JP2000236876A - Polymerase chain reaction device having integrated microwell - Google Patents

Polymerase chain reaction device having integrated microwell

Info

Publication number
JP2000236876A
JP2000236876A JP11040811A JP4081199A JP2000236876A JP 2000236876 A JP2000236876 A JP 2000236876A JP 11040811 A JP11040811 A JP 11040811A JP 4081199 A JP4081199 A JP 4081199A JP 2000236876 A JP2000236876 A JP 2000236876A
Authority
JP
Japan
Prior art keywords
polymerase chain
chain reaction
microwell
microwells
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11040811A
Other languages
Japanese (ja)
Other versions
JP3041423B1 (en
Inventor
Eiichi Tamiya
栄一 民谷
Kenji Yokoyama
憲二 横山
Yuji Murakami
裕二 村上
Toshifumi Sakaguchi
利文 阪口
Suketaka Morita
資隆 森田
Shusuke Nagai
秀典 永井
Kotaro Idegami
公太郎 井手上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Advanced Institute of Science and Technology
Original Assignee
Japan Advanced Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Advanced Institute of Science and Technology filed Critical Japan Advanced Institute of Science and Technology
Priority to JP11040811A priority Critical patent/JP3041423B1/en
Application granted granted Critical
Publication of JP3041423B1 publication Critical patent/JP3041423B1/en
Publication of JP2000236876A publication Critical patent/JP2000236876A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymerase chain reaction device having integrated microwells capable of carrying out many DNA analyses at a micro sample by forming an assemblage composed of plural microwells on a semiconductor base plate and composing it so as to carry out polymerase chain reaction in each well. SOLUTION: By initially forming an SiO2 film 6 by means of wet heat oxidation at 1000 deg.C for 8 hours on the surface 5 of silicon wafer of 500 μm thick out off in the size of 30 nm×30 nm, applying a negative type photoresist on the one side by means of spin coating, exposing it through a photomask, removing the excessive resist after being developed, immersing an oxidized film revealed on the surface in an acidic solution to remove it, finally carrying out anisotropic etching and further similar lithograph to form microwell assemblage 1 composed of integrated plural microwells 3 on the semiconductor base plate 2 and composing it so as to respectively carry out polymerase chain reactions in respective microwells, the objective device, the microwell inside 4 of which is hydrophilic and the surface 5 of the base plate is hydrophobic, is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体基板上にお
いてマイクロウェル集積体を作成して、当該ウェル内で
ポリメラーゼ連鎖反応(PCR)を行うことにより、微
量のサンプルで一度に多数のDNA試料の増幅を行って
解析する事を可能とする装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for preparing a microwell integrated body on a semiconductor substrate and performing a polymerase chain reaction (PCR) in the well to obtain a large number of DNA samples at once with a small amount of sample. The present invention relates to a device capable of performing amplification and analysis.

【0002】[0002]

【従来の技術】PCR法は分子生物学において最も重要
な手法の一つである。また、PCR法は医療微生物学、
遺伝疾患の臨床診断、抗体をコード化する遺伝子のスク
リーニング及び法医学等、広範な分野における分析に利
用されている。臨床の場においては、より多くの検体を
より迅速に分析できる事が、多種にわたる遺伝子疾患の
診断上望まれる。また遺伝疾患の研究において、遺伝子
系統図を作成するためには多数の人の遺伝情報を解析す
る事が必要であるが、ヒトゲノムに含まれる情報は膨大
であり、効率的な分析方法が必要である。
2. Description of the Related Art The PCR method is one of the most important techniques in molecular biology. The PCR method is used for medical microbiology,
It is used for analysis in a wide range of fields such as clinical diagnosis of genetic diseases, screening of genes encoding antibodies, and forensic medicine. In a clinical setting, it is desirable to be able to analyze a larger number of samples more quickly in order to diagnose a wide variety of genetic diseases. In the study of genetic diseases, it is necessary to analyze the genetic information of many people in order to create a gene phylogenetic diagram, but the information contained in the human genome is enormous and an efficient analysis method is needed. is there.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のPCR
を行う装置では、10〜100μlのサンプル量が必要
であり、より少量のサンプルで精度良くPCRを行える
装置が必要とされる。また、同時に多数のDNAサンプ
ルの増幅を行って解析する事は困難であるため、多数の
サンプルを一度に処理できる、高密度でかつ小型化され
た装置が必要とされている。
However, the conventional PCR
Requires a sample volume of 10 to 100 μl, and a device capable of performing PCR with a smaller amount of sample accurately is required. In addition, since it is difficult to amplify and analyze a large number of DNA samples at the same time, a high-density and small-sized apparatus capable of processing a large number of samples at once is required.

【0004】[0004]

【課題を解決するための手段】そこで、セミコンダクタ
ーマイクロファブリケーションの技術を用いることによ
り、シリコンチップの高密度マイクロウェル集積体を作
成した。そのように集積化したマイクロウェルは、当該
ウェル中においてPCRを行うために適した性質を有
し、多数の検体を同時に測定する事が可能となった。P
CRの確認は、蛍光指示薬を用いる事により行った。更
に、水蒸気は通過させるが液体は通過させない膜でマイ
クロウェルを覆う事により,PCR後の生成物が互いに
混合する事がなく、反応後のサンプルの利用を可能とし
た。
Accordingly, a high-density microwell integrated body of silicon chips was manufactured by using a semiconductor microfabrication technique. The microwell integrated in such a manner has properties suitable for performing PCR in the well, and it has become possible to simultaneously measure a large number of samples. P
Confirmation of CR was performed by using a fluorescent indicator. Furthermore, by covering the microwells with a membrane that allows water vapor to pass through but does not allow liquid to pass through, the products after PCR do not mix with each other, making it possible to use samples after the reaction.

【0005】[0005]

【実施例】(マイクロウェル集積体の作製方法)30m
mx30mmに切り取った、厚さ500μmのシリコン
ウエハーの表面に、1000℃、8時間のウェット熱酸
化によりSiO2 膜を形成した。この片面にネガ型のフ
ォトレジストをスピンコート(4000rpm、20
秒)により塗布し、フォトマスクを通じて露光した(8
秒)。現像後、余分なレジストを除去し、表面に現れた
酸化膜を1:6のHF/NH4 F溶液中に5分間浸潰し
て除去した。残ったレジストについても除去後、TMA
H(tetramethoxyammmoniumhydroxyrate )溶液中にお
いて80℃、1時間の条件下で、異方性エッチングを行
った。再度1000℃、4時間のウェット熱酸化を行っ
た後、ポジ型のフォトレジストを用いて、先程と同様の
フォトリソグラフを行い、1:6のHF/NH 4 F溶液
で処理することにより、チャンバー内壁以外の酸化膜を
除去した。そのように作製したマイクロウェル集積体の
断面図を図1に示す。マイクロウェル集積体(1)上
に、縦50μm、横50μm、高さ27μmの四角錐の
形状のマイクロウェル(3)を50μmの間隔で作製
し、2cm四方内にシリコンチップ一枚の内にマイクロ
ウェルを4万個配列させた。各ウェルの容積は23pl
であり、通常のPCRの1/20万の容量のウェルが作
製された。マイクロウェル集積体(1)の基盤(2)上
に作製したウェル(3)の内壁(4)は酸化膜(6)で
覆われているために親水性であり、かつ基板表面(5)
は疎水性であるために、当該ウェル(3)はその中にお
いてPCRを行うために適した性質を有している。
[Example] (Method of manufacturing microwell integrated body) 30 m
500μm thick silicon cut to mx30mm
Wet thermal acid at 1000 ° C for 8 hours on the surface of wafer
SiOTwoA film was formed. This one side has a negative
Spin-coated photoresist (4000 rpm, 20
Second) and exposed through a photomask (8
Seconds). After development, excess resist was removed and appeared on the surface
Oxide film is 1: 6 HF / NHFourImmerse in F solution for 5 minutes
Removed. After removing the remaining resist, TMA
H (tetramethoxyammmoniumhydroxyrate) solution
At 80 ° C. for 1 hour.
Was. Again, wet thermal oxidation at 1000 ° C for 4 hours
After that, using a positive photoresist,
Perform photolithography, 1: 6 HF / NH FourF solution
The oxide film other than the inner wall of the chamber
Removed. Of the microwell assembly thus produced
A cross-sectional view is shown in FIG. On microwell assembly (1)
Has a pyramid with a length of 50 μm, a width of 50 μm, and a height of 27 μm.
Form microwells (3) at 50μm intervals
And a silicon chip within 2 cm square
40,000 wells were arranged. The volume of each well is 23 pl
And a well with a capacity of 1/200000 of a normal PCR is created.
Was made. On the base (2) of the microwell assembly (1)
The inner wall (4) of the well (3) prepared in (1) is an oxide film (6).
Hydrophilic because it is covered and the substrate surface (5)
Is so hydrophobic that the well (3) is in it.
And has properties suitable for performing PCR.

【0006】(PCRの条件)Green Fluor
escent Protein(GFP)遺伝子を導入
したプラスミドをテンプレートとして使用し、GFP遺
伝子の増幅を行った。表1に示す組成の溶液を調製して
マイクロウェル内へ注入した後、ガラスプレートにより
すべてのウェルを覆って密封して、サーマルサイクラー
を使用してPCRを行った。熱サイクルの条件は、95
℃、2分のプレヒートの後、94℃、65℃をそれぞれ
1分、40サイクル行うこととした。プライマー及びプ
ローブとして、以下の2種類を使用した。 順方向プライマー:GTGCTGCCATAACCAT
GAGTG 逆方向プライマー:ATCCCCCATGTTGTGC
AAAA プローブ:Fam−CGGCCAACTTACTTCT
GACAACGATCG−Tamra
(Conditions for PCR) Green Fluor
The GFP gene was amplified using the plasmid into which the escape protein (GFP) gene was introduced as a template. After preparing a solution having the composition shown in Table 1 and injecting the solution into the microwell, all the wells were covered with a glass plate and sealed, and PCR was performed using a thermal cycler. The thermal cycle condition is 95
After preheating at 2 ° C. for 2 minutes, 40 cycles of 94 ° C. and 65 ° C. were performed for 1 minute each. The following two types were used as primers and probes. Forward primer: GTGCTGCCATACACCAT
GAGTG reverse primer: ATCCCCCATGTTGTGGC
AAAA probe: Fam-CGGCCACTACTTCTCT
GACAACGATCG-Tamra

【0007】[0007]

【表1】 PCRにおける溶液の組成 試薬 濃度 GFP 1.35ng/ml 各プライマー 0.5μM TaqManプローブ 0.63μM ウシ血清アルブミン 0.2%w/v dNTP 200μM Tris−HCl(pH8.3) 10mM KCl 50mM MgCl2 5.5mM AmpliTaq Gold 0.025U/μl 滅菌水 −Table 1 Composition of solution in PCR Reagent Concentration GFP 1.35 ng / ml Each primer 0.5 μM TaqMan probe 0.63 μM bovine serum albumin 0.2% w / v dNTP 200 μM Tris-HCl (pH 8.3) 10 mM KCl 50 mM MgCl 2 5.5 mM AmpliTaq Gold 0.025 U / μl Sterile water −

【0008】(PCRの確認)目的とするDNAの増幅
を、蛍光により指示する方法であるTaqManケミス
トリーにより確認した。蛍光強度は、顕微鏡を通じてC
CDカメラにより観察した。その結果、PCRを行う前
のマイクロウェルの蛍光顕微鏡像(図2)と比較して、
PCRを行った後の蛍光顕微鏡像(図3)において蛍光
強度は増加しており、GFP遺伝子の増幅が確認され
た。PCRを行う前後の蛍光強度の3次元グラフを図4
に示す。
(Confirmation of PCR) The amplification of the target DNA was confirmed by TaqMan chemistry, which is a method of indicating by fluorescence. The fluorescence intensity was measured using a microscope
Observed with a CD camera. As a result, compared with the fluorescence microscope image (FIG. 2) of the microwell before performing PCR,
In the fluorescence microscope image (FIG. 3) after performing PCR, the fluorescence intensity increased, and amplification of the GFP gene was confirmed. FIG. 4 shows a three-dimensional graph of the fluorescence intensity before and after performing PCR.
Shown in

【0009】カバーガラスを除去した時に、キャピラリ
ー効果のためにサンプルが混合されてしまう事を防ぐた
めに、HIPORA膜を用いた。HIPORA膜及びカ
バーガラスを含む、マイクロウェル集積体全体の構造を
図5に示す。HIPORA膜(8)は多くの微小孔を有
しているため、液体の水は通過できないが水蒸気は膜を
通過する。PCRの後にカバーガラス(7)のみ除去す
ると、マイクロウェル集積体(1)はHIPORA膜
(8)のみに覆われて、加熱してPCRサンプルの水分
を蒸発させる事が可能となる。乾燥させるため、キャピ
ラリー効果によりサンプルどうしが混じることなく、P
CR後にHIPORA膜(8)を除去して、サンプルを
利用する事が可能となる。
[0009] In order to prevent the sample from being mixed due to the capillary effect when the cover glass is removed, a HIPORA film is used. FIG. 5 shows the structure of the entire microwell assembly including the HIPORA film and the cover glass. Since the HIPORA membrane (8) has many micropores, liquid water cannot pass through, but water vapor passes through the membrane. When only the cover glass (7) is removed after the PCR, the microwell integrated body (1) is covered only with the HIPORA film (8), and it becomes possible to heat and evaporate the water of the PCR sample. Because of drying, the sample is not mixed due to the capillary effect.
After the CR, the sample can be used by removing the HIPORA film (8).

【0010】[0010]

【発明の効果】本発明によるシリコンチップ上に集積化
されたマイクロウェルを用いる事により、微量のサンプ
ルで同時に多数のDNA試料のPCR反応を行う事が可
能となった。
By using the microwell integrated on the silicon chip according to the present invention, it has become possible to carry out a PCR reaction of a large number of DNA samples simultaneously with a small amount of sample.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 マイクロウェル集積体の断面図。FIG. 1 is a cross-sectional view of a microwell integrated body.

【図2】 PCR前のマイクロウェルの蛍光顕微鏡像。FIG. 2 is a fluorescence microscopic image of a microwell before PCR.

【図3】 PCR後のマイクロウェルの蛍光顕微鏡像。FIG. 3 is a fluorescence microscopic image of a microwell after PCR.

【図4】 PCR前後の蛍光強度の三次元グラフ。FIG. 4 is a three-dimensional graph of fluorescence intensity before and after PCR.

【図5】 HIPORA膜及びカバーガラスを含む、マ
イクロウェル集積体全体の構造。
FIG. 5 shows the overall structure of a microwell assembly including a HIPORA film and a cover glass.

【符号の説明】[Explanation of symbols]

1 マイクロウェル集積体、2 マイクロウェル基盤、
3 マイクロウェル、4 マイクロウェル内壁、5 基
板表面、6 酸化膜、7.カバーガラス、8HIPOR
A膜
1 microwell assembly, 2 microwell substrate,
6. 3 microwells, 4 microwell inner walls, 5 substrate surface, 6 oxide film, 7. Cover glass, 8HIPOR
A film

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年12月20日(1999.12.
20)
[Submission date] December 20, 1999 (1999.12.
20)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 裕二 石川県能美郡辰口町旭台1−50 職員宿舎 D−33号室 (72)発明者 阪口 利文 石川県能美郡辰口町旭台1−50 職員宿舎 D−13号室 (72)発明者 森田 資隆 石川県能美郡辰口町宮竹力−67 (72)発明者 永井 秀典 石川県能美郡辰口町旭台1−8 学生宿舎 3−514号室 (72)発明者 井手上 公太郎 石川県能美郡辰口町旭台1−50 学生宿舎 3−405号室 Fターム(参考) 4B024 AA11 AA20 BA80 CA01 HA19 4B029 AA08 BB20 GA03 GB04 GB09 4B063 QA01 QA13 QA17 QA18 QQ42 QR08 QR62 QS25 QX02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuji Murakami 1--50 Asahidai, Tatsunokuchi-cho, Nomi-gun, Ishikawa Prefecture Staff room D-33 (72) Inventor Toshifumi Sakaguchi 1-50 Asahidai, Tatsunokuchi-cho, Nomi-gun, Ishikawa Staff D Room No. 13 (72) Inventor Morita Yoshitaka Ishikawa Prefecture Nomi-gun Tatsuguchi-cho Miyatake Riki-67 (72) Inventor Nagai Hidenori Nomi-gun Ishikawa Prefecture Nomi-gun Tatsuguchi-cho Asahidai 1-8 Student Dormitory 3-514 Room (72) Inventor Ide Kotaro Kami 1-50 Asahidai, Tatsunokuchi-cho, Nomi-gun, Ishikawa Prefecture Student dormitory Room 3-405 F-term (reference) 4B024 AA11 AA20 BA80 CA01 HA19 4B029 AA08 BB20 GA03 GB04 GB09 4B063 QA01 QA13 QA17 QA18 QQ42 QR08 QR62 QS25 QX02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ポリメラーゼ連鎖反応法を実施するため
の装置であって、 半導体基板上に、集積化された複数のマイクロウェルか
らなるマイクロウェル集積体が形成されており、この集
積体を構成する各マイクロウェル中においてそれぞれポ
リメラーゼ連鎖反応を行うように構成されている事を特
徴とする、ポリメラーゼ連鎖反応装置。
An apparatus for performing a polymerase chain reaction method, wherein a microwell integrated body including a plurality of integrated microwells is formed on a semiconductor substrate, and the integrated body is constituted. A polymerase chain reaction apparatus characterized in that a polymerase chain reaction is performed in each microwell.
【請求項2】 前記各マイクロウェルの内壁面が親水性
であり、マイクロウェル内壁面以外の表面が疎水性であ
る事を特徴とする、請求項1記載のポリメラーゼ連鎖反
応装置。
2. The polymerase chain reaction device according to claim 1, wherein an inner wall surface of each of the microwells is hydrophilic, and a surface other than the inner wall surface of the microwell is hydrophobic.
【請求項3】 前記各マイクロウェルの内壁面に酸化膜
が設けられており、前記半導体基板の表面の酸化膜が除
去されている事を特徴とする、請求項2記載のポリメラ
ーゼ連鎖反応装置。
3. The polymerase chain reaction device according to claim 2, wherein an oxide film is provided on an inner wall surface of each of the microwells, and the oxide film on a surface of the semiconductor substrate is removed.
【請求項4】 前記半導体基板の前記マイクロウェル集
積体側を覆う膜であって、水蒸気は透過させるが液体は
不透過性の膜を備えており、この膜によって各マイクロ
ウェル中の各ポリメラーゼ連鎖反応の生成物の混合を防
ぐ事を特徴とする、請求項1記載のポリメラーゼ連鎖反
応装置。
4. A film for covering the microwell integrated body side of the semiconductor substrate, wherein the film is permeable to water vapor but impermeable to liquid, and the film is used for each polymerase chain reaction in each microwell. 2. The polymerase chain reaction device according to claim 1, wherein mixing of the products is prevented.
【請求項5】 ポリメラーゼ連鎖反応法を実施するのに
際して、 集積化された複数のマイクロウェルからなるマイクロウ
ェル集積体が形成されている半導体基板を使用し、前記
集積体を構成する各マイクロウェル中においてそれぞれ
ポリメラーゼ連鎖反応を行う事を特徴とする、ポリメラ
ーゼ連鎖反応方法。
5. A method for performing a polymerase chain reaction, comprising: using a semiconductor substrate on which a microwell integrated body including a plurality of integrated microwells is formed; Wherein the polymerase chain reaction is performed.
【請求項6】 水蒸気は透過させるが液体は不透過性の
膜によって、前記半導体基板の前記マイクロウェル集積
体側を覆い、各マイクロウェル中の各ポリメラーゼ連鎖
反応の生成物を乾燥させて、前記膜を取り除く事を特徴
とする、請求項5記載のポリメラーゼ連鎖反応方法。
6. The semiconductor substrate is covered with the microwell assembly side by a film that allows water vapor to pass therethrough but does not allow liquid to pass therethrough, and the product of each polymerase chain reaction in each microwell is dried to form the film. The polymerase chain reaction method according to claim 5, wherein
【請求項7】 前記各マイクロウェル中の前記生成物を
乾燥させて、次いで蛍光指示薬を滴下し、各マイクロウ
ェルからの蛍光を検出する事を特徴とする、請求項5記
載のポリメラーゼ連鎖反応方法。
7. The polymerase chain reaction method according to claim 5, wherein the product in each of the microwells is dried, and then a fluorescent indicator is dropped to detect fluorescence from each of the microwells. .
JP11040811A 1999-02-19 1999-02-19 Polymerase chain reaction device using integrated microwell Expired - Lifetime JP3041423B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11040811A JP3041423B1 (en) 1999-02-19 1999-02-19 Polymerase chain reaction device using integrated microwell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11040811A JP3041423B1 (en) 1999-02-19 1999-02-19 Polymerase chain reaction device using integrated microwell

Publications (2)

Publication Number Publication Date
JP3041423B1 JP3041423B1 (en) 2000-05-15
JP2000236876A true JP2000236876A (en) 2000-09-05

Family

ID=12591044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11040811A Expired - Lifetime JP3041423B1 (en) 1999-02-19 1999-02-19 Polymerase chain reaction device using integrated microwell

Country Status (1)

Country Link
JP (1) JP3041423B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100855996B1 (en) * 2002-07-02 2008-09-02 유재천 PCR disc apparatus, PCR disc driver apparatus, and analysis method using the same
JP2008232899A (en) * 2007-03-22 2008-10-02 Sumitomo Bakelite Co Ltd Substrate and its usage
JP2009270922A (en) * 2008-05-07 2009-11-19 Seiko Epson Corp Biosample reaction method
WO2010107497A2 (en) * 2009-03-18 2010-09-23 The Regents Of The University Of California Honeycomb shrink wells for stem cell culture
US7919306B2 (en) 2007-12-06 2011-04-05 Seiko Epson Corporation Biological sample reaction chip, biological sample reaction apparatus, and biological sample reaction method
US8021843B2 (en) 2007-11-08 2011-09-20 Seiko Epson Corporation Biological sample reaction chip and biological sample reaction method
US8092999B2 (en) 2008-02-01 2012-01-10 Seiko Epson Corporation Biological sample reaction chip and biological sample reaction method
KR101188011B1 (en) 2011-06-03 2012-10-08 삼성전기주식회사 Bio chip
KR101218986B1 (en) 2011-10-25 2013-01-09 삼성전기주식회사 Bio chip
JP5127442B2 (en) * 2005-02-10 2013-01-23 パナソニック株式会社 Structure manufacturing method for holding fine structure, semiconductor device manufacturing method, and sensor manufacturing method
JP2017026516A (en) * 2015-07-24 2017-02-02 株式会社古河電工アドバンストエンジニアリング Micro well plate, and method for introducing specimen to well
WO2017116037A1 (en) * 2015-12-29 2017-07-06 광주과학기술원 Chip structure for multiple molecular diagnoses
WO2023070567A1 (en) * 2021-10-29 2023-05-04 京东方科技集团股份有限公司 Detection chip and preparation method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10273532B2 (en) 2012-03-09 2019-04-30 National Institute Of Advanced Industrial Science And Technology Nucleic acid amplification method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100855996B1 (en) * 2002-07-02 2008-09-02 유재천 PCR disc apparatus, PCR disc driver apparatus, and analysis method using the same
JP5127442B2 (en) * 2005-02-10 2013-01-23 パナソニック株式会社 Structure manufacturing method for holding fine structure, semiconductor device manufacturing method, and sensor manufacturing method
JP2008232899A (en) * 2007-03-22 2008-10-02 Sumitomo Bakelite Co Ltd Substrate and its usage
US8021843B2 (en) 2007-11-08 2011-09-20 Seiko Epson Corporation Biological sample reaction chip and biological sample reaction method
US7919306B2 (en) 2007-12-06 2011-04-05 Seiko Epson Corporation Biological sample reaction chip, biological sample reaction apparatus, and biological sample reaction method
US8092999B2 (en) 2008-02-01 2012-01-10 Seiko Epson Corporation Biological sample reaction chip and biological sample reaction method
JP2009270922A (en) * 2008-05-07 2009-11-19 Seiko Epson Corp Biosample reaction method
WO2010107497A2 (en) * 2009-03-18 2010-09-23 The Regents Of The University Of California Honeycomb shrink wells for stem cell culture
WO2010107497A3 (en) * 2009-03-18 2011-03-31 The Regents Of The University Of California Honeycomb shrink wells for stem cell culture
KR101188011B1 (en) 2011-06-03 2012-10-08 삼성전기주식회사 Bio chip
KR101218986B1 (en) 2011-10-25 2013-01-09 삼성전기주식회사 Bio chip
JP2017026516A (en) * 2015-07-24 2017-02-02 株式会社古河電工アドバンストエンジニアリング Micro well plate, and method for introducing specimen to well
WO2017116037A1 (en) * 2015-12-29 2017-07-06 광주과학기술원 Chip structure for multiple molecular diagnoses
US11007519B2 (en) 2015-12-29 2021-05-18 Gmd Biotech, Inc. Chip structure for multiple molecular diagnoses
WO2023070567A1 (en) * 2021-10-29 2023-05-04 京东方科技集团股份有限公司 Detection chip and preparation method therefor
WO2023071542A1 (en) * 2021-10-29 2023-05-04 北京京东方技术开发有限公司 Detection chip and preparation method therefor, and detection method
GB2622991A (en) * 2021-10-29 2024-04-03 Beijing Boe Technology Dev Co Ltd Detection chip and preparation method therefor, and detection method

Also Published As

Publication number Publication date
JP3041423B1 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
Kadimisetty et al. Fully 3D printed integrated reactor array for point-of-care molecular diagnostics
JP3041423B1 (en) Polymerase chain reaction device using integrated microwell
US20210039091A1 (en) Microreactor array platform
US11162948B2 (en) Immunoassay for detection of virus-antibody nanocomplexes in solution by chip-based pillar array
US8173077B2 (en) Reusable PCR amplification system and method
US7807360B2 (en) Method and apparatus for concentrating and amplifying nucleic acid in single micro chamber
JP2015061544A (en) Slip Chip DEVICE AND METHODS
US8092999B2 (en) Biological sample reaction chip and biological sample reaction method
JP2004309405A (en) Micro-chamber used for detecting unimolecular enzyme activity
CN108291910A (en) Running system and method for digital counting
JP2000249706A (en) New biological chip and analytical method
CN107429209B (en) Target analysis chip and target analysis method
Lin et al. Application of microfluidic technologies on COVID-19 diagnosis and drug discovery
JP2022511168A (en) Analytical systems with microfluidic devices and related methods
Sadique et al. Advanced high-throughput biosensor-based diagnostic approaches for detection of severe acute respiratory syndrome-coronavirus-2
CN112592815A (en) Microfluidic chip for carrying out multiple microRNA detection and application
KR102036922B1 (en) Analysis module and manufacturing method thereof
Phaneuf et al. Sensitive, microliter PCR with consensus degenerate primers for Epstein Barr virus amplification
Yobas et al. Nucleic acid extraction, amplification, and detection on Si-based microfluidic platforms
CN111250177B (en) Biomolecule detection method
JP2013208127A (en) Microreaction vessel, and polymerase chain reaction method using the same
Wan et al. Affinity-based enrichment of extracellular vesicles with lipid nanoprobes
WO2023004516A1 (en) Cartridge, system, and method for molecular diagnostic reaction testing
Awashra et al. Superhydrophilic/superhydrophobic droplet microarrays of low surface tension biofluids for nucleic acid detection
CN111254061B (en) Probe molecule printing chip and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000201

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term