WO2023140135A1 - Hydrophilized base material - Google Patents

Hydrophilized base material Download PDF

Info

Publication number
WO2023140135A1
WO2023140135A1 PCT/JP2023/000247 JP2023000247W WO2023140135A1 WO 2023140135 A1 WO2023140135 A1 WO 2023140135A1 JP 2023000247 W JP2023000247 W JP 2023000247W WO 2023140135 A1 WO2023140135 A1 WO 2023140135A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
base material
water
treated
hydrophilized
Prior art date
Application number
PCT/JP2023/000247
Other languages
French (fr)
Japanese (ja)
Inventor
努 高野
Original Assignee
株式会社朝日Fr研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社朝日Fr研究所 filed Critical 株式会社朝日Fr研究所
Publication of WO2023140135A1 publication Critical patent/WO2023140135A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a hydrophilized base material in which the exposed surface and/or inner cavity surface of the base material with which the target liquid comes into contact is a hydrophilized surface.
  • Microchip devices include, for example, microfluidic measurement devices, microbiochips, microreactor chips, and microbiochemical chips.
  • a microfluidic measurement device measures the physical properties of fluids and particles in fluids in microchannels.
  • test object which is a biological specimen such as blood or urine
  • the specific substrate selectivity of the enzyme to quantify the amount of enzyme reaction that acts with the substrate in the specimen and the amount of the substrate by the degree of coloring by the enzyme or the reagent that develops color with the substrate.
  • micro-biochemical chips there are known quantitative analysis methods that use an enzyme-containing membrane to convert the amount of enzyme reaction into electrical signals with electrodes to quantify the amount of substrate, and test methods that proliferate useful cells or viruses and attach cancer cells for testing.
  • a method using a microreactor chip a method of performing DNA extraction and its polymerase chain reaction (PCR) amplification, ion concentration measurement, microsynthesis of nucleic acids, sugars, proteins or peptides, etc. in ⁇ M order is also known.
  • PCR polymerase chain reaction
  • the present invention was made to solve the above-mentioned problems, and is used for microfluid measurement devices, pore chips, micro biochips, micro reactors, micro chip devices having micro biochemical chips, cell culture vessels, organ chips, etc.
  • the hydrophilicity is improved so that air bubbles do not stay on the base material surface that comes into contact with the target liquid, especially the target liquid containing viruses, bacteria, and fine particles such as magnetic particles contained in magnetic paint, the target liquid containing biological specimens, and the target liquid containing trace synthetic raw materials.
  • the hydrophilized base material used to achieve the above-mentioned object is a base material with which the target liquid contacts at least a part of the contact area on the surface and/or inside of the base material, wherein at least a part of the contact area is at least one dry-treated area selected from a UV-treated area, an excimer UV-treated area, a corona discharge-treated area, a plasma-treated area, an electron beam-treated area, and a gamma-ray-treated area, and a hydrophilic treatment agent containing a hydrophilicity-imparting component selected from a water-soluble polymer and a water-soluble non-polymer is applied to the base material to provide a hydrophilic treatment surface. It is said that there is said that there is a dry-treated area selected from a UV-treated area, an excimer UV-treated area, a corona discharge-treated area, a plasma-treated area, an electron beam-treated area, and a gamma-ray-treated area, and a
  • the hydrophilizing treatment agent has the solubility to at least partially dissolve in the target liquid.
  • the hydrophilicity imparting component is, for example, the water-soluble polymer selected from polyether-modified silicone oil, polyvinyl alcohol, starch, polyacrylic acid, polyacrylamide, polyethylene oxide, poly(vinylpyrrolidone), polyvinylamide, polyamine, polyethylene glycol, cellulose derivative, polyethyleneimine, poly(acrylic acid), poly(4-sodium styrenesulfonate), and poly(2-oxazoline); and/or the water-soluble non-polymer selected from glycerol and a nonionic surfactant.
  • the water-soluble polymer selected from polyether-modified silicone oil, polyvinyl alcohol, starch, polyacrylic acid, polyacrylamide, polyethylene oxide, poly(vinylpyrrolidone), polyvinylamide, polyamine, polyethylene glycol, cellulose derivative, polyethyleneimine, poly(acrylic acid), poly(4-sodium styrenesulfonate), and poly(2-oxazoline);
  • the hydrophilized base material may have the hydrophilized surface by being provided with at least one coated portion selected from a coating, a coating layer, a coating spot, a coating dot, a coating patch, and a coating mosaic formed with a hydrophilization treatment agent.
  • the coating portion has an average film thickness of the coating, an average layer thickness of the coating layer, an average height of the coating spots, an average height of the coating dots, an average height of the coating patches, and/or an average height of the coating mosaic of 0.005 to 5 ⁇ m.
  • the hydrophilized substrate has a coating amount of the hydrophilicity imparting component per unit area of 1.0 ⁇ 10 ⁇ 6 to 1.0 ⁇ 10 ⁇ 3 g/cm 2 at the coated portion.
  • the hydrophilicity of the surface and/or the inside of the base material is improved by the dry treatment and the addition of the hydrophilizing agent, so the contact angle with respect to target liquids such as water, aqueous solutions, and suspensions, such as test liquids and chemicals containing trace amounts of synthetic ingredients, is small.
  • this hydrophilized base material when used in microchip devices having microfluid measurement devices, pore chips, micro biochips, microreactors, micro biochemical chips, cell culture vessels, organ chips, etc., it is possible to prevent air bubbles from accumulating on the surface and/or inside of the base material that comes into contact with the target liquid, especially the target liquid containing viruses, bacteria, and fine particles such as magnetic particles contained in magnetic paint, the target liquid containing biological specimens, and the target liquid containing trace amounts of synthetic raw materials.
  • the target liquid such as an electrolyte suspension containing fine particles to be measured
  • the target liquid can be pushed out and discharged without leaving even the air originally present in the channel. Therefore, a process that is performed only for removing air bubbles is unnecessary, so that after unpacking these unused chips or microchip devices equipped with them, the diameters and particle size distributions of biological components of microparticles and biological specimens can be measured and analyzed, or microsynthesis can be performed.
  • any liquid transfer speed from low speed to high speed not only is it possible to suppress the generation of air bubbles from air bubbles in the pores and flow paths of these chips, but also the remaining air bubbles and generated air bubbles can be quickly discharged, preventing pulsating flow and uneven flow rates.
  • the target liquid such as the culture solution containing the cells being cultured
  • the target liquid becomes more familiar with the surface of the cell culture vessel/organ chip, thereby preventing the adsorption of floating cells.
  • this hydrophilic substrate can maintain excellent hydrophilicity with a small contact angle even when stored for a long period of time not only under normal temperature, normal pressure, and normal humidity conditions, but also under high temperature and high humidity conditions.
  • FIG. 1 is a photograph of an untreated base material to which the present invention is not applied and a hydrophilized base material to which the present invention is applied, in a state of contact with water.
  • the hydrophilic base material of the present invention is a base material with which the target liquid comes into contact with at least a part of the contact area on the surface and/or inside of the base material, and at least a part of the contact area is a hydrophilic surface.
  • At least a portion of the substrate surface and/or interior of the hydrophilized substrate is first subjected to at least one dry treatment selected from UV treatment, excimer UV treatment, corona discharge treatment, plasma treatment, electron beam treatment, and gamma ray treatment, thereby forming at least one dry treated portion selected from a UV treated portion, an excimer UV treated portion, a corona discharge treated portion, a plasma treated portion, an electron beam treated portion, and a ⁇ ray treated portion.
  • the dry-treated portion is coated with a hydrophilizing agent containing a hydrophilicity-imparting component selected from water-soluble polymers and water-soluble non-polymers to form a hydrophilized surface.
  • the hydrophilized surface of the hydrophilized base material is formed on a contact portion that is at least a part of the surface of the base material and/or the interior with which the target liquid contacts.
  • a contact portion is not limited in position, range, size, etc., as long as it is in contact with the target liquid, and may be the entire surface or a patterned partial region.
  • it may be a channel formed on at least one of the hydrophilic substrate bonding surfaces to which a plurality of hydrophilic substrates are bonded, may be at least a part of one surface of a single hydrophilic substrate, or may be the entire surface.
  • hydrophilized surface of such a hydrophilized substrate is subjected to dry treatments such as UV treatment, excimer UV treatment, corona discharge treatment, plasma treatment, electron beam treatment, and gamma ray treatment to generate hydrophilic intrinsic groups such as hydroxyl groups inherent in the raw material substrate before hydrophilization, as well as newly generate hydrophilic active groups such as hydroxyl groups, carboxy groups, carbonyl groups, or hydroxysilyl groups, and these hydrophilic groups act to develop hydrophilicity.
  • the hydrophilic groups produced by the dry treatment gradually lose their hydrophilicity due to exposure to heat such as 80° C., or exposure for a long period of time under normal temperature, normal pressure, and normal humidity.
  • the application of the hydrophilicity-imparting component of the hydrophilization treatment agent exerts a so-called masking effect, stabilizes the hydrophilic groups, allows the hydrophilic groups to remain exposed on the substrate, prevents them from entering into the substrate surface molecules, and maintains the activity of the substrate surface and/or the interior to maintain a high contact angle.
  • the hydrophilized surface of such a hydrophilized substrate is formed using a hydrophilizing agent having a hydrophilicity-imparting component.
  • the hydrophilized surface is obtained by applying, dipping, spraying, or dropping a hydrophilizing agent to the base material of the hydrophilic base material, and if necessary, by drying means such as heating, air drying, or standing.
  • such a hydrophilizing agent has a solubility of at least partially dissolving in the target liquid. If the hydrophilizing treatment agent has solubility, it will start to dissolve rapidly when it comes into contact with the target liquid, improving the hydrophilicity and eliminating adhesion of air bubbles and foreign matter.
  • the hydrophilizing agent contains a hydrophilicity-imparting component selected from water-soluble polymers and water-soluble non-polymers, and, if necessary, water, an organic solvent such as a water-soluble organic solvent, specifically a solvent such as alcohol.
  • hydrophilic polymers include polyether-modified silicone oils and hydrophilic group-containing acrylic compounds.
  • such a polyether-modified silicone oil is a copolymer having a polysiloxane skeleton in its main chain and hydroxyl-terminated polyether groups as hydrophilic groups in its side chains.
  • the side chain is a hydrophilic group-containing silicone compound that is repeated according to the repetition of the monomers that constitute the main chain.
  • x and y are the number of repeating units of the siloxy structure of the compound, and the repeating unit represented by x or y may be a block copolymer unit or a random copolymer unit.
  • n is the number of ether structure repeating units in the polyether group, more specifically, the number is about 12 on average.
  • Each R is a methyl group or a phenyl group.).
  • a hydrophilizing agent made of a polyether-modified silicone oil containing such a hydrophilic group-containing silicone compound has an HLB value (Hydrophilic-Lipophilic Balance) of 3.5 to 14.5, and can exhibit sufficient hydrophilicity. If the HLB value is smaller than this range, imparting hydrophilicity will be insufficient, and if it is larger than this range, the dispersibility in the hydrophilizing treatment agent will be significantly reduced.
  • the HLB value for ester-based surfactants, the saponification value is S, the acid value of the fatty acid that constitutes the surfactant is A, and the HLB value is defined as 20 (1 ⁇ S/A).
  • the B value is defined as 7 + the total number of hydrophilic groups - the total number of lipophilic groups, and the HLB value is defined as 7 + 11.7 ⁇ log (sum of formula weights of hydrophilic moieties/sum of formula weights of lipophilic moieties).
  • polyether-modified silicone oil may be an amphipathic surfactant.
  • amphipathic surfactant polyether-modified silicone oils are specifically TI-2011 (manufactured by Dow Corning Toray; trade name; see chemical formula (1)), TI-6021 (manufactured by Dow Corning Toray; trade name), TSF-4445 (manufactured by Momentive Performance Materials Japan; trade name), and TSF-4446 (manufactured by Momentive Performance Materials Japan; trade name).
  • KF-6011 (manufactured by Shin-Etsu Chemical Co.; trade name), KF-6011P (manufactured by Shin-Etsu Chemical Co.; trade name), KF-6012 (manufactured by Shin-Etsu Chemical Co.; trade name), KF-6015 (manufactured by Shin-Etsu Chemical Co.; trade name), KF-6004 (manufactured by Shin-Etsu Chemical Co.;
  • hydrophilicity-imparting components include, as water-soluble polymers, polyvinyl alcohol, starch, polyacrylic acid, polyacrylamide, polyethylene oxide, poly(vinylpyrrolidone), polyvinylamide, polyamine, polyethylene glycol, cellulose derivatives, polyethyleneimine, poly(acrylic acid), poly(sodium 4-styrenesulfonate), and poly(2-oxazoline).
  • cellulose derivatives such as water-soluble cellulose include nonionic water-soluble cellulose ethers obtained by treating cellulose with caustic soda and then reacting it with an etherifying agent such as methyl chloride, propylene oxide, or ethylene oxide.
  • water-soluble cellulose has the following chemical formula Those represented by are mentioned.
  • this water-soluble cellulose includes Metolose (manufactured by Shin-Etsu Chemical Co., Ltd.; registered trademark), which is made water-soluble by eliminating hydrogen bonds by replacing some of the hydrogen atoms of the hydroxyl groups of cellulose with methyl groups, hydroxypropyl groups, or hydroxyethyl groups.
  • Metolose SM which is methyl cellulose and has a methoxy group substitution degree of 1.8
  • Metolose 60SH which is hydroxypropyl methylcellulose and has a methoxy group substitution degree of 1.9 and a hydroxypropoxy group substitution mole number of 0.25
  • Metolose 65SH which has a methoxy group substitution degree of 1.8 and a hydroxypropoxy group substitution mole number of 0.15
  • Metolose SEB which is ethyl methyl cellulose and has a methoxy group substitution degree of 1.5 and a hydroxyethoxy group substitution mole number of 0.20
  • Metolose SNB which has a methoxy group substitution degree of 1.5 and a hydroxyethoxy group substitution mole number of 0.30 (both manufactured by Shin-Etsu Chemical Co., Ltd.; trade names). average number of moles of oxy groups).
  • water-soluble non-polymers such as glycerol and nonionic surfactants can be mentioned as hydrophilicity-imparting components in the hydrophilization treatment agent.
  • Such hydrophilizing agents include those in which a hydrophilicity-imparting component is dissolved or dispersed in an appropriate medium such as an organic solvent or water, specifically methanol, ethanol, n-propanol, isopropyl alcohol, n-butyl alcohol, ethyl acetate, toluene, acetone, methyl ethyl ketone, ethylene glycol, propylene glycol, octaacetylated sucrose, denatured ethanol, water, or a mixed solvent thereof. More specific examples of denatured ethanol include Neoethanol PM, MIP, IPM, IE, PHI, MHI, PIP, HIMTE, PHM, IPME, and P-7 (all manufactured by Daishin Chemical Co., Ltd.; trade names).
  • Such a hydrophilic treatment agent contains 0.001 to 5% by weight, preferably 0.005 to 1% by weight, more preferably 0.01 to 0.4% by weight of a hydrophilicity imparting component.
  • the site to which the hydrophilizing agent is applied may be at least one of the coated sites selected from a coating, a coating layer, a coating spot, a coating dot, a coating patch, and a coating mosaic.
  • the average film thickness of the coating, the average layer thickness of the coating layer, the average height of the coated spots, the average height of the coated dots, the average height of the coated patches, and the average height of the coated mosaic is 0.005 to 5 ⁇ m, preferably 0.01 to 1 ⁇ m.
  • the coating amount of the hydrophilicity imparting component per unit area is 1.0 ⁇ 10 ⁇ 6 to 1.0 ⁇ 10 ⁇ 3 g/cm 2 , preferably 5.0 ⁇ 10 ⁇ 6 to 4.0 ⁇ 10 ⁇ 4 g/cm 2 .
  • the contact angle with water on the surface of the substrate material which is not dry-treated and is not treated with a hydrophilic treatment agent, varies depending on the raw material of the substrate material.
  • the dry treatment alone significantly reduces the contact angle with heating and aging.
  • a hydrophilic treatment agent is applied to form a hydrophilic treatment surface, hydrophilicity can be maintained for a long period of time under normal temperature, pressure, and humidity conditions, but even if the substrate material is a composite material, hydrophilicity can be imparted by similar treatment.
  • the properties of the base material itself can be maintained without losing the properties of the base material itself, such as flexibility, gas permeability, and transparency in the case of silicone rubber such as PDMS, or the properties of transparency and low autofluorescence in the case of COP, glass, etc.
  • the base material surface and/or the interior have structural characteristics, such as fine processing such as hole processing and uneven processing, the hydrophilic processing agent on the hydrophilic processing surface dissolves in the solvent of the target liquid, so the original fineness can be maintained.
  • the entire surface of the base material may be a hydrophilic treatment surface, or the exposed surface of the base material or the inner channel surface may be a hydrophilic treatment surface.
  • This hydrophilic substrate can be used to measure target liquids using microfluidic measurement devices, microbiochips, microreactor chips, and microbiochemical chips.
  • the air on the surface and/or inside of the substrate can be discharged, and the air bubbles do not stay. Therefore, unlike the conventional microfluidic measurement device, the process performed only for discharging the air bubbles is not required, and the target liquid can be quickly brought into contact with the contact portion on the surface and/or inside of the substrate sufficiently and uniformly. Among other things, it is possible to ensure a sufficient and homogeneous flow of the liquid of interest inside, for example, in the channel.
  • the material of the base material to be hydrophilized is not particularly limited, such as resin, rubber, metal, ceramics, and glass.
  • the materials of the base material include, for example, silicone resins such as addition-type silicone resins, condensation-type silicone resins, peroxide-crosslinking silicone resins, ultraviolet-curable silicone resins, and radiation-crosslinking silicone resins; polycarbonates; cycloolefin resins; acrylic resins; epoxy resins; polyethylene terephthalate resins; Polystyrene resins such as styrene and s-polystyrene; coumarone-indene resins; terpene resins; styrene-divinylbenzene copolymers; ABS resins; Halogenated resins such as ridene, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer; 1,4-trans polybutadiene; polyoxymethylene, polyethylene glycol, polypropylene glycol; phenol-formalin resin; cresol-formalin resin; Polyimide; Polybenzimidazole
  • the material of the base material is rubber, for example, addition cross-linking silicone rubber; silicone rubbers such as VMQ, PVMQ, FVMQ, and MQ, peroxide cross-linking silicone rubber, condensation cross-linking silicone rubber, ultraviolet cross-linking silicone rubber, radiation cross-linking silicone rubber, ethylene-propylene-diene rubber (EPDM), vinylidene fluoride (FKM), tetrafluoroethylene-propylene (FEPM), and fluororubber such as tetrafluoroethylene-purple vinyl ether (FFKM).
  • silicone rubbers such as VMQ, PVMQ, FVMQ, and MQ
  • peroxide cross-linking silicone rubber condensation cross-linking silicone rubber
  • ultraviolet cross-linking silicone rubber radiation cross-linking silicone rubber
  • EPDM ethylene-propylene-diene rubber
  • FKM vinylidene fluoride
  • FEPM tetrafluoroethylene-propylene
  • fluororubber such as tetraflu
  • BR butadiene rubber
  • IR isoprene rubber
  • IIR isobutylene-isoprene rubber
  • NR natural rubber
  • U urethane rubber
  • ACM acrylic rubber
  • the material of the base material is any metal such as beryllium, magnesium, calcium, strontium, barium, radium, scandium, yttrium, titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver, gold, zinc, cadmium, mercury, aluminum, germanium, tin, lead, antimony, bismuth, or neodymium, and alloys.
  • metal such as beryllium, magnesium, calcium, strontium, barium, radium, scandium, yttrium, titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver, gold
  • iron alloys steel, carbon steel, cast iron
  • copper alloys phosphor bronze, brass, Nipronickel, beryllium copper, titanium copper
  • aluminum alloys copper, manganese, silicon, magnesium, zinc, nickel alloys, etc.
  • magnesium alloys Mg/Zn alloys, Mg/Ca alloys, etc.
  • zinc alloys tin and tin alloys, nickel alloys, gold alloys, silver alloys, platinum alloys, palladium alloys, lead alloys, titanium alloys ( ⁇ -type, ⁇ -type and ⁇ + ⁇ -type alloys), cadmium aluminum, zirconium alloys, cobalt alloys, chromium alloys, molybdenum alloys, tungsten alloys, manganese alloys, ferritic stainless steels, martensitic stainless steels, austinitic stainless steels, precipitation-strengthened stainless steels, nickel-titanium alloys, iron-manganese-titan
  • the material of the base material is ceramics such as ceramics, cement, gypsum, and enamel that have been hardened at high temperatures. 2 O. 3 ), zirconia-based, hydroxide-based (hydroxyapatite), carbide-based (silicon carbide, SiC), carbonate-based, nitride-based (silicon nitride), (7-halide-based (fluorite), phosphate-based (apatite), specifically barium titanate, Bi 2 Sr 2 Ca 2 Cu 3 O.
  • high-temperature superconducting ceramics high-temperature superconducting ceramics, boron nitride, ferrite, lead zirconate titanate, silicon carbide, silicon nitride, steatite (MgOSiO 2 ), YBa 2 Cu 3 O. 7- ⁇ , high-temperature superconducting ceramics, zinc oxide, aluminum nitride (AlN), silicon carbide (SiC), silicon nitride (Si 3 N. 4 ), forsterite (2MgO SiO 2 ), steatite (MgO SiO 2 ), cordierite (2MgO 2Al 2 O. 3 ⁇ 5SiO 2 ), sialon (Si 3 N. 4 ⁇ Al 2 O.
  • Materials for the base material include various optical glasses such as silicate glass, quartz glass, soda-lime glass, borosilicate glass, and lead glass.
  • the hydrophilic substrate can be produced as follows.
  • at least a portion of the contact portion is subjected to at least one dry treatment selected from UV treatment, excimer UV treatment, corona discharge treatment, plasma treatment, electron beam treatment, and gamma ray treatment.
  • at least one dry treatment selected from UV treatment, excimer UV treatment, corona discharge treatment, plasma treatment, electron beam treatment, and gamma ray treatment.
  • hydrophilicity-imparting component By dissolving or suspending the hydrophilicity-imparting component in various media such as water, water-soluble organic media such as alcohol and acetone, and water-insoluble organic media such as methylene chloride, chloroform and ether, it is used as a diluted solution as a hydrophilization treatment agent.
  • High hydrophilicity can be obtained when the concentration of the hydrophilicity imparting component is 0.001 to 10% by mass, and it is more preferably 0.005 to 1.0% by mass.
  • a hydrophilizing agent containing a hydrophilicity imparting component selected from water-soluble polymers and water-soluble non-polymers is sprayed, applied, or immersed on the dry-treated site to give it to the surface, and if necessary, the medium is removed by a method such as volatilization, and/or washed with water and dried to prepare a hydrophilized substrate.
  • the liquid passing point is not only water, but also lower alcohols such as methanol, ethanol, 1-propanol, and 2-propanol; (tris(hydroxymethyl)aminomethane), HEPES buffer (2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic acid), and phosphate buffered saline; solutions containing anionic surfactants such as fatty acid sodium, fatty acid potassium, sodium lauryl sulfate, and dioctyl sodium sulfosuccinate; A solution containing a cationic surfactant such as a quaternary ammonium salt, a quaternary ammonium methacrylic acid polymer, and a polyethyleneimine quaternary ammonium salt; a solution containing a nonionic surfactant such as polyoxyethylene fatty acid ester, glycerin ester, poly
  • hydrophilic substrates to which the present invention is applied examples of hydrophilic substrates to which the present invention is applied and comparative examples of substrates to which the present invention is not applied are shown below.
  • SUS304 (manufactured by The Nilaco Corporation) is used as the SUS plate
  • Tempax glass plate (manufactured by Sekiya Rika Co., Ltd.) is used as the glass plate
  • Zeonor Film ZF16-188 (manufactured by Nippon Zeon Co., Ltd.) is used as the COP plate
  • SiN plate a commercial product is used as the Si plate
  • Si plate a commercial product is used as the Si plate
  • 100 parts by mass of methyl vinyl silicone rubber (manufactured by Toray Dow Corning Co., Ltd., product name: SH851) as the silicone rubber plate, and peroxide.
  • each untreated test piece as in Comparative Example 1 showed a high water contact angle of about 39.2 to 107°, but plasma treatment as in Comparative Example 2 improved to less than 10°.
  • the plasma-treated test pieces had a higher water contact angle after the accelerated test, although not as high as the untreated test pieces, indicating that the improvement in hydrophilicity due to plasma treatment cannot be maintained for a long period of time.
  • each test piece subjected to plasma treatment and hydrophilic treatment as in Example 1 had a contact angle of less than 10°, and even after an accelerated test at 80 ° C. for 1.5 hours as in Example 2, the water contact angle hardly changed, indicating that the improvement in hydrophilicity could be maintained for a long time.
  • Comparative Example 4 After the SiN test piece was plasma-treated in the same manner as in Comparative Example 2, 100 parts by mass of methyl vinyl silicone rubber (manufactured by Dow Corning Toray Co., Ltd., product name: SH851) and 0.5 parts by mass of 2,5-dimethyl-2,5-di(t-butylperoxy)hexane (manufactured by Toray Dow Corning Co., Ltd., product name: PC-4, 50% silica solution) as a peroxide vulcanizing agent were kneaded and kneaded at 170°C.
  • methyl vinyl silicone rubber manufactured by Dow Corning Toray Co., Ltd., product name: SH851
  • 2,5-dimethyl-2,5-di(t-butylperoxy)hexane manufactured by Toray Dow Corning Co., Ltd., product name: PC-4, 50% silica solution
  • Example 3 A SiN test piece was subjected to plasma treatment as in Comparative Example 2, and then subjected to hydrophilization treatment as in Comparative Example 4 and Example 1. After that, it was placed in a sealed container together with a vulcanized silicone rubber sheet that had not been secondary vulcanized as in Comparative Example 4, left to stand under accelerated conditions of 80° C. for 1.5 hours, and then subjected to water contact angle measurement. The results are summarized in Table 2.
  • the silicone rubber substrate was subjected to plasma treatment and metolose treatment, the contact angle was measured, and the stability was examined.
  • Example 5 Plasma-treated/Metrose-treated silicone rubber test pieces prepared as in Example 4 were subjected to accelerated tests at 80° C. for 1 hour, 2 hours, 16 hours, 42 hours, 88 hours, and 168 hours, and then the water contact angle was measured. Table 4 shows the results.
  • Example 6 (Water contact angle measurement 2-6: Example 6) A silicone rubber test piece subjected to plasma treatment, METOLOSE treatment, and accelerated test in the same manner as in Example 5 was washed with water, dried, and subjected to water contact angle measurement. Table 4 shows the results.
  • Example 5 As is clear from Tables 3 and 4, as in Example 5, the contact angle was slightly changed by storage at 80°C (accelerated test), but sufficient hydrophilicity was exhibited even after 168 hours. However, as in Comparative Example 7, Example 6, and Reference Example 2, by masking with Metolose, the penetration of the functional groups generated by the plasma treatment was suppressed, and the activity of the substrate surface could be maintained for a long time.
  • Example 7 The untreated test piece of Comparative Example 3 was hydrophilized by coating 2.2 ⁇ L per 1 cm 2 of the hydrophilizing agent containing 0.05 wt % of Metolose prepared as described above to obtain a hydrophilized test piece. When this test piece was dripped with water, the depressions were filled with water without entrainment of air bubbles (see FIG. 1(b)).
  • the hydrophilic base material of the present invention is used for microfluidic measurement devices such as microbiochips, microreactor chips, and microbiochemical chips that measure the shape, particle size, and particle size distribution of fine particles, as well as windshields, optical parts, eyeglasses, optical members, and the like.

Abstract

Provided is a hydrophilized base material which is intended to be used in a microchip device, a cell culture container/organ chip and the like, and in which the surface thereof is a hydrophilization-treated surface for the purpose of improving hydrophilicity so as to prevent air bubbles from staying on the base material surface to be contacted with a liquid of interest or improving the hydrophilicity of a light-permeable product so as to prevent the deterioration in permeability due to water droplets or moisture. The hydrophilized base material is one in which a liquid of interest comes into contact with a portion of a contacting part that corresponds to at least a portion of the surface and/or the interior of the base material. In the hydrophilized base material, at least a portion of the contacting part is any one dry-treated part selected from an UV-treated part, an excimer UV-treated part, a corona discharge-treated part, a plasma-treated part, an electron beam-treated part and a γ-ray-treated part, and has, attached thereto, a hydrophilization treatment agent comprising a hydrophilicity-imparting component selected from a water-soluble polymer and a water-insoluble polymer. As a result, the at least a portion of the contacting part becomes a hydrophilization-treated surface.

Description

親水化基材hydrophilic substrate
 本発明は、対象液体が接触する基材の露出表面及び/又は内腔表面が親水化処理面となっている親水化基材に関する。 The present invention relates to a hydrophilized base material in which the exposed surface and/or inner cavity surface of the base material with which the target liquid comes into contact is a hydrophilized surface.
 近年、分析機器の発達やその感度の向上に伴い、微量分析を行うマイクロチップデバイスが用いられるようになってきた。マイクロチップデバイスには、例えばマイクロ流体測定デバイスやマイクロバイオチップやマイクロリアクターチップやマイクロ生化学チップがある。 In recent years, with the development of analytical instruments and their improved sensitivity, microchip devices for microanalysis have come to be used. Microchip devices include, for example, microfluidic measurement devices, microbiochips, microreactor chips, and microbiochemical chips.
 マイクロ流体測定デバイスは、マイクロ流路中で、流体や流体中の粒子の物性を測定するというものである。 A microfluidic measurement device measures the physical properties of fluids and particles in fluids in microchannels.
 また、マイクロバイオチップを用いるものとして、血液や尿などの生体由来検体である被験物をμLオーダーの微量だけ用いて、酵素の特異的基質選択性を利用し、検体中の基質と作用する酵素反応量やその基質量を酵素又は基質で発色する試薬による着色程度で定量するという分析方法がある。 In addition, as a method using a microbiochip, there is an analysis method that uses only a minute amount of the test object, which is a biological specimen such as blood or urine, in the order of μL, and uses the specific substrate selectivity of the enzyme to quantify the amount of enzyme reaction that acts with the substrate in the specimen and the amount of the substrate by the degree of coloring by the enzyme or the reagent that develops color with the substrate.
 さらに、マイクロ生化学チップを用いるものとして、酵素含有膜を用い酵素反応量を電極で電気信号に変換して基質量を定量する定量分析方法や、有用細胞又はウィルスを増殖させたり、検査のために癌細胞を付着させたりする検査方法が知られている。またマイクロリアクターチップが用いられているものとして、DNA抽出・そのポリメラーゼ連鎖反応(PCR)増幅や、イオン濃度測定や、核酸、糖、タンパク質又はペプチドの微量合成などをμMオーダーで行う方法も知られている。 Furthermore, as methods using micro-biochemical chips, there are known quantitative analysis methods that use an enzyme-containing membrane to convert the amount of enzyme reaction into electrical signals with electrodes to quantify the amount of substrate, and test methods that proliferate useful cells or viruses and attach cancer cells for testing. In addition, as a method using a microreactor chip, a method of performing DNA extraction and its polymerase chain reaction (PCR) amplification, ion concentration measurement, microsynthesis of nucleic acids, sugars, proteins or peptides, etc. in μM order is also known.
 これらのマイクロチップデバイスは、微細な流路に混入し又は対象液体から生じた気泡が流路表面に付着すると気泡滞留やそれに基づく脈流を生じて送液性が悪化するので気泡の流路表面付着・滞留を防止したり、対象液体中の検体や成分が吸着したりしないように、親水性の向上が求められている。 In these microchip devices, if bubbles mixed in a fine channel or generated from the target liquid adhere to the channel surface, the bubbles will stay and cause a pulsating flow based on it, and the liquid feeding performance will deteriorate.
 さらに、細胞培養容器中の培養液との親和性や、臓器チップと細胞や体液との親和性を向上させ細胞などの吸着をコントロールするため、これら製品の親水性のコントロールが求められている。 Furthermore, it is required to control the hydrophilicity of these products in order to improve the affinity with the culture solution in the cell culture vessel and the affinity between the organ chip and cells and body fluids to control the adsorption of cells.
特表2011-501806号公報Japanese Patent Publication No. 2011-501806
 本発明は前記の課題を解決するためになされたもので、マイクロ流体測定デバイス・ポアチップ・マイクロバイオチップ・マイクロリアクター・マイクロ生化学チップを有するマイクロチップデバイスや、細胞培養容器・臓器チップなどに用いられるものであり、対象液体、とりわけウィルスや細菌、及び磁性塗料に含まれる磁性粒子のような微粒子を含有する対象液体や、生体由来検体を含有する対象液体や、微量合成原材料を含有する対象液体などと接触する基材表面に気泡を滞留させないよう親水性を向上させたり、水滴や湿気で透過性が悪化しないように光透過性製品の親水性を向上させたりするために、表面が親水化処理面となっている親水化基材を提供することを目的とする。 The present invention was made to solve the above-mentioned problems, and is used for microfluid measurement devices, pore chips, micro biochips, micro reactors, micro chip devices having micro biochemical chips, cell culture vessels, organ chips, etc. The hydrophilicity is improved so that air bubbles do not stay on the base material surface that comes into contact with the target liquid, especially the target liquid containing viruses, bacteria, and fine particles such as magnetic particles contained in magnetic paint, the target liquid containing biological specimens, and the target liquid containing trace synthetic raw materials. To provide a hydrophilized base material having a hydrophilized surface in order to improve the hydrophilicity of a light-transmitting product so that the permeability is not deteriorated by water droplets or moisture.
 前記の目的を達成するためになされた親水化基材は、基材表面及び/又は内部の少なくとも一部の接触部位で対象液体が接触する基材であって、前記接触部位の少なくとも一部がUV処理部位、エキシマUV処理部位、コロナ放電処理部位、プラズマ処理部位、電子線処理部位、及びγ線処理部位から選ばれる少なくとも何れかの乾式処理部位であり水溶性高分子と水溶性非高分子とから選ばれる親水性付与成分を含有してなる親水化処理剤が付されていることによって親水化処理面となっているというものである。 The hydrophilized base material used to achieve the above-mentioned object is a base material with which the target liquid contacts at least a part of the contact area on the surface and/or inside of the base material, wherein at least a part of the contact area is at least one dry-treated area selected from a UV-treated area, an excimer UV-treated area, a corona discharge-treated area, a plasma-treated area, an electron beam-treated area, and a gamma-ray-treated area, and a hydrophilic treatment agent containing a hydrophilicity-imparting component selected from a water-soluble polymer and a water-soluble non-polymer is applied to the base material to provide a hydrophilic treatment surface. It is said that there is
 この親水化基材は、前記親水化処理剤が、前記対象液体に少なくとも一部溶解する溶解性を有しているというものである。 In this hydrophilizing base material, the hydrophilizing treatment agent has the solubility to at least partially dissolve in the target liquid.
 この親水化基材は、前記親水性付与成分が、例えば、ポリエーテル変性シリコーンオイル、ポリビニルアルコール、デンプン、ポリアクリル酸、ポリアクリルアミド,ポリエチレンオキシド、ポリ(ビニルピロリドン)、ポリビニルアミド、ポリアミン、ポリエチレングリコール、セルロース誘導体、ポリエチレンイミン、ポリ(アクリル酸)、ポリ(4-スチレンスルホン酸ナトリウム)、及びポリ(2-オキサゾリン)から選ばれる前記水溶性高分子;及び/又はグリセロール、及び非イオン性界面活性剤から選ばれる前記水溶性非高分子である。 In this hydrophilic substrate, the hydrophilicity imparting component is, for example, the water-soluble polymer selected from polyether-modified silicone oil, polyvinyl alcohol, starch, polyacrylic acid, polyacrylamide, polyethylene oxide, poly(vinylpyrrolidone), polyvinylamide, polyamine, polyethylene glycol, cellulose derivative, polyethyleneimine, poly(acrylic acid), poly(4-sodium styrenesulfonate), and poly(2-oxazoline); and/or the water-soluble non-polymer selected from glycerol and a nonionic surfactant. There is.
 この親水化基材は、記親水化処理剤で形成された、被膜、被覆層、被覆スポット、被覆ドット、被覆パッチ、及び被覆モザイクから選ばれる少なくとも何れかの被覆部位が設けられていることにより、前記親水化処理面となっているというものであってもよい。 The hydrophilized base material may have the hydrophilized surface by being provided with at least one coated portion selected from a coating, a coating layer, a coating spot, a coating dot, a coating patch, and a coating mosaic formed with a hydrophilization treatment agent.
 この親水化基材は、例えば前記被覆部位が、前記被膜の平均膜厚、前記被覆層の平均層厚、前記被覆スポットの平均高さ、前記被覆ドットの平均高さ、前記被覆パッチの平均高さ、及び/又は前記被覆モザイクの平均高さを、0.005~5μmとするというものである。 In this hydrophilized base material, for example, the coating portion has an average film thickness of the coating, an average layer thickness of the coating layer, an average height of the coating spots, an average height of the coating dots, an average height of the coating patches, and/or an average height of the coating mosaic of 0.005 to 5 μm.
 この親水化基材は、前記被覆部位が、単位面積当たりの前記親水性付与成分の被覆量を、1.0×10-6~1.0×10-3g/cmとするというものであることが好ましい。 It is preferable that the hydrophilized substrate has a coating amount of the hydrophilicity imparting component per unit area of 1.0×10 −6 to 1.0×10 −3 g/cm 2 at the coated portion.
 本発明の親水化基材によれば、乾式処理をすることによって及び親水化処理剤が付されていることによって基材表面及び/又は内部の親水性が向上しているので、水や水溶液や懸濁水のような対象液体例えば被検液や微量合成成分含有薬液に対する接触角が小さい。 According to the hydrophilized base material of the present invention, the hydrophilicity of the surface and/or the inside of the base material is improved by the dry treatment and the addition of the hydrophilizing agent, so the contact angle with respect to target liquids such as water, aqueous solutions, and suspensions, such as test liquids and chemicals containing trace amounts of synthetic ingredients, is small.
 この親水化基材によれば、マイクロ流体測定デバイス・ポアチップ・マイクロバイオチップ・マイクロリアクター・マイクロ生化学チップを有するマイクロチップデバイスや、細胞培養容器・臓器チップなどに用いたときに、対象液体、とりわけウィルスや細菌、及び磁性塗料に含まれる磁性粒子のような微粒子を含有する対象液体や、生体由来検体を含有する対象液体や、微量合成原材料を含有する対象液体などと接触する基材表面及び/又は内部に気泡を滞留させないようにすることができる。 According to this hydrophilized base material, when used in microchip devices having microfluid measurement devices, pore chips, micro biochips, microreactors, micro biochemical chips, cell culture vessels, organ chips, etc., it is possible to prevent air bubbles from accumulating on the surface and/or inside of the base material that comes into contact with the target liquid, especially the target liquid containing viruses, bacteria, and fine particles such as magnetic particles contained in magnetic paint, the target liquid containing biological specimens, and the target liquid containing trace amounts of synthetic raw materials.
 そのためこの親水化基材で形成されたマイクロ流体測定デバイスなどを有するマイクロチップデバイスを用いれば、例えば測定すべき微粒子などを含有する電解質懸濁液のような対象液体が流路内に元々存在する空気をも残すことなく押し出して排出できる。そのため、気泡を除去するためだけに行われる工程が不要であるので、未使用のこれらチップやそれを搭載したマイクロチップデバイスを開梱した後に、速やかに微粒子や生体由来検体の生体成分の径や粒径分布の測定・分析、又は微量合成などを行うことができる。 Therefore, by using a microchip device having a microfluid measurement device made of this hydrophilized base material, the target liquid, such as an electrolyte suspension containing fine particles to be measured, can be pushed out and discharged without leaving even the air originally present in the channel. Therefore, a process that is performed only for removing air bubbles is unnecessary, so that after unpacking these unused chips or microchip devices equipped with them, the diameters and particle size distributions of biological components of microparticles and biological specimens can be measured and analyzed, or microsynthesis can be performed.
 しかも、対象液体を低速から高速に至る任意の送液速度で、これらチップの細孔や流路に気泡から気泡の発生を抑制するばかりか、残留していた気泡や発生した気泡を速やかに排出でき、脈流や不均一な流量となってしまうのを防止できる。 Moreover, at any liquid transfer speed from low speed to high speed, not only is it possible to suppress the generation of air bubbles from air bubbles in the pores and flow paths of these chips, but also the remaining air bubbles and generated air bubbles can be quickly discharged, preventing pulsating flow and uneven flow rates.
 また、この親水化基材で形成された細胞培養容器・臓器チップを用いれば、例えば培養している細胞などを含有する培養液のような対象液体がこれら細胞培養容器・臓器チップの表面と馴染み易くなることによって、浮遊細胞などを吸着させない。 In addition, if the cell culture vessel/organ chip formed of this hydrophilic base material is used, the target liquid, such as the culture solution containing the cells being cultured, becomes more familiar with the surface of the cell culture vessel/organ chip, thereby preventing the adsorption of floating cells.
 この親水化基材は、乾式処理と親水化処理剤処理とによって、常温・常圧・常湿条件のみならず、高温・多湿条件下で長期間保存しても、小さい接触角のまま優れた親水性を維持することができる。 By dry treatment and treatment with a hydrophilic treatment agent, this hydrophilic substrate can maintain excellent hydrophilicity with a small contact angle even when stored for a long period of time not only under normal temperature, normal pressure, and normal humidity conditions, but also under high temperature and high humidity conditions.
本発明を適用外の未処理の基材と、本発明を適用する親水化基材とについて、水と接触させた状態の写真である。1 is a photograph of an untreated base material to which the present invention is not applied and a hydrophilized base material to which the present invention is applied, in a state of contact with water.
 以下、本発明を実施するための形態を詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。 Embodiments for carrying out the present invention will be described in detail below, but the scope of the present invention is not limited to these embodiments.
 本発明の親水化基材は、基材表面及び/又は内部の少なくとも一部の接触部位で対象液体が接触する基材であって、接触部位の少なくとも一部が親水化処理面となっているというものである。 The hydrophilic base material of the present invention is a base material with which the target liquid comes into contact with at least a part of the contact area on the surface and/or inside of the base material, and at least a part of the contact area is a hydrophilic surface.
 親水化基材の基材表面及び/又は内部の少なくとも一部が、先ずUV処理、エキシマUV処理、コロナ放電処理、プラズマ処理、電子線処理、及びγ線処理から選ばれる少なくとも何れかの乾式処理がなされていることによって、UV処理部位、エキシマUV処理部位、コロナ放電処理部位、プラズマ処理部位、電子線処理部位、及びγ線処理部位から選ばれる少なくとも何れかの乾式処理部位となっている。さらに、この乾式処理部位が、水溶性高分子と水溶性非高分子とから選ばれる親水性付与成分を含有してなる親水化処理剤が付されていることによって親水化処理面となっている。 At least a portion of the substrate surface and/or interior of the hydrophilized substrate is first subjected to at least one dry treatment selected from UV treatment, excimer UV treatment, corona discharge treatment, plasma treatment, electron beam treatment, and gamma ray treatment, thereby forming at least one dry treated portion selected from a UV treated portion, an excimer UV treated portion, a corona discharge treated portion, a plasma treated portion, an electron beam treated portion, and a γ ray treated portion. Further, the dry-treated portion is coated with a hydrophilizing agent containing a hydrophilicity-imparting component selected from water-soluble polymers and water-soluble non-polymers to form a hydrophilized surface.
 親水化基材の親水化処理面は、対象液体が接触する基材表面及び/又は内部の少なくとも一部である接触部位に形成されるものである。このような接触部位は、対象液体が接触するものであれば位置・範囲・大きさ等に制限がなく、全面であっても、パターン化された一部領域であってもよいが、具体的には、複数の親水化基材が接合された親水化基材接合面の少なくとも一方に形成された流路であってもよく、単数の親水化基材の一面の少なくとも一部であってもよく、全面であってもよい。 The hydrophilized surface of the hydrophilized base material is formed on a contact portion that is at least a part of the surface of the base material and/or the interior with which the target liquid contacts. Such a contact portion is not limited in position, range, size, etc., as long as it is in contact with the target liquid, and may be the entire surface or a patterned partial region. Specifically, it may be a channel formed on at least one of the hydrophilic substrate bonding surfaces to which a plurality of hydrophilic substrates are bonded, may be at least a part of one surface of a single hydrophilic substrate, or may be the entire surface.
 このような親水化基材の親水化処理面は、UV処理、エキシマUV処理、コロナ放電処理、プラズマ処理、電子線処理、及びγ線処理のような乾式処理によって、親水化前の原料基材に固有の水酸基のような親水性固有基の他、新たに水酸基、カルボキシ基、又はカルボニル基、若しくはヒドロキシシリル基のような親水性活性基を発生させ、これら親水性基が作用することによって、親水性が発現するというものである。このとき乾式処理による親水性基は、例えば80℃のような熱により、又は長期間放置例えば常温・常圧・常湿下での長期間放置により、基材露出表面又は基材内部流路表面に表出していたものが基材表面及び/又は内部の分子内へ潜り込んで親水性を徐々に喪失してしまうものである。しかし、親水化処理剤の親水性付与成分の塗布によって謂わばマスキングとしての効果を発揮し、親水性基を安定化させ、親水性基が基材上に露出したまま維持できるようになり、基材表面分子内へ潜り込まないようになって、基材表面及び/又は内部の活性を維持して高い接触角を維持できるようになっていると推察される。 The hydrophilized surface of such a hydrophilized substrate is subjected to dry treatments such as UV treatment, excimer UV treatment, corona discharge treatment, plasma treatment, electron beam treatment, and gamma ray treatment to generate hydrophilic intrinsic groups such as hydroxyl groups inherent in the raw material substrate before hydrophilization, as well as newly generate hydrophilic active groups such as hydroxyl groups, carboxy groups, carbonyl groups, or hydroxysilyl groups, and these hydrophilic groups act to develop hydrophilicity. At this time, the hydrophilic groups produced by the dry treatment gradually lose their hydrophilicity due to exposure to heat such as 80° C., or exposure for a long period of time under normal temperature, normal pressure, and normal humidity. However, it is presumed that the application of the hydrophilicity-imparting component of the hydrophilization treatment agent exerts a so-called masking effect, stabilizes the hydrophilic groups, allows the hydrophilic groups to remain exposed on the substrate, prevents them from entering into the substrate surface molecules, and maintains the activity of the substrate surface and/or the interior to maintain a high contact angle.
 このような親水化基材の親水化処理面は、親水性付与成分を有している親水化処理剤を用いて形成されているというものである。親水化処理面は、親水化基材の原料基材に、親水化処理剤を塗布、浸漬、噴霧、滴下などの塗工手段、必要に応じて引き続く加熱・風乾・放置など乾燥手段により、得られたものである。 The hydrophilized surface of such a hydrophilized substrate is formed using a hydrophilizing agent having a hydrophilicity-imparting component. The hydrophilized surface is obtained by applying, dipping, spraying, or dropping a hydrophilizing agent to the base material of the hydrophilic base material, and if necessary, by drying means such as heating, air drying, or standing.
 このような親水化処理剤は、対象液体に少なくとも一部溶解する溶解性を有していることが好ましい。親水化処理剤が溶解性を有していると、対象液体と接触したときに速やかに溶解しはじめ親水性が向上すると共に、気泡や異物の付着が無くなる。 It is preferable that such a hydrophilizing agent has a solubility of at least partially dissolving in the target liquid. If the hydrophilizing treatment agent has solubility, it will start to dissolve rapidly when it comes into contact with the target liquid, improving the hydrophilicity and eliminating adhesion of air bubbles and foreign matter.
 親水化処理剤は、水溶性高分子と水溶性非高分子とから選ばれる親水性付与成分と、必要に応じて水、有機溶媒例えば水溶性有機溶媒具体的にはアルコール等の溶剤とを含有するものである。 The hydrophilizing agent contains a hydrophilicity-imparting component selected from water-soluble polymers and water-soluble non-polymers, and, if necessary, water, an organic solvent such as a water-soluble organic solvent, specifically a solvent such as alcohol.
 親水化処理剤中、親水性付与成分は、親水性高分子として、ポリエーテル変性シリコーンオイル、親水性基含有アクリル系化合物が挙げられる。 Among the hydrophilizing agents, hydrophilic polymers include polyether-modified silicone oils and hydrophilic group-containing acrylic compounds.
 親水性高分子として、このようなポリエーテル変性シリコーンオイルは、主鎖にポリシロキサン骨格を、側鎖に親水性基として水酸基末端ポリエーテル基を、夫々有している共重合体である。側鎖は主鎖を構成するモノマーの繰返に応じて繰返されている親水性基含有シリコーン系化合物であり、具体的には、下記化学式(1)
Figure JPOXMLDOC01-appb-C000001
(化学式(1)中、x及びyはその化合物のシロキシ構造の繰返単位数であり、x又はyが示す繰返単位はブロック共重合体単位であってもよくランダム共重合体単位であってもよい。nはポリエーテル基中のエーテル構造繰返単位数、より具体的には平均で12程度の数である。Rの夫々はメチル基又はフェニル基である。)で表されるものが挙げられる。
As a hydrophilic polymer, such a polyether-modified silicone oil is a copolymer having a polysiloxane skeleton in its main chain and hydroxyl-terminated polyether groups as hydrophilic groups in its side chains. The side chain is a hydrophilic group-containing silicone compound that is repeated according to the repetition of the monomers that constitute the main chain. Specifically, the following chemical formula (1)
Figure JPOXMLDOC01-appb-C000001
(In the chemical formula (1), x and y are the number of repeating units of the siloxy structure of the compound, and the repeating unit represented by x or y may be a block copolymer unit or a random copolymer unit. n is the number of ether structure repeating units in the polyether group, more specifically, the number is about 12 on average. Each R is a methyl group or a phenyl group.).
 このような親水性基含有シリコーン系化合物を含むポリエーテル変性シリコーンオイルからなる親水化処理剤は、HLB値(Hydrophilic-Lipophilic Balance;親水油バランス)を3.5~14.5とするものであると、十分な親水性を発現することができる。HLB値は、この範囲よりも小さいと親水性の付与が不十分となり、この範囲よりも大きいと親水化処理剤中での分散性が大幅に低下してしまう。HLB値は、エステル系の界面活性剤について、鹸化価をS、界面活性剤を構成する脂肪酸の酸価をAとし、HLB値を20(1-S/A)で定義するものや、HLB値を20×親水部の式量の総和/分子量で定義するものや、官能基によって決まる基数を規定し(例えばメチル基やメチレン鎖は親油基で0.475、水酸基は親水基で1.9など)、HLB値を7+親水基の基数の総和-親油基の基数の総和で定義するものや、HLB値を7+11.7×log(親水部の式量の総和/親油部の式量の総和)で定義するものが知られている。 A hydrophilizing agent made of a polyether-modified silicone oil containing such a hydrophilic group-containing silicone compound has an HLB value (Hydrophilic-Lipophilic Balance) of 3.5 to 14.5, and can exhibit sufficient hydrophilicity. If the HLB value is smaller than this range, imparting hydrophilicity will be insufficient, and if it is larger than this range, the dispersibility in the hydrophilizing treatment agent will be significantly reduced. Regarding the HLB value, for ester-based surfactants, the saponification value is S, the acid value of the fatty acid that constitutes the surfactant is A, and the HLB value is defined as 20 (1−S/A). The B value is defined as 7 + the total number of hydrophilic groups - the total number of lipophilic groups, and the HLB value is defined as 7 + 11.7 × log (sum of formula weights of hydrophilic moieties/sum of formula weights of lipophilic moieties).
 また、ポリエーテル変性シリコーンオイルは、両親媒性界面活性剤であってもよい。このような両親媒性界面活性剤であるポリエーテル変性シリコーンオイルは、具体的に、TI-2011(東レ・ダウコーニング社製;商品名。化学式(1)参照)、TI-6021(東レ・ダウコーニング社製;商品名)、TSF-4445(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製;商品名)、TSF-4446(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製;商品名)、KF-6011(信越化学工業社製;商品名)、KF-6011P(信越化学工業社製;商品名)、KF-6012(信越化学工業社製;商品名)、KF-6015(信越化学工業社製;商品名)、KF-6004(信越化学工業社製;商品名)、KF-6043(信越化学工業社製;商品名)が挙げられる。 In addition, the polyether-modified silicone oil may be an amphipathic surfactant. Such amphipathic surfactant polyether-modified silicone oils are specifically TI-2011 (manufactured by Dow Corning Toray; trade name; see chemical formula (1)), TI-6021 (manufactured by Dow Corning Toray; trade name), TSF-4445 (manufactured by Momentive Performance Materials Japan; trade name), and TSF-4446 (manufactured by Momentive Performance Materials Japan; trade name). , KF-6011 (manufactured by Shin-Etsu Chemical Co.; trade name), KF-6011P (manufactured by Shin-Etsu Chemical Co.; trade name), KF-6012 (manufactured by Shin-Etsu Chemical Co.; trade name), KF-6015 (manufactured by Shin-Etsu Chemical Co.; trade name), KF-6004 (manufactured by Shin-Etsu Chemical Co.;
 さらに、親水化処理剤中、親水性付与成分は、水溶性高分子として、ポリビニルアルコール、デンプン、ポリアクリル酸、ポリアクリルアミド、ポリエチレンオキシド、ポリ(ビニルピロリドン)、ポリビニルアミド、ポリアミン、ポリエチレングリコール、セルロース誘導体、ポリエチレンイミン、ポリ(アクリル酸)、ポリ(4-スチレンスルホン酸ナトリウム)、及びポリ(2-オキサゾリン)が挙げられる。 Furthermore, among the hydrophilizing agents, hydrophilicity-imparting components include, as water-soluble polymers, polyvinyl alcohol, starch, polyacrylic acid, polyacrylamide, polyethylene oxide, poly(vinylpyrrolidone), polyvinylamide, polyamine, polyethylene glycol, cellulose derivatives, polyethyleneimine, poly(acrylic acid), poly(sodium 4-styrenesulfonate), and poly(2-oxazoline).
 また、親水性付与成分として、セルロース誘導体例えば水溶性セルロースは、セルロースを苛性ソーダで処理した後、塩化メチル、酸化プロピレン又は酸化エチレン等のエーテル化剤と反応させて得られる非イオン性の水溶性セルロースエーテルが挙げられる。 In addition, as hydrophilicity-imparting components, cellulose derivatives such as water-soluble cellulose include nonionic water-soluble cellulose ethers obtained by treating cellulose with caustic soda and then reacting it with an etherifying agent such as methyl chloride, propylene oxide, or ethylene oxide.
 このような水溶性セルロースは、具体的には、下記化学式
Figure JPOXMLDOC01-appb-C000002
で表されるものが挙げられる。
Specifically, such water-soluble cellulose has the following chemical formula
Figure JPOXMLDOC01-appb-C000002
Those represented by are mentioned.
 この水溶性セルロースは、より具体的には、セルロースの水酸基の水素原子の一部をメチル基、ヒドロキシプロピル基、又はヒドロキシエチル基で置換することにより、水素結合を消失させ、水溶性を発現させたメトローズ(信越化学工業株式会社製;登録商標)が挙げられる。より具体的には、メチルセルロースであってメトキシ基置換度が1.8であるメトローズSM;ヒドロキシプロピルメチルセルロースであってメトキシ基置換度が1.9でヒドロキシプロポキシ基置換モル数が0.25のメトローズ60SH、メトキシ基置換度が1.8でヒドロキシプロポキシ基置換モル数が0.15のメトローズ65SH、メトキシ基置換度が1.4でヒドロキシプロポキシ基置換モル数が0.20のメトローズ90SH;ヒドロキシエチルメチルセルロースであってメトキシ基置換度が1.5でヒドロキシエトキシ基置換モル数が0.20のメトローズSEB、メトキシ基置換度が1.5でヒドロキシエトキシ基置換モル数が0.30のメトローズSNB(何れも信越化学工業株式会社製;商品名。但し、置換度はセルロースのグルコース環単位当たりメトキシ基で置換された水酸基の平均個数であり、置換モル数はセルロースのグルコース環単位当たりに付加したヒドロキシプロポキシ基あるいはヒドロキシエトキシ基の平均モル数)が挙げられる。 More specifically, this water-soluble cellulose includes Metolose (manufactured by Shin-Etsu Chemical Co., Ltd.; registered trademark), which is made water-soluble by eliminating hydrogen bonds by replacing some of the hydrogen atoms of the hydroxyl groups of cellulose with methyl groups, hydroxypropyl groups, or hydroxyethyl groups. More specifically, Metolose SM, which is methyl cellulose and has a methoxy group substitution degree of 1.8; Metolose 60SH, which is hydroxypropyl methylcellulose and has a methoxy group substitution degree of 1.9 and a hydroxypropoxy group substitution mole number of 0.25; Metolose 65SH, which has a methoxy group substitution degree of 1.8 and a hydroxypropoxy group substitution mole number of 0.15; Metolose SEB, which is ethyl methyl cellulose and has a methoxy group substitution degree of 1.5 and a hydroxyethoxy group substitution mole number of 0.20, and Metolose SNB, which has a methoxy group substitution degree of 1.5 and a hydroxyethoxy group substitution mole number of 0.30 (both manufactured by Shin-Etsu Chemical Co., Ltd.; trade names). average number of moles of oxy groups).
 さらに、親水化処理剤中、親水性付与成分は、水溶性非高分子として、グリセロール、非イオン性界面活性剤が挙げられる。 In addition, water-soluble non-polymers such as glycerol and nonionic surfactants can be mentioned as hydrophilicity-imparting components in the hydrophilization treatment agent.
 このような親水化処理剤は、親水性付与成分が、適当な媒体、例えば有機溶媒又は水、具体的にはメタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブチルアルコール、酢酸エチル、トルエン、アセトン、メチルエチルケトン、エチレングルコール、プロピレングリコール、八アセチル化蔗糖、変性エタノール、水、又はそれら何れかの混合溶剤に溶解乃至分散されたものが挙げられる。変性エタノールとして、より具体的にはネオエタノールPM,MIP,IPM,IE,PHI,MHI,PIP,HIMTE,PHM,IPME,P-7(何れも大伸化学株式会社製;商品名)が挙げられる。 Such hydrophilizing agents include those in which a hydrophilicity-imparting component is dissolved or dispersed in an appropriate medium such as an organic solvent or water, specifically methanol, ethanol, n-propanol, isopropyl alcohol, n-butyl alcohol, ethyl acetate, toluene, acetone, methyl ethyl ketone, ethylene glycol, propylene glycol, octaacetylated sucrose, denatured ethanol, water, or a mixed solvent thereof. More specific examples of denatured ethanol include Neoethanol PM, MIP, IPM, IE, PHI, MHI, PIP, HIMTE, PHM, IPME, and P-7 (all manufactured by Daishin Chemical Co., Ltd.; trade names).
 このような親水化処理剤は、親水性付与成分が、0.001~5重量%、好ましくは0.005~1重量%、より好ましくは0.01~0.4重量%含有されているというものである。 Such a hydrophilic treatment agent contains 0.001 to 5% by weight, preferably 0.005 to 1% by weight, more preferably 0.01 to 0.4% by weight of a hydrophilicity imparting component.
 このような親水化処理面は、親水化処理剤が付された部位が、被膜、被覆層、被覆スポット、被覆ドット、被覆パッチ、及び被覆モザイクから選ばれる少なくとも何れかの被覆部位であってもよい。この被覆部位は、被膜の平均膜厚、被覆層の平均層厚、被覆スポットの平均高さ、被覆ドットの平均高さ、被覆パッチの平均高さ、被覆モザイクの平均高さを、0.005~5μm、好ましくは0.01~1μmとする。 In such a hydrophilized surface, the site to which the hydrophilizing agent is applied may be at least one of the coated sites selected from a coating, a coating layer, a coating spot, a coating dot, a coating patch, and a coating mosaic. In this coated portion, the average film thickness of the coating, the average layer thickness of the coating layer, the average height of the coated spots, the average height of the coated dots, the average height of the coated patches, and the average height of the coated mosaic is 0.005 to 5 μm, preferably 0.01 to 1 μm.
 このような被覆部位は、単位面積当たりの前記親水性付与成分の被覆量を、1.0×10-6~1.0×10-3g/cm、好ましくは5.0×10-6~4.0×10-4g/cmとする。 In such a coated portion, the coating amount of the hydrophilicity imparting component per unit area is 1.0×10 −6 to 1.0×10 −3 g/cm 2 , preferably 5.0×10 −6 to 4.0×10 −4 g/cm 2 .
 なお、乾式処理面となっておらず、親水化処理剤未処理である基材材料の表面における水との接触角は、基材材料の原料に依って変動するが、例えばSUS、ガラス、COP、SiN、Si、シリコーンゴムなどの樹脂/ゴムでは、約40~約108°である。 The contact angle with water on the surface of the substrate material, which is not dry-treated and is not treated with a hydrophilic treatment agent, varies depending on the raw material of the substrate material.
 一方、未処理のこれら基材材料の表面に、親水化処理剤を付し親水化処理面を形成しようとすると、基材表面の濡れ性が低いため親水化処理剤がムラになり均一な処理ができない。 On the other hand, if a hydrophilic treatment agent is applied to the surface of these untreated base materials to form a hydrophilic treatment surface, the wettability of the base material surface is low, so the hydrophilic treatment agent becomes uneven and uniform treatment cannot be performed.
 しかし、未処理のこれら基材材料の表面に、UV処理、エキシマUV処理、コロナ放電処理、プラズマ処理、電子線処理、及びγ線処理のような乾式処理を施すと、水との接触角は、約10°未満になって親水性を発現するようになる。ところが、オーブン中80℃で1.5時間の過酷試験を行うと、水との接触角が約20~約103°になってしまい、親水性が失われ又は低下してしまう。 However, when dry treatments such as UV treatment, excimer UV treatment, corona discharge treatment, plasma treatment, electron beam treatment, and γ-ray treatment are applied to the surface of these untreated substrate materials, the contact angle with water becomes less than about 10° and hydrophilicity is expressed. However, when subjected to a severe test at 80° C. in an oven for 1.5 hours, the contact angle with water becomes about 20 to about 103°, and the hydrophilicity is lost or deteriorated.
 それに対し、このような乾式処理を施した後、親水化処理剤を付し親水化処理面を形成すると、同様な過酷試験を行っても、水との接触角が約10°程度となって乾式処理直後と略同等のまま維持できた。 On the other hand, when a hydrophilizing agent was applied after such dry treatment to form a hydrophilized surface, the contact angle with water was about 10° even after the same severe test, and it was maintained almost the same as immediately after dry treatment.
 このように、基材材料の種類例えばSUS、ガラス、COP、SiN、Si、シリコーンゴム等の樹脂/ゴムに依らず、乾式処理だけでは、加熱や経時で接触角が著しく低下するが、親水化処理剤を付し親水化処理面を形成すれば、常温・常圧・常湿条件下で、長期間、親水性が付与されたまま、維持できるが、基材材料が複合材料であっても、同様な処理によって、親水性を付与することができる。 Thus, regardless of the type of substrate material, for example, resin/rubber such as SUS, glass, COP, SiN, Si, silicone rubber, etc., the dry treatment alone significantly reduces the contact angle with heating and aging. However, if a hydrophilic treatment agent is applied to form a hydrophilic treatment surface, hydrophilicity can be maintained for a long period of time under normal temperature, pressure, and humidity conditions, but even if the substrate material is a composite material, hydrophilicity can be imparted by similar treatment.
 しかも、親水化処理剤を用いても、使用時に親水化処理剤が溶解することで基材自体の特性、例えばPDMSのようなシリコーンゴムの場合に柔軟性・ガス透過性・透明性のような特性、又はCOP・ガラスなどの場合に透明性・低自家蛍光などのような特性を失うことなく維持でき、さらに基材表面及び/又は内部に構造上の特性、例えば穴加工や凹凸加工等の微細加工のような特徴があっても親水化処理面の親水化処理剤が対象液体の溶媒によって溶けるため本来の微細加工の形状の特性を維持することができるうえ、親水性が高く水との接触角が小さいことに起因して、接触する対象液体の溶媒、とりわけ水と接触する基材表面及び/又は内部が濡れるので、流れ込んだ空気が気泡としてそこに滞留しないので、気泡の巻き込みが無い。 Moreover, even if a hydrophilic treatment agent is used, the properties of the base material itself can be maintained without losing the properties of the base material itself, such as flexibility, gas permeability, and transparency in the case of silicone rubber such as PDMS, or the properties of transparency and low autofluorescence in the case of COP, glass, etc. Furthermore, even if the base material surface and/or the interior have structural characteristics, such as fine processing such as hole processing and uneven processing, the hydrophilic processing agent on the hydrophilic processing surface dissolves in the solvent of the target liquid, so the original fineness can be maintained. In addition to being able to maintain the characteristics of the processed shape, due to its high hydrophilicity and small contact angle with water, the surface and/or inside of the base material that comes into contact with the solvent of the liquid to be contacted, especially water, gets wet.
 基材表面及び/又は内部上で対象液体が接触する接触部位として、基材材料の表面の全面が親水化処理面となっているというものであってもよいが、基材材料の露出表面又は内部の流路表面が親水化処理面になっているというものであってもよい。 As the contact portion on the base material surface and/or inside where the target liquid contacts, the entire surface of the base material may be a hydrophilic treatment surface, or the exposed surface of the base material or the inner channel surface may be a hydrophilic treatment surface.
 この親水化基材は、マイクロ流体測定デバイスやマイクロバイオチップやマイクロリアクターチップやマイクロ生化学チップを用いた対象液体の測定に用いることができる。 This hydrophilic substrate can be used to measure target liquids using microfluidic measurement devices, microbiochips, microreactor chips, and microbiochemical chips.
 この親水化基材によれば、基材表面及び/又は内部の空気を排出できて気泡を滞留させないので、従来のマイクロ流体測定デバイスのように、気泡排出のためにのみ行う工程を要さず、速やかに基材表面及び/又は内部での接触部位で対象液体を十分かつ均質に接触させることができるようになる。とりわけ内部例えば流路での対象液体を十分かつ均質に流れるようにすることができるようになる。 According to this hydrophilized substrate, the air on the surface and/or inside of the substrate can be discharged, and the air bubbles do not stay. Therefore, unlike the conventional microfluidic measurement device, the process performed only for discharging the air bubbles is not required, and the target liquid can be quickly brought into contact with the contact portion on the surface and/or inside of the substrate sufficiently and uniformly. Among other things, it is possible to ensure a sufficient and homogeneous flow of the liquid of interest inside, for example, in the channel.
 親水化処理すべき基材の材質は、樹脂、ゴム、金属、セラミックス、ガラスなど特に限定されない。 The material of the base material to be hydrophilized is not particularly limited, such as resin, rubber, metal, ceramics, and glass.
 基材の材質は、樹脂として、例えば、付加型シリコーン樹脂、縮合型シリコーン樹脂、過酸化物架橋型シリコーン樹脂、紫外線硬化型シリコーン樹脂、及び放射線架橋型シリコーン樹脂のようなシリコーン樹脂;ポリカーボネート;シクロオレフィン樹脂;アクリル樹脂;エポキシ樹脂;ポリエチレンテレフタレート樹脂;ポリブテレンテレフタレート樹脂;セルロース及びその誘導体、ヒドロキシエチルセルロース、デンプン、二酢酸セルロースのようなセルロース類l表面ケン化酢酸ビニル樹脂;低密度ポリエチレン、高密度ポリエチレン、i-ポリプロピレンのようなポリアルキレン樹脂;石油樹脂、;ポリスチレン、s‐ポリスチレンのようなポリスチレン樹脂;クマロン・インデン樹脂;テルペン樹脂;スチレン・ジビニルベンゼン共重合体;ABS樹脂;ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリルニトリル、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリシアノアクリレートのようなアクリル樹脂;ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルホルマール、ポリビニルアセタール、ポリ塩化ビニル、塩化ビニル・酢酸ビニル共重合体、塩化ビニル・エチレン共重合体のようなビニル系樹脂;ポリフッ化ビニリデン、フッ化ビニリデン・エチレン共重合体、フッ化ビニリデン・プロピレン共重合体のようなハロゲン化樹脂;1,4-トランスポリブタジエン;ポリオキシメチレン、ポリエチレングリコール、ポリプロピレングリコール;フェノール・ホルマリン樹脂;クレゾール・フォルマリン樹脂;レゾルシン樹脂;メラミン樹脂;キシレン樹脂;トルエン樹脂;グリプタル樹脂;変性グリプタル樹脂;不飽和ポリエステル樹脂;アリルエステル樹脂;6-ナイロン、6,6-ナイロン、6,10-ナイロン、ポリアミドのようなアミド系樹脂;ポリイミド;ポリベンズイミダゾール;ポリアミドイミド;ケイ素樹脂;シリコーンゴム;シリコーン樹脂;フラン樹脂;ポリウレタン樹脂;ポリフェニレンオキサイド、ポリジメチルフェニレンオキサイド、ポリフェニレンオキサイドまたはポリジメチルフェニレンオキサイドとトリアリルイソシアヌルブレンド物、(ポリフェニレンオキサイドまたはポリジメチルフェニレンオキサイド、トリアリルイソシアヌル、パーオキサイド)ブレンド物のようなフェニレン系樹脂;ポリキシレン;ポリフェニレンスルファイド(PPS)、ポリスルホン(PSF)、ポリエーテルスルホン(PES)のような硫黄系樹脂;ポリエーテルエーテルケトン(PEEK);ポリイミド(PPI、カプトン);ポリテトラフルオロエチレン(PTFE);及び液晶樹脂が挙げられる。また、これらの樹脂がポリアミド繊維、炭素繊維、又はガラス繊維により強化されていてもよい。 The materials of the base material include, for example, silicone resins such as addition-type silicone resins, condensation-type silicone resins, peroxide-crosslinking silicone resins, ultraviolet-curable silicone resins, and radiation-crosslinking silicone resins; polycarbonates; cycloolefin resins; acrylic resins; epoxy resins; polyethylene terephthalate resins; Polystyrene resins such as styrene and s-polystyrene; coumarone-indene resins; terpene resins; styrene-divinylbenzene copolymers; ABS resins; Halogenated resins such as ridene, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer; 1,4-trans polybutadiene; polyoxymethylene, polyethylene glycol, polypropylene glycol; phenol-formalin resin; cresol-formalin resin; Polyimide; Polybenzimidazole; Polyamideimide; Silicone resin; Silicone rubber; Silicone resin; Furan resin; Polyurethane resin; PSF), sulfur-based resins such as polyethersulfone (PES); polyetheretherketone (PEEK); polyimides (PPI, Kapton); polytetrafluoroethylene (PTFE); Also, these resins may be reinforced with polyamide fibers, carbon fibers, or glass fibers.
 基材の材質は、ゴムとして、例えば、付加架橋型シリコーンゴム;VMQ、PVMQ、FVMQ、及びMQのようなシリコーンゴム、パーオキサイド架橋型シリコーンゴム、縮合架橋型シリコーンゴム、紫外線架橋型シリコーンゴム、放射線架橋型シリコーンゴム、エチレン・プロピレン・ジエンゴム(EPDM)、フッ化ビニリデン系(FKM)やテトラフルオロエチレン-プロピレン系(FEPM)やテトラフルオロエチレン-パープルオロビニルエーテル系(FFKM)のようなフッ素ゴム、ブタジエンゴム(BR)、イソプレンゴム(IR)、イソブチレン-イソプレンゴム(IIR)、天然ゴム(NR)、ウレタンゴム(U)、アクリルゴム(ACM)、これらの架橋ゴムとオレフィンとの共ブレンド物が挙げられる。 The material of the base material is rubber, for example, addition cross-linking silicone rubber; silicone rubbers such as VMQ, PVMQ, FVMQ, and MQ, peroxide cross-linking silicone rubber, condensation cross-linking silicone rubber, ultraviolet cross-linking silicone rubber, radiation cross-linking silicone rubber, ethylene-propylene-diene rubber (EPDM), vinylidene fluoride (FKM), tetrafluoroethylene-propylene (FEPM), and fluororubber such as tetrafluoroethylene-purple vinyl ether (FFKM). , butadiene rubber (BR), isoprene rubber (IR), isobutylene-isoprene rubber (IIR), natural rubber (NR), urethane rubber (U), acrylic rubber (ACM), and co-blends of these crosslinked rubbers with olefins.
 基材の材質は、金属として、例えばベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム、スカンジウム、イットリウム、チタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、プラチナ、銅、銀、金、亜鉛、カドミウム、水銀、アルミニウム、ゲルマニウム、スズ、鉛、アンチモン、ビスマス、ネオジムの何れかであり、合金組成上は鉄合金(鋼(スチール)、炭素鋼、鋳鉄)、銅合金(りん青銅、黄銅、二プロニッケル、ベリリウム銅、チタン銅)、アルミニウム合金(銅、マンガン、珪素、マグネシウム、亜鉛、ニッケル合金など)、マグネシウム合金(Mg/Zn合金、Mg/Ca合金など)、亜鉛合金、鈴及び鈴合金、ニッケル合金、金合金、銀合金、白金合金、パラジウム合金、鉛合金、チタン合金(α型、β型及びα+β型合金)、カドミウム、ジルコニウム合金、コバルト合金、クロム合金、モリブデン合金、タングステン合金、マンガン合金、フェライト系ステンレス、マルテンサイト系ステンレス、オースチナイト系ステンレス、析出強化型ステンレス、ニッケル-チタン合金、鉄-マンガン-チタン合金、超弾性合金(ニッケル-チタン合金)、Si結晶(シリコンウェハ)などが、挙げられる。 The material of the base material is any metal such as beryllium, magnesium, calcium, strontium, barium, radium, scandium, yttrium, titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver, gold, zinc, cadmium, mercury, aluminum, germanium, tin, lead, antimony, bismuth, or neodymium, and alloys. In terms of composition, iron alloys (steel, carbon steel, cast iron), copper alloys (phosphor bronze, brass, Nipronickel, beryllium copper, titanium copper), aluminum alloys (copper, manganese, silicon, magnesium, zinc, nickel alloys, etc.), magnesium alloys (Mg/Zn alloys, Mg/Ca alloys, etc.), zinc alloys, tin and tin alloys, nickel alloys, gold alloys, silver alloys, platinum alloys, palladium alloys, lead alloys, titanium alloys (α-type, β-type and α+β-type alloys), cadmium aluminum, zirconium alloys, cobalt alloys, chromium alloys, molybdenum alloys, tungsten alloys, manganese alloys, ferritic stainless steels, martensitic stainless steels, austinitic stainless steels, precipitation-strengthened stainless steels, nickel-titanium alloys, iron-manganese-titanium alloys, superelastic alloys (nickel-titanium alloys), Si crystals (silicon wafers), and the like.
 基材の材質は、セラミックスとして、陶磁器、セメント、石膏及びほうろうなど高温で固めたものであり、組成上は元素系(ダイヤモンド、C)、酸化物系(アルミナ、Al)、ジルコニア系、水酸化物系(ハイドロキシアパタイト)、炭化物系(炭化ケイ素、SiC)、炭酸塩系、窒化物系(窒化ケイ素)、(7ハロゲン化物系(蛍石)、リン酸塩系(アパタイト)も含み、具体的にはチタン酸バリウム、BiSrCaCu10、高温超伝導セラミックス、窒化ホウ素、フェライト、チタン酸ジルコン酸鉛、炭化ケイ素、窒化ケイ素、ステアタイト(MgOSiO)、YBaCu7-δ、高温超伝導セラミックス、酸化亜鉛、チッ化アルミニウム(AlN)、炭化ケイ素(SiC)、チッ化ケイ素(Si)、フォルステライト(2MgO・SiO)、ステアタイト(MgO・SiO)、コーディエライト(2MgO・2Al・5SiO)、サイアロン(Si・Al)、マシナブルセラミックス、ジルコン(ZrO・SiOチタン酸バリウム(BaTiO)、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O3、)、フェライト(M+O・Fe)、ムライト(3Al・2SiO)などが挙げられる。  The material of the base material is ceramics such as ceramics, cement, gypsum, and enamel that have been hardened at high temperatures.2O.3), zirconia-based, hydroxide-based (hydroxyapatite), carbide-based (silicon carbide, SiC), carbonate-based, nitride-based (silicon nitride), (7-halide-based (fluorite), phosphate-based (apatite), specifically barium titanate, Bi2Sr2Ca2Cu3O.10, high-temperature superconducting ceramics, boron nitride, ferrite, lead zirconate titanate, silicon carbide, silicon nitride, steatite (MgOSiO2), YBa2Cu3O.7-δ, high-temperature superconducting ceramics, zinc oxide, aluminum nitride (AlN), silicon carbide (SiC), silicon nitride (Si3N.4), forsterite (2MgO SiO2), steatite (MgO SiO2), cordierite (2MgO 2Al2O.3・5SiO2), sialon (Si3N.4・Al2O.3), machinable ceramics, zircon (ZrO2・SiO2),Barium titanate (BaTiO3), lead zirconate titanate (Pb (Zr, Ti) O3,), ferrite (M2+ O Fe2O.3), mullite (3Al2O.3・2SiO2) and the like.
 基材の材質は、ガラスとして、ケイ酸塩ガラス、石英ガラス、ソーダ石灰ガラス、ホウケイ酸ガラス、鉛ガラスなど各種光学ガラスが挙げられる。 Materials for the base material include various optical glasses such as silicate glass, quartz glass, soda-lime glass, borosilicate glass, and lead glass.
 親水化基材は、次のようにして作製することができる。 The hydrophilic substrate can be produced as follows.
 まず、基材表面及び/又は内部の少なくとも一部の接触部位で対象液体が接触する基材を用意し、必要に応じて水洗・乾燥を行って清浄化する。次に、接触部位の少なくとも一部に対し、UV処理、エキシマUV処理、コロナ放電処理、プラズマ処理、電子線処理、及びγ線処理から選ばれる少なくとも何れかの乾式処理を行う。それにより、基材表面に元々存するものの他に新たに反応性活性基を生成させる。 First, prepare a base material that the target liquid comes into contact with at least a part of the contact part of the base material surface and/or inside, and if necessary, clean it by washing with water and drying. Next, at least a portion of the contact portion is subjected to at least one dry treatment selected from UV treatment, excimer UV treatment, corona discharge treatment, plasma treatment, electron beam treatment, and gamma ray treatment. As a result, new reactive active groups are generated in addition to those originally present on the base material surface.
 親水性付与成分を、水、アルコールやアセトンのような水溶性有機媒体、塩化メチレンやクロロホルムやエーテルのような水不溶性有機媒体などの各種媒体に溶解又は懸濁させることによって、希釈した溶液とした親水化処理剤として、使用する。親水性付与成分の濃度が0.001~10質量%であると高い親水性が得られ、0.005~1.0質量%であるとより好ましい。次いで、その乾式処理を施した部位に、水溶性高分子と水溶性非高分子とから選ばれる親水性付与成分を含有してなる親水化処理剤を、噴霧、塗布、浸漬することにより、表面に付し、必要に応じて媒体を揮発などの方法で除去、及び/又は水洗・乾燥を行い、親水化基材を調製する。 By dissolving or suspending the hydrophilicity-imparting component in various media such as water, water-soluble organic media such as alcohol and acetone, and water-insoluble organic media such as methylene chloride, chloroform and ether, it is used as a diluted solution as a hydrophilization treatment agent. High hydrophilicity can be obtained when the concentration of the hydrophilicity imparting component is 0.001 to 10% by mass, and it is more preferably 0.005 to 1.0% by mass. Next, a hydrophilizing agent containing a hydrophilicity imparting component selected from water-soluble polymers and water-soluble non-polymers is sprayed, applied, or immersed on the dry-treated site to give it to the surface, and if necessary, the medium is removed by a method such as volatilization, and/or washed with water and dried to prepare a hydrophilized substrate.
 なお親水化基材を、マイクロ流体測定デバイスとして用いる場合、通液箇所は、水の他、メタノール、エタノール、1-プロパノール、及び2-プロパノールのような低級アルコール;1~10倍リン酸緩衝液(リン酸-リン酸ナトリウム)、クエン酸-リン酸水素二ナトリウム(マッキルベイン緩衝液)、クエン酸緩衝液(クエン酸-クエン酸ナトリウム)、クエン酸リン酸緩衝液(クエン酸-リン酸ナトリウム)、ホウ酸緩衝液、酒石酸緩衝液、Tris緩衝液(tris(hydroxymethyl)aminomethane)、HEPES緩衝液(2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic acid)、及びリン酸緩衝生理食塩水のような混合電解溶液;脂肪酸ナトリウム、脂肪酸カリウム、ラウリル硫酸ナトリウム、及びジオクチルソジウムスルホサクシネートのようなアニオン界面活性剤を含有する溶液;第1~第3脂肪族アミン塩、テトラアルキルアンモニウム塩、トリアルキルベンジンアンモニウム塩、アルキルアミン塩、ポリエチレンポリアミン脂肪酸アミド塩の第4級アンモニウム塩、メタクリル酸4級アンモニウム塩ポリマー、及びポリエチレンイミン第4級アンモニウム塩のようなカチオン界面活性剤を含有する溶液;ポリオキシエチレン脂肪酸エステル、グリセリンエステル、ポリオキシエチレンソルビタン脂肪酸エステル、及びポリオキシエチレンアルキルエーテルのようなノニオン界面活性剤を含有する溶液;上記の親水性基含有シリコーン系化合物を含有する溶液及び親水性基含有アクリル系化合物を含有する溶液のような親水性基含有化合物含有溶液;これらの混合液から選ばれる少なくとも一種の液体で満たされていてもよい。
 その場合、液体を通液箇所から除去する方法として、熱を用いた乾燥によって液体を蒸発又は揮発させる方法、通液箇所から液体を吸引除去する方法、及び液体を加圧して排出する方法が挙げられる。
When the hydrophilized substrate is used as a microfluidic measurement device, the liquid passing point is not only water, but also lower alcohols such as methanol, ethanol, 1-propanol, and 2-propanol; (tris(hydroxymethyl)aminomethane), HEPES buffer (2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic acid), and phosphate buffered saline; solutions containing anionic surfactants such as fatty acid sodium, fatty acid potassium, sodium lauryl sulfate, and dioctyl sodium sulfosuccinate; A solution containing a cationic surfactant such as a quaternary ammonium salt, a quaternary ammonium methacrylic acid polymer, and a polyethyleneimine quaternary ammonium salt; a solution containing a nonionic surfactant such as polyoxyethylene fatty acid ester, glycerin ester, polyoxyethylene sorbitan fatty acid ester, and polyoxyethylene alkyl ether; may be
In that case, methods for removing the liquid from the liquid passage include a method of evaporating or volatilizing the liquid by drying using heat, a method of sucking and removing the liquid from the liquid passage, and a method of pressurizing and discharging the liquid.
 以下、本発明を適用する親水化基材の実施例、及び本発明を適用外の基材の比較例を示す。 Examples of hydrophilic substrates to which the present invention is applied and comparative examples of substrates to which the present invention is not applied are shown below.
(基材の準備)
 SUS板としてSUS304(株式会社ニラコ製)を用い、ガラス板としてテンパックスガラス板(関谷理化株式会社製)を用い、COP板としてゼオノアフィルムZF16-188(日本ゼオン株式会社製)を用い、SiN板として市販品を用い、Si板として市販品を用い、シリコーンゴム板としてメチルビニルシリコーンゴム(東レ・ダウコーニング株式会社製、製品名;SH851)の100質量部と、パーオキサイド系加硫剤として2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(東レ・ダウコーニング株式会社製、製品名;PC-4、50%シリカ溶液)の0.5質量部を混練りし170℃10分間成型した後、200℃2時間二次加硫したものを用いた。これらを6×3cmに切り出し、試験片とした。
(Preparation of base material)
SUS304 (manufactured by The Nilaco Corporation) is used as the SUS plate, Tempax glass plate (manufactured by Sekiya Rika Co., Ltd.) is used as the glass plate, Zeonor Film ZF16-188 (manufactured by Nippon Zeon Co., Ltd.) is used as the COP plate, a commercial product is used as the SiN plate, a commercial product is used as the Si plate, and 100 parts by mass of methyl vinyl silicone rubber (manufactured by Toray Dow Corning Co., Ltd., product name: SH851) as the silicone rubber plate, and peroxide. As a system vulcanizing agent, 0.5 parts by mass of 2,5-dimethyl-2,5-di(t-butylperoxy)hexane (manufactured by Dow Corning Toray Co., Ltd., product name: PC-4, 50% silica solution) was kneaded, molded at 170°C for 10 minutes, and then secondary vulcanized at 200°C for 2 hours. These were cut into 6×3 cm and used as test pieces.
(親水化処理剤の調製)
 親水性付与成分としてメトローズ60SH-03(信越化学工業株式会社製)を超純水で膨潤した後、エタノールに溶解することにより、メトローズ濃度0.05wt%の親水化処理剤を調製した。
(Preparation of hydrophilic treatment agent)
Metolose 60SH-03 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a hydrophilic component was swollen with ultrapure water and then dissolved in ethanol to prepare a hydrophilizing agent having a Metolose concentration of 0.05 wt %.
(水接触角測定1-1:比較例1)
 各試験片を未処理のまま、水接触角測定を行った。なお、水接触角測定は自動接触角径DM-501(協和界面化学株式会社製)を用いて行った。その結果を、表1にまとめて示す。
(Water contact angle measurement 1-1: Comparative example 1)
A water contact angle measurement was performed on each specimen while it was left untreated. The water contact angle measurement was performed using an automatic contact angle diameter DM-501 (manufactured by Kyowa Interface Science Co., Ltd.). The results are summarized in Table 1.
(水接触角測定1-2:比較例2)
 比較例1のような未処理の各試験片を、プラズマ処理した後、水接触角測定を行った。なお、プラズマ処理の条件は、250W 3分間というものである。その結果を、表1にまとめて示す。
(Water contact angle measurement 1-2: Comparative example 2)
Each untreated specimen as in Comparative Example 1 was subjected to plasma treatment prior to water contact angle measurements. The plasma processing conditions are 250 W for 3 minutes. The results are summarized in Table 1.
(水接触角測定1-3:比較例3)
 比較例2のようなプラズマ処理した各試験片を、加速試験条件下で静置した後、水接触角測定を行った。なお、加速試験条件は、80℃で1.5時間静置するというものである。その結果を、表1にまとめて示す。
(Water contact angle measurement 1-3: Comparative example 3)
Each plasma-treated test piece as in Comparative Example 2 was allowed to stand under accelerated test conditions and then subjected to water contact angle measurement. Note that the accelerated test conditions were to stand still at 80° C. for 1.5 hours. The results are summarized in Table 1.
(水接触角測定1-4:実施例1)
 比較例2のようなプラズマ処理した各試験片を、1cm辺り2.2μLの0.05wt%親水化処理剤で親水化処理した後、水接触角測定を行った。その結果を、表1にまとめて示す。
(Water contact angle measurement 1-4: Example 1)
Each plasma-treated test piece as in Comparative Example 2 was hydrophilized with 2.2 μL of 0.05 wt % hydrophilizing agent per 1 cm 2 , and then the water contact angle was measured. The results are summarized in Table 1.
(水接触角測定1-5:実施例2)
 比較例2のようなプラズマ処理した各試験片を、比較例4のように親水化処理剤で親水化処理してから、80℃で1.5時間の加速度条件下で静置した後、水接触角測定を行った。その結果を、表1にまとめて示す。
(Water contact angle measurement 1-5: Example 2)
Each test piece that had been plasma-treated as in Comparative Example 2 was hydrophilized with a hydrophilizing agent as in Comparative Example 4, then allowed to stand under an acceleration condition of 80° C. for 1.5 hours, and then the water contact angle was measured. The results are summarized in Table 1.
(水接触角測定1-6:参考例1)
 実子例2のようなプラズマ処理・親水化処理・加速試験をした各試験片を、水洗・乾燥した後、水接触角測定を行った。その結果を、表1にまとめて示す。
(Water contact angle measurement 1-6: Reference example 1)
After each test piece subjected to plasma treatment, hydrophilization treatment and accelerated test as in Example 2 was washed with water and dried, the water contact angle was measured. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1から明らかなとおり、比較例1のように未処理の各試験片は水接触角が39.2~107°程度と高い値を示したが、比較例2のようにプラズマ処理すると10°未満に改善された。
 しかし、比較例3のように、プラズマ処理した各試験片は、加速試験後、未処理の各試験片ほどではないにしても水接触角が高くなったことから、プラズマ処理による親水性改善は長期間維持できないことが分かった。
 それに対し、実施例1のようにプラズマ処理及び親水化処理を施した各試験片は10°未満であり、実施例2のようにその後に80℃で1.5時間の加速試験を行っても殆ど水接触角が変わらなかったことから親水性改善が長時間維持できたことが分かった。
As is clear from Table 1, each untreated test piece as in Comparative Example 1 showed a high water contact angle of about 39.2 to 107°, but plasma treatment as in Comparative Example 2 improved to less than 10°.
However, as in Comparative Example 3, the plasma-treated test pieces had a higher water contact angle after the accelerated test, although not as high as the untreated test pieces, indicating that the improvement in hydrophilicity due to plasma treatment cannot be maintained for a long period of time.
On the other hand, each test piece subjected to plasma treatment and hydrophilic treatment as in Example 1 had a contact angle of less than 10°, and even after an accelerated test at 80 ° C. for 1.5 hours as in Example 2, the water contact angle hardly changed, indicating that the improvement in hydrophilicity could be maintained for a long time.
(比較例4)
 SiN製の試験片について前記比較例2のようにしてプラズマ処理を行った後、メチルビニルシリコーンゴム(東レ・ダウコーニング株式会社製、製品名;SH851)の100質量部と、パーオキサイド系加硫剤として2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(東レ・ダウコーニング株式会社製、製品名;PC-4、50%シリカ溶液)の0.5質量部を混練りし170℃10分間成型した後、二次加硫していないシートと密閉容器に入れ、80℃で1.5時間の加速度条件下で静置した後、水接触角測定を行った。その結果をまとめて表2に示す。
(Comparative Example 4)
After the SiN test piece was plasma-treated in the same manner as in Comparative Example 2, 100 parts by mass of methyl vinyl silicone rubber (manufactured by Dow Corning Toray Co., Ltd., product name: SH851) and 0.5 parts by mass of 2,5-dimethyl-2,5-di(t-butylperoxy)hexane (manufactured by Toray Dow Corning Co., Ltd., product name: PC-4, 50% silica solution) as a peroxide vulcanizing agent were kneaded and kneaded at 170°C. After molding for 1 minute, it was placed in an airtight container together with a non-secondary vulcanized sheet, left to stand under accelerated conditions of 80° C. for 1.5 hours, and then subjected to water contact angle measurement. The results are summarized in Table 2.
(実施例3)
 SiN製の試験片について前記比較例2のようにしてプラズマ処理を行った後、比較例4や実施例1のように親水化処理を施した後、比較例4のように二次加硫していない加硫シリコーンゴムシートと一緒に密閉容器に入れ、80℃で1.5時間の加速度条件で静置した後、水接触角測定を行った。その結果をまとめて表2に示す。
(Example 3)
A SiN test piece was subjected to plasma treatment as in Comparative Example 2, and then subjected to hydrophilization treatment as in Comparative Example 4 and Example 1. After that, it was placed in a sealed container together with a vulcanized silicone rubber sheet that had not been secondary vulcanized as in Comparative Example 4, left to stand under accelerated conditions of 80° C. for 1.5 hours, and then subjected to water contact angle measurement. The results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2から明らかなとおり、親水化剤でマスキングすることにより、揮発成分の付着による接触角の悪化を防止した。そのメカニズムは必ずしも明らかでないが、加硫済したゴム板を、試験片と接触しないように密閉容器に一緒に入れて加熱しただけで二次加硫をしていなければ、低分子のシロキサンや揮発成分が加硫ゴム中に残っているため、加熱すると揮発成分が密閉容器中に充満すると考えられ、この揮発成分が付着すると接触角が悪化するところ、メトローズ処理していれば、揮発成分がメトローズ表面に付着してもメトローズ自体が溶解するため接触角が悪化しないと推察される。 As is clear from Table 2, masking with a hydrophilizing agent prevented deterioration of the contact angle due to adhesion of volatile components. The mechanism is not necessarily clear, but if the vulcanized rubber plate is placed in a sealed container together so as not to come into contact with the test piece and is not subjected to secondary vulcanization, low-molecular-weight siloxane and volatile components remain in the vulcanized rubber.
 次にシリコーンゴム基材について、プラズマ処理、メトローズ処理を施し、接触角を測定し、安定性について検討した。 Next, the silicone rubber substrate was subjected to plasma treatment and metolose treatment, the contact angle was measured, and the stability was examined.
(水接触角測定2-1:比較例5)
 メチルビニルシリコーンゴム(東レ・ダウコーニング株式会社製、製品名;SH851)製のシリコーンゴム試験片の接触角を、前記同様にして測定した。その結果を表3に示す。
(Water contact angle measurement 2-1: Comparative Example 5)
The contact angle of a silicone rubber test piece made of methyl vinyl silicone rubber (manufactured by Dow Corning Toray Co., Ltd., product name: SH851) was measured in the same manner as described above. Table 3 shows the results.
(水接触角測定2-2:比較例6)
 比較例5のようにして調製した、未処理シリコーンゴム試験片に、プラズマ処理した後、水接触角測定を行った。なお、プラズマ処理の条件は、200W 120秒間というものである。その結果を、表3にまとめて示す。
(Water contact angle measurement 2-2: Comparative Example 6)
Untreated silicone rubber specimens prepared as in Comparative Example 5 were subjected to water contact angle measurements after plasma treatment. The plasma processing conditions are 200 W for 120 seconds. The results are summarized in Table 3.
(水接触角測定2-3:実施例4)
 比較例6のようにして調製した、プラズマ処理シリコーンゴム試験片に、比較例4のように親水化処理剤で親水化処理してから、乾燥させた後、水接触角測定を行った。その結果を表3に示す。
(Water contact angle measurement 2-3: Example 4)
The plasma-treated silicone rubber test piece prepared as in Comparative Example 6 was hydrophilized with a hydrophilizing agent as in Comparative Example 4, dried, and then subjected to water contact angle measurement. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(水接触角測定2-4:実施例5)
 実施例4のようにして調製したプラズマ処理・メトローズ処理シリコーンゴム試験片に対し、80℃で1時間、2時間、16時間、42時間、88時間、168時間加速試験を行ってから、水接触角測定を行った。その結果を表4に示す。
(Water contact angle measurement 2-4: Example 5)
Plasma-treated/Metrose-treated silicone rubber test pieces prepared as in Example 4 were subjected to accelerated tests at 80° C. for 1 hour, 2 hours, 16 hours, 42 hours, 88 hours, and 168 hours, and then the water contact angle was measured. Table 4 shows the results.
(水接触角測定2-5:比較例7)
 比較例6のようにして調製したプラズマ処理シリコーンゴム試験片に対し、80℃で1時間、2時間、16時間、42時間、88時間、168時間加速試験を行ってから、水接触角測定を行った。その結果を表4に示す。
(Water contact angle measurement 2-5: Comparative Example 7)
The plasma-treated silicone rubber test piece prepared as in Comparative Example 6 was subjected to an accelerated test at 80° C. for 1 hour, 2 hours, 16 hours, 42 hours, 88 hours, and 168 hours, and then subjected to water contact angle measurement. Table 4 shows the results.
(水接触角測定2-6:実施例6)
 実施例5のようにしてプラズマ処理・メトローズ処理・加速試験を行ったシリコーンゴム試験片に対し、水洗、乾燥後、水接触角測定を行った。その結果を表4に示す。
(Water contact angle measurement 2-6: Example 6)
A silicone rubber test piece subjected to plasma treatment, METOLOSE treatment, and accelerated test in the same manner as in Example 5 was washed with water, dried, and subjected to water contact angle measurement. Table 4 shows the results.
(水接触角測定2-6:参考例2)
 実施例6のようにしてプラズマ処理・メトローズ処理・加速試験・水洗/乾燥を行ったシリコーンゴム試験片に対し、80℃で24時間の再度加速試験を行った。その結果を表4に示す。
(Water contact angle measurement 2-6: Reference example 2)
The silicone rubber test piece that had been subjected to the plasma treatment, METOLOSE treatment, accelerated test, and water washing/drying as in Example 6 was again subjected to an accelerated test at 80° C. for 24 hours. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3、4から明らかな通り、実施例5のように、80℃保管(加速試験)により、接触角に多少の変動が認められるものの、168時間後でも十分な親水性を発現していた。しかし、比較例7、実施例6、参考例2のように、メトローズでマスキングすることにより、プラズマ処理で生成した官能基の潜り込みを抑え、基材表面の活性を長時間維持できていた。 As is clear from Tables 3 and 4, as in Example 5, the contact angle was slightly changed by storage at 80°C (accelerated test), but sufficient hydrophilicity was exhibited even after 168 hours. However, as in Comparative Example 7, Example 6, and Reference Example 2, by masking with Metolose, the penetration of the functional groups generated by the plasma treatment was suppressed, and the activity of the substrate surface could be maintained for a long time.
(比較例8)
 メチルビニルシリコーンゴム(東レ・ダウコーニング株式会社製、製品名;SH851)の100質量部と、パーオキサイド系加硫剤として2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(東レ・ダウコーニング株式会社製、製品名;PC-4、50%シリカ溶液)の0.5質量部でを混練り金型で架橋することにより一辺1mmで深さ0.5mmの直方体状の窪みを設け、未処理の試験片とした。この試験片に、水を垂らすと、窪みに空気を巻き込んでしまう(図1(a))参照)。
(Comparative Example 8)
100 parts by mass of methyl vinyl silicone rubber (manufactured by Dow Corning Toray Co., Ltd., product name: SH851) and 0.5 parts by mass of 2,5-dimethyl-2,5-di(t-butylperoxy)hexane (manufactured by Dow Corning Toray Co., Ltd., product name: PC-4, 50% silica solution) as a peroxide vulcanizing agent are kneaded and crosslinked in a mold to form a rectangular parallelepiped depression of 1 mm on a side and 0.5 mm in depth. and used as an untreated test piece. When water is dripped onto this test piece, air is entrained in the depressions (see FIG. 1(a)).
(実施例7)
 比較例3の未処理の試験片に、前記のようにして調製したメトローズを0.05wt%含有する親水化剤で1cm辺り2.2μL塗布することにより親水化処理し、親水化処理した試験片とした。この試験片に水を垂らすと、窪みに空気の気泡を巻き込むことなく水が充填された(図1(b))参照)。
(Example 7)
The untreated test piece of Comparative Example 3 was hydrophilized by coating 2.2 μL per 1 cm 2 of the hydrophilizing agent containing 0.05 wt % of Metolose prepared as described above to obtain a hydrophilized test piece. When this test piece was dripped with water, the depressions were filled with water without entrainment of air bubbles (see FIG. 1(b)).
 本発明の親水化基材は、微粒子の形、粒径、及び粒径分布を測定するマイクロ流体測定デバイスやマイクロバイオチップやマイクロリアクターチップやマイクロ生化学チップのようなマイクロ流体測定デバイスの他、フロントガラスや光学部品や眼鏡・光学部材等に用いられる。 The hydrophilic base material of the present invention is used for microfluidic measurement devices such as microbiochips, microreactor chips, and microbiochemical chips that measure the shape, particle size, and particle size distribution of fine particles, as well as windshields, optical parts, eyeglasses, optical members, and the like.

Claims (6)

  1.  基材表面及び/又は内部の少なくとも一部の接触部位で対象液体が接触する基材であって、前記接触部位の少なくとも一部がUV処理部位、エキシマUV処理部位、コロナ放電処理部位、プラズマ処理部位、電子線処理部位、及びγ線処理部位から選ばれる少なくとも何れかの乾式処理部位であり水溶性高分子と水溶性非高分子とから選ばれる親水性付与成分を含有してなる親水化処理剤が付されていることによって親水化処理面となっていることを特徴とする親水化基材。 A substrate that is in contact with a target liquid on at least a part of the contact portion of the surface and/or inside of the substrate, wherein at least a portion of the contact portion is a dry-treated portion selected from a UV-treated portion, an excimer UV-treated portion, a corona discharge-treated portion, a plasma-treated portion, an electron beam-treated portion, and a γ-ray-treated portion, and a hydrophilized surface is formed by applying a hydrophilic treatment agent containing a hydrophilicity-imparting component selected from a water-soluble polymer and a water-soluble non-polymer.
  2.  前記親水化処理剤が、前記対象液体に少なくとも一部溶解する溶解性を有していることを特徴とする請求項1に記載の親水化基材。 The hydrophilic base material according to claim 1, wherein the hydrophilic treatment agent has a solubility of at least partially dissolving in the target liquid.
  3.  前記親水性付与成分が、ポリエーテル変性シリコーンオイル、ポリビニルアルコール、デンプン、ポリアクリル酸、ポリアクリルアミド,ポリエチレンオキシド、ポリ(ビニルピロリドン)、ポリビニルアミド、ポリアミン、ポリエチレングリコール、セルロース誘導体、ポリエチレンイミン、ポリ(アクリル酸)、ポリ(4-スチレンスルホン酸ナトリウム)、及びポリ(2-オキサゾリン)から選ばれる前記水溶性高分子;及び/又はグリセロール、及び非イオン性界面活性剤から選ばれる前記水溶性非高分子であることを特徴とする請求項2に記載の親水化基材。 Claim 2, wherein the hydrophilicity imparting component is the water-soluble polymer selected from polyether-modified silicone oil, polyvinyl alcohol, starch, polyacrylic acid, polyacrylamide, polyethylene oxide, poly(vinylpyrrolidone), polyvinylamide, polyamine, polyethylene glycol, cellulose derivatives, polyethyleneimine, poly(acrylic acid), poly(sodium styrenesulfonate), and poly(2-oxazoline); and/or the water-soluble non-polymer selected from glycerol and nonionic surfactants. A hydrophilized substrate as described.
  4.  前記親水化処理剤で形成された、被膜、被覆層、被覆スポット、被覆ドット、被覆パッチ、及び被覆モザイクから選ばれる少なくとも何れかの被覆部位が設けられていることにより、前記親水化処理面となっていることを特徴とする請求項1~3の何れかに記載の親水化基材。 The hydrophilized base material according to any one of claims 1 to 3, wherein the hydrophilized surface is formed by providing at least one coated portion selected from a coating, a coating layer, a coating spot, a coating dot, a coating patch, and a coating mosaic formed with the hydrophilization agent.
  5.  前記被覆部位が、前記被膜の平均膜厚、前記被覆層の平均層厚、前記被覆スポットの平均高さ、前記被覆ドットの平均高さ、前記被覆パッチの平均高さ、及び/又は前記被覆モザイクの平均高さを、0.005~5μmとすることを特徴とする請求項4に記載の親水化基材。 The hydrophilic substrate according to claim 4, wherein the coating portion has an average film thickness of the coating, an average layer thickness of the coating layer, an average height of the coating spots, an average height of the coating dots, an average height of the coating patches, and/or an average height of the coating mosaic of 0.005 to 5 μm.
  6.  前記被覆部位が、単位面積当たりの前記親水性付与成分の被覆量を、1.0×10-6~1.0×10-3g/cmとすることを特徴とする請求項4~5の何れかに記載の親水化基材。 6. The hydrophilic substrate according to any one of claims 4 and 5, wherein the coated portion has a coating amount of the hydrophilicity-imparting component per unit area of 1.0 × 10 -6 to 1.0 × 10 -3 g/cm 2 .
PCT/JP2023/000247 2022-01-21 2023-01-10 Hydrophilized base material WO2023140135A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022007934 2022-01-21
JP2022-007934 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023140135A1 true WO2023140135A1 (en) 2023-07-27

Family

ID=87348717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000247 WO2023140135A1 (en) 2022-01-21 2023-01-10 Hydrophilized base material

Country Status (1)

Country Link
WO (1) WO2023140135A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028274A1 (en) * 2004-09-08 2006-03-16 National University Corporation Nagoya University Production of cell culture product and material for use in said production
JP2017026579A (en) * 2015-07-28 2017-02-02 株式会社朝日Fr研究所 Microchemical chip and method for producing the same
JP2017203763A (en) * 2016-05-09 2017-11-16 住友ゴム工業株式会社 Medical inspection device and cell inspection method
WO2018131517A1 (en) * 2017-01-13 2018-07-19 富士フイルム株式会社 Medical lubricating member, medical instrument in which same is used, and method for manufacturing medical lubricating member
JP2020100062A (en) * 2018-12-21 2020-07-02 住友ゴム工業株式会社 Hydrophilic substrate and method for producing hydrophilic substrate
JP2021162411A (en) * 2020-03-31 2021-10-11 住友理工株式会社 Silicone member and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028274A1 (en) * 2004-09-08 2006-03-16 National University Corporation Nagoya University Production of cell culture product and material for use in said production
JP2017026579A (en) * 2015-07-28 2017-02-02 株式会社朝日Fr研究所 Microchemical chip and method for producing the same
JP2017203763A (en) * 2016-05-09 2017-11-16 住友ゴム工業株式会社 Medical inspection device and cell inspection method
WO2018131517A1 (en) * 2017-01-13 2018-07-19 富士フイルム株式会社 Medical lubricating member, medical instrument in which same is used, and method for manufacturing medical lubricating member
JP2020100062A (en) * 2018-12-21 2020-07-02 住友ゴム工業株式会社 Hydrophilic substrate and method for producing hydrophilic substrate
JP2021162411A (en) * 2020-03-31 2021-10-11 住友理工株式会社 Silicone member and manufacturing method therefor

Similar Documents

Publication Publication Date Title
Wang et al. Benchtop micromolding of polystyrene by soft lithography
Ueda et al. Emerging applications of superhydrophilic‐superhydrophobic micropatterns
WO2017177839A1 (en) Super-hydrophobic micro-pit array chip, preparation method therefor and applications thereof
US20060246573A1 (en) Bio-chip
Wang et al. A bactericidal microfluidic device constructed using nano-textured black silicon
CN111197068B (en) Method for drug sensitivity test based on super-hydrophobic microarray chip
JP2013167645A (en) Functional porous substrate for attaching biomolecule
EP1697719A1 (en) Method and apparatus for efficient thin film fluid
US20090197274A1 (en) Biological sample reaction chip and biological sample reaction method
CN112261996A (en) Microfluidic device, method for the production thereof and use thereof
Pascual et al. Wettability patterning in microfluidic devices using thermally-enhanced hydrophobic recovery of PDMS
Xu et al. The biological performance of cell-containing phospholipid polymer hydrogels in bulk and microscale form
Heath et al. Regenerating the cell resistance of micromolded PEG hydrogels
WO2023140135A1 (en) Hydrophilized base material
Shen et al. Microcontact printing of proteins for cell biology
Li et al. Heterogeneous modification of through-hole microwell chips for ultralow cross-contamination digital polymerase chain reaction
JP2000236876A (en) Polymerase chain reaction device having integrated microwell
JP6749683B1 (en) Hydrophilic reinforced molded product made of silicone rubber and hydrophilic reinforced joined product using the same
AU776668B2 (en) Macroporous media for biological application prepared by freeze drying
Hattori et al. On‐chip cell culture on a microarray of extracellular matrix with surface modification of poly (dimethylsiloxane)
JPH05260957A (en) Hepatic cell spheroid and its preparation
JP2008002974A (en) Covering body and using method of covering body
KR100700090B1 (en) Method for nucleic acids purification using ion-permeable polymer coated electrodes and Purification Apparatus therefor
EP3383537B1 (en) Chip having a plurality of measurement regions
JP2005110529A (en) Microbioassay system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743131

Country of ref document: EP

Kind code of ref document: A1