方向に沿って見た平面視において、前記支持部材における、前記IDT電極の少なくとも一部と重なる位置に音響反射部が設けられており、前記圧電層の厚みをd、隣り合う前記電極指同士の中心間距離をpとした場合、d/pが0.5以下であり、前記一対のバスバーの一方のバスバーに前記複数の電極指のうち一部の電極指が接続されており、他方のバスバーに前記複数の電極指のうち残りの電極指が接続されており、前記一方のバスバーに接続されている前記一部の電極指、及び前記他方のバスバーに接続されている前記残りの電極指が互いに間挿し合っており、前記複数の電極指が延びる方向を電極指延伸方向、前記電極指延伸方向と直交する方向を電極指対向方向とし、前記電極指対向方向から見たときに、前記隣り合う電極指同士が重なり合う領域が交叉領域であり、前記交叉領域と前記1対のバスバーとの間に位置する領域が1対のギャップ領域であり、前記交叉領域が、中央領域と、前記中央領域を前記電極指延伸方向において挟むように配置されている1対のエッジ領域とを有し、前記1対のエッジ領域のうち少なくとも一方のエッジ領域及び該エッジ領域と隣接している前記ギャップ領域にわたり設けられており、かつ前記電極指対向方向に沿って並んでいる複数の質量付加膜をさらに備え、前記複数の質量付加膜が、前記隣り合う電極指間の少なくとも一部に位置しないように設けられている。
 本発明に係るフィルタ装置のある広い局面では、少なくとも1つの直列腕共振子及び少なくとも1つの並列腕共振子を有するフィルタ装置であって、前記少なくとも1つの直列腕共振子に含まれる少なくとも1つの第1の弾性波共振子と、前記少なくとも1つの並列腕共振子に含まれる少なくとも1つの第2の弾性波共振子とが備えられており、前記第1の弾性波共振子及び前記第2の弾性波共振子がそれぞれ、本発明に従い構成されている弾性波装置であり、前記第2の弾性波共振子の前記複数の質量付加膜の厚みが、前記第1の弾性波共振子の前記複数の質量付加膜の厚みよりも薄い。
 本発明に係るフィルタ装置の他の広い局面では、少なくとも1つの直列腕共振子及び少なくとも1つの並列腕共振子を有するフィルタ装置であって、前記少なくとも1つの直列腕共振子に含まれる少なくとも1つの第1の弾性波共振子と、前記少なくとも1つの並列腕共振子に含まれる少なくとも1つの第2の弾性波共振子とが備えられており、前記第1の弾性波共振子及び前記第2の弾性波共振子がそれぞれ、本発明に従い構成されている弾性波装置であり、前記第2の弾性波共振子の前記複数の質量付加膜の平面視における面積の平均値が、前記第1の弾性波共振子の前記複数の質量付加膜の平面視における面積の平均値よりも大きい。
 本発明に係るフィルタ装置のさらに他の広い局面では、少なくとも1つの直列腕共振子及び少なくとも1つの並列腕共振子を含む、複数の弾性波共振子を有するフィルタ装置であって、前記直列腕共振子及び前記並列腕共振子のうち少なくとも1つの弾性波共振子が、本発明に従い構成されている弾性波装置である。
 本発明によれば、エッジ領域に質量付加膜が設けられた構成とした場合にも、共振周波数付近または反共振周波数付近において、不要波を抑制することができる、弾性波装置及びフィルタ装置を提供することができる。
図1は、本発明の第1の実施形態に係る弾性波装置の模式的平面図である。 図2は、図1中のI-I線に沿う模式的断面図である。 図3は、第1の比較例の弾性波装置の模式的平面図である。 図4は、本発明の第1の実施形態、第1の比較例及び第2の比較例におけるアドミッタンス周波数特性を示す図である。 図5は、第1の比較例における、不要波の励振強度を示す図である。 図6は、質量付加膜の寸法を説明するための模式的平面図である。 図7は、質量付加膜におけるギャップ領域に位置する部分の電極指延伸方向に沿う寸法と、アドミッタンス周波数特性との関係を示す図である。 図8は、質量付加膜におけるギャップ領域に位置する部分の電極指延伸方向に沿う寸法と、リターンロスとの関係を示す図である。 図9は、第1の実施形態における質量付加膜の材料として、酸化ケイ素が用いられてる場合、酸化タンタルが用いられている場合、及び第1の比較例におけるリターンロスを示す図である。 図10は、本発明の第1の実施形態の変形例に係る弾性波装置の模式的正面断面図である。 図11は、本発明の第2の実施形態及び第1の比較例における、質量付加膜の材料として酸化ケイ素が用いられている場合のアドミッタンス周波数特性を示す図である。 図12は、本発明の第2の実施形態及び第1の比較例における、質量付加膜の材料として酸化タンタルが用いられている場合のアドミッタンス周波数特性を示す図である。 図13は、ギャップ領域の電極指延伸方向に沿う寸法と、アドミッタンス周波数特性との関係を示す図である。 図14は、本発明の第3の実施形態に係る弾性波装置の模式的平面図である。 図15は、本発明の第4の実施形態に係る弾性波装置の模式的平面図である。 図16は、本発明の第2の実施形態及び第4の実施形態の変形例におけるアドミッタンス周波数特性を示す図である。 図17は、本発明の第5の実施形態に係る弾性波装置の模式的平面図である。 図18は、本発明の第6の実施形態に係る弾性波装置の模式的平面図である。 図19は、第1の参考例の弾性波装置の模式的平面図である。 図20は、本発明の第1の実施形態、第6の実施形態及び第1の参考例におけるアドミッタンス周波数特性を示す図である。 図21は、本発明の第7の実施形態に係る弾性波装置の模式的平面図である。 図22は、本発明の第8の実施形態に係る弾性波装置の模式的平面図である。 図23は、本発明の第8の実施形態の変形例に係る弾性波装置の模式的平面図である。 図24は、本発明の第9の実施形態に係るフィルタ装置の回路図である。 図25は、本発明の第10の実施形態に係るフィルタ装置の回路図である。 図26は、本発明の第10の実施形態における、第4の弾性波共振子の模式的平面図である。 図27は、本発明の第10の実施形態における、第3の弾性波共振子及び第4の弾性波共振子のアドミッタンス周波数特性を示す図である。 図28は、本発明の第11の実施形態における、第5の弾性波共振子の模式的平面図である。 図29は、本発明の第11の実施形態における第5の弾性波共振子、並びに第2の参考例及び第3の参考例の弾性波共振子においての、アドミッタンス周波数特性を示す図である。 図30は、本発明の第12の実施形態における、第6の弾性波共振子の模式的平面図である。 図31は、本発明の第12の実施形態における第3の弾性波共振子、第5の弾性波共振子及び第6の弾性波共振子においての、アドミッタンス周波数特性を示す図である。 図32(a)は、厚み滑りモードのバルク波を利用する弾性波装置の外観を示す略図的斜視図であり、図32(b)は、圧電層上の電極構造を示す平面図である。 図33は、図32(a)中のA-A線に沿う部分の断面図である。 図34(a)は、弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図であり、図34(b)は、弾性波装置における、圧電膜を伝搬する厚み滑りモードのバルク波を説明するための模式的正面断面図である。 図35は、厚み滑りモードのバルク波の振幅方向を示す図である。 図36は、厚み滑りモードのバルク波を利用する弾性波装置の共振特性を示す図である。 図37は、隣り合う電極の中心間距離をp、圧電層の厚みをdとした場合のd/pと共振子としての比帯域との関係を示す図である。 図38は、厚み滑りモードのバルク波を利用する弾性波装置の平面図である。 図39は、スプリアスが現れている参考例の弾性波装置の共振特性を示す図である。 図40は、比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。 図41は、d/2pと、メタライゼーション比MRとの関係を示す図である。 図42は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。 図43は、音響多層膜を有する弾性波装置の正面断面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の模式的平面図である。図2は、図1中のI-I線に沿う模式的断面図である。
 図1に示すように、弾性波装置10は、圧電性基板12と、IDT電極11とを有する。図2に示すように、圧電性基板12は、支持部材13と、圧電層14とを有する。本実施形態では、支持部材13は、支持基板16と、絶縁層15とを含む。支持基板16上に絶縁層15が設けられている。絶縁層15上に圧電層14が設けられている。もっとも、支持部材13は支持基板16のみにより構成されていてもよい。
 圧電層14は第1の主面14a及び第2の主面14bを有する。第1の主面14a及び第2の主面14bは互いに対向している。第1の主面14a及び第2の主面14bのうち、第2の主面14bが支持部材13側に位置している。
 支持基板16の材料としては、例えば、シリコンなどの半導体や、酸化アルミニウムなどのセラミックスなどを用いることができる。絶縁層15の材料としては、酸化ケイ素または酸化タンタルなどの、適宜の誘電体を用いることができる。圧電層14は、例えば、LiNbO層などのニオブ酸リチウム層またはLiTaO層などのタンタル酸リチウム層である。圧電層14は、結晶軸として、X軸、Y軸及びZ軸を有する。
 図2に示すように、絶縁層15に凹部が設けられている。絶縁層15上に、凹部を塞ぐように、圧電層14が設けられている。これにより、中空部が構成されている。この中空部が空洞部10aである。本実施形態では、支持部材13の一部及び圧電層14の一部が、空洞部10aを挟み互いに対向するように、支持部材13と圧電層14とが配置されている。もっとも、支持部材13における凹部は、絶縁層15及び支持基板16にわたり設けられていてもよい。あるいは、支持基板16のみに設けられた凹部が、絶縁層15により塞がれていてもよい。凹部は圧電層14に設けられていても構わない。なお、空洞部10aは、支持部材13に設けられた貫通孔であってもよい。
 図1に示すように、IDT電極11は、1対のバスバーと、複数の電極指とを有する。1対のバスバーは、具体的には、第1のバスバー26及び第2のバスバー27である。第1のバスバー26及び第2のバスバー27は互いに対向している。複数の電極指は、具体的には、複数の第1の電極指28及び複数の第2の電極指29である。複数の第1の電極指28の一端はそれぞれ、第1のバスバー26に接続されている。複数の第2の電極指29の一端はそれぞれ、第2のバスバー27に接続されている。複数の第1の電極指28及び複数の第2の電極指29は互いに間挿し合っている。IDT電極11は、単層の金属膜からなっていてもよく、あるいは、積層金属膜からなっていてもよい。
 以下においては、第1のバスバー26及び第2のバスバー27を、単にバスバーと記載することがある。第1の電極指28及び第2の電極指29を、単に電極指と記載することがある。複数の電極指が延びる方向を電極指延伸方向とし、隣り合う電極指同士が互いに対向する方向を電極指対向方向としたときに、本実施形態においては、電極指延伸方向及び電極指対向方向は直交する。
 電極指対向方向から見たときに、隣り合う電極指同士が重なり合う領域は交叉領域Fである。交叉領域Fは、IDT電極11の構成に基づいて定義される、圧電層14の領域である。交叉領域Fは、中央領域Hと、1対のエッジ領域とを有する。1対のエッジ領域は、電極指延伸方向において、中央領域Hを挟むように配置されている。
 1対のエッジ領域は、具体的には、第1のエッジ領域Ea及び第2のエッジ領域Ebである。第1のエッジ領域Eaは第1のバスバー26側に位置している。第2のエッジ領域Ebは第2のバスバー27側に位置している。
 交叉領域Fと1対のバスバーとの間に位置する領域は、1対のギャップ領域である。1対のギャップ領域は、具体的には、第1のギャップ領域Ga及び第2のギャップ領域Gbである。第1のギャップ領域Gaは、第1のバスバー26及び第1のエッジ領域Eaの間に位置している。第2のギャップ領域Gbは、第2のバスバー27及び第2のエッジ領域Ebの間に位置している。各ギャップ領域は、交叉領域Fと同様に、IDT電極11の構成に基づいて定義される、圧電層14の領域である。
 以下においては、第1のエッジ領域Ea及び第2のエッジ領域Ebを、単にエッジ領域と記載することがある。同様に、第1のギャップ領域Ga及び第2のギャップ領域Gbを、単にギャップ領域と記載することがある。さらに、以下においては、平面視においてエッジ領域と重なるように部材が設けられている場合に、単に、該部材がエッジ領域に設けられていると記載することがある。例えば、該部材が圧電層14上に直接的に設けられていない場合にも、該部材がエッジ領域に設けられていると記載することがある。ギャップ領域についても同様である。
 本明細書において平面視とは、図2における上方に相当する方向から、支持部材13及び圧電層14の積層方向に沿って見ることをいう。なお、図2においては、例えば、支持基板16及び圧電層14のうち、圧電層14側が上方である。
 図1に示すように、圧電層14の第1の主面14aには、複数の質量付加膜が設けられている。複数の質量付加膜は、具体的には、第1の質量付加膜24及び複数の第2の質量付加膜25である。より具体的には、複数の第1の質量付加膜24は、第1のエッジ領域Ea及び第1のギャップ領域Gaにわたり設けられている。複数の第1の質量付加膜24は、電極指対向方向に沿って並んでいる。
 本明細書において、複数の質量付加膜が電極指対向方向に沿って並んでいるとは、電極指延伸方向から見たときに、複数の質量付加膜が電極指対向方向に並んでいることをいう。本実施形態では、平面視において、複数の第1の質量付加膜24の中心同士を結ぶ仮想線は、電極指対向方向と平行に延びている。もっとも、隣り合う第1の質量付加膜24におけるそれぞれの中心の、電極指延伸方向における位置は、互いに異なっていてもよい。
 複数の第2の質量付加膜25は、第2のエッジ領域Eb及び第2のギャップ領域Gbにわたり設けられている。複数の第2の質量付加膜25は、電極指対向方向に沿って並んでいる。なお、複数の第1の質量付加膜24及び複数の第2の質量付加膜25のうち、少なくとも一方が設けられていればよい。以下においては、第1の質量付加膜24及び第2の質量付加膜25を、単に質量付加膜と記載することがある。
 複数の質量付加膜が電極指対向方向に沿って並んでいる構成においては、複数の質量付加膜が配置されている、電極指対向方向における周期は特に限定されない。例えば、質量付加膜と平面視において重なっている電極指が、全ての電極指であってもよく、電極指対向方向における1本おきの電極指であってもよい。本実施形態では、各第1の質量付加膜24は、各第2の電極指29の先端部を覆うように設けられている。各第2の質量付加膜25は、各第1の電極指28の先端部を覆うように設けられている。
 複数の第1の質量付加膜24及び複数の第2の質量付加膜25は、隣り合う電極指間の少なくとも一部に位置しないように設けられている。言い換えれば、第1の質量付加膜24及び第2の質量付加膜25はいずれも、隣り合う電極指間の少なくとも一部に設けられていない。すなわち、第1のエッジ領域Eaにおいては、圧電層14における、電極指間に位置する部分の少なくとも一部は、第1の質量付加膜24から露出している。同様に、第2のエッジ領域Ebにおいては、圧電層14における、電極指間に位置する部分の少なくとも一部は、第2の質量付加膜25から露出している。より詳細には、本実施形態では、各質量付加膜が平面視において重なっている電極指は、1本のみである。
 本実施形態の弾性波装置10は、厚み滑りモードのバルク波を利用可能に構成された弾性波共振子である。より具体的には、弾性波装置10においては、圧電層14の厚みをd、隣り合う電極指同士の中心間距離をpとした場合、d/pが0.5以下である。これにより、厚み滑りモードのバルク波が好適に励振される。なお、電極指対向方向から見たときに、隣り合う電極指同士が重なり合う領域であり、かつ隣り合う電極指同士の中心間の領域が励振領域である。各励振領域において、厚み滑りモードのバルク波が励振される。励振領域は、具体的には、IDT電極11の構成に基づいて定義される、圧電層14の領域である。
 図2に示す空洞部10aは、本発明における音響反射部である。音響反射部により、弾性波のエネルギーを圧電層14側に効果的に閉じ込めることができる。音響反射部は、平面視において、支持部材における、IDT電極の少なくとも一部と重なる位置に設けられていればよい。例えば、支持部材の表面上に、音響反射部として、後述する、音響多層膜などの音響反射膜が設けられていてもよい。
 本実施形態の特徴は、複数の質量付加膜が、隣り合う電極指間の少なくとも一部に位置しないように設けられていることにある。それによって、質量付加膜が設けられていることにより生じる不要波を抑制することができる。なお、該不要波は、共振周波数付近または反共振周波数付近において生じる。よって、本実施形態では、エッジ領域に質量付加膜が設けられた構成とした場合にも、共振周波数付近または反共振周波数付近において、不要波を抑制することができる。この効果の詳細を、本実施形態と、第1の比較例及び第2の比較例とを比較することにより、以下において説明する。
 第1の比較例は、図3に示すように、1対の質量付加膜114及び質量付加膜115が、隣り合う電極指間の全てに設けられている点において、第1の実施形態と異なる。具体的には、第1の比較例においては、質量付加膜114は、第1のエッジ領域Ea及び第1のギャップ領域Gaにわたり設けられている。質量付加膜115は、第2のエッジ領域Eb及び第2のギャップ領域Gbにわたり設けられている。各質量付加膜は、平面視において、複数の電極指と、電極指間の領域とに重なるように、連続的に設けられている。
 第2の比較例は、質量付加膜が設けられていない点において第1の実施形態と異なる。第1の実施形態の構成を有する弾性波装置、第1の比較例の弾性波装置及び第2の比較例の弾性波装置のそれぞれにおいて、アドミッタンス周波数特性を測定した。
 図4は、第1の実施形態、第1の比較例及び第2の比較例におけるアドミッタンス周波数特性を示す図である。なお、図4中の二点鎖線により囲んだ周波数帯域付近のアドミッタンスが小さい場合には、弾性波共振子のロスは小さい。もっとも、二点鎖線の位置は一例であって、二点鎖線以外の周波数も、弾性波共振子のロスの大きさとの相関関係を有することがある。図4中の矢印M1は、不要波が生じる共振周波数付近の周波数を示す。矢印M2は、不要波が生じる反共振周波数付近の周波数を示す。他の周波数特性を示す図においても同様である。
 図4に示すように、第1の比較例においては矢印M1及び矢印M2に示す周波数付近に、不要波に起因する大きなリップルが生じている。一方で、第2の比較例においては、矢印M1及び矢印M2に示す周波数付近には、不要波に起因するリップルは生じていない。よって、第1の比較例における、共振周波数付近及び反共振周波数付近に生じる不要波は、質量付加膜が設けられていることに起因することがわかる。
 一方で、第1の実施形態においては、第1の比較例よりも、共振周波数付近及び反共振周波数付近に生じる不要波が抑制されていることがわかる。これは以下の理由による。
 図5は、第1の比較例における、不要波の励振強度を示す図である。
 第1の比較例においては、質量付加膜が電極指間の部分に設けられた領域において、不要波の励振強度が特に大きい。他方、質量付加膜が電極指と積層されている領域においては、不要波の励振強度が小さい。そして、図1に示す第1の実施形態においては、複数の第1の質量付加膜24及び複数の第2の質量付加膜25は、隣り合う電極指間の少なくとも一部に位置しないように設けられている。それによって、質量付加膜が設けられていることにより生じる不要波を抑制することができる。すなわち、共振周波数付近及び反共振周波数付近において、不要波を抑制することができる。
 加えて、図4に示すように、第1の実施形態においては、第2の比較例よりも、ロスの劣化を抑制できていることがわかる。これは、第1の実施形態において、複数の第1の質量付加膜24及び複数の第2の質量付加膜25が設けられていることによる。それによって、弾性波が各バスバー側に漏洩することを抑制でき、ロスの劣化を抑制することができる。
 さらに、第1の実施形態の構成を有する複数の弾性波装置を用意した。複数の弾性波装置の間においては、第1の質量付加膜24の寸法が互いに異なり、かつ第2の質量付加膜25の寸法が互いに異なる。具体的には、上記複数の弾性波装置においては、図6に示す、第1の質量付加膜24の寸法L1が互いに異なる。
 より具体的には、寸法L1は、第1の質量付加膜24における第1のギャップ領域Gaに位置する部分の電極指延伸方向に沿う寸法である。同様に、第2の質量付加膜25の寸法L1も、第2の質量付加膜25における第2のギャップ領域Gbに位置する部分の電極指延伸方向に沿う寸法であるとする。上記の各弾性波装置においては、第1の質量付加膜24及び第2の質量付加膜25の寸法L1は同じである。そして、上記複数の弾性波装置においてそれぞれ、第1の質量付加膜24及び第2の質量付加膜25の寸法L1は、1μm、2μm、3μm、4μm、5μmまたは7μmとした。
 他方、上記複数の弾性波装置においては、図6に示す、第1の質量付加膜24の寸法L2は同じである。より具体的には、寸法L2は、第1の質量付加膜24における電極指間の領域に位置する部分の電極指対向方向に沿う寸法である。なお、図6に示す第1の質量付加膜24は、一方の電極指間の領域、平面視において電極指に重なる領域、及び他方の電極指間の領域にわたり設けられている。寸法L2は、第1の質量付加膜24における、2つの電極指間の領域のうち一方に位置する部分の寸法である。
 同様に、第2の質量付加膜25の寸法L2も、第2の質量付加膜25における電極指間の領域に位置する部分の電極指対向方向に沿う寸法であるとする。そして、上記複数の弾性波装置においては、第2の質量付加膜25の寸法L2は同じである。上記複数の弾性波装置において、第1の質量付加膜24及び第2の質量付加膜25の寸法L2は0.5μmとした。
 上記複数の弾性波装置において、第1の質量付加膜24の厚みは同じである。同様に、上記複数の弾性波装置において、第2の質量付加膜25の厚みは同じである。上記複数の弾性波装置において、第1の質量付加膜24及び第2の質量付加膜25の厚みは50nmとした。用意した上記複数の弾性波装置のアドミッタンス周波数特性及びリターンロスを測定した。
 図7は、質量付加膜におけるギャップ領域に位置する部分の電極指延伸方向に沿う寸法と、アドミッタンス周波数特性との関係を示す図である。図8は、質量付加膜におけるギャップ領域に位置する部分の電極指延伸方向に沿う寸法と、リターンロスとの関係を示す図である。すなわち、図7及び図8は、上記寸法L1と、アドミッタンス周波数特性及びリターンロスとの関係を示している。
 図7及び図8に示すように、質量付加膜におけるギャップ領域に位置する部分の電極指延伸方向に沿う寸法が大きくなるほど、不要波が生じる周波数が低くなっていることがわかる。そして、該寸法が大きくなるほど、不要波が生じる周波数は共振周波数から遠ざかっていることがわかる。
 質量付加膜におけるギャップ領域に位置する部分の電極指延伸方向に沿う寸法が、2μm以上であることが好ましい。それによって、不要波が生じる周波数を、共振周波数から効果的に遠ざけることができる。これにより、弾性波装置がフィルタ装置に用いられた場合において、フィルタ特性に対する不要波の影響を抑制することができる。従って、フィルタ特性の劣化を抑制することができる。
 ところで、第1の実施形態においては、質量付加膜及び電極指が積層されている部分においては、圧電層14、電極指及び質量付加膜が、圧電層14、電極指及び質量付加膜の順序で積層されている。もっとも、該部分において、圧電層14、質量付加膜及び電極指が、圧電層14、質量付加膜及び電極指の順序で積層されていてもよい。
 第1の質量付加膜24は、平面視において、第1の電極指28及び第2の電極指29のうち第2の電極指29のみと重なっている。第2の質量付加膜25は、平面視において、第1の電極指28及び第2の電極指29のうち第1の電極指28のみと重なっている。なお、第1の質量付加膜24は、平面視において第1の電極指28と重なっていてもよい。第2の質量付加膜25は、平面視において第2の電極指29と重なっていてもよい。
 図4、図7や図8に示した第1の実施形態の結果は、質量付加膜としての第1の質量付加膜24及び第2の質量付加膜25が、酸化ケイ素からなる場合の結果である。本明細書において、ある部材がある材料からなるとは、弾性波装置の電気的特性が劣化しない程度の微量な不純物が含まれる場合を含む。なお、第1の質量付加膜24及び第2の質量付加膜25は、例えば、酸化ケイ素、酸化タンタル、酸化ニオブ、酸化タングステン、酸化ハフニウムからなる群から選択される少なくとも1種の材料からなっていればよい。もっとも、第1の質量付加膜24及び第2の質量付加膜25の材料は上記に限定されない。
 ここで、質量付加膜の材料として、酸化ケイ素が用いられている場合と、酸化タンタルが用いられている場合とのリターンロスを比較した。より具体的には、第1の質量付加膜24及び第2の質量付加膜25の材料として、SiOが用いられてる場合と、Taが用いられている場合のリターンロスを比較した。図3に示した第1の比較例のリターンロスも併せて示す。
 図9は、第1の実施形態における質量付加膜の材料として、酸化ケイ素が用いられてる場合、酸化タンタルが用いられている場合、及び第1の比較例におけるリターンロスを示す図である。なお、図9中の二点鎖線により囲んだ周波数帯域付近のリターンロスが小さい場合には、弾性波共振子のロスは小さい。もっとも、二点鎖線の位置は一例である。
 図9中の矢印M1により示す共振周波数付近の不要波は、質量付加膜の材料が酸化ケイ素である場合、及び酸化タンタルである場合に限らず、第1の比較例よりも抑制されていることがわかる。なお、質量付加膜の材料が酸化タンタルである場合、不要波はより一層抑制されている。一方で、質量付加膜の材料が酸化ケイ素である場合、及び酸化タンタルである場合において、ロスの大きさは同等である。
 質量付加膜における、電極指と積層されている部分の厚みは、5nm以上、100nm以下であることが好ましい。同様に、質量付加膜における、電極指と積層されていない部分の厚みは、5nm以上、100nm以下であることが好ましい。なお、質量付加膜の材料として酸化ケイ素が用いられている場合には、上記のそれぞれの部分の厚みは、25nm以上、75nm以下であることがより好ましい。質量付加膜の材料として酸化タンタルが用いられている場合には、上記のそれぞれ部分の厚みは、5nm以上、35nm以下であることがより好ましい。
 第1の実施形態では、図6に示す第1の質量付加膜24の寸法L2は0ではない。第2の質量付加膜25においても同様である。なお、本発明においては、第1の質量付加膜24及び第2の質量付加膜25の寸法L2は0であってもよい。もっとも、質量付加膜の寸法L2が0より大きいことにより、横モードを効果的に抑制することができる。質量付加膜の寸法L2は、電極指間の領域の電極指対向方向に沿う寸法よりも小さければよい。
 ところで、図2に示すように、第1の実施形態では、IDT電極11は、圧電層14の第1の主面14aに直接的に設けられている。もっとも、これに限定されるものではない。例えば、図10に示す第1の実施形態の変形例においては、圧電層14の第1の主面14aに、誘電体膜33が設けられている。誘電体膜33上にIDT電極11が設けられている。この場合には、誘電体膜33の厚みを調整することにより、弾性波装置の比帯域を容易に調整することができる。
 誘電体膜33の材料としては、例えば、酸化ケイ素、窒化ケイ素または酸窒化ケイ素などを用いることができる。本変形例においても、第1の実施形態と同様に、質量付加膜が設けられていることによる不要波を抑制できる。よって、共振周波数付近または反共振周波数付近において、不要波を抑制することができる。
 本変形例における、IDT電極11が圧電層14の第1の主面14aに、誘電体膜33を介して間接的に設けられている構成は、本発明に係る本変形例以外の構成に適用することもできる。
 第1の実施形態においては、圧電層14は、Zカットのニオブ酸リチウムからなる。もっとも、圧電層14は、回転Yカットのニオブ酸リチウムからなっていてもよい。この例を、第2の実施形態により示す。なお、第2の実施形態の弾性波装置は、圧電層14の材料以外の点においては、第1の実施形態の弾性波装置10と同様の構成を有する。
 第2の実施形態の構成を有する弾性波装置と、図3に示した第1の比較例において、アドミッタンス周波数特性を比較した。なお、質量付加膜の材料としてSiOが用いられている場合、及びTaが用いられている場合のそれぞれにおいて、上記比較を行った。当該比較においては、第1の比較例における圧電層は、回転Yカットのニオブ酸リチウムからなる。
 図11は、第2の実施形態及び第1の比較例における、質量付加膜の材料として酸化ケイ素が用いられている場合のアドミッタンス周波数特性を示す図である。図12は、第2の実施形態及び第1の比較例における、質量付加膜の材料として酸化タンタルが用いられている場合のアドミッタンス周波数特性を示す図である。
 図11及び図12に示すように、第2の実施形態においては、第1の比較例よりも、反共振周波数付近において、不要波が抑制されていることがわかる。
 さらに、第2の実施形態の構成を有する複数の弾性波装置を用意した。上記複数の弾性波装置の間においては、ギャップ領域の電極指延伸方向に沿う寸法が互いに異なる。なお、上記の各弾性波装置においては、第1のギャップ領域Ga及び第2のギャップ領域Gbの電極指延伸方向に沿う寸法は同じである。上記複数の弾性波装置においてそれぞれ、第1のギャップ領域Ga及び第2のギャップ領域Gbの電極指延伸方向に沿う寸法は、0.5μm、1μm、1.5μm、2μmまたは2.5μmとした。上記複数の弾性波装置のアドミッタンス周波数特性を測定した。
 図13は、ギャップ領域の電極指延伸方向に沿う寸法と、アドミッタンス周波数特性との関係を示す図である。
 図13に示すように、ギャップ領域の電極指延伸方向に沿う寸法が大きいほど、ロスが小さくなっていることがわかる。特に、ギャップ領域の電極指延伸方向に沿う寸法が1μm以上である場合に、ロスが小さくなっていることがわか。このことから、ギャップ領域の電極指延伸方向に沿う寸法が、1μm以上であることが好ましい。これにより、ロスの劣化を効果的に抑制することができる。
 第1の実施形態及び第2の実施形態においては、複数の質量付加膜の平面視における面積は、いずれも同じである。そして、複数の質量付加膜は、平面視において、バスバーと重なっていない。もっとも、これらに限定されるものではない。以下において、質量付加膜の構成が第1の実施形態及び第2の実施形態と異なる例を、第3の実施形態及び第4の実施形態により示す。
 質量付加膜以外の点においては、第3の実施形態及び第4の実施形態の弾性波装置は、第1の実施形態の弾性波装置10と同様の構成を有する。第3の実施形態及び第4の実施形態においても、第1の実施形態と同様に、質量付加膜が設けられていることによる不要波を抑制できる。よって、共振周波数付近または反共振周波数付近において、不要波を抑制することができる。
 図14は、第3の実施形態に係る弾性波装置の模式的平面図である。
 本実施形態においては、複数の第1の質量付加膜24の電極指延伸方向に沿う寸法が互いに異なる。そのため、複数の第1の質量付加膜24の平面視おける面積が互いに異なる。同様に、複数の第2の質量付加膜25の電極指延伸方向に沿う寸法が互いに異なる。そのため、複数の第2の質量付加膜25の平面視おける面積が互いに異なる。
 もっとも、複数の第1の質量付加膜24が、平面視における面積が異なる少なくとも1つの第1の質量付加膜24を含んでいればよい。同様に、複数の第2の質量付加膜25が、平面視における面積が異なる少なくとも1つの第2の質量付加膜25を含んでいればよい。
 本実施形態においては、質量付加膜毎に、生じる不要波の周波数が異なる。このように、不要波の周波数をばらつかせることができるため、全体として、不要波を抑制することができる。
 なお、弾性表面波を利用する弾性波装置の場合には、複数の電極指全体により、弾性表面波を励振させる。これに対して、厚み滑りモードのバルク波を利用する弾性波装置の場合には、圧電層14に1対の第1の電極指28及び第2の電極指29が設けられている部分が、1つの共振子として機能する。該弾性波装置の構成は、このような複数の共振子が、並列に接続された構成に相当する。よって、本発明では、質量付加膜の面積が一様ではなくとも、周波数特性における波形は崩れ難い。すなわち、電気的特性を劣化させずして、不要波を抑制することができる。
 図15は、第4の実施形態に係る弾性波装置の模式的平面図である。
 本実施形態においては、複数の第1の質量付加膜24が、第1のギャップ領域Gaから、第1のバスバー26と平面視において重なる部分に至っている。より具体的には、複数の第1の質量付加膜24は、第1のエッジ領域Ea、第1のギャップ領域Ga及び第1のバスバー26が設けられている領域にわたり設けられている。同様に、複数の第2の質量付加膜25が、平面視において、第2のバスバー27と重なっている。
 本実施形態では、圧電層14、バスバー及び質量付加膜が、圧電層14、バスバー及び質量付加膜の順序において積層されている。もっとも、圧電層14、質量付加膜及びバスバーが、圧電層14、質量付加膜及びバスバーの順序において積層されていてもよい。
 なお、第3の実施形態及び第4の実施形態においては、圧電層14の材料として、Zカットのニオブ酸リチウムが用いられている。もっとも、圧電層14の材料として、回転Yカットのニオブ酸リチウムが用いられていてもよい。あるいは、圧電層14の材料として、タンタル酸リチウムが用いられていてもよい。
 ここで、圧電層14が回転Yカットのニオブ酸リチウムからなる点のみにおいて第4の実施形態と異なる、第4の実施形態の変形例の構成を有する弾性波装置を用意した。さらに、第2の実施形態の構成を有する弾性波装置を用意した。これらのアドミッタンス周波数特性を測定した。
 図16は、第2の実施形態及び第4の実施形態の変形例におけるアドミッタンス周波数特性を示す図である。
 図16に示すように、第4の実施形態の変形例においては、第2の実施形態と同様に、反共振周波数付近において、不要波を抑制することができている。このように、平面視において質量付加膜がバスバーと重なっているか否かによっては、不要波を抑制する効果に大差はないことがわかる。
 例えば、弾性波装置の製造時においては、質量付加膜を設ける際のアライメントずれによって、質量付加膜の位置がずれることがある。もっとも、第4の実施形態及びその変形例では、質量付加膜が平面視においてバスバーと重なっている。そして、第4の実施形態及びその変形例のいずれにおいても、質量付加膜に起因する不要波を抑制することができる。このように、質量付加膜の位置がずれたとしても、影響は小さい。よって、本発明においては、製造時のアライメントずれによる影響を小さくすることができる。
 第1~第4の実施形態においては、質量付加膜は電極指の先端部と積層されている。そして、質量付加膜及び電極指が積層されている部分においては、圧電層14、電極指及び質量付加膜が、この順序で積層されている。もっとも、これらに限定されるものではない。以下において、質量付加膜の構成が第1~第4の実施形態と異なる例を、第5~第7の実施形態により示す。
 質量付加膜以外の点においては、第5~第7の実施形態の弾性波装置は、第1の実施形態の弾性波装置10と同様の構成を有する。第5~第7の実施形態においても、第1の実施形態と同様に、質量付加膜が設けられていることによる不要波を抑制できる。よって、共振周波数付近または反共振周波数付近において、不要波を抑制することができる。
 図17は、第5の実施形態に係る弾性波装置の模式的平面図である。
 本実施形態においては、第1の質量付加膜24が、平面視において、第2の電極指29の先端部を三方向において囲んでいる。第1の質量付加膜24は、第2の電極指29と接している。もっとも、第1の質量付加膜24は、平面視において、第2の電極指29とは重なっていない。第1の質量付加膜24の平面視における形状は、U字状の形状である。
 より具体的には、複数の電極指は、第1の面11a及び第2の面11bと、側面11cとを有する。第1の面11a及び第2の面11bは、厚み方向において互いに対向している。第1の面11a及び第2の面11bのうち、第2の面11bが圧電層14側の面である。側面11cは、第1の面11a及び第2の面11bに接続されている。第1の質量付加膜24は、第2の電極指29の側面11cと接している。
 同様に、第2の質量付加膜25が、平面視において、第1の電極指28の先端部を三方向において囲んでいる。第2の質量付加膜25は、第1の電極指28の側面11cと接している。もっとも、第2の質量付加膜25は、平面視において、第1の電極指28とは重なっていない。第2の質量付加膜25の平面視における形状は、U字状の形状である。
 なお、複数の質量付加膜が、平面視において、電極指の先端部を三方向において囲んでいる、少なくとも1つの質量付加膜を含んでいればよい。
 本実施形態では、質量付加膜は、平面視において電極指の先端部と重なっていない。それによって、電極指の先端部における質量付加が小さくなる。これにより、弾性波装置の耐電力性を高めることができる。
 図18は、第6の実施形態に係る弾性波装置の模式的平面図である。
 本実施形態においては、第1の質量付加膜24が、平面視において、第2の電極指29の先端部を三方向において囲んでいる。もっとも、第1の質量付加膜24は、第2の電極指29とは接していない。そして、第1の質量付加膜24は、平面視において、第2の電極指29とは重なっていない。
 同様に、第2の質量付加膜25が、平面視において、第1の電極指28の先端部を三方向において囲んでいる。第2の質量付加膜25は、第1の電極指28の側面と接していない。そして、第2の質量付加膜25は、平面視において、第1の電極指28とは重なっていない。
 本実施形態においても、第5の実施形態と同様に、弾性波装置の耐電力性を高めることができる。
 ここで、第1の実施形態と、第6の実施形態と、第1の参考例とにおいて、アドミッタンス周波数特性を比較した。第1の参考例は、図19に示すように、エッジ領域に質量付加膜124及び質量付加膜125が設けられていない点において、第1の実施形態と異なる。なお、第1の参考例においては、ギャップ領域には第1の実施形態と同様に、質量付加膜124及び質量付加膜125が設けられている。
 図20は、第1の実施形態、第6の実施形態及び第1の参考例におけるアドミッタンス周波数特性を示す図である。
 図20に示すように、第1の実施形態、第6の実施形態及び第1の参考例においては、共振周波数付近において不要波が抑制されている。さらに、第1の実施形態及び第6の実施形態においては、第1の参考例よりも、ロスが小さいことがわかる。このように、第1の実施形態及び第6の実施形態では、エッジ領域に質量付加膜が設けられているため、ロスの劣化を抑制することができる。
 図21は、第7の実施形態に係る弾性波装置の模式的平面図である。
 本実施形態においては、第1の質量付加膜24は、平面視において、第2の電極指29の先端部と重なっている。より具体的には、第1の質量付加膜24及び第2の電極指29が積層されている部分においては、圧電層14、第1の質量付加膜24及び第2の電極指29が、圧電層14、第1の質量付加膜24及び第2の電極指29の順序で積層されている。
 同様に、第2の質量付加膜25は、平面視において、第1の電極指28の先端部と重なっている。より具体的には、第2の質量付加膜25及び第1の電極指28が積層されている部分においては、圧電層14、第2の質量付加膜25及び第1の電極指28が、この順序で積層されている。
 本実施形態では、圧電層14と、電極指の先端部との間に、質量付加膜が設けられている。それによって、電極指に加わる電界が抑制される。これにより、弾性波装置の耐電力性を高めることができる。
 第5~第7の実施形態においては、第1の実施形態と同様に、圧電層14の材料として、Zカットのニオブ酸リチウムが用いられている。もっとも、圧電層14の材料として、回転Yカットのニオブ酸リチウムが用いられていてもよい。あるいは、圧電層14の材料として、タンタル酸リチウムが用いられていてもよい。
 図22は、第8の実施形態に係る弾性波装置の模式的平面図である。
 本実施形態は、圧電層14上に誘電体膜45が設けられている点において第1の実施形態と異なる。誘電体膜45はIDT電極11及び複数の質量付加膜を覆っている。よって、質量付加膜及び誘電体膜45が積層されている部分において、圧電層14、質量付加膜及び誘電体膜45が、圧電層14、質量付加膜及び誘電体膜45の順序で積層されている。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置10と同様の構成を有する。
 IDT電極11は誘電体膜45により保護される。これにより、IDT電極11が破損し難い。誘電体膜45の厚みを調整することにより、周波数を容易に調整することもできる。加えて、本実施形態においても、第1の実施形態と同様に、質量付加膜が設けられていることによる不要波を抑制できる。よって、共振周波数付近または反共振周波数付近において、不要波を抑制することができる。
 誘電体膜45には、例えば、酸化ケイ素、窒化ケイ素または酸窒化ケイ素などを用いることができる。もっとも、誘電体膜45の材料は上記に限定されない。
 なお、質量付加膜及び誘電体膜45の積層の順序は上記に限定されない。例えば、図23に示す第8の実施形態の変形例においては、質量付加膜及び誘電体膜45が積層されている部分において、圧電層14、誘電体膜45及び質量付加膜が、圧電層14、誘電体膜45及び質量付加膜の順序で積層されている。この場合においても、第8の実施形態と同様に、共振周波数付近または反共振周波数付近において、不要波を抑制することができる。
 第8の実施形態及びその変形例においては、第1の実施形態と同様に、圧電層14の材料として、Zカットのニオブ酸リチウムが用いられている。もっとも、圧電層14の材料として、回転Yカットのニオブ酸リチウムが用いられていてもよい。あるいは、圧電層14の材料として、タンタル酸リチウムが用いられていてもよい。
 本発明に係る弾性波装置は、例えば、フィルタ装置に用いることができる。この例を以下において示す。
 図24は、本発明の第9の実施形態に係るフィルタ装置の回路図である。
 フィルタ装置50はラダー型フィルタである。フィルタ装置50は、第1の信号端子52及び第2の信号端子53と、複数の直列腕共振子及び複数の並列腕共振子とを有する。本実施形態においては、全ての直列腕共振子及び全ての並列腕共振子が弾性波共振子である。そして、全ての弾性波共振子が本発明に係る弾性波装置である。もっとも、フィルタ装置50における少なくとも1つの弾性波共振子が、本発明に係る弾性波装置であればよい。
 第1の信号端子52及び第2の信号端子53は、例えば、電極パッドとして構成されていてもよく、あるいは、配線として構成されていてもよい。本実施形態においては、第2の信号端子53はアンテナ端子である。アンテナ端子はアンテナに接続される。
 フィルタ装置50の複数の直列腕共振子は、具体的には、直列腕共振子S1、直列腕共振子S2及び直列腕共振子S3である。複数の並列腕共振子は、具体的には、並列腕共振子P1及び並列腕共振子P2である。
 第1の信号端子52及び第2の信号端子53の間に、直列腕共振子S1、直列腕共振子S2及び直列腕共振子S3が互いに直列に接続されている。直列腕共振子S1及び直列腕共振子S2の間の接続点とグラウンド電位との間に、並列腕共振子P1が接続されている。直列腕共振子S2及び直列腕共振子S3の間の接続点とグラウンド電位との間に、並列腕共振子P2が接続されている。なお、フィルタ装置50の回路構成は上記に限定されない。本発明に係るフィルタ装置50がラダー型フィルタである場合、該フィルタ装置50は、少なくとも1つの直列腕共振子と、少なくとも1つの並列腕共振子とを有していればよい。
 あるいは、フィルタ装置50は、例えば、縦結合共振子型弾性波フィルタを含んでいてもよい。この場合、フィルタ装置50は、例えば、縦結合共振子型弾性波フィルタに接続された直列腕共振子または並列腕共振子を含んでいてもよい。該直列腕共振子または該並列腕共振子が本発明に係る弾性波装置であればよい。
 本実施形態においては、全ての弾性波共振子が圧電性基板を共有している。圧電性基板における圧電層は、例えば、Zカットのニオブ酸リチウムからなっていてもよく、回転Yカットのニオブ酸リチウムからなっていてもよい。あるいは、圧電層は、タンタル酸リチウムからなっていてもよい。各弾性波共振子が個別の圧電性基板を有していても構わない。
 フィルタ装置50の通過帯域を構成する並列腕共振子の反共振周波数は、フィルタ装置50の通過帯域内に位置する。よって、フィルタ装置50における通過帯域内の電気的特性に対し、並列腕共振子における反共振周波数付近に生じる不要波の影響が大きい。フィルタ装置50の通過帯域を構成する直列腕共振子の共振周波数は、フィルタ装置50の通過帯域内に位置する。よって、フィルタ装置50における通過帯域内の電気的特性に対し、直列腕共振子における共振周波数付近に生じる不要波の影響も大きい。
 本実施形態では、各並列腕共振子及び各直列腕共振子は、本発明に係る弾性波装置である。そして、各並列腕共振子には、例えば、反共振周波数付近において不要波を抑制できる弾性波装置を用いればよい。各直列腕共振子には、例えば、共振周波数付近において不要波を抑制できる弾性波装置を用いればよい。これにより、フィルタ装置50の通過帯域内の電気的特性に対する不要波の影響を抑制することができる。加えて、第1の実施形態などの弾性波装置を直列腕共振子または並列腕共振子に用いた場合には、該弾性波共振子においてロスの劣化も抑制することができる。従って、フィルタ装置50のフィルタ特性の劣化を抑制することができる。
 ここで、フィルタ装置50の直列腕共振子のうち、本発明に係る弾性波装置である直列腕共振子を第1の弾性波共振子とする。フィルタ装置50の並列腕共振子のうち、本発明に係る弾性波装置である並列腕共振子を第2の弾性波共振子とする。フィルタ装置50が、少なくとも1つの第1の弾性波共振子及び少なくとも1つの第2の弾性波共振子を有することが好ましい。それによって、フィルタ特性の劣化をより確実に抑制することができる。
 本実施形態では、第2の弾性波共振子の複数の質量付加膜の厚みは、第1の弾性波共振子の複数の質量付加膜の厚みよりも薄い。質量付加膜の厚みが薄い場合、反共振周波数付近の、質量付加膜に起因する不要波は抑制される。よって、本実施形態においては、フィルタ特性の劣化を効果的に抑制することができる。
 例えば、並列腕共振子において高域側の周波数に不要波が生じた場合には、直列腕共振子において高域側の周波数に不要波が生じた場合よりも、フィルタ特性に対する影響が大きい。これに対して、本実施形態では、第2の弾性波共振子の複数の質量付加膜の平面視における面積の平均値が、第1の弾性波共振子の複数の質量付加膜の平面視における面積の平均値よりも大きい。質量付加膜の面積が大きい場合、高域側の周波数において生じる不要波が抑制される。よって、本実施形態においては、フィルタ特性の劣化をより一層抑制することができる。
 図25は、第10の実施形態に係るフィルタ装置の回路図である。
 フィルタ装置60はラダー型フィルタである。本実施形態は、回路構成及び各弾性波共振子の構成において、第9の実施形態と異なる。
 フィルタ装置60の複数の直列腕共振子は、具体的には、直列腕共振子S11、直列腕共振子S12、直列腕共振子S13及び直列腕共振子S14である。複数の並列腕共振子は、具体的には、並列腕共振子P11、並列腕共振子P12及び並列腕共振子P13である。
 第1の信号端子52及び第2の信号端子53の間に、直列腕共振子S11、直列腕共振子S12、直列腕共振子S13及び直列腕共振子S14が互いに直列に接続されている。直列腕共振子S11及び直列腕共振子S12の間の接続点とグラウンド電位との間に、並列腕共振子P11が接続されている。直列腕共振子S12及び直列腕共振子S13の間の接続点とグラウンド電位との間に、並列腕共振子P12が接続されている。直列腕共振子S13及び直列腕共振子S14の間の接続点とグラウンド電位との間に、並列腕共振子P13が接続されている。
 本実施形態においては、全ての弾性波共振子が圧電性基板を共有している。より具体的には、本実施形態における圧電性基板の圧電層は、回転Yカットのニオブ酸リチウムからなる。
 ここで、回転Yカットのニオブ酸リチウムからなる圧電層を有する、本発明に係る弾性波装置である弾性波共振子を、第3の弾性波共振子とする。本実施形態では、第3の弾性波共振子は、第2の実施形態に係る弾性波装置である。フィルタ装置60においては、全ての並列腕共振子が、第3の弾性波共振子である。
 フィルタ装置60の各第3の弾性波共振子においては、図1を援用して示すように、第1のエッジ領域Ea及び第1のギャップ領域Gaにわたり、第1の質量付加膜24が設けられている。なお、本実施形態では、第1のギャップ領域Gaの、電極指延伸方向における全てに第1の質量付加膜24が設けられている。よって、第1の質量付加膜24における第1のギャップ領域Gaに設けられている部分の電極指延伸方向に沿う寸法は、第1のギャップ領域Gaの電極指延伸方向に沿う寸法と同じである。
 同様に、第2のエッジ領域Eb及び第2のギャップ領域Gbにわたり、第2の質量付加膜25が設けられている。第2の質量付加膜25における第2のギャップ領域Gbに設けられている部分の電極指延伸方向に沿う寸法は、第2のギャップ領域Gbの電極指延伸方向に沿う寸法と同じである。なお、各質量付加膜は、各ギャップ領域の、電極指延伸方向における一部に設けられていてもよい。
 他方、回転Yカットのニオブ酸リチウムからなる圧電層を有し、質量付加膜を有しない弾性波装置である弾性波共振子を、第4の弾性波共振子とする。なお、図26に示すように、第4の弾性波共振子は、第3の弾性波共振子と同様に、IDT電極11を有する。フィルタ装置60においては、全ての直列腕共振子が、第4の弾性波共振子である。本実施形態では、第3の弾性波共振子におけるギャップ領域の電極指延伸方向に沿う寸法は、第4の弾性波共振子におけるギャップ領域の電極指延伸方向に沿う寸法よりも大きい。
 単体の第3の弾性波共振子及び第4の弾性波共振子をそれぞれ用意し、アドミッタンス周波数特性を測定した。
 図27は、第10の実施形態における、第3の弾性波共振子及び第4の弾性波共振子のアドミッタンス周波数特性を示す図である。
 第3の弾性波共振子は第2の実施形態に係る弾性波装置であり、図27に示すように、共振周波数付近において、不要波は抑制されている。さらに、第3の弾性波共振子では、7000MHz付近において不要波が抑制されており、かつ7600MHz付近の高域側の周波数を含めてロスが小さい。これは、第3の弾性波共振子において、ギャップ領域の電極指延伸方向に沿う寸法が大きいことによる。より詳細には、図13に示したように、第3の弾性波共振子では、ギャップ領域の電極指延伸方向に沿う寸法が大きいほど、ロスの劣化を抑制できる。
 本実施形態のように、第3の弾性波共振子をフィルタ装置に用いる場合には、第3の弾性波共振子を並列腕共振子として用いることが好ましい。並列腕共振子における高域側の周波数のロスが大きい場合には、直列腕共振子における高域側の周波数のロスが大きい場合よりも、フィルタ特性に対する影響は大きい。そして、第3の並列腕共振子を並列腕共振子として用いた場合には、該並列腕共振子おける高域側の周波数のロスを抑制することができる。それによって、フィルタ特性を改善することができる。
 並列腕共振子として用いた、第3の弾性波共振子におけるギャップ領域の電極指延伸方向に沿う寸法が、直列腕共振子として用いた、第4の弾性波共振子におけるギャップ領域の電極指延伸方向に沿う寸法よりも大きいことが好ましい。それによって、第3の弾性波共振子のロスの劣化をより確実に抑制することができる。従って、フィルタ装置60におけるフィルタ特性をより確実に改善することができる。
 なお、第4の弾性波共振子は質量付加膜を有しないため、質量付加膜に起因する不要波は生じない。そのため、図27に示すように、共振周波数付近における不要波の強度は小さい。
 加えて、第4の弾性波共振子においては、7600MHz付近の高域側の周波数以外では、ロスは特に劣化していない。これは、第4の弾性波共振子の圧電層に、回転Yカットのニオブ酸リチウムが用いられていることによる。さらに、第4の弾性波共振子において、質量付加膜が設けられていないことによる。より具体的には、平面視において、質量付加膜が電極指の先端と重なっていないことによる。第4の弾性波共振子が直列腕共振子として用いられていることによって、フィルタ装置60におけるフィルタ特性は劣化し難い。
 もっとも、例えば、少なくとも1つの並列腕共振子が第3の弾性波共振子であり、少なくとも1つの直列腕共振子が第4の弾性波共振子であってもよい。この場合においても、フィルタ装置60における、第3の弾性波共振子においては、共振周波数付近または反共振周波数付近において不要波を抑制することができる。そして、フィルタ装置60のフィルタ特性の劣化を抑制することができる。
 全ての第4の弾性波共振子が直列腕共振子であることが好ましい。この場合、フィルタ装置60のフィルタ特性の劣化をより確実に抑制することができる。
 以下において、各弾性波共振子の構成のみが第10の実施形態と異なる、第11の実施形態及び第12の実施形態を示す。なお、第11の実施形態及び第12の実施形態においては、全ての弾性波共振子が圧電性基板を共有している。もっとも、各弾性波共振子が個別の圧電性基板を有していても構わない。
 第11の実施形態においては、全ての並列腕共振子は、第10の実施形態と同様に、第3の弾性波共振子である。一方で、全ての直列腕共振子は、第5の弾性波共振子である。
 本発明に係る弾性波装置である第3の弾性波共振子においては、共振周波数付近または反共振周波数付近において不要波を抑制することができる。加えて、高域側の周波数におけるロスの劣化を抑制することができる。そして、第11の実施形態においても、第10の実施形態と同様に、並列腕共振子として、第3の弾性波共振子が用いられている。これらにより、第11の実施形態に係るフィルタ装置のフィルタ特性の劣化を抑制することができる。
 以下において、第5の弾性波共振子について説明する。
 図28は、第11の実施形態における、第5の弾性波共振子の模式的平面図である。
 第5の弾性波共振子においては、圧電性基板12の圧電層14は、回転Yカットのニオブ酸リチウムからなる。第5の弾性波共振子は、IDT電極11と、1対の質量付加膜104及び質量付加膜105とを有する。質量付加膜104及び質量付加膜105は、帯状の形状を有する。
 質量付加膜104は、第1のギャップ領域Gaに設けられており、かつ交叉領域Fには設けられていない。質量付加膜104は、平面視において、複数の電極指と、電極指間の領域とに重なるように、連続的に設けられている。
 なお、第11の実施形態では、第1のギャップ領域Gaの、電極指延伸方向における全てに質量付加膜104が設けられている。よって、質量付加膜104の電極指延伸方向に沿う寸法は、第1のギャップ領域Gaの電極指延伸方向に沿う寸法と同じである。
 同様に、質量付加膜105は、第2のギャップ領域Gbに設けられており、かつ交叉領域Fには設けられていない。質量付加膜105は、平面視において、複数の電極指と、電極指間の領域とに重なるように、連続的に設けられている。質量付加膜105の電極指延伸方向に沿う寸法は、第2のギャップ領域Gbの電極指延伸方向に沿う寸法と同じである。
 なお、第5の弾性波共振子においては、各質量付加膜は、各ギャップ領域の、電極指延伸方向における一部に設けられていてもよい。あるいは、第5の弾性波共振子では、平面視において、質量付加膜104及び質量付加膜105のうち少なくとも一方が、バスバーと重なっていてもよい。第5の弾性波共振子においては、質量付加膜は、第1のギャップ領域Ga及び第2のギャップ領域Gbのうち少なくとも一方に設けられていればよい。
 単体の第5の弾性波共振子を用意し、アドミッタンス周波数特性を測定した。さらに、質量付加膜の位置ずれによる、アドミッタンス周波数特性に対する影響を検討した。具体的には、第2の参考例及び第3の参考例の弾性波共振子を用意し、それぞれの弾性波共振子のアドミッタンス周波数特性を測定した。なお、上記の位置ずれは、質量付加膜を設ける際のアライメントずれなどに起因する。
 第2の参考例の弾性波共振子では、各質量付加膜が、ギャップ領域の全体及びエッジ領域の一部に設けられている。より具体的には、該弾性波共振子においては、質量付加膜は、エッジ領域の一部において、平面視したときに、複数の電極指と、電極指間の領域とに重なるように、連続的に設けられている。より詳細には、該弾性波共振子における質量付加膜の電極指延伸方向に沿う寸法は、ギャップ領域の電極指延伸方向に沿う寸法よりも150nm大きい。
 第3の参考例の弾性波共振子では、質量付加膜は、ギャップ領域の、電極指延伸方向における一部に設けられている。より具体的には、該弾性波共振子においては、質量付加膜は、電極指の先端と接しており、かつバスバーとは接していない。より詳細には、該弾性波共振子における質量付加膜の電極指延伸方向に沿う寸法は、ギャップ領域の電極指延伸方向に沿う寸法よりも150nm小さい。
 図29は、第11の実施形態における第5の弾性波共振子、並びに第2の参考例及び第3の参考例の弾性波共振子においての、アドミッタンス周波数特性を示す図である。
 図29に示すように、第5の弾性波共振子においては、7600MHz付近の高域側の周波数以外では、ロスは特に劣化していない。これは、第5の弾性波共振子の圧電層に、回転Yカットのニオブ酸リチウムが用いられていることによる。さらに、第5の弾性波共振子において、平面視したときに、質量付加膜が電極指の先端と重なっていないことによる。
 同様に、第2の参考例及び第3の参考例においても、7600MHz付近の高域側の周波数以外では、ロスの劣化は小さい。これらのことから、質量付加膜の位置ずれが150nm程度のずれであれば、特性の差は小さいことがわかる。
 直列腕共振子においては、高域側の周波数におけるロスが大きくとも、フィルタ特性に対する影響は小さい。そして、上記のように、第5の弾性波共振子においては、7600MHz付近の高域側の周波数以外では、ロスは特に劣化していない。よって、第5の弾性波共振子が直列腕共振子として用いられていることにより、フィルタ特性は劣化し難い。
 さらに、第3の弾性波共振子及び第5の弾性波共振子において、ロスの効果的に改善することができる質量付加膜の厚み、及びギャップ領域の電極指延伸方向に沿う寸法を検討した。
 第3の弾性波共振子においては、ギャップ領域の電極指延伸方向に沿う寸法が1.5μm程度である場合に、ロスを効果的に改善することができる。そして、質量付加膜の厚みが25nm以上、35nm以下である場合において、ロスを効果的に改善することができる。
 一方で、第5の弾性波共振子においては、ギャップ領域の電極指延伸方向に沿う寸法が3μm程度である場合に、ロスを効果的に改善することができる。そして、質量付加膜の厚みが15nm以上、25nm以下である場合において、ロスを効果的に改善することができる。
 これらのことから、並列腕共振子である第3の弾性波共振子の質量付加膜の厚みが、直列腕共振子である第5の弾性波共振子の質量付加膜の厚みよりも厚いことが好ましい。並列腕共振子である第3の弾性波共振子におけるギャップ領域の電極指延伸方向に沿う寸法が、直列腕共振子である第5の弾性波共振子におけるギャップ領域の電極指延伸方向に沿う寸法以下であることが好ましい。それによって、第3の弾性波共振子及び第5の弾性波共振子において、ロスを改善することができる。これにより、フィルタ装置におけるフィルタ特性を改善することができる。
 なお、本発明に係るフィルタ装置においては、少なくとも1つの第3の弾性波共振子が、並列腕共振子であることが好ましい。もっとも、第3の弾性波共振子は直列腕共振子であってもよい。一方で、少なくとも1つの第5の弾性波共振子が、直列腕共振子であることが好ましい。もっとも、第5の弾性波共振子は並列腕共振子であってもよい。
 以下において、第12の実施形態に係るフィルタ装置の構成を説明する。第12の実施形態においては、第3~第5の弾性波共振子に加え、第6の弾性波共振子が設けられている。
 より具体的には、図25を援用すると、直列腕共振子S11及び並列腕共振子P11が第3の弾性波共振子である。直列腕共振子S12が第4の弾性波共振子である。直列腕共振子S13及び並列腕共振子P12が第5の弾性波共振子である。直列腕共振子S14及び並列腕共振子P13が第6の弾性波共振子である。このように、第6の弾性波共振子は、直列腕共振子として用いられていてもよく、並列腕共振子として用いられていてもよい。なお、ここで示した第3~第6の弾性波共振子の配置は一例であって、第3~第6の弾性波共振子の配置は上記に限定されない。
 第12の実施形態のフィルタ装置においても、第10の実施形態及び第11の実施形態と同様に、本発明に係る弾性波装置である第3の弾性波共振子が用いられている。よって、フィルタ装置における弾性波共振子の、共振周波数付近または反共振周波数付近において、不要波を抑制することができる。従って、フィルタ特性の劣化を抑制することができる。
 以下において、第6の弾性波共振子について説明する。
 図30は、第12の実施形態における、第6の弾性波共振子の模式的平面図である。
 第6の弾性波共振子においては、圧電性基板12の圧電層14は、回転Yカットのニオブ酸リチウムからなる。第6の弾性波共振子は、IDT電極11と、1対の質量付加膜114及び質量付加膜115とを有する。質量付加膜114及び質量付加膜115は、帯状の形状を有する。
 質量付加膜114は、第1のエッジ領域Ea及び第1のギャップ領域Gaにわたり設けられている。質量付加膜114は、平面視において、複数の電極指と、電極指間の領域とに重なるように、連続的に設けられている。
 なお、第12の実施形態では、第1のギャップ領域Gaの、電極指延伸方向における全てに質量付加膜114が設けられている。よって、質量付加膜114における第1のギャップ領域Gaに設けられている部分の電極指延伸方向に沿う寸法は、第1のギャップ領域Gaの電極指延伸方向に沿う寸法と同じである。
 同様に、質量付加膜115は、第2のエッジ領域Eb及び第2のギャップ領域Gbにわたり設けられている。質量付加膜115は、平面視において、複数の電極指と、電極指間の領域とに重なるように、連続的に設けられている。質量付加膜115における第2のギャップ領域Gbに設けられている部分の電極指延伸方向に沿う寸法は、第2のギャップ領域Gbの電極指延伸方向に沿う寸法と同じである。
 なお、第6の弾性波共振子においては、各質量付加膜における各ギャップ領域に設けられている部分は、各ギャップ領域の、電極指延伸方向における一部に位置していてもよい。あるいは、第6の弾性波共振子においては、質量付加膜114及び質量付加膜115のうち少なくとも一方が、平面視において、バスバーと重なっていてもよい。第6の弾性波共振子においては、質量付加膜が、1対のエッジ領域のうち少なくとも一方のエッジ領域、及び該エッジ領域と隣接しているギャップ領域にわたり設けられていればよい。
 単体の第6の弾性波共振子を用意し、アドミッタンス周波数特性を測定した。なお、第3の弾性波共振子及び第5の弾性波共振子のアドミッタンス周波数特性も合わせて示す。
 図31は、第12の実施形態における第3の弾性波共振子、第5の弾性波共振子及び第6の弾性波共振子においての、アドミッタンス周波数特性を示す図である。
 図31に示すように、第3の弾性波共振子及び第5の弾性波共振子においては、反共振周波数付近において、不要波が抑制されている。一方で、第6の弾性波共振子においては、反共振周波数付近において、不要波が生じている。これは、質量付加膜114及び質量付加膜115に起因する不要波である。
 もっとも、第12の実施形態のフィルタ装置においては、第6の弾性波共振子以外に、第3~第5の弾性波共振子が設けられている。それによって、不要波のフィルタ特性に対する影響を小さくすることができる。加えて、図31に示すように、第6の弾性波共振子においては、ロスは小さい。従って、本実施形態においては、フィルタ装置におけるフィルタ特性の劣化を抑制することができる。
 さらに、第6の弾性波共振子において、ロスの効果的に改善することができる質量付加膜の厚み、及びギャップ領域の電極指延伸方向に沿う寸法を検討した。
 第6の弾性波共振子においては、ギャップ領域の電極指延伸方向に沿う寸法が3μm程度である場合に、ロスを効果的に改善することができる。そして、質量付加膜の厚みが10nm以上、20nm以下である場合において、ロスを効果的に改善することができる。
 一方で、上記のように、第5の弾性波共振子においては、ギャップ領域の電極指延伸方向に沿う寸法が3μm程度である場合に、ロスを効果的に改善することができる。そして、質量付加膜の厚みが15nm以上、25nm以下である場合において、ロスを効果的に改善することができる。
 これらのことから、並列腕共振子として第6の弾性波共振子を用い、直列腕共振子として第5の弾性波共振子を用いた場合、第6の弾性波共振子の質量付加膜の厚みが、第5の弾性波共振子の質量付加膜の厚みよりも薄いことが好ましい。それによって、第5の弾性波共振子及び第6の弾性波共振子において、ロスを改善することができる。よって、フィルタ装置におけるフィルタ特性の劣化を、より確実に抑制することができる。
 第5の弾性波共振子及び第6の弾性波共振子においてはいずれも、ギャップ領域の電極指延伸方向に沿う寸法が3μm程度である場合に、ロスを効果的に改善することができる。なお、ギャップ領域の電極指延伸方向に沿う寸法が長い場合、質量付加膜の面積を大きくし易い。そして、質量付加膜の面積が大きい場合、高域側の周波数において生じる不要波が抑制される。
 このことから、並列腕共振子である第6の弾性波共振子におけるギャップ領域の電極指延伸方向に沿う寸法が、直列腕共振子である第5の弾性波共振子におけるギャップ領域の電極指延伸方向に沿う寸法以上であることが好ましい。これにより、第6の弾性波共振子において、質量付加膜に起因する不要波を抑制することができる。よって、フィルタ装置におけるフィルタ特性の劣化を、より確実に抑制することができる。
 以下において、厚み滑りモードの詳細を説明する。なお、後述するIDT電極における「電極」は、本発明における電極指に相当する。以下の例における支持部材は、本発明における支持基板に相当する。
 図32(a)は、厚み滑りモードのバルク波を利用する弾性波装置の外観を示す略図的斜視図であり、図32(b)は、圧電層上の電極構造を示す平面図であり、図33は、図32(a)中のA-A線に沿う部分の断面図である。
 弾性波装置1は、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbOやLiTaOのカット角は、Zカットであるが、回転YカットやXカットであってもよい。圧電層2の厚みは、特に限定されないが、厚み滑りモードを効果的に励振するには、40nm以上、1000nm以下であることが好ましく、50nm以上、1000nm以下であることがより好ましい。圧電層2は、対向し合う第1,第2の主面2a,2bを有する。第1の主面2a上に、電極3及び電極4が設けられている。ここで電極3が「第1電極」の一例であり、電極4が「第2電極」の一例である。図32(a)及び図32(b)では、複数の電極3が、第1のバスバー5に接続されている複数の第1の電極指である。複数の電極4は、第2のバスバー6に接続されている複数の第2の電極指である。複数の電極3及び複数の電極4は、互いに間挿し合っている。電極3及び電極4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極3と、隣りの電極4とが対向している。電極3,4の長さ方向、及び、電極3,4の長さ方向と直交する方向はいずれも、圧電層2の厚み方向に交叉する方向である。このため、電極3と、隣りの電極4とは、圧電層2の厚み方向に交叉する方向において対向しているともいえる。また、電極3,4の長さ方向が図32(a)及び図32(b)に示す電極3,4の長さ方向に直交する方向と入れ替わってもよい。すなわち、図32(a)及び図32(b)において、第1のバスバー5及び第2のバスバー6が延びている方向に電極3,4を延ばしてもよい。その場合、第1のバスバー5及び第2のバスバー6は、図32(a)及び図32(b)において電極3,4が延びている方向に延びることとなる。そして、一方電位に接続される電極3と、他方電位に接続される電極4とが隣り合う1対の構造が、上記電極3,4の長さ方向と直交する方向に、複数対設けられている。ここで電極3と電極4とが隣り合うとは、電極3と電極4とが直接接触するように配置されている場合ではなく、電極3と電極4とが間隔を介して配置されている場合を指す。また、電極3と電極4とが隣り合う場合、電極3と電極4との間には、他の電極3,4を含む、ホット電極やグラウンド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対や2.5対などであってもよい。電極3,4間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。また、電極3,4の幅、すなわち電極3,4の対向方向の寸法は、50nm以上、1000nm以下の範囲であることが好ましく、150nm以上、1000nm以下の範囲であることがより好ましい。なお、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の寸法(幅寸法)の中心と、電極4の長さ方向と直交する方向における電極4の寸法(幅寸法)の中心とを結んだ距離となる。
 また、弾性波装置1では、Zカットの圧電層を用いているため、電極3,4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極3,4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°の範囲内)でもよい。
 圧電層2の第2の主面2b側には、絶縁層7を介して支持部材8が積層されている。絶縁層7及び支持部材8は、枠状の形状を有し、図33に示すように、貫通孔7a,8aを有する。それによって、空洞部9が形成されている。空洞部9は、圧電層2の励振領域Cの振動を妨げないために設けられている。従って、上記支持部材8は、少なくとも1対の電極3,4が設けられている部分と重ならない位置において、第2の主面2bに絶縁層7を介して積層されている。なお、絶縁層7は設けられずともよい。従って、支持部材8は、圧電層2の第2の主面2bに直接または間接に積層され得る。
 絶縁層7は、酸化ケイ素からなる。もっとも、酸化ケイ素の他、酸窒化ケイ素、アルミナなどの適宜の絶縁性材料を用いることができる。支持部材8は、Siからなる。Siの圧電層2側の面における面方位は(100)や(110)であってもよく、(111)であってもよい。支持部材8を構成するSiは、抵抗率4kΩcm以上の高抵抗であることが望ましい。もっとも、支持部材8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。
 支持部材8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライトなどの各種セラミック、ダイヤモンド、ガラスなどの誘電体、窒化ガリウムなどの半導体などを用いることができる。
 上記複数の電極3,4及び第1,第2のバスバー5,6は、Al、AlCu合金などの適宜の金属もしくは合金からなる。弾性波装置1では、電極3,4及び第1,第2のバスバー5,6は、Ti膜上にAl膜を積層した構造を有する。なお、Ti膜以外の密着層を用いてもよい。
 駆動に際しては、複数の電極3と、複数の電極4との間に交流電圧を印加する。より具体的には、第1のバスバー5と第2のバスバー6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑りモードのバルク波を利用した、共振特性を得ることが可能とされている。また、弾性波装置1では、圧電層2の厚みをd、複数対の電極3,4のうちいずれかの隣り合う電極3,4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑りモードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。
 弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極3,4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側の反射器における電極指の本数を少なくしても、伝搬ロスが少ないためである。また、上記電極指の本数を少なくできるのは、厚み滑りモードのバルク波を利用していることによる。弾性波装置で利用したラム波と、上記厚み滑りモードのバルク波の相違を、図34(a)及び図34(b)を参照して説明する。
 図34(a)は、日本公開特許公報 特開2012-257019号公報に記載のような弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図である。ここでは、圧電膜201中を矢印で示すように波が伝搬する。ここで、圧電膜201では、第1の主面201aと、第2の主面201bとが対向しており、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、IDT電極の電極指が並んでいる方向である。図34(a)に示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電膜201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極指の対数を少なくした場合、Q値が低下する。
 これに対して、図34(b)に示すように、弾性波装置1では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器の電極指の本数を少なくしても、伝搬損失は生じ難い。さらに、小型化を進めようとして、電極3,4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。
 なお、厚み滑りモードのバルク波の振幅方向は、図35に示すように、圧電層2の励振領域Cに含まれる第1領域451と、励振領域Cに含まれる第2領域452とで逆になる。図35では、電極3と電極4との間に、電極4が電極3よりも高電位となる電圧が印加された場合のバルク波を模式的に示してある。第1領域451は、励振領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域452は、励振領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。
 上記のように、弾性波装置1では、電極3と電極4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極3,4からなる電極対の対数は複数対ある必要はない。すなわち、少なくとも1対の電極が設けられてさえおればよい。
 例えば、上記電極3がホット電位に接続される電極であり、電極4がグラウンド電位に接続される電極である。もっとも、電極3がグラウンド電位に、電極4がホット電位に接続されてもよい。弾性波装置1では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極またはグラウンド電位に接続される電極であり、浮き電極は設けられていない。
 図36は、図33に示す弾性波装置の共振特性を示す図である。なお、この共振特性を得た弾性波装置1の設計パラメータは以下の通りである。
 圧電層2:オイラー角(0°,0°,90°)のLiNbO、厚み=400nm。
 電極3と電極4の長さ方向と直交する方向に視たときに、電極3と電極4とが重なっている領域、すなわち励振領域Cの長さ=40μm、電極3,4からなる電極の対数=21対、電極間中心距離=3μm、電極3,4の幅=500nm、d/p=0.133。
 絶縁層7:1μmの厚みの酸化ケイ素膜。
 支持部材8:Si。
 なお、励振領域Cの長さとは、励振領域Cの電極3,4の長さ方向に沿う寸法である。
 弾性波装置1では、電極3,4からなる電極対の電極間距離は、複数対において全て等しくした。すなわち、電極3と電極4とを等ピッチで配置した。
 図36から明らかなように、反射器を有しないにも関わらず、比帯域が12.5%である良好な共振特性が得られている。
 ところで、上記圧電層2の厚みをd、電極3と電極4との電極の中心間距離をpとした場合、前述したように、弾性波装置1では、d/pは0.5以下、より好ましくは0.24以下である。これを、図37を参照して説明する。
 図36に示した共振特性を得た弾性波装置と同様に、但しd/pを変化させ、複数の弾性波装置を得た。図37は、このd/pと、弾性波装置の共振子としての比帯域との関係を示す図である。
 図37から明らかなように、d/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、d/pを0.5以下とすることにより、上記厚み滑りモードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。
 図38は、厚み滑りモードのバルク波を利用する弾性波装置の平面図である。弾性波装置80では、圧電層2の第1の主面2a上において、電極3と電極4とを有する1対の電極が設けられている。なお、図38中のKが交叉幅となる。前述したように、本発明の弾性波装置では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑りモードのバルク波を効果的に励振することができる。
 弾性波装置1では、好ましくは、複数の電極3,4において、いずれかの隣り合う電極3,4が対向している方向に視たときに重なっている領域である励振領域Cに対する、上記隣り合う電極3,4のメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たすことが望ましい。その場合には、スプリアスを効果的に小さくすることができる。これを、図39及び図40を参照して説明する。図39は、上記弾性波装置1の共振特性の一例を示す参考図である。矢印Bで示すスプリアスが、共振周波数と反共振周波数との間に現れている。なお、d/p=0.08として、かつLiNbOのオイラー角(0°,0°,90°)とした。また、上記メタライゼーション比MR=0.35とした。
 メタライゼーション比MRを、図32(b)を参照して説明する。図32(b)の電極構造において、1対の電極3,4に着目した場合、この1対の電極3,4のみが設けられるとする。この場合、一点鎖線で囲まれた部分が励振領域Cとなる。この励振領域Cとは、電極3と電極4とを、電極3,4の長さ方向と直交する方向すなわち対向方向に見たときに電極3における電極4と重なり合っている領域、電極4における電極3と重なり合っている領域、及び、電極3と電極4との間の領域における電極3と電極4とが重なり合っている領域である。そして、この励振領域Cの面積に対する、励振領域C内の電極3,4の面積が、メタライゼーション比MRとなる。すなわち、メタライゼーション比MRは、メタライゼーション部分の面積の励振領域Cの面積に対する比である。
 なお、複数対の電極が設けられている場合、励振領域の面積の合計に対する全励振領域に含まれているメタライゼーション部分の割合をMRとすればよい。
 図40は弾性波装置1の形態に従って、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。なお、比帯域については、圧電層の膜厚や電極の寸法を種々変更し、調整した。また、図40は、ZカットのLiNbOからなる圧電層を用いた場合の結果であるが、他のカット角の圧電層を用いた場合においても、同様の傾向となる。
 図40中の楕円Jで囲まれている領域では、スプリアスが1.0と大きくなっている。図40から明らかなように、比帯域が0.17を超えると、すなわち17%を超えると、スプリアスレベルが1以上の大きなスプリアスが、比帯域を構成するパラメータを変化させたとしても、通過帯域内に現れる。すなわち、図39に示す共振特性のように、矢印Bで示す大きなスプリアスが帯域内に現れる。よって、比帯域は17%以下であることが好ましい。この場合には、圧電層2の膜厚や電極3,4の寸法などを調整することにより、スプリアスを小さくすることができる。
 図41は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す図である。上記弾性波装置において、d/2pと、MRが異なる様々な弾性波装置を構成し、比帯域を測定した。図41の破線Dの右側のハッチングを付して示した部分が、比帯域が17%以下の領域である。このハッチングを付した領域と、付していない領域との境界は、MR=3.5(d/2p)+0.075で表される。すなわち、MR=1.75(d/p)+0.075である。従って、好ましくは、MR≦1.75(d/p)+0.075である。その場合には、比帯域を17%以下としやすい。より好ましくは、図41中の一点鎖線D1で示すMR=3.5(d/2p)+0.05の右側の領域である。すなわち、MR≦1.75(d/p)+0.05であれば、比帯域を確実に17%以下にすることができる。
 図42は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。図42のハッチングを付して示した部分が、少なくとも5%以上の比帯域が得られる領域であり、当該領域の範囲を近似すると、下記の式(1)、式(2)及び式(3)で表される範囲となる。
 (0°±10°,0°~20°,任意のψ)  …式(1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
 従って、上記式(1)、式(2)または式(3)のオイラー角範囲の場合、比帯域を十分に広くすることができ、好ましい。圧電層2がタンタル酸リチウム層である場合も同様である。
 図43は、音響多層膜を有する弾性波装置の正面断面図である。
 弾性波装置81では、圧電層2の第2の主面2bに音響多層膜82が積層されている。音響多層膜82は、音響インピーダンスが相対的に低い低音響インピーダンス層82a,82c,82eと、音響インピーダンスが相対的に高い高音響インピーダンス層82b,82dとの積層構造を有する。音響多層膜82を用いた場合、弾性波装置1における空洞部9を用いずとも、厚み滑りモードのバルク波を圧電層2内に閉じ込めることができる。弾性波装置81においても、上記d/pを0.5以下とすることにより、厚み滑りモードのバルク波に基づく共振特性を得ることができる。なお、音響多層膜82においては、その低音響インピーダンス層82a,82c,82e及び高音響インピーダンス層82b,82dの積層数は特に限定されない。低音響インピーダンス層82a,82c,82eよりも、少なくとも1層の高音響インピーダンス層82b,82dが圧電層2から遠い側に配置されておりさえすればよい。
 上記低音響インピーダンス層82a,82c,82e及び高音響インピーダンス層82b,82dは、上記音響インピーダンスの関係を満たす限り、適宜の材料で構成することができる。例えば、低音響インピーダンス層82a,82c,82eの材料としては、酸化ケイ素または酸窒化ケイ素などを挙げることができる。また、高音響インピーダンス層82b,82dの材料としては、アルミナ、窒化ケイ素または金属などを挙げることができる。
 第1~第8の実施形態及び各変形例の弾性波装置においては、例えば、支持部材及び圧電層の間に、音響反射膜としての、図43に示す音響多層膜82が設けられていてもよい。具体的には、支持部材の少なくとも一部及び圧電層の少なくとも一部が、音響多層膜82を挟み互いに対向するように、支持部材と圧電層とが配置されていてもよい。この場合、音響多層膜82において、低音響インピーダンス層と高音響インピーダンス層とが交互に積層されていればよい。音響多層膜82が、弾性波装置における音響反射部であってもよい。
 厚み滑りモードのバルク波を利用する第1~第8の実施形態及び各変形例の弾性波装置においては、上記のように、d/pが0.5以下であることが好ましく、0.24以下であることがより好ましい。それによって、より一層良好な共振特性を得ることができる。さらに、厚み滑りモードのバルク波を利用する第1~第8の実施形態及び各変形例の弾性波装置における励振領域においては、上記のように、MR≦1.75(d/p)+0.075を満たすことが好ましい。この場合には、スプリアスをより確実に抑制することができる。
 厚み滑りモードのバルク波を利用する第1~第8の実施形態及び各変形例の弾性波装置における圧電層は、ニオブ酸リチウム層またはタンタル酸リチウム層であることが好ましい。そして、該圧電層を構成しているニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、上記の式(1)、式(2)または式(3)の範囲にあることが好ましい。この場合、比帯域を十分に広くすることができる。
1…弾性波装置
2…圧電層
2a,2b…第1,第2の主面
3,4…電極
5,6…第1,第2のバスバー
7…絶縁層
7a…貫通孔
8…支持部材
8a…貫通孔
9…空洞部
10…弾性波装置
10a…空洞部
11…IDT電極
11a,11b…第1,第2の面
11c…側面
12…圧電性基板
13…支持部材
14…圧電層
14a,14b…第1,第2の主面
15…絶縁層
16…支持基板
24,25…第1,第2の質量付加膜
26,27…第1,第2のバスバー
28,29…第1,第2の電極指
33…誘電体膜
45…誘電体膜
50…フィルタ装置
52,53…第1,第2の信号端子
60…フィルタ装置
80,81…弾性波装置
82…音響多層膜
82a,82c,82e…低音響インピーダンス層
82b,82d…高音響インピーダンス層
104,105,114,115,124,125…質量付加膜
201…圧電膜
201a,201b…第1,第2の主面
451,452…第1,第2領域
C…励振領域
Ea,Eb…第1,第2のエッジ領域
F…交叉領域
Ga,Gb…第1,第2のギャップ領域
H…中央領域
P1,P2,P11~P13…並列腕共振子
S1~S3,S11~S14…直列腕共振子
VP1…仮想平面

Claims (31)

  1.  支持基板を含む支持部材と、
     前記支持部材上に設けられており、タンタル酸リチウムまたはニオブ酸リチウムからなる圧電層と、
     前記圧電層上に設けられており、1対のバスバーと、複数の電極指と、を有するIDT電極と、
    を備え、
     前記支持部材及び前記圧電層の積層方向に沿って見た平面視において、前記支持部材における、前記IDT電極の少なくとも一部と重なる位置に音響反射部が設けられており、
     前記圧電層の厚みをd、隣り合う前記電極指同士の中心間距離をpとした場合、d/pが0.5以下であり、
     前記一対のバスバーの一方のバスバーに前記複数の電極指のうち一部の電極指が接続されており、他方のバスバーに前記複数の電極指のうち残りの電極指が接続されており、前記一方のバスバーに接続されている前記一部の電極指、及び前記他方のバスバーに接続されている前記残りの電極指が互いに間挿し合っており、
     前記複数の電極指が延びる方向を電極指延伸方向、前記電極指延伸方向と直交する方向を電極指対向方向とし、前記電極指対向方向から見たときに、前記隣り合う電極指同士が重なり合う領域が交叉領域であり、前記交叉領域と前記1対のバスバーとの間に位置する領域が1対のギャップ領域であり、前記交叉領域が、中央領域と、前記中央領域を前記電極指延伸方向において挟むように配置されている1対のエッジ領域と、を有し、
     前記1対のエッジ領域のうち少なくとも一方のエッジ領域及び該エッジ領域と隣接している前記ギャップ領域にわたり設けられており、かつ前記電極指対向方向に沿って並んでいる複数の質量付加膜をさらに備え、
     前記複数の質量付加膜が、前記隣り合う電極指間の少なくとも一部に位置しないように設けられている、弾性波装置。
  2.  前記複数の質量付加膜が、一方の前記エッジ領域及び一方の前記ギャップ領域にわたり設けられている複数の第1の質量付加膜と、他方の前記エッジ領域及び他方の前記ギャップ領域にわたり設けられている複数の第2の質量付加膜と、を含む、請求項1に記載の弾性波装置。
  3.  前記複数の質量付加膜が、前記電極指と積層されている部分を有する前記質量付加膜を含み、
     前記質量付加膜及び前記電極指が積層されている部分において、前記圧電層、前記電極指及び前記質量付加膜が、前記圧電層、前記電極指及び前記質量付加膜の順序で積層されている、請求項1または2に記載の弾性波装置。
  4.  前記複数の質量付加膜が、前記電極指と積層されている部分を有する前記質量付加膜を含み、
     前記質量付加膜及び前記電極指が積層されている部分において、前記圧電層、前記質量付加膜及び前記電極指が、前記圧電層、前記質量付加膜及び前記電極指の順序で積層されている、請求項1または2に記載の弾性波装置。
  5.  前記電極指と積層されている部分を有する前記質量付加膜が、前記電極指の先端部と積層されている部分を有する、請求項3または4に記載の弾性波装置。
  6.  前記複数の質量付加膜が、平面視において、前記電極指の先端部を三方向において囲んでいる前記質量付加膜を含む、請求項1または2に記載の弾性波装置。
  7.  同じ前記エッジ領域及び前記ギャップ領域に設けられている前記複数の質量付加膜が、平面視における面積が異なる少なくとも1つの前記質量付加膜を含む、請求項1~6のいずれか1項に記載の弾性波装置。
  8.  少なくとも1つの前記質量付加膜が、前記ギャップ領域から、該ギャップ領域に隣接する前記バスバーと平面視において重なる部分に至っている、請求項1~7のいずれか1項に記載の弾性波装置。
  9.  前記ギャップ領域の前記電極指延伸方向に沿う寸法が、1μm以上である、請求項1~8のいずれか1項に記載の弾性波装置。
  10.  前記ギャップ領域の前記電極指延伸方向に沿う寸法が、2μm以上であり、前記ギャップ領域において、前記質量付加膜の前記電極指延伸方向に沿う寸法が、2μm以上である、請求項9に記載の弾性波装置。
  11.  前記圧電層上に、前記IDT電極を覆うように誘電体膜が設けられている、請求項1~10のいずれか1項に記載の弾性波装置。
  12.  前記誘電体膜及び前記質量付加膜が積層されている部分において、前記圧電層、前記質量付加膜及び前記誘電体膜が、前記圧電層、前記質量付加膜及び前記誘電体膜の順序で積層されている、請求項11に記載の弾性波装置。
  13.  前記誘電体膜及び前記質量付加膜が積層されている部分において、前記圧電層、前記誘電体膜及び前記質量付加膜が、前記圧電層、前記誘電体膜及び前記質量付加膜の順序で積層されている、請求項11に記載の弾性波装置。
  14.  前記誘電体膜が酸化ケイ素からなる、請求項11~13のいずれか1項に記載の弾性波装置。
  15.  前記質量付加膜が、酸化ケイ素、酸化タンタル、酸化ニオブ、酸化タングステン、酸化ハフニウムからなる群から選択される少なくとも1種の材料からなる、請求項1~14のいずれか1項に記載の弾性波装置。
  16.  d/pが0.24以下である、請求項1~15のいずれか1項に記載の弾性波装置。
  17.  隣り合う前記電極指同士が対向している方向から見たときに、隣り合う前記電極指が重なり合う領域であり、かつ隣り合う前記電極指同士の中心間の領域が励振領域であり、前記励振領域に対する、前記複数の電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たす、請求項1~16のいずれか1項に記載の弾性波装置。
  18.  前記圧電層を構成しているニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にある、請求項1~17のいずれか1項に記載の弾性波装置。
     (0°±10°,0°~20°,任意のψ)  …式(1)
     (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
     (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
  19.  前記音響反射部が、空洞部であり、前記支持部材の一部及び前記圧電層の一部が、前記空洞部を挟み互いに対向するように、前記支持部材と前記圧電層とが配置されている、請求項1~18のいずれか1項に記載の弾性波装置。
  20.  前記音響反射部が、相対的に音響インピーダンスが高い高音響インピーダンス層と、相対的に音響インピーダンスが低い低音響インピーダンス層と、を含む、音響反射膜であり、前記支持部材の少なくとも一部及び前記圧電層の少なくとも一部が、前記音響反射膜を挟み互いに対向するように、前記支持部材と前記圧電層とが配置されている、請求項1~18のいずれか1項に記載の弾性波装置。
  21.  前記圧電層が、回転Yカットのニオブ酸リチウムからなる、請求項1~20のいずれか1項に記載の弾性波装置。
  22.  少なくとも1つの直列腕共振子及び少なくとも1つの並列腕共振子を有するフィルタ装置であって、
     前記少なくとも1つの直列腕共振子に含まれる少なくとも1つの第1の弾性波共振子と、
     前記少なくとも1つの並列腕共振子に含まれる少なくとも1つの第2の弾性波共振子と、
    を備え、
     前記第1の弾性波共振子及び前記第2の弾性波共振子がそれぞれ、請求項1~21のいずれか1項に記載の弾性波装置であり、
     前記第2の弾性波共振子の前記複数の質量付加膜の厚みが、前記第1の弾性波共振子の前記複数の質量付加膜の厚みよりも薄い、フィルタ装置。
  23.  少なくとも1つの直列腕共振子及び少なくとも1つの並列腕共振子を有するフィルタ装置であって、
     前記少なくとも1つの直列腕共振子に含まれる少なくとも1つの第1の弾性波共振子と、
     前記少なくとも1つの並列腕共振子に含まれる少なくとも1つの第2の弾性波共振子と、
    を備え、
     前記第1の弾性波共振子及び前記第2の弾性波共振子がそれぞれ、請求項1~21のいずれか1項に記載の弾性波装置であり、
     前記第2の弾性波共振子の前記複数の質量付加膜の平面視における面積の平均値が、前記第1の弾性波共振子の前記複数の質量付加膜の平面視における面積の平均値よりも大きい、フィルタ装置。
  24.  少なくとも1つの直列腕共振子及び少なくとも1つの並列腕共振子を含む、複数の弾性波共振子を有するフィルタ装置であって、
     前記直列腕共振子及び前記並列腕共振子のうち少なくとも1つの弾性波共振子が、請求項21に記載の弾性波装置である、フィルタ装置。
  25.  前記直列腕共振子及び前記並列腕共振子が、少なくとも1つの第3の弾性波共振子と、少なくとも1つの第4の弾性波共振子と、を含み、
     前記第3の弾性波共振子が前記弾性波装置であり、
     前記第4の弾性波共振子が、前記支持部材と、回転Yカットのニオブ酸リチウムからなる前記圧電層と、前記交叉領域及び前記1対のギャップ領域を含む前記IDT電極と、を有し、かつ前記質量付加膜を有しない、請求項24に記載のフィルタ装置。
  26.  少なくとも1つの前記第3の弾性波共振子が、前記並列腕共振子であり、
     全ての前記第4の弾性波共振子が前記直列腕共振子であり、
     前記並列腕共振子である前記第3の弾性波共振子における前記ギャップ領域の前記電極指延伸方向に沿う寸法が、前記第4の弾性波共振子における前記ギャップ領域の前記電極指延伸方向に沿う寸法よりも大きい、請求項25に記載のフィルタ装置。
  27.  前記直列腕共振子及び前記並列腕共振子が、少なくとも1つの第3の弾性波共振子と、少なくとも1つの第5の弾性波共振子と、を含み、
     前記第3の弾性波共振子が前記弾性波装置であり、
     前記第5の弾性波共振子が、前記支持部材と、回転Yカットのニオブ酸リチウムからなる前記圧電層と、前記交叉領域及び前記1対のギャップ領域を含む前記IDT電極と、前記質量付加膜と、を有し、
     前記第5の弾性波共振子において、前記質量付加膜が、前記1対のギャップ領域のうち少なくとも一方のギャップ領域に設けられており、前記交叉領域に設けられておらず、かつ平面視において、前記複数の電極指と、前記電極指間の領域とに重なるように、連続的に設けられている、請求項24~26のいずれか1項に記載のフィルタ装置。
  28.  少なくとも1つの前記第3の弾性波共振子が、前記並列腕共振子であり、
     少なくとも1つの前記第5の弾性波共振子が、前記直列腕共振子であり、
     前記並列腕共振子である前記第3の弾性波共振子の前記質量付加膜の厚みが、前記直列腕共振子である前記第5の弾性波共振子の前記質量付加膜の厚みよりも厚く、
     前記並列腕共振子である前記第3の弾性波共振子における前記ギャップ領域の前記電極指延伸方向に沿う寸法が、前記直列腕共振子である前記第5の弾性波共振子における前記ギャップ領域の前記電極指延伸方向に沿う寸法以下である、請求項27に記載のフィルタ装置。
  29.  前記直列腕共振子及び前記並列腕共振子が、少なくとも1つの第3の弾性波共振子と、少なくとも1つの第6の弾性波共振子と、を含み、
     前記第3の弾性波共振子が前記弾性波装置であり、
     前記第6の弾性波共振子が、前記支持部材と、回転Yカットのニオブ酸リチウムからなる前記圧電層と、前記交叉領域及び前記1対のギャップ領域を含む前記IDT電極と、前記質量付加膜と、を有し、
     前記第6の弾性波共振子において、前記質量付加膜が、前記1対のエッジ領域のうち少なくとも一方のエッジ領域、及び該エッジ領域と隣接している前記ギャップ領域にわたり設けられており、かつ平面視において、前記複数の電極指と、前記電極指間の領域とに重なるように、連続的に設けられている、請求項24~28のいずれか1項に記載のフィルタ装置。
  30.  前記直列腕共振子及び前記並列腕共振子が、少なくとも1つの第5の弾性波共振子を含み、
     前記第5の弾性波共振子が、前記支持部材と、回転Yカットのニオブ酸リチウムからなる前記圧電層と、前記交叉領域及び前記1対のギャップ領域を含む前記IDT電極と、前記質量付加膜と、を有し、
     前記第5の弾性波共振子において、前記質量付加膜が、前記1対のギャップ領域のうち少なくとも一方のギャップ領域に設けられており、前記交叉領域に設けられておらず、かつ平面視において、前記複数の電極指と、前記電極指間の領域とに重なるように、連続的に設けられており、
     少なくとも1つの前記第5の弾性波共振子が、前記直列腕共振子であり、
     少なくとも1つの前記第6の弾性波共振子が、前記並列腕共振子であり、
     前記並列腕共振子である前記第6の弾性波共振子の前記質量付加膜の厚みが、前記直列腕共振子である前記第5の弾性波共振子の前記質量付加膜の厚みよりも薄く、
     前記並列腕共振子である前記第6の弾性波共振子における前記ギャップ領域の前記電極指延伸方向に沿う寸法が、前記直列腕共振子である前記第5の弾性波共振子における前記ギャップ領域の前記電極指延伸方向に沿う寸法以上である、請求項29に記載のフィルタ装置。
  31.  前記直列腕共振子及び前記並列腕共振子が、少なくとも1つの第5の弾性波共振子を含み、
     前記第5の弾性波共振子が、前記支持部材と、回転Yカットのニオブ酸リチウムからなる前記圧電層と、前記交叉領域及び前記1対のギャップ領域を含む前記IDT電極と、前記質量付加膜と、を有し、
     前記第5の弾性波共振子において、前記質量付加膜が、前記1対のギャップ領域のうち少なくとも一方のギャップ領域に設けられており、前記交叉領域に設けられておらず、かつ平面視において、前記複数の電極指と、前記電極指間の領域とに重なるように、連続的に設けられており、
     前記第5の弾性波共振子及び前記第6の弾性波共振子のうち少なく1つの弾性波共振子の、少なくとも1つの前記質量付加膜が、前記ギャップ領域から、該ギャップ領域に隣接する前記バスバーと平面視において重なる部分に至っている、請求項29または30に記載のフィルタ装置。
PCT/JP2023/001709 2022-01-21 2023-01-20 弾性波装置及びフィルタ装置 WO2023140354A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202263301580P 2022-01-21 2022-01-21
US63/301,580 2022-01-21
US202263401248P 2022-08-26 2022-08-26
US63/401,248 2022-08-26

Publications (1)

Publication Number Publication Date
WO2023140354A1 true WO2023140354A1 (ja) 2023-07-27

Family

ID=87348346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001709 WO2023140354A1 (ja) 2022-01-21 2023-01-20 弾性波装置及びフィルタ装置

Country Status (1)

Country Link
WO (1) WO2023140354A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178387A (ja) * 2015-03-18 2016-10-06 太陽誘電株式会社 弾性波デバイス
JP2020109957A (ja) * 2018-12-28 2020-07-16 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 横モード抑制を有する弾性波デバイス
WO2020171050A1 (ja) * 2019-02-18 2020-08-27 株式会社村田製作所 弾性波装置
WO2021013568A1 (en) * 2019-07-22 2021-01-28 RF360 Europe GmbH Electro acoustic resonator with reduced spurious modes, rf filter and multiplexer
WO2021060513A1 (ja) * 2019-09-27 2021-04-01 株式会社村田製作所 弾性波装置
WO2023002790A1 (ja) * 2021-07-21 2023-01-26 株式会社村田製作所 弾性波装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178387A (ja) * 2015-03-18 2016-10-06 太陽誘電株式会社 弾性波デバイス
JP2020109957A (ja) * 2018-12-28 2020-07-16 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 横モード抑制を有する弾性波デバイス
WO2020171050A1 (ja) * 2019-02-18 2020-08-27 株式会社村田製作所 弾性波装置
WO2021013568A1 (en) * 2019-07-22 2021-01-28 RF360 Europe GmbH Electro acoustic resonator with reduced spurious modes, rf filter and multiplexer
WO2021060513A1 (ja) * 2019-09-27 2021-04-01 株式会社村田製作所 弾性波装置
WO2023002790A1 (ja) * 2021-07-21 2023-01-26 株式会社村田製作所 弾性波装置

Similar Documents

Publication Publication Date Title
WO2023002858A1 (ja) 弾性波装置及びフィルタ装置
WO2021246447A1 (ja) 弾性波装置
WO2022044869A1 (ja) 弾性波装置
CN115349225A (zh) 弹性波装置
US20240154595A1 (en) Acoustic wave device
US20230163747A1 (en) Acoustic wave device
WO2023002790A1 (ja) 弾性波装置
WO2023140354A1 (ja) 弾性波装置及びフィルタ装置
WO2023085347A1 (ja) 弾性波装置
WO2024043347A1 (ja) 弾性波装置及びフィルタ装置
WO2023136293A1 (ja) 弾性波装置
WO2023048140A1 (ja) 弾性波装置
WO2023136291A1 (ja) 弾性波装置
WO2023048144A1 (ja) 弾性波装置
WO2023136294A1 (ja) 弾性波装置
WO2024085127A1 (ja) 弾性波装置
WO2022244635A1 (ja) 圧電バルク波装置
WO2024043346A1 (ja) 弾性波装置
WO2023190370A1 (ja) 弾性波装置
WO2022210942A1 (ja) 弾性波装置
WO2022239630A1 (ja) 圧電バルク波装置
WO2024043300A1 (ja) 弾性波装置
WO2024029610A1 (ja) 弾性波装置
WO2024043343A1 (ja) 弾性波装置
WO2024034603A1 (ja) 弾性波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743346

Country of ref document: EP

Kind code of ref document: A1