JP6749683B1 - Hydrophilic reinforced molded product made of silicone rubber and hydrophilic reinforced joined product using the same - Google Patents

Hydrophilic reinforced molded product made of silicone rubber and hydrophilic reinforced joined product using the same Download PDF

Info

Publication number
JP6749683B1
JP6749683B1 JP2020516932A JP2020516932A JP6749683B1 JP 6749683 B1 JP6749683 B1 JP 6749683B1 JP 2020516932 A JP2020516932 A JP 2020516932A JP 2020516932 A JP2020516932 A JP 2020516932A JP 6749683 B1 JP6749683 B1 JP 6749683B1
Authority
JP
Japan
Prior art keywords
hydrophilic
silicone rubber
reinforced
treatment
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020516932A
Other languages
Japanese (ja)
Other versions
JPWO2020137065A1 (en
Inventor
和起 行田
和起 行田
高野 努
努 高野
延由 渡辺
延由 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI FR R&D CO., LTD.
Original Assignee
ASAHI FR R&D CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI FR R&D CO., LTD. filed Critical ASAHI FR R&D CO., LTD.
Application granted granted Critical
Publication of JP6749683B1 publication Critical patent/JP6749683B1/en
Publication of JPWO2020137065A1 publication Critical patent/JPWO2020137065A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology

Abstract

試薬を吸着し難くて送液し易いマイクロ流体デバイスや培養細胞を接着させず回収し易い細胞培養デバイスに使用可能で、水との接触角が30°以下程度にまで十分に親水化され、長期間親水化されたまま維持でき、反応試薬水溶液や培養液のような水分と接触しても短時間で水との小さな接触角を発現でき、支持体等と接合可能なシリコーンゴム製親水性強化成形体、それを用いた親水性強化接合体を提供する。シリコーンゴム製親水性強化成形体は、親水性基含有化合物含有添加剤がシリコーンゴムに配合されたことによる親水性の表面が、UV照射処理表面、エキシマUV照射処理表面、コロナ放電処理表面、プラズマ処理表面、電子線照射処理表面、及びγ線照射処理表面から選ばれる乾式処理表面であることによって、前記表面が親水性強化され改質されている。親水性強化接合体は、シリコーンゴム製親水性強化成形体と、支持体とが、接合されている。It can be used for microfluidic devices that are difficult to adsorb reagents and easy to send liquid, and cell culture devices that are easy to collect without adhering cultured cells, and the contact angle with water is sufficiently hydrophilic to about 30 ° or less, and it is long. Silicone rubber hydrophilic reinforcement that can be maintained hydrophilic for a period of time, can develop a small contact angle with water in a short time even when in contact with water such as aqueous reaction reagent solution or culture solution, and can be bonded to a support or the like. Provided is a molded body and a hydrophilic reinforced joint using the molded body. In the hydrophilic reinforced molded product made of silicone rubber, the hydrophilic surface due to the addition of the hydrophilic group-containing compound-containing additive to the silicone rubber is a UV irradiation treated surface, an Exima UV irradiation treated surface, a corona discharge treated surface, and a plasma. The surface is hydrophilically strengthened and modified by being a dry-type treated surface selected from a treated surface, an electron beam irradiation-treated surface, and a γ-ray irradiation-treated surface. In the hydrophilic reinforced joint, a hydrophilic reinforced molded product made of silicone rubber and a support are joined.

Description

本発明は、親水性基含有化合物含有添加剤による親水性を付与したシリコーンゴムの表面の親水性を強化したシリコーンゴム製親水性強化成形体、及び親水性強化接合体に関するものである。 TECHNICAL FIELD The present invention relates to a hydrophilic-reinforced molded article made of silicone rubber in which the hydrophilicity of the surface of the silicone rubber to which hydrophilicity has been imparted by a hydrophilic group-containing compound-containing additive is enhanced, and a hydrophilic-reinforced joined article.

血液や尿などの生体由来試料のような被験液を微量だけ用いて、酵素の特異的基質選択性を利用し、試料中の基質と作用する酵素反応量やその基質量を酵素又は基質で発色する試薬による着色度合いで定量したり、酵素含有膜を用い酵素反応量を電極で電気信号に変換して基質量を定量したりする分析や、DNA抽出・それのPCR増幅(ポリメラーゼ連鎖反応増幅)や、イオン濃度測定や、DNA又はタンパク質又はペプチドの微量合成などを行うのに、マイクロ化学チップのようなマイクロ流体デバイスが用いられている。 Using a small amount of a test liquid such as a biological sample such as blood or urine, the specific substrate selectivity of the enzyme is used to develop the amount of enzyme reaction that interacts with the substrate in the sample and its basic mass with the enzyme or the substrate. Analysis by quantifying the degree of coloring by the reagent to be used, or by using the enzyme-containing membrane to convert the enzyme reaction amount into an electric signal at the electrode to quantify the base mass, DNA extraction and PCR amplification (polymerase chain reaction amplification) Microfluidic devices such as microchemical chips have been used to measure ion concentrations and micro-synthesize DNA or proteins or peptides.

浮遊細胞や接着細胞のような各種細胞の継代培養、とりわけ浮遊細胞の継代培養は、培養液のような培地に懸濁した浮遊細胞を希釈して、増殖を継続する方法により行うのに、培養容器・培養プレートのような細胞培養デバイスが用いられる。 Subculture of various cells such as suspension cells and adherent cells, especially subculture of suspension cells, is performed by diluting suspension cells suspended in a medium such as a culture solution and continuing the growth. Cell culture devices such as culture vessels and culture plates are used.

このようなマイクロ流体デバイスの流路や、浮遊細胞の継代培養の細胞培養デバイスでの培養液接触表面は、水との接触角が30°程度以下の親水性となっていることが望ましい。 The flow path of such a microfluidic device or the culture solution contact surface of a cell culture device for subculture of floating cells is desirably hydrophilic with a contact angle with water of about 30° or less.

これらマイクロ流体デバイスや培養容器の親水性向上には、様々な表面親水化処理が施される。 To improve the hydrophilicity of these microfluidic devices and culture vessels, various surface hydrophilization treatments are performed.

これらマイクロ流体デバイスや培養容器が、シリコーンゴムやシリコーン樹脂のようなシリコーン製成形体である場合、それの表面親水化処理は、乾式処理等の表面処理、親水性付与処理により行うことが知られている。 When these microfluidic devices and culture vessels are molded silicone products such as silicone rubber and silicone resin, it is known that the surface hydrophilization treatment is performed by surface treatment such as dry treatment or hydrophilic treatment. ing.

このような表面親水性付与処理として、シリコーン製成形体の表面改質する乾式処理、親水性コーティング剤(例えば親水性シランカップリング剤)をシリコーン製成形体表面へ化学的に結合させて導入する表面改質処理がある。このような表面改質処理では、3〜6箇月程度親水性を保持できるが親水程度が然程高くなく水との接触角を30°程度にまで低下できなかったり、表面で結合した親水性コーティング剤分子が次第にシリコーン製成形体の表面から内部へ潜り込みシリコーン分子が露出し易くなって親水性が低下したり、シリコーンゴムに適用可能な親水性コーティング剤の種類が極めて少なかったりして、十分な親水性を発現し難い。また、この表面処理した面に支持体等を接合する際には、別途、接合のための表面処理や化学修飾を施さなければならず、折角の親水性を阻害してしまう。 As such a surface hydrophilicity-imparting treatment, a dry treatment for modifying the surface of the silicone-made molded product, or a hydrophilic coating agent (for example, a hydrophilic silane coupling agent) is chemically bonded to the surface of the silicone-made molded product and introduced. There is surface modification treatment. With such a surface modification treatment, the hydrophilicity can be maintained for about 3 to 6 months, but the hydrophilicity is not so high that the contact angle with water cannot be reduced to about 30°, or the hydrophilic coating bonded on the surface. The agent molecules gradually sneak from the surface of the silicone molded body to the inside, exposing the silicone molecules and decreasing the hydrophilicity, and there are very few types of hydrophilic coating agents applicable to silicone rubber. It is difficult to develop hydrophilicity. Further, when the support or the like is bonded to the surface-treated surface, surface treatment or chemical modification for bonding must be separately performed, which hinders the hydrophilicity of the corners.

また別な表面親水性付与処理として、原材料として液状乃至ミラブル状のシリコーン原材料に親水性添加剤例えば親水性オイルを配合して硬化させシリコーン製成形体を形成することにより、その表面に親水性添加剤を露出させて親水性を付与する素材改質処理がある。このような素材改質処理の例として、特許文献1に、(a)上面に所定の微細構造を有するマスターを準備するステップと、(b)前記マスターの微細構造形成面側に、PDMSプレポリマーと硬化剤とポリエーテル変性界面活性剤とからなる混合物を注入するステップと、(c)成型されたPDMS製シートの微細構造形成面側を酸素プラズマ処理するステップと、(d)前記PDMS製シートの微細構造形成面側にオルガノシラン溶液を塗布するステップとからなることを特徴とする恒久的親水性を有するPDMS製シートの製造方法が、開示されている。一般的に、素材改質処理では、親水程度が然程高くなく水との接触角を30°程度にまで低下できなかったり、水と接触したときに親水性を発現するのに10分間以上要したりするなど、十分な親水性を発現し難い。 As another surface hydrophilicity imparting treatment, by adding a hydrophilic additive such as a hydrophilic oil to a liquid or millable silicone raw material as a raw material and curing the raw material to form a silicone molded article, the surface is hydrophilically added. There is a material modification treatment that exposes the agent to impart hydrophilicity. As an example of such a material modification treatment, in Patent Document 1, (a) a step of preparing a master having a predetermined fine structure on the upper surface, and (b) PDMS prepolymer on the fine structure formation surface side of the master. A step of injecting a mixture of a curing agent and a polyether-modified surfactant, (c) a step of oxygen plasma-treating the side of the molded PDMS sheet on which the fine structure is formed, (d) the PDMS sheet And a step of applying an organosilane solution to the side of the fine structure forming surface of the PDMS sheet, the method of manufacturing a PDMS sheet having permanent hydrophilicity is disclosed. Generally, in the material modification treatment, the degree of hydrophilicity is not so high that the contact angle with water cannot be reduced to about 30°, and it takes 10 minutes or more to develop hydrophilicity when contacted with water. It is difficult to develop sufficient hydrophilicity, such as

特開2006−181407号公報JP, 2006-181407, A

本発明は前記の課題を解決するためになされたもので、試薬を吸着し難くて送液し易いマイクロ流体デバイスや培養細胞を接着させず回収し易い細胞培養デバイスに使用可能で、水との接触角が30°以下程度にまで十分に親水化され、長期間親水化されたまま維持でき、反応試薬水溶液や培養液のような水分と接触しても短時間で水との小さな接触角を発現でき、支持体等と接合可能なシリコーンゴム製親水性強化成形体を提供することを目的とする。またそのシリコーンゴム製親水性強化成形体を用いてマイクロ流体デバイスに応用できる親水性強化接合体を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and can be used in a microfluidic device that is difficult to adsorb a reagent and is easy to feed, or a cell culture device that is easy to collect without adhering cultured cells, and with water. The contact angle is sufficiently hydrophilized to about 30° or less, and it can be kept hydrophilized for a long period of time. It is an object of the present invention to provide a hydrophilic reinforced molded product made of silicone rubber that can be expressed and can be bonded to a support or the like. Another object of the present invention is to provide a hydrophilic reinforced joined body which can be applied to a microfluidic device by using the silicone rubber hydrophilic reinforced molded body.

前記の目的を達成するためになされた本発明のシリコーンゴム製親水性強化成形体は、親水性基含有化合物含有添加剤がシリコーンゴムに配合されていることによる親水性の表面が、UV照射処理表面、エキシマUV照射処理表面、コロナ放電処理表面、プラズマ処理表面、電子線照射処理表面、及びγ線照射処理表面から選ばれる乾式処理表面であることによって、前記表面が親水性強化され改質されているシリコーンゴム製親水性強化成形体であって、前記親水性基含有化合物含有添加剤が、ポリエーテル変性シリコーンオイルであるというものである。 In order to achieve the above-mentioned object, the silicone rubber hydrophilic reinforced molded article of the present invention has a hydrophilic surface formed by compounding the silicone rubber with a hydrophilic group-containing compound-containing additive, and is subjected to UV irradiation treatment. By the dry treatment surface selected from the surface, the excimer UV irradiation treatment surface, the corona discharge treatment surface, the plasma treatment surface, the electron beam irradiation treatment surface, and the γ ray irradiation treatment surface, the surface is enhanced in hydrophilicity and modified. According to another aspect of the present invention, there is provided a hydrophilic reinforced molded article made of silicone rubber, wherein the hydrophilic group-containing compound-containing additive is a polyether-modified silicone oil .

このシリコーンゴム製親水性強化成形体は、前記親水性基含有化合物含有添加剤が、ポリエーテルであることが好ましい。 In this silicone rubber hydrophilic reinforced molding, the hydrophilic group-containing compound-containing additive is preferably a polyether.

このシリコーンゴム製親水性強化成形体は、前記親水性基含有化合物含有添加剤が、前記ポリエーテルとしてポリエーテル変性シリコーンオイルであると一層好ましい。 In this silicone rubber hydrophilic reinforced molding, it is more preferable that the hydrophilic group-containing compound-containing additive is a polyether-modified silicone oil as the polyether.

このシリコーンゴム製親水性強化成形体は、前記親水性基含有化合物含有添加剤が、ポリシロキサン骨格の側鎖にポリエーテル基を有するシリコーン化合物からなる前記ポリエーテル変性シリコーンオイルであると一層好ましい。 In the hydrophilically strengthened molded product made of silicone rubber, the hydrophilic group-containing compound-containing additive is more preferably the polyether-modified silicone oil composed of a silicone compound having a polyether group in the side chain of the polysiloxane skeleton.

このシリコーンゴム製親水性強化成形体は、前記親水性基含有化合物含有添加剤が、HLB値を3.5〜16.9とするものであってもよい。 In this silicone rubber hydrophilic reinforced molding, the hydrophilic group-containing compound-containing additive may have an HLB value of 3.5 to 16.9.

このシリコーンゴム製親水性強化成形体は、例えば前記シリコーンゴム100質量部に対して、前記親水性基含有化合物含有添加剤0.1〜30質量部、好ましくは3〜5質量部が、配合されているというものである。 This silicone rubber hydrophilic reinforced molded product is blended with 0.1 to 30 parts by mass, preferably 3 to 5 parts by mass of the hydrophilic group-containing compound-containing additive with respect to 100 parts by mass of the silicone rubber. It is that.

このシリコーンゴム製親水性強化成形体は、前記シリコーンゴムが、例えば付加型シリコーンゴム、縮合型シリコーンゴム、過酸化物架橋型シリコーンゴム、紫外線硬化型シリコーンゴム、及び/又は放射線架橋型シリコーンゴムであるというものである。 In this hydrophilic reinforced molded product made of silicone rubber, the silicone rubber is, for example, an addition-type silicone rubber, a condensation-type silicone rubber, a peroxide-crosslinking-type silicone rubber, an ultraviolet-curing-type silicone rubber, and/or a radiation-crosslinking-type silicone rubber. There is.

このシリコーンゴム製親水性強化成形体は、平面状のシート、平板、又はチップ;前記表面に凹凸を有する板;若しくは三次元形状の容器、ウェルを有する培養プレート、シャーレ、前記表面に凹凸を有する成形体;であることが好ましい。 This silicone rubber hydrophilic reinforced molded article is a flat sheet, flat plate, or chip; a plate having irregularities on the surface; or a three-dimensional container, a culture plate having wells, a petri dish, having irregularities on the surface. A molded body;

このシリコーンゴム製親水性強化成形体は、オートクレーブ滅菌処理シリコーンゴム製親水性強化成形体、又は加熱処理シリコーンゴム製親水性強化成形体であると一層好ましい。 It is more preferable that the silicone rubber-made hydrophilic reinforced molded product is an autoclave sterilized silicone rubber-made hydrophilic reinforced molded product or a heat-treated silicone rubber-made hydrophilic reinforced molded product.

このシリコーンゴム製親水性強化成形体は、透明、又は半透明であると、なお一層好ましい。 It is even more preferable that the silicone rubber hydrophilic reinforced molded article be transparent or translucent.

前記の目的を達成するためになされた本発明のシリコーンゴム製親水性強化成形体を製造する方法は、ポリエーテル変性シリコーンオイルである親水性基含有化合物含有添加剤をシリコーンゴム原料成分に配合し硬化させて、親水性の表面を有する成形体を形成する工程と、前記表面を、UV照射処理、エキシマUV照射処理、コロナ放電処理、プラズマ処理、電子線照射処理、及びγ線照射処理から選ばれる乾式処理を施す工程とにより、シリコーンゴム製親水性強化成形体を製造するというものである。 The method for producing a hydrophilic reinforced molded product made of silicone rubber of the present invention made to achieve the above-mentioned object is to add a hydrophilic group-containing compound-containing additive which is a polyether-modified silicone oil to a silicone rubber raw material component. The step of curing to form a molded article having a hydrophilic surface, and the surface is selected from UV irradiation treatment, excimer UV irradiation treatment, corona discharge treatment, plasma treatment, electron beam irradiation treatment, and γ-ray irradiation treatment. And a step of performing a dry treatment performed to produce a hydrophilic reinforced molded body made of silicone rubber.

前記の目的を達成するためになされた本発明の親水性強化接合体は、ポリエーテル変性シリコーンオイルである親水性基含有化合物含有添加剤がシリコーンゴムに配合されていることによる親水性の表面が、UV照射処理表面、エキシマUV照射処理表面、コロナ放電処理表面、プラズマ処理表面、電子線照射処理表面、及びγ線照射処理表面から選ばれる乾式処理表面であることによって、前記表面が親水性強化され改質されているシリコーンゴム製親水性強化成形体と、支持体とが、接合されているというものである。 The hydrophilic reinforced conjugate of the present invention made to achieve the above-mentioned object has a hydrophilic surface due to the addition of a hydrophilic group-containing compound-containing additive that is a polyether-modified silicone oil to a silicone rubber. , UV irradiation-treated surface, excimer UV irradiation-treated surface, corona discharge-treated surface, plasma-treated surface, electron beam-treated surface, and γ-ray-treated surface are dry-treated surfaces, thereby enhancing hydrophilicity of the surface. The hydrophilic and reinforced molded body made of silicone rubber that has been modified is bonded to the support.

この親水性強化接合体は、前記シリコーンゴム製親水性強化成形体がその前記表面で、前記支持体にその凹凸面で接合されているものであることが好ましい。 In this hydrophilic reinforced joined body, it is preferable that the hydrophilic reinforced molded article made of silicone rubber is joined on the surface thereof and on the uneven surface of the support.

この親水性強化接合体は、前記凹凸面に流路となる凹凸を有していることによって、マイクロ流体デバイスとなっているものであると、一層好ましい。 It is more preferable that this hydrophilic reinforced joined body is a microfluidic device by having the unevenness serving as a flow path on the uneven surface.

この親水性強化接合体は、前記シリコーンゴム製親水性強化成形体の前記表面と、前記支持体とが、物理吸着による密着、及び/又は分子接着での共有結合による結合によって、接合されていると、なお一層好ましい。 In this hydrophilic reinforced joined body, the surface of the hydrophilic reinforced molded body made of silicone rubber and the support are joined by adhesion by physical adsorption and/or covalent bond by molecular adhesion. And even more preferable.

本発明のシリコーンゴム製親水性強化成形体は、親水性基含有化合物含有添加剤による親水性を付与したシリコーンゴムの表面の親水性を乾式処理によって一層強化したものである。このシリコーンゴム製親水性強化成形体は、水との接触角が30°以下程度にまで十分に高親水化され、1年以上にわたって長期間親水化されたまま維持できる。 The silicone rubber hydrophilic reinforced molding of the present invention is one in which the hydrophilicity of the surface of the silicone rubber to which the hydrophilic group-containing compound-containing additive has imparted hydrophilicity is further reinforced by dry treatment. This silicone rubber-reinforced hydrophilic molded article has a sufficiently high hydrophilicity up to a contact angle with water of about 30° or less and can be kept hydrophilic for a long period of time for one year or longer.

このシリコーンゴム製親水性強化成形体は、反応試薬水溶液や培養液のような水分と接触しても短時間で水との小さな接触角を発現できる。 This silicone rubber-reinforced hydrophilic molded article can develop a small contact angle with water in a short time even when contacted with water such as an aqueous solution of a reaction reagent or a culture solution.

このシリコーンゴム製親水性強化成形体は、親水性が高いが、シリコーンゴムが試薬と相互作用し難いことから試薬を吸着し難い。そのためこのシリコーンゴム製親水性強化成形体は、試薬を詰まらせることなく送液し易いマイクロ流体デバイスに、応用可能である。 This silicone rubber-reinforced hydrophilic molded article has high hydrophilicity, but since the silicone rubber is unlikely to interact with the reagent, it is difficult to adsorb the reagent. Therefore, this silicone rubber-made hydrophilic reinforced molded article can be applied to a microfluidic device that easily feeds a liquid without clogging a reagent.

また、このシリコーンゴム製親水性強化成形体は、細胞毒性がなく、浮遊細胞や接着細胞のような培養細胞を接着させない。そのためシリコーンゴム製親水性強化成形体は、細胞培養に適しており、培養細胞を回収し易い細胞培養デバイスに、応用可能である。 In addition, this silicone rubber hydrophilic reinforced molding has no cytotoxicity and does not adhere to cultured cells such as floating cells and adherent cells. Therefore, the silicone rubber hydrophilic reinforced molding is suitable for cell culture and can be applied to a cell culture device in which cultured cells are easily collected.

このシリコーンゴム製親水性強化成形体は、シリコーンゴム製親水性強化成形体のような支持体等と貼付するだけで又は各種材質の支持体等と接着によって接合可能であり、親水性強化接合体を作製するのに、用いることができる。 The hydrophilic reinforced molded body made of silicone rubber can be bonded to a support or the like such as a hydrophilic reinforced molded body made of silicone rubber, or can be bonded to a support made of various materials by adhesion. Can be used to make

このシリコーンゴム製親水性強化成形体は、高い親水性を発現し、接合した場合には強い接合強度を発現することができる。しかも接合した場合には、初期及び経時並びに長期保管時の強い剥離強度を示し、またアルコールや水溶液などに浸漬したときに剥離し難い特性を示すので、優れた耐剥離性・耐水性・耐薬品性を有し、高い信頼性のある接合を形成できている。 This silicone rubber-reinforced hydrophilic molded article exhibits high hydrophilicity and can exhibit strong bonding strength when bonded. Moreover, when bonded, it exhibits strong peel strength during initial storage, aging, and long-term storage, and also exhibits characteristics that make it difficult to peel when immersed in alcohol, aqueous solution, etc., so it has excellent peel resistance, water resistance, and chemical resistance. And has a high reliability.

しかも、このシリコーンゴム製親水性強化成形体は、長期経過時でも初期とほとんど変わらない親水性を保持している。しかも、親水化処理表面は、医療用の電子線滅菌又はγ線滅菌処理を行っても、親水性を長期間にわたって維持することができる。 In addition, this silicone rubber-reinforced hydrophilic molded article retains the hydrophilicity almost unchanged from the initial state even after a long period of time. Moreover, the hydrophilic surface can maintain its hydrophilicity for a long period of time even when subjected to medical electron beam sterilization or γ-ray sterilization.

さらに、このシリコーンゴム製親水性強化成形体は、未処理のシリコーンゴムに比べ、親水化していることにより、アルブミンなどのタンパク質の吸着が半分未満となっているので、細胞培養などの培養プレートや培養容器として、用いることができる。 Furthermore, since this hydrophilic hydrophilic molded body made of silicone rubber has less than half the adsorption of proteins such as albumin due to being hydrophilic compared to untreated silicone rubber, it can be used for culture plates such as cell culture. It can be used as a culture container.

この親水性強化接合体は、マイクロ流体デバイスや細胞培養デバイスに用いることができ、親水性を維持することができることから、長期間保存後でも、安定して機能を発現することができる。 This hydrophilic-reinforced conjugate can be used in a microfluidic device or a cell culture device, and since it can maintain hydrophilicity, it can stably exhibit its function even after long-term storage.

本発明を適用するシリコーンゴム製親水性強化成形体、及びそれを用いた親水性強化接合体を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing a silicone rubber hydrophilic reinforced molded body to which the present invention is applied and a hydrophilic reinforced joined body using the same. 本発明を適用する別なシリコーンゴム製親水性強化成形体、及びそれを用いた親水性強化接合体を示す斜視図である。It is a perspective view which shows another silicone rubber hydrophilic-reinforced molded body to which this invention is applied, and a hydrophilic-reinforced joined body using the same. 本発明を適用するシリコーンゴム製親水性強化成形体と、本発明を適用外の成形体とにおける、水との接触角を側面写真として示す図である。It is a figure which shows as a side photograph the contact angle with water in the silicone rubber hydrophilic reinforced molded object to which this invention is applied, and the molded object to which this invention is not applied. 本発明を適用するシリコーンゴム製親水性強化成形体と、本発明を適用外の成形体とにおける、水との接触角の経時変化をグラフにして示す図である。It is a figure which shows the time-dependent change of the contact angle with water in the silicone rubber hydrophilic reinforced molded object to which this invention is applied, and the molded object to which this invention is not applied. 本発明を適用するシリコーンゴム製親水性強化成形体における、オートクレーブ滅菌処理前での水との接触角と、オートクレーブ滅菌処理後での水との接触角の経時変化をグラフにして示す図である。FIG. 3 is a graph showing a contact angle with water before autoclave sterilization treatment and a change with time of the contact angle with water after autoclave sterilization treatment in a graph in a silicone rubber hydrophilic reinforced molding to which the present invention is applied. .. 本発明を適用するシリコーンゴム製親水性強化成形体における細胞接着性を顕微鏡写真として示す図である。It is a figure which shows the cell adhesiveness in the silicone rubber hydrophilic reinforced molding to which this invention is applied as a micrograph. 本発明を適用するシリコーンゴム製親水性強化成形体を用いて形成した積層親水性強化接合体を示す模式斜視図である。FIG. 3 is a schematic perspective view showing a laminated hydrophilic reinforced joined body formed using a silicone rubber hydrophilic reinforced molded body to which the present invention is applied.

以下、本発明を実施するための形態を詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。 Hereinafter, modes for carrying out the present invention will be described in detail, but the scope of the present invention is not limited to these modes.

本発明のシリコーンゴム製親水性強化成形体10は、図1及び図2に示すように、親水性基含有化合物含有添加剤が配合されたシリコーンゴム製のものである。このシリコーンゴム製親水性強化成形体10は、親水性基含有化合物含有添加剤が配合されていることにより、その表面10aに親水性基含有化合物の親水性基が露出しており、表面10aが親水化され親水性になっている。その表面10aは、乾式処理されていることにより、乾式処理表面となっており、親水性強化され改質されている。 As shown in FIGS. 1 and 2, the silicone rubber hydrophilic reinforced molded product 10 of the present invention is made of silicone rubber containing a hydrophilic group-containing compound-containing additive. The hydrophilic reinforced molded body 10 made of silicone rubber contains the hydrophilic group-containing compound-containing additive, so that the hydrophilic group of the hydrophilic group-containing compound is exposed on the surface 10a, and the surface 10a is It is made hydrophilic and hydrophilic. The surface 10a is a dry-processed surface by being dry-processed, and is hydrophilically strengthened and modified.

乾式処理には、例えばUV(通常の紫外線)照射処理、エキシマUV照射処理、コロナ放電処理、プラズマ処理、電子線照射処理、及びγ線照射処理が挙げられるが、中でもエキシマUV照射処理、コロナ放電処理、又はプラズマ処理が好ましい。これらの処理により、親水性を発現でき、又は接合性も両立させるように発現することができる。中でも、エキシマUV処理、コロナ放電処理、プラズマ処理が好ましい。エキシマUV処理では好ましくは60〜600mJ/cmの照射強度で親水性を発現し持続させることができ、より好ましくは400〜600mJ/cmの照射強度で親水性と接合性とを両立させて発現させることができる。コロナ放電処理では、処理速度:30〜200mm/s,処理回数:3〜10回(出力電圧:約15kV)の組み合わせにより、親水性を発現又は親水性を発現し持続させることができる。プラズマ処理では、大気圧雰囲気下15〜180s(出力電力:約150W)の照射時間で親水性を発現し持続させることができ、より好ましくは30〜180sの照射時間で親水性と接合性とを両立させて発現させることができる。Examples of the dry treatment include UV (normal ultraviolet) irradiation treatment, excimer UV irradiation treatment, corona discharge treatment, plasma treatment, electron beam irradiation treatment, and γ-ray irradiation treatment. Among them, excimer UV irradiation treatment and corona discharge treatment are mentioned. Treatment or plasma treatment is preferred. By these treatments, hydrophilicity can be expressed, or bonding can be expressed so as to be compatible with each other. Of these, excimer UV treatment, corona discharge treatment, and plasma treatment are preferable. Preferably an excimer UV treatment can be sustained express hydrophilicity irradiation intensity of 60~600mJ / cm 2, more preferably by both the bonding property between hydrophilicity irradiation intensity of 400~600mJ / cm 2 Can be expressed. In the corona discharge treatment, a combination of treatment speed: 30 to 200 mm/s and treatment number: 3 to 10 times (output voltage: about 15 kV) can exhibit hydrophilicity or hydrophilicity can be sustained. In the plasma treatment, hydrophilicity can be developed and maintained in an irradiation time of 15 to 180 s (output power: about 150 W) under an atmospheric pressure atmosphere, and more preferably, hydrophilicity and bonding can be achieved in an irradiation time of 30 to 180 s. It can be made compatible and expressed.

これらの乾式処理によって、シリコーンゴム製親水性強化成形体10は表面10aが、UV照射処理表面、エキシマUV照射処理表面、コロナ放電処理表面、プラズマ処理表面、電子線照射処理表面、又はγ線照射処理表面となっている。 By these dry processes, the surface 10a of the silicone rubber hydrophilic reinforced molding 10 is UV irradiation treated surface, excimer UV irradiation treated surface, corona discharge treated surface, plasma treated surface, electron beam irradiated treated surface, or γ ray irradiated. The surface is treated.

シリコーンゴムに対しては、とりわけエキシマUV照射処理、コロナ放電処理、及び/又はプラズマ処理により特に十分な親水性を発現させることができるようになるので好ましく、中でもエキシマUV照射処理及び/又はプラズマ処理により特に十分な親水性と強い接合性とを両立して発現させることができるようになるので一層好ましい。 Silicone rubber is particularly preferable because it becomes possible to express particularly sufficient hydrophilicity by excimer UV irradiation treatment, corona discharge treatment, and/or plasma treatment, and among them, excimer UV irradiation treatment and/or plasma treatment is particularly preferable. This makes it possible to achieve particularly sufficient hydrophilicity and strong bondability at the same time, which is more preferable.

このような乾式処理表面となっていると、表面10aの親水性が強化されており、水との接触角が30°以下、好ましくは20°以下、より好ましくは10°以下になっている。このような低い接触角は、長期間、例えば数箇月乃至約1年以上の保存期間中、安定して維持することが可能なものである。従って、表面10aは、親水性が強化されたまま、維持できている。一方、単なるシリコーンゴムの表面では、水との接触角が100°以上となり、また、親水性基含有化合物含有添加剤が配合され乾式処理が未処理のシリコーンゴムの表面では、水との接触角が約50〜70°以上場合によっては約90°以上となり、また、単なるシリコーンゴムに乾式処理例えばエキシマUV処理が施された表面では、水との接触角が処理直後でも約50°以上となり数日乃至1箇月以内に約100°以上となってしまう。 With such a dry-treated surface, the hydrophilicity of the surface 10a is strengthened, and the contact angle with water is 30° or less, preferably 20° or less, and more preferably 10° or less. Such a low contact angle can be stably maintained for a long period of time, for example, several months to about one year or more. Therefore, the surface 10a can be maintained with the hydrophilicity being strengthened. On the other hand, the contact angle with water is 100° or more on the surface of a simple silicone rubber, and the contact angle with water is not applied on the surface of a silicone rubber which is not treated by dry treatment with an additive containing a compound containing a hydrophilic group. Of about 50 to 70° or more, about 90° or more, and on a surface of a silicone rubber that has been dry-processed, for example, excimer UV treatment, the contact angle with water is about 50° or more even immediately after the process. It will be about 100° or more within a day or a month.

親水性基含有化合物含有添加剤は、例えばポリエーテルが挙げられ、具体的には、ポリオキシエチレン基を有し官能基で変性された変性ポリオキシエチレン化合物や、ポリシロキサン骨格の側鎖にポリエーテル基を有するシリコーン化合物のような親水性基含有化合物を含有するポリエーテル変性シリコーンオイルが挙げられる。このような親水性基含有化合物として、下記化学式(1)

Figure 0006749683
で表されるシリコーン化合物(式(1)中、x及びyはその化合物のシロキシ構造繰り返しユニット数であり、x又はyが示す繰り返しユニットはブロック共重合体ユニットであってもよくランダム共重合体ユニットであってもよい。nはポリエーテル基中のエーテル構造繰り返し数、より具体的には平均で12程度の数である。Rの夫々はメチル基又はフェニル基である)が挙げられる。Examples of the hydrophilic group-containing compound-containing additive include polyether, and specifically, a modified polyoxyethylene compound having a polyoxyethylene group and modified with a functional group, or a polysiloxane in a side chain of a polysiloxane skeleton. Examples thereof include polyether-modified silicone oil containing a hydrophilic group-containing compound such as a silicone compound having an ether group. As such a hydrophilic group-containing compound, the following chemical formula (1)
Figure 0006749683
The silicone compound represented by the formula (in the formula (1), x and y are the number of repeating units of the siloxy structure of the compound, and the repeating unit represented by x or y may be a block copolymer unit or a random copolymer. N may be a unit, and n is the number of repeating ether structures in the polyether group, more specifically an average number of about 12. Each R is a methyl group or a phenyl group.

親水性基含有化合物含有添加剤は、市販のものであってもよく、TI−2011(東レ・ダウコーニング社製;商品名。化学式(1)参照)、TI−6021(東レ・ダウコーニング社製;商品名)、TSF−4445(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製;商品名)、TSF−4446(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製;商品名)、KF−6011(信越化学工業社製;商品名)、KF−6011P(信越化学工業社製;商品名)、KF−6012(信越化学工業社製;商品名)、KF−6015(信越化学工業社製;商品名)、KF−6004(信越化学工業社製;商品名)、KF−6043(信越化学工業社製;商品名)、ポリエチレングリコールソルビタンモノラウラートであるTween 20(Sigma−Aldrich社製;商品名)が挙げられる。 The hydrophilic group-containing compound-containing additive may be a commercially available product, such as TI-2011 (manufactured by Toray Dow Corning; trade name; see Chemical Formula (1)), TI-6021 (manufactured by Toray Dow Corning). Trade name), TSF-4445 (manufactured by Momentive Performance Materials Japan; trade name), TSF-4446 (manufactured by Momentive Performance Materials Japan, trade name), KF-6011 (Shin-Etsu Chemical Co., Ltd.) Company name; KF-6011P (Shin-Etsu Chemical Co., Ltd. product name), KF-6012 (Shin-Etsu Chemical Co., Ltd. product name), KF-6015 (Shin-Etsu Chemical Co., Ltd. product name), KF -6004 (manufactured by Shin-Etsu Chemical Co., Ltd.; trade name), KF-6043 (manufactured by Shin-Etsu Chemical Co., Ltd.; trade name), Tween 20 (manufactured by Sigma-Aldrich Co., trade name) which is polyethylene glycol sorbitan monolaurate. ..

このような親水性基含有化合物含有添加剤は、HLB値(Hydrophilic-Lipophilic Balance;親水油バランス)を3.5〜16.9例えば4.5〜16.9とするものであると、十分な親水性を発現することができる。HLB値は、この範囲よりも小さいとシリコーンゴム製親水性強化成形体10の表面での親水性が不十分となり、この範囲よりも大きいと疎水性材料への分散性が大幅に低下してしまう。HLB値は、エステル系の界面活性剤について、鹸化価をS、界面活性剤を構成する脂肪酸の酸価をAとし、HLB値を20(1−S/A)で定義するものや、HLB値を20×親水部の式量の総和/分子量で定義するものや、官能基によって決まる基数を規定し(例えばメチル基やメチレン鎖は親油基で0.475、水酸基は親水基で1.9など)、HLB値を7+親水基の基数の総和−親油基の基数の総和で定義するものや、HLB値を7+11.7×log(親水部の式量の総和/親油部の式量の総和)で定義するものが知られている。 It is sufficient that such a hydrophilic group-containing compound-containing additive has an HLB value (Hydrophilic-Lipophilic Balance; hydrophilic oil balance) of 3.5 to 16.9, for example, 4.5 to 16.9. It can exhibit hydrophilicity. If the HLB value is smaller than this range, the hydrophilicity on the surface of the silicone rubber hydrophilic reinforced molding 10 will be insufficient, and if it is larger than this range, the dispersibility in a hydrophobic material will be significantly reduced. .. Regarding the HLB value, for ester-based surfactants, the saponification value is S, the acid value of the fatty acid that constitutes the surfactant is A, and the HLB value is defined as 20 (1-S/A), and the HLB value is Is defined as the sum of the formula weights of 20×hydrophilic part/molecular weight and the number of groups determined by the functional group (for example, a methyl group or a methylene chain is 0.475 as a lipophilic group, and a hydroxyl group is 1.9 as a hydrophilic group). Etc.), the HLB value is defined by 7 + the sum of the number of bases of the hydrophilic group-the sum of the number of bases of the lipophilic group, and the HLB value is 7+11.7 x log (the sum of the formula weights of the hydrophilic part/the formula weight of the lipophilic part). What is defined by the sum of) is known.

シリコーンゴム製親水性強化成形体10中、シリコーンゴム100質量部に対して、このような親水性基含有化合物含有添加剤は0.1〜30質量部、好ましくは1〜10質量部、中でもより好ましくは3〜10質量部、具体的には3〜5質量部が、配合されていることが好ましい。この範囲を下回ると、親水性が不十分となり、この範囲よりも大きいとブリードアウトとなってしまう。 In the silicone rubber-made hydrophilic reinforcing molding 10, such a hydrophilic group-containing compound-containing additive is 0.1 to 30 parts by mass, preferably 1 to 10 parts by mass, and more preferably 100 parts by mass of the silicone rubber. It is preferable that 3 to 10 parts by mass, specifically 3 to 5 parts by mass, be blended. Below this range, the hydrophilicity will be insufficient, and above this range, bleed-out will occur.

シリコーンゴム製親水性強化成形体10中のシリコーンゴムの原材料として液状乃至ミラブル状のシリコーン原材料が挙げられる。シリコーンゴム製親水性強化成形体10のシリコーンゴムは、付加型シリコーンゴム、縮合型シリコーンゴム、過酸化物架橋型シリコーンゴム、紫外線硬化型シリコーンゴム、及び/又は放射線架橋型シリコーンゴム、それらの中でも付加型シリコーンゴムである熱硬化性液状シリコーンゴム、過酸化物架橋型又は付加架橋型であるミラブル状シリコーンゴムが挙げられる。 Examples of the raw material of the silicone rubber in the silicone rubber hydrophilic reinforced molding 10 include liquid or millable silicone raw materials. The silicone rubber of the hydrophilic reinforced molded body 10 made of silicone rubber is an addition-type silicone rubber, a condensation-type silicone rubber, a peroxide-crosslinking-type silicone rubber, an ultraviolet-curing-type silicone rubber, and/or a radiation-crosslinking-type silicone rubber, among them. Examples thereof include thermosetting liquid silicone rubber which is an addition type silicone rubber, and millable silicone rubber which is a peroxide crosslinking type or an addition crosslinking type.

シリコーンゴム製親水性強化成形体10の形状は、特に限定されないが、凹凸の無い平面状で、任意のフィルム上に1〜15μm厚でコーティングしたもの、15μm〜1000μm厚のシート、1mm〜10mm厚の平板、それらを裁断した一辺1mm乃至300mmのチップであってもよく、平面状のシート、平板、チップであってもよく、前記表面10aにナノメートルオーダー(1〜1000nm)の微細加工を施した微細加工凹凸を有する板、三次元形状のシャーレやフラスコのような容器、ウェルを有する培養プレート、又は表面凹凸等の微細加工を施した成形体であってもよい。 The shape of the silicone rubber hydrophilic reinforced molded body 10 is not particularly limited, but it is a flat surface having no irregularities, a film having a thickness of 1 to 15 μm coated on any film, a sheet having a thickness of 15 μm to 1000 μm, and a thickness of 1 mm to 10 mm. Plate, a chip having a side length of 1 mm to 300 mm cut from them, or a flat sheet, a flat plate, or a chip may be used, and the surface 10a is subjected to fine processing on the order of nanometers (1-1000 nm). The plate may be a plate having finely processed irregularities, a container such as a three-dimensional petri dish or a flask, a culture plate having wells, or a molded article having finely processed surface irregularities.

シリコーンゴム製親水性強化成形体10は、オートクレーブ滅菌処理や加熱処理を実施しても、水の接触角が低下しない。具体的には、高温高圧下例えば121℃、2気圧で20分間のようなオートクレーブ滅菌条件で蒸気に曝すオートクレーブ滅菌処理が施されていると、水との接触角が20°以下、好ましくは10°以下に低減したまま維持する。そのメカニズムは必ずしも明らかでないが、蒸気で親水性基含有化合物含有添加剤の分子運動が活発となって親水性基が表面10aに露出するようになり露出したまま安定化するようになるからであると推察される。 The silicone rubber hydrophilic reinforced molded body 10 does not have a decreased contact angle with water even when subjected to autoclave sterilization treatment or heat treatment. Specifically, when subjected to autoclave sterilization treatment by exposing to steam under autoclave sterilization conditions such as 121° C. and 2 atm under high temperature and high pressure, the contact angle with water is 20° or less, preferably 10° Keep reduced to below °. The mechanism is not necessarily clear, but the molecular movement of the hydrophilic group-containing compound-containing additive is activated by steam, and the hydrophilic group is exposed on the surface 10a and is stabilized while being exposed. It is presumed that.

シリコーンゴム製親水性強化成形体10は、厚さや親水性基含有化合物含有添加剤の配合量で、透明性を調整することができるが、15μm〜2mm厚にすることにより、及び/又はシリコーンゴム100質量部に対して親水性基含有化合物含有添加剤の配合量を0.1〜30配合部、好ましくは3〜5質量部にすることにより、透明乃至半透明にすることが好ましい。中でも15μm〜500μm、より好ましくは100μm厚にして親水性基含有化合物含有添加剤の配合量を前記3〜5質量部にすると、紫外線や赤外線による光学分析、顕微鏡による拡大観察などに適する十分な透明性を発現する。 The transparency of the hydrophilic reinforced molded product 10 made of silicone rubber can be adjusted by the thickness and the compounding amount of the hydrophilic group-containing compound-containing additive, but by adjusting the thickness to 15 μm to 2 mm, and/or the silicone rubber. It is preferable that the hydrophilic group-containing compound-containing additive is blended in an amount of 0.1 to 30 parts by weight, preferably 3 to 5 parts by weight, based on 100 parts by weight, so as to be transparent or translucent. Among them, when the thickness is 15 μm to 500 μm, more preferably 100 μm, and the amount of the hydrophilic group-containing compound-containing additive is 3 to 5 parts by mass, it is sufficiently transparent for optical analysis by ultraviolet rays or infrared rays, magnifying observation with a microscope, and the like. Develop sex.

シリコーンゴム製親水性強化成形体10は、例えば以下のようにして製造することができる。 The silicone rubber hydrophilic reinforcing molding 10 can be manufactured, for example, as follows.

先ず、必要に応じて架橋剤や硬化剤を含有しているシリコーンゴム原料成分に、前記所定量の親水性基含有化合物含有添加剤を配合し、混練・撹拌し、必要に応じて脱泡する。この混錬物を、所望の前記形状例えばシート状に成型し、加熱によって架橋させてシリコーンゴムへと硬化させ、所望形状の成形体10を形成する。これにより得られた成形体10の表面10aに親水性基含有化合物が露出することにより、表面10aが親水性を有するようになる。 First, a silicone rubber raw material component containing a cross-linking agent and a curing agent as necessary is blended with the predetermined amount of the hydrophilic group-containing compound-containing additive, kneaded and stirred, and defoamed if necessary. .. This kneaded product is molded into the desired shape, for example, a sheet, and is crosslinked by heating to be cured into silicone rubber to form a molded body 10 having the desired shape. By exposing the hydrophilic group-containing compound to the surface 10a of the molded body 10 thus obtained, the surface 10a becomes hydrophilic.

次いで、得られた成形体10の表面10aに、乾式処理、例えばUV照射処理、エキシマUV照射処理、コロナ放電処理、プラズマ処理、電子線照射処理、及び/又はγ線照射処理を施すと、表面10aの親水性が強化されて、水との接触角が小さくなって親水性が高くなり、その高い親水性のまま長期間維持できるようになる。この乾式処理を施した後、クリーンルーム環境下や常温、常圧、常湿度下で長期間例えば1年以上にわたり、高い親水性のまま維持し、水との接触角を低いまま維持でき例えば通常の接触角測定条件例えば水液滴の滴下後10秒〜4分後に測定しても30°以下好ましくは10°以下に維持できていることを確認できる。 Then, the surface 10a of the obtained molded body 10 is subjected to a dry treatment, for example, a UV irradiation treatment, an excimer UV irradiation treatment, a corona discharge treatment, a plasma treatment, an electron beam irradiation treatment, and/or a γ-ray irradiation treatment. The hydrophilicity of 10a is strengthened, the contact angle with water becomes small, the hydrophilicity becomes high, and the high hydrophilicity can be maintained for a long time. After this dry treatment, it can be kept highly hydrophilic in a clean room environment or at room temperature, atmospheric pressure and atmospheric humidity for a long period of time, for example, for a year or more, and its contact angle with water can be kept low. It can be confirmed that contact angle measurement conditions, for example, 30° or less, preferably 10° or less, can be maintained even when measured 10 seconds to 4 minutes after dropping the water droplets.

本発明の親水性強化接合体1は、図1及び図2に示すように、15〜500μm厚のシリコーンゴム製親水性強化成形体10と、15〜500μm厚の支持体20とが、接合されているものである。親水性強化接合体1は、例えばマイクロ化学チップのようなマイクロ流体デバイスとなるものである。親水性強化接合体1は、支持体20との接合面側である下面の表面10aが、親水性強化され改質されている面となるように、配置されている。支持体20は、例えばシリコーンゴム、シリコーンゴム製親水性強化成形体、エチレンプロピレンジエンゴム(EPDM)、フッ化ビニリデン系ゴム(FKM)、テトラフルオロエチレン−プロピレン系ゴム(FEPM)、テトラフルオロエチレン-パープルオロビニルエーテル系(FFKM)、ポリカーボネート、シクロオレフィンポリマー、アクリル樹脂、ポリスチレン、ポリエチレン、ポリエチレンテレフタレート、各種ガラス、及び各種金属から選ばれる何れかの支持体で形成されている。 As shown in FIGS. 1 and 2, in the hydrophilic reinforced joined body 1 of the present invention, a hydrophilic reinforced molded body 10 made of silicone rubber having a thickness of 15 to 500 μm and a support body 20 having a thickness of 15 to 500 μm are joined. Is what The hydrophilic reinforced conjugate 1 serves as a microfluidic device such as a microchemical chip. The hydrophilic-reinforced joint body 1 is arranged so that the surface 10a of the lower surface, which is the joint surface side with the support body 20, is a surface that has been hydrophilically strengthened and modified. The support 20 is, for example, silicone rubber, a silicone rubber hydrophilic reinforced molding, ethylene propylene diene rubber (EPDM), vinylidene fluoride rubber (FKM), tetrafluoroethylene-propylene rubber (FEPM), tetrafluoroethylene-. It is formed of any support selected from purple oro vinyl ether (FFKM), polycarbonate, cycloolefin polymer, acrylic resin, polystyrene, polyethylene, polyethylene terephthalate, various glasses, and various metals.

親水性強化接合体1の一例としてマイクロ化学チップである場合を例に、具体的に説明する。 As an example of the hydrophilic reinforced joined body 1, a case of a microchemical chip will be specifically described.

支持体20は、シリコーンゴム製親水性強化成形体10との接合面側である上面の表面20aに、マイクロ化学チップの流路22・23となる深さ5〜1000μmで幅10μm以上の単数又は複数の溝を有する凹凸が設けられている。 The support 20 is a single surface having a depth of 5 to 1000 μm and a width of 10 μm or more to be the channels 22 and 23 of the microchemical chip on the surface 20a of the upper surface which is the joint surface side with the hydrophilic strengthening molded body 10 made of silicone rubber, or Concavities and convexities having a plurality of grooves are provided.

この親水性強化接合体1は、シリコーンゴム製親水性強化成形体10の接合面側である下面の表面10aと、支持体20の接合面側である上面の非溝部分の表面20aとが、物理吸着による密着、及び/又は分子接着による共有結合が可能で、好ましくは分子接着による共有結合によって、接合されていることによって、引き剥がしても界面剥離できず破断剥離するように強固に接合している。 In this hydrophilic reinforced joined body 1, a lower surface 10a which is the joining surface side of the silicone rubber hydrophilic reinforced molded body 10 and a non-grooved surface 20a of the upper surface which is the joining surface side of the support 20 are Adhesion by physical adsorption and/or covalent bond by molecular adhesion is possible, preferably by covalent bond by molecular adhesion, so that even if peeled off, it cannot be interfacially peeled and strongly bonded so as to be broken and peeled. ing.

シリコーンゴムへのポリエーテル変性シリコーンオイルの分散性向上に、例えばポリシロキサン骨格の末端にヒドロキシ基を有するシリコーン化合物のような、主鎖が疎水性、末端が親水性を示す化合物を使用してもよい。 In order to improve the dispersibility of the polyether-modified silicone oil in the silicone rubber, a compound having a hydrophobic main chain and a hydrophilic end, such as a silicone compound having a hydroxy group at the end of the polysiloxane skeleton, is used. Good.

シリコーンゴム製親水性強化成形体10は、任意の基材上にコーティング可能、また基材にシリコーンゴム製親水性強化成形体を貼り合わせた2層構造でもよい。シリコーンゴム製親水性強化成形体厚を薄くし、透明性の高い基材に貼り合わせて透明度を確保できる。 The silicone rubber hydrophilic reinforced molding 10 can be coated on any base material, and may have a two-layer structure in which the silicone rubber hydrophilic reinforced molding is attached to the base material. The hydrophilicity-reinforced molded body made of silicone rubber can be thinned and attached to a highly transparent base material to ensure transparency.

この親水性強化接合体1は、必要に応じ、支持体20の下面、即ちシリコーンゴム製親水性強化成形体10との非接合面側で、同形の補強体30に接着剤で接合していてもよい。とりわけ、支持体20又は補強体30がゴム製である場合、分子接着による接合が可能である。 If necessary, the hydrophilic reinforced joined body 1 is bonded to the reinforcing body 30 of the same shape with an adhesive on the lower surface of the support 20, that is, on the non-bonding surface side with the hydrophilic reinforced molded body 10 made of silicone rubber. Good. In particular, when the support body 20 or the reinforcement body 30 is made of rubber, it is possible to perform bonding by molecular adhesion.

この親水性強化接合体1中、支持体20の溝は、シリコーンゴム製親水性強化成形体10の接合面側である下面の表面10aと接合していないことにより、十分な親水性を発現しており、それにより、水との接触角がせいぜい30°以下、好ましくは20°以下、より好ましくは10°以下となっている。これにより、マイクロ流体デバイスとしての流路での送液性能を高め、送液中の残留空気や溶存空気や揮発蒸気を巻き込むことがなく、目詰まりを回避できる。 In this hydrophilic reinforced joined body 1, since the groove of the support body 20 is not joined to the lower surface 10a which is the joining surface side of the silicone rubber hydrophilic reinforced molded body 10, sufficient hydrophilicity is exhibited. Therefore, the contact angle with water is at most 30°, preferably 20° or less, more preferably 10° or less. As a result, the liquid feeding performance in the flow path as the microfluidic device is enhanced, and clogging can be avoided without involving residual air, dissolved air, or volatile vapor during liquid feeding.

この親水性強化接合体1中、支持体20の溝が、被験液注入溝21a、薬液注入溝21b、それらから延びた流路22、その途中で分岐した分岐流路23a・23b、その先の排出溝24a・24bである。親水性強化接合体1中、シリコーンゴム製親水性強化成形体10には、被験液注入溝21a、薬液注入溝21bに対応した位置に被験液注入口11a、薬液注入口11bが開けられ、排出溝24a・24bに対応した位置に排出口14a・14bが開けられている。 In this hydrophilic reinforced joined body 1, the groove of the support body 20 includes a test liquid injection groove 21a, a chemical liquid injection groove 21b, a flow path 22 extending from them, branch flow paths 23a and 23b branched in the middle, The discharge grooves 24a and 24b. In the hydrophilic reinforced molded body 10 of the hydrophilic reinforced joined body 1, the test liquid injection port 11a and the chemical liquid injection port 11b are opened at positions corresponding to the test liquid injection groove 21a and the chemical liquid injection groove 21b, and discharged. The discharge ports 14a and 14b are opened at positions corresponding to the grooves 24a and 24b.

この親水性強化接合体1は、図7に示すように、各種樹脂製又は各種ゴム製例えばシリコーンゴム製で支持体を兼ね得るマイクロ流路成型体40の下側面に流路42を設けつつその流路42液体注入口44を貫通させ、マイクロ流路成型体40の下側面に、同形のシリコーンゴム製親水性強化成形体10を例えば分子接着又は接着剤で接合し、必要に応じさらにシリコーンゴム製親水性強化成形体10の下側面に、硬質の樹脂製例えばポリカーボネート製の支持体20を設けていてもよい。 As shown in FIG. 7, this hydrophilic reinforced joined body 1 is made of various resins or various rubbers, for example, silicone rubber, and is provided with a channel 42 on the lower side surface of the microchannel molded body 40 which can also serve as a support. The hydrophilic injection molding 10 made of silicone rubber of the same shape is bonded to the lower surface of the micro-flow molding 40 through the flow passage 42 and the liquid injection port 44 by, for example, molecular adhesion or an adhesive, and silicone rubber is further added if necessary. A support 20 made of a hard resin such as polycarbonate may be provided on the lower surface of the hydrophilic reinforced molded body 10.

以下、本発明を適用するシリコーンゴム製親水性強化成形体10とそれを用いた親水性強化接合体1との実施例、及び本発明を適用外の成形体10とそれを用いた接合体との比較例を、対比しながら説明する。 Examples of a silicone rubber hydrophilic reinforced molded body 10 to which the present invention is applied and a hydrophilic reinforced joined body 1 using the same, and a molded body 10 to which the present invention is not applied and a joined body using the same. The comparative example will be described in comparison.

(実施例1)
熱硬化性液状シリコーンゴム原材料の100質量部に、親水性基含有化合物含有添加剤としてポリエーテル変性シリコーンオイルの5質量部を、配合し、撹拌・脱泡機で混練して撹拌し、親水性強化成形体形成用シリコーンゴム原料成分組成物を調製した。これを樹脂型に充填し、120℃で加熱処理して熱硬化させることにより、0.5mm厚の白色半透明のシリコーンゴム製親水性成形体シートを得た。これを縦3cmで横1cmに裁断し、シリコーンゴム製親水性成形体チップとした。このチップを、エキシマUV処理することによって、表面を親水性強化したシリコーンゴム製親水性強化成形体実施例試験片1(親水性強化体1ともいう)を得た。
(Example 1)
To 100 parts by mass of the thermosetting liquid silicone rubber raw material, 5 parts by mass of a polyether-modified silicone oil as a hydrophilic group-containing compound-containing additive is blended, and the mixture is kneaded by stirring with a defoaming machine to stir the hydrophilic property. A silicone rubber raw material component composition for forming a reinforced molded body was prepared. This was filled in a resin mold and heat-treated at 120° C. to be heat-cured to obtain a 0.5 mm thick white translucent silicone rubber hydrophilic molded body sheet. This was cut into a length of 3 cm and a width of 1 cm to obtain a silicone rubber hydrophilic molded product chip. By subjecting this chip to excimer UV treatment, a silicone rubber-made hydrophilic reinforced molded article test piece 1 (also referred to as hydrophilic reinforced body 1) having a hydrophilic surface was obtained.

(比較例1−1)
熱硬化性液状シリコーンゴムのみからなる組成物を樹脂型に充填し、120℃で加熱処理して熱硬化させることにより、0.5mm厚の透明の成形体シートを得た。これを縦3cmで横1cmに裁断し、比較例成形体試験片1−1(液状材単体1−1ともいう)を得た。
(Comparative Example 1-1)
A resin mold was filled with a composition consisting of only a thermosetting liquid silicone rubber, and heat-treated at 120° C. for thermosetting to obtain a transparent molded sheet having a thickness of 0.5 mm. This was cut into a length of 3 cm and a width of 1 cm to obtain a comparative example molded body test piece 1-1 (also referred to as a liquid material simple substance 1-1).

(比較例1−2)
比較例1で作製した成形体比較試験片1に、エキシマUV処理することによって、表面をエキシマUV処理した、比較例成形体試験片1−2(液状材単体エキシマ処理体1−2ともいう)を得た。
(Comparative Example 1-2)
The comparative example molded body test piece 1-2 (also referred to as the liquid material simplex excimer treated body 1-2) in which the surface of the molded body comparative test piece 1 manufactured in Comparative Example 1 was subjected to excimer UV treatment Got

(比較例1−3)
実施例1で作製したのと同様なシリコーンゴム製親水性成形体チップを、エキシマUV処理することなく、比較例成形体試験片1−3(親水添加剤配合非エキシマ処理体1−3ともいう)として得た。
(Comparative Example 1-3)
The same silicone rubber-made hydrophilic molded body chip as that manufactured in Example 1 was not subjected to the excimer UV treatment, and a comparative molded body test piece 1-3 (also referred to as a hydrophilic additive-containing non-excimer-treated body 1-3). ) Obtained as.

(経時前の水との接触角観察)
実施例1のシリコーンゴム製親水性強化成形体実施例試験片1と、比較例1−1及び1−3の比較例成形体試験片1−1及び1−3に、水1滴を滴下して10秒後に水滴を側方向から撮影した写真を図3に示す(なお、比較例1−3の比較例成形体試験片1−3は、水液滴の滴下後5分後に撮影した写真である)。接触角測定器自動接触角計DM−501(協和界面科学社製;商品名)で水との接触角を測定した結果を併せて示す。
(Observation of contact angle with water before aging)
One drop of water was dropped on the silicone rubber hydrophilic reinforced molded product example test piece 1 of Example 1 and the comparative example molded product test pieces 1-1 and 1-3 of Comparative Examples 1-1 and 1-3. 3 shows a photograph of water droplets taken from the side after 10 seconds (note that Comparative Example molded body test piece 1-3 of Comparative Example 1-3 is a photograph taken 5 minutes after the dropping of water droplets). is there). The results obtained by measuring the contact angle with water using an automatic contact angle meter DM-501 (manufactured by Kyowa Interface Science Co., Ltd.) are also shown.

図3から明らかな通り、比較例成形体試験片1−3(親水添加剤配合非エキシマ処理体1−3)では水液滴と5分接触させても接触角が約50〜70°と大きいのに対し、実施例1のシリコーンゴム製親水性強化成形体実施例試験片1(親水性強化体1)は接触角が10°以下であった。 As is apparent from FIG. 3, in the comparative molded body test piece 1-3 (hydrophilic additive-blended non-excimer treated body 1-3), the contact angle is as large as about 50 to 70° even after contact with water droplets for 5 minutes. On the other hand, the contact angle of the silicone rubber hydrophilic reinforced molded product test piece 1 (hydrophilic reinforced product 1) of Example 1 was 10° or less.

(経時後の水との接触角測定試験1)
実施例1のシリコーンゴム製親水性強化成形体実施例試験片1と、比較例1−1〜1−3の比較例成形体試験片1−1〜1−3とを、温度21℃程度で相対湿度60RH%程度のクリーンルーム環境下で、所定日数保管した。所定日数経過後に、水1滴を滴下して10秒後に、接触角測定器自動接触角計DM−501(協和界面科学社製;商品名)で水との接触角を、一試験片につき5〜7点測定し、その平均値を求めた。それらの結果を、図4(a)に纏めて示す。
(Test 1 for measuring contact angle with water after aging)
The silicone rubber hydrophilic reinforced molded body example test piece 1 of Example 1 and the comparative example molded body test pieces 1-1 to 1-3 of Comparative Examples 1-1 to 1-3 were prepared at a temperature of about 21°C. It was stored for a predetermined number of days in a clean room environment with a relative humidity of about 60 RH%. After a lapse of a predetermined number of days, one drop of water was dropped and 10 seconds later, the contact angle with water was measured with a contact angle measuring instrument automatic contact angle meter DM-501 (Kyowa Interface Science Co., Ltd.; trade name) to be 5 per test piece. Up to 7 points were measured and the average value was calculated. The results are shown together in FIG.

図4(a)から明らかな通り、比較例成形体試験片1−1(液状材単体1−1)、比較例成形体試験片1−3(親水添加剤配合非エキシマ処理体1−3)では、作製直後で接触角が夫々約108°、約90°と非常に高く、比較例成形体試験片1−2(液状材単体エキシマ処理体1−2)で約46°程度とかなり高いうえ、30日程度経過すると約100°程度にまで大きくなった。それに対し、実施例1のシリコーンゴム製親水性強化成形体実施例試験片1(親水性強化体1)は、作製直後で接触角が約5°程度と低く、300日経過後でも約10°と誤差範囲程度にしか僅かに大きくなっているに過ぎず、略変化していない。 As is apparent from FIG. 4(a), the comparative example molded body test piece 1-1 (liquid material simple substance 1-1), the comparative example molded body test piece 1-3 (hydrophilic additive-blended non-excimer treated body 1-3). Then, the contact angles were about 108° and about 90°, which were very high immediately after the production, and the comparative example molded body test piece 1-2 (liquid material single excimer treated body 1-2) had a considerably high contact angle of about 46°. After about 30 days, it increased to about 100°. On the other hand, in the case of the silicone rubber hydrophilic reinforced molded article test piece 1 (hydrophilic reinforced body 1) of Example 1, the contact angle was as low as about 5° immediately after production, and was about 10° even after 300 days had passed. It is only slightly larger than the error range, and has not changed substantially.

(実施例2)
熱硬化性液状シリコーンゴムの100質量部に、親水性基含有化合物含有添加剤としてポリエーテル変性シリコーンオイルの3質量部を、配合し、撹拌・脱泡機で混練して撹拌し、親水性強化成形体形成用シリコーンゴム原料成分組成物を調製した。これを樹脂フィルム上に成形し、熱硬化させることにより、0.1mm厚の白色半透明のシリコーンゴム製親水性成形体シートを得た。これを縦3cmで横1cmに裁断し、シリコーンゴム製親水性成形体チップとした。このチップを、エキシマUV処理し、表面を親水性強化したシリコーンゴム製親水性強化成形体実施例試験片2(親水性強化体2ともいう)を得た。
(Example 2)
To 100 parts by mass of the thermosetting liquid silicone rubber, 3 parts by mass of the polyether-modified silicone oil as an additive containing a hydrophilic group-containing compound is blended, kneaded with a stirring/defoaming machine and stirred to enhance hydrophilicity. A silicone rubber raw material component composition for forming a molded body was prepared. This was molded on a resin film and heat-cured to obtain a 0.1 mm thick white translucent silicone rubber hydrophilic molded body sheet. This was cut into a length of 3 cm and a width of 1 cm to obtain a silicone rubber hydrophilic molded product chip. This chip was subjected to excimer UV treatment to obtain a silicone rubber hydrophilic reinforced molded body example test piece 2 (also referred to as hydrophilic reinforced body 2) whose surface was hydrophilically reinforced.

(比較例2−1)
熱硬化性液状シリコーンゴムのみからなる組成物を、樹脂フィルム上に成形し、熱硬化させることにより、0.1mm厚の透明のシリコーンゴム製親水性成形体シートを得た。これを縦3cmで横1cmに裁断し、比較例成形体試験片2−1(液状材単体2−1ともいう)を得た。
(Comparative Example 2-1)
A composition composed of only thermosetting liquid silicone rubber was molded on a resin film and heat-cured to obtain a transparent silicone rubber hydrophilic molded sheet having a thickness of 0.1 mm. This was cut into a length of 3 cm and a width of 1 cm to obtain a comparative molded article test piece 2-1 (also referred to as a liquid material simple substance 2-1).

(比較例2−2)
比較例2−1で作製した成形体比較試験片2−1に、エキシマUV処理することによって、表面をエキシマUV処理した、比較例成形体試験片2−2(液状材単体エキシマ処理体2−2ともいう)を得た。
(Comparative Example 2-2)
The molded article comparative test piece 2-1 produced in Comparative Example 2-1 was subjected to excimer UV treatment on the surface thereof to perform excimer UV treatment. Comparative example molded article test piece 2-2 (liquid material alone excimer treated article 2- (Also called 2).

(比較例2−3)
実施例2で作製したのと同様なシリコーンゴム製親水性成形体チップを、エキシマUV処理することなく、比較例成形体試験片2−3(親水添加剤配合非エキシマ処理体2−3ともいう)として得た。
(Comparative Example 2-3)
The same silicone rubber-made hydrophilic molded body chip as that manufactured in Example 2 was not subjected to the excimer UV treatment, and the comparative molded body test piece 2-3 (also referred to as a hydrophilic additive-containing non-excimer treated body 2-3). ) Obtained as.

(経時後の水との接触角測定試験2)
実施例2のシリコーンゴム製親水性強化成形体実施例試験片2と、比較例2−1〜2−3の比較例成形体試験片2−1〜2−3とを、温度21℃程度で相対湿度60RH%程度のクリーンルーム環境下で、所定日数保管した。所定日数経過後に、水1滴を滴下して10秒後に、接触角測定器自動接触角計DM−501(協和界面科学社製;商品名)で水との接触角を、一試験片につき5〜7点測定し、その平均値を求めた。それらの結果を、図4(b)に纏めて示す。
(Contact angle measurement test 2 with water after aging)
The silicone rubber hydrophilic reinforced molded article test piece 2 of Example 2 and the comparative molded article test pieces 2-1 to 2-3 of Comparative Examples 2-1 to 2-3 were heated at a temperature of about 21°C. It was stored for a predetermined number of days in a clean room environment with a relative humidity of about 60 RH%. After a lapse of a predetermined number of days, one drop of water was dropped and 10 seconds later, the contact angle with water was measured with a contact angle measuring instrument automatic contact angle meter DM-501 (Kyowa Interface Science Co., Ltd.; trade name) to be 5 per test piece. Up to 7 points were measured and the average value was calculated. The results are shown together in FIG.

図4(b)から明らかな通り、比較例成形体試験片2−1(液状材単体2−1)、比較例成形体試験片2−3(親水添加剤配合非エキシマ処理体2−3)では、作製直後で接触角が夫々約97°、約103°と非常に高く、比較例成形体試験片2−2(液状材単体エキシマ処理体2−2)で約78°程度とかなり高いうえ、数日程度経過すると約90°程度にまで大きくなった。それに対し、実施例2のシリコーンゴム製親水性強化成形体実施例試験片2(親水性強化体2)は、作製直後で接触角が約5°程度と低く、120日経過後でも約14°と誤差範囲程度にしか僅かに大きくなっているに過ぎず、略変化していない。 As is clear from FIG. 4B, the comparative example molded body test piece 2-1 (liquid material simple substance 2-1), the comparative example molded body test piece 2-3 (hydrophilic additive-blended non-excimer treated body 2-3). Then, the contact angles immediately after the production were very high at about 97° and about 103°, respectively, and were considerably high at about 78° for the comparative molded article test piece 2-2 (liquid material single excimer treated body 2-2). After about a few days, it increased to about 90°. On the other hand, the silicone rubber hydrophilic reinforced molded product test piece 2 (hydrophilic reinforced product 2) of Example 2 had a low contact angle of about 5° immediately after production, and was about 14° even after 120 days. It is only slightly larger than the error range, and has not changed substantially.

(親水性表面の信頼性試験)
エキシマUV処理して得られた実施例2のシリコーンゴム製親水性強化成形体実施例試験片1を、医療用ゴム製品に見立てて、医療用の電子線滅菌又はγ線滅菌の通常の照射量20〜25kGyよりも強い20〜50kGyで照射滅菌を行ったところ、親水性が6箇月以上持続し、接触角20°以下を維持することができた。
(Reliability test of hydrophilic surface)
The silicone rubber hydrophilic reinforced molded article of Example 2 obtained by the excimer UV treatment Example Test piece 1 is used as a medical rubber product, and the usual irradiation amount for medical electron beam sterilization or γ-ray sterilization is used. When irradiation sterilization was performed at 20 to 50 kGy, which is stronger than 20 to 25 kGy, the hydrophilicity was maintained for 6 months or longer, and the contact angle could be maintained at 20° or less.

(実施例3)
実施例2で得たシリコーンゴム製親水性強化成形体実施例試験片2を、120℃で20分間、熱処理しても、高い親水性を示した。その中で、80℃は実施例2と同等の接触角を示した。
(Example 3)
Even when the silicone rubber hydrophilic reinforced molded product example test piece 2 obtained in Example 2 was heat-treated at 120° C. for 20 minutes, it showed high hydrophilicity. Among them, 80° C. showed the same contact angle as in Example 2.

(実施例4)
熱硬化性液状シリコーンゴムの100質量部に、親水性基含有化合物含有添加剤としてポリエーテル変性シリコーンオイルの3質量部、両末端シラノール基含有ポリマーを10質量部配合したこと以外は、実施例1と同様にして得た成形体試験片にエキシマUV処理しても、親水性発現能を阻害していなかった。また目視で確認したところ、成形体の白色半透明度合いを低下することができた。さらに、エキシマUV処理後約8箇月間経過しても、水の接触角は10°以下を示した。このことから、両末端シラノール基含有ポリマーは、親水性発現を阻害せず、親水効果を向上させることがわかった。
(比較例3)
それに対し、両末端シラノール基含有ポリマーのみからなること以外は、実施例4と同様にして得た成形体に、乾式処理しても、親水性を発現しなかった。両末端シラノール基含有ポリマーのみ10質量部配合成形体は、ブリードアウトしてしまった。
(Example 4)
Example 1 except that 100 parts by mass of the thermosetting liquid silicone rubber was mixed with 3 parts by mass of a polyether-modified silicone oil as a hydrophilic group-containing compound-containing additive and 10 parts by mass of a silanol group-containing polymer at both ends. Even if the excimer UV treatment was performed on the molded body test piece obtained in the same manner as described above, the hydrophilicity developing ability was not inhibited. Further, when visually confirmed, the degree of white translucency of the molded product could be reduced. Furthermore, the contact angle of water was 10° or less even after about 8 months had passed after the excimer UV treatment. From this, it was found that the silanol group-containing polymer at both ends does not inhibit the hydrophilicity expression and improves the hydrophilic effect.
(Comparative example 3)
On the other hand, the molded body obtained in the same manner as in Example 4 except that it was composed only of the polymer containing silanol groups at both ends did not exhibit hydrophilicity even when subjected to dry treatment. Only 10 parts by mass of a compound containing silanol groups at both ends was bleeding out.

(実施例5)
熱硬化性液状シリコーンゴムの100質量部に、親水性基含有化合物含有添加剤としてポリエーテル変性シリコーンオイルの5質量部を、配合し、撹拌・脱泡機で混練して撹拌し、親水性強化成形体形成用シリコーンゴム原料成分組成物を調製した。これを樹脂型に充填し、120℃で加熱処理して熱硬化させることにより、2mm厚の白色半透明のシリコーンゴム製親水性成形体シートを得た。これを縦3cmで横1cmに裁断し、シリコーンゴム製親水性成形体チップとした。このチップを、エキシマUV処理することによって、表面を親水性強化したシリコーンゴム製親水性強化成形体実施例試験片5を得た。シリコーンゴム製親水性強化成形体実施例試験片5を、121℃、2気圧で20分間のオートクレーブ滅菌条件に曝したものと曝さなかったものとを得た。
(Example 5)
To 100 parts by mass of thermosetting liquid silicone rubber, 5 parts by mass of polyether-modified silicone oil as an additive containing a hydrophilic group-containing compound is blended, kneaded by stirring with a defoaming machine and stirred to enhance hydrophilicity. A silicone rubber raw material component composition for forming a molded body was prepared. This was filled in a resin mold, and heat-treated at 120° C. for thermosetting to obtain a white translucent silicone rubber hydrophilic molded body sheet having a thickness of 2 mm. This was cut into a length of 3 cm and a width of 1 cm to obtain a silicone rubber hydrophilic molded product chip. By subjecting this chip to excimer UV treatment, a hydrophilic rubber-reinforced molded body test piece 5 of a silicone rubber whose surface was hydrophilically strengthened was obtained. Silicone rubber hydrophilic reinforced molded product Example Test piece 5 was obtained by subjecting it to autoclave sterilization conditions of 121° C. and 2 atm for 20 minutes and those not exposed.

(オートクレーブ滅菌処理し経時後の水との接触角測定試験)
実施例5のシリコーンゴム製親水性強化成形体実施例試験片5のオートクレーブ滅菌処理後のものを、温度21℃程度で相対湿度60RH%程度のクリーンルーム環境下で、所定日数保管した。オートクレーブ滅菌前のものと、オートクレーブ滅菌後に所定日数経過の後に、水1滴を滴下して10秒後に、接触角測定器自動接触角計DM−501(協和界面科学社製;商品名)で水との接触角を、一試験片につき5〜7点測定し、その平均値を求めた。それらの結果を、図5に纏めて示す。
(Contact angle measurement test with water after autoclave sterilization and aging)
Silicone rubber hydrophilic reinforced molded article of Example 5 Example Specimen 5 after autoclave sterilization was stored for a predetermined number of days in a clean room environment at a temperature of about 21° C. and a relative humidity of about 60 RH%. Before autoclave sterilization, and after a certain number of days after autoclave sterilization, drop 1 drop of water and 10 seconds later, water with contact angle measuring instrument automatic contact angle meter DM-501 (Kyowa Interface Science Co. Ltd.; trade name) The contact angle with each test piece was measured at 5 to 7 points, and the average value was calculated. The results are summarized in FIG.

図5から明らかな通り、オートクレーブ滅菌処理前では、約20°であった水との接触角は、少なくとも5日経過後には、10°以下となり、約120日経過後まで維持でき、約180日経過後には約16°程度と誤差範囲程度にしか僅かに大きくなっているに過ぎず、略変化していない。 As is clear from FIG. 5, the contact angle with water, which was about 20° before the autoclave sterilization treatment, became 10° or less after at least 5 days, which can be maintained until after about 120 days, and after about 180 days. After that, it increased to about 16°, which was only slightly larger than the error range, and did not substantially change.

(実施例6)
実施例1、2で得たシリコーンゴム製親水性強化成形体実施例試験片(親水性強化体1及び2)のエキシマUV照射処理面へ、これと同形で0.015〜2mm厚でシリコーンゴム、親水性強化成形体又はポリカーボネートフィルムの支持体を、分子接着によって接合することによって、親水性強化接合体試験片6−1(シリコーンゴムとの接合体)、6−2(親水性強化成形体同士の接合体)、6−3(ポリカーボネートフィルムとの接合体)をそれぞれ得た。接合体実施例試験片6−1、6−2、6−3について、JIS K 6854−2:1999 接着剤−はく離接着強さ試験方法−第2部:180度はく離に準拠し常温常圧ではく離試験を実施した。また、接合体実施例試験片6−1について、水に浸漬して1時間煮沸し、又はアルコールに1時間浸漬して、同様に剥離試験を実施した。それらの結果を、下記表1に纏めて示す。
(Example 6)
Silicone Rubber Hydrophilic Reinforced Moldings Obtained in Examples 1 and 2 Example Excimer UV-irradiated surfaces of test pieces (hydrophilic reinforcers 1 and 2) having the same shape and a silicone rubber thickness of 0.015 to 2 mm , A hydrophilic reinforced molded body or a polycarbonate film support is bonded by molecular adhesion to obtain a hydrophilic reinforced bonded body test piece 6-1 (bonded body with silicone rubber), 6-2 (hydrophilic reinforced molded body). And a 6-3 (a joined body with a polycarbonate film). Regarding the bonded body example test pieces 6-1, 6-2, and 6-3, JIS K 6854-2:1999 Adhesive-Peeling adhesive strength test method-Part 2: Comply with 180 degree peeling at normal temperature and normal pressure A peel test was conducted. Further, the joint body example test piece 6-1 was immersed in water and boiled for 1 hour, or immersed in alcohol for 1 hour, and the peeling test was similarly performed. The results are summarized in Table 1 below.

Figure 0006749683
Figure 0006749683

表1から明らかな通り、接合体実施例試験片6−1、6−2、6−3ともに常温常圧で剥離試験を行ったところゴム破断し、全面接着していることを確認した。接合体実施例試験片6−1は、水浸漬・煮沸、又はアルコール浸漬した後、剥離試験を行ったところゴム破断し全面接着していることを確認した。このことから、本発明を適用する実施例の接合体実施例試験片は、初期の接合強度が強く、また沸騰水やアルコールに浸漬するという過酷な状況に曝されても耐水性、耐薬品性(耐アルコール性)に優れ接合強度が高いままであったことが明らかとなった。 As is clear from Table 1, when a peeling test was performed on all of the bonded body test pieces 6-1, 6-2, and 6-3 at room temperature and normal pressure, it was confirmed that the rubber fractured and the entire surface was bonded. The joint body example test piece 6-1 was immersed in water, boiled, or immersed in alcohol, and then subjected to a peeling test. As a result, it was confirmed that the rubber broke and the entire surface was adhered. From this, the joined body example test piece of the example to which the present invention is applied has a high initial joining strength, and also has water resistance and chemical resistance even when exposed to the harsh conditions of immersion in boiling water or alcohol. It was revealed that (alcohol resistance) was excellent and the bonding strength remained high.

(細胞毒性試験1:溶出物毒性評価試験)
実施例1で得たシリコーンゴム製親水性強化成形体実施例試験片について、以下のようにして、溶出物毒性評価試験を行った。121℃、2気圧で20分間のオートクレーブ滅菌処理又は、10MeVで15kGyを1回電子線滅菌処理した。この試験片からの溶出物を細胞懸濁液に懸濁させた培養液を調製し、HeLa−S3細胞(ヒト子宮頸部癌細胞)をポリスチレン(PSt)製ディッシュ内により培養した。100%コンフルエンス(位相差顕微鏡観察により、培養容器表面の完全培養)を確認した。このことから、溶出物に細胞毒性がないことが確認できた。
(Cytotoxicity test 1: Eluent toxicity evaluation test)
The silicone rubber hydrophilic reinforced molded article test pieces obtained in Example 1 were subjected to an eluate toxicity evaluation test as follows. Autoclave sterilization was performed at 121° C. and 2 atm for 20 minutes, or 15 kGy was subjected to electron beam sterilization once at 10 MeV. The eluate from this test piece was suspended in a cell suspension to prepare a culture solution, and HeLa-S3 cells (human cervical cancer cells) were cultured in a polystyrene (PSt) dish. 100% confluence (complete culture of the surface of the culture vessel was confirmed by phase contrast microscope observation). From this, it was confirmed that the eluate had no cytotoxicity.

(細胞毒性試験2:細胞接着性評価試験)
実施例1で得たシリコーンゴム製親水性強化成形体実施例試験片について、細胞接着性評価試験を行った。PSt製ディッシュ培養容器と、その培養容器及び前記の液状材単体成形体1−1と、その培養容器及び本発明を適用する試験片のシートとの位相差顕微鏡観察結果の写真を、図6に示す。
(Cytotoxicity test 2: Cell adhesion evaluation test)
A cell adhesion evaluation test was carried out on the silicone rubber hydrophilic reinforced molded product example test piece obtained in Example 1. FIG. 6 is a photograph of a phase-contrast microscope observation result of the PSt dish culture vessel, the culture vessel and the liquid material simple substance molded body 1-1, the culture vessel and the sheet of the test piece to which the present invention is applied. Show.

図6から明らかな通り、白色半透明のシリコーンゴム製親水性強化成形体を0.1mm厚のシートにすることにより、ゴム表面上の細胞を位相差顕微鏡観察できた。具体的には、PSt製ディッシュ培養容器は細胞が接着していたのに対し、液状材単体成形体は、PSt製ディッシュよりも少ない数の細胞接着が見られたが、本発明を適用する試験片のシートは細胞が接着していなかった。このことから、浮遊細胞等の不定着な培養用途(例えば、細胞培養用バッグ(培養細胞の回収が容易))で使用できることが示された。 As is clear from FIG. 6, cells on the rubber surface could be observed by a phase-contrast microscope by using a white translucent silicone rubber hydrophilic reinforced molded product as a sheet having a thickness of 0.1 mm. Specifically, while cells were adhered to the PSt dish culture vessel, a smaller number of cell adhesions were observed in the liquid material simple substance molded body than in the PSt dish, but a test to which the present invention is applied One sheet had no cells attached. From this, it was shown that it can be used in unfixed culture applications such as floating cells (for example, a bag for cell culture (recovery of cultured cells is easy)).

(実施例7及び対照例7)
熱硬化性液状シリコーンゴムの100質量部に、親水性基含有化合物含有添加剤として下記の親水性オイル(8種類)を、夫々所定部数(1〜5質量部)添加し、120℃で架橋し、シリコーンゴム製親水性成形体ゴム試験片(厚さ1mm)を作製した。最後に、エキシマUV処理することによって、表面を親水性強化したシリコーンゴム製親水性強化成形体実施例試験片を得た。なお、親水性オイルを添加しないこと以外は同様にしてシリコーンゴムからなるシリコーンゴム製成形体対照例試験片を得た。
なお、親水性オイルとして、東レ・ダウコーニング社製のポリエーテル変性シリコーンオイルであるTI−2011; 東レ・ダウコーニング社製のシリコーン乳化剤(W/O型)であるTI−6021; 信越化学工業社製のポリエーテル変性シリコーンオイルであるKF−6004、同KF−6011、同KF−6012、同KF−6015(W/Si乳化剤); モメンティブ社製のポリエーテル変性シリコーンオイルであるTSF4445、同TSF4446; Sigma−Aldrich社製の非イオン性界面活性剤であるTween 20を夫々用いた。
(Example 7 and Comparative Example 7)
To 100 parts by mass of the thermosetting liquid silicone rubber, the following hydrophilic oils (8 kinds) as a hydrophilic group-containing compound-containing additive were added in predetermined parts (1 to 5 parts by mass), respectively, and crosslinked at 120°C. A silicone rubber hydrophilic molded rubber test piece (thickness 1 mm) was prepared. Finally, an excimer UV treatment was performed to obtain a silicone rubber hydrophilic reinforced molded product example test piece whose surface was hydrophilically reinforced. In addition, a silicone rubber molded article control example test piece made of silicone rubber was obtained in the same manner except that the hydrophilic oil was not added.
As the hydrophilic oil, TI-2011 which is a polyether modified silicone oil manufactured by Toray Dow Corning; TI-6021 which is a silicone emulsifier (W/O type) manufactured by Toray Dow Corning; Shin-Etsu Chemical Co., Ltd. KF-6004, KF-6011, KF-6012, and KF-6015 (W/Si emulsifier), which are polyether-modified silicone oils manufactured by Momentive; TSF4445 and TSF4446, which are polyether-modified silicone oils manufactured by Momentive Co.; Tween 20, a non-ionic surfactant from Sigma-Aldrich, was used, respectively.

(経時後の水との接触角測定試験3)
実施例7のシリコーンゴム製親水性強化成形体実施例試験片と、対照例7のシリコーンゴム製成形体対照例試験片とについて、クリーンルーム環境下(温度21℃,相対湿度60RH%)でシャーレ保管し、経時変化について検討した。親水性評価として、実施例1の場合と同様に所定時間後の水の接触角測定(5〜7点の平均値)を行った。
(Contact angle measurement test 3 with water after aging)
The silicone rubber hydrophilic reinforced molded product example test piece of Example 7 and the silicone rubber molded product control example test piece of Control Example 7 were stored in a petri dish under a clean room environment (temperature 21° C., relative humidity 60 RH%). Then, the change with time was examined. As the hydrophilicity evaluation, the contact angle of water after a predetermined time (average value of 5 to 7 points) was measured in the same manner as in Example 1.

(接合信頼性試験)
放射線架橋型シリコーンゴム(コロナ放電処理速度:100mm/s,回数:3回,ギャップ長:1mm)との接合物を作製した(熱圧着条件:12.8kgf/cm,80℃,10分間)。接合信頼性試験は、前記同様にして、初期接合試験、アルコール浸漬試験、水煮沸試験(各n=3)後、180度剥離試験を行い、初期・耐アルコール性・耐水性を評価した。
(Joint reliability test)
A joint with a radiation-crosslinking type silicone rubber (corona discharge treatment speed: 100 mm/s, number of times: 3 times, gap length: 1 mm) was prepared (thermocompression bonding condition: 12.8 kgf/cm 2 , 80° C., 10 minutes). .. In the bonding reliability test, an initial bonding test, an alcohol immersion test, a water boiling test (each n=3), and a 180 degree peeling test were performed in the same manner as described above to evaluate initial resistance, alcohol resistance and water resistance.

評価の結果、HLB値:4.5〜14.5の親水性オイル(KF−6015、TSF4445、TSF4446、TI−2011、KF−6011)3〜5質量部配合シリコーンゴム製親水性成形体に、エキシマUV処理したシリコーンゴム製親水性強化成形体は、3箇月間親水性保持を確認した。また、3質量部配合(KF−6015、TSF4445、TSF4446、TI−2011)のとき、放射線架橋型シリコーンゴムとの接合検討で、初期・耐アルコール性・耐水性を確認。HLB値:14.5の親水性オイル(KF−6011)1質量部配合の場合、3箇月間親水性保持を確認した。また、放射線架橋型シリコーンゴムとの接合検討で、初期・耐アルコール性・耐水性を確認した。HLB値:16.9の親水性オイル(Tween 20)5質量部配合の場合、1箇月間親水性保持およびポリカーボネートフィルムとの接合を確認した。以上の結果から、HLB値:4.5〜16.9の範囲で、シリコーンゴム製親水性強化成形体は、親水性発現および親水効果持続を確認した。また、異種材料との信頼性の高い接合を確認した。 As a result of the evaluation, 3 to 5 parts by mass of the hydrophilic oil (KF-6015, TSF4445, TSF4446, TI-2011, KF-6011) hydrophilic oil having an HLB value of 4.5 to 14.5 was added to the silicone rubber hydrophilic molded article. It was confirmed that the silicone rubber hydrophilic reinforced molded product subjected to the excimer UV treatment maintained the hydrophilic property for 3 months. In addition, when 3 parts by mass of compound (KF-6015, TSF4445, TSF4446, TI-2011), the initial, alcohol resistance and water resistance were confirmed by examination of bonding with a radiation crosslinkable silicone rubber. When 1 part by mass of the hydrophilic oil (KF-6011) having an HLB value of 14.5 was blended, it was confirmed that the hydrophilicity was maintained for 3 months. In addition, initial, alcohol resistance, and water resistance were confirmed by examination of bonding with radiation-crosslinking silicone rubber. In the case of blending 5 parts by mass of a hydrophilic oil (Tween 20) having an HLB value of 16.9, it was confirmed that the hydrophilicity was retained for one month and the bonding with the polycarbonate film was performed. From the above results, it was confirmed that, in the HLB value range of 4.5 to 16.9, the silicone rubber hydrophilic reinforced molded article exhibited hydrophilicity and sustained hydrophilic effect. We also confirmed highly reliable bonding with dissimilar materials.

(実施例8及び対照例8)
前記実施例7中、親水性基含有化合物含有添加剤としてTI−2011を、夫々所定部数(1,3,5,10質量部)用いたこと以外は、実施例7と同様にして、表面を親水性強化したシリコーンゴム製親水性強化成形体実施例試験片を得た。なお、対照例8は、対照例7のシリコーンゴム製成形体対照例試験片8と同じである。実施例7及び対照例7と同様に評価した。
(Example 8 and Comparative Example 8)
In the same manner as in Example 7, except that TI-2011 was used as the hydrophilic group-containing compound-containing additive in a predetermined number (1, 3, 5, 10 parts by mass), respectively, the surface was Hydrophilically reinforced silicone rubber hydrophilic reinforced molded product Example A test piece was obtained. The control example 8 is the same as the silicone rubber molded product control example test piece 8 of the control example 7. Evaluation was carried out in the same manner as in Example 7 and Comparative Example 7.

TI−2011の3〜10質量部配合シリコーンゴム製親水性成形体に、エキシマUV処理したシリコーンゴム製親水性強化成形体は、3箇月間親水性保持を確認した。1〜3質量部配合のとき、放射線架橋型シリコーンゴムとの接合検討で、初期・耐アルコール性・耐水性を確認した。以上の結果から、TI−2011の3質量部配合シリコーンゴム製親水性強化成形体は、親水性発現、親水効果持続および異種材料との信頼性の高い接合を確認した。 It was confirmed that the silicone rubber hydrophilic molded body containing 3 to 10 parts by mass of TI-2011 was subjected to excimer UV treatment and the silicone rubber hydrophilic reinforced molded body kept hydrophilic for 3 months. When 1 to 3 parts by mass was compounded, initial, alcohol resistance and water resistance were confirmed by examination of bonding with a radiation crosslinkable silicone rubber. From the above results, it was confirmed that 3 parts by mass of TI-2011 blended silicone rubber hydrophilic reinforced molded article exhibited hydrophilicity, sustained hydrophilic effect, and highly reliable bonding with different materials.

(実施例9及び対照例9)
前記実施例7中、親水性基含有化合物含有添加剤としてTI−2011を、3質量部用い、エキシマUV処理条件を変更したこと以外は、実施例7と同様にして、表面を親水性強化したシリコーンゴム製親水性強化成形体実施例試験片を得た。なお、対照例9は、エキシマUV処理をしなかったシリコーンゴム製成形体対照例試験片である。実施例7及び対照例7と同様に評価した。なお初期剥離性については、手で剥離試験を行って評価した。
(Example 9 and Comparative Example 9)
In the same manner as in Example 7 except that 3 parts by mass of TI-2011 was used as the hydrophilic group-containing compound-containing additive and the excimer UV treatment conditions were changed, the surface was hydrophilically strengthened. A silicone rubber hydrophilic reinforced molded product Example A test piece was obtained. The control example 9 is a test piece of a control example of a silicone rubber molded article which was not subjected to the excimer UV treatment. Evaluation was carried out in the same manner as in Example 7 and Comparative Example 7. The initial peelability was evaluated by conducting a peel test by hand.

TI−2011の3質量部配合シリコーンゴム製親水性成形体へのエキシマUV処理条件検討を実施した。条件検討は、エキシマランプ光源L11751−01(浜松ホトニクス社製;商品名)を使用し、サンプルと光源間の距離:1mmに固定。照射強度:60〜600mJ/cmのとき、親水性発現および3箇月間親水効果を確認した。400〜1800mJ/cmのとき、放射線架橋型シリコーンゴムとの初期接合を確認した。以上の結果から、400〜600mJ/cmのとき、親水性発現と接合との両立が可能になることがわかった。Excimer UV treatment conditions of a hydrophilic molded body made of 3 parts by mass of TI-2011 and made of silicone rubber were examined. For the condition examination, an excimer lamp light source L11751-01 (manufactured by Hamamatsu Photonics KK, trade name) was used, and the distance between the sample and the light source was fixed at 1 mm. When the irradiation intensity was 60 to 600 mJ/cm 2 , hydrophilicity development and hydrophilic effect for 3 months were confirmed. At 400 to 1800 mJ/cm 2 , initial joining with the radiation crosslinkable silicone rubber was confirmed. From the above results, it was found that when 400 to 600 mJ/cm 2 , it is possible to achieve both hydrophilicity development and bonding.

(実施例10及び対照例10)
前記実施例7中、親水性基含有化合物含有添加剤としてTI−2011を、3質量部用い、エキシマUV処理に代えてプラズマ処理(出力電力:約150W、大気圧雰囲気下)条件に変更したこと以外は、実施例7と同様にして、表面を親水性強化したシリコーンゴム製親水性強化成形体実施例試験片を得た。なお、対照例10は、プラズマ処理をしなかったシリコーンゴム製成形体対照例試験片である。実施例7及び対照例7と同様に評価した。なお初期剥離性については、手で剥離試験を行って評価した。
(Example 10 and Comparative Example 10)
In Example 7, 3 parts by mass of TI-2011 was used as the hydrophilic group-containing compound-containing additive, and plasma processing (output power: about 150 W, under atmospheric pressure atmosphere) conditions were changed in place of the excimer UV processing. Except for the above, in the same manner as in Example 7, a silicone rubber hydrophilic reinforced molded article test piece having a hydrophilic surface was obtained. The control example 10 is a test piece of a control example of a silicone rubber molded body which was not subjected to the plasma treatment. Evaluation was carried out in the same manner as in Example 7 and Comparative Example 7. The initial peelability was evaluated by conducting a peel test by hand.

TI−2011の3質量部配合シリコーンゴム製親水性成形体へのプラズマ処理条件検討を実施。条件検討は、真空プラズマ装置YHS−G250(魁半導体社製;商品名)を使用し、導入ガス:空気,出力電力:約150Wに固定。照射時間:15〜180sのとき、親水性発現および3箇月間親水効果を確認した。30〜180sのとき、放射線架橋型シリコーンゴムとの初期接合を確認した。以上の結果から、30〜180sのとき、親水性発現と接合との両立が可能になることがわかった。 Examination of plasma treatment conditions for hydrophilic molded article made of 3 parts by mass of TI-2011 made of silicone rubber was carried out. For the examination of conditions, a vacuum plasma device YHS-G250 (manufactured by Kaiki Semiconductor Co., Ltd.) was used, and the introduced gas was fixed to air and the output power was fixed to about 150 W. When the irradiation time was 15 to 180 s, the hydrophilicity development and the hydrophilic effect for 3 months were confirmed. At 30 to 180 s, initial joining with the radiation-crosslinking type silicone rubber was confirmed. From the above results, it was found that both hydrophilic expression and bonding can be achieved at 30 to 180 s.

(実施例11及び対照例11)
前記実施例7中、親水性基含有化合物含有添加剤としてTI−2011を、3質量部用い、エキシマUV処理に代えてコロナ放電処理にしてその条件を変更したこと以外は、実施例7と同様にして、表面を親水性強化したシリコーンゴム製親水性強化成形体実施例試験片を得た。なお、対照例11は、コロナ放電処理をしなかったシリコーンゴム製成形体対照例試験片である。実施例7及び対照例7と同様に評価した。なお初期剥離性については、手で剥離試験を行って評価した。
(Example 11 and Comparative Example 11)
Same as Example 7, except that 3 parts by mass of TI-2011 was used as the hydrophilic group-containing compound-containing additive in Example 7 and the conditions were changed to corona discharge treatment instead of excimer UV treatment. Then, a hydrophilic rubber-reinforced molded body test piece of a silicone rubber whose surface was hydrophilically strengthened was obtained. Control Example 11 is a control sample of a silicone rubber molded article that was not subjected to corona discharge treatment. Evaluation was carried out in the same manner as in Example 7 and Comparative Example 7. The initial peelability was evaluated by conducting a peel test by hand.

TI−2011の3質量部配合シリコーンゴム製親水性成形体へのコロナ放電処理条件検討を実施した。条件検討は、コロナスキャナー ASA−4(信光電気計装社製;商品名)を使用し、出力電圧:約15kV,サンプルと電極間の距離:1mmに固定。処理回数:3回の場合、処理速度:30〜100mm/sのとき、親水性発現および3箇月間親水効果を確認した。処理速度:200mm/sのとき、親水性発現および2箇月間親水効果を確認した。処理回数10回の場合、処理速度:30mm/sのとき、親水性発現および2箇月間親水効果を確認した。以上の結果から、処理速度:30〜200mm/s,処理回数:3〜10回の組み合わせにより、親水性発現および親水効果持続が可能な条件があることを見出した。 Examination of corona discharge treatment conditions for a hydrophilic molded body made of 3 parts by mass of TI-2011 and made of silicone rubber was conducted. For the condition examination, a corona scanner ASA-4 (manufactured by Shinko Electric Instrumentation Co., Ltd.) was used, and the output voltage was fixed at about 15 kV and the distance between the sample and the electrode was fixed at 1 mm. When the number of treatments was 3 and the treatment speed was 30 to 100 mm/s, the hydrophilicity development and the hydrophilic effect for 3 months were confirmed. When the processing speed was 200 mm/s, hydrophilicity development and hydrophilic effect for 2 months were confirmed. When the number of treatments was 10 and the treatment speed was 30 mm/s, the hydrophilicity development and the hydrophilic effect for 2 months were confirmed. From the above results, it was found that there is a condition that the hydrophilicity can be exhibited and the hydrophilic effect can be sustained by the combination of the treatment speed: 30 to 200 mm/s and the treatment number: 3 to 10 times.

(実施例12及び対照例12)
熱硬化性ミラブル状シリコーンゴム原材料の100質量部に、親水性基含有化合物含有添加剤として親水性オイルであるポリエーテル変性シリコーンオイル3質量部添加し、170℃で架橋又は120℃で付加架橋し、シリコーンゴム製親水性成形体ゴム試験片(厚さ1mm)を作製した。最後に、エキシマUV処理することによって、表面を親水性強化したシリコーンゴム製親水性強化成形体実施例試験片を得た。なお、親水性オイルを添加しないこと以外は同様にしてシリコーンゴムからなるシリコーンゴム製成形体対照例試験片を得た。実施例7及び対照例7と同様に評価した。なお初期剥離性については、手で剥離試験を行って評価した。
(Example 12 and Comparative Example 12)
To 100 parts by mass of the thermosetting millable silicone rubber raw material, 3 parts by mass of a polyether-modified silicone oil which is a hydrophilic oil as a hydrophilic group-containing compound-containing additive is added, and crosslinked at 170°C or addition-crosslinked at 120°C. A silicone rubber hydrophilic molded rubber test piece (thickness 1 mm) was prepared. Finally, an excimer UV treatment was performed to obtain a silicone rubber hydrophilic reinforced molded product example test piece whose surface was hydrophilically reinforced. In addition, a silicone rubber molded article control example test piece made of silicone rubber was obtained in the same manner except that the hydrophilic oil was not added. Evaluation was carried out in the same manner as in Example 7 and Comparative Example 7. The initial peelability was evaluated by conducting a peel test by hand.

過酸化物架橋型又は付加架橋型ミラブル状シリコーンゴム製親水性成形体に、エキシマUV処理した過酸化物架橋型又は付加架橋型ミラブル状シリコーンゴム製親水性強化成形体は、ともに1箇月間親水性保持を確認した。このことから、液状シリコーンゴム以外にミラブル状シリコーンゴムでも、親水性の発現と親水効果の持続を確認した。また、架橋形態に関係なく、放射線架橋型シリコーンゴムとの初期接合を確認した。 The peroxide-crosslinkable or addition-crosslinkable millable silicone rubber hydrophilic moldings are treated with excimer UV-treated peroxide-crosslinkable or addition-crosslinkable millable silicone rubber hydrophilic moldings, both of which are hydrophilic for one month. The retention of sex was confirmed. From this, it was confirmed that, in addition to the liquid silicone rubber, the millable silicone rubber also exhibited hydrophilicity and sustained hydrophilic effect. In addition, initial bonding with the radiation-crosslinking type silicone rubber was confirmed regardless of the crosslinking form.

(実施例13及び対照例13)
実施例7及び対照例7で作製したシリコーンゴム製親水性強化成形体実施例試験片とシリコーンゴム製成形体対照例試験片とを、それぞれアルブミン溶液に浸漬し、Cy3(蛍光色素)ラベル後、低分子成分を除去(リン酸緩衝生理食塩水(PBS)洗浄)し、アルブミン吸着度合いを試験片所定箇所の蛍光強度を積算した容積で算出したところ、実施例のシリコーンゴム製親水性強化成形体実施例試験片ではアルブミン吸着容積が249600であったのに対し、対照例のシリコーンゴム製成形体対照例試験片ではアルブミン吸着容積が131252であった。つまり、医療・ライフサイエンス分野で課題となっている、タンパク質(アルブミン)吸着を半減できる結果となった。
(Example 13 and Comparative Example 13)
The silicone rubber hydrophilic reinforced molded product example test piece and the silicone rubber molded product control example test piece produced in Example 7 and Comparative Example 7 were each immersed in an albumin solution, and after Cy3 (fluorescent dye) labeling, After removing low molecular weight components (washing with phosphate buffered saline (PBS)), the degree of albumin adsorption was calculated by the volume obtained by integrating the fluorescence intensities at predetermined locations on the test piece. The albumin adsorption volume of the example test piece was 249600, while the albumin adsorption volume of the control silicone rubber molded article control example test piece was 131252. In other words, it was possible to halve the protein (albumin) adsorption, which is a problem in the medical and life science fields.

(実施例14)
親水性強化接合体1の一例であるマイクロ流体デバイスとして、図7に示すマイクロ化学チップを以下のようにして作製した。熱硬化性液状シリコーンゴムのみからなる組成物を樹脂型に充填し、70℃で加熱処理して熱硬化させることにより、下側面に、2mm厚、100μm流路幅、50μm流路深さの直線状流路42、その流路42一端に繋がり貫通した液体注入口44を上側面に、設けた透明のシリコーンゴム製マイクロ流路成型体40を得た。実施例6のように、分子接着によって、マイクロ流路面(下側面)に、0.1mm厚のシリコーンゴム製親水性強化成形体10を接合し、さらにその下側面に、0.1mm厚の支持体20であるポリカーボネートフィルムを接合し、積層親水性強化接合体1としてマイクロ化学チップを得た。
(Example 14)
As a microfluidic device which is an example of the hydrophilic reinforced joined body 1, a microchemical chip shown in FIG. 7 was produced as follows. A resin mold was filled with a composition consisting of only a thermosetting liquid silicone rubber, and heat-treated at 70° C. to be thermoset, whereby a straight line having a thickness of 2 mm, a channel width of 100 μm, and a channel depth of 50 μm was formed on the lower surface. A transparent silicone rubber microchannel molded body 40 was obtained in which the liquid channel 42 and the liquid injection port 44 connected to and penetrating one end of the channel 42 were provided on the upper side surface. As in Example 6, a 0.1 mm-thick hydrophilic reinforced molding 10 having a thickness of 0.1 mm was bonded to the microchannel surface (lower surface) by molecular adhesion, and a 0.1 mm-thick support was further provided on the lower surface. The polycarbonate film which is the body 20 was joined to obtain a microchemical chip as the laminated hydrophilic strengthened joined body 1.

(性能評価)
得られたマイクロ化学チップについて、シリコーンゴム製親水性強化成形体実施例試験片2(親水性強化体2)を介した積層親水性強化接合体の水の送液性を確認するため、積層接合体の中間層が比較例成形体試験片2−2(液状材単体エキシマ処理体2−2)で水の送液試験したところ、液状材単体エキシマ処理体2−2は、作製初日から、積層接合体の開口部に水1滴を滴下してから10分経過しても、水の送液が出来なかったが、本発明を適用する実施例の親水性強化体2では、外部圧力を加えなくても、シリコーンゴムマイクロ流路内を水が自発的に流れるという結果が得られ、8箇月以上経過しても自律送液が可能であることが確認できた。また、0.1mm厚のシリコーンゴム製親水性成形体シートを使用することにより、シリコーンゴムマイクロ流路内の水の送液を容易に確認できた。
(Performance evaluation)
About the obtained micro chemical chip, in order to confirm the water-sending property of the laminated hydrophilic reinforced joint through the silicone rubber hydrophilic reinforced molded body example test piece 2 (hydrophilic reinforced body 2), laminated bonding was performed. When the intermediate layer of the body was subjected to a water delivery test with the comparative example molded body test piece 2-2 (liquid material alone excimer treated body 2-2), the liquid material alone excimer treated body 2-2 was laminated from the first day of production. Water could not be sent even after 10 minutes had passed since one drop of water was dropped into the opening of the joined body, but in the hydrophilicity-enhancing body 2 of the example to which the present invention is applied, external pressure is applied. Even without it, the result that water spontaneously flows in the silicone rubber microchannel was obtained, and it was confirmed that autonomous liquid transfer is possible even after 8 months or more. Further, by using a 0.1 mm thick silicone rubber hydrophilic molded sheet, it was possible to easily confirm the liquid feeding of water in the silicone rubber microchannel.

本発明のシリコーンゴム製親水性強化成形体は、親水性強化接合体としてマイクロ化学チップのようなマイクロ流体デバイスや培養容器・培養プレートのような細胞培養デバイスを形成するために、用いることができる。 The silicone rubber hydrophilic reinforced molded body of the present invention can be used as a hydrophilic reinforced joined body to form a microfluidic device such as a microchemical chip or a cell culture device such as a culture container/culture plate. ..

本発明の親水性強化接合体は、迅速に分析結果を知る必要がある救急医療現場での患者の生体成分の分析、犯罪現場で微量な血痕・体液・毛髪・生体組織細胞等の遺留品からDNAを抽出し、そのDNAを増やすPCR増幅し、電気泳動でDNAを特定するDNA解析、新規医薬品探索のための各種医薬候補品の物性・薬効評価、オーダーメード医療のための診断、ペプチドやDNAや機能性低分子の微量合成などに、用いられるマイクロ化学チップとして、有用である。また、親水性強化接合体は、それらの分析装置やマイクロリアクターに装着して、遺伝子診察・治療を行う医療分野や、生体試料を用いた犯罪捜査分野における各種分析、海洋や湖沼等の遠隔地での水中ロボットを用いた微生物探索、医薬品開発における各種合成に用いることができる。 The hydrophilic reinforced conjugate of the present invention is used to analyze biological components of a patient in an emergency medical field where it is necessary to promptly know the analysis result, and from traces of blood traces, body fluids, hair, biological tissue cells, etc. Extraction of DNA, PCR amplification to increase that DNA, DNA analysis to identify DNA by electrophoresis, evaluation of physical properties/efficacy of various drug candidates for new drug search, diagnosis for personalized medicine, peptides and DNA It is useful as a microchemical chip used for micro-synthesis of or functional low-molecular weight compounds. In addition, hydrophilic reinforced conjugates are attached to those analyzers and microreactors to perform various types of analysis in the medical field where genetic diagnosis and treatment are performed, in the field of criminal investigation using biological samples, and in remote areas such as oceans and lakes. It can be used for microbial search using underwater robots in Japan, and various synthesis in drug development.

さらに、親水性強化接合体は、誘導性多能性幹細胞や胚性幹細胞のような接着細胞や、血球系細胞、T細胞及びB細胞のような浮遊細胞などの各種細胞の細胞集塊形成用、細胞継代培養用、観察用、検査用、剥離取得用の容器・プレートとして有用である。 Further, the hydrophilic-reinforced conjugate is used for forming cell aggregates of various cells such as adherent cells such as inducible pluripotent stem cells and embryonic stem cells, and floating cells such as hematopoietic cells, T cells and B cells. It is useful as a container/plate for cell subculture, observation, inspection, and exfoliation acquisition.

1は親水性強化接合体、10はシリコーンゴム製親水性強化成形体、10aは表面、11aは被験液注入口、11bは薬液注入口、14a・14bは排出口、20は支持体、20aは表面、21aは被験液注入溝、21bは薬液注入溝、22は流路、23a・23bは分岐流路、24a・24bは排出溝、30は補強体、40はシリコーンゴム製マイクロ流路成型体、42は流路、44は液体注入口である。 1 is a hydrophilic reinforced joined body, 10 is a hydrophilic reinforced molded body made of silicone rubber, 10a is a surface, 11a is a test solution inlet, 11b is a chemical solution inlet, 14a and 14b are outlets, 20 is a support, 20a is Surface, 21a is a test liquid injection groove, 21b is a chemical liquid injection groove, 22 is a flow path, 23a and 23b are branch flow paths, 24a and 24b are discharge grooves, 30 is a reinforcing body, and 40 is a silicone rubber micro flow path molded body. , 42 are flow paths, and 44 is a liquid injection port.

Claims (13)

親水性基含有化合物含有添加剤がシリコーンゴムに配合されていることによる親水性の表面が、UV照射処理表面、エキシマUV照射処理表面、コロナ放電処理表面、プラズマ処理表面、電子線照射処理表面、及びγ線照射処理表面から選ばれる乾式処理表面であることによって、前記表面が親水性強化され改質されているシリコーンゴム製親水性強化成形体であって、
前記親水性基含有化合物含有添加剤が、ポリエーテル変性シリコーンオイルである
ことを特徴とするシリコーンゴム製親水性強化成形体。
The hydrophilic surface resulting from the addition of the hydrophilic group-containing compound-containing additive to the silicone rubber is a UV irradiation treated surface, an excimer UV irradiation treated surface, a corona discharge treated surface, a plasma treated surface, an electron beam irradiated treated surface, And a γ-ray-irradiated surface, which is a dry-treated surface, which is a silicone rubber hydrophilic reinforced molded product in which the surface is hydrophilically reinforced and modified ,
The hydrophilic reinforced molded article made of silicone rubber, wherein the additive containing a hydrophilic group-containing compound is a polyether-modified silicone oil .
前記親水性基含有化合物含有添加剤が、ポリシロキサン骨格の側鎖にポリエーテル基を有するシリコーン化合物からなる前記ポリエーテル変性シリコーンオイルであることを特徴とする請求項1に記載のシリコーンゴム製親水性強化成形体。 2. The hydrophilic hydrophilic silicone rubber according to claim 1, wherein the hydrophilic group-containing compound-containing additive is the polyether-modified silicone oil composed of a silicone compound having a polyether group in a side chain of a polysiloxane skeleton. Strengthened molded body. 前記親水性基含有化合物含有添加剤が、HLB値を3.5〜16.9とすることを特徴とする請求項1に記載のシリコーンゴム製親水性強化成形体。 The hydrophilic rubber-reinforced molded article according to claim 1, wherein the hydrophilic group-containing compound-containing additive has an HLB value of 3.5 to 16.9. 前記シリコーンゴム100質量部に対して、前記親水性基含有化合物含有添加剤0.1〜30質量部が、配合されていることを特徴とする請求項1に記載のシリコーンゴム製親水性強化成形体。 The hydrophilic reinforcing molding of silicone rubber according to claim 1, wherein 0.1 to 30 parts by mass of the hydrophilic group-containing compound-containing additive is blended with 100 parts by mass of the silicone rubber. body. 前記シリコーンゴムが、付加型シリコーンゴム、縮合型シリコーンゴム、過酸化物架橋型シリコーンゴム、紫外線硬化型シリコーンゴム、及び/又は放射線架橋型シリコーンゴムであることを特徴とする請求項1に記載のシリコーンゴム製親水性強化成形体。 The silicone rubber is an addition-type silicone rubber, a condensation-type silicone rubber, a peroxide-crosslinking-type silicone rubber, an ultraviolet-curing-type silicone rubber, and/or a radiation-crosslinking-type silicone rubber. Hydrophilic reinforced molded product made of silicone rubber. 平面状のシート、平板、又はチップ;前記表面に凹凸を有する板;若しくは三次元形状の容器、ウェルを有する培養プレート、シャーレ、前記表面に凹凸を有する成形体;であることを特徴とする請求項1に記載のシリコーンゴム製親水性強化成形体。 A flat sheet, a flat plate, or a chip; a plate having irregularities on the surface; or a three-dimensional container, a culture plate having wells, a petri dish, a molded article having irregularities on the surface; Item 2. A hydrophilically strengthened molded article made of silicone rubber according to Item 1. オートクレーブ滅菌処理シリコーンゴム製親水性強化成形体、又は加熱処理シリコーンゴム製親水性強化成形体であることを特徴とする請求項1に記載のシリコーンゴム製親水性強化成形体。 The silicone rubber hydrophilic reinforced molded article according to claim 1, which is an autoclave sterilized silicone rubber hydrophilic reinforced molded article or a heat-treated silicone rubber hydrophilic reinforced molded article. 透明、又は半透明であることを特徴とする請求項1に記載のシリコーンゴム製親水性強化成形体。 The silicone rubber hydrophilic reinforced molded article according to claim 1, which is transparent or translucent. ポリエーテル変性シリコーンオイルである親水性基含有化合物含有添加剤をシリコーンゴム原料成分に配合し硬化させて、親水性の表面を有する成形体を形成する工程と、
前記表面を、UV照射処理、エキシマUV照射処理、コロナ放電処理、プラズマ処理、電子線照射処理、及びγ線照射処理から選ばれる乾式処理を施す工程とにより、シリコーンゴム製親水性強化成形体を製造する方法。
A step of forming a molded article having a hydrophilic surface by blending a hydrophilic group-containing compound-containing additive that is a polyether-modified silicone oil with a silicone rubber raw material component and curing the mixture.
By subjecting the surface to a dry treatment selected from a UV irradiation treatment, an excimer UV irradiation treatment, a corona discharge treatment, a plasma treatment, an electron beam irradiation treatment, and a γ-ray irradiation treatment, a silicone rubber hydrophilic reinforced molding is obtained. Method of manufacturing.
ポリエーテル変性シリコーンオイルである親水性基含有化合物含有添加剤がシリコーンゴムに配合されていることによる親水性の表面が、UV照射処理表面、エキシマUV照射処理表面、コロナ放電処理表面、プラズマ処理表面、電子線照射処理表面、及びγ線照射処理表面から選ばれる乾式処理表面であることによって、前記表面が親水性強化され改質されているシリコーンゴム製親水性強化成形体と、支持体とが、接合されていることを特徴とする親水性強化接合体。 The hydrophilic surface resulting from the addition of a hydrophilic group-containing compound-containing additive, which is a polyether-modified silicone oil, to silicone rubber has UV-irradiated surface, excimer UV-irradiated surface, corona discharge-treated surface, and plasma-treated surface. , A surface treated by electron beam irradiation, and a dry-treated surface selected from surfaces treated by γ-rays, whereby the hydrophilic-reinforced molded body made of silicone rubber in which the surface is hydrophilically strengthened and modified, and the support. , A hydrophilic reinforced joined body characterized by being joined. 前記シリコーンゴム製親水性強化成形体がその前記表面で、前記支持体にその凹凸面で接合されていることを特徴とする請求項10に記載の親水性強化接合体。 The hydrophilic reinforced joined body according to claim 10 , wherein the silicone rubber hydrophilic reinforced molded body is joined to the support at the surface thereof by the uneven surface thereof. 前記凹凸面に流路となる凹凸を有していることによって、マイクロ流体デバイスとなっていることを特徴とする請求項11に記載の親水性強化接合体。 The hydrophilic reinforced joined body according to claim 11 , which is a microfluidic device by providing the uneven surface with unevenness serving as a flow path. 前記シリコーンゴム製親水性強化成形体の前記表面と、前記支持体とが、物理吸着による密着、及び/又は分子接着での共有結合による結合によって、接合されていることを特徴とする請求項10に記載の親水性強化接合体。 And the surface of the silicone rubber hydrophilic reinforced moldings, wherein the support is by covalent attachment at the adhesion by physical adsorption, and / or molecular adhesion, claim 10, characterized in that it is joined The hydrophilically strengthened joined body according to 1.
JP2020516932A 2018-12-28 2019-09-30 Hydrophilic reinforced molded product made of silicone rubber and hydrophilic reinforced joined product using the same Active JP6749683B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018248116 2018-12-28
JP2018248116 2018-12-28
PCT/JP2019/038600 WO2020137065A1 (en) 2018-12-28 2019-09-30 Hydrophilically-reinforced molded body made from silicone rubber, and hydrophilically-reinforced joined body using same

Publications (2)

Publication Number Publication Date
JP6749683B1 true JP6749683B1 (en) 2020-09-02
JPWO2020137065A1 JPWO2020137065A1 (en) 2021-02-18

Family

ID=71127037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020516932A Active JP6749683B1 (en) 2018-12-28 2019-09-30 Hydrophilic reinforced molded product made of silicone rubber and hydrophilic reinforced joined product using the same

Country Status (2)

Country Link
JP (1) JP6749683B1 (en)
WO (1) WO2020137065A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021079598A1 (en) * 2019-10-25 2021-04-29
EP4177669A1 (en) * 2020-09-14 2023-05-10 Toray Industries, Inc. Coated silicone member manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967457A (en) * 1995-08-31 1997-03-11 Kureha Elastomer Kk Production of hydrophilic silicone rubber film
JP2005517750A (en) * 2002-02-18 2005-06-16 ナノン アクティーゼルスカブ Polymer substrate processing method
JP2014196386A (en) * 2013-03-29 2014-10-16 東海ゴム工業株式会社 Surface-modified member, method of producing surface-modified member, micro-passage device and method of producing micro-passage device
JP2015067652A (en) * 2013-09-27 2015-04-13 住友理工株式会社 Silicone member having surface hydrophilicity and method for manufacturing silicone member having surface hydrophilicity
WO2015098720A1 (en) * 2013-12-27 2015-07-02 株式会社朝日Fr研究所 Three-dimensional microchemical chip
WO2015098719A1 (en) * 2013-12-27 2015-07-02 株式会社朝日Fr研究所 Thermally conductive microchemical chip
JP2016505081A (en) * 2013-01-03 2016-02-18 信越化学工業株式会社 Hydrophilic silicone particles and method for producing the same
JP2018511686A (en) * 2015-04-16 2018-04-26 ダウ コーニング コーポレーションDow Corning Corporation Surface modification of silicone

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967457A (en) * 1995-08-31 1997-03-11 Kureha Elastomer Kk Production of hydrophilic silicone rubber film
JP2005517750A (en) * 2002-02-18 2005-06-16 ナノン アクティーゼルスカブ Polymer substrate processing method
JP2016505081A (en) * 2013-01-03 2016-02-18 信越化学工業株式会社 Hydrophilic silicone particles and method for producing the same
JP2014196386A (en) * 2013-03-29 2014-10-16 東海ゴム工業株式会社 Surface-modified member, method of producing surface-modified member, micro-passage device and method of producing micro-passage device
JP2015067652A (en) * 2013-09-27 2015-04-13 住友理工株式会社 Silicone member having surface hydrophilicity and method for manufacturing silicone member having surface hydrophilicity
WO2015098720A1 (en) * 2013-12-27 2015-07-02 株式会社朝日Fr研究所 Three-dimensional microchemical chip
WO2015098719A1 (en) * 2013-12-27 2015-07-02 株式会社朝日Fr研究所 Thermally conductive microchemical chip
JP2018511686A (en) * 2015-04-16 2018-04-26 ダウ コーニング コーポレーションDow Corning Corporation Surface modification of silicone

Also Published As

Publication number Publication date
WO2020137065A1 (en) 2020-07-02
JPWO2020137065A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
Gökaltun et al. Simple surface modification of poly (dimethylsiloxane) via surface segregating smart polymers for biomicrofluidics
Sui et al. Solution-phase surface modification in intact poly (dimethylsiloxane) microfluidic channels
Domansky et al. Clear castable polyurethane elastomer for fabrication of microfluidic devices
JP6353451B2 (en) Micro chemical chip and reaction device
JP6422197B2 (en) Method for manufacturing a microchemical chip
JP6131338B2 (en) 3D micro chemical chip
JP6749683B1 (en) Hydrophilic reinforced molded product made of silicone rubber and hydrophilic reinforced joined product using the same
JP6131337B2 (en) Thermally conductive microchemical chip
US10100949B2 (en) Check-valve and microchemical chip using the same
Li et al. Selective stamp bonding of PDMS microfluidic devices to polymer substrates for biological applications
Oyama et al. A simple method for production of hydrophilic, rigid, and sterilized multi-layer 3D integrated polydimethylsiloxane microfluidic chips
KR20120120241A (en) Method for bonding hardened silicone resin, method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining
Ferreira et al. A Fast Alternative to Soft Lithography for the Fabrication of Organ‐on‐a‐Chip Elastomeric‐Based Devices and Microactuators
Persson et al. Rapid assembly of PMMA microfluidic devices with PETE membranes for studying the endothelium
Winkler et al. Sorption of Neuropsychopharmaca in Microfluidic Materials for In Vitro Studies
Koch et al. Tissue barrier-on-chip: a technology for reproducible practice in drug testing
JP4313682B2 (en) Method for bonding PDMS substrate to other synthetic resin substrate and method for manufacturing microchip
Milton et al. Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications
JP2009042103A (en) Base, reaction processor using it and reaction control method
Lee et al. Conformal hydrogel-skin coating on a microfluidic channel through microstamping transfer of the masking layer
Meco et al. Optimization of Different Surface Modifications for Binding of Tumor Cells in a Microfluidic Systems
Rogal et al. Isolation, Integration, and Culture of Human Mature Adipocytes Leveraging Organ-on-Chip Technology
Lockhart et al. A 96-WELL VALVED MICROFLUIDIC DEVICE FOR TESTING OF LIVE INTACT TUMOR CUBOIDS
Elanghovan Develop a Microfluidic Chip for Digital Counting of CAR-T Cells
Manzano-Muñoz et al. A New Microfluidic Device to Facilitate Functional Precision Medicine Assays

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200323

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200805

R150 Certificate of patent or registration of utility model

Ref document number: 6749683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250