WO2023140248A1 - Method for producing lens, radiation-sensitive composition for producing lens, lens, imaging element, imaging device, display element, and display device - Google Patents

Method for producing lens, radiation-sensitive composition for producing lens, lens, imaging element, imaging device, display element, and display device Download PDF

Info

Publication number
WO2023140248A1
WO2023140248A1 PCT/JP2023/001175 JP2023001175W WO2023140248A1 WO 2023140248 A1 WO2023140248 A1 WO 2023140248A1 JP 2023001175 W JP2023001175 W JP 2023001175W WO 2023140248 A1 WO2023140248 A1 WO 2023140248A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
radiation
structural unit
polymer
lens
Prior art date
Application number
PCT/JP2023/001175
Other languages
French (fr)
Japanese (ja)
Inventor
信司 松村
光弘 和田
仁 浜口
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2023140248A1 publication Critical patent/WO2023140248A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • TECHNICAL FIELD The present disclosure relates to a lens manufacturing method, a radiation-sensitive composition for lens manufacturing, a lens, an imaging device, an imaging device, a display device, and a display device.
  • CMOS Complementary Metal-Oxide-Semiconductor
  • image sensors such as CCD (Charge-Coupled Device) image sensors and CMOS (Complementary Metal-Oxide-Semiconductor) image sensors are used as solid-state imaging devices in imaging devices such as cameras.
  • minute condensing lenses hereinafter also referred to as “microlenses” are regularly arranged in order to collect light on a light receiving element (photodiode) and improve sensor sensitivity.
  • a display device such as an organic electroluminescence (organic EL) device, a structure in which a microlens is provided on the light emission side of each pixel is adopted in order to improve the light extraction efficiency.
  • organic EL organic electroluminescence
  • a thermal flow method is known in which a pattern corresponding to the microlenses is formed on the upper part of the light receiving element or the light emitting element with a radiation-sensitive composition, and then heat-treated to make it fluid, thereby forming a hemispherical microlens array (see, for example, Patent Document 1).
  • the radiation-sensitive composition used to form the microlens pattern is required to have high radiation sensitivity and to be able to produce microlenses with high chemical resistance and transparency.
  • a wide temperature range hereinafter also referred to as "flow margin" in which a favorable microlens pattern can be formed is required.
  • the present disclosure has been made in view of the above problems, and the main purpose thereof is to provide a lens manufacturing method and a radiation-sensitive composition for lens manufacturing that can obtain a lens that has high radiation sensitivity, a wide flow margin, and excellent chemical resistance and transparency.
  • lens manufacturing method radiation-sensitive composition for lens manufacturing, lens, imaging device, imaging device, display device, and display device are provided.
  • a radiation-sensitive composition for manufacturing lenses containing a polymer (A), a radiation-sensitive acid generator (B), and a solvent (C), wherein the polymer (A) contains, in the same molecule or in different molecules, a structural unit (a1) having a hydroxyl group bonded to an aromatic ring and a structural unit (a2) in which an acid-dissociable group is eliminated by the action of an acid to generate a carboxy group.
  • An imaging device comprising the lens of [3] above.
  • An imaging device comprising the imaging element of [4] above.
  • a display device comprising the lens of [3] above.
  • a display device comprising the display element of [6] above.
  • a coating film is formed on a substrate using the radiation-sensitive composition containing the polymer (A), the radiation-sensitive acid generator (B), and the solvent (C), exposed, developed, and then exposed and heated to form a lens with a wide flow margin and high chemical resistance and transparency.
  • the radiation-sensitive composition for manufacturing lenses of the present disclosure has high sensitivity to radiation, and can form lenses of good shape with a small irradiation dose.
  • a “structural unit” is a unit that mainly constitutes a main chain structure, and refers to a structural unit of a chemical structure that includes at least two units in the main chain structure.
  • the manufacturing method of the present disclosure manufactures a lens (hereinafter also referred to as a "microlens") that is a microscopic condensing body provided in a solid-state imaging device (e.g., CCD image sensor, CMOS image sensor) or a display device (e.g., organic EL device or liquid crystal display device), and more specifically, it is based on the thermal flow method.
  • a lens hereinafter also referred to as a "microlens”
  • a microscopic condensing body provided in a solid-state imaging device (e.g., CCD image sensor, CMOS image sensor) or a display device (e.g., organic EL device or liquid crystal display device)
  • the manufacturing method of the present disclosure includes the following steps (I) to (V).
  • Step of applying a radiation-sensitive composition for lens manufacturing onto a substrate to form a coating film (II) Step of irradiating a part of the coating film with radiation to generate acid in the exposed area (first exposure step) (III) A step of developing the coating film irradiated with radiation to form a pattern on the substrate (IV) A step of irradiating the pattern obtained in the above step (III) with radiation (second exposure step) (V) A step of forming a lens on a substrate by heating the pattern after irradiating the pattern with radiation in the above step (IV).
  • the radiation-sensitive composition for lens manufacturing used in the manufacturing method of the present disclosure will be described, and then each step included in the manufacturing method of the present disclosure will be described.
  • the radiation-sensitive composition for manufacturing lenses of the present disclosure contains a polymer (A), a radiation-sensitive acid generator (B), and a solvent (C). Unless otherwise specified, each component may be used singly or in combination of two or more.
  • hydrocarbon group as used herein means a chain hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group.
  • a “chain hydrocarbon group” means a straight chain hydrocarbon group or a branched hydrocarbon group that does not contain a cyclic structure in its main chain and is composed only of a chain structure. However, the chain hydrocarbon group may be saturated or unsaturated.
  • the “alicyclic hydrocarbon group” means a hydrocarbon group containing only an alicyclic hydrocarbon structure as a ring structure and not containing an aromatic ring structure. However, the alicyclic hydrocarbon group does not have to consist only of an alicyclic hydrocarbon structure, and may partially have a chain structure.
  • aromatic hydrocarbon group means a hydrocarbon group containing an aromatic ring structure as a ring structure.
  • the aromatic hydrocarbon group does not need to consist only of an aromatic ring structure, and may partially contain a chain structure or an alicyclic hydrocarbon structure.
  • the ring structure which the alicyclic hydrocarbon group and the aromatic hydrocarbon group have may have a substituent consisting of a hydrocarbon structure.
  • (meth)acryl means to include “acryl” and “methacryl”.
  • (Meth)acryloyl group means to include “acryloyl group” and “methacryloyl group”.
  • oxiranyl group and oxetanyl group are also referred to as "epoxy group”.
  • the polymer (A) contains one or both of a structural unit (a1) having a hydroxyl group bonded to an aromatic ring and a structural unit (a2) from which an acid-dissociable group is eliminated by the action of an acid to form a carboxy group.
  • the polymer (A) contains the structural unit (a1) and the structural unit (a2) within the same molecule or within different molecules.
  • the polymer (A) may be composed of one type of polymer, or may be composed of two or more types of polymers.
  • the polymer (A) include the following (I) and (II).
  • (I) A polymer having a structural unit (a1) and a structural unit (a2) in one molecule.
  • (II) A mixture of a first polymer having the structural unit (a1) and a second polymer having the structural unit (a2) and different from the first polymer.
  • the present composition preferably contains, as the polymer (A), a polymer having the structural unit (a1) and the structural unit (a2) in the same molecule, in order to obtain the effect of improving the sensitivity and wide flow margin of the present composition and the chemical resistance of the resulting cured product while minimizing the number of components constituting the present composition.
  • ⁇ Structural unit (a1) By including the structural unit (a1) in the polymer (A), it is possible to increase the solubility (alkali solubility) of the polymer (A) in an alkaline developer and enhance the curing reactivity while ensuring the transparency of the microlens formed from the present composition.
  • alkali-soluble means soluble in an alkaline aqueous solution such as a 2.38% by mass concentration tetramethylammonium hydroxide aqueous solution at room temperature.
  • Examples of the aromatic ring that the structural unit (a1) has include a benzene ring, a naphthalene ring, an anthracene ring, and the like. Among these, a benzene ring or a naphthalene ring is preferred, and a benzene ring is more preferred, from the viewpoint of the permeability of the resulting cured product.
  • the number of hydroxyl groups bonded to the aromatic ring in the structural unit (a1) is not particularly limited. The number of hydroxyl groups bonded to the aromatic ring is preferably 1 to 3, more preferably 1 or 2. A substituent other than a hydroxyl group may be introduced into the aromatic ring of the structural unit (a1).
  • substituents examples include halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl groups having 1 to 4 carbon atoms, alkoxy groups having 1 to 4 carbon atoms, fluorinated alkyl groups having 1 to 4 carbon atoms, and the like.
  • the structural unit (a1) is preferably a structural unit derived from a monomer (hereinafter also referred to as "monomer (M1)") having a structure in which a hydroxyl group is bound to an aromatic ring and a polymerizable unsaturated bond. At least one selected from the group consisting of a (meth)acrylate compound, a (meth)acrylamide compound, a compound having a styrene structure, and a compound having a maleimide structure is preferred as the monomer (M1) in terms of obtaining good patterning properties and resolution.
  • the structural unit (a1) is preferably a structural unit derived from at least one selected from the group consisting of compounds represented by the following formula (a1-1) and compounds represented by the following formula (a1-2).
  • R 4 is a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms or a fluorinated alkyl group having 1 to 4 carbon atoms.
  • n1 is an integer of 0-4.
  • halogen atoms represented by R 1 , R 3 and R 4 include fluorine, chlorine, bromine and iodine atoms.
  • the alkyl group having 1 to 4 carbon atoms may be linear or branched and includes, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group and tert-butyl group.
  • alkoxy group having 1 to 4 carbon atoms include groups in which each group exemplified as the alkyl group having 1 to 4 carbon atoms is bonded to an oxygen atom.
  • Examples of the fluorinated alkyl group having 1 to 4 carbon atoms include groups in which at least one hydrogen atom in each group exemplified as the alkyl group having 1 to 4 carbon atoms is substituted with a fluorine atom.
  • R 1 is preferably a hydrogen atom or a methyl group from the viewpoint of copolymerizability of the monomer that gives the structural unit (a1).
  • Each of m1 and n1 is preferably 0 to 2, more preferably 0 or 1.
  • R A1 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or a fluorinated alkyl group having 1 to 4 carbon atoms.
  • the content of the structural unit (a1) is preferably 10 mol% or more, more preferably 15 mol% or more, and even more preferably 25 mol% or more, based on the total structural units constituting the polymer (A), from the viewpoint of imparting good solubility to the polymer (A) in an alkaline developer.
  • the content of the structural unit (a1) is too high, the difference in solubility in an alkaline developer between the exposed and unexposed areas may become small, making it difficult to obtain a good pattern shape.
  • the content of the structural unit (a1) is preferably 90 mol% or less, more preferably 85 mol% or less, and even more preferably 80 mol% or less, relative to all structural units constituting the polymer (A).
  • the content ratio of the structural unit (a1) refers to the total amount of the structural units (a1) in the two or more types of polymers constituting the polymer (A) (the same applies to the following structural units).
  • Structural unit (a2) is a structural unit from which an acid dissociable group is eliminated by an acid generated by irradiating the present composition with radiation to form a carboxy group.
  • the structural unit (a2) in the polymer (A) By including the structural unit (a2) in the polymer (A), the solubility of the polymer (A) in a developer can be changed by exposure to radiation. Thereby, a cured product having a pattern formed thereon can be obtained.
  • the "acid-dissociable group” is a group that substitutes a hydrogen atom of an acid group such as a carboxyl group, and is dissociated by the action of an acid.
  • Examples of monomers constituting the structural unit (a2) include structural units derived from protected unsaturated carboxylic acids.
  • unsaturated carboxylic acids include unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated acid anhydrides, and unsaturated polyvalent carboxylic acids.
  • unsaturated monocarboxylic acids such as (meth)acrylic acid, crotonic acid, ⁇ -chloroacrylic acid, cinnamic acid, 2-(meth)acryloyloxyethyl-succinic acid, 2-(meth)acryloyloxyethylhexahydrophthalic acid, 2-(meth)acryloyloxyethyl-phthalic acid, (meth)acrylic acid-2-carboxyethyl ester, and 4-vinylbenzoic acid.
  • Unsaturated dicarboxylic acids include maleic acid, fumaric acid, itaconic acid, citraconic acid and the like.
  • unsaturated acid anhydrides include maleic anhydride, itaconic anhydride, and citraconic anhydride.
  • unsaturated polycarboxylic acids include ⁇ -carboxypolycaprolactone mono(meth)acrylate and the like.
  • Examples of the acid-dissociable group possessed by the structural unit (a2) include a tertiary alkyl group, an acetal-based functional group, a tertiary alkyl carbonate group, and the like. Among these, a tertiary alkyl group or an acetal functional group is preferable because it is easily dissociated by an acid.
  • the post-exposure bake (PEB) step can be omitted, and the steps can be simplified.
  • the PEB process is a heating process performed after the exposure in the process (II) and before the development in the process (III), and is preferably performed at a lower temperature than the heat treatment in the process (V).
  • Structural unit (a2) is preferably a structural unit derived from a monomer (hereinafter also referred to as "monomer (M2)") having a structure in which an acid-labile group is eliminated to form a carboxyl group by an acid and a polymerizable unsaturated bond.
  • the structural unit (a2) is preferably a structural unit derived from at least one selected from the group consisting of a compound represented by the following formula (a2-1) and a compound represented by the following formula (a2-2), since it has high solubility in an alkaline developer and can reduce development residue.
  • R 10 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or a fluorinated alkyl group having 1 to 4 carbon atoms.
  • R 16 is a substituted or unsubstituted divalent hydrocarbon group.
  • R12 is a hydrogen atom or a monovalent aliphatic hydrocarbon group.
  • R 13 and R 14 represent a cyclic ether structure in which R 13 is a monovalent aliphatic hydrocarbon group and R 14 is a monovalent aliphatic hydrocarbon group, an aralkyl group or a substituted aralkyl group, or R 13 and R 14 are combined with each other and composed together with the carbon atom to which R 13 is attached and the oxygen atom to which R 14 is attached.
  • R 5 and R 10 in formulas (a2-1) and (a2-2) include the groups exemplified for R 1 .
  • R 5 and R 10 are preferably a hydrogen atom or a methyl group from the viewpoint of copolymerizability of the monomer that gives the structural unit (a2).
  • the divalent hydrocarbon group represented by R 15 and R 16 includes an alkanediyl group having 1 to 5 carbon atoms, a cycloalkanediyl group having 3 to 10 carbon atoms, and a phenylene group.
  • substituents introduced into the phenylene groups when R 6 and R 11 are substituted phenylene groups, and substituents when R 15 and R 16 have substituents include halogen atoms, alkyl groups having 1 to 4 carbon atoms, alkoxy groups having 1 to 4 carbon atoms, fluorinated alkyl groups having 1 to 4 carbon atoms, and the like. Specific examples thereof include the groups exemplified in the description of R 1 .
  • Examples of monovalent aliphatic hydrocarbon groups represented by R 7 to R 9 in formula (a2-1) and R 12 to R 14 in formula (a2-2) include monovalent alkyl groups having 1 to 10 carbon atoms and monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may be linear or branched.
  • Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n-hexyl group, n-heptyl group and the like.
  • the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms includes a group obtained by removing one hydrogen atom from a monocyclic or polycyclic saturated alicyclic hydrocarbon.
  • saturated alicyclic hydrocarbons include monocyclic alicyclic hydrocarbons such as cyclopentane, cyclohexane, cycloheptane and cyclooctane.
  • Polycyclic alicyclic hydrocarbons include bicyclo[2.2.1]heptane (norbornane), bicyclo[2.2.2]octane, tricyclo[3.3.1.1 3,7 ]decane (adamantane)tetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodecane and the like.
  • the substituted or unsubstituted aralkyl group represented by R 14 includes an aralkyl group having 7 to 20 carbon atoms, and a group in which at least one hydrogen atom of the aralkyl group is substituted with a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a fluorinated alkyl group having 1 to 4 carbon atoms.
  • aralkyl groups include benzyl, phenethyl, naphthylmethyl, anthrylmethyl, and methylphenylmethyl groups.
  • the alicyclic structure in which R 8 and R 9 are combined with each other and formed together with the carbon atoms to which R 8 and R 9 are bonded includes a group in which two hydrogen atoms are removed from the same carbon atom constituting a monocyclic or polycyclic alicyclic hydrocarbon having 3 to 20 carbon atoms (hereinafter also referred to as a "divalent alicyclic group").
  • the divalent alicyclic group is a polycyclic hydrocarbon group
  • the polycyclic hydrocarbon group may be either a bridged alicyclic hydrocarbon group or a condensed alicyclic hydrocarbon group.
  • the condensed alicyclic hydrocarbon group is a polycyclic alicyclic hydrocarbon group in which a plurality of aliphatic rings share a side (a bond between two adjacent carbon atoms).
  • a bridged alicyclic hydrocarbon group refers to a polycyclic alicyclic hydrocarbon group in which two carbon atoms that are not adjacent to each other among the carbon atoms constituting an alicyclic ring are linked by a linking chain containing one or more carbon atoms.
  • the divalent alicyclic group is preferably made up of a saturated hydrocarbon in order to increase the solubility of the exposed area in an alkaline developer.
  • monocyclic alicyclic hydrocarbon groups include a cyclopentanediyl group, a cyclohexanediyl group, a cycloheptanediyl group and a cyclooctanediyl group.
  • the polycyclic alicyclic hydrocarbon group is preferably a bridged alicyclic saturated hydrocarbon group, preferably a bicyclo[2.2.1]heptane-2,2-diyl group, a bicyclo[2.2.2]octane-2,2-diyl group or a tricyclo[3.3.1.1 3,7 ]decane-2,2-diyl group.
  • R 8 and R 9 is an alkyl group having 1 to 8 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms, or R 8 and R 9 are aligned with each other and R 8 and R 9 preferably represents a monocyclic or polycyclic alicyclic structure having 3 to 12 carbon atoms formed together with the carbon atoms to which R 8 and R 9 are aligned with each other and R 8 and R 9 more preferably represents a monocyclic saturated alicyclic structure composed of the carbon atoms to which is attached.
  • the cyclic ether structure formed by combining R 13 and R 14 preferably has 5 or more ring members, more preferably 5 to 12 ring members. Specific examples include a tetrahydrofuran ring structure, a tetrahydropyran ring structure, and the like.
  • R 12 is preferably a hydrogen atom, a methyl group or an ethyl group, more preferably a hydrogen atom, because it is easily dissociated by an acid.
  • R A1 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or a fluorinated alkyl group having 1 to 4 carbon atoms.
  • R A1 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or a fluorinated alkyl group having 1 to 4 carbon atoms.
  • the content of the structural unit (a2) is preferably 5 mol% or more, more preferably 10 mol% or more, still more preferably 15 mol% or more, and even more preferably 20 mol% or more, relative to the total structural units constituting the polymer (A).
  • the content of the structural unit (a2) is preferably 60 mol% or less, more preferably 55 mol% or less, and even more preferably 50 mol% or less, relative to all structural units constituting the polymer (A).
  • the total content of the structural unit (a1) and the structural unit (a2) in the polymer (A) is preferably 50 mol% or more, more preferably 55 mol% or more, still more preferably 60 mol% or more, still more preferably 65 mol% or more, and even more preferably 70 mol% or more, relative to the total structural units constituting the polymer (A).
  • the total content of the structural unit (a1) and the structural unit (a2) in the polymer (A) is within the above range, the sensitivity to radiation and a wide flow margin of the present composition can be sufficiently ensured, and the effect of improving the chemical resistance of the obtained cured product can be sufficiently obtained.
  • the polymer (A) may further contain a structural unit different from the structural unit (a1) and the structural unit (a2) (hereinafter also referred to as "another structural unit") together with the structural unit (a1) and the structural unit (a2).
  • structural unit (a3) Other structural units include, for example, structural units having an oxetanyl group or an oxiranyl group (hereinafter also referred to as “structural unit (a3)").
  • Structural unit (a3) is not particularly limited as long as it has an epoxy group.
  • the structural unit (a3) include a structural unit derived from a monomer having a polymerizable carbon-carbon unsaturated bond and an epoxy group (hereinafter also referred to as "monomer (M3)").
  • Specific examples of the structural unit (a3) include structural units represented by the following formula (3).
  • R 31 is a monovalent group having an oxetane structure or an oxirane structure.
  • R 32 is a hydrogen atom or a methyl group.
  • X 3 is a single bond or a divalent linking group.
  • R 31 includes an oxiranyl group, an oxetanyl group, a 3,4-epoxycyclohexyl group, a 3,4-epoxytricyclo[5.2.1.0 2,6 ]decyl group, a 3-ethyloxetanyl group and the like.
  • R 31 is preferably a monovalent group having an oxirane structure in terms of high photoreactivity.
  • Examples of the divalent linking group for X3 include alkanediyl groups such as methylene group, ethylene group and 1,3-propanediyl group.
  • the third monomer examples include glycidyl (meth)acrylate, 3,4-epoxycyclohexyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, 2-(3,4-epoxycyclohexyl)ethyl (meth)acrylate, 3,4-epoxytricyclo[5.2.1.0 2,6 ] Decyl (meth)acrylate, (3-methyloxetan-3-yl)methyl (meth)acrylate, (3-ethyloxetan-3-yl) (meth)acrylate, (oxetan-3-yl)methyl (meth)acrylate, (3-ethyloxetan-3-yl)methyl (meth)acrylate and the like.
  • the epoxy group possessed by the structural unit (a3) acts as a crosslinkable group, thereby improving the resolution of the film obtained using this composition and the chemical resistance of the cured product.
  • the polymer (A) contains the structural unit (a3), sufficient acid cannot be generated in the exposed area in the exposure step before development, and as a result, there is concern that the radiation sensitivity of the present composition may decrease, or the pattern formability may decrease. Therefore, it is preferable that the polymer (A) does not contain the structural unit (a3), or if it contains the structural unit (a3), the content thereof is relatively small.
  • the content of the structural unit (a3) in the polymer (A) is preferably 0 mol% or more and 15 mol% or less, more preferably 0 mol% or more and 10 mol% or less, still more preferably 0 mol% or more and 5 mol% or less, and even more preferably 0 mol% or more and 1 mol% or less, relative to the total structural units constituting the polymer (A).
  • the content ratio of the structural unit (a3) is preferably 0 mol% or more and 15 mol% or less, more preferably 0 mol% or more and 10 mol% or less, still more preferably 0 mol% or more and 5 mol% or less, and even more preferably 0 mol% or more and 1 mol% or less, relative to the total structural units constituting the polymer (A).
  • monomers that make up other structural units include (meth)acrylic acid alkyl esters, (meth)acrylic acid esters having an alicyclic structure, (meth)acrylic acid esters having an aromatic ring structure, aromatic vinyl compounds, N-substituted maleimide compounds, monomers having a hydroxyl group (excluding phenolic hydroxyl groups), monomers having a cyclic ether structure (excluding an oxirane structure and an oxetane structure), and monomers having a cyclic carbonate structure.
  • a body etc. are mentioned.
  • alkyl (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-lauryl (meth)acrylate, and n-stearyl (meth)acrylate.
  • the alkyl group constituting the alkyl ester portion preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, from the viewpoint of ensuring the heat resistance of the polymer (A).
  • Examples of (meth)acrylic esters having an alicyclic structure include cyclohexyl (meth)acrylate, 2-methylcyclohexyl (meth)acrylate, tricyclo[5.2.1.0 2,6 ]decane-8-yl (meth)acrylate, tricyclo[5.2.1.0 2,5 ]decane-8-yloxyethyl (meth)acrylate, and isobornyl (meth)acrylate.
  • Examples of (meth)acrylic acid esters having an aromatic ring structure include phenyl (meth)acrylate, benzyl (meth)acrylate, naphthylmethyl (meth)acrylate, naphthylethyl (meth)acrylate, phenoxyethyl (meth)acrylate, m-phenoxyphenylmethyl (meth)acrylate, and o-phenylphenoxyethyl (meth)acrylate.
  • Aromatic vinyl compounds include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 5-t-butyl-2-methylstyrene, divinylbenzene, trivinylbenzene, t-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl)dimethylaminoethyl ether, N,N-dimethylaminoethylstyrene, N,N-dimethylaminomethylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2-t-butylstyrene, 3-t-butylstyrene, 4-t-butylstyrene, vinyln
  • N-substituted maleimide compounds include N-cyclohexylmaleimide, N-cyclopentylmaleimide, N-(2-methylcyclohexyl)maleimide, N-(4-methylcyclohexyl)maleimide, N-(4-ethylcyclohexyl)maleimide, N-(2,6-dimethylcyclohexyl)maleimide, N-norbornylmaleimide, N-tricyclodecylmaleimide, N-adamantylmaleimide, N-phenylmaleimide, N-(2-methylphenyl)maleimide, N-(4-methylphenyl)maleimide, N-(4-ethylphenyl)maleimide, N-(2,6-dimethylphenyl)maleimide, N-benzylmaleimide, N-naphthylmaleimide and the like.
  • Monomers having hydroxyl groups include hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 5-hydroxypentyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, glycerol mono(meth)acrylate, N-(hydroxymethyl)methyl Reimide, N-(2-hydroxyethyl)maleimide, N-(3-hydroxypropyl)maleimide and the like.
  • Monomers having a cyclic ether structure include tetrahydrofurfuryl (meth)acrylate, tetrahydropyranyl (meth)acrylate, 5-ethyl-1,3-dioxan-5-ylmethyl (meth)acrylate, -1,3-dioxan-5-ylmethyl (meth)acrylate, 5-methyl-1,3-dioxan-5-ylmethyl (meth)acrylate, and (2-methyl-2(meth)acrylate).
  • Monomers constituting other structural units further include unsaturated dicarboxylic acid dialkyl ester compounds such as diethyl itaconate; conjugated diene compounds such as 1,3-butadiene and isoprene; nitrogen-containing vinyl compounds such as (meth)acrylonitrile and (meth)acrylamide; vinyl chloride, vinylidene chloride, vinyl acetate, and the like.
  • the content ratio of other structural units can be appropriately set within a range that does not impair the effects of the present disclosure.
  • the content of other structural units can be, for example, 0 mol% or more and 45 mol% or less, preferably 40 mol% or less, more preferably 35 mol% or less, and still more preferably 30 mol% or less, relative to all structural units constituting the polymer (A).
  • the content ratio of each structural unit is usually equivalent to the ratio of the monomers used when producing the polymer (A).
  • At least one monomer selected from the group consisting of (meth)acrylic acid alkyl esters, (meth)acrylic acid esters having an alicyclic structure, and (meth)acrylic acid esters having an aromatic ring structure can be preferably used as the monomer constituting the other structural units, in that it can improve the solubility in an alkaline developer, wide the flow margin, and adjust the chemical resistance of the resulting cured product in a well-balanced manner.
  • the content of structural units derived from (meth)acrylic ester is, for example, 0 mol% or more and 45 mol% or less, more preferably 40 mol% or less, still more preferably 35 mol% or less, and even more preferably 30 mol% or less, relative to all structural units constituting the polymer (A).
  • the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) is preferably 2000 or more.
  • Mw is 2000 or more, it is preferable in that a cured product having sufficiently high heat resistance and chemical resistance and good developability can be obtained.
  • Mw is more preferably 5000 or more, still more preferably 6000 or more.
  • Mw is preferably 50,000 or less, more preferably 30,000 or less, even more preferably 20,000 or less, and even more preferably 18,000 or less, from the viewpoint of improving film formability.
  • the molecular weight distribution (Mw/Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 4.0 or less, more preferably 3.0 or less.
  • Mw and Mw/Mn of each polymer respectively satisfy the above ranges.
  • the content of the polymer (A) is preferably 20% by mass or more, more preferably 40% by mass or more, and even more preferably 50% by mass or more, relative to the total amount of solids contained in the present composition (that is, the total mass of components other than the solvent (C) in the radiation-sensitive composition). Moreover, the content of the polymer (A) is preferably 99% by mass or less, more preferably 97% by mass or less, relative to the total amount of solids contained in the present composition.
  • the method for synthesizing the polymer (A) is not particularly limited.
  • Polymer (A) for example, using a monomer capable of introducing each structural unit described above, in a suitable polymerization solvent, in the presence of a polymerization initiator, etc., according to a known method such as radical polymerization It can be produced.
  • the polymerization initiator used includes azo compounds such as 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), and 2,2'-azobis(isobutyrate) dimethyl.
  • the proportion of the polymerization initiator used is preferably 0.01 to 30 parts by mass with respect to 100 parts by mass of the total amount of monomers used in the reaction.
  • the polymerization solvent include organic solvents such as alcohols, ethers, ketones, esters and hydrocarbons.
  • the reaction temperature is usually 30°C to 180°C.
  • the reaction time varies depending on the type of polymerization initiator and monomers and the reaction temperature, but is usually 0.5 to 10 hours.
  • the amount of the polymerization solvent used is preferably such that the total amount of the monomers used in the reaction is 0.1 to 60% by mass with respect to the total amount of the reaction solution.
  • the polymer obtained by the polymerization reaction can be isolated using a known isolation method such as, for example, pouring the reaction solution into a large amount of poor solvent, drying the resulting precipitate under reduced pressure, or distilling off the reaction solution under reduced pressure using an evaporator.
  • the radiation-sensitive acid generator (B) (hereinafter also simply referred to as "acid generator (B)") contained in the present composition may be any substance that generates an acid upon exposure to radiation and eliminates the acid-dissociable groups of the components of the composition. Specifically, a compound that responds to radiation with a wavelength of 300 nm or more (preferably 300 to 450 nm) and generates an acid can be preferably used. When an acid generator (B) that does not directly respond to radiation with a wavelength of 300 nm or longer is used, it may be used in combination with a sensitizer so that it responds to radiation with a wavelength of 300 nm or longer and generates an acid.
  • the acid generator (B) may further generate an acid by heating.
  • an acid-generating compound having an acid dissociation constant (pKa) of 4.0 or less can be preferably used as the acid generator (B).
  • pKa acid dissociation constant
  • radiation is a concept including visible light, ultraviolet light, deep ultraviolet light, X-rays and charged particle beams.
  • a known compound that generates an acid in response to radiation can be used as the acid generator (B).
  • the acid generator (B) include, for example, oxime sulfonate compounds, sulfonimide compounds, onium salts, halogen-containing compounds (trichloromethyl-s-triazine compounds, etc.), diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, carboxylic acid ester compounds, and the like.
  • oxime sulfonate compounds such as (5-propylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile, (5-octylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile, (camphorsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile, (5 -p-toluenesulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile, (2-[2-(4-methylphenylsulfonyloxyimino)]-2,3-dihydrothiophen-3-ylidene]-2-(2-methylphenyl)acetonitrile), 2-(octyloxyimino)]
  • sulfonimide compounds include N-(trifluoromethylsulfonyloxy)succinimide, N-(camphorsulfonyloxy)succinimide, N-(4-methylphenylsulfonyloxy)succinimide, N-(2-trifluoromethylphenylsulfonyloxy)succinimide, N-(4-fluorophenylsulfonyloxy)succinimide, N-(trifluoromethylsulfonyloxy)phthalimide, N-(camphorsulfonyloxy)phthalimide, N-(2 -trifluoromethylphenylsulfonyloxy)phthalimide, N-(2-fluorophenylsulfonyloxy)phthalimide, N-(trifluoromethylsulfonyloxy)diphenylmaleimide, N-(camphorsulfonyloxy)diphenylmaleimide,
  • Onium salts include diphenyliodonium salts, triphenylsulfonium salts, sulfonium salts, quaternary ammonium salts, benzothiazonium salts, tetrahydrothiophenium salts and the like.
  • diphenyliodonium salts such as diphenyliodonium tetrafluoroborate and diphenyliodonium hexafluorophosphonate
  • triphenylsulfonium salts such as triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium camphorsulfonate, triphenylsulfonium tetrafluoroborate, triphenylsulfonium trifluoroacetate, triphenylsulfonium-p-toluenesulfonate, and triphenylsulfonium butyltris(2,6-difluorophenyl)borate.
  • sulfonium salts include benzylsulfonium salts, dibenzylsulfonium salts, substituted benzylsulfonium salts, and the like.
  • alkylsulfonium salts include alkylsulfonium salts such as 4-acetoxyphenyldimethylsulfonium hexafluoroantimonate and 4-acetoxyphenyldimethylsulfonium hexafluoroarsenate; benzylsulfonium salts such as benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate and benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate; dibenzylsulfonium salts such as dibenzyl-4-hydroxyphenylsulfonium hexafluoroantimonate and dibenzyl-4-hydroxyphenylsulfonium hexafluor
  • benzothiazonium salts include 3-benzylbenzothiazonium hexafluoroantimonate, 3-benzylbenzothiazonium hexafluorophosphate, 3-benzylbenzothiazonium tetrafluoroborate, 3-(p-methoxybenzyl)benzothiazonium hexafluoroantimonate, 3-benzyl-2-methylthiobenzothiazonium hexafluoroantimonate, 3-benzyl-5-chlorobenzothiazonium hexafluoroantimonate, and the like.
  • tetrahydrothiophenium salts examples include 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate, 4,7-di-n-butoxynaphthyltetrahydrothiophenium-10-camphorsulfonate, and the like.
  • the onium salt the onium salts described in JP-A-2014-174235, JP-A-2016-87486, JP-A-2014-157252, JP-A-2015-18131, etc. can also be used as the acid generator (B).
  • oxime sulfonate compound examples include compounds described in paragraphs 0078 to 0106 of JP-A-2014-157252, compounds described in International Publication No. 2016/124493, and the like.
  • the acid generator (B) a compound known as an ionic photoacid-generating type or nonionic photoacid-generating type cationic polymerization initiator can also be used.
  • at least one selected from the group consisting of oxime sulfonate compounds, sulfonimide compounds and onium salts can be preferably used as the acid generator (B).
  • the content of the acid generator (B) is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and even more preferably 2 parts by mass or more, relative to 100 parts by mass of the polymer (A).
  • the content of the acid generator (B) is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and even more preferably 10 parts by mass or less, relative to 100 parts by mass of the polymer (A).
  • the amount of acid participating in the reaction with the polymer (A) can be increased in the step (V), and a lens with excellent heat resistance and chemical resistance can be obtained.
  • the content of the acid generator (B) is 30 parts by mass or less, the amount of the unreacted acid generator (B) in the radiation-irradiated portion can be sufficiently reduced during the development process, and deterioration in developability due to the remaining acid generator (B) can be suppressed.
  • the present composition is a liquid composition in which the polymer (A), the acid generator (B), and other optional ingredients are preferably dissolved or dispersed in the solvent (C).
  • the solvent (C) an organic solvent that dissolves each component blended in the present composition and that does not react with each component is preferred.
  • the solvent (C) include alcohols such as methanol, ethanol, isopropanol, butanol, and octanol; Ethers such as methylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether; Amides such as dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene.
  • Alcohols such as methanol, ethanol, isopropanol, butanol, and octanol
  • Ethers such as methylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether
  • Amides such as
  • the solvent (C) preferably contains at least one selected from the group consisting of ethers and esters, and more preferably at least one selected from the group consisting of ethylene glycol alkyl ether acetate, diethylene glycols, propylene glycol monoalkyl ether, and propylene glycol monoalkyl ether acetate.
  • the present composition may further contain components other than these (hereinafter also referred to as "other components").
  • Other components include a nitrogen-containing basic compound (D), a polyfunctional reactive compound (E), a surfactant, an adhesion aid, and the like.
  • Nitrogen-containing basic compound (D) The nitrogen-containing basic compound (D) (hereinafter also simply referred to as “basic compound (D)”) is blended into the present composition as an acid diffusion control agent that controls the diffusion length of the acid generated from the acid generator (B) upon exposure.
  • basic compound (D) By including the nitrogen-containing basic compound (D) in the present composition, the diffusion length of the acid can be appropriately controlled, and the pattern shape can be improved.
  • the nitrogen-containing basic compound (D) for example, it can be arbitrarily selected from compounds used as acid diffusion control agents in chemically amplified resists.
  • examples of the nitrogen-containing basic compound (D) include fatty acid amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, carboxylic acid quaternary ammonium salts, and the like.
  • Specific examples of the nitrogen-containing basic compound (D) include compounds described in paragraphs 0128 to 0147 of JP-A-2011-232632. At least one selected from the group consisting of aromatic amines and heterocyclic amines can be preferably used as the nitrogen-containing basic compound (D).
  • aromatic amines and heterocyclic amines include aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N,N-dimethylaniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, ethylaniline, propylaniline, trimethylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 2,6-dinitroaniline, 3,5-dinitroaniline, N, Aniline derivatives such as N-dimethyltoluidine; imidazole, 4-methylimidazole, 4-methyl-2-phenylimidazole, benzimidazole, 2-phenylbenzimidazole, triphenylimidazole, Nt-butoxycarbonyl-2-phenylbenzimidazole derivatives; pyrrole, 2H-pyrrole, 1-methylpyrrole, 2,4-dimethylpyrrole, 2,5-dimethylpyrrole, N-
  • the content ratio thereof is preferably 0.005 parts by mass or more, more preferably 0.01 part by mass or more, relative to 100 parts by mass of the polymer (A), from the viewpoint of sufficiently improving the pattern forming ability of the composition by blending the nitrogen-containing basic compound (D).
  • the content of the nitrogen-containing basic compound (D) is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, relative to 100 parts by mass of the polymer (A).
  • the polyfunctional reactive compound (E) (hereinafter also simply referred to as "reactive compound (E)") is a compound having two or more functional groups capable of reacting with the polymer (A) upon stimulation (preferably heat).
  • reactive compound (E) is a compound having two or more functional groups capable of reacting with the polymer (A) upon stimulation (preferably heat).
  • the flow margin can be widened, and the chemical resistance of the obtained cured product can be further improved.
  • the reactive compound (E) is a component different from the polymer (A).
  • the functional group possessed by the reactive compound (E) is preferably a group that reacts with the functional group possessed by the polymer (A) upon application of heat to form a crosslinked structure.
  • the functional group possessed by the reactive compound (E) include an oxiranyl group, an oxetanyl group, a (meth)acryloyl group, a formyl group, an acetyl group, a vinyl group, an isopropenyl group, an alkoxymethyl group, a methylol group, etc., and can be appropriately selected according to the functional group possessed by the polymer (A).
  • At least one compound selected from the group consisting of polyfunctional oxirane compounds, polyfunctional oxetane compounds, polyfunctional melamine compounds and polyfunctional alkoxymethyl compounds can be preferably used because of its high thermal reactivity with the carboxy groups or hydroxyl groups in the polymer (A).
  • the reactive compound (E) include bisphenol polyglycidyl ethers such as bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, and hydrogenated bisphenol AD diglycidyl ether; polyglycidyl ethers of polyhydric alcohols such as phosphorus triglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol diglycidyl ether and polypropylene glycol diglycidyl ether; aliphatic polyglycidyl ethers of polyether polyols obtained by adding one or more alkylene oxides to aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin; compounds having two or more 3,4-epoxycyclohexyl groups in the molecule, such as
  • polyfunctional melamine compounds include hexamethoxymethylmelamine (2,4,6-tris[bis(methoxymethyl)amino]-1,3,5-triazine), hexaethoxymethylmelamine, hexapropoxymethylmelamine, hexabutoxymethylmelamine, and hexapentyloxymethylmelamine.
  • polyfunctional alkoxymethyl compounds include reaction products of polyhydric phenol compounds and formaldehyde.
  • polyfunctional phenol compounds include 4-(1- ⁇ 4-[1,1-bis(4-hydroxyphenyl)ethyl]phenyl ⁇ -1-methylethyl)phenol, 1,1,1-tris(4-hydroxyphenyl)ethane, and 4,4'-dihydroxybiphenyl.
  • Commercially available polyfunctional alkoxymethyl compounds include HMOM-TPHAP (manufactured by Honshu Chemical Co., Ltd.), Nicalac Mw-100LM, Nicalac Mx-750LM, Nicalac Mx-270, and Nicalac Mx-280 (manufactured by Sanwa Chemical Co., Ltd.).
  • the content of the reactive compound (E) is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, with respect to 100 parts by mass of the total amount of the polymer (A) contained in the composition, from the viewpoint of ensuring a wide flow margin.
  • the content of the reactive compound (E) is preferably 5 parts by mass or less, more preferably 4 parts by mass or less, more preferably 2 parts by mass or less with respect to 100 parts by mass of the total amount of the polymer (A) contained in the present composition.
  • a surfactant can be used to improve the applicability of the present composition (reduction of spreadability and uneven application).
  • surfactants include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • surfactants include the following trade names as fluorosurfactants: Megafac F-171, F-172, F-173, F-251, F-430, F-554, F-563 (manufactured by DIC); Florard FC430, FC431 (manufactured by Sumitomo 3M); 101, SC-102, SC-103, SC-104, SC-105, SC-106, S-611 (manufactured by AGC Seimi Chemical Co., Ltd.); 75, same No.
  • fluorosurfactants Megafac F-171, F-172, F-173, F-251, F-430, F-554, F-563 (manufactured by DIC); Florard FC430, FC431 (manufactured by Sumitomo 3M); 101, SC-102, SC-103, SC-104, SC-105, SC-106, S-611 (manufactured by AGC Seimi Chemical Co., Ltd.); 75, same No.
  • silicone-based surfactants include SH200-100cs, SH-28PA, SH-30PA, SH-89PA, SH-190, SH-8400, FLUID, SH-193, SZ-6032, SF-8428, DC-57, DC-190, PAINTAD19, FZ-2101, FZ-77 , FZ-2118, L-7001, L-7002 (manufactured by Dow Corning Toray Silicone Co., Ltd.); organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.);
  • nonionic surfactants include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, and polyethylene glycol distearate.
  • the content of the surfactant is preferably 0.01 to 1.5 parts by mass, more preferably 0.02 to 1.2 parts by mass, and even more preferably 0.05 to 1.0 parts by mass with respect to 100 parts by mass of the total amount of the polymer (A) contained in the composition.
  • the adhesion aid is a component that improves the adhesion between the cured product formed using the present composition and the substrate.
  • a functional silane coupling agent having a reactive functional group can be preferably used as the adhesion aid.
  • a carboxy group, a (meth)acryloyl group, an epoxy group, a vinyl group, an isocyanate group etc. are mentioned as a reactive functional group which a functional silane coupling agent has.
  • functional coupling agents include trimethoxysilylbenzoic acid, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxysilane, and 3-isocyanatopropyltriethoxysilane. be done.
  • the content is preferably 0.01 parts by mass or more and 4 parts by mass or less, more preferably 0.1 parts by mass or more and 2 parts by mass or less with respect to 100 parts by mass of the polymer (A) contained in the composition.
  • the present composition does not contain a compound having an oxiranyl group or an oxetanyl group (hereinafter also referred to as an "epoxy group-containing compound") as another component, or if it contains an epoxy group-containing compound, the content is relatively small.
  • a compound having an oxiranyl group or an oxetanyl group hereinafter also referred to as an "epoxy group-containing compound”
  • the content is relatively small.
  • sufficient acid can be generated in the exposed area by irradiation with radiation in step (II), and a cured product having a favorable pattern shape can be obtained by the subsequent development treatment, exposure treatment and heat treatment.
  • Epoxy group-containing compounds include monofunctional compounds and polyfunctional compounds.
  • monofunctional compounds include compounds having an epoxy group among the compounds exemplified as adhesion promoters.
  • polyfunctional compound include the compounds exemplified as the polyfunctional oxirane compound and the polyfunctional oxetane compound in the description of the polyfunctional reactive compound (E).
  • the content of the epoxy group-containing compound in the composition is preferably 0% by mass or more and 5% by mass or less, more preferably 0% by mass or more and 4% by mass or less, still more preferably 0% by mass or more and 2% by mass or less, and even more preferably 0% by mass or more and 1% by mass or less.
  • the content of the epoxy group-containing compound is within the above range, sufficient acid can be generated in the exposed area by the radiation irradiation in step (II), and a microlens having a favorable pattern shape can be formed.
  • other components include, for example, antioxidants, sensitizers, photodegradable bases, softeners, plasticizers, reaction initiators (photoradical polymerization initiators, etc.), polymerization inhibitors, chain transfer agents, and the like.
  • the mixing ratio of these components is appropriately selected according to each component within a range that does not impair the effects of the present disclosure.
  • the composition can be obtained by mixing the polymer (A), the acid generator (B), the solvent (C), and optionally other ingredients in a predetermined ratio.
  • a composition obtained by mixing each component may be filtered through a filter having a pore size of 0.5 ⁇ m or less, for example.
  • the solid content concentration of the present composition (that is, the ratio of the total mass of components other than the solvent (C) in the radiation-sensitive composition to the total mass of the radiation-sensitive composition) is appropriately selected in consideration of viscosity, volatility, etc., but is preferably in the range of 1 to 60% by mass.
  • a solid content concentration of 1% by mass or more is preferable in that a sufficient film thickness can be ensured when the present composition is applied onto a substrate. Further, when the solid content concentration is 60% by mass or less, the film thickness of the coating film does not become excessively large, and the viscosity of the present composition can be increased appropriately, which is preferable in terms of ensuring good coatability.
  • the solid content concentration in the present composition is more preferably 2 to 50% by mass, still more preferably 5 to 40% by mass.
  • a microlens can be produced by applying a thermal flow method using the radiation-sensitive composition prepared as described above.
  • the present composition is particularly suitable as a positive pattern-forming material for forming a pattern into a microlens using an alkaline developer.
  • steps (I) to (V)) included in the microlens manufacturing method of the present disclosure will be described below.
  • Step (I) is a step of forming a coating film on a substrate by applying the present composition onto the substrate.
  • the base material include glass substrates, silicon wafers, plastic substrates, and substrates having colored resists, overcoats, antireflection films, and various metal thin films formed thereon.
  • plastic substrates include resin substrates made of plastics such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethersulfone, polycarbonate, and polyimide.
  • Various elements for example, light-receiving elements such as photodiodes and light-emitting elements such as organic light-emitting diodes may be provided in advance on these substrates.
  • an appropriate method such as a spray method, a roll coating method, a spin coating method (spin coating method), a slit die coating method, a bar coating method, an inkjet method, or the like can be adopted.
  • the spin coating method, the bar coating method, or the slit die coating method is preferable as the coating method.
  • the composition After coating the composition on the substrate, the composition may be preheated (pre-baking) for the purpose of preventing dripping.
  • pre-baking conditions may be, for example, 60 to 130.degree.
  • the film thickness of the formed coating film after prebaking is preferably 0.1 to 8 ⁇ m, more preferably 0.2 to 5 ⁇ m, and even more preferably 0.4 to 3 ⁇ m.
  • Step (II) is a step of irradiating a portion of the coating film formed in step (I) with radiation to generate acid in the exposed area.
  • irradiation of the coating film is performed through a mask having a pattern (for example, a dot pattern) to obtain microlenses having a desired shape.
  • the mask may be a multi-tone mask such as a halftone mask or a graytone mask.
  • the radiation to be applied to the coating film includes, for example, ultraviolet rays, far ultraviolet rays, X-rays, charged particle beams, and the like.
  • ultraviolet rays include g-line (wavelength: 436 nm), i-line (wavelength: 365 nm), KrF excimer laser light (wavelength: 248 nm), and the like.
  • X-rays include synchrotron radiation and the like.
  • An electron beam etc. are mentioned as a charged particle beam.
  • the radiation irradiated to the coating film is preferably ultraviolet rays, and more preferably ultraviolet rays having a wavelength of 200 nm or more and 380 nm or less.
  • Examples of light sources to be used include low-pressure mercury lamps, high-pressure mercury lamps, deuterium lamps, metal halide lamps, argon resonance lamps, xenon lamps, excimer lasers, and the like.
  • the exposure dose of radiation is preferably 1,000 J/m 2 to 20,000 J/m 2 .
  • post-exposure baking may be performed for the purpose of promoting deprotection of the acid-labile groups possessed by the polymer (A).
  • the temperature of the PEB is, for example, 60-130°C, preferably 70-120°C.
  • Step (III) is a step of forming a pattern on the substrate by developing the coating film irradiated with radiation in step (II). By this development step, the exposed portion of the coating film formed on the substrate is removed, and a pattern consisting of the unexposed portion can be formed on the substrate.
  • Examples of developing solutions include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, diethylaminoethanol, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, triethanolamine, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, pyrrole, piperidine, 1,8-diazabicyclo[5.4.0]-7-undecene, 1,5-diaza
  • An aqueous solution of an alkali (basic compound) such as bicyclo[4.3.0]-5-nonane can be used.
  • an aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant to an alkaline aqueous solution, or by adding a small amount of various organic solvents capable of dissolving the present composition, may be used as a developer.
  • a developing method for example, an appropriate method such as a liquid heaping method, a dipping method, a swinging immersion method, a shower method, or the like can be adopted.
  • the development time may be appropriately adjusted according to the composition of the present composition, and may be, for example, 30 seconds to 120 seconds.
  • Step (IV) is a step of further irradiating at least part of the developed coating film with radiation.
  • Irradiation with radiation in step (IV) (hereinafter also referred to as “post-exposure”) is preferably performed on the entire surface of the coating film after development (that is, the unexposed area in step (II)). Since the acid generator (B) remains in the pattern, post-exposure to generate acid in the pattern and further heating in the next step (V) are thought to allow the acid to function as a cross-linking catalyst and allow the cross-linking reaction to proceed.
  • the type of radiation and exposure conditions in post-exposure the same conditions as in step (II) can be employed.
  • the conditions such as the wavelength of the irradiation light, the irradiation amount, and the light source in the post-exposure may be the same as or different from those in step (II).
  • Step (V) is a step of heating the pattern after post-exposure.
  • the composition is cured while thermally flowing the pattern (for example, a pattern having a substantially rectangular cross section) obtained in steps (I) to (IV).
  • a microlens array in which hemispherical fine cured products are regularly arranged on the substrate can be obtained.
  • Heat treatment can be performed, for example, using a heating device such as an oven or a hot plate.
  • the heating temperature in step (V) is preferably 80°C or higher, more preferably 100°C or higher, still more preferably 120°C or higher, and even more preferably 140°C or higher, from the viewpoint of obtaining microlenses with high heat resistance and chemical resistance and good shape. Moreover, the heating temperature in step (V) is preferably 240° C. or lower, more preferably 220° C. or lower, and even more preferably 200° C. or lower.
  • the heating time can be appropriately set according to the type of heating device and the like. For example, when heating is performed using a hot plate, the heating time is, for example, 5 to 30 minutes. Moreover, when heating is performed in an oven, the heating time is, for example, 10 to 90 minutes.
  • a step baking method in which heat treatment is performed multiple times can also be used.
  • the microlens obtained in this way has a good lens shape.
  • the diameter of the microlens is, for example, 1 ⁇ m or more and 100 ⁇ m or less. Further, the microlens obtained from the present composition has excellent chemical resistance and high transparency. Therefore, the microlens of the present disclosure can be suitably used as a microlens for a solid-state imaging device included in an imaging device such as a camera, or for various display devices such as an organic EL device and a liquid crystal display device provided in various display devices.
  • [Means 1] A radiation-sensitive composition for manufacturing lenses, comprising a polymer (A), a radiation-sensitive acid generator (B), and a solvent (C), wherein the polymer (A) contains, in the same molecule or in different molecules, a structural unit (a1) having a hydroxyl group bonded to an aromatic ring and a structural unit (a2) in which an acid-dissociable group is eliminated by the action of an acid to generate a carboxy group.
  • [Means 2] The radiation-sensitive composition for manufacturing lenses according to [Means 1], wherein the total content of the structural unit (a1) and the structural unit (a2) is 50 mol% or more relative to the total structural units constituting the polymer (A).
  • [Means 3] The radiation-sensitive composition for manufacturing lenses according to [Means 1] or [Means 2], wherein the structural unit (a1) is a structural unit derived from at least one selected from the group consisting of the compound represented by the above formula (a1-1) and the compound represented by the above formula (a1-2).
  • [Means 4] The radiation-sensitive composition for producing lenses according to any one of [Means 1] to [Method 3], wherein the structural unit (a2) is a structural unit derived from at least one selected from the group consisting of the compound represented by the formula (a2-1) and the compound represented by the formula (a2-2).
  • [Means 5] The radiation-sensitive composition for manufacturing lenses according to any one of [Means 1] to [Means 4], wherein the content of the structural unit (a3) having an oxiranyl group or an oxetanyl group in the polymer (A) is 0 mol% or more and 15 mol% or less with respect to the total structural units constituting the polymer (A).
  • [Means 6] The radiation-sensitive composition for manufacturing lenses according to any one of [Means 1] to [Means 5], further comprising a nitrogen-containing basic compound (D).
  • [Means 7] The radiation-sensitive composition for manufacturing lenses according to any one of [Means 1] to [Means 6], wherein the polyfunctional reactive compound (excluding the polymer (A)) is contained in an amount of 5 parts by mass or less per 100 parts by mass of the total amount of the polymer (A).
  • [Means 8] The radiation-sensitive composition for manufacturing lenses according to [Means 7], wherein the polyfunctional reactive compound is at least one selected from the group consisting of polyfunctional oxirane compounds, polyfunctional oxetane compounds, polyfunctional melamine compounds and polyfunctional alkoxymethyl compounds.
  • the weight average molecular weight (Mw) of the polymer was measured by the following method. ⁇ Measurement method: Gel permeation chromatography (GPC) method ⁇ Apparatus: GPC-101 of Showa Denko Co., Ltd.
  • Example 1 A polymer solution containing 100 parts by mass (solid content) of (A-1) as the polymer (A), 4 parts by mass of (B-1) as the acid generator (B), 0.8 parts by mass of (D-1) as the basic compound (D), 0.5 parts by mass of the adhesion aid (3-glycidyloxypropyltrimethoxysilane), and 0.2 parts by mass of the surfactant ("FTX-218" manufactured by Neos) were mixed, and the solid content concentration was 12 mass parts. %, and then dissolved by stirring after adding (C-1) as solvent (C).
  • the radiation-sensitive resin composition of Example 1 was prepared by filtering the mixture through a membrane filter with a pore size of 0.2 ⁇ m.
  • Examples 2-8 and Comparative Examples 1-2 Radiation-sensitive resin compositions of Examples 2 to 8 and Comparative Examples 1 and 2 were prepared in the same manner as in Example 1 except that the types and blending amounts (parts by mass) of the polymer (A), acid generator (B), solvent (C), basic compound (D) and reactive compound (E) were as shown in Table 1.
  • the blending amount of the polymer (A) is 100 parts by mass.
  • the numerical values of the acid generator (B), the basic compound (D) and the reactive compound (E) indicate the compounding ratio (parts by mass) of each compound with respect to 100 parts by mass of the polymer (A) used in the preparation of each radiation-sensitive resin composition.
  • the numerical value of the solvent (C) represents the ratio (% by mass) of each compound to the total amount of solvent used in the preparation of each radiation-sensitive resin composition.
  • Sensitivity (mJ/cm 2 ) was defined as the minimum amount of exposure required to form a 0.2 ⁇ m space and a 0.9 ⁇ m dot in such exposure and development processing.
  • a sensitivity of 100 mJ/cm 2 or less was evaluated as “ ⁇ ”
  • a sensitivity of more than 100 mJ/cm 2 and less than 130 mJ/cm 2 was evaluated as “ ⁇ ”
  • a sensitivity of 130 mJ/cm 2 or more was evaluated as “X”.
  • the minimum temperature T1 at which an appropriate microlens pattern is formed without the bottom portions of adjacent microlens patterns coming into contact with each other and the minimum temperature T2 at which the bottom portions of adjacent microlens patterns come into contact with each other by the post-baking process were determined.
  • the temperature difference (T2-T1) between the lowest temperatures T1 and T2 was defined as the flow margin, and evaluation was made according to the following criteria. Under these conditions, a flow margin of 10° C. or more was evaluated as “ ⁇ ”, a flow margin of less than 10° C. of 5° C. or more was evaluated of “ ⁇ ”, and a flow margin of less than 5° C. was evaluated of “ ⁇ ”.
  • each of the radiation-sensitive resin compositions of Examples 1 to 8 and Comparative Examples 1 and 2 was applied onto a silicon substrate, and then prebaked on a hot plate at 90° C. for 90 seconds to form a coating film having a thickness of 0.6 ⁇ m.
  • the resulting coating film was irradiated with ultraviolet rays from a mercury lamp so that the cumulative irradiation dose was 500 mJ/cm 2 .
  • the silicon substrate on which this coating film was formed was post-baked at 180° C. for 300 seconds using a hot plate to obtain a cured film.
  • the film thickness (H1 [ ⁇ m]) of the obtained cured film was measured.
  • the silicon substrate on which this cured film was formed was immersed in acetone for 5 minutes.
  • the film thickness (H2 [ ⁇ m]) of the cured film after immersion in acetone was measured, and the film thickness change rate was calculated from the following formula and used as an index of chemical resistance.
  • Film thickness change rate ⁇ (H2-H1)/H1 ⁇ x 100 (%) According to the above formula, the absolute value of the film thickness change rate was judged to be "O" when the absolute value was less than 5.0%, and was judged to be "X" when it was 5.0% or more.
  • a cured film was prepared using the same method as for chemical resistance evaluation, except that a glass substrate was used.
  • the transmittance of the obtained cured film was measured using an ultraviolet-visible spectrophotometer ("V-630" manufactured by JASCO Corporation). At this time, when the transmittance of light having a wavelength of 400 nm was 97% or more, it was judged as " ⁇ ", when it was 95% or more and less than 97%, it was judged as " ⁇ ”, and when it was less than 95%, it was judged as "x”.
  • the radiation-sensitive resin compositions of Examples 1-8 exhibited good radiation sensitivity, and also had good flow properties, chemical resistance and transparency.
  • the radiation-sensitive resin composition of Comparative Example 1 which has the same composition as in Example 1 except that the polymer (A-5) having a protected hydroxyl group was used instead of the polymer (A-1) having a protected carboxyl group, was evaluated as "x" in flowability and chemical resistance.
  • the radiation-sensitive composition containing the polymer (A) containing the structural unit (a1) and the structural unit (a2) exhibits high radiation sensitivity, can ensure a wide flow margin, and can exhibit various properties required for a radiation-sensitive composition for microlens production in a well-balanced manner, such as good chemical resistance and transparency of the resulting cured product.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

A lens is produced by a method comprising: a step for applying a radiation-sensitive composition onto a base material to form a coating film; a step for irradiating a portion of the coating film with a radioactive ray to generate an acid in an exposed portion; a step for developing the coating film that has been irradiated with the radioactive ray to form a pattern; a step for irradiating the pattern with a radioactive ray; and a step for heating the pattern after the irradiation of the pattern with the radioactive ray to form a lens. The radiation-sensitive composition comprises at least one polymer (A), a radiation-sensitive acid generator (B) and a solvent(C), in which the polymer (A) contains, in a single molecule or different molecules, a structural unit (a1) having a hydroxyl group bound to an aromatic ring and a structural unit (a2) having such a configuration that an acid-dissociating group is detached by the action of an acid to generate a carboxyl group.

Description

レンズの製造方法、レンズ製造用感放射線性組成物、レンズ、撮像素子、撮像装置、表示素子及び表示装置LENS MANUFACTURING METHOD, LENS MANUFACTURING RADIATION SENSITIVE COMPOSITION, LENS, IMAGE SENSOR, IMAGING DEVICE, DISPLAY DEVICE AND DISPLAY DEVICE
[関連出願の相互参照]
 本出願は、2022年1月18日に出願された日本特許出願番号2022-005909号に基づく優先権を主張し、その全体が参照により本明細書に組み込まれる。
 本開示は、レンズの製造方法、レンズ製造用感放射線性組成物、レンズ、撮像素子、撮像装置、表示素子及び表示装置に関する。
[Cross reference to related applications]
This application claims priority from Japanese Patent Application No. 2022-005909 filed on January 18, 2022, the entirety of which is incorporated herein by reference.
TECHNICAL FIELD The present disclosure relates to a lens manufacturing method, a radiation-sensitive composition for lens manufacturing, a lens, an imaging device, an imaging device, a display device, and a display device.
 CCD(Charge-Coupled Device)イメージセンサや、CMOS(Complementary Metal-Oxide-Semiconductor)イメージセンサといった各種イメージセンサは、カメラ等の撮像装置における固体撮像素子として用いられている。固体撮像素子には、受光素子(フォトダイオード)に光を集めてセンサ感度を向上させるために微小な集光レンズ(以下、「マイクロレンズ」ともいう)が規則的に並べて配置されている。また、有機エレクトロルミネッセンス(有機EL)素子等の表示素子において、光取り出し効率を向上させるために、各画素に対し光出射側にマイクロレンズを設けた構造も採用されている。 Various image sensors such as CCD (Charge-Coupled Device) image sensors and CMOS (Complementary Metal-Oxide-Semiconductor) image sensors are used as solid-state imaging devices in imaging devices such as cameras. In the solid-state imaging device, minute condensing lenses (hereinafter also referred to as “microlenses”) are regularly arranged in order to collect light on a light receiving element (photodiode) and improve sensor sensitivity. Further, in a display device such as an organic electroluminescence (organic EL) device, a structure in which a microlens is provided on the light emission side of each pixel is adopted in order to improve the light extraction efficiency.
 マイクロレンズを形成する方法の1つとしては、受光素子や発光素子の上部に、マイクロレンズに対応するパターンを感放射線性組成物により形成した後、加熱処理を行うことによって流動化させ、これにより半球状のマイクロレンズアレイを形成するサーマルフロー方式が知られている(例えば、特許文献1参照)。 As one of the methods for forming microlenses, a thermal flow method is known in which a pattern corresponding to the microlenses is formed on the upper part of the light receiving element or the light emitting element with a radiation-sensitive composition, and then heat-treated to make it fluid, thereby forming a hemispherical microlens array (see, for example, Patent Document 1).
特開2020-101659号公報JP 2020-101659 A
 マイクロレンズパターンの形成に用いる感放射線性組成物には、放射線感度が高いことや、耐薬品性及び透明性が高いマイクロレンズを製造できることが求められる。また、製造マージンを確保するために、良好なマイクロレンズパターンを形成可能な温度幅(以下、「フローマージン」ともいう)が広いことが求められる。 The radiation-sensitive composition used to form the microlens pattern is required to have high radiation sensitivity and to be able to produce microlenses with high chemical resistance and transparency. In addition, in order to ensure a manufacturing margin, a wide temperature range (hereinafter also referred to as "flow margin") in which a favorable microlens pattern can be formed is required.
 本開示は、上記課題に鑑みなされたものであり、放射線感度が高く、フローマージンが広く、かつ耐薬品性及び透明性に優れたレンズを得ることができるレンズの製造方法及びレンズ製造用感放射線性組成物を提供することを主たる目的とする。 The present disclosure has been made in view of the above problems, and the main purpose thereof is to provide a lens manufacturing method and a radiation-sensitive composition for lens manufacturing that can obtain a lens that has high radiation sensitivity, a wide flow margin, and excellent chemical resistance and transparency.
 本開示によれば、以下のレンズの製造方法、レンズ製造用感放射線性組成物、レンズ、撮像素子、撮像装置、表示素子及び表示装置が提供される。 According to the present disclosure, the following lens manufacturing method, radiation-sensitive composition for lens manufacturing, lens, imaging device, imaging device, display device, and display device are provided.
[1] 基材上に感放射線性組成物を塗布して塗膜を形成する工程と、前記塗膜の一部に放射線を照射することにより露光部に酸を発生させる工程と、前記放射線が照射された塗膜を現像して前記基材上にパターンを形成する工程と、前記パターンに放射線を照射する工程と、前記パターンに放射線を照射した後に前記パターンを加熱することにより、前記基材上にレンズを形成する工程と、を含み、前記感放射線性組成物は、重合体(A)と、感放射線性酸発生剤(B)と、溶剤(C)とを含有し、前記重合体(A)は、芳香環に結合した水酸基を有する構造単位(a1)と、酸の作用によって酸解離性基が脱離することによりカルボキシ基を生じる構造単位(a2)とを、同一分子内又は異なる分子内に含む、レンズの製造方法。 [1] A step of applying a radiation-sensitive composition onto a substrate to form a coating film, a step of irradiating a part of the coating film with radiation to generate an acid in an exposed area, a step of developing the radiation-irradiated coating film to form a pattern on the substrate, a step of irradiating the pattern with radiation, and a step of heating the pattern after irradiating the pattern with radiation to form a lens on the substrate, wherein the radiation-sensitive composition comprises a polymer (A) and , a radiation-sensitive acid generator (B), and a solvent (C), wherein the polymer (A) contains, in the same molecule or in different molecules, a structural unit (a1) having a hydroxyl group bonded to an aromatic ring and a structural unit (a2) that produces a carboxyl group when an acid-dissociable group is eliminated by the action of an acid.
[2] 重合体(A)と、感放射線性酸発生剤(B)と、溶剤(C)とを含有し、前記重合体(A)は、芳香環に結合した水酸基を有する構造単位(a1)と、酸の作用により酸解離性基が脱離してカルボキシ基を発生する構造単位(a2)とを、同一分子内又は異なる分子内に含む、レンズ製造用感放射線性組成物。 [2] A radiation-sensitive composition for manufacturing lenses, containing a polymer (A), a radiation-sensitive acid generator (B), and a solvent (C), wherein the polymer (A) contains, in the same molecule or in different molecules, a structural unit (a1) having a hydroxyl group bonded to an aromatic ring and a structural unit (a2) in which an acid-dissociable group is eliminated by the action of an acid to generate a carboxy group.
[3] 上記[2]のレンズ製造用感放射線性組成物を用いて形成されたレンズ。
[4] 上記[3]のレンズを備える、撮像素子。
[5] 上記[4]の撮像素子を備える、撮像装置。
[6] 上記[3]のレンズを備える、表示素子。
[7] 上記[6]の表示素子を備える、表示装置。
[3] A lens formed using the radiation-sensitive composition for manufacturing lenses of [2] above.
[4] An imaging device comprising the lens of [3] above.
[5] An imaging device comprising the imaging element of [4] above.
[6] A display device comprising the lens of [3] above.
[7] A display device comprising the display element of [6] above.
 本開示の製造方法によれば、上記の重合体(A)、感放射線性酸発生剤(B)及び溶剤(C)を含有する感放射線性組成物を用いて基材上に塗膜を形成し、露光した後に現像を行い、その後更に露光及び加熱を実施することにより、フローマージンが広く、かつ耐薬品性及び透明性が高いレンズを形成することができる。また、本開示のレンズ製造用感放射線性組成物は放射線に対する感度が高く、少ない照射量で良好な形状のレンズを形成することができる。 According to the production method of the present disclosure, a coating film is formed on a substrate using the radiation-sensitive composition containing the polymer (A), the radiation-sensitive acid generator (B), and the solvent (C), exposed, developed, and then exposed and heated to form a lens with a wide flow margin and high chemical resistance and transparency. In addition, the radiation-sensitive composition for manufacturing lenses of the present disclosure has high sensitivity to radiation, and can form lenses of good shape with a small irradiation dose.
 以下、実施態様に関連する事項について詳細に説明する。なお、本明細書において、「~」を用いて記載された数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む意味である。「構造単位」とは、主鎖構造を主として構成する単位であって、少なくとも主鎖構造中に2個以上含まれる化学構造の構成単位をいう。  Hereinafter, matters related to the embodiment will be explained in detail. In this specification, the numerical range described using "-" means that the numerical values described before and after "-" are included as the lower limit and the upper limit. A "structural unit" is a unit that mainly constitutes a main chain structure, and refers to a structural unit of a chemical structure that includes at least two units in the main chain structure.
≪レンズの製造方法≫
 本開示の製造方法は、固体撮像素子(例えば、CCDイメージセンサ、CMOSイメージセンサ)や表示素子(例えば、有機EL素子や液晶表示素子)に設けられる微小集光体であるレンズ(以下、「マイクロレンズ」ともいう)を製造するものであり、より具体的にはサーマルフロー方式によるものである。本開示の製造方法は以下の工程(I)~(V)を含む。
(I)基材上にレンズ製造用感放射線性組成物を塗布して塗膜を形成する工程
(II)塗膜の一部に放射線を照射することにより露光部に酸を発生させる工程(第1露光工程)
(III)放射線が照射された塗膜を現像して基材上にパターンを形成する工程
(IV)上記工程(III)により得られたパターンに放射線を照射する工程(第2露光工程)
(V)上記工程(IV)によりパターンに放射線を照射した後にパターンを加熱することにより、基材上にレンズを形成する工程
以下ではまず、本開示の製造方法において用いられるレンズ製造用感放射線性組成物について説明し、次いで、本開示の製造方法に含まれる各工程について説明する。
≪Lens manufacturing method≫
The manufacturing method of the present disclosure manufactures a lens (hereinafter also referred to as a "microlens") that is a microscopic condensing body provided in a solid-state imaging device (e.g., CCD image sensor, CMOS image sensor) or a display device (e.g., organic EL device or liquid crystal display device), and more specifically, it is based on the thermal flow method. The manufacturing method of the present disclosure includes the following steps (I) to (V).
(I) Step of applying a radiation-sensitive composition for lens manufacturing onto a substrate to form a coating film (II) Step of irradiating a part of the coating film with radiation to generate acid in the exposed area (first exposure step)
(III) A step of developing the coating film irradiated with radiation to form a pattern on the substrate (IV) A step of irradiating the pattern obtained in the above step (III) with radiation (second exposure step)
(V) A step of forming a lens on a substrate by heating the pattern after irradiating the pattern with radiation in the above step (IV). In the following, first, the radiation-sensitive composition for lens manufacturing used in the manufacturing method of the present disclosure will be described, and then each step included in the manufacturing method of the present disclosure will be described.
[レンズ製造用感放射線性組成物]
 本開示のレンズ製造用感放射線性組成物(以下、単に「本組成物」ともいう)は、重合体(A)と、感放射線性酸発生剤(B)と、溶剤(C)とを含有する。なお、各成分については特に言及しない限り、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[Radiation-sensitive composition for manufacturing lenses]
The radiation-sensitive composition for manufacturing lenses of the present disclosure (hereinafter also simply referred to as "the present composition") contains a polymer (A), a radiation-sensitive acid generator (B), and a solvent (C). Unless otherwise specified, each component may be used singly or in combination of two or more.
 ここで、本明細書において「炭化水素基」は、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基を含む意味である。「鎖状炭化水素基」とは、主鎖に環状構造を含まず、鎖状構造のみで構成された直鎖状炭化水素基及び分岐状炭化水素基を意味する。ただし、鎖状炭化水素基は飽和でも不飽和でもよい。「脂環式炭化水素基」とは、環構造としては脂環式炭化水素の構造のみを含み、芳香環構造を含まない炭化水素基を意味する。ただし、脂環式炭化水素基は脂環式炭化水素の構造のみで構成されている必要はなく、その一部に鎖状構造を有するものも含む。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基を意味する。ただし、芳香族炭化水素基は芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環式炭化水素の構造を含んでいてもよい。なお、脂環式炭化水素基及び芳香族炭化水素基が有する環構造は、炭化水素構造からなる置換基を有していてもよい。 Here, the term "hydrocarbon group" as used herein means a chain hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group. A "chain hydrocarbon group" means a straight chain hydrocarbon group or a branched hydrocarbon group that does not contain a cyclic structure in its main chain and is composed only of a chain structure. However, the chain hydrocarbon group may be saturated or unsaturated. The “alicyclic hydrocarbon group” means a hydrocarbon group containing only an alicyclic hydrocarbon structure as a ring structure and not containing an aromatic ring structure. However, the alicyclic hydrocarbon group does not have to consist only of an alicyclic hydrocarbon structure, and may partially have a chain structure. An "aromatic hydrocarbon group" means a hydrocarbon group containing an aromatic ring structure as a ring structure. However, the aromatic hydrocarbon group does not need to consist only of an aromatic ring structure, and may partially contain a chain structure or an alicyclic hydrocarbon structure. In addition, the ring structure which the alicyclic hydrocarbon group and the aromatic hydrocarbon group have may have a substituent consisting of a hydrocarbon structure.
 また、本明細書において、「(メタ)アクリル」は、「アクリル」及び「メタクリル」を包含する意味である。「(メタ)アクリロイル基」は、「アクリロイル基」及び「メタクリロイル基」を包含する意味である。本明細書では、オキシラニル基及びオキセタニル基を包含して「エポキシ基」ともいう。 Also, in this specification, "(meth)acryl" means to include "acryl" and "methacryl". "(Meth)acryloyl group" means to include "acryloyl group" and "methacryloyl group". In the present specification, oxiranyl group and oxetanyl group are also referred to as "epoxy group".
<重合体(A)>
 重合体(A)は、芳香環に結合した水酸基を有する構造単位(a1)、及び、酸の作用により酸解離性基が脱離してカルボキシ基を生じる構造単位(a2)の一方又は両方を含む。ただし、重合体(A)は、構造単位(a1)と構造単位(a2)とを同一分子内又は異なる分子内に含む。重合体(A)は、構造単位(a1)及び構造単位(a2)を含む限り、1種の重合体により構成されていてもよいし、2種以上の重合体により構成されていてもよい。
<Polymer (A)>
The polymer (A) contains one or both of a structural unit (a1) having a hydroxyl group bonded to an aromatic ring and a structural unit (a2) from which an acid-dissociable group is eliminated by the action of an acid to form a carboxy group. However, the polymer (A) contains the structural unit (a1) and the structural unit (a2) within the same molecule or within different molecules. As long as the polymer (A) contains the structural unit (a1) and the structural unit (a2), it may be composed of one type of polymer, or may be composed of two or more types of polymers.
 重合体(A)の具体的態様としては以下の(I)及び(II)が挙げられる。
(I) 構造単位(a1)と構造単位(a2)とを1分子内に有する重合体。
(II) 構造単位(a1)を有する第1重合体と、構造単位(a2)を有する重合体であって第1重合体とは異なる第2重合体との混合物。
 本組成物を構成する成分の数をできるだけ少なくしつつ、本組成物の感度や広いフローマージン、得られる硬化物の耐薬品性の改善効果が得られる点で、本組成物は、重合体(A)として、構造単位(a1)と構造単位(a2)とを同一分子内に有する重合体を含むことが好ましい。
Specific embodiments of the polymer (A) include the following (I) and (II).
(I) A polymer having a structural unit (a1) and a structural unit (a2) in one molecule.
(II) A mixture of a first polymer having the structural unit (a1) and a second polymer having the structural unit (a2) and different from the first polymer.
The present composition preferably contains, as the polymer (A), a polymer having the structural unit (a1) and the structural unit (a2) in the same molecule, in order to obtain the effect of improving the sensitivity and wide flow margin of the present composition and the chemical resistance of the resulting cured product while minimizing the number of components constituting the present composition.
・構造単位(a1)
 重合体(A)が構造単位(a1)を含むことにより、本組成物により形成されるマイクロレンズの透明性を確保しつつ、アルカリ現像液に対する重合体(A)の溶解性(アルカリ可溶性)を高めたり、硬化反応性を高めたりすることができる。なお、本明細書において「アルカリ可溶」とは、2.38質量%濃度のテトラメチルアンモニウムヒドロキシド水溶液等のアルカリ水溶液に室温で溶解することを意味する。
・ Structural unit (a1)
By including the structural unit (a1) in the polymer (A), it is possible to increase the solubility (alkali solubility) of the polymer (A) in an alkaline developer and enhance the curing reactivity while ensuring the transparency of the microlens formed from the present composition. As used herein, the term "alkali-soluble" means soluble in an alkaline aqueous solution such as a 2.38% by mass concentration tetramethylammonium hydroxide aqueous solution at room temperature.
 構造単位(a1)が有する芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環等が挙げられる。これらのうち、得られる硬化物の透過性の観点から、ベンゼン環又はナフタレン環が好ましく、ベンゼン環がより好ましい。構造単位(a1)において、芳香環に結合している水酸基の数は特に限定されない。芳香環に結合する水酸基の数は、好ましくは1~3個であり、より好ましくは1個又は2個である。構造単位(a1)が有する芳香環には、水酸基以外の置換基が導入されていてもよい。当該置換基としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のフッ素化アルキル基等が挙げられる。 Examples of the aromatic ring that the structural unit (a1) has include a benzene ring, a naphthalene ring, an anthracene ring, and the like. Among these, a benzene ring or a naphthalene ring is preferred, and a benzene ring is more preferred, from the viewpoint of the permeability of the resulting cured product. The number of hydroxyl groups bonded to the aromatic ring in the structural unit (a1) is not particularly limited. The number of hydroxyl groups bonded to the aromatic ring is preferably 1 to 3, more preferably 1 or 2. A substituent other than a hydroxyl group may be introduced into the aromatic ring of the structural unit (a1). Examples of the substituent include halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl groups having 1 to 4 carbon atoms, alkoxy groups having 1 to 4 carbon atoms, fluorinated alkyl groups having 1 to 4 carbon atoms, and the like.
 構造単位(a1)は、水酸基が芳香環に結合した構造と重合性不飽和結合とを有する単量体(以下、「単量体(M1)」ともいう)に由来する構造単位であることが好ましい。良好なパターンニング性及び解像性が得られる点で、単量体(M1)は中でも、(メタ)アクリレート化合物、(メタ)アクリルアミド化合物、スチレン構造を有する化合物及びマレイミド構造を有する化合物よりなる群から選択される少なくとも1種が好ましい。具体的には、構造単位(a1)は、下記式(a1-1)で表される化合物及び下記式(a1-2)で表される化合物よりなる群から選択される少なくとも1種に由来する構造単位であることが好ましい。 The structural unit (a1) is preferably a structural unit derived from a monomer (hereinafter also referred to as "monomer (M1)") having a structure in which a hydroxyl group is bound to an aromatic ring and a polymerizable unsaturated bond. At least one selected from the group consisting of a (meth)acrylate compound, a (meth)acrylamide compound, a compound having a styrene structure, and a compound having a maleimide structure is preferred as the monomer (M1) in terms of obtaining good patterning properties and resolution. Specifically, the structural unit (a1) is preferably a structural unit derived from at least one selected from the group consisting of compounds represented by the following formula (a1-1) and compounds represented by the following formula (a1-2).
Figure JPOXMLDOC01-appb-C000005
(式(a1-1)中、Rは、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。Rは、単結合、*-C(=O)-O-又は*-C(=O)-NH-である。「*」は、Rが結合している炭素原子との結合手を表す。Rは、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又は炭素数1~4のフッ素化アルキル基である。m1は0~4の整数である。m2は1又は2である。ただし、m1+m2≦5である。m1が2以上の場合、複数のRは同一又は異なる。
 式(a1-2)中、Rは、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又は炭素数1~4のフッ素化アルキル基である。n1は0~4の整数である。n2は1又は2である。ただし、n1+n2≦5である。n1が2以上の場合、複数のRは同一又は異なる。)
Figure JPOXMLDOC01-appb-C000005
(式(a1-1)中、R は、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。R は、単結合、* -C(=O)-O-又は* -C(=O)-NH-である。「* 」は、R が結合している炭素原子との結合手を表す。R は、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又は炭素数1~4のフッ素化アルキル基である。m1は0~4の整数である。m2は1又は2である。ただし、m1+m2≦5である。m1が2以上の場合、複数のR は同一又は異なる。
In formula (a1-2), R 4 is a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms or a fluorinated alkyl group having 1 to 4 carbon atoms. n1 is an integer of 0-4. n2 is 1 or 2; However, it is n1+n2<=5. When n1 is 2 or more, multiple R4 are the same or different. )
 式(a1-1)及び式(a1-2)において、R、R及びRで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。炭素数1~4のアルキル基は直鎖状でも分岐状でもよく、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基が挙げられる。炭素数1~4のアルコキシ基としては、炭素数1~4のアルキル基として例示した各基と酸素原子とが結合した基が挙げられる。炭素数1~4のフッ素化アルキル基としては、炭素数1~4のアルキル基として例示した各基の少なくとも1個の水素原子がフッ素原子で置換された基が挙げられる。 In formulas (a1-1) and (a1-2), halogen atoms represented by R 1 , R 3 and R 4 include fluorine, chlorine, bromine and iodine atoms. The alkyl group having 1 to 4 carbon atoms may be linear or branched and includes, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group and tert-butyl group. Examples of the alkoxy group having 1 to 4 carbon atoms include groups in which each group exemplified as the alkyl group having 1 to 4 carbon atoms is bonded to an oxygen atom. Examples of the fluorinated alkyl group having 1 to 4 carbon atoms include groups in which at least one hydrogen atom in each group exemplified as the alkyl group having 1 to 4 carbon atoms is substituted with a fluorine atom.
 Rは、構造単位(a1)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましい。Rは、単結合又は*-C(=O)-O-が好ましい。m1及びn1はそれぞれ、0~2が好ましく、0又は1がより好ましい。 R 1 is preferably a hydrogen atom or a methyl group from the viewpoint of copolymerizability of the monomer that gives the structural unit (a1). R 2 is preferably a single bond or * 1 -C(=O)-O-. Each of m1 and n1 is preferably 0 to 2, more preferably 0 or 1.
 構造単位(a1)の具体例としては、下記式(1-1)~式(1-13)のそれぞれで表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
(式(1-1)~式(1-10)中、RA1は、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。)
Figure JPOXMLDOC01-appb-C000007
Specific examples of the structural unit (a1) include structural units represented by the following formulas (1-1) to (1-13).
Figure JPOXMLDOC01-appb-C000006
(In formulas (1-1) to (1-10), R A1 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or a fluorinated alkyl group having 1 to 4 carbon atoms.)
Figure JPOXMLDOC01-appb-C000007
 重合体(A)において、構造単位(a1)の含有割合は、重合体(A)に対しアルカリ現像液への良好な溶解性を付与する観点から、重合体(A)を構成する全構造単位に対して、10モル%以上が好ましく、15モル%以上がより好ましく、25モル%以上が更に好ましい。一方、構造単位(a1)の含有割合が多すぎると、露光部分及び未露光部分においてアルカリ現像液への溶解性の違いが小さくなり、良好なパターン形状が得られにくくなることがある。こうした観点から、構造単位(a1)の含有割合は、重合体(A)を構成する全構造単位に対して、90モル%以下が好ましく、85モル%以下がより好ましく、80モル%以下が更に好ましい。なお、重合体(A)が2種以上の重合体により構成されている場合、構造単位(a1)の含有割合は、重合体(A)を構成する2種以上の重合体中における構造単位(a1)の総量をいう(以下の構造単位についても同じ)。 In the polymer (A), the content of the structural unit (a1) is preferably 10 mol% or more, more preferably 15 mol% or more, and even more preferably 25 mol% or more, based on the total structural units constituting the polymer (A), from the viewpoint of imparting good solubility to the polymer (A) in an alkaline developer. On the other hand, if the content of the structural unit (a1) is too high, the difference in solubility in an alkaline developer between the exposed and unexposed areas may become small, making it difficult to obtain a good pattern shape. From this point of view, the content of the structural unit (a1) is preferably 90 mol% or less, more preferably 85 mol% or less, and even more preferably 80 mol% or less, relative to all structural units constituting the polymer (A). When the polymer (A) is composed of two or more types of polymers, the content ratio of the structural unit (a1) refers to the total amount of the structural units (a1) in the two or more types of polymers constituting the polymer (A) (the same applies to the following structural units).
・構造単位(a2)
 構造単位(a2)は、本組成物に放射線を照射することによって発生した酸により酸解離性基が脱離してカルボキシ基を生じる構造単位である。重合体(A)が構造単位(a2)を含むことにより、重合体(A)の現像液への溶解性を放射線照射によって変化させることができる。これにより、パターンが形成された硬化物を得ることができる。ここで、「酸解離性基」とは、カルボキシ基等の酸基が有する水素原子を置換する基であって、酸の作用により解離する基である。
・ Structural unit (a2)
Structural unit (a2) is a structural unit from which an acid dissociable group is eliminated by an acid generated by irradiating the present composition with radiation to form a carboxy group. By including the structural unit (a2) in the polymer (A), the solubility of the polymer (A) in a developer can be changed by exposure to radiation. Thereby, a cured product having a pattern formed thereon can be obtained. Here, the "acid-dissociable group" is a group that substitutes a hydrogen atom of an acid group such as a carboxyl group, and is dissociated by the action of an acid.
 特に、本組成物においては、本組成物に放射線を照射することによって、放射線を照射した領域の重合体(A)の側鎖部分に酸基としてカルボキシ基が生成する。この反応を利用し、現像後に工程(IV)による更なる露光処理と、工程(V)による加熱処理とを行うことにより、酸の存在下でカルボキシ基が関与する架橋反応が進行すると考えられる。このようにしてカルボキシ基が関与する架橋反応が進行し、硬化が促進された結果、本組成物によれば良好な耐薬品性や広いフローマージンを実現できたものと考えられる。なお、工程(IV)による更なる露光処理及び工程(V)による加熱処理によって、構造単位(a1)においても、例えば芳香環同士のエーテル化等による架橋反応が進行するものと考えられる。 In particular, in this composition, by irradiating the composition with radiation, carboxy groups are generated as acid groups in the side chain portions of the polymer (A) in the irradiated region. Utilizing this reaction, it is believed that a further exposure treatment in step (IV) and a heat treatment in step (V) are performed after development, whereby a cross-linking reaction involving carboxy groups proceeds in the presence of acid. As a result of the progress of the cross-linking reaction involving the carboxyl group and the acceleration of the curing, it is believed that the present composition was able to achieve good chemical resistance and a wide flow margin. In addition, it is considered that the further exposure treatment in step (IV) and the heat treatment in step (V) cause cross-linking reactions such as etherification of aromatic rings to proceed also in the structural unit (a1).
 構造単位(a2)を構成する単量体としては、保護された不飽和カルボン酸に由来する構造単位が挙げられる。不飽和カルボン酸としては、例えば、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和酸無水物、不飽和多価カルボン酸等が挙げられる。 Examples of monomers constituting the structural unit (a2) include structural units derived from protected unsaturated carboxylic acids. Examples of unsaturated carboxylic acids include unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated acid anhydrides, and unsaturated polyvalent carboxylic acids.
 これらの具体例としては、不飽和モノカルボン酸として、(メタ)アクリル酸、クロトン酸、α-クロロアクリル酸、桂皮酸、2-(メタ)アクリロイロキシエチル-コハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル-フタル酸、(メタ)アクリル酸-2-カルボキシエチルエステル、4-ビニル安息香酸等が挙げられる。不飽和ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸、シトラコン酸等が挙げられる。不飽和酸無水物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。不飽和多価カルボン酸としては、ω-カルボキシポリカプロラクトンモノ(メタ)アクリレート等が挙げられる。 Specific examples of these include unsaturated monocarboxylic acids such as (meth)acrylic acid, crotonic acid, α-chloroacrylic acid, cinnamic acid, 2-(meth)acryloyloxyethyl-succinic acid, 2-(meth)acryloyloxyethylhexahydrophthalic acid, 2-(meth)acryloyloxyethyl-phthalic acid, (meth)acrylic acid-2-carboxyethyl ester, and 4-vinylbenzoic acid. Unsaturated dicarboxylic acids include maleic acid, fumaric acid, itaconic acid, citraconic acid and the like. Examples of unsaturated acid anhydrides include maleic anhydride, itaconic anhydride, and citraconic anhydride. Examples of unsaturated polycarboxylic acids include ω-carboxypolycaprolactone mono(meth)acrylate and the like.
 構造単位(a2)が有する酸解離性基としては、例えば、第3級アルキル基、アセタール系官能基、第3級アルキルカーボネート基等が挙げられる。これらのうち、酸により解離しやすい点で、第3級アルキル基又はアセタール系官能基であることが好ましい。酸解離性基がアセタール系官能基である場合、ポストエクスポージャーベーク(PEB)工程を省略可能であり、工程の簡略化を図ることができる。なお、PEB工程は、工程(II)による露光後であって工程(III)による現像前に行われる加熱の工程であり、好ましくは工程(V)による加熱処理よりも低温で行われる。 Examples of the acid-dissociable group possessed by the structural unit (a2) include a tertiary alkyl group, an acetal-based functional group, a tertiary alkyl carbonate group, and the like. Among these, a tertiary alkyl group or an acetal functional group is preferable because it is easily dissociated by an acid. When the acid-dissociable group is an acetal-based functional group, the post-exposure bake (PEB) step can be omitted, and the steps can be simplified. The PEB process is a heating process performed after the exposure in the process (II) and before the development in the process (III), and is preferably performed at a lower temperature than the heat treatment in the process (V).
 構造単位(a2)は、酸により酸解離性基が脱離してカルボキシ基を生じる構造と重合性不飽和結合とを有する単量体(以下、「単量体(M2)」ともいう)に由来する構造単位であることが好ましい。アルカリ現像液に対する溶解性が高く、現像残渣を低減できる点で、構造単位(a2)は、中でも、下記式(a2-1)で表される化合物及び下記式(a2-2)で表される化合物よりなる群から選択される少なくとも1種に由来する構造単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
(式(a2-1)中、Rは、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。Rは、単結合、置換若しくは無置換のフェニレン基、又は*-C(=O)-O-R15-である。「*」は、Rが結合している炭素原子との結合手を表す。R15は置換若しくは無置換の2価の炭化水素基である。Rは1価の脂肪族炭化水素基である。R及びRは、それぞれ独立して、1価の脂肪族炭化水素基であるか、又はR及びRが互いに合わせられてR及びRが結合する炭素原子と共に構成される脂環式構造を表す。
 式(a2-2)中、R10は、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。R11は、単結合、置換若しくは無置換のフェニレン基、又は*-C(=O)-O-R16-である。「*」は、R10が結合している炭素原子との結合手を表す。R16は置換若しくは無置換の2価の炭化水素基である。R12は水素原子又は1価の脂肪族炭化水素基である。R13及びR14は、R13が1価の脂肪族炭化水素基であり、R14が1価の脂肪族炭化水素基、アラルキル基若しくは置換されたアラルキル基であるか、又はR13及びR14が互いに合わせられてR13が結合する炭素原子及びR14が結合する酸素原子と共に構成される環状エーテル構造を表す。)
Structural unit (a2) is preferably a structural unit derived from a monomer (hereinafter also referred to as "monomer (M2)") having a structure in which an acid-labile group is eliminated to form a carboxyl group by an acid and a polymerizable unsaturated bond. The structural unit (a2) is preferably a structural unit derived from at least one selected from the group consisting of a compound represented by the following formula (a2-1) and a compound represented by the following formula (a2-2), since it has high solubility in an alkaline developer and can reduce development residue.
Figure JPOXMLDOC01-appb-C000008
(式(a2-1)中、R は、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。R は、単結合、置換若しくは無置換のフェニレン基、又は* -C(=O)-O-R 15 -である。「* 」は、R が結合している炭素原子との結合手を表す。R 15は置換若しくは無置換の2価の炭化水素基である。R は1価の脂肪族炭化水素基である。R 及びR は、それぞれ独立して、1価の脂肪族炭化水素基であるか、又はR 及びR が互いに合わせられてR 及びR が結合する炭素原子と共に構成される脂環式構造を表す。
In formula (a2-2), R 10 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or a fluorinated alkyl group having 1 to 4 carbon atoms. R 11 is a single bond, a substituted or unsubstituted phenylene group, or * 3 -C(=O)-OR 16 -. "* 3 " represents a bond with the carbon atom to which R10 is bonded. R 16 is a substituted or unsubstituted divalent hydrocarbon group. R12 is a hydrogen atom or a monovalent aliphatic hydrocarbon group. R 13 and R 14 represent a cyclic ether structure in which R 13 is a monovalent aliphatic hydrocarbon group and R 14 is a monovalent aliphatic hydrocarbon group, an aralkyl group or a substituted aralkyl group, or R 13 and R 14 are combined with each other and composed together with the carbon atom to which R 13 is attached and the oxygen atom to which R 14 is attached. )
 式(a2-1)及び式(a2-2)において、R及びR10の具体例としては、Rの説明で例示した基が挙げられる。R及びR10は、構造単位(a2)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましい。 Specific examples of R 5 and R 10 in formulas (a2-1) and (a2-2) include the groups exemplified for R 1 . R 5 and R 10 are preferably a hydrogen atom or a methyl group from the viewpoint of copolymerizability of the monomer that gives the structural unit (a2).
 R、R11について、R15及R16で表される2価の炭化水素基としては、炭素数1~5のアルカンジイル基、炭素数3~10のシクロアルカンジイル基、フェニレン基等が挙げられる。R、R11が置換フェニレン基である場合にフェニレン基に導入されている置換基、並びに、R15及R16が置換基を有する場合の置換基としては、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のフッ素化アルキル基等が挙げられる。これらの具体例としては、Rの説明で例示した基が挙げられる。 Regarding R 6 and R 11 , the divalent hydrocarbon group represented by R 15 and R 16 includes an alkanediyl group having 1 to 5 carbon atoms, a cycloalkanediyl group having 3 to 10 carbon atoms, and a phenylene group. Examples of substituents introduced into the phenylene groups when R 6 and R 11 are substituted phenylene groups, and substituents when R 15 and R 16 have substituents include halogen atoms, alkyl groups having 1 to 4 carbon atoms, alkoxy groups having 1 to 4 carbon atoms, fluorinated alkyl groups having 1 to 4 carbon atoms, and the like. Specific examples thereof include the groups exemplified in the description of R 1 .
 式(a2-1)中のR~R及び式(a2-2)中のR12~R14で表される1価の脂肪族炭化水素基としては、炭素数1~10の1価のアルキル基、炭素数3~20の1価の脂環式炭化水素基が挙げられる。 Examples of monovalent aliphatic hydrocarbon groups represented by R 7 to R 9 in formula (a2-1) and R 12 to R 14 in formula (a2-2) include monovalent alkyl groups having 1 to 10 carbon atoms and monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms.
 R~R、R12~R14において、炭素数1~10のアルキル基は直鎖状でも分岐状でもよい。当該アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、n-へプチル基等が挙げられる。 In R 7 to R 9 and R 12 to R 14 , the alkyl group having 1 to 10 carbon atoms may be linear or branched. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n-hexyl group, n-heptyl group and the like.
 R~R、R12~R14において、炭素数3~20の1価の脂環式炭化水素基は、単環又は多環の飽和脂環式炭化水素から水素原子1個を除いた基が挙げられる。飽和脂環式炭化水素の具体例としては、単環の脂環式炭化水素として、シクロペンタン、シクロヘキサン、シクロヘプタン及びシクロオクタン等が挙げられる。多環の脂環式炭化水素としては、ビシクロ[2.2.1]ヘプタン(ノルボルナン)、ビシクロ[2.2.2]オクタン、トリシクロ[3.3.1.13,7]デカン(アダマンタン)テトラシクロ[6.2.1.13,6.02,7]ドデカン等が挙げられる。 In R 7 to R 9 and R 12 to R 14 , the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms includes a group obtained by removing one hydrogen atom from a monocyclic or polycyclic saturated alicyclic hydrocarbon. Specific examples of saturated alicyclic hydrocarbons include monocyclic alicyclic hydrocarbons such as cyclopentane, cyclohexane, cycloheptane and cyclooctane. Polycyclic alicyclic hydrocarbons include bicyclo[2.2.1]heptane (norbornane), bicyclo[2.2.2]octane, tricyclo[3.3.1.1 3,7 ]decane (adamantane)tetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodecane and the like.
 R14で表される置換又は無置換のアラルキル基としては、炭素数7~20のアラルキル基、当該アラルキル基の少なくとも1個の水素原子が、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のフッ素化アルキル基で置換された基が挙げられる。アラルキル基の具体例としては、ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基、メチルフェニルメチル基等が挙げられる。 The substituted or unsubstituted aralkyl group represented by R 14 includes an aralkyl group having 7 to 20 carbon atoms, and a group in which at least one hydrogen atom of the aralkyl group is substituted with a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a fluorinated alkyl group having 1 to 4 carbon atoms. Specific examples of aralkyl groups include benzyl, phenethyl, naphthylmethyl, anthrylmethyl, and methylphenylmethyl groups.
 R及びRが互いに合わせられR及びRが結合する炭素原子と共に構成される脂環式構造としては、炭素数3~20の単環又は多環の脂環式炭化水素を構成する同一炭素原子から2個の水素原子を除いた基(以下、「2価の脂環式基」ともいう)が挙げられる。2価の脂環式基が多環式炭化水素基である場合、多環式炭化水素基は、有橋脂環式炭化水素基及び縮合脂環式炭化水素基のいずれでもよい。なお、縮合脂環式炭化水素基とは、複数の脂肪族環が辺(隣接する2つの炭素原子間の結合)を共有する形で構成された多環性の脂環式炭化水素基をいう。有橋脂環式炭化水素基とは、脂肪族環を構成する炭素原子のうち互いに隣接しない2つの炭素原子間が1つ以上の炭素原子を含む結合連鎖で結合された多環性の脂環式炭化水素基をいう。 The alicyclic structure in which R 8 and R 9 are combined with each other and formed together with the carbon atoms to which R 8 and R 9 are bonded includes a group in which two hydrogen atoms are removed from the same carbon atom constituting a monocyclic or polycyclic alicyclic hydrocarbon having 3 to 20 carbon atoms (hereinafter also referred to as a "divalent alicyclic group"). When the divalent alicyclic group is a polycyclic hydrocarbon group, the polycyclic hydrocarbon group may be either a bridged alicyclic hydrocarbon group or a condensed alicyclic hydrocarbon group. The condensed alicyclic hydrocarbon group is a polycyclic alicyclic hydrocarbon group in which a plurality of aliphatic rings share a side (a bond between two adjacent carbon atoms). A bridged alicyclic hydrocarbon group refers to a polycyclic alicyclic hydrocarbon group in which two carbon atoms that are not adjacent to each other among the carbon atoms constituting an alicyclic ring are linked by a linking chain containing one or more carbon atoms.
 R及びRが互いに合わせられることによって2価の脂環式基が構成されている場合、当該2価の脂環式基は、露光部のアルカリ現像液に対する溶解性を高くできる点で、飽和炭化水素により構成されていることが好ましい。具体的には、単環の脂環式炭化水素基として、シクロペンタンジイル基、シクロヘキサンジイル基、シクロヘプタンジイル基及びシクロオクタンジイル基等が挙げられる。また、多環の脂環式炭化水素基は有橋脂環式飽和炭化水素基であることが好ましく、ビシクロ[2.2.1]ヘプタン-2,2-ジイル基、ビシクロ[2.2.2]オクタン-2,2-ジイル基又はトリシクロ[3.3.1.13,7]デカン-2,2-ジイル基が好ましい。 When R 8 and R 9 are combined to form a divalent alicyclic group, the divalent alicyclic group is preferably made up of a saturated hydrocarbon in order to increase the solubility of the exposed area in an alkaline developer. Specific examples of monocyclic alicyclic hydrocarbon groups include a cyclopentanediyl group, a cyclohexanediyl group, a cycloheptanediyl group and a cyclooctanediyl group. The polycyclic alicyclic hydrocarbon group is preferably a bridged alicyclic saturated hydrocarbon group, preferably a bicyclo[2.2.1]heptane-2,2-diyl group, a bicyclo[2.2.2]octane-2,2-diyl group or a tricyclo[3.3.1.1 3,7 ]decane-2,2-diyl group.
 露光部のアルカリ現像液に対する溶解性を高くする観点から、R及びRは、炭素数1~8のアルキル基若しくは炭素数3~8のシクロアルキル基であるか、又はR及びRが互いに合わせられR及びRが結合する炭素原子と共に構成される炭素数3~12の単環若しくは多環の脂環式構造を表すことが好ましく、炭素数1~4のアルキル基若しくは炭素数3~8のシクロアルキル基であるか、又は、R及びRが互いに合わせられR及びRが結合する炭素原子と共に構成される単環の飽和脂環式構造を表すことがより好ましい。 From the viewpoint of increasing the solubility of the exposed area in alkaline developer, R8and R9is an alkyl group having 1 to 8 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms, or R8and R9are aligned with each other and R8and R9preferably represents a monocyclic or polycyclic alicyclic structure having 3 to 12 carbon atoms formed together with the carbon atoms to which R8and R9are aligned with each other and R8and R9more preferably represents a monocyclic saturated alicyclic structure composed of the carbon atoms to which is attached.
 R13及びR14が互いに合わせられて構成される環状エーテル構造は、環員数5以上であることが好ましく、環員数5~12であることがより好ましい。具体的には、例えばテトラヒドロフラン環構造、テトラヒドロピラン環構造等が挙げられる。R13及びR14が互いに合わせられて環状エーテル構造を構成している場合、酸により解離しやすい点で、R12は、水素原子、メチル基又はエチル基が好ましく、水素原子がより好ましい。 The cyclic ether structure formed by combining R 13 and R 14 preferably has 5 or more ring members, more preferably 5 to 12 ring members. Specific examples include a tetrahydrofuran ring structure, a tetrahydropyran ring structure, and the like. When R 13 and R 14 are combined to form a cyclic ether structure, R 12 is preferably a hydrogen atom, a methyl group or an ethyl group, more preferably a hydrogen atom, because it is easily dissociated by an acid.
 構造単位(a2)の具体例としては、例えば、下記式で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(式中、RA1は、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。)
Figure JPOXMLDOC01-appb-C000011
(式中、RA1は、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。)
Specific examples of the structural unit (a2) include structural units represented by the following formula.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(In the formula, R A1 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or a fluorinated alkyl group having 1 to 4 carbon atoms.)
Figure JPOXMLDOC01-appb-C000011
(In the formula, R A1 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or a fluorinated alkyl group having 1 to 4 carbon atoms.)
 構造単位(a2)の含有割合は、重合体(A)を構成する全構造単位に対して、5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上が更に好ましく、20モル%以上がより更に好ましい。また、構造単位(a2)の含有割合は、重合体(A)を構成する全構造単位に対して、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下が更に好ましい。構造単位(a2)の含有割合を上記範囲とすることで、本組成物のパターン形成能をより向上させることができる。 The content of the structural unit (a2) is preferably 5 mol% or more, more preferably 10 mol% or more, still more preferably 15 mol% or more, and even more preferably 20 mol% or more, relative to the total structural units constituting the polymer (A). The content of the structural unit (a2) is preferably 60 mol% or less, more preferably 55 mol% or less, and even more preferably 50 mol% or less, relative to all structural units constituting the polymer (A). By setting the content ratio of the structural unit (a2) within the above range, the pattern forming ability of the present composition can be further improved.
 重合体(A)における構造単位(a1)と構造単位(a2)との合計の含有割合は、重合体(A)を構成する全構造単位に対して50モル%以上であることが好ましく、55モル%以上であることがより好ましく、60モル%以上であることが更に好ましく、65モル%以上であることがより更に好ましく、70モル%以上であることが一層好ましい。重合体(A)における構造単位(a1)と構造単位(a2)との合計の含有割合が上記範囲であると、本組成物の放射線に対する感度や広いフローマージンを十分に確保でき、また得られる硬化物の耐薬品性の改善効果を十分に得ることができる。 The total content of the structural unit (a1) and the structural unit (a2) in the polymer (A) is preferably 50 mol% or more, more preferably 55 mol% or more, still more preferably 60 mol% or more, still more preferably 65 mol% or more, and even more preferably 70 mol% or more, relative to the total structural units constituting the polymer (A). When the total content of the structural unit (a1) and the structural unit (a2) in the polymer (A) is within the above range, the sensitivity to radiation and a wide flow margin of the present composition can be sufficiently ensured, and the effect of improving the chemical resistance of the obtained cured product can be sufficiently obtained.
・その他の構造単位
 重合体(A)は、構造単位(a1)及び構造単位(a2)と共に、構造単位(a1)及び構造単位(a2)とは異なる構造単位(以下、「その他の構造単位」ともいう)を更に含んでいてもよい。
-Other structural units The polymer (A) may further contain a structural unit different from the structural unit (a1) and the structural unit (a2) (hereinafter also referred to as "another structural unit") together with the structural unit (a1) and the structural unit (a2).
 その他の構造単位としては、例えば、オキセタニル基又はオキシラニル基を有する構造単位(以下、「構造単位(a3)」ともいう)が挙げられる。 Other structural units include, for example, structural units having an oxetanyl group or an oxiranyl group (hereinafter also referred to as "structural unit (a3)").
・構造単位(a3)
 構造単位(a3)は、エポキシ基を有する限り特に限定されない。構造単位(a3)としては、例えば、重合性炭素-炭素不飽和結合とエポキシ基とを有する単量体(以下、「単量体(M3)」ともいう)に由来する構造単位が挙げられる。構造単位(a3)は、具体的には、下記式(3)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000012
(式(3)中、R31は、オキセタン構造又はオキシラン構造を有する1価の基である。R32は、水素原子又メチル基である。Xは、単結合又は2価の連結基である。)
・ Structural unit (a3)
Structural unit (a3) is not particularly limited as long as it has an epoxy group. Examples of the structural unit (a3) include a structural unit derived from a monomer having a polymerizable carbon-carbon unsaturated bond and an epoxy group (hereinafter also referred to as "monomer (M3)"). Specific examples of the structural unit (a3) include structural units represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000012
(In formula (3), R 31 is a monovalent group having an oxetane structure or an oxirane structure. R 32 is a hydrogen atom or a methyl group. X 3 is a single bond or a divalent linking group.)
 上記式(3)において、R31としては、オキシラニル基、オキセタニル基、3,4-エポキシシクロヘキシル基、3,4-エポキシトリシクロ[5.2.1.02,6]デシル基、3-エチルオキセタニル基等が挙げられる。これらのうち、光反応性が高い点で、R31はオキシラン構造を有する1価の基が好ましい。
 Xの2価の連結基としては、例えばメチレン基、エチレン基、1,3-プロパンジイル基等のアルカンジイル基が挙げられる。
In the above formula (3), R 31 includes an oxiranyl group, an oxetanyl group, a 3,4-epoxycyclohexyl group, a 3,4-epoxytricyclo[5.2.1.0 2,6 ]decyl group, a 3-ethyloxetanyl group and the like. Among these, R 31 is preferably a monovalent group having an oxirane structure in terms of high photoreactivity.
Examples of the divalent linking group for X3 include alkanediyl groups such as methylene group, ethylene group and 1,3-propanediyl group.
 第3単量体の具体例としては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、2-(3,4-エポキシシクロヘキシル)エチル(メタ)アクリレート、3,4-エポキシトリシクロ[5.2.1.02,6]デシル(メタ)アクリレート、(3-メチルオキセタン-3-イル)メチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)(メタ)アクリレート、(オキセタン-3-イル)メチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート等が挙げられる。 Specific examples of the third monomer include glycidyl (meth)acrylate, 3,4-epoxycyclohexyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, 2-(3,4-epoxycyclohexyl)ethyl (meth)acrylate, 3,4-epoxytricyclo[5.2.1.02,6] Decyl (meth)acrylate, (3-methyloxetan-3-yl)methyl (meth)acrylate, (3-ethyloxetan-3-yl) (meth)acrylate, (oxetan-3-yl)methyl (meth)acrylate, (3-ethyloxetan-3-yl)methyl (meth)acrylate and the like.
 重合体(A)が構造単位(a3)を含む場合、構造単位(a3)が有するエポキシ基が架橋性基として作用することにより、本組成物を用いて得られる膜の解像性及び硬化物の耐薬品性の改善することが可能である。その一方で、重合体(A)が構造単位(a3)を含む場合、現像前の露光工程において露光部に酸を十分に発生させることができず、これにより本組成物の放射線感度が低下したり、パターン形成能が低下したりすることが懸念される。そのため、重合体(A)は、構造単位(a3)を含まないか、又は構造単位(a3)を含む場合にはその含有量が比較的少ないことが好ましい。 When the polymer (A) contains the structural unit (a3), the epoxy group possessed by the structural unit (a3) acts as a crosslinkable group, thereby improving the resolution of the film obtained using this composition and the chemical resistance of the cured product. On the other hand, when the polymer (A) contains the structural unit (a3), sufficient acid cannot be generated in the exposed area in the exposure step before development, and as a result, there is concern that the radiation sensitivity of the present composition may decrease, or the pattern formability may decrease. Therefore, it is preferable that the polymer (A) does not contain the structural unit (a3), or if it contains the structural unit (a3), the content thereof is relatively small.
 具体的には、重合体(A)における構造単位(a3)の含有割合は、重合体(A)を構成する全構造単位に対して、0モル%以上15モル%以下であることが好ましく、0モル%以上10モル%以下であることがより好ましく、0モル%以上5モル%以下であることが更に好ましく、0モル%以上1モル%以下であることがより更に好ましい。構造単位(a3)の含有割合を上記範囲とすることで、現像前の放射線照射によって露光部に酸を十分に発生させることができ、その後の現像処理によって良好なパターン形状を有する硬化物を得ることができる。 Specifically, the content of the structural unit (a3) in the polymer (A) is preferably 0 mol% or more and 15 mol% or less, more preferably 0 mol% or more and 10 mol% or less, still more preferably 0 mol% or more and 5 mol% or less, and even more preferably 0 mol% or more and 1 mol% or less, relative to the total structural units constituting the polymer (A). By setting the content ratio of the structural unit (a3) within the above range, sufficient acid can be generated in the exposed area by radiation irradiation before development, and a cured product having a favorable pattern shape can be obtained by the subsequent development treatment.
 その他の構造単位を構成する単量体としては、上記のほか、例えば、(メタ)アクリル酸アルキルエステル、脂環式構造を有する(メタ)アクリル酸エステル、芳香環構造を有する(メタ)アクリル酸エステル、芳香族ビニル化合物、N-置換マレイミド化合物、水酸基(ただし、フェノール性水酸基を除く。)を有する単量体、環状エーテル構造(ただし、オキシラン構造及びオキセタン構造を除く。)を有する単量体、環状カーボネート構造を有する単量体等が挙げられる。 In addition to the above, monomers that make up other structural units include (meth)acrylic acid alkyl esters, (meth)acrylic acid esters having an alicyclic structure, (meth)acrylic acid esters having an aromatic ring structure, aromatic vinyl compounds, N-substituted maleimide compounds, monomers having a hydroxyl group (excluding phenolic hydroxyl groups), monomers having a cyclic ether structure (excluding an oxirane structure and an oxetane structure), and monomers having a cyclic carbonate structure. A body etc. are mentioned.
 上記単量体の具体例としては、(メタ)アクリル酸アルキルエステルとして、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-ラウリル、(メタ)アクリル酸n-ステアリル等が挙げられる。これらのうち、アルキルエステル部分を構成するアルキル基は、重合体(A)の耐熱性を確保する観点から、炭素数1~10が好ましく、炭素数1~6がより好ましい。 Specific examples of the above monomers include alkyl (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-lauryl (meth)acrylate, and n-stearyl (meth)acrylate. Among these, the alkyl group constituting the alkyl ester portion preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, from the viewpoint of ensuring the heat resistance of the polymer (A).
 脂環式構造を有する(メタ)アクリル酸エステルとしては、(メタ)アクリル酸シクロへキシル、(メタ)アクリル酸2-メチルシクロへキシル、(メタ)アクリル酸トリシクロ[5.2.1.02,6]デカン-8-イル、(メタ)アクリル酸トリシクロ[5.2.1.02,5]デカン-8-イルオキシエチル、(メタ)アクリル酸イソボルニル等が挙げられる。 Examples of (meth)acrylic esters having an alicyclic structure include cyclohexyl (meth)acrylate, 2-methylcyclohexyl (meth)acrylate, tricyclo[5.2.1.0 2,6 ]decane-8-yl (meth)acrylate, tricyclo[5.2.1.0 2,5 ]decane-8-yloxyethyl (meth)acrylate, and isobornyl (meth)acrylate.
 芳香環構造を有する(メタ)アクリル酸エステルとしては、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ナフチルメチル、(メタ)アクリル酸ナフチルエチル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸m-フェノキシフェニルメチル、(メタ)アクリル酸o-フェニルフェノキシエチル等が挙げられる。 Examples of (meth)acrylic acid esters having an aromatic ring structure include phenyl (meth)acrylate, benzyl (meth)acrylate, naphthylmethyl (meth)acrylate, naphthylethyl (meth)acrylate, phenoxyethyl (meth)acrylate, m-phenoxyphenylmethyl (meth)acrylate, and o-phenylphenoxyethyl (meth)acrylate.
 芳香族ビニル化合物としては、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、5-t-ブチル-2-メチルスチレン、ジビニルベンゼン、トリビニルベンゼン、t-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-t-ブチルスチレン、3-t-ブチルスチレン、4-t-ブチルスチレン、ビニルナフタレン、ビニルピリジン等が挙げられる。 Aromatic vinyl compounds include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, α-methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 5-t-butyl-2-methylstyrene, divinylbenzene, trivinylbenzene, t-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl)dimethylaminoethyl ether, N,N-dimethylaminoethylstyrene, N,N-dimethylaminomethylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2-t-butylstyrene, 3-t-butylstyrene, 4-t-butylstyrene, vinylnaphthalene, vinylpyridine and the like.
 N-置換マレイミド化合物としては、N-シクロヘキシルマレイミド、N-シクロペンチルマレイミド、N-(2-メチルシクロヘキシル)マレイミド、N-(4-メチルシクロヘキシル)マレイミド、N-(4-エチルシクロヘキシル)マレイミド、N-(2,6-ジメチルシクロヘキシル)マレイミド、N-ノルボルニルマレイミド、N-トリシクロデシルマレイミド、N-アダマンチルマレイミド、N-フェニルマレイミド、N-(2-メチルフェニル)マレイミド、N-(4-メチルフェニル)マレイミド、N-(4-エチルフェニル)マレイミド、N-(2,6-ジメチルフェニル)マレイミド、N-ベンジルマレイミド、N-ナフチルマレイミド等が挙げられる。 Examples of N-substituted maleimide compounds include N-cyclohexylmaleimide, N-cyclopentylmaleimide, N-(2-methylcyclohexyl)maleimide, N-(4-methylcyclohexyl)maleimide, N-(4-ethylcyclohexyl)maleimide, N-(2,6-dimethylcyclohexyl)maleimide, N-norbornylmaleimide, N-tricyclodecylmaleimide, N-adamantylmaleimide, N-phenylmaleimide, N-(2-methylphenyl)maleimide, N-(4-methylphenyl)maleimide, N-(4-ethylphenyl)maleimide, N-(2,6-dimethylphenyl)maleimide, N-benzylmaleimide, N-naphthylmaleimide and the like.
 水酸基(ただし、フェノール性水酸基を除く。)を有する単量体としては、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸5-ヒドロキシペンチル、(メタ)アクリル酸6-ヒドロキシヘキシル、グリセロールモノ(メタ)アクリレート、N-(ヒドロキシメチル)マレイミド、N-(2-ヒドロキシエチル)マレイミド、N-(3-ヒドロキシプロピル)マレイミド等が挙げられる。 Monomers having hydroxyl groups (excluding phenolic hydroxyl groups) include hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 5-hydroxypentyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, glycerol mono(meth)acrylate, N-(hydroxymethyl)methyl Reimide, N-(2-hydroxyethyl)maleimide, N-(3-hydroxypropyl)maleimide and the like.
 環状エーテル構造(ただし、オキシラン構造及びオキセタン構造を除く。)を有する単量体としては、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸テトラヒドロピラニル、(メタ)アクリル酸5-エチル-1,3-ジオキサン-5-イルメチル、(メタ)アクリル酸-1,3-ジオキサン-5-イルメチル、(メタ)アクリル酸5-メチル-1,3-ジオキサン-5-イルメチル、(メタ)アクリル酸(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル、(メタ)アクリル酸(2,2-ジメチル-1,3-ジオキソラン-4-イル)メチル、(メタ)アクリル酸(2,2-ジメチル-1,3-ジオキソラン-4-イル)エチル、2-(メタ)アクリロイルオキシメチル-1,4,6-トリオキサスピロ[4.6]ウンデカン、2-(メタ)アクリロイルオキシメチル-1,4,6-トリオキサスピロ[4.4]ノナン、2-(メタ)アクリロイルオキシメチル-1,4,6-トリオキサスピロ[4.5]デカン等が挙げられる。環状カーボネート構造を有する単量体としては、例えばグリセリンカーボネート(メタ)アクリレート等が挙げられる。 Monomers having a cyclic ether structure (excluding an oxirane structure and an oxetane structure) include tetrahydrofurfuryl (meth)acrylate, tetrahydropyranyl (meth)acrylate, 5-ethyl-1,3-dioxan-5-ylmethyl (meth)acrylate, -1,3-dioxan-5-ylmethyl (meth)acrylate, 5-methyl-1,3-dioxan-5-ylmethyl (meth)acrylate, and (2-methyl-2(meth)acrylate). -ethyl-1,3-dioxolan-4-yl)methyl, (2,2-dimethyl-1,3-dioxolan-4-yl)methyl (meth)acrylate, (2,2-dimethyl-1,3-dioxolan-4-yl)ethyl (meth)acrylate, 2-(meth)acryloyloxymethyl-1,4,6-trioxaspiro[4.6]undecane, 2-(meth)acryloyloxymethyl-1,4,6-trioxa spiro[4.4]nonane, 2-(meth)acryloyloxymethyl-1,4,6-trioxaspiro[4.5]decane and the like. Examples of monomers having a cyclic carbonate structure include glycerol carbonate (meth)acrylate and the like.
 その他の構造単位を構成する単量体としては、更に、イタコン酸ジエチル等の不飽和ジカルボン酸ジアルキルエステル化合物;1,3-ブタジエン、イソプレン等の共役ジエン化合物;(メタ)アクリロニトリル、(メタ)アクリルアミド等の窒素含有ビニル化合物;塩化ビニル、塩化ビニリデン、酢酸ビニル等が挙げられる。 Monomers constituting other structural units further include unsaturated dicarboxylic acid dialkyl ester compounds such as diethyl itaconate; conjugated diene compounds such as 1,3-butadiene and isoprene; nitrogen-containing vinyl compounds such as (meth)acrylonitrile and (meth)acrylamide; vinyl chloride, vinylidene chloride, vinyl acetate, and the like.
 重合体(A)において、その他の構造単位の含有割合は、本開示の効果を損なわない範囲において適宜設定することができる。その他の構造単位の含有割合は、重合体(A)を構成する全構造単位に対して、例えば、0モル%以上45モル%以下とすることができ、好ましくは40モル%以下、より好ましくは35モル%以下、更に好ましくは30モル%以下である。なお、各構造単位の含有割合は、通常、重合体(A)を製造する際に使用される単量体の割合と等価である。 In the polymer (A), the content ratio of other structural units can be appropriately set within a range that does not impair the effects of the present disclosure. The content of other structural units can be, for example, 0 mol% or more and 45 mol% or less, preferably 40 mol% or less, more preferably 35 mol% or less, and still more preferably 30 mol% or less, relative to all structural units constituting the polymer (A). In addition, the content ratio of each structural unit is usually equivalent to the ratio of the monomers used when producing the polymer (A).
 その他の構造単位を構成する単量体としては、アルカリ現像液に対する溶解性の改善や、広いフローマージン、得られる硬化物の耐薬品性等をバランス良く調整することができる点で、上記の中でも、(メタ)アクリル酸アルキルエステル、脂環式構造を有する(メタ)アクリル酸エステル及び芳香環構造を有する(メタ)アクリル酸エステルよりなる群から選択される少なくとも1種の単量体(以下、「(メタ)アクリル酸エステル」ともいう)を好ましく使用できる。(メタ)アクリル酸エステルに由来する構造単位の含有割合は、重合体(A)を構成する全構造単位に対して、例えば0モル%以上45モル%以下であり、より好ましくは40モル%以下であり、更に好ましくは35モル%以下であり、より更に好ましくは30モル%以下である。 Among the above, at least one monomer selected from the group consisting of (meth)acrylic acid alkyl esters, (meth)acrylic acid esters having an alicyclic structure, and (meth)acrylic acid esters having an aromatic ring structure (hereinafter also referred to as "(meth)acrylic acid ester") can be preferably used as the monomer constituting the other structural units, in that it can improve the solubility in an alkaline developer, wide the flow margin, and adjust the chemical resistance of the resulting cured product in a well-balanced manner. The content of structural units derived from (meth)acrylic ester is, for example, 0 mol% or more and 45 mol% or less, more preferably 40 mol% or less, still more preferably 35 mol% or less, and even more preferably 30 mol% or less, relative to all structural units constituting the polymer (A).
 重合体(A)において、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量(Mw)は、2000以上であることが好ましい。Mwが2000以上であると、耐熱性や耐薬品性が十分に高く、かつ良好な現像性を示す硬化物を得ることができる点で好ましい。Mwは、より好ましくは5000以上であり、更に好ましくは6000以上である。また、Mwは、成膜性を良好にする観点から、好ましくは50000以下であり、より好ましくは30000以下であり、更に好ましくは20000以下であり、より更に好ましくは18000以下である。 In the polymer (A), the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) is preferably 2000 or more. When Mw is 2000 or more, it is preferable in that a cured product having sufficiently high heat resistance and chemical resistance and good developability can be obtained. Mw is more preferably 5000 or more, still more preferably 6000 or more. In addition, Mw is preferably 50,000 or less, more preferably 30,000 or less, even more preferably 20,000 or less, and even more preferably 18,000 or less, from the viewpoint of improving film formability.
 重合体(A)において、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、4.0以下が好ましく、3.0以下がより好ましい。なお、重合体(A)が2種以上の重合体からなる場合、各重合体のMw、Mw/Mnがそれぞれ上記範囲を満たすことが好ましい。 In the polymer (A), the molecular weight distribution (Mw/Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 4.0 or less, more preferably 3.0 or less. In addition, when the polymer (A) consists of two or more kinds of polymers, it is preferable that Mw and Mw/Mn of each polymer respectively satisfy the above ranges.
 重合体(A)の含有割合は、本組成物に含まれる固形分の全量(すなわち、感放射線性組成物中の溶剤(C)以外の成分の合計質量)に対して、20質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることが更に好ましい。また、重合体(A)の含有割合は、本組成物に含まれる固形分の全量に対して、99質量%以下であることが好ましく、97質量%以下であることがより好ましい。重合体(A)の含有割合を上記範囲とすることにより、耐熱性及び耐薬品性が十分に高く、かつ良好な現像性及び透明性を示す硬化物を得ることができる。 The content of the polymer (A) is preferably 20% by mass or more, more preferably 40% by mass or more, and even more preferably 50% by mass or more, relative to the total amount of solids contained in the present composition (that is, the total mass of components other than the solvent (C) in the radiation-sensitive composition). Moreover, the content of the polymer (A) is preferably 99% by mass or less, more preferably 97% by mass or less, relative to the total amount of solids contained in the present composition. By setting the content of the polymer (A) within the above range, it is possible to obtain a cured product that exhibits sufficiently high heat resistance and chemical resistance, as well as good developability and transparency.
 重合体(A)の合成方法は特に限定されない。重合体(A)は、例えば、上述した各構造単位を導入可能な単量体を用い、適当な重合溶媒中、重合開始剤等の存在下で、ラジカル重合等の公知の方法に従って製造することができる。ラジカル重合による場合、使用する重合開始剤としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソ酪酸)ジメチル等のアゾ化合物が挙げられる。重合開始剤の使用割合は、反応に使用する単量体の全量100質量部に対して、0.01~30質量部であることが好ましい。重合溶媒としては、例えばアルコール類、エーテル類、ケトン類、エステル類、炭化水素類等の有機溶媒が挙げられる。 The method for synthesizing the polymer (A) is not particularly limited. Polymer (A), for example, using a monomer capable of introducing each structural unit described above, in a suitable polymerization solvent, in the presence of a polymerization initiator, etc., according to a known method such as radical polymerization It can be produced. In the case of radical polymerization, the polymerization initiator used includes azo compounds such as 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), and 2,2'-azobis(isobutyrate) dimethyl. The proportion of the polymerization initiator used is preferably 0.01 to 30 parts by mass with respect to 100 parts by mass of the total amount of monomers used in the reaction. Examples of the polymerization solvent include organic solvents such as alcohols, ethers, ketones, esters and hydrocarbons.
 上記の重合反応において、反応温度は、通常、30℃~180℃である。反応時間は、重合開始剤及び単量体の種類や反応温度に応じて異なるが、通常、0.5~10時間である。重合溶媒の使用量は、反応に使用するモノマーの合計量が、反応溶液の全体量に対して、0.1~60質量%になるような量にすることが好ましい。重合反応により得られた重合体は、例えば、反応溶液を大量の貧溶媒中に注ぎ、これにより得られる析出物を減圧下乾燥する方法、反応溶液をエバポレーターで減圧留去する方法等の公知の単離方法を用いて単離することができる。 In the above polymerization reaction, the reaction temperature is usually 30°C to 180°C. The reaction time varies depending on the type of polymerization initiator and monomers and the reaction temperature, but is usually 0.5 to 10 hours. The amount of the polymerization solvent used is preferably such that the total amount of the monomers used in the reaction is 0.1 to 60% by mass with respect to the total amount of the reaction solution. The polymer obtained by the polymerization reaction can be isolated using a known isolation method such as, for example, pouring the reaction solution into a large amount of poor solvent, drying the resulting precipitate under reduced pressure, or distilling off the reaction solution under reduced pressure using an evaporator.
<感放射線性酸発生剤(B)>
 本組成物に含まれる感放射線性酸発生剤(B)(以下、単に「酸発生剤(B)」ともいう)としては、放射線の照射により酸を発生して、組成物中の成分が有する酸解離性基を脱離させる物質であればよい。具体的には、波長300nm以上(好ましくは300~450nm)の放射線に感応し、酸を発生する化合物を好ましく使用できる。酸発生剤(B)として波長300nm以上の放射線に直接感応しない酸発生剤を用いる場合、増感剤と併用することによって波長300nm以上の放射線に感応し、酸を発生するようにしてもよい。酸発生剤(B)は、更に加熱によって酸を発生してもよい。酸発生剤(B)としては、酸解離定数(pKa)が4.0以下である酸を発生する化合物を好ましく使用できる。なお、本明細書において「放射線」は、可視光線、紫外線、遠紫外線、X線及び荷電粒子線を含む概念である。
<Radiation-sensitive acid generator (B)>
The radiation-sensitive acid generator (B) (hereinafter also simply referred to as "acid generator (B)") contained in the present composition may be any substance that generates an acid upon exposure to radiation and eliminates the acid-dissociable groups of the components of the composition. Specifically, a compound that responds to radiation with a wavelength of 300 nm or more (preferably 300 to 450 nm) and generates an acid can be preferably used. When an acid generator (B) that does not directly respond to radiation with a wavelength of 300 nm or longer is used, it may be used in combination with a sensitizer so that it responds to radiation with a wavelength of 300 nm or longer and generates an acid. The acid generator (B) may further generate an acid by heating. As the acid generator (B), an acid-generating compound having an acid dissociation constant (pKa) of 4.0 or less can be preferably used. In this specification, "radiation" is a concept including visible light, ultraviolet light, deep ultraviolet light, X-rays and charged particle beams.
 酸発生剤(B)としては、放射線に感応して酸を発生する公知の化合物を使用できる。酸発生剤(B)の具体例としては、例えば、オキシムスルホネート化合物、スルホンイミド化合物、オニウム塩、ハロゲン含有化合物(トリクロロメチル-s-トリアジン化合物等)、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、カルボン酸エステル化合物等が挙げられる。 A known compound that generates an acid in response to radiation can be used as the acid generator (B). Specific examples of the acid generator (B) include, for example, oxime sulfonate compounds, sulfonimide compounds, onium salts, halogen-containing compounds (trichloromethyl-s-triazine compounds, etc.), diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, carboxylic acid ester compounds, and the like.
 これらの具体例としては、例えばオキシムスルホネート化合物として、(5-プロピルスルホニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル、(5-オクチルスルホニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル、(カンファースルホニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル、(5-p-トルエンスルホニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル、(2-[2-(4-メチルフェニルスルホニルオキシイミノ)]-2,3-ジヒドロチオフェン-3-イリデン]-2-(2-メチルフェニル)アセトニトリル)、2-(オクチルスルホニルオキシイミノ)-2-(4-メトキシフェニル)アセトニトリル、及びこれらの誘導体、国際公開第2016/124493号に記載の化合物等が挙げられる。オキシムスルホネート化合物の市販品としては、BASF社製のIrgacure PAG121等が挙げられる。 Specific examples thereof include, for example, oxime sulfonate compounds such as (5-propylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile, (5-octylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile, (camphorsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile, (5 -p-toluenesulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile, (2-[2-(4-methylphenylsulfonyloxyimino)]-2,3-dihydrothiophen-3-ylidene]-2-(2-methylphenyl)acetonitrile), 2-(octylsulfonyloxyimino)-2-(4-methoxyphenyl)acetonitrile, and derivatives thereof, WO 2016/1 24493, and the like. Commercially available oxime sulfonate compounds include Irgacure PAG121 manufactured by BASF.
 スルホンイミド化合物の具体例としては、N-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(カンファスルホニルオキシ)スクシンイミド、N-(4-メチルフェニルスルホニルオキシ)スクシンイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)スクシンイミド、N-(4-フルオロフェニルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(カンファスルホニルオキシ)フタルイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)フタルイミド、N-(2-フルオロフェニルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(カンファスルホニルオキシ)ジフェニルマレイミド、4-メチルフェニルスルホニルオキシ)ジフェニルマレイミド、トリフルオロメタンスルホン酸-1,8-ナフタルイミド、及びこれらの誘導体が挙げられる。 Specific examples of sulfonimide compounds include N-(trifluoromethylsulfonyloxy)succinimide, N-(camphorsulfonyloxy)succinimide, N-(4-methylphenylsulfonyloxy)succinimide, N-(2-trifluoromethylphenylsulfonyloxy)succinimide, N-(4-fluorophenylsulfonyloxy)succinimide, N-(trifluoromethylsulfonyloxy)phthalimide, N-(camphorsulfonyloxy)phthalimide, N-(2 -trifluoromethylphenylsulfonyloxy)phthalimide, N-(2-fluorophenylsulfonyloxy)phthalimide, N-(trifluoromethylsulfonyloxy)diphenylmaleimide, N-(camphorsulfonyloxy)diphenylmaleimide, 4-methylphenylsulfonyloxy)diphenylmaleimide, trifluoromethanesulfonic acid-1,8-naphthalimide, and derivatives thereof.
 オニウム塩としては、ジフェニルヨードニウム塩、トリフェニルスルホニウム塩、スルホニウム塩、第4級アンモニウム塩、ベンゾチアゾニウム塩、テトラヒドロチオフェニウム塩等が挙げられる。これらの具体例としては、ジフェニルヨードニウム塩として、例えばジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムヘキサフルオロホスホナート等を;トリフェニルスルホニウム塩として、例えばトリフェニルスルホニウムトリフルオロメタンスルホナート、トリフェニルスルホニウムカンファースルホナート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムトリフルオロアセテート、トリフェニルスルホニウム-p-トルエンスルホナート、トリフェニルスルホニウムブチルトリス(2、6-ジフルオロフェニル)ボレート等を挙げることができる。 Onium salts include diphenyliodonium salts, triphenylsulfonium salts, sulfonium salts, quaternary ammonium salts, benzothiazonium salts, tetrahydrothiophenium salts and the like. Specific examples thereof include diphenyliodonium salts such as diphenyliodonium tetrafluoroborate and diphenyliodonium hexafluorophosphonate; and triphenylsulfonium salts such as triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium camphorsulfonate, triphenylsulfonium tetrafluoroborate, triphenylsulfonium trifluoroacetate, triphenylsulfonium-p-toluenesulfonate, and triphenylsulfonium butyltris(2,6-difluorophenyl)borate. .
 また、スルホニウム塩として、例えば、ベンジルスルホニウム塩、ジベンジルスルホニウム塩、置換ベンジルスルホニウム塩等を挙げることができる。アルキルスルホニウム塩としては、例えば4-アセトキシフェニルジメチルスルホニウムヘキサフルオロアンチモネート、4-アセトキシフェニルジメチルスルホニウムヘキサフルオロアルセネート等のアルキルスルホニウム塩;ベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート等のベンジルスルホニウム塩;ジベンジル-4-ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート、ジベンジル-4-ヒドロキシフェニルスルホニウムヘキサフルオロホスフェート等のジベンジルスルホニウム塩;p-クロロベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、p-ニトロベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート等の置換ベンジルスルホニウム塩;等を挙げることができる。 Examples of sulfonium salts include benzylsulfonium salts, dibenzylsulfonium salts, substituted benzylsulfonium salts, and the like. Examples of alkylsulfonium salts include alkylsulfonium salts such as 4-acetoxyphenyldimethylsulfonium hexafluoroantimonate and 4-acetoxyphenyldimethylsulfonium hexafluoroarsenate; benzylsulfonium salts such as benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate and benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate; dibenzylsulfonium salts such as dibenzyl-4-hydroxyphenylsulfonium hexafluoroantimonate and dibenzyl-4-hydroxyphenylsulfonium hexafluorophosphate; -substituted benzylsulfonium salts such as hydroxyphenylmethylsulfonium hexafluoroantimonate and p-nitrobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate;
 ベンゾチアゾニウム塩としては、例えば3-ベンジルベンゾチアゾニウムヘキサフルオロアンチモネート、3-ベンジルベンゾチアゾニウムヘキサフルオロホスフェート、3-ベンジルベンゾチアゾニウムテトラフルオロボレート、3-(p-メトキシベンジル)ベンゾチアゾニウムヘキサフルオロアンチモネート、3-ベンジル-2-メチルチオベンゾチアゾニウムヘキサフルオロアンチモネート、3-ベンジル-5-クロロベンゾチアゾニウムヘキサフルオロアンチモネート等が挙げられる。 Examples of benzothiazonium salts include 3-benzylbenzothiazonium hexafluoroantimonate, 3-benzylbenzothiazonium hexafluorophosphate, 3-benzylbenzothiazonium tetrafluoroborate, 3-(p-methoxybenzyl)benzothiazonium hexafluoroantimonate, 3-benzyl-2-methylthiobenzothiazonium hexafluoroantimonate, 3-benzyl-5-chlorobenzothiazonium hexafluoroantimonate, and the like.
 テトラヒドロチオフェニウム塩としては、例えば4,7-ジ-n-ブトキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4,7-ジ-n-ブトキシナフチルテトラヒドロチオフェニウム-10-カンファースルホネート、等を挙げることができる。また、オニウム塩としては、特開2014-174235号公報、特開2016-87486号公報、特開2014-157252号公報、特開2015-18131号公報等に記載のオニウム塩も酸発生剤(B)として用いることができる。 Examples of tetrahydrothiophenium salts include 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate, 4,7-di-n-butoxynaphthyltetrahydrothiophenium-10-camphorsulfonate, and the like. In addition, as the onium salt, the onium salts described in JP-A-2014-174235, JP-A-2016-87486, JP-A-2014-157252, JP-A-2015-18131, etc. can also be used as the acid generator (B).
 また、オキシムスルホネート化合物、スルホンイミド化合物、オニウム塩、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、及びカルボン酸エステル化合物の具体例としては、特開2014-157252号公報の段落0078~0106に記載された化合物、国際公開第2016/124493号に記載された化合物等が挙げられる。酸発生剤(B)としては、イオン性光酸発生型又は非イオン性光酸発生型の光カチオン重合開始剤として公知の化合物を使用することもできる。酸発生剤(B)としては、これらのうち、放射線感度の観点から、オキシムスルホネート化合物、スルホンイミド化合物及びオニウム塩よりなる群から選択される少なくとも1種を好ましく使用できる。 Specific examples of the oxime sulfonate compound, sulfonimide compound, onium salt, halogen-containing compound, diazomethane compound, sulfone compound, sulfonate ester compound, and carboxylate ester compound include compounds described in paragraphs 0078 to 0106 of JP-A-2014-157252, compounds described in International Publication No. 2016/124493, and the like. As the acid generator (B), a compound known as an ionic photoacid-generating type or nonionic photoacid-generating type cationic polymerization initiator can also be used. Among these, from the viewpoint of radiation sensitivity, at least one selected from the group consisting of oxime sulfonate compounds, sulfonimide compounds and onium salts can be preferably used as the acid generator (B).
 本組成物において、酸発生剤(B)の含有割合は、重合体(A)100質量部に対して、0.5質量部以上とすることが好ましく、1質量部以上とすることがより好ましく、2質量部以上とすることが更に好ましい。また、酸発生剤(B)の含有割合は、重合体(A)100質量部に対して、30質量部以下とすることが好ましく、20質量部以下とすることがより好ましく、10質量部以下とすることが更に好ましい。酸発生剤(B)の含有割合を0.5質量部以上とすると、放射線の照射によって酸が十分に生成し、アルカリ現像液に対する、放射線の照射部分と未照射部分との溶解度の差を十分に大きくできる。これにより、良好なパターニングを行うことができる。また、工程(V)の際に重合体(A)との反応に関与する酸の量を多くでき、耐熱性及び耐薬品性により優れたレンズを得ることができる。一方、酸発生剤(B)の含有割合を30質量部以下とすると、現像工程の際に、放射線の照射部分における未反応の酸発生剤(B)の量を十分に少なくでき、酸発生剤(B)の残存による現像性の低下を抑制することができる。 In the present composition, the content of the acid generator (B) is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and even more preferably 2 parts by mass or more, relative to 100 parts by mass of the polymer (A). The content of the acid generator (B) is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and even more preferably 10 parts by mass or less, relative to 100 parts by mass of the polymer (A). When the content of the acid generator (B) is 0.5 parts by mass or more, sufficient acid is generated by irradiation with radiation, and the difference in solubility in an alkaline developer between the irradiated portion and the non-irradiated portion can be sufficiently increased. Thereby, favorable patterning can be performed. Also, the amount of acid participating in the reaction with the polymer (A) can be increased in the step (V), and a lens with excellent heat resistance and chemical resistance can be obtained. On the other hand, when the content of the acid generator (B) is 30 parts by mass or less, the amount of the unreacted acid generator (B) in the radiation-irradiated portion can be sufficiently reduced during the development process, and deterioration in developability due to the remaining acid generator (B) can be suppressed.
<溶剤(C)>
 本組成物は、重合体(A)、酸発生剤(B)、及び必要に応じて配合されるその他の成分が、好ましくは溶剤(C)に溶解又は分散された液状の組成物である。溶剤(C)としては、本組成物に配合される各成分を溶解し、かつ各成分と反応しない有機溶媒が好ましい。
<Solvent (C)>
The present composition is a liquid composition in which the polymer (A), the acid generator (B), and other optional ingredients are preferably dissolved or dispersed in the solvent (C). As the solvent (C), an organic solvent that dissolves each component blended in the present composition and that does not react with each component is preferred.
 溶剤(C)の具体例としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール、オクタノール等のアルコール類;酢酸エチル、酢酸ブチル、乳酸エチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等のエステル類;エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、エチレンジグリコールモノメチルエーテル、エチレンジグリコールエチルメチルエーテル、ジメチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル等のエーテル類;ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素が挙げられる。これらのうち、溶剤(C)は、エーテル類及びエステル類よりなる群から選択される少なくとも1種を含むことが好ましく、エチレングリコールアルキルエーテルアセテート、ジエチレングリコール類、プロピレングリコールモノアルキルエーテル、及びプロピレングリコールモノアルキルエーテルアセテートよりなる群から選択される少なくとも1種であることがより好ましい。 Specific examples of the solvent (C) include alcohols such as methanol, ethanol, isopropanol, butanol, and octanol; Ethers such as methylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether; Amides such as dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene. Among these, the solvent (C) preferably contains at least one selected from the group consisting of ethers and esters, and more preferably at least one selected from the group consisting of ethylene glycol alkyl ether acetate, diethylene glycols, propylene glycol monoalkyl ether, and propylene glycol monoalkyl ether acetate.
<その他の成分>
 本組成物は、上述した重合体(A)、酸発生剤(B)及び溶剤(C)に加え、これら以外の成分(以下、「その他の成分」ともいう)を更に含有していてもよい。その他の成分としては、含窒素塩基性化合物(D)、多官能反応性化合物(E)、界面活性剤、接着助剤等が挙げられる。
<Other ingredients>
In addition to the polymer (A), acid generator (B) and solvent (C) described above, the present composition may further contain components other than these (hereinafter also referred to as "other components"). Other components include a nitrogen-containing basic compound (D), a polyfunctional reactive compound (E), a surfactant, an adhesion aid, and the like.
・含窒素塩基性化合物(D)
 含窒素塩基性化合物(D)(以下、単に「塩基性化合物(D)」ともいう)は、露光により酸発生剤(B)から発生した酸の拡散長を制御する酸拡散制御剤として本組成物に配合される。本組成物が含窒素塩基性化合物(D)を含むことにより、酸の拡散長を適度に制御することができ、パターン形状を良好にすることができる。
・ Nitrogen-containing basic compound (D)
The nitrogen-containing basic compound (D) (hereinafter also simply referred to as "basic compound (D)") is blended into the present composition as an acid diffusion control agent that controls the diffusion length of the acid generated from the acid generator (B) upon exposure. By including the nitrogen-containing basic compound (D) in the present composition, the diffusion length of the acid can be appropriately controlled, and the pattern shape can be improved.
 含窒素塩基性化合物(D)としては、例えば、化学増幅型レジストにおいて酸拡散制御剤として用いられる化合物の中から任意に選択して使用することができる。具体的には、含窒素塩基性化合物(D)としては、例えば、脂肪酸アミン、芳香族アミン、複素環式アミン、4級アンモニウムヒドロキシド、カルボン酸4級アンモニウム塩等が挙げられる。含窒素塩基性化合物(D)の具体例としては、特開2011-232632号公報の段落0128~0147に記載された化合物等が挙げられる。含窒素塩基性化合物(D)としては、中でも、芳香族アミン及び複素環式アミンよりなる群から選択される少なくとも1種を好ましく使用することができる。 As the nitrogen-containing basic compound (D), for example, it can be arbitrarily selected from compounds used as acid diffusion control agents in chemically amplified resists. Specifically, examples of the nitrogen-containing basic compound (D) include fatty acid amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, carboxylic acid quaternary ammonium salts, and the like. Specific examples of the nitrogen-containing basic compound (D) include compounds described in paragraphs 0128 to 0147 of JP-A-2011-232632. At least one selected from the group consisting of aromatic amines and heterocyclic amines can be preferably used as the nitrogen-containing basic compound (D).
 芳香族アミン及び複素環式アミンとしては、例えば、アニリン、N-メチルアニリン、N-エチルアニリン、N-プロピルアニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2-ニトロアニリン、3-ニトロアニリン、4-ニトロアニリン、2,4-ジニトロアニリン、2,6-ジニトロアニリン、3,5-ジニトロアニリン、N,N-ジメチルトルイジン等のアニリン誘導体;イミダゾール、4-メチルイミダゾール、4-メチル-2-フェニルイミダゾール、ベンズイミダゾール、2-フェニルベンズイミダゾール、トリフェニルイミダゾール、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール等のイミダゾール誘導体;ピロール、2H-ピロール、1-メチルピロール、2,4-ジメチルピロール、2,5-ジメチルピロール、N-メチルピロール等のピロール誘導体;ピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4-(1-ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3-メチル-2-フェニルピリジン、3-メチル-4-フェニルピリジン、4-tert-ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1-メチル-2-ピリドン、4-ピロリジノピリジン、1-メチル-4-フェニルピリジン、2-(1-エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン、ニコチン等のピリジン誘導体;N-アセチルモルフォリン等のモルフォリン誘導体のほか、特開2011-232632号公報に記載の化合物が挙げられる。 Examples of aromatic amines and heterocyclic amines include aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N,N-dimethylaniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, ethylaniline, propylaniline, trimethylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 2,6-dinitroaniline, 3,5-dinitroaniline, N, Aniline derivatives such as N-dimethyltoluidine; imidazole, 4-methylimidazole, 4-methyl-2-phenylimidazole, benzimidazole, 2-phenylbenzimidazole, triphenylimidazole, Nt-butoxycarbonyl-2-phenylbenzimidazole derivatives; pyrrole, 2H-pyrrole, 1-methylpyrrole, 2,4-dimethylpyrrole, 2,5-dimethylpyrrole, N-methylpyrrole Pyrrole derivatives such as; Lysine, 1-methyl-2-pyridone, 4-pyrrolidinopyridine, 1-methyl-4-phenylpyridine, 2-(1-ethylpropyl)pyridine, aminopyridine, dimethylaminopyridine, pyridine derivatives such as nicotine; morpholine derivatives such as N-acetylmorpholine, and compounds described in JP-A-2011-232632.
 本組成物が含窒素塩基性化合物(D)を含む場合、その含有割合は、含窒素塩基性化合物(D)の配合によって本組成物のパターン形成能を十分に改善する観点から、重合体(A)100質量部に対して、0.005質量部以上であることが好ましく、0.01質量部以上であることがより好ましい。また、含窒素塩基性化合物(D)の含有割合は、重合体(A)100質量部に対して、10質量部以下であることが好ましく、5質量部以下であることがより好ましい。 When the composition contains the nitrogen-containing basic compound (D), the content ratio thereof is preferably 0.005 parts by mass or more, more preferably 0.01 part by mass or more, relative to 100 parts by mass of the polymer (A), from the viewpoint of sufficiently improving the pattern forming ability of the composition by blending the nitrogen-containing basic compound (D). The content of the nitrogen-containing basic compound (D) is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, relative to 100 parts by mass of the polymer (A).
・多官能反応性化合物(E)
 多官能反応性化合物(E)(以下、単に「反応性化合物(E)」ともいう)は、刺激(好ましくは熱)により重合体(A)と反応し得る官能基を2個以上有する化合物である。本組成物が反応性化合物(E)を更に含むことにより、フローマージンをより広くでき、また得られる硬化物の耐薬品性を更に向上させることができる。なお、反応性化合物(E)は重合体(A)とは異なる成分である。
- Polyfunctional reactive compound (E)
The polyfunctional reactive compound (E) (hereinafter also simply referred to as "reactive compound (E)") is a compound having two or more functional groups capable of reacting with the polymer (A) upon stimulation (preferably heat). By further including the reactive compound (E) in the present composition, the flow margin can be widened, and the chemical resistance of the obtained cured product can be further improved. Note that the reactive compound (E) is a component different from the polymer (A).
 反応性化合物(E)が有する官能基は、熱付与により重合体(A)が有する官能基と反応して架橋構造を形成する基が好ましい。反応性化合物(E)が有する官能基としては、例えば、オキシラニル基、オキセタニル基、(メタ)アクリロイル基、ホルミル基、アセチル基、ビニル基、イソプロペニル基、アルコキシメチル基、メチロール基等が挙げられ、重合体(A)が有する官能基に応じて適宜選択することができる。反応性化合物(E)としては、重合体(A)中のカルボキシ基又は水酸基との熱による反応性が高い点で、中でも、多官能オキシラン化合物、多官能オキセタン化合物、多官能メラミン化合物及び多官能アルコキシメチル化合物よりなる群から選択される少なくとも1種を好ましく使用できる。 The functional group possessed by the reactive compound (E) is preferably a group that reacts with the functional group possessed by the polymer (A) upon application of heat to form a crosslinked structure. Examples of the functional group possessed by the reactive compound (E) include an oxiranyl group, an oxetanyl group, a (meth)acryloyl group, a formyl group, an acetyl group, a vinyl group, an isopropenyl group, an alkoxymethyl group, a methylol group, etc., and can be appropriately selected according to the functional group possessed by the polymer (A). As the reactive compound (E), at least one compound selected from the group consisting of polyfunctional oxirane compounds, polyfunctional oxetane compounds, polyfunctional melamine compounds and polyfunctional alkoxymethyl compounds can be preferably used because of its high thermal reactivity with the carboxy groups or hydroxyl groups in the polymer (A).
 反応性化合物(E)の具体例としては、多官能オキシラン化合物として、例えばビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールADジグリシジルエーテル等のビスフェノールのポリグリシジルエーテル類;1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等の多価アルコールのポリグリシジルエーテル類;エチレングリコール、プロピレングリコール、グリセリンなどの脂肪族多価アルコールに1種又は2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールの脂肪族ポリグリシジルエーテル類;3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタ-ジオキサンなどの、分子内に2個以上の3,4-エポキシシクロヘキシル基を有する化合物;ビスフェノールAノボラック型エポキシ樹脂等のフェノールノボラック型エポキシ樹脂;クレゾールノボラック型エポキシ樹脂;ポリフェノール型エポキシ樹脂;環状脂肪族エポキシ樹脂;脂肪族長鎖二塩基酸のジグリシジルエステル類;高級脂肪酸のグリシジルエステル類;エポキシ化大豆油、エポキシ化アマニ油等が挙げられる。 Specific examples of the reactive compound (E) include bisphenol polyglycidyl ethers such as bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, and hydrogenated bisphenol AD diglycidyl ether; polyglycidyl ethers of polyhydric alcohols such as phosphorus triglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol diglycidyl ether and polypropylene glycol diglycidyl ether; aliphatic polyglycidyl ethers of polyether polyols obtained by adding one or more alkylene oxides to aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin; compounds having two or more 3,4-epoxycyclohexyl groups in the molecule, such as -epoxycyclohexyl-5,5-spiro-3,4-epoxy)cyclohexane-meta-dioxane; are mentioned.
 多官能オキセタン化合物としては、3,7-ビス(3-オキセタニル)-5-オキサ-ノナン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,2-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エタン、1,3-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]プロパン、ビス[1-エチル(3-オキセタニル)]メチルエーテル、ビス(3-エチル-3-オキセタニルメチル)エーテル、エチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、トリエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、テトラエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、1,3-ビス(3-エチル-3-オキセタニルメトキシ)プロパン、1,4-ビス(3-エチル-3-オキセタニルメトキシ)ブタン、1,4-ビス(3-エチル-3-オキセタニルメトキシメチル)ベンゼン、1,3-ビス(3-エチル-3-オキセタニルメトキシメチル)ベンゼン、1,2-ビス(3-エチル-3-オキセタニルメトキシメチル)ベンゼン、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、2,2’-ビス(3-エチル-3-オキセタニルメトキシメチル)ビフェニル、1,6-ビス((3-メチルオキセタン-3-イル)メトキシ)ヘキサン、1,6-ビス((3-エチルオキセタン-3-イル)メトキシ)ヘキサン、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン等が挙げられる。  As polyfunctional oxetane compounds, 3,7-bis(3-oxetanyl)-5-oxa-nonane, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, 1,2-bis[(3-ethyl-3-oxetanylmethoxy)methyl]ethane, 1,3-bis[(3-ethyl-3-oxetanylmethoxy)methyl]propane, bis[1-ethyl(3-oxetanyl) ] methyl ether, bis(3-ethyl-3-oxetanylmethyl) ether, ethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, triethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, tetraethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, 1,3-bis(3-ethyl-3-oxetanylmethoxy)propane, 1,4-bis(3-ethyl-3-oxetanylmethoxy)butane , 1,4-bis(3-ethyl-3-oxetanylmethoxymethyl)benzene, 1,3-bis(3-ethyl-3-oxetanylmethoxymethyl)benzene, 1,2-bis(3-ethyl-3-oxetanylmethoxymethyl)benzene, 4,4'-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl, 2,2'-bis(3-ethyl-3-oxetanylmethoxymethyl)biphenyl, 1,6-bis( (3-methyloxetan-3-yl)methoxy)hexane, 1,6-bis((3-ethyloxetan-3-yl)methoxy)hexane, 3-ethyl-3{[(3-ethyloxetan-3-yl)methoxy]methyl}oxetane and the like.
 多官能メラミン化合物としては、ヘキサメトキシメチルメラミン(2,4,6-トリス[ビス(メトキシメチル)アミノ]-1,3,5-トリアジン)、ヘキサエトキシメチルメラミン、ヘキサプロポキシメチルメラミン、ヘキサブトキシメチルメラミン、ヘキサペンチルオキシメチルメラミン等が挙られる。 Examples of polyfunctional melamine compounds include hexamethoxymethylmelamine (2,4,6-tris[bis(methoxymethyl)amino]-1,3,5-triazine), hexaethoxymethylmelamine, hexapropoxymethylmelamine, hexabutoxymethylmelamine, and hexapentyloxymethylmelamine.
 多官能アルコキシメチル化合物としては、多価フェノール化合物とホルムアルデヒドとの反応生成物が挙げられる。多官能フェノール化合物の具体例としては、4-(1-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]フェニル}-1-メチルエチル)フェノール、1,1,1-トリス(4-ヒドロキシフェニル)エタン、4,4’-ジヒドロキシビフェニル等が挙げられる。また、多官能アルコキシメチル化合物の市販品として、HMOM-TPHAP(本州化学社製)、ニカラックMw-100LM、ニカラックMx-750LM、ニカラックMx-270、ニカラックMx-280(以上、三和ケミカル社製)等が挙げられる。 Examples of polyfunctional alkoxymethyl compounds include reaction products of polyhydric phenol compounds and formaldehyde. Specific examples of polyfunctional phenol compounds include 4-(1-{4-[1,1-bis(4-hydroxyphenyl)ethyl]phenyl}-1-methylethyl)phenol, 1,1,1-tris(4-hydroxyphenyl)ethane, and 4,4'-dihydroxybiphenyl. Commercially available polyfunctional alkoxymethyl compounds include HMOM-TPHAP (manufactured by Honshu Chemical Co., Ltd.), Nicalac Mw-100LM, Nicalac Mx-750LM, Nicalac Mx-270, and Nicalac Mx-280 (manufactured by Sanwa Chemical Co., Ltd.).
 本組成物中に反応性化合物(E)を配合する場合、反応性化合物(E)の含有割合は、フローマージンを広く確保する観点から、本組成物中に含まれる重合体(A)の合計量100質量部に対して、0.05質量部以上が好ましく、0.1質量部以上がより好ましい。また、感度の低下を抑制する観点や、工程(II)の放射線照射によって露光部に酸を十分に発生させて、良好なパターン形状を有するマイクロレンズを得る観点から、反応性化合物(E)の含有割合は、本組成物中に含まれる重合体(A)の合計量100質量部に対して、5質量部以下が好ましく、4質量部以下がより好ましく、2質量部以下が更に好ましい。 When the reactive compound (E) is blended in the composition, the content of the reactive compound (E) is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, with respect to 100 parts by mass of the total amount of the polymer (A) contained in the composition, from the viewpoint of ensuring a wide flow margin. In addition, from the viewpoint of suppressing a decrease in sensitivity and from the viewpoint of obtaining a microlens having a favorable pattern shape by sufficiently generating an acid in the exposed area by the radiation irradiation in the step (II), the content of the reactive compound (E) is preferably 5 parts by mass or less, more preferably 4 parts by mass or less, more preferably 2 parts by mass or less with respect to 100 parts by mass of the total amount of the polymer (A) contained in the present composition.
・界面活性剤
 界面活性剤は、本組成物の塗布性(濡れ広がり性や塗布ムラの低減)を改良するために使用することができる。界面活性剤としては、例えば、フッ素系界面活性剤、シリコーン系界面活性剤、ノニオン系界面活性剤が挙げられる。
-Surfactant A surfactant can be used to improve the applicability of the present composition (reduction of spreadability and uneven application). Examples of surfactants include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
 界面活性剤の具体例としては、フッ素系界面活性剤として、以下商品名で、メガファックF-171、同F-172、同F-173、同F-251、同F-430、F-554、F-563(DIC社製);フロラードFC430、同FC431(住友スリーエム社製);アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106、同S-611(AGCセイミケミカル社製);ポリフローNo.75、同No.95(共栄社化学社製);FTX-218(ネオス社製);エフトップEF301、同EF303、同EF352(新秋田化成社製)等が挙げられる。 Specific examples of surfactants include the following trade names as fluorosurfactants: Megafac F-171, F-172, F-173, F-251, F-430, F-554, F-563 (manufactured by DIC); Florard FC430, FC431 (manufactured by Sumitomo 3M); 101, SC-102, SC-103, SC-104, SC-105, SC-106, S-611 (manufactured by AGC Seimi Chemical Co., Ltd.); 75, same No. 95 (manufactured by Kyoeisha Chemical Co., Ltd.); FTX-218 (manufactured by Neos); F-top EF301, EF303 and EF352 (manufactured by Shin-Akita Kasei).
 シリコーン系界面活性剤としては、以下商品名で、SH200-100cs、SH-28PA、SH-30PA、SH-89PA、SH-190、SH-8400、FLUID、SH-193、SZ-6032、SF-8428、DC-57、DC-190、PAINTAD19、FZ-2101、FZ-77、FZ-2118、L-7001、L-7002(東レ・ダウコーニング・シリコーン社製);オルガノシロキサンポリマーKP341(信越化学工業社製);BYK-300、同306、同310、同330、同335、同341、同344、同370、同340、同345(ビックケミー・ジャパン社製)等が挙げられる。 The following product names of silicone-based surfactants include SH200-100cs, SH-28PA, SH-30PA, SH-89PA, SH-190, SH-8400, FLUID, SH-193, SZ-6032, SF-8428, DC-57, DC-190, PAINTAD19, FZ-2101, FZ-77 , FZ-2118, L-7001, L-7002 (manufactured by Dow Corning Toray Silicone Co., Ltd.); organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.);
 ノニオン系界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等が挙げられる。 Examples of nonionic surfactants include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, and polyethylene glycol distearate.
 本組成物中に界面活性剤を配合する場合、界面活性剤の含有割合は、本組成物中に含まれる重合体(A)の合計量100質量部に対して、0.01~1.5質量部が好ましく、0.02~1.2質量部がより好ましく、0.05~1.0質量部が更に好ましい。 When a surfactant is blended in the composition, the content of the surfactant is preferably 0.01 to 1.5 parts by mass, more preferably 0.02 to 1.2 parts by mass, and even more preferably 0.05 to 1.0 parts by mass with respect to 100 parts by mass of the total amount of the polymer (A) contained in the composition.
・接着助剤
 接着助剤は、本組成物を用いて形成される硬化物と基材との接着性を向上させる成分である。接着助剤としては、反応性官能基を有する官能性シランカップリング剤を好ましく使用できる。官能性シランカップリング剤が有する反応性官能基としては、カルボキシ基、(メタ)アクリロイル基、エポキシ基、ビニル基、イソシアネート基等が挙げられる。
- Adhesion aid The adhesion aid is a component that improves the adhesion between the cured product formed using the present composition and the substrate. A functional silane coupling agent having a reactive functional group can be preferably used as the adhesion aid. A carboxy group, a (meth)acryloyl group, an epoxy group, a vinyl group, an isocyanate group etc. are mentioned as a reactive functional group which a functional silane coupling agent has.
 官能性カップリング剤の具体例としては、例えば、トリメトキシシリル安息香酸、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシラン等が挙げられる。 Specific examples of functional coupling agents include trimethoxysilylbenzoic acid, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxysilane, and 3-isocyanatopropyltriethoxysilane. be done.
 本組成物が接着助剤を含む場合、その含有割合は、本組成物に含まれる重合体(A)100質量部に対して、0.01質量部以上4質量部以下であることが好ましく、0.1質量部以上2質量部以下であることがより好ましい。 When the composition contains an adhesion aid, the content is preferably 0.01 parts by mass or more and 4 parts by mass or less, more preferably 0.1 parts by mass or more and 2 parts by mass or less with respect to 100 parts by mass of the polymer (A) contained in the composition.
・エポキシ基含有化合物について
 本組成物は、その他の成分として、オキシラニル基又はオキセタニル基を有する化合物(以下、「エポキシ基含有化合物」ともいう)を含まないか、又はエポキシ基含有化合物を含む場合にはその含有量が比較的少ないことが好ましい。これにより、工程(II)における放射線の照射によって露光部に酸を十分に発生させることができ、その後に実施される現像処理、露光処理及び加熱処理によって、良好なパターン形状を有する硬化物を得ることができる。
・About the epoxy group-containing compound It is preferable that the present composition does not contain a compound having an oxiranyl group or an oxetanyl group (hereinafter also referred to as an "epoxy group-containing compound") as another component, or if it contains an epoxy group-containing compound, the content is relatively small. As a result, sufficient acid can be generated in the exposed area by irradiation with radiation in step (II), and a cured product having a favorable pattern shape can be obtained by the subsequent development treatment, exposure treatment and heat treatment.
 エポキシ基含有化合物は、単官能化合物及び多官能化合物を含む。単官能化合物の例としては、接着助剤として例示した化合物のうちエポキシ基を有する化合物が挙げられる。また、多官能化合物の例としては、多官能反応性化合物(E)の説明において多官能オキシラン化合物、多官能オキセタン化合物として例示した化合物が挙げられる。 Epoxy group-containing compounds include monofunctional compounds and polyfunctional compounds. Examples of monofunctional compounds include compounds having an epoxy group among the compounds exemplified as adhesion promoters. Examples of the polyfunctional compound include the compounds exemplified as the polyfunctional oxirane compound and the polyfunctional oxetane compound in the description of the polyfunctional reactive compound (E).
 本組成物におけるエポキシ基含有化合物の含有量は、本組成物に含まれる重合体(A)の合計量に対して、0質量%以上5質量%以下であることが好ましく、0質量%以上4質量%以下であることがより好ましく、0質量%以上2質量%以下であることが更に好ましく、0質量%以上1質量%以下であることがより更に好ましい。エポキシ基含有化合物の含有量が上記範囲であると、工程(II)の放射線照射によって露光部に酸を十分に発生させることができ、良好なパターン形状を有するマイクロレンズを形成することができる。 The content of the epoxy group-containing compound in the composition is preferably 0% by mass or more and 5% by mass or less, more preferably 0% by mass or more and 4% by mass or less, still more preferably 0% by mass or more and 2% by mass or less, and even more preferably 0% by mass or more and 1% by mass or less. When the content of the epoxy group-containing compound is within the above range, sufficient acid can be generated in the exposed area by the radiation irradiation in step (II), and a microlens having a favorable pattern shape can be formed.
 その他の成分としては、上記のほか、例えば、酸化防止剤、増感剤、光崩壊性塩基、軟化剤、可塑剤、反応開始剤(光ラジカル重合開始剤等)、重合禁止剤、連鎖移動剤等が挙げられる。これらの成分の配合割合は、本開示の効果を損なわない範囲で各成分に応じて適宜選択される。 In addition to the above, other components include, for example, antioxidants, sensitizers, photodegradable bases, softeners, plasticizers, reaction initiators (photoradical polymerization initiators, etc.), polymerization inhibitors, chain transfer agents, and the like. The mixing ratio of these components is appropriately selected according to each component within a range that does not impair the effects of the present disclosure.
 本組成物は、重合体(A)、酸発生剤(B)及び溶剤(C)、並びに任意に配合されるその他の成分を所定の割合で混合することにより得ることができる。各成分を混合することにより得られる組成物は、例えば孔径0.5μm以下のフィルタでろ過してもよい。 The composition can be obtained by mixing the polymer (A), the acid generator (B), the solvent (C), and optionally other ingredients in a predetermined ratio. A composition obtained by mixing each component may be filtered through a filter having a pore size of 0.5 μm or less, for example.
 本組成物は、その固形分濃度(すなわち、感放射線性組成物中の溶剤(C)以外の成分の合計質量が、感放射線性組成物の全質量に対して占める割合)は、粘性や揮発性等を考慮して適宜に選択されるが、好ましくは1~60質量%の範囲である。固形分濃度が1質量%以上であると、本組成物を基板上に塗布した際に塗膜の膜厚を十分に確保できる点で好ましい。また、固形分濃度が60質量%以下であると、塗膜の膜厚が過大となりすぎず、更に本組成物の粘性を適度に高くでき、良好な塗布性を確保できる点で好ましい。本組成物における固形分濃度は、より好ましくは2~50質量%であり、更に好ましくは5~40質量%である。 The solid content concentration of the present composition (that is, the ratio of the total mass of components other than the solvent (C) in the radiation-sensitive composition to the total mass of the radiation-sensitive composition) is appropriately selected in consideration of viscosity, volatility, etc., but is preferably in the range of 1 to 60% by mass. A solid content concentration of 1% by mass or more is preferable in that a sufficient film thickness can be ensured when the present composition is applied onto a substrate. Further, when the solid content concentration is 60% by mass or less, the film thickness of the coating film does not become excessively large, and the viscosity of the present composition can be increased appropriately, which is preferable in terms of ensuring good coatability. The solid content concentration in the present composition is more preferably 2 to 50% by mass, still more preferably 5 to 40% by mass.
[レンズの製造方法]
 上記のように調製された感放射線性組成物を用い、サーマルフロー方式を適用することによりマイクロレンズを製造することができる。本組成物は特に、アルカリ現像液を用いてパターンを形成してマイクロレンズとするポジ型のパターン形成材料として好適である。以下、本開示のマイクロレンズの製造方法が備える各工程(工程(I)~(V))について説明する。
[Lens manufacturing method]
A microlens can be produced by applying a thermal flow method using the radiation-sensitive composition prepared as described above. The present composition is particularly suitable as a positive pattern-forming material for forming a pattern into a microlens using an alkaline developer. Each step (steps (I) to (V)) included in the microlens manufacturing method of the present disclosure will be described below.
<工程(I):塗布工程>
 工程(I)は、本組成物を基材上に塗布することにより、基材上に塗膜を形成する工程である。基材としては、例えば、ガラス基板、シリコンウエハ、プラスチック基板、及びこれらの表面に着色レジスト、オーバーコート、反射防止膜、各種金属薄膜が形成された基板等が挙げられる。プラスチック基板としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエーテルスルホン、ポリカーボネート、ポリイミド等のプラスチックからなる樹脂基板が挙げられる。これらの基材には、各種素子(例えば、フォトダイオード等の受光素子や、有機発光ダイオード等の発光素子)が予め設けられていてもよい。
<Step (I): Coating step>
Step (I) is a step of forming a coating film on a substrate by applying the present composition onto the substrate. Examples of the base material include glass substrates, silicon wafers, plastic substrates, and substrates having colored resists, overcoats, antireflection films, and various metal thin films formed thereon. Examples of plastic substrates include resin substrates made of plastics such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethersulfone, polycarbonate, and polyimide. Various elements (for example, light-receiving elements such as photodiodes and light-emitting elements such as organic light-emitting diodes) may be provided in advance on these substrates.
 本組成物の塗布方法としては、例えば、スプレー法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法、バー塗布法、インクジェット法等の適宜の方法を採用することができる。塗布方法としては、これらのうち、スピンコート法、バー塗布法又はスリットダイ塗布法が好ましい。 As a method for applying the present composition, for example, an appropriate method such as a spray method, a roll coating method, a spin coating method (spin coating method), a slit die coating method, a bar coating method, an inkjet method, or the like can be adopted. Among these, the spin coating method, the bar coating method, or the slit die coating method is preferable as the coating method.
 本組成物を基材上に塗布した後には、液だれ防止等を目的として、本組成物を予備加熱する処理(プレベーク)が行われてもよい。プレベークの条件としては、各成分の種類や使用割合等によっても異なるが、例えば、60~130℃で30秒間~10分間程度とすることができる。形成される塗膜の膜厚は、プレベーク後の値として、0.1~8μmが好ましく、0.2~5μmがより好ましく、0.4~3μmが更に好ましい。 After coating the composition on the substrate, the composition may be preheated (pre-baking) for the purpose of preventing dripping. The pre-baking conditions may be, for example, 60 to 130.degree. The film thickness of the formed coating film after prebaking is preferably 0.1 to 8 μm, more preferably 0.2 to 5 μm, and even more preferably 0.4 to 3 μm.
<工程(II):第1露光工程>
 工程(II)は、工程(I)で形成した塗膜の一部に放射線を照射することにより、露光部に酸を発生させる工程である。工程(II)において、塗膜に対する放射線照射は、所望の形状を有するマイクロレンズを得るためのパターン(例えば、ドットパターン)を有するマスクを介して実施される。マスクは、ハーフトーンマスクやグレイトーンマスク等の多階調マスクであってもよい。
<Step (II): First Exposure Step>
Step (II) is a step of irradiating a portion of the coating film formed in step (I) with radiation to generate acid in the exposed area. In step (II), irradiation of the coating film is performed through a mask having a pattern (for example, a dot pattern) to obtain microlenses having a desired shape. The mask may be a multi-tone mask such as a halftone mask or a graytone mask.
 塗膜に照射する放射線としては、例えば、紫外線、遠紫外線、X線、荷電粒子線等が挙げられる。紫外線としては、g線(波長436nm)、i線(波長365nm)、KrFエキシマレーザー光(波長248nm)等が挙げられる。X線としてはシンクロトロン放射線等が挙げられる。荷電粒子線としては電子線等が挙げられる。これらのうち、塗膜に照射する放射線は紫外線が好ましく、波長200nm以上380nm以下の紫外線がより好ましい。使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマーレーザー等が挙げられる。放射線の露光量は、1,000J/m~20,000J/mが好ましい。 The radiation to be applied to the coating film includes, for example, ultraviolet rays, far ultraviolet rays, X-rays, charged particle beams, and the like. Examples of ultraviolet rays include g-line (wavelength: 436 nm), i-line (wavelength: 365 nm), KrF excimer laser light (wavelength: 248 nm), and the like. X-rays include synchrotron radiation and the like. An electron beam etc. are mentioned as a charged particle beam. Among these, the radiation irradiated to the coating film is preferably ultraviolet rays, and more preferably ultraviolet rays having a wavelength of 200 nm or more and 380 nm or less. Examples of light sources to be used include low-pressure mercury lamps, high-pressure mercury lamps, deuterium lamps, metal halide lamps, argon resonance lamps, xenon lamps, excimer lasers, and the like. The exposure dose of radiation is preferably 1,000 J/m 2 to 20,000 J/m 2 .
 なお、本開示の製造方法において、工程(II)による露光後に、重合体(A)が有する酸解離性基の脱保護を促進させること等を目的としてポストエクスポージャーベーク(PEB)を行ってもよい。PEBの温度は、例えば60~130℃であり、好ましくは70~120℃である。 In the production method of the present disclosure, after the exposure in step (II), post-exposure baking (PEB) may be performed for the purpose of promoting deprotection of the acid-labile groups possessed by the polymer (A). The temperature of the PEB is, for example, 60-130°C, preferably 70-120°C.
<工程(III):現像工程>
 工程(III)は、工程(II)により放射線が照射された塗膜を現像することにより、基材上にパターンを形成する工程である。この現像工程により、基材上に形成された塗膜のうち露光部が除去されて、未露光部からなるパターンを基材上に形成することができる。
<Step (III): Development step>
Step (III) is a step of forming a pattern on the substrate by developing the coating film irradiated with radiation in step (II). By this development step, the exposed portion of the coating film formed on the substrate is removed, and a pattern consisting of the unexposed portion can be formed on the substrate.
 現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジエチルアミノエタノール、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、1,8-ジアザビシクロ〔5.4.0〕-7-ウンデセン、1,5-ジアザビシクロ〔4.3.0〕-5-ノナンなどのアルカリ(塩基性化合物)の水溶液等が挙げられる。また、アルカリの水溶液に、メタノールやエタノール等の水溶性有機溶媒や界面活性剤を適量添加したり、本組成物を溶解可能な各種有機溶媒を少量添加したりすることにより得られる水溶液を現像液として使用してもよい。 Examples of developing solutions include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, diethylaminoethanol, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, triethanolamine, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, pyrrole, piperidine, 1,8-diazabicyclo[5.4.0]-7-undecene, 1,5-diaza An aqueous solution of an alkali (basic compound) such as bicyclo[4.3.0]-5-nonane can be used. Further, an aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant to an alkaline aqueous solution, or by adding a small amount of various organic solvents capable of dissolving the present composition, may be used as a developer.
 現像方法としては、例えば、液盛り法、ディッピング法、揺動浸漬法、シャワー法等の適宜の方法を採用することができる。現像時間は、本組成物の組成に応じて適宜調整すればよいが、例えば30秒~120秒とすることができる。 As a developing method, for example, an appropriate method such as a liquid heaping method, a dipping method, a swinging immersion method, a shower method, or the like can be adopted. The development time may be appropriately adjusted according to the composition of the present composition, and may be, for example, 30 seconds to 120 seconds.
<工程(IV):第2露光工程>
 工程(IV)は、現像後の塗膜の少なくとも一部に、放射線を更に照射する工程である。工程(IV)における放射線の照射(以下、「ポスト露光」ともいう)は、現像後の塗膜(すなわち、工程(II)における未露光部)の面全体に行うことが好ましい。パターン中には酸発生剤(B)が残存しているため、ポスト露光によってパターン中に酸を発生させ、更に次の工程(V)において加熱を行うことにより、酸が架橋触媒として機能して架橋反応を進行させることができると考えられる。ポスト露光における放射線の種類や露光条件については、工程(II)と同様の条件を採用することができる。なお、ポスト露光の際の照射光の波長や照射量、光源等の条件は、工程(II)と同一でもよく異なってもよい。
<Step (IV): Second exposure step>
Step (IV) is a step of further irradiating at least part of the developed coating film with radiation. Irradiation with radiation in step (IV) (hereinafter also referred to as “post-exposure”) is preferably performed on the entire surface of the coating film after development (that is, the unexposed area in step (II)). Since the acid generator (B) remains in the pattern, post-exposure to generate acid in the pattern and further heating in the next step (V) are thought to allow the acid to function as a cross-linking catalyst and allow the cross-linking reaction to proceed. As for the type of radiation and exposure conditions in post-exposure, the same conditions as in step (II) can be employed. The conditions such as the wavelength of the irradiation light, the irradiation amount, and the light source in the post-exposure may be the same as or different from those in step (II).
<工程(V):加熱工程>
 工程(V)は、ポスト露光後のパターンを加熱する工程である。工程(V)の加熱処理により、上記工程(I)~工程(IV)により得られたパターン(例えば、断面略矩形状のパターン)をサーマルフローさせながら本組成物の硬化が行われる。これにより、半球状の微小な硬化物が基材上に規則的に配置されたマイクロレンズアレイを得ることができる。加熱処理は、例えばオーブンやホットプレート等の加熱装置を用いて行うことができる。
<Step (V): Heating step>
Step (V) is a step of heating the pattern after post-exposure. By the heat treatment in step (V), the composition is cured while thermally flowing the pattern (for example, a pattern having a substantially rectangular cross section) obtained in steps (I) to (IV). As a result, a microlens array in which hemispherical fine cured products are regularly arranged on the substrate can be obtained. Heat treatment can be performed, for example, using a heating device such as an oven or a hot plate.
 工程(V)における加熱温度は、耐熱性及び耐薬品性が高く、かつ良好な形状のマイクロレンズを得る観点から、80℃以上が好ましく、100℃以上がより好ましく、120℃以上が更に好ましく、140℃以上がより更に好ましい。また、工程(V)における加熱温度は、240℃以下が好ましく、220℃以下がより好ましく、200℃以下が更に好ましい。加熱時間は、加熱装置の種類等に応じて適宜設定することができる。例えば、ホットプレートにより加熱を行う場合、加熱時間は、例えば5~30分間である。また、オーブンにより加熱を行う場合、加熱時間は、例えば10~90分間である。工程(V)においては、複数回の加熱処理を行うステップベーク法を用いることもできる。 The heating temperature in step (V) is preferably 80°C or higher, more preferably 100°C or higher, still more preferably 120°C or higher, and even more preferably 140°C or higher, from the viewpoint of obtaining microlenses with high heat resistance and chemical resistance and good shape. Moreover, the heating temperature in step (V) is preferably 240° C. or lower, more preferably 220° C. or lower, and even more preferably 200° C. or lower. The heating time can be appropriately set according to the type of heating device and the like. For example, when heating is performed using a hot plate, the heating time is, for example, 5 to 30 minutes. Moreover, when heating is performed in an oven, the heating time is, for example, 10 to 90 minutes. In step (V), a step baking method in which heat treatment is performed multiple times can also be used.
 このようにして得られるマイクロレンズは良好なレンズ形状を有する。マイクロレンズの直径は、例えば1μm以上100μm以下である。また、本組成物により得られるマイクロレンズは、耐薬品性に優れ、透明性も高い。したがって、本開示のマイクロレンズは、カメラ等の撮像装置が備える固体撮像素子や、各種表示装置が備える有機EL素子や液晶表示素子等の各種表示素子等のマイクロレンズとして好適に使用できる。 The microlens obtained in this way has a good lens shape. The diameter of the microlens is, for example, 1 μm or more and 100 μm or less. Further, the microlens obtained from the present composition has excellent chemical resistance and high transparency. Therefore, the microlens of the present disclosure can be suitably used as a microlens for a solid-state imaging device included in an imaging device such as a camera, or for various display devices such as an organic EL device and a liquid crystal display device provided in various display devices.
 以上に示した本開示によれば、次の手段が提供される。 According to the present disclosure shown above, the following means are provided.
[手段1] 重合体(A)と、感放射線性酸発生剤(B)と、溶剤(C)とを含有し、前記重合体(A)は、芳香環に結合した水酸基を有する構造単位(a1)と、酸の作用により酸解離性基が脱離してカルボキシ基を発生する構造単位(a2)とを、同一分子内又は異なる分子内に含む、レンズ製造用感放射線性組成物。
[手段2] 前記構造単位(a1)と前記構造単位(a2)との合計の含有量が、前記重合体(A)を構成する全構造単位に対して50モル%以上である、[手段1]に記載のレンズ製造用感放射線性組成物。
[手段3] 前記構造単位(a1)は、上記式(a1-1)で表される化合物及び上記式(a1-2)で表される化合物よりなる群から選択される少なくとも1種に由来する構造単位である、[手段1]又は[手段2]に記載のレンズ製造用感放射線性組成物。
[手段4] 前記構造単位(a2)は、上記式(a2-1)で表される化合物及び上記式(a2-2)で表される化合物よりなる群から選択される少なくとも1種に由来する構造単位である、[手段1]~[手段3]のいずれかに記載のレンズ製造用感放射線性組成物。
[手段5] 前記重合体(A)における、オキシラニル基又はオキセタニル基を有する構造単位(a3)の含有割合が、前記重合体(A)を構成する全構造単位に対して0モル%以上15モル%以下である、[手段1]~[手段4]のいずれかに記載のレンズ製造用感放射線性組成物。
[手段6] 含窒素塩基性化合物(D)を更に含有する、[手段1]~[手段5]のいずれかに記載のレンズ製造用感放射線性組成物。
[手段7] 多官能反応性化合物(ただし、前記重合体(A)を除く。)を、前記重合体(A)の全量100質量部に対して5質量部以下の割合で含有する、[手段1]~[手段6]のいずれかに記載のレンズ製造用感放射線性組成物。
[手段8] 前記多官能反応性化合物は、多官能オキシラン化合物、多官能オキセタン化合物、多官能メラミン化合物及び多官能アルコキシメチル化合物よりなる群から選択される少なくとも1種である、[手段7]に記載のレンズ製造用感放射線性組成物。
[手段9] 基材上に、[手段1]~[手段8]のいずれかに記載の感放射線性組成物を塗布して塗膜を形成する工程と、前記塗膜の一部に放射線を照射することにより露光部に酸を発生させる工程と、前記放射線が照射された塗膜を現像して前記基材上にパターンを形成する工程と、前記パターンに放射線を照射する工程と、前記パターンに放射線を照射した後に前記パターンを加熱することにより、前記基材上にレンズを形成する工程と、を含む、レンズの製造方法。
[手段10] [手段1]~[手段8]のいずれかに記載の感放射線性組成物を用いて形成されたレンズ。
[手段11] [手段10]に記載のレンズを備える、撮像素子。
[手段12] [手段11]に記載の撮像素子を備える、撮像装置。
[手段13] [手段10]に記載のレンズを備える、表示素子。
[手段14] [手段13]に記載の表示素子を備える、表示装置。
[Means 1] A radiation-sensitive composition for manufacturing lenses, comprising a polymer (A), a radiation-sensitive acid generator (B), and a solvent (C), wherein the polymer (A) contains, in the same molecule or in different molecules, a structural unit (a1) having a hydroxyl group bonded to an aromatic ring and a structural unit (a2) in which an acid-dissociable group is eliminated by the action of an acid to generate a carboxy group.
[Means 2] The radiation-sensitive composition for manufacturing lenses according to [Means 1], wherein the total content of the structural unit (a1) and the structural unit (a2) is 50 mol% or more relative to the total structural units constituting the polymer (A).
[Means 3] The radiation-sensitive composition for manufacturing lenses according to [Means 1] or [Means 2], wherein the structural unit (a1) is a structural unit derived from at least one selected from the group consisting of the compound represented by the above formula (a1-1) and the compound represented by the above formula (a1-2).
[Means 4] The radiation-sensitive composition for producing lenses according to any one of [Means 1] to [Method 3], wherein the structural unit (a2) is a structural unit derived from at least one selected from the group consisting of the compound represented by the formula (a2-1) and the compound represented by the formula (a2-2).
[Means 5] The radiation-sensitive composition for manufacturing lenses according to any one of [Means 1] to [Means 4], wherein the content of the structural unit (a3) having an oxiranyl group or an oxetanyl group in the polymer (A) is 0 mol% or more and 15 mol% or less with respect to the total structural units constituting the polymer (A).
[Means 6] The radiation-sensitive composition for manufacturing lenses according to any one of [Means 1] to [Means 5], further comprising a nitrogen-containing basic compound (D).
[Means 7] The radiation-sensitive composition for manufacturing lenses according to any one of [Means 1] to [Means 6], wherein the polyfunctional reactive compound (excluding the polymer (A)) is contained in an amount of 5 parts by mass or less per 100 parts by mass of the total amount of the polymer (A).
[Means 8] The radiation-sensitive composition for manufacturing lenses according to [Means 7], wherein the polyfunctional reactive compound is at least one selected from the group consisting of polyfunctional oxirane compounds, polyfunctional oxetane compounds, polyfunctional melamine compounds and polyfunctional alkoxymethyl compounds.
[Means 9] applying the radiation-sensitive composition according to any one of [Means 1] to [Means 8] on a substrate to form a coating film; irradiating a part of the coating film with radiation to generate an acid in an exposed portion; developing the radiation-irradiated coating film to form a pattern on the substrate; irradiating the pattern with radiation; methods of manufacturing lenses, including;
[Means 10] A lens formed using the radiation-sensitive composition according to any one of [Means 1] to [Means 8].
[Means 11] An imaging device comprising the lens according to [Means 10].
[Means 12] An imaging device comprising the imaging device according to [Means 11].
[Means 13] A display device comprising the lens according to [Means 10].
[Means 14] A display device comprising the display element according to [Means 13].
 以下、本開示を実施例により具体的に説明するが、本開示はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。 The present disclosure will be specifically described below with reference to examples, but the present disclosure is not limited to these examples. "Parts" and "%" in Examples and Comparative Examples are based on mass unless otherwise specified.
 本実施例において、重合体の重量平均分子量(Mw)は以下の方法により測定した。
 ・測定方法:ゲルパーミエーションクロマトグラフィー(GPC)法
 ・装置:昭和電工社のGPC-101
 ・GPCカラム:島津ジーエルシー社のGPC-KF-801、GPC-KF-802、GPC-KF-803及びGPC-KF-804を結合
 ・移動相:テトラヒドロフラン
 ・カラム温度:40℃
 ・流速:1.0mL/分
 ・試料濃度:1.0質量%
 ・試料注入量:100μL
 ・検出器:示差屈折計
 ・標準物質:単分散ポリスチレン
In the examples, the weight average molecular weight (Mw) of the polymer was measured by the following method.
・Measurement method: Gel permeation chromatography (GPC) method ・Apparatus: GPC-101 of Showa Denko Co., Ltd.
・GPC column: Shimadzu GLC GPC-KF-801, GPC-KF-802, GPC-KF-803 and GPC-KF-804 combined ・Mobile phase: Tetrahydrofuran ・Column temperature: 40°C
・Flow rate: 1.0 mL/min ・Sample concentration: 1.0% by mass
・Sample injection volume: 100 μL
・Detector: Differential refractometer ・Standard substance: Monodisperse polystyrene
<感放射線性樹脂組成物の調製>
 各感放射線性樹脂組成物の調製に用いた重合体(A)、酸発生剤(B)、溶剤(C)、塩基性化合物(D)及び反応性化合物(E)を以下に示す。
<Preparation of Radiation-Sensitive Resin Composition>
The polymer (A), acid generator (B), solvent (C), basic compound (D) and reactive compound (E) used to prepare each radiation-sensitive resin composition are shown below.
《重合体(A)》
(A-1):下記式(A-1)で表される樹脂(重量平均分子量10000、x=55、y=45)
Figure JPOXMLDOC01-appb-C000013
<<Polymer (A)>>
(A-1): Resin represented by the following formula (A-1) (weight average molecular weight: 10000, x = 55, y = 45)
Figure JPOXMLDOC01-appb-C000013
(A-2):下記式(A-2)で表される樹脂(重量平均分子量12000、x=45、y=10、z=45)
Figure JPOXMLDOC01-appb-C000014
(A-2): Resin represented by the following formula (A-2) (weight average molecular weight: 12000, x = 45, y = 10, z = 45)
Figure JPOXMLDOC01-appb-C000014
(A-3):下記式(A-3)で表される樹脂(重量平均分子量10000、x=70、y=30)
Figure JPOXMLDOC01-appb-C000015
(A-3): Resin represented by the following formula (A-3) (weight average molecular weight: 10000, x = 70, y = 30)
Figure JPOXMLDOC01-appb-C000015
(A-4):下記式(A-4)で表される樹脂(重量平均分子量8000、w=30、x=30、y=10、z=30)
Figure JPOXMLDOC01-appb-C000016
(A-4): Resin represented by the following formula (A-4) (weight average molecular weight 8000, w = 30, x = 30, y = 10, z = 30)
Figure JPOXMLDOC01-appb-C000016
(A-5):下記式(A-5)で表される樹脂(重量平均分子量10000、x=55、y=45)
Figure JPOXMLDOC01-appb-C000017
(A-5): Resin represented by the following formula (A-5) (weight average molecular weight: 10000, x = 55, y = 45)
Figure JPOXMLDOC01-appb-C000017
 なお、(A-1)~(A-5)を表す上記の各式において、各構造単位に付された添え字(w、x、y、及びz)は、各樹脂を構成する全構造単位に対する各構造単位の比率(モル%)である。 In each of the above formulas representing (A-1) to (A-5), the subscripts (w, x, y, and z) attached to each structural unit are the ratio (mol%) of each structural unit to all structural units constituting each resin.
《酸発生剤(B)》
(B-1):ADEKA社製「SP-606」
(B-2):トリフェニルスルホニウムトリフルオロメタンスルホナート
<<Acid generator (B)>>
(B-1): "SP-606" manufactured by ADEKA
(B-2): triphenylsulfonium trifluoromethanesulfonate
《溶剤(C)》
(C-1):プロピレングリコールモノメチルエーテルアセテート
(C-2):プロピレングリコールモノメチルエーテル
(C-3):メチル3-メトキシプロピオネート
<<Solvent (C)>>
(C-1): propylene glycol monomethyl ether acetate (C-2): propylene glycol monomethyl ether (C-3): methyl 3-methoxypropionate
《塩基性化合物(D)》
(D-1):N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール
(D-2):N-アセチルモルフォリン
<<Basic compound (D)>>
(D-1): Nt-butoxycarbonyl-2-phenylbenzimidazole (D-2): N-acetylmorpholine
《反応性化合物(E)》
(E-1):4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル
(E-2):4-(1-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]フェニル}-1-メチルエチル)フェノールとホルムアルデヒドとの反応生成物
<<Reactive compound (E)>>
(E-1): 4,4′-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl (E-2): reaction product of 4-(1-{4-[1,1-bis(4-hydroxyphenyl)ethyl]phenyl}-1-methylethyl)phenol and formaldehyde
[実施例1]
 重合体(A)としての(A-1)100質量部(固形分)を含有する重合体溶液、酸発生剤(B)としての(B-1)4質量部、塩基性化合物(D)としての(D-1)0.8質量部、接着助剤(3-グリシジルオキシプロピルトリメトキシシラン)0.5質量部、及び界面活性剤(ネオス社製「FTX-218」)0.2質量部を混合し、更に固形分濃度が12質量%となるように溶剤(C)としての(C-1)を添加した後、撹拌して溶解した。次いで、混合物を孔径0.2μmのメンブランフィルタで濾過することにより実施例1の感放射線性樹脂組成物を調製した。
[Example 1]
A polymer solution containing 100 parts by mass (solid content) of (A-1) as the polymer (A), 4 parts by mass of (B-1) as the acid generator (B), 0.8 parts by mass of (D-1) as the basic compound (D), 0.5 parts by mass of the adhesion aid (3-glycidyloxypropyltrimethoxysilane), and 0.2 parts by mass of the surfactant ("FTX-218" manufactured by Neos) were mixed, and the solid content concentration was 12 mass parts. %, and then dissolved by stirring after adding (C-1) as solvent (C). Next, the radiation-sensitive resin composition of Example 1 was prepared by filtering the mixture through a membrane filter with a pore size of 0.2 µm.
[実施例2~8及び比較例1~2]
 重合体(A)、酸発生剤(B)、溶剤(C)、塩基性化合物(D)及び反応性化合物(E)の種類及び配合量(質量部)を表1の通りとしたこと以外は実施例1と同様にして、実施例2~8、比較例1,2の各感放射線性樹脂組成物を調製した。なお、表1において、重合体(A)の配合量は100質量部である。酸発生剤(B)、塩基性化合物(D)及び反応性化合物(E)の数値は、各感放射線性樹脂組成物の調製に使用した重合体(A)100質量部に対する各化合物の配合割合(質量部)を示す。溶剤(C)の数値は、各感放射線性樹脂組成物の調製に使用した溶剤の全量に対する各化合物の比率(質量%)を表す。
[Examples 2-8 and Comparative Examples 1-2]
Radiation-sensitive resin compositions of Examples 2 to 8 and Comparative Examples 1 and 2 were prepared in the same manner as in Example 1 except that the types and blending amounts (parts by mass) of the polymer (A), acid generator (B), solvent (C), basic compound (D) and reactive compound (E) were as shown in Table 1. In addition, in Table 1, the blending amount of the polymer (A) is 100 parts by mass. The numerical values of the acid generator (B), the basic compound (D) and the reactive compound (E) indicate the compounding ratio (parts by mass) of each compound with respect to 100 parts by mass of the polymer (A) used in the preparation of each radiation-sensitive resin composition. The numerical value of the solvent (C) represents the ratio (% by mass) of each compound to the total amount of solvent used in the preparation of each radiation-sensitive resin composition.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
<評価>
 各感放射線性樹脂組成物を用いて下記評価方法に従い評価した。評価結果を表2に示す。
<Evaluation>
Each radiation-sensitive resin composition was evaluated according to the following evaluation method. Table 2 shows the evaluation results.
〔感度〕
 実施例1~8、比較例1,2の各感放射線性樹脂組成物を、反射防止膜を形成したシリコン基板上にクリーントラックを用いて塗布した。その後、90℃にて90秒間プレベークして膜厚0.6μmの塗膜を形成した。次いで、ニコン社製「NSR2205EX12B」縮小投影露光機(NA=0.55、λ=248nm)を用い、露光時間を変化させて、0.2μmスペース・0.9μmドットのパターンを有するマスクを介して塗膜に露光を行った。露光後、基板に対してホットプレートで90℃で90秒間PEB処理を行い、その後、テトラメチルアンモニウムヒドロキシド水溶液(現像液)を用い、液盛り法によって25℃、1分間現像処理を行った。現像処理後、塗膜を水でリンスし、乾燥させてウェハー上にパターンを形成した。このような露光及び現像処理において、0.2μmスペース・0.9μmドットが形成されるのに必要な最小の露光量を感度(mJ/cm)とした。かかる条件にて、感度が100mJ/cm以下のものを「◎」、100mJ/cmを超え130mJ/cm未満のものを「○」、130mJ/cm以上のものを「×」とした。
〔sensitivity〕
Each of the radiation-sensitive resin compositions of Examples 1 to 8 and Comparative Examples 1 and 2 was applied onto a silicon substrate having an antireflection film formed thereon using a clean track. Then, it was pre-baked at 90° C. for 90 seconds to form a coating film having a thickness of 0.6 μm. Then, using a reduction projection exposure machine (NA=0.55, λ=248 nm) manufactured by Nikon Corporation "NSR2205EX12B", the coating film was exposed through a mask having a pattern of 0.2 μm spaces and 0.9 μm dots while varying the exposure time. After the exposure, the substrate was subjected to PEB treatment on a hot plate at 90° C. for 90 seconds, and then developed using an aqueous tetramethylammonium hydroxide solution (developer) at 25° C. for 1 minute by the liquid swell method. After development, the coating was rinsed with water and dried to form a pattern on the wafer. Sensitivity (mJ/cm 2 ) was defined as the minimum amount of exposure required to form a 0.2 µm space and a 0.9 µm dot in such exposure and development processing. Under these conditions, a sensitivity of 100 mJ/cm 2 or less was evaluated as “⊚”, a sensitivity of more than 100 mJ/cm 2 and less than 130 mJ/cm 2 was evaluated as “◯”, and a sensitivity of 130 mJ/cm 2 or more was evaluated as “X”.
〔フロー性〕
 実施例1~8、比較例1,2について、上記感度の評価で形成した0.2μmスペース・0.9μmドットパターンに対して、キヤノン社製「PLA-501F」露光機(超高圧水銀ランプ)を用い、積算照射量が500mJ/cmとなるように更に露光を行った。次いで、ホットプレートを用い、130℃~220℃の各温度で300秒間ポストベーク処理を行い、レジストパターンの断面をSEMで観測した。上記のポストベーク処理により、隣り合うマイクロレンズパターン同士の裾部分が接触せずに適切なマイクロレンズパターンが形成される最低温度T1と、隣り合うマイクロレンズパターン同士の裾部分が接触する最低温度T2とを求めた。最低温度T1,T2の温度差(T2-T1)をフローマージンとし、以下の基準で評価した。かかる条件にて、フローマージンが10℃以上を「◎」、フローマージンが10℃未満5℃以上を「○」、フローマージンが5℃未満を「×」とした。
[Flowability]
For Examples 1 to 8 and Comparative Examples 1 and 2, the 0.2 μm space/0.9 μm dot pattern formed in the above sensitivity evaluation was further exposed using Canon's “PLA-501F” exposure machine (ultra-high pressure mercury lamp) so that the cumulative irradiation dose was 500 mJ/cm 2 . Next, using a hot plate, post-baking treatment was performed at each temperature of 130° C. to 220° C. for 300 seconds, and the cross section of the resist pattern was observed by SEM. The minimum temperature T1 at which an appropriate microlens pattern is formed without the bottom portions of adjacent microlens patterns coming into contact with each other and the minimum temperature T2 at which the bottom portions of adjacent microlens patterns come into contact with each other by the post-baking process were determined. The temperature difference (T2-T1) between the lowest temperatures T1 and T2 was defined as the flow margin, and evaluation was made according to the following criteria. Under these conditions, a flow margin of 10° C. or more was evaluated as “⊚”, a flow margin of less than 10° C. of 5° C. or more was evaluated of “◯”, and a flow margin of less than 5° C. was evaluated of “×”.
〔耐薬品性〕
 スピンナーを用い、実施例1~8、比較例1,2の各感放射線性樹脂組成物をシリコン基板上に塗布した後、90℃にて90秒間ホットプレート上でプレベークして膜厚0.6μmの塗膜を形成した。得られた塗膜に対し、積算照射量が500mJ/cmとなるように水銀ランプにより紫外線を照射した。次いで、この塗膜が形成されたシリコン基板を、ホットプレートを用いて180℃で300秒間ポストベークして硬化膜を得た。得られた硬化膜の膜厚(H1[μm])を測定した。続いて、この硬化膜が形成されたシリコン基板を、アセトン中に5分間浸漬させた。アセトンに浸漬後の硬化膜の膜厚(H2[μm])を測定し、膜厚変化率を下記数式から算出し、これを耐薬品性の指標とした。
 膜厚変化率={(H2-H1)/H1}×100(%)
 上記数式により膜厚変化率の絶対値が5.0%未満の場合に「○」、5.0%以上の場合に「×」と判定した。
〔chemical resistance〕
Using a spinner, each of the radiation-sensitive resin compositions of Examples 1 to 8 and Comparative Examples 1 and 2 was applied onto a silicon substrate, and then prebaked on a hot plate at 90° C. for 90 seconds to form a coating film having a thickness of 0.6 μm. The resulting coating film was irradiated with ultraviolet rays from a mercury lamp so that the cumulative irradiation dose was 500 mJ/cm 2 . Then, the silicon substrate on which this coating film was formed was post-baked at 180° C. for 300 seconds using a hot plate to obtain a cured film. The film thickness (H1 [μm]) of the obtained cured film was measured. Subsequently, the silicon substrate on which this cured film was formed was immersed in acetone for 5 minutes. The film thickness (H2 [μm]) of the cured film after immersion in acetone was measured, and the film thickness change rate was calculated from the following formula and used as an index of chemical resistance.
Film thickness change rate = {(H2-H1)/H1} x 100 (%)
According to the above formula, the absolute value of the film thickness change rate was judged to be "O" when the absolute value was less than 5.0%, and was judged to be "X" when it was 5.0% or more.
〔透明性〕
 ガラス基板を用いる以外は耐薬品性の評価と同様の方法を用いて硬化膜を作成した。得られた硬化膜の透過率を、紫外可視分光光度計(日本分光社製「V-630」)を用いて測定した。このとき、波長400nmの光の透過率が97%以上の場合を「◎」、95%以上97%未満の場合を「○」、95%未満の場合を「×」と判定した。
〔transparency〕
A cured film was prepared using the same method as for chemical resistance evaluation, except that a glass substrate was used. The transmittance of the obtained cured film was measured using an ultraviolet-visible spectrophotometer ("V-630" manufactured by JASCO Corporation). At this time, when the transmittance of light having a wavelength of 400 nm was 97% or more, it was judged as "⊚", when it was 95% or more and less than 97%, it was judged as "◯", and when it was less than 95%, it was judged as "x".
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表2に示されるように、実施例1~8の感放射線性樹脂組成物は、良好な放射線感度を示し、かつフロー性、耐薬品性及び透明性も良好であった。これに対し、保護されたカルボキシ基を有する重合体(A-1)に代えて、保護された水酸基を有する重合体(A-5)を用いた以外は実施例1と同一組成である比較例1の感放射線性樹脂組成物は、フロー性及び耐薬品性が「×」の評価であった。また、比較例1の感放射線性樹脂組成物に、反応性化合物(E)として(E-1)を、重合体(A-5)100質量部に対し6質量部配合した比較例2の感放射線性樹脂組成物は、フロー性及び耐薬品性は改善されたものの、放射線感度が「×」の評価であった。 As shown in Table 2, the radiation-sensitive resin compositions of Examples 1-8 exhibited good radiation sensitivity, and also had good flow properties, chemical resistance and transparency. On the other hand, the radiation-sensitive resin composition of Comparative Example 1, which has the same composition as in Example 1 except that the polymer (A-5) having a protected hydroxyl group was used instead of the polymer (A-1) having a protected carboxyl group, was evaluated as "x" in flowability and chemical resistance. Further, the radiation sensitive resin composition of Comparative Example 2, in which (E-1) as the reactive compound (E) was added to the radiation sensitive resin composition of Comparative Example 1 by 6 parts by mass based on 100 parts by mass of the polymer (A-5), was evaluated as "x" in radiation sensitivity, although the flow property and chemical resistance were improved.
 以上の結果から、構造単位(a1)及び構造単位(a2)を含む重合体(A)を含有する感放射線性組成物によれば、高い放射線感度を示し、広いフローマージンを確保でき、しかも、得られる硬化物の耐薬品性及び透明性が良好であるといった、マイクロレンズ製造用感放射線性組成物に求められる各種特性をバランス良く発現できることが明らかとなった。 From the above results, it has been clarified that the radiation-sensitive composition containing the polymer (A) containing the structural unit (a1) and the structural unit (a2) exhibits high radiation sensitivity, can ensure a wide flow margin, and can exhibit various properties required for a radiation-sensitive composition for microlens production in a well-balanced manner, such as good chemical resistance and transparency of the resulting cured product.

Claims (21)

  1.  基材上に感放射線性組成物を塗布して塗膜を形成する工程と、
     前記塗膜の一部に放射線を照射することにより露光部に酸を発生させる工程と、
     前記放射線が照射された塗膜を現像して前記基材上にパターンを形成する工程と、
     前記パターンに放射線を照射する工程と、
     前記パターンに放射線を照射した後に前記パターンを加熱することにより、前記基材上にレンズを形成する工程と、
    を含み、
     前記感放射線性組成物は、重合体(A)と、感放射線性酸発生剤(B)と、溶剤(C)とを含有し、
     前記重合体(A)は、芳香環に結合した水酸基を有する構造単位(a1)と、酸の作用によって酸解離性基が脱離することによりカルボキシ基を生じる構造単位(a2)とを、同一分子内又は異なる分子内に含む、
     レンズの製造方法。
    A step of applying a radiation-sensitive composition onto a substrate to form a coating film;
    A step of irradiating a portion of the coating film with radiation to generate acid in the exposed portion;
    forming a pattern on the base material by developing the coating film irradiated with the radiation;
    irradiating the pattern with radiation;
    forming a lens on the substrate by heating the pattern after irradiating the pattern with radiation;
    including
    The radiation-sensitive composition contains a polymer (A), a radiation-sensitive acid generator (B), and a solvent (C),
    The polymer (A) comprises a structural unit (a1) having a hydroxyl group bonded to an aromatic ring, and a structural unit (a2) that produces a carboxyl group by elimination of an acid-dissociable group by the action of an acid, in the same molecule or in different molecules.
    How the lens is made.
  2.  前記構造単位(a1)と前記構造単位(a2)との合計の含有割合が、前記重合体(A)を構成する全構造単位に対して50モル%以上である、請求項1に記載のレンズの製造方法。 The method for producing a lens according to claim 1, wherein the total content of the structural unit (a1) and the structural unit (a2) is 50 mol% or more with respect to the total structural units constituting the polymer (A).
  3.  前記構造単位(a1)は、下記式(a1-1)で表される化合物及び下記式(a1-2)で表される化合物よりなる群から選択される少なくとも1種に由来する構造単位である、請求項1又は2に記載のレンズの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(a1-1)中、Rは、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。Rは、単結合、*-C(=O)-O-又は*-C(=O)-NH-である。「*」は、Rが結合している炭素原子との結合手を表す。Rは、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又は炭素数1~4のフッ素化アルキル基である。m1は0~4の整数である。m2は1又は2である。ただし、m1+m2≦5である。m1が2以上の場合、複数のRは同一又は異なる。
     式(a1-2)中、Rは、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又は炭素数1~4のフッ素化アルキル基である。n1は0~4の整数である。n2は1又は2である。ただし、n1+n2≦5である。n1が2以上の場合、複数のRは同一又は異なる。)
    The method for producing a lens according to claim 1 or 2, wherein the structural unit (a1) is a structural unit derived from at least one selected from the group consisting of a compound represented by the following formula (a1-1) and a compound represented by the following formula (a1-2).
    Figure JPOXMLDOC01-appb-C000001
    (式(a1-1)中、R は、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。R は、単結合、* -C(=O)-O-又は* -C(=O)-NH-である。「* 」は、R が結合している炭素原子との結合手を表す。R は、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又は炭素数1~4のフッ素化アルキル基である。m1は0~4の整数である。m2は1又は2である。ただし、m1+m2≦5である。m1が2以上の場合、複数のR は同一又は異なる。
    In formula (a1-2), R 4 is a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms or a fluorinated alkyl group having 1 to 4 carbon atoms. n1 is an integer of 0-4. n2 is 1 or 2; However, it is n1+n2<=5. When n1 is 2 or more, multiple R4 are the same or different. )
  4.  前記構造単位(a2)は、下記式(a2-1)で表される化合物及び下記式(a2-2)で表される化合物よりなる群から選択される少なくとも1種に由来する構造単位である、請求項1又は2に記載のレンズの製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(a2-1)中、Rは、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。Rは、単結合、置換若しくは無置換のフェニレン基、又は*-C(=O)-O-R15-である。「*」は、Rが結合している炭素原子との結合手を表す。R15は置換若しくは無置換の2価の炭化水素基である。Rは1価の脂肪族炭化水素基である。R及びRは、それぞれ独立して、1価の脂肪族炭化水素基であるか、又はR及びRが互いに合わせられてR及びRが結合する炭素原子と共に構成される脂環式構造を表す。
     式(a2-2)中、R10は、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。R11は、単結合、置換若しくは無置換のフェニレン基、又は*-C(=O)-O-R16-である。「*」は、R10が結合している炭素原子との結合手を表す。R16は置換若しくは無置換の2価の炭化水素基である。R12は水素原子又は1価の脂肪族炭化水素基である。R13及びR14は、R13が1価の脂肪族炭化水素基であり、R14が1価の脂肪族炭化水素基、アラルキル基若しくは置換されたアラルキル基であるか、又はR13及びR14が互いに合わせられてR13が結合する炭素原子及びR14が結合する酸素原子と共に構成される環状エーテル構造を表す。)
    The method for producing a lens according to claim 1 or 2, wherein the structural unit (a2) is a structural unit derived from at least one selected from the group consisting of a compound represented by the following formula (a2-1) and a compound represented by the following formula (a2-2).
    Figure JPOXMLDOC01-appb-C000002
    (式(a2-1)中、R は、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。R は、単結合、置換若しくは無置換のフェニレン基、又は* -C(=O)-O-R 15 -である。「* 」は、R が結合している炭素原子との結合手を表す。R 15は置換若しくは無置換の2価の炭化水素基である。R は1価の脂肪族炭化水素基である。R 及びR は、それぞれ独立して、1価の脂肪族炭化水素基であるか、又はR 及びR が互いに合わせられてR 及びR が結合する炭素原子と共に構成される脂環式構造を表す。
    In formula (a2-2), R 10 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or a fluorinated alkyl group having 1 to 4 carbon atoms. R 11 is a single bond, a substituted or unsubstituted phenylene group, or * 3 -C(=O)-OR 16 -. "* 3 " represents a bond with the carbon atom to which R10 is bonded. R 16 is a substituted or unsubstituted divalent hydrocarbon group. R12 is a hydrogen atom or a monovalent aliphatic hydrocarbon group. R 13 and R 14 represent a cyclic ether structure in which R 13 is a monovalent aliphatic hydrocarbon group and R 14 is a monovalent aliphatic hydrocarbon group, an aralkyl group, or a substituted aralkyl group, or R 13 and R 14 are combined with each other and formed together with the carbon atom to which R 13 is attached and the oxygen atom to which R 14 is attached. )
  5.  前記重合体(A)における、オキシラニル基又はオキセタニル基を有する構造単位(a3)の含有割合が、前記重合体(A)を構成する全構造単位に対して0モル%以上15モル%以下である、請求項1又は2に記載のレンズの製造方法。 The method for producing a lens according to claim 1 or 2, wherein the content of the structural unit (a3) having an oxiranyl group or an oxetanyl group in the polymer (A) is 0 mol% or more and 15 mol% or less with respect to the total structural units constituting the polymer (A).
  6.  前記感放射線性組成物は、含窒素塩基性化合物(D)を更に含有する、請求項1又は2に記載のレンズの製造方法。 The method for manufacturing a lens according to claim 1 or 2, wherein the radiation-sensitive composition further contains a nitrogen-containing basic compound (D).
  7.  前記感放射線性組成物は、多官能反応性化合物(E)(ただし、前記重合体(A)を除く。)を、前記重合体(A)の全量100質量部に対して5質量部以下の割合で含有する、請求項1又は2に記載のレンズの製造方法。 The method for producing a lens according to claim 1 or 2, wherein the radiation-sensitive composition contains the polyfunctional reactive compound (E) (excluding the polymer (A)) in a proportion of 5 parts by mass or less with respect to 100 parts by mass of the total amount of the polymer (A).
  8.  前記多官能反応性化合物(E)は、多官能オキシラン化合物、多官能オキセタン化合物、多官能メラミン化合物及び多官能アルコキシメチル化合物よりなる群から選択される少なくとも1種である、請求項7に記載のレンズの製造方法。 The method for producing a lens according to claim 7, wherein the polyfunctional reactive compound (E) is at least one selected from the group consisting of a polyfunctional oxirane compound, a polyfunctional oxetane compound, a polyfunctional melamine compound and a polyfunctional alkoxymethyl compound.
  9.  重合体(A)と、
     感放射線性酸発生剤(B)と、
     溶剤(C)とを含有し、
     前記重合体(A)は、芳香環に結合した水酸基を有する構造単位(a1)と、酸の作用により酸解離性基が脱離してカルボキシ基を発生する構造単位(a2)とを、同一分子内又は異なる分子内に含む、レンズ製造用感放射線性組成物。
    a polymer (A);
    a radiation-sensitive acid generator (B);
    containing a solvent (C),
    The polymer (A) comprises a structural unit (a1) having a hydroxyl group bonded to an aromatic ring and a structural unit (a2) in which an acid-dissociable group is eliminated by the action of an acid to generate a carboxy group, in the same molecule or in different molecules. A radiation-sensitive composition for manufacturing lenses.
  10.  前記構造単位(a1)と前記構造単位(a2)との合計の含有量が、前記重合体(A)を構成する全構造単位に対して50モル%以上である、請求項9に記載のレンズ製造用感放射線性組成物。 The radiation-sensitive composition for manufacturing lenses according to claim 9, wherein the total content of the structural unit (a1) and the structural unit (a2) is 50 mol% or more relative to the total structural units constituting the polymer (A).
  11.  前記構造単位(a1)は、下記式(a1-1)で表される化合物及び下記式(a1-2)で表される化合物よりなる群から選択される少なくとも1種に由来する構造単位である、請求項9に記載のレンズ製造用感放射線性組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(a1-1)中、Rは、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。Rは、単結合、*-C(=O)-O-又は*-C(=O)-NH-である。「*」は、Rが結合している炭素原子との結合手を表す。Rは、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又は炭素数1~4のフッ素化アルキル基である。m1は0~4の整数である。m2は1又は2である。ただし、m1+m2≦5である。m1が2以上の場合、複数のRは同一又は異なる。
     式(a1-2)中、Rは、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又は炭素数1~4のフッ素化アルキル基である。n1は0~4の整数である。n2は1又は2である。ただし、n1+n2≦5である。n1が2以上の場合、複数のRは同一又は異なる。)
    The radiation-sensitive composition for lens manufacturing according to claim 9, wherein the structural unit (a1) is a structural unit derived from at least one selected from the group consisting of a compound represented by the following formula (a1-1) and a compound represented by the following formula (a1-2).
    Figure JPOXMLDOC01-appb-C000003
    (式(a1-1)中、R は、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。R は、単結合、* -C(=O)-O-又は* -C(=O)-NH-である。「* 」は、R が結合している炭素原子との結合手を表す。R は、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又は炭素数1~4のフッ素化アルキル基である。m1は0~4の整数である。m2は1又は2である。ただし、m1+m2≦5である。m1が2以上の場合、複数のR は同一又は異なる。
    In formula (a1-2), R 4 is a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms or a fluorinated alkyl group having 1 to 4 carbon atoms. n1 is an integer of 0-4. n2 is 1 or 2; However, it is n1+n2<=5. When n1 is 2 or more, multiple R4 are the same or different. )
  12.  前記構造単位(a2)は、下記式(a2-1)で表される化合物及び下記式(a2-2)で表される化合物よりなる群から選択される少なくとも1種に由来する構造単位である、請求項9に記載のレンズ製造用感放射線性組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(a2-1)中、Rは、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。Rは、単結合、置換若しくは無置換のフェニレン基、又は*-C(=O)-O-R15-である。「*」は、Rが結合している炭素原子との結合手を表す。R15は置換若しくは無置換の2価の炭化水素基である。Rは1価の脂肪族炭化水素基である。R及びRは、それぞれ独立して、1価の脂肪族炭化水素基であるか、又はR及びRが互いに合わせられてR及びRが結合する炭素原子と共に構成される脂環式構造を表す。
     式(a2-2)中、R10は、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。R11は、単結合、置換若しくは無置換のフェニレン基、又は*-C(=O)-O-R16-である。「*」は、R10が結合している炭素原子との結合手を表す。R16は置換若しくは無置換の2価の炭化水素基である。R12は水素原子又は1価の脂肪族炭化水素基である。R13及びR14は、R13が1価の脂肪族炭化水素基であり、R14が1価の脂肪族炭化水素基、アラルキル基若しくは置換されたアラルキル基であるか、又はR13及びR14が互いに合わせられてR13が結合する炭素原子及びR14が結合する酸素原子と共に構成される環状エーテル構造を表す。)
    The radiation-sensitive composition for lens manufacturing according to claim 9, wherein the structural unit (a2) is a structural unit derived from at least one selected from the group consisting of a compound represented by the following formula (a2-1) and a compound represented by the following formula (a2-2).
    Figure JPOXMLDOC01-appb-C000004
    (式(a2-1)中、R は、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。R は、単結合、置換若しくは無置換のフェニレン基、又は* -C(=O)-O-R 15 -である。「* 」は、R が結合している炭素原子との結合手を表す。R 15は置換若しくは無置換の2価の炭化水素基である。R は1価の脂肪族炭化水素基である。R 及びR は、それぞれ独立して、1価の脂肪族炭化水素基であるか、又はR 及びR が互いに合わせられてR 及びR が結合する炭素原子と共に構成される脂環式構造を表す。
    In formula (a2-2), R 10 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or a fluorinated alkyl group having 1 to 4 carbon atoms. R 11 is a single bond, a substituted or unsubstituted phenylene group, or * 3 -C(=O)-OR 16 -. "* 3 " represents a bond with the carbon atom to which R10 is bonded. R 16 is a substituted or unsubstituted divalent hydrocarbon group. R12 is a hydrogen atom or a monovalent aliphatic hydrocarbon group. R 13 and R 14 represent a cyclic ether structure in which R 13 is a monovalent aliphatic hydrocarbon group and R 14 is a monovalent aliphatic hydrocarbon group, an aralkyl group or a substituted aralkyl group, or R 13 and R 14 are combined with each other and composed together with the carbon atom to which R 13 is attached and the oxygen atom to which R 14 is attached. )
  13.  前記重合体(A)における、オキシラニル基又はオキセタニル基を有する構造単位(a3)の含有割合が、前記重合体(A)を構成する全構造単位に対して0モル%以上15モル%以下である、請求項9に記載のレンズ製造用感放射線性組成物。 The radiation-sensitive composition for lens manufacturing according to claim 9, wherein the content of the structural unit (a3) having an oxiranyl group or an oxetanyl group in the polymer (A) is 0 mol% or more and 15 mol% or less with respect to the total structural units constituting the polymer (A).
  14.  含窒素塩基性化合物(D)を更に含有する、請求項9に記載のレンズ製造用感放射線性組成物。 The radiation-sensitive composition for manufacturing lenses according to claim 9, further comprising a nitrogen-containing basic compound (D).
  15.  多官能反応性化合物(ただし、前記重合体(A)を除く。)を、前記重合体(A)の全量100質量部に対して5質量部以下の割合で含有する、請求項9に記載のレンズ製造用感放射線性組成物。 The radiation-sensitive composition for manufacturing lenses according to claim 9, wherein the polyfunctional reactive compound (excluding the polymer (A)) is contained in a proportion of 5 parts by mass or less with respect to 100 parts by mass of the total amount of the polymer (A).
  16.  前記多官能反応性化合物は、多官能オキシラン化合物、多官能オキセタン化合物、多官能メラミン化合物及び多官能アルコキシメチル化合物よりなる群から選択される少なくとも1種である、請求項15に記載のレンズ製造用感放射線性組成物。 The radiation-sensitive composition for manufacturing lenses according to claim 15, wherein the polyfunctional reactive compound is at least one selected from the group consisting of polyfunctional oxirane compounds, polyfunctional oxetane compounds, polyfunctional melamine compounds and polyfunctional alkoxymethyl compounds.
  17.  請求項9~16のいずれか一項に記載のレンズ製造用感放射線性組成物を用いて形成されたレンズ。 A lens formed using the radiation-sensitive composition for manufacturing lenses according to any one of claims 9 to 16.
  18.  請求項17に記載のレンズを備える、撮像素子。 An imaging device comprising the lens according to claim 17.
  19.  請求項18に記載の撮像素子を備える、撮像装置。 An imaging device comprising the imaging element according to claim 18.
  20.  請求項17に記載のレンズを備える、表示素子。 A display element comprising the lens according to claim 17.
  21.  請求項20に記載の表示素子を備える、表示装置。 A display device comprising the display element according to claim 20.
PCT/JP2023/001175 2022-01-18 2023-01-17 Method for producing lens, radiation-sensitive composition for producing lens, lens, imaging element, imaging device, display element, and display device WO2023140248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-005909 2022-01-18
JP2022005909 2022-01-18

Publications (1)

Publication Number Publication Date
WO2023140248A1 true WO2023140248A1 (en) 2023-07-27

Family

ID=87348248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001175 WO2023140248A1 (en) 2022-01-18 2023-01-17 Method for producing lens, radiation-sensitive composition for producing lens, lens, imaging element, imaging device, display element, and display device

Country Status (2)

Country Link
TW (1) TW202330668A (en)
WO (1) WO2023140248A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073594A (en) * 2008-12-23 2010-07-01 동우 화인켐 주식회사 I-line chemically amplified positive photoreist for microlens and microlens fabricated by the same
JP2016133733A (en) * 2015-01-21 2016-07-25 東京応化工業株式会社 Positive photosensitive resin composition for producing microlens pattern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073594A (en) * 2008-12-23 2010-07-01 동우 화인켐 주식회사 I-line chemically amplified positive photoreist for microlens and microlens fabricated by the same
JP2016133733A (en) * 2015-01-21 2016-07-25 東京応化工業株式会社 Positive photosensitive resin composition for producing microlens pattern

Also Published As

Publication number Publication date
TW202330668A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
TWI360025B (en) Positive type photosensitive resin composition and
JP5687442B2 (en) Photoacid generator and photoresist containing the same
TW200928587A (en) Positive photosensitive resin composition and curable film forming method using the same
KR101890633B1 (en) Resin composition, method for producing cured product, method for producing resin pattern, cured product and optical member
TWI646397B (en) Coating compositions for use with an overcoated photoresist
KR20140090626A (en) Positive photosensitive resin composition, method for producing cured product, method for producing resin pattern, cured product, and optical member
WO2008013207A1 (en) Curable resin composition and method for forming cured coating film
JP2012073612A (en) Photoresists comprising multi-amide component
TW201142514A (en) Positive radiation-sensitive composition, interlayer insulateon film for display element and method for forming the same
KR20140090177A (en) Positive photosensitive resin composition, method for producing cured product, method for producing resin pattern, cured product and optical member
KR101860580B1 (en) A black photosensitive resin composition, color filter and display device comprising the same
TW201406797A (en) Method of producing polymeric compound, resist composition and method of forming resist pattern
KR20130107210A (en) Radiation-sensitive composition
TWI803587B (en) Radiation sensitive composition, cured film and display element
TW201738658A (en) Negative-type photosensitive resin composition
WO2023140248A1 (en) Method for producing lens, radiation-sensitive composition for producing lens, lens, imaging element, imaging device, display element, and display device
JP6637548B2 (en) Coating composition for use with overcoated photoresist
JP5753434B2 (en) Chemical amplification type positive photosensitive composition, method for forming cured film, cured film
JP7397419B1 (en) Radiation sensitive composition, cured film and method for producing the same, semiconductor element and display element
JP5986748B2 (en) Coating composition for use with overcoated photoresist
TW201211678A (en) Radiation-sensitive resin composition
KR20100086953A (en) Acid transfer composition, acid transfer film, and pattern forming method
JP2023177326A (en) Radiation sensitive composition, cured film and manufacturing method thereof, liquid crystal display device and organic el display device
KR102001683B1 (en) Polyfunctional acrylate compounds, a photosensitive resin composition, color filter and display device comprising the same
JP2023058025A (en) Radiation-sensitive composition, cured film and method for producing the same, liquid crystal display device, and organic el display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743242

Country of ref document: EP

Kind code of ref document: A1