WO2023139823A1 - 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯 - Google Patents

蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯 Download PDF

Info

Publication number
WO2023139823A1
WO2023139823A1 PCT/JP2022/031466 JP2022031466W WO2023139823A1 WO 2023139823 A1 WO2023139823 A1 WO 2023139823A1 JP 2022031466 W JP2022031466 W JP 2022031466W WO 2023139823 A1 WO2023139823 A1 WO 2023139823A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
emitting device
group
formula
Prior art date
Application number
PCT/JP2022/031466
Other languages
English (en)
French (fr)
Inventor
友幸 来島
悠平 稲田
尚登 広崎
Original Assignee
三菱ケミカル株式会社
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022007319A external-priority patent/JP7311866B1/ja
Application filed by 三菱ケミカル株式会社, 国立研究開発法人物質・材料研究機構 filed Critical 三菱ケミカル株式会社
Priority to EP22921977.9A priority Critical patent/EP4293732A4/en
Priority to KR1020227045597A priority patent/KR102599818B1/ko
Priority to CN202280005282.7A priority patent/CN117043971A/zh
Priority to US17/931,641 priority patent/US11655416B1/en
Priority to TW111141187A priority patent/TWI822425B/zh
Priority to US18/192,417 priority patent/US11891554B2/en
Priority to US18/192,776 priority patent/US11891555B2/en
Publication of WO2023139823A1 publication Critical patent/WO2023139823A1/ja
Priority to US18/527,927 priority patent/US20240117248A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to phosphors, light-emitting devices, lighting devices, image display devices, and vehicle indicator lamps.
  • the LEDs used here are white-emitting LEDs in which a phosphor is placed on an LED chip that emits light in blue or near-ultraviolet wavelengths.
  • LEDs are required to have higher luminous efficiency, and red phosphors having excellent luminescence characteristics and light-emitting devices including such phosphors are desired.
  • red phosphors used in light-emitting devices for example, KSF phosphors represented by the general formulas K 2 (Si, Ti)F 6 :Mn, K 2 Si 1-x Na x Al x F 6 :Mn (0 ⁇ x ⁇ 1), S/CASN phosphors represented by the general formula (Sr, Ca)AlSiN 3 :Eu, etc. are known. Therefore, there is a demand for a phosphor that is more friendly to the human body and the environment.
  • spectral half-value width in the emission spectrum
  • FWHM full width at half maximum
  • Patent Document 1 discloses a phosphor represented by a composition formula of SrLiAl 3 N 4 :Eu in an example.
  • an object of the present invention is to provide a light emitting device, lighting device, image display device and/or vehicular indicator lamp with good color rendering properties, color reproducibility and/or conversion efficiency.
  • the present inventors have found that the above problems can be solved by using a phosphor containing a crystal phase represented by a specific composition and having a reflectance in a predetermined wavelength range or a difference or ratio of reflectances in a plurality of predetermined wavelength ranges within a certain range, or by using a light emitting device comprising the phosphor, and completed the present invention.
  • a phosphor containing a crystal phase represented by a specific composition and having a reflectance in a predetermined wavelength range or a difference or ratio of reflectances in a plurality of predetermined wavelength ranges within a certain range
  • a light emitting device comprising the phosphor
  • a light-emitting device comprising a phosphor,
  • the phosphor contains a crystal phase having a composition represented by the following formula [1], and
  • a light-emitting device wherein the minimum value of reflectance in a predetermined wavelength region of the phosphor is 20% or more, and the predetermined wavelength region is a region from an emission peak wavelength of the phosphor to 800 nm.
  • MA contains one or more elements selected from the group consisting of Sr, Ca, Ba, Na, K, Y, Gd, and La
  • MB contains one or more elements selected from the group consisting of Li, Mg, and Zn
  • MC contains one or more elements selected from the group consisting of Al, Si, Ga, In, and Sc
  • X contains one or more elements selected from the group consisting of F, Cl, Br, and I
  • Re contains one or more elements selected from the group consisting of Eu, Ce, Pr, Tb, and Dy, a, b, c, d, e, and x each satisfy the following formula.
  • a light-emitting device comprising a phosphor,
  • the phosphor contains a crystal phase having a composition represented by the following formula [2], and
  • a light-emitting device wherein the minimum value of reflectance in a predetermined wavelength region of the phosphor is 20% or more, and the predetermined wavelength region is a region from an emission peak wavelength of the phosphor to 800 nm.
  • MA contains one or more elements selected from the group consisting of Sr, Ca, Ba, Na, K, Y, Gd, and La
  • MB contains one or more elements selected from the group consisting of Li, Mg, and Zn
  • MC' is Al
  • MD contains one or more elements selected from the group consisting of Si, Ga, In, and Sc
  • X contains one or more elements selected from the group consisting of F, Cl, Br, and I
  • Re contains one or more elements selected from the group consisting of Eu, Ce, Pr, Tb, and Dy, a, b, c, d, e, x, and y each satisfy the following formula.
  • ⁇ 3> The light-emitting device according to ⁇ 1> or ⁇ 2>, wherein 80 mol % or more of MA in formula [1] or formula [2] is one or more elements selected from the group consisting of Sr, Ca and Ba.
  • ⁇ 4> The light-emitting device according to ⁇ 1> or ⁇ 2>, wherein 80 mol % or more of the MB is Li in the formula [1] or [2].
  • ⁇ 5> The light-emitting device according to ⁇ 1>, wherein 80 mol % or more of MC in formula [1] is composed of one or more elements selected from the group consisting of Al and Ga.
  • ⁇ 6> The light-emitting device according to ⁇ 5>, wherein 80 mol % or more of MC is Al in the formula [1].
  • ⁇ 10> The light-emitting device according to ⁇ 1> or ⁇ 2>, wherein the phosphor has an emission peak wavelength in the range of 620 nm or more and 660 nm or less in the emission spectrum.
  • ⁇ 11> The light-emitting device according to ⁇ 1> or ⁇ 2>, wherein the phosphor has a full width at half maximum (FWHM) of 70 nm or less in the emission spectrum.
  • FWHM full width at half maximum
  • ⁇ 12> The light-emitting device according to ⁇ 1> or ⁇ 2>, further comprising a yellow phosphor and/or a green phosphor.
  • the light-emitting device includes at least one of a garnet phosphor, a silicate phosphor, a nitride phosphor, and an oxynitride phosphor.
  • the light-emitting device comprising a first light-emitting body and a second light-emitting body that emits visible light when irradiated with light from the first light-emitting body, wherein the second light-emitting body contains a phosphor containing a crystalline phase having a composition represented by the above formula [1].
  • a lighting device comprising the light emitting device according to ⁇ 14> as a light source.
  • An image display device comprising the light emitting device according to ⁇ 14> as a light source.
  • a vehicle indicator light comprising the light emitting device according to ⁇ 14> as a light source.
  • ⁇ 18> including a crystal phase having a composition represented by the following formula [1], and A phosphor having a minimum reflectance of 20% or more in a predetermined wavelength region, wherein the predetermined wavelength region is a region from an emission peak wavelength to 800 nm.
  • MA contains one or more elements selected from the group consisting of Sr, Ca, Ba, Na, K, Y, Gd, and La
  • MB contains one or more elements selected from the group consisting of Li, Mg, and Zn
  • MC contains one or more elements selected from the group consisting of Al, Si, Ga, In, and Sc
  • X contains one or more elements selected from the group consisting of F, Cl, Br, and I
  • Re contains one or more elements selected from the group consisting of Eu, Ce, Pr, Tb, and Dy, a, b, c, d, e, and x each satisfy the following formula.
  • ⁇ 19> including a crystal phase having a composition represented by the following formula [2], and A phosphor having a minimum reflectance of 20% or more in a predetermined wavelength region, wherein the predetermined wavelength region is a region from an emission peak wavelength to 800 nm.
  • MA contains one or more elements selected from the group consisting of Sr, Ca, Ba, Na, K, Y, Gd, and La
  • MB contains one or more elements selected from the group consisting of Li, Mg, and Zn
  • MC' is Al
  • MD contains one or more elements selected from the group consisting of Si, Ga, In, and Sc
  • X contains one or more elements selected from the group consisting of F, Cl, Br, and I
  • Re contains one or more elements selected from the group consisting of Eu, Ce, Pr, Tb, and Dy, a, b, c, d, e, x, and y each satisfy the following formula.
  • ⁇ 20> The phosphor according to ⁇ 18> or ⁇ 19>, wherein 80 mol % or more of MA is at least one element selected from the group consisting of Sr, Ca and Ba in the formula [1] or [2].
  • ⁇ 22> The phosphor according to ⁇ 18>, wherein in formula [1], 80 mol% or more of MC is composed of one or more elements selected from the group consisting of Al and Ga.
  • ⁇ 27> The phosphor according to ⁇ 18> or ⁇ 19>, which has an emission peak wavelength in the range of 620 nm or more and 660 nm or less in the emission spectrum.
  • ⁇ 28> The phosphor according to ⁇ 18> or ⁇ 19>, wherein the half width (FWHM) in the emission spectrum is 70 nm or less.
  • the present invention can provide a light-emitting device, lighting device, image display device, and/or vehicular indicator lamp with good color rendering properties, color reproducibility, and/or conversion efficiency.
  • FIG. 1 shows XRD patterns of the phosphors of Example 1 and Comparative Example 1.
  • FIG. 2 shows emission spectra of the phosphors of Example 1 and Comparative Example 1.
  • FIG. FIG. 3 is the XRD patterns of the phosphors of Examples 4-10.
  • FIG. 4A is the emission spectra of the phosphors of Comparative Example 1 and Examples 4-9.
  • FIG. 4B is the emission spectra of the phosphors of Comparative Example 1 and Examples 10-12.
  • 5 shows normalized emission spectra of the phosphors of Examples 4, 5, 9 and Reference Example 1.
  • FIG. FIG. 6A is a reflectance spectrum of the phosphor of each example and comparative example.
  • FIG. 6B is the reflectance spectrum of the phosphor of each example.
  • FIG. 6A is a reflectance spectrum of the phosphor of each example and comparative example.
  • FIG. 6C is the reflectance spectrum of the phosphor of each example.
  • FIG. 6D is the reflectance spectrum of the phosphor of each example.
  • FIG. 7 is a diagram showing the relationship between the minimum value of reflectance and emission intensity in a specific wavelength region, and the relationship between the difference or ratio between reflectances and emission intensity in a plurality of specific wavelength regions, for the phosphors of each example.
  • FIG. 8 is a chart showing the simulated light emission characteristics of the light emitting device in the example.
  • each compositional formula is delimited by a comma (,).
  • commas when a plurality of elements are listed separated by commas (,), it indicates that one or more of the listed elements may be contained in any combination and composition.
  • composition formula “(Ca, Sr, Ba) Al 2 O 4 :Eu” is composed of “CaAl 2 O 4 :Eu”, “SrAl 2 O 4 :Eu”, “BaAl 2 O 4 :Eu”, “Ca 1-x Sr x Al 2 O 4 :Eu”, and “Sr 1-x Ba x Al 2O4 : Eu”, “Ca1 -xBaxAl2O4 :Eu”, and "Ca1-xySrxBayAl2O4: Eu " (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 , and 0 ⁇ x + y ⁇ 1) are all comprehensively indicated.
  • the present invention is a phosphor containing a crystalline phase having a composition represented by the following formula [1], and having a minimum reflectance of 20% or more in a wavelength region of 800 nm from the emission peak wavelength of the phosphor (hereinafter referred to as "phosphor [1] of this embodiment", and phosphor [1] of this embodiment and phosphor [2] of this embodiment described later may be collectively referred to as "phosphor of this embodiment”).
  • Another embodiment of the present invention is a light-emitting device comprising the phosphor [1] of the present embodiment.
  • MA contains one or more elements selected from the group consisting of Sr, Ca, Ba, Na, K, Y, Gd, and La
  • MB contains one or more elements selected from the group consisting of Li, Mg, and Zn
  • MC contains one or more elements selected from the group consisting of Al, Si, Ga, In, and Sc
  • X contains one or more elements selected from the group consisting of F, Cl, Br, and I
  • Re contains one or more elements selected from the group consisting of Eu, Ce, Pr, Tb, and Dy, a, b, c, d, e, and x each satisfy the following formula.
  • Eu europium
  • Ce cerium
  • Pr praseodymium
  • Nd neodymium
  • Sm samarium
  • Tb terbium
  • Dy dysprosium
  • Ho holmium
  • Er erbium
  • Tm thulium
  • Yb ytterbium
  • MA contains one or more elements selected from the group consisting of calcium (Ca), strontium (Sr), barium (Ba), sodium (Na), potassium (K), yttrium (Y), gadolinium (Gd), and lanthanum (La), preferably one or more elements selected from the group consisting of Ca, Sr, and Ba, more preferably MA contains Sr. Also, preferably, 80 mol % or more of MA consists of the above preferred elements, and more preferably MA consists of the above preferred elements.
  • MB contains one or more elements selected from the group consisting of lithium (Li), magnesium (Mg), and zinc (Zn), preferably contains Li, more preferably 80 mol% or more of MB is Li, and more preferably MB is Li.
  • MC contains one or more elements selected from the group consisting of aluminum (Al), silicon (Si), gallium (Ga), indium (In), and scandium (Sc), preferably Al, Ga or Si, more preferably one or more elements selected from the group consisting of Al and Ga, more preferably 80 mol% or more of MC consists of one or more elements selected from the group consisting of Al and Ga, particularly preferably 9 of MC. 0 mol % or more consists of one or more elements selected from the group consisting of Al and Ga, and most preferably MC consists of one or more elements selected from the group consisting of Al and Ga.
  • 80 mol% or more of MC is Al, preferably 90 mol% or more, more preferably 95 mol% or more, and even more preferably 98 mol% or more.
  • 80 mol % or more of MC is Al, it is possible to provide a red phosphor that exhibits an emission peak wavelength and emission intensity comparable to those of existing red phosphors such as S/CASN and has a narrow spectral half width.
  • By using such a red phosphor it is possible to provide a light emitting device that has excellent color rendering properties or color reproducibility while maintaining conversion efficiency (Lm/W) at the same level as or higher than conventional red phosphors.
  • N represents nitrogen.
  • a portion of N may be substituted with oxygen (O) in order to maintain the charge balance of the entire crystal phase or adjust the emission peak wavelength.
  • X contains one or more elements selected from the group consisting of fluorine (F), chlorine (Cl), bromine (Br), and iodine (I). That is, in certain embodiments, from the viewpoint of stabilizing the crystal structure and maintaining the charge balance of the phosphor as a whole, N may be partially substituted with the halogen element represented by X.
  • the above formula [1] includes the case where components other than those specified are contained in a trace amount unavoidably, unintentionally, or due to trace addition components or the like.
  • components other than those specified include an element whose element number is different from that of the intentionally added element, a homologous element of the intentionally added element, a rare earth element other than the intentionally added rare earth element, a halogen element when a halide is used as the Re raw material, and other elements that can be generally contained as impurities in various raw materials.
  • Examples of the unavoidable or unintentional inclusion of components other than those specified include, for example, those derived from impurities in raw materials, and those introduced in manufacturing processes such as pulverization and synthesis steps.
  • a reaction aid, a Re raw material, and the like can be cited as the trace addition component.
  • a, b, c, d, e, and x indicate the molar contents of MA, MB, MC, N, X, and Re contained in the phosphor, respectively.
  • the value of a is usually 0.6 or more, preferably 0.7 or more, more preferably 0.8 or more, still more preferably 0.9 or more, and usually 1.4 or less, preferably 1.3 or less, more preferably 1.2 or less, still more preferably 1.1 or less.
  • the value of b is usually 0.6 or more, preferably 0.7 or more, more preferably 0.8 or more, still more preferably 0.9 or more, and usually 1.4 or less, preferably 1.3 or less, more preferably 1.2 or less, still more preferably 1.1 or less.
  • the value of c is usually 2.1 or more, preferably 2.4 or more, more preferably 2.6 or more, still more preferably 2.8 or more, and usually 3.9 or less, preferably 3.6 or less, more preferably 3.4 or less, still more preferably 3.2 or less.
  • the value of d is usually 3 or more, preferably 3.2 or more, more preferably 3.4 or more, still more preferably 3.6 or more, still more preferably 3.8 or more, and usually 5 or less, preferably 4.8 or less, more preferably 4.6 or less, still more preferably 4.4 or less, still more preferably 4.2 or less.
  • the value of e is not particularly limited, but is usually 0 or more and usually 0.2 or less, preferably 0.1 or less, more preferably 0.06 or less, still more preferably 0.04 or less, and even more preferably 0.02 or less.
  • the value of x is usually greater than 0, preferably 0.0001 or more, more preferably 0.001 or more, and usually 0.2 or less, preferably 0.15 or less, more preferably 0.12 or less, still more preferably 0.1 or less, and even more preferably 0.08 or less.
  • the crystal structure is stabilized. Also, the values of d and e can be appropriately adjusted for the purpose of maintaining the charge balance of the entire phosphor.
  • the value of b+c is usually 3.1 or more, preferably 3.4 or more, more preferably 3.7 or more, and usually 4.9 or less, preferably 4.6 or less, more preferably 4.3 or less. When the value of b+c is within the above range, the crystal structure is stabilized.
  • the value of d+e is usually 3.2 or more, preferably 3.4 or more, more preferably 3.7 or more, and usually 5.0 or less, preferably 4.6 or less, more preferably 4.3 or less. When the value of d+e is within the above range, the crystal structure is stabilized.
  • both values are within the above-described ranges, because the emission peak wavelength and the half-value width in the emission spectrum of the obtained phosphor are favorable.
  • the method for specifying the elemental composition of the phosphor is not particularly limited, and can be determined by a conventional method, such as GD-MS, ICP spectroscopic analysis, or energy dispersive X-ray analysis (EDX).
  • GD-MS GD-MS
  • ICP spectroscopic analysis ICP spectroscopic analysis
  • EDX energy dispersive X-ray analysis
  • the present invention is a phosphor containing a crystal phase having a composition represented by the following formula [2], and having a minimum reflectance of 20% or more in a wavelength region from the emission peak wavelength of the phosphor to 800 nm.
  • the present invention is a light-emitting device comprising the phosphor [2] of this embodiment.
  • MA contains one or more elements selected from the group consisting of Sr, Ca, Ba, Na, K, Y, Gd, and La
  • MB contains one or more elements selected from the group consisting of Li, Mg, and Zn
  • MC' is Al
  • MD contains one or more elements selected from the group consisting of Si, Ga, In, and Sc
  • X contains one or more elements selected from the group consisting of F, Cl, Br, and I
  • Re contains one or more elements selected from the group consisting of Eu, Ce, Pr, Tb, and Dy, a, b, c, d, e, x, and y each satisfy the following formula.
  • the types and configurations of the MA, MB, N, X, and Re elements in the formula [2] can be the same as in the formula [1].
  • the MC' is Al.
  • the MD contains one or more elements selected from the group consisting of Si, Ga, In, and Sc, and preferably contains one or more elements selected from the group consisting of Ga and Si, more preferably Ga, from the viewpoint of improving crystal stability and emission intensity. In certain more preferred embodiments, 80 mol % or more of the MD is Ga, and the MD may consist of Ga.
  • the value of y in the formula [2] is greater than 0.0, usually 0.01 or more, preferably 0.015 or more, more preferably 0.03 or more, still more preferably 0.05 or more, particularly preferably 0.10 or more, and usually 1.00 or less, preferably 0.70 or less, more preferably 0.50 or less, further preferably 0.30 or less, and particularly preferably 0.25 or less.
  • the emission peak wavelength of the phosphor is shortened.
  • the value of y is equal to or greater than the above lower limit, it is possible to provide a light-emitting device with good color rendering properties or color reproducibility.
  • the value of y is equal to or less than the above upper limit, it is possible to obtain a phosphor with good emission intensity, and by using such a phosphor, it is possible to provide a light emitting device with good conversion efficiency.
  • the value of y can be appropriately adjusted in order to obtain a preferable emission intensity and emission peak wavelength depending on the purpose.
  • the grain size of the crystalline phase of the phosphor of the present embodiment is usually 2 ⁇ m or more and 35 ⁇ m or less in volume-based median grain size (volume median grain size), the lower limit is preferably 3 ⁇ m, more preferably 4 ⁇ m, and still more preferably 5 ⁇ m, and the upper limit is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, further preferably 20 ⁇ m, and particularly preferably 15 ⁇ m.
  • volume-based median particle diameter volume median particle diameter
  • the crystalline phase is preferably in the manufacturing process of the LED package from the point of avoiding blockage of the nozzle.
  • the volume-based median particle size (volume median particle size) of the crystalline phase of the phosphor can be measured by measurement techniques well known to those skilled in the art, and in a preferred embodiment, for example, by a laser granulometer.
  • volume-based median particle size (volume median particle size, (d 50 )) is defined as the particle size at which the volume-based relative particle amount becomes 50% when the sample is measured using a particle size distribution measuring apparatus based on the principle of laser diffraction/scattering to determine the particle size distribution (cumulative distribution).
  • the crystal system (space group) in the phosphor of this embodiment is P-1.
  • the space group in the phosphor of the present embodiment is not particularly limited as long as the statistically considered average structure in the range that can be distinguished by powder X-ray diffraction or single crystal X-ray diffraction shows the repeating period of the above length, but "International Tables for Crystallography (Third, revised edition), Volume A SPACE-GROUP SYMMETRY" It preferably belongs to No. 2 based on With the above space group, the full width at half maximum (FWHM) in the emission spectrum is narrowed, and a phosphor with good luminous efficiency can be obtained.
  • the space group can be obtained by a conventional method, for example, by electron beam diffraction, X-ray diffraction structure analysis using powder or single crystal, neutron beam diffraction structure analysis, or the like.
  • Ix/Iy is equal to or less than the above upper limit, a phosphor having a high phase purity and a narrow full width at half maximum (FWHM) in an emission spectrum can be obtained, thereby improving the luminous efficiency of the light emitting device.
  • the phosphor of the present embodiment has a minimum value of reflectance (hereinafter sometimes referred to as A%) in a predetermined wavelength region of usually 20% or more, and the predetermined wavelength region is a region from the emission peak wavelength of the phosphor to 800 nm.
  • the minimum value of the reflectance is preferably 25% or higher, more preferably 30% or higher, still more preferably 35% or higher, particularly preferably 50% or higher, particularly preferably 60% or higher, and extremely preferably 70% or higher.
  • the upper limit of the reflectance is not particularly limited, and the higher the better, but it is usually 100% or less.
  • a red phosphor with excellent emission intensity or quantum efficiency can be provided by having a reflectance of at least the above lower limit, and a light-emitting device with good conversion efficiency can be provided by using such a phosphor.
  • the predetermined wavelength range related to the reflectance A (%) of the phosphor of this embodiment is the wavelength range from the emission peak wavelength to 800 nm. The reason for selecting the above wavelength range in defining the reflectance of the phosphor of this embodiment will be described below.
  • the inventors obtained the following findings; 1. Some of the phosphors having the crystal phase represented by the formula [1] or [2] appear slightly grayish when the body color of the powdered phosphor is visually observed under natural light in an unexcited state. In this specification, this condition is sometimes expressed as "dull” or "dull”. 2. Among the phosphors having the crystalline phase represented by the above formula [1] or [2], the above phosphors with less “dullness" are excellent in emission intensity or quantum efficiency, and by using such phosphors, a light emitting device with good conversion efficiency can be provided. 3.
  • phosphors having a crystalline phase represented by the above formula [1] or [2] tend to have high reflectance as a whole, and in particular, the reflectance for light in a specific wavelength region can be specified, or by defining with an index including the reflectance for light in the specific wavelength region, it can be accurately specified.
  • the specific wavelength region is preferably a wavelength belonging to a wavelength region different from the wavelength region in which the normal excitation spectrum exists. From one point of view, the specific wavelength region is preferably a wavelength in a wavelength region equal to or higher than the emission peak wavelength and equal to or lower than the end of the emission spectrum on the long wavelength side. In a specific embodiment, the specific wavelength region can usually be selected from wavelengths equal to or greater than the emission peak wavelength and 900 nm or less, and the upper limit is preferably 800 nm or less, more preferably 780 nm or less. The wavelength range can be any wavelength range from the lower limit to the upper limit, if necessary.
  • the wavelength region where the excitation spectrum of the phosphor of this embodiment exists is mainly 300 nm to 520 nm, but absorption may also occur near 600 nm.
  • the reflectance of the wavelength in the wavelength region where the excitation spectrum exists is measured, the incident light is absorbed by the phosphor, and the reflectance is affected by the absorptance.
  • the body color of the phosphor can be accurately defined by using the reflectance of the wavelength region where the influence of the absorption of the phosphor is small, or by using an index related to individual reflectance.
  • the reflectance A when the minimum reflectance in the wavelength region from the emission peak wavelength Wp (nm) to [Wp-50] (nm) is B%, the reflectance A (%)
  • the value of the difference [AB] is preferably -1.5 points or more, more preferably 0.0 points or more, still more preferably 3.0 points or more, and particularly preferably 4.0 points or more.
  • the upper limit of [A - B] is not particularly limited, it is usually 50.0 points or less.
  • the phosphor of the present embodiment has a difference [AC] from the reflectance A (%).
  • the upper limit of [AC] is not particularly limited, it is usually 50.0 points or less.
  • the value of [AC] is equal to or higher than the above lower limit, a phosphor with high emission intensity can be obtained, and by using such a phosphor, a light emitting device with high conversion efficiency can be provided.
  • the phosphor of the present embodiment has a ratio C/A to the reflectance A (%), where C% is the minimum value of reflectance in the wavelength range from 400 nm to 550 nm.
  • the value is preferably 1.05 or less, more preferably 1.00 or less, still more preferably 0.90 or less, particularly preferably 0.80 or less, and even more preferably 0.75 or less.
  • the lower limit of C/A is not particularly limited, it is usually 0.0 or more. When the value of C/A is equal to or less than the above upper limit, a phosphor with high emission intensity can be obtained, and by using such a phosphor, a light emitting device with high conversion efficiency can be provided.
  • the phosphor of this embodiment is excited by irradiation with light having an appropriate wavelength, and emits red light exhibiting a favorable emission peak wavelength and spectral half width (FWHM) in the emission spectrum.
  • FWHM spectral half width
  • the phosphor of the present embodiment has an excitation peak in a wavelength range of usually 270 nm or more, preferably 300 nm or more, more preferably 320 nm or more, even more preferably 350 nm or more, particularly preferably 400 nm or more, and usually 500 nm or less, preferably 480 nm or less, more preferably 460 nm or less. That is, they are excited by light in the near-ultraviolet to blue region.
  • the shape of the emission spectrum, and the description of the emission peak wavelength and spectral half-value width below can be applied regardless of the excitation wavelength, but from the viewpoint of improving the quantum efficiency, it is preferable to irradiate light having a wavelength in the above range with good absorption and excitation efficiency.
  • the phosphor of this embodiment has a peak wavelength in the emission spectrum of usually 620 nm or longer, preferably 625 nm or longer, and more preferably 630 nm or longer. Also, the peak wavelength in this emission spectrum is usually 670 nm or less, preferably 660 nm or less, more preferably 655 nm or less.
  • the peak wavelength in the emission spectrum of the phosphor is within the above range, the luminescent color is good red, and by using this, a light emitting device with good color rendering or color reproducibility can be provided.
  • the peak wavelength in the emission spectrum of the phosphor is equal to or less than the above upper limit, it is possible to provide a light emitting device with good red luminosity and good lumen equivalent lm/W.
  • phosphors with different peak wavelengths can be used depending on the application.
  • the method of obtaining phosphors with different peak wavelengths is not particularly limited, one method can be realized by changing the composition of the MC elements.
  • a phosphor with a long emission peak wavelength can be obtained by using Al for MC in the above formula [1] and increasing the ratio of Al.
  • the emission peak wavelength is preferably 640 nm or more, more preferably 645 nm or more, and usually 670 nm or less, preferably 660 nm or less.
  • a phosphor having an emission wavelength within this range for example, in a light-emitting device used for lighting purposes, a light-emitting device that achieves both luminous efficiency and color rendering properties, or in a light-emitting device that is used in a backlight unit of a liquid crystal display, it is possible to provide a light-emitting device that achieves both luminous efficiency and a color reproduction range.
  • a phosphor with a relatively short emission peak wavelength can be obtained by providing a phosphor containing a crystal phase having a composition represented by the formula [2] using MC'(Al) and MD elements.
  • the peak emission wavelength is usually 615 nm or longer, preferably 620 nm or longer, more preferably 625 nm or longer, still more preferably 630 nm or longer, and usually 660 nm or shorter, preferably 645 nm or shorter, more preferably 640 nm or shorter.
  • the phosphor of the present embodiment has a half width in the emission spectrum of usually 80 nm or less, preferably 70 nm or less, more preferably 60 nm or less, even more preferably 55 nm or less, particularly preferably 50 nm or less, and usually 10 nm or more.
  • the emission peak wavelength and the spectral half width are equal to or less than the above upper limits, it is possible to provide a phosphor with relatively high visibility in the emission wavelength region, and by using such a phosphor in a light emitting device, it is possible to provide a light emitting device with high conversion efficiency.
  • a GaN-based LED for example, can be used to excite the phosphor with light having a wavelength of about 450 nm. Further, the measurement of the emission spectrum of the phosphor and the calculation of its emission peak wavelength, peak relative intensity and spectral half-value width can be performed using a commercially available spectrum measuring device such as a light source having an emission wavelength of 300 to 400 nm such as a commercially available xenon lamp and a general photodetector, such as a fluorescence measuring device.
  • a commercially available spectrum measuring device such as a light source having an emission wavelength of 300 to 400 nm such as a commercially available xenon lamp and a general photodetector, such as a fluorescence measuring device.
  • the phosphor of the present embodiment can be synthesized by mixing raw materials of each element constituting the phosphor so that the ratio of each element satisfies the above formula [1] or [2] and heating.
  • Raw materials of each element are not particularly limited, but examples thereof include simple substances of each element, oxides, nitrides, hydroxides, chlorides, halides such as fluorides, inorganic salts such as sulfates, nitrates and phosphates, and organic acid salts such as acetates.
  • a compound containing two or more of the above element groups may be used.
  • each compound may be a hydrate or the like.
  • Sr 3 N 2 , Li 3 N, AlN, GaN, and EuF 3 or Eu 2 O 3 were used as starting materials.
  • the method of obtaining each raw material is not particularly limited, and commercially available products can be purchased and used.
  • the purity of each raw material is not particularly limited, but from the viewpoint of making the element ratio strict and avoiding the appearance of heterogeneous phases due to impurities, the higher the purity, the better, usually 90 mol% or more, preferably 95 mol% or more, more preferably 97 mol% or more, and still more preferably 99 mol% or more. In the examples described later, raw materials having a purity of 95 mol % or more were used.
  • the oxygen element (O), nitrogen element (N), and halogen element (X) can be supplied by using oxides, nitrides, halides, etc. as raw materials for the above elements, and can be included as appropriate by creating an oxygen- or nitrogen-containing atmosphere during the synthesis reaction.
  • a method of mixing the raw materials is not particularly limited, and a conventional method can be used. For example, phosphor raw materials are weighed so as to obtain a desired composition, and sufficiently mixed using a ball mill or the like to obtain a phosphor raw material mixture.
  • the mixing method is not particularly limited, but specific examples include the following methods (a) and (b).
  • a dry mixing method in which a dry pulverizer such as a hammer mill, a roll mill, a ball mill, or a jet mill, or pulverization using a mortar and pestle, is combined with a mixer such as a ribbon blender, a V-type blender, or a Henschel mixer, or mixing using a mortar and pestle to pulverize and mix the phosphor raw materials.
  • a dry pulverizer such as a hammer mill, a roll mill, a ball mill, or a jet mill, or pulverization using a mortar and pestle
  • the phosphor raw materials may be mixed by either the dry mixing method or the wet mixing method, but a dry mixing method or a wet mixing method using a water-insoluble solvent is preferable in order to avoid contamination of the phosphor raw materials by moisture.
  • the method (a) was adopted in the examples described later.
  • the phosphor raw material mixture obtained in the mixing step is placed in a crucible and subsequently heated at a temperature of 500°C to 1200°C, preferably 600°C to 1000°C, more preferably 700°C to 950°C.
  • the material of the crucible is preferably one that does not react with the phosphor raw material or the reactant. Ceramics such as alumina, quartz, boron nitride, silicon carbide, and silicon nitride; Note that crucibles made of boron nitride were used in the examples described later.
  • Heating is preferably performed in an inert atmosphere, and a gas containing nitrogen, argon, helium, or the like as a main component can be used. In addition, in the examples described later, heating was performed in a nitrogen atmosphere.
  • the heating is carried out in the above temperature range, usually for 10 minutes to 200 hours, preferably 1 hour to 100 hours, more preferably 3 to 50 hours.
  • the main heating step may be performed once or may be performed in multiple steps. Examples of the aspect performed in multiple steps include an aspect including an annealing step of heating under pressure to repair defects, and an aspect of performing secondary heating to obtain secondary particles or a final product after primary heating to obtain primary particles or intermediates. Thereby, the phosphor of the present embodiment is obtained.
  • the phosphor of the present embodiment can be generally obtained by the above method, due to minute differences such as fine deposits in the reaction vessel, impurities in each reagent, lot of each raw material reagent, etc., the obtained phosphor may include particles slightly outside the scope of the requirements of this embodiment, and phosphors with large and small particle diameters and phosphors with different reflectances may be mixed. For this reason, for example, by changing some conditions to produce phosphors, sorting the obtained phosphors by classification, washing, etc., analyzing the reflectance, XRD spectrum, etc., and selecting phosphors that satisfy the requirements of the present embodiment, the phosphors of the above embodiments can be reliably obtained.
  • the present invention is a light-emitting device including a first light-emitting body (excitation light source) and a second light-emitting body that emits visible light when irradiated with light from the first light-emitting body, wherein the second light-emitting body is a light-emitting device that includes the phosphor of the present embodiment including a crystal phase having a composition represented by the above formula [1] or [2].
  • the second luminous body may be used singly, or two or more of them may be used in any combination and ratio.
  • the light-emitting device of the present embodiment includes, as the second light-emitting body, the phosphor of the present embodiment containing the crystal phase having the composition represented by the formula [1] or [2], and further, a phosphor that emits fluorescence in the yellow, green, or red region (orange to red) under irradiation with light from the excitation light source.
  • the light-emitting device according to the present invention comprises a phosphor containing a crystal phase having a composition represented by the above formula [1] or [2], and further comprises a yellow phosphor and/or a green phosphor. It is a light-emitting device.
  • the yellow phosphor when constructing a light-emitting device, preferably has an emission peak in the wavelength range of 550 nm or more and 600 nm or less, and the green phosphor preferably has an emission peak in the wavelength range of 500 nm or more and 560 nm or less.
  • the orange to red phosphor usually has an emission peak in a wavelength range of 615 nm or more, preferably 620 nm or more, more preferably 625 nm or more, still more preferably 630 nm or more, and usually 660 nm or less, preferably 650 nm or less, more preferably 645 nm or less, further preferably 640 nm or less.
  • a light-emitting device exhibiting excellent color reproducibility can be provided by appropriately combining phosphors in the above wavelength range.
  • the excitation light source one having an emission peak in a wavelength range of less than 420 nm may be used.
  • the phosphor of the present embodiment which has an emission peak in the wavelength range of 620 nm or more and 660 nm or less and includes a crystal phase having the composition represented by the above formula [1] or [2], is used as the red phosphor, and the first phosphor has an emission peak in the wavelength range of 300 nm or more and 460 nm or less, but the present embodiment is not limited thereto.
  • the light-emitting device of this embodiment can have, for example, the following aspects (A), (B), or (C).
  • A As the first luminous body, one having an emission peak in the wavelength range of 300 nm or more and 460 nm or less is used, and as the second luminous body, the emission peak is used in the wavelength range of 550 nm or more and 600 nm or less.
  • B As the first luminous body, one having an emission peak in a wavelength range of 300 nm or more and 460 nm or less is used, and as the second luminous body, an emission peak is used in a wavelength range of 500 nm or more and 560 nm or less.
  • the first luminous body one having an emission peak in a wavelength range of 300 nm or more and 460 nm or less is used, and as the second luminous body, at least one phosphor (yellow phosphor) having an emission peak in a wavelength range of 550 nm or more and 600 nm or less (yellow phosphor), at least one phosphor (green phosphor) having an emission peak in a wavelength range of 500 nm or more and 560 nm or less, and a crystal phase having a composition represented by [1] or [2] above.
  • An embodiment using a phosphor An embodiment using a phosphor.
  • green or yellow phosphors can be used as the green or yellow phosphors in the above embodiments, and for example, garnet phosphors, silicate phosphors, nitride phosphors, oxynitride phosphors, etc. can be used.
  • red phosphor As the red phosphor, the phosphor of the present embodiment containing the crystal phase having the composition represented by the formula [1] or [2] is used, but in addition to the phosphor of the present embodiment, for example, other orange to red phosphors such as Mn-activated fluoride phosphors, garnet-based phosphors, sulfide phosphors, nanoparticle phosphors, nitride phosphors, and oxynitride phosphors can be used. As other orange to red phosphors, for example, the following phosphors can be used.
  • the light emitting device has a first light emitter (excitation light source), and the phosphor of the present embodiment including a crystal phase having a composition represented by at least the above formula [1] or [2] as a second light emitter.
  • the device configuration and the light-emitting device include, for example, those described in Japanese Patent Application Laid-Open No. 2007-291352.
  • Other forms of the light-emitting device include shell-type, cup-type, chip-on-board, remote phosphor, and the like.
  • the application of the light-emitting device is not particularly limited, and it can be used in various fields where ordinary light-emitting devices are used, but the light-emitting device with high color rendering is particularly suitable as a light source for lighting devices and image display devices. Can be used.
  • a light-emitting device including a red phosphor having a favorable emission wavelength can also be used for a red vehicle indicator light or a white vehicle indicator light containing the red light.
  • the present invention can be a lighting device including the light emitting device as a light source.
  • the specific configuration of the lighting device is not limited, and the light-emitting device as described above may be used by appropriately incorporating it into a known lighting device.
  • a surface-emitting lighting device in which a large number of light-emitting devices are arranged on the bottom surface of a holding case can be used.
  • the present invention can be an image display device including the light emitting device as a light source.
  • the specific configuration of the image display device is not limited, but it is preferably used together with a color filter.
  • the image display device can be formed by using the light emitting device as a backlight and combining an optical shutter using liquid crystal and a color filter having red, green, and blue pixels.
  • the present invention can be a vehicle indicator lamp including the light emitting device.
  • the light-emitting device used in the vehicle indicator light is preferably a light-emitting device that emits white light in certain embodiments.
  • a light emitting device that emits white light preferably has a deviation duv (also referred to as ⁇ uv) of light color from the black body radiation locus of ⁇ 0.0200 to 0.0200 and a color temperature of 5000 K or more and 30000 K or less.
  • the light-emitting device used in the vehicle indicator light is preferably a light-emitting device that emits red light in certain embodiments.
  • the light-emitting device may absorb blue light emitted from a blue LED chip and emit red light, thereby providing a red-light vehicular indicator lamp.
  • the vehicular indicator lamps include lights provided in a vehicle for the purpose of giving some kind of indication to other vehicles, people, etc., such as headlamps, side lamps, back lamps, turn signals, brake lamps, and fog lamps of the vehicle.
  • the reflectance spectrum was measured with an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, V-560) under the following measurement conditions.
  • the minimum value of the reflectance in the wavelength range of 800 nm from the emission peak wavelength was obtained with the standard reflector made of foamed resin made of PTFE (Spectralon standard reflector manufactured by Labsfair) as 100%.
  • Light source deuterium discharge tube (190-350 nm) : Tungsten iodine lamp (330-900 nm) Measurement wavelength range: 200-800nm Measurement interval: 0.5 nm
  • the emission spectrum was measured with a spectrofluorophotometer F-4500 (manufactured by Hitachi High Technology) under the following measurement conditions.
  • Light source xenon lamp
  • Excitation wavelength 455 nm
  • Measurement wavelength range 200-800nm
  • Measurement interval 0.2 nm
  • Quantum efficiency was measured under the following measurement conditions using a quantum efficiency measurement system QE-2100 (manufactured by Ohtsuka Electronics).
  • Light source xenon lamp
  • Excitation wavelength 455 nm
  • Measurement wavelength range 200-850nm
  • Measurement interval 0.5 nm
  • a phosphor is produced according to the above-described phosphor production method, and the emission spectrum and reflectance are measured, and the minimum value of reflectance in the wavelength region from the emission peak wavelength to 800 nm.
  • a red phosphor (Examples 1 and 2) corresponding to the phosphor of this embodiment including a crystalline phase having a composition represented by the above formula [1] or [2] was prepared.
  • a phosphor of Comparative Example 1 having a minimum reflectance of 17.74% in a wavelength range of 800 nm from the emission peak wavelength was prepared.
  • Table 1 shows the composition of each phosphor, the minimum value of reflectance in the wavelength region from the emission peak wavelength to 800 nm, the emission peak wavelength, the spectral half width, and the relative emission intensity when the emission intensity of the phosphor of Comparative Example 1 is set to 1. Shown in Table 1. 1 and 2 show XRD patterns and emission spectra of the phosphors of Example 1 and Comparative Example 1, respectively. The space group of the phosphors of Examples 1 and 2 was P-1, and the emission peak wavelength was around 644 nm.
  • the spectral half widths are good at 54 nm and 57 nm, respectively, and the emission intensity is significantly improved by several times or ten times or more compared to the phosphor of Comparative Example 1, and when applied to a light emitting device, it can be seen that a light emitting device with good conversion efficiency can be obtained.
  • phosphors (Examples 3 to 12) were prepared in which the structure of the MC element in formula [1] (or MD in formula [2]) and the reflectance were variously changed.
  • Table 1 shows the composition of each example, the minimum value of reflectance in the wavelength region from the emission peak wavelength to 800 nm, the emission peak wavelength, the spectral half width, the relative emission intensity when the emission intensity of Comparative Example 1 is set to 1, and the internal quantum efficiency (iQE).
  • the space group of Examples 3 to 12 was all P-1.
  • Table 2 shows the minimum values of reflectance in a predetermined wavelength region and the difference or ratio between the minimum values of reflectance in each region.
  • Reference Example 1 showing an example of an existing phosphor, a commercially available CASN phosphor (BR-101/J, manufactured by Mitsubishi Chemical Corporation) having a composition represented by CaAlSiN 3 :Eu was prepared.
  • the space group of the phosphor of Reference Example 1 was Cmc2 1 , the emission peak wavelength was 646 nm, and the spectral half width was 87 nm.
  • FIG. 3 shows the XRD patterns of the phosphors of Examples 4 to 10.
  • the emission spectra of the phosphors of Examples 4-12 are shown in FIGS. 4A-B.
  • FIG. 5 shows normalized emission spectra when the emission peak intensity of the phosphors of Examples 4, 5, 9 and Reference Example 1 is set to 1.
  • the reflectance spectra of the phosphors of each example and comparative example are shown in FIGS.
  • the emission peak wavelength of the phosphor of Reference Example 1 was 646 nm, and the spectral half width was 87 nm.
  • the phosphor according to this embodiment can realize various emission peak wavelengths depending on the application by adjusting the composition.
  • the phosphors of each example showed very high emission intensity compared to the phosphor of Comparative Example 1.
  • the phosphor of each example has a very narrow spectral half width as compared with the phosphor of Reference Example 1, and by using such a phosphor, a light emitting device with good color rendering or color reproducibility and good conversion efficiency can be provided.
  • SCASN phosphor (Mitsubishi Chemical Co., Ltd., BR-102/D) with an emission peak wavelength of 620 nm as the first red phosphor
  • CASN phosphors with an emission peak wavelength of 646 nm (Mitsubishi Chemical Co., Ltd., BR-101/J)
  • LuAG phosphor (Mitsubishi Chemical Co., BG-801/B4) as the green phosphor were used.
  • the emission spectrum of the white LED provided with each phosphor was derived.
  • phosphor mass relative value in Table 3 is the mass ratio of each phosphor when the total mass of each phosphor is 100%, "green” is the LuAG phosphor, “red 1” is the first red phosphor, and “red 2" is the second red phosphor.
  • the light emitting device using the phosphor of each example has a dramatically improved general color rendering index Ra compared to the case of using the phosphor of Comparative Example 1.
  • the LER and/or the red color rendering index R9 are improved, and both the conversion efficiency, color rendering properties, and color reproducibility are excellent.
  • the phosphor of Comparative Example 1 was used as the second red phosphor, the emission intensity in the red region was low, so the value of R9, which indicates the color rendering properties of red, was very low and could not be evaluated accurately.
  • a phosphor with a good emission peak wavelength, a narrow spectral half-value width, and/or a high emission intensity and a light-emitting device, a lighting device, an image display device, and/or a vehicular indicator lamp with good color rendering or color reproducibility and good conversion efficiency can be provided by providing the phosphor.
  • the light-emitting device of the present invention has good color rendering properties or color reproducibility and good conversion efficiency, so it can be applied to lighting devices, image display devices, and vehicle indicator lamps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

発光ピーク波長が良好で、スペクトル半値幅が狭く、発光強度の高い蛍光体を提供する。また、演色性又は色再現性が良好であり、かつ変換効率が良好な発光装置、照明装置、画像表示装置及び車両用表示灯を提供する。本発明は、特定の式で表される組成を有する結晶相を含み、かつ、所定の波長領域における反射率の最小値が20%以上であり、前記所定の波長領域は、発光ピーク波長から800nmまでの領域である蛍光体、及び該蛍光体を備える発光装置に関する。

Description

蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯
 本発明は、蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯に関する。
 近年、省エネルギーの流れを受け、LEDを用いた照明やバックライトの需要が増加している。ここで用いられるLEDは、青又は近紫外波長の光を発するLEDチップ上に、蛍光体を配置した白色発光LEDである。
 このようなタイプの白色発光LEDとしては、青色LEDチップ上に、青色LEDチップからの青色光を励起光として、赤色に発光する窒化物蛍光体と緑色に発光する蛍光体を用いたものが近年用いられている。LEDとしては、更なる発光効率が求められており、赤色蛍光体としても発光特性に優れた蛍光体、及びその様な蛍光体を備える発光装置が所望されている。
 発光装置に用いられる赤色蛍光体としては、例えば一般式K(Si,Ti)F:Mn、KSi1-xNaAl:Mn(0<x<1)で表されるKSF蛍光体、一般式(Sr,Ca)AlSiN:Euで表されるS/CASN蛍光体等が知られているが、KSF蛍光体についてはMnで賦活された劇物であるため、より人体及び環境によい蛍光体が求められている。また、S/CASN蛍光体については発光スペクトルにおける半値幅(以下、「スペクトル半値幅」、或いは「A full width at half maximum」「FWHM」と記載する場合がある)が80nm~90nm程度と比較的広いものが多く、発光波長領域が比視感度の低い波長領域を含みやすいため、変換効率を改善する観点から、よりスペクトル半値幅の狭い赤色蛍光体が求められている。
 また、近年の発光装置に適用し得る赤色蛍光体として、例えば、特許文献1には実施例においてSrLiAl:Euの組成式で表される蛍光体が開示されている。
日本国特許第6335884号公報
 しかしながら、特許文献1に記載の蛍光体は発光強度が不明であり、より発光強度の良好な蛍光体、及び変換効率が良好な発光装置が求められている。
 上記課題に鑑みて、本発明は、一つの観点において、演色性、色再現性、及び/又は変換効率が良好な発光装置、照明装置、画像表示装置及び/又は車両用表示灯を提供することを目的とする。
 本発明者等は鋭意検討したところ、特定組成で表される結晶相を含むとともに所定の波長領域における反射率、或いは複数の所定波長領域における反射率の差ないし比率が一定範囲となる様な蛍光体、又は該蛍光体を備える発光装置を用いることで、上記課題を解決しうることを見出し、本発明を完成させた。以下、非限定的ないくつかの実施形態を以下に示す。
<1> 蛍光体を備える発光装置であって、
 前記蛍光体が下記式[1]で表される組成を有する結晶相を含み、かつ、
 前記蛍光体の所定の波長領域における反射率の最小値が20%以上であり、前記所定の波長領域は、前記蛍光体の発光ピーク波長から800nmまでの領域である、発光装置。
 ReMAMBMC   [1]
(上記式[1]中、
 MAはSr、Ca、Ba、Na、K、Y、Gd、及びLaから成る群から選ばれる1種以上の元素を含み、
 MBはLi、Mg、及びZnから成る群から選ばれる1種以上の元素を含み、
 MCはAl、Si、Ga、In、及びScから成る群から選ばれる1種以上の元素を含み、
 XはF、Cl、Br、及びIから成る群から選ばれる1種以上の元素を含み、
 ReはEu、Ce、Pr、Tb、及びDyから成る群から選ばれる1種以上の元素を含み、
 a、b、c、d、e、xは、それぞれ、下記式を満たす。
  0.7≦a≦1.3
  0.7≦b≦1.3
  2.4≦c≦3.6
  3.2≦d≦4.8
  0.0≦e≦0.2
  0.0<x≦0.2)
<2> 蛍光体を備える発光装置であって、
 前記蛍光体が下記式[2]で表される組成を有する結晶相を含み、かつ、
 前記蛍光体の所定の波長領域における反射率の最小値が20%以上であり、前記所定の波長領域は、前記蛍光体の発光ピーク波長から800nmまでの領域である、発光装置。
 ReMAMB(MC’1-yMD   [2]
(上記式[2]中、
 MAはSr、Ca、Ba、Na、K、Y、Gd、及びLaから成る群から選ばれる1種以上の元素を含み、
 MBはLi、Mg、及びZnから成る群から選ばれる1種以上の元素を含み、
 MC’はAlであり、
 MDはSi、Ga、In、及びScから成る群から選ばれる1種以上の元素を含み、
 XはF、Cl、Br、及びIから成る群から選ばれる1種以上の元素を含み、
 ReはEu、Ce、Pr、Tb、及びDyから成る群から選ばれる1種以上の元素を含み、
 a、b、c、d、e、x、yは、それぞれ、下記式を満たす。
  0.7≦a≦1.3
  0.7≦b≦1.3
  2.4≦c≦3.6
  3.2≦d≦4.8
  0.0≦e≦0.2
  0.0<x≦0.2
  0.0<y≦1.0)
<3> 前記式[1]又は式[2]において、MAの80モル%以上がSr、Ca及びBaから成る群より選ばれる1種以上の元素である、<1>又は<2>に記載の発光装置。
<4> 前記式[1]又は式[2]において、MBの80モル%以上がLiである、<1>又は<2>に記載の発光装置。
<5> 前記式[1]において、MCの80モル%以上がAl及びGaから成る群より選ばれる1種以上の元素から成る、<1>に記載の発光装置。
<6> 前記式[1]において、MCの80モル%以上がAlである、<5>に記載の発光装置。
<7>前記式[2]において、MDの80モル%以上がGaである、<2>に記載の発光装置。
<8> 前記式[1]又は式[2]において、Reの80モル%以上がEuである、<1>又は<2>に記載の発光装置。
<9> 前記式[1]で又は式[2]表される組成を有する結晶相の空間群がP-1である、<1>又は<2>に記載の発光装置。
<10> 前記蛍光体は、発光スペクトルにおいて620nm以上、660nm以下の範囲に発光ピーク波長を有する、<1>又は<2>に記載の発光装置。
<11> 前記蛍光体は、発光スペクトルにおける半値幅(FWHM)が70nm以下である、<1>又は<2>に記載の発光装置。
<12> 更に黄色蛍光体及び/又は緑色蛍光体を備える、<1>又は<2>に記載の発光装置。
<13> 前記黄色蛍光体及び/又は緑色蛍光体は、ガーネット系蛍光体、シリケート系蛍光体、窒化物蛍光体、及び酸窒化物蛍光体のいずれか1種以上を含む、<12>に記載の発光装置。
<14> 第1の発光体と、該第1の発光体からの光の照射によって可視光を発する第2の発光体とを備え、該第2の発光体が前記式[1]で表される組成を有する結晶相を含む蛍光体を含む、<1>又は<2>に記載の発光装置。
<15> <14>に記載の発光装置を光源として備える照明装置。
<16> <14>に記載の発光装置を光源として備える画像表示装置。
<17> <14>に記載の発光装置を光源として備える車両用表示灯。
<18> 下記式[1]で表される組成を有する結晶相を含み、かつ、
 所定の波長領域における反射率の最小値が20%以上であり、前記所定の波長領域は、発光ピーク波長から800nmまでの領域である、蛍光体。
 ReMAMBMC   [1]
(上記式[1]中、
 MAはSr、Ca、Ba、Na、K、Y、Gd、及びLaから成る群から選ばれる1種以上の元素を含み、
 MBはLi、Mg、及びZnから成る群から選ばれる1種以上の元素を含み、
 MCはAl、Si、Ga、In、及びScから成る群から選ばれる1種以上の元素を含み、
 XはF、Cl、Br、及びIから成る群から選ばれる1種以上の元素を含み、
 ReはEu、Ce、Pr、Tb、及びDyから成る群から選ばれる1種以上の元素を含み、
 a、b、c、d、e、xは、それぞれ、下記式を満たす。
  0.7≦a≦1.3
  0.7≦b≦1.3
  2.4≦c≦3.6
  3.2≦d≦4.8
  0.0≦e≦0.2
  0.0<x≦0.2)
<19> 下記式[2]で表される組成を有する結晶相を含み、かつ、
 所定の波長領域における反射率の最小値が20%以上であり、前記所定の波長領域は、発光ピーク波長から800nmまでの領域である、蛍光体。
 ReMAMB(MC’1-yMD   [2]
(上記式[2]中、
 MAはSr、Ca、Ba、Na、K、Y、Gd、及びLaから成る群から選ばれる1種以上の元素を含み、
 MBはLi、Mg、及びZnから成る群から選ばれる1種以上の元素を含み、
 MC’はAlであり、
 MDはSi、Ga、In、及びScから成る群から選ばれる1種以上の元素を含み、
 XはF、Cl、Br、及びIから成る群から選ばれる1種以上の元素を含み、
 ReはEu、Ce、Pr、Tb、及びDyから成る群から選ばれる1種以上の元素を含み、
 a、b、c、d、e、x、yは、それぞれ、下記式を満たす。
  0.7≦a≦1.3
  0.7≦b≦1.3
  2.4≦c≦3.6
  3.2≦d≦4.8
  0.0≦e≦0.2
  0.0<x≦0.2
  0.0<y≦1.0)
<20> 前記式[1]又は式[2]において、MAの80モル%以上がSr、Ca及びBaから成る群より選ばれる1種以上の元素である、<18>又は<19>に記載の蛍光体。
<21> 前記式[1]又は式[2]において、MBの80モル%以上がLiである、<18>又は<19>に記載の蛍光体。
<22> 前記式[1]において、MCの80モル%以上がAl及びGaから成る群より選ばれる1種以上の元素から成る、<18>に記載の蛍光体。
<23> 前記式[1]において、MCの80モル%以上がAlである、<22>に記載の蛍光体。
<24> 前記式[2]において、MDの80モル%以上がGaである、<19>に記載の蛍光体。
<25> 前記式[1]又は式[2]において、Reの80モル%以上がEuである、<18>又は<19>に記載の蛍光体。
<26> 前記式[1]又は式[2]表される組成を有する結晶相の空間群がP-1である、<18>又は<19>に記載の蛍光体。
<27> 発光スペクトルにおいて620nm以上、660nm以下の範囲に発光ピーク波長を有する、<18>又は<19>に記載の蛍光体。
<28> 発光スペクトルにおける半値幅(FWHM)が70nm以下である、<18>又は<19>に記載の蛍光体。
 本発明は複数の実施形態において、演色性、色再現性、及び/又は変換効率が良好な発光装置、照明装置、画像表示装置及び/又は車両用表示灯を提供することができる。
図1は、実施例1及び比較例1の蛍光体のXRDパターンである。 図2は、実施例1及び比較例1の蛍光体の発光スペクトルである。 図3は、実施例4~10の蛍光体のXRDパターンである。 図4Aは、比較例1及び実施例4~9の蛍光体の発光スペクトルである。 図4Bは、比較例1及び実施例10~12の蛍光体の発光スペクトルである。 図5は、実施例4、5、9及び参考例1の蛍光体の規格化発光スペクトルである。 図6Aは、各実施例及び比較例の蛍光体における反射率スペクトルである。 図6Bは、各実施例の蛍光体における反射率スペクトルである。 図6Cは、各実施例の蛍光体における反射率スペクトルである。 図6Dは、各実施例の蛍光体における反射率スペクトルである。 図7は、各実施例の蛍光体の、特定波長領域における反射率の最小値と発光強度との関係、及び、複数の特定波長領域における反射率同士の差若しくは比率と発光強度との関係を示す図である。 図8は、実施例において、シミュレーションした発光装置の発光特性を示すチャートである。
 以下、本発明について実施形態や例示物を示して説明するが、本発明は以下の実施形態や例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変形して実施することができる。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。また、本明細書中の蛍光体の組成式において、各組成式の区切りは読点(、)で区切って表わす。また、カンマ(,)で区切って複数の元素を列記する場合には、列記された元素のうち1種又は2種以上を任意の組み合わせ及び組成で含有していてもよいことを示している。例えば、「(Ca,Sr,Ba)Al:Eu」という組成式は、「CaAl:Eu」と、「SrAl:Eu」と、「BaAl:Eu」と、「Ca1-xSrAl:Eu」と、「Sr1-xBaAl:Eu」と、「Ca1-xBaAl:Eu」と、「Ca1-x-ySrBaAl:Eu」(但し、式中、0<x<1、0<y<1、0<x+y<1である。)とを全て包括的に示しているものとする。
<蛍光体>
 本発明は一実施形態において、下記式[1]で表される組成を有する結晶相を含む蛍光体であり、該蛍光体の発光ピーク波長から800nmの波長領域における反射率の最小値が20%以上の蛍光体(以下、「本実施形態の蛍光体[1]」と称し、本実施形態の蛍光体[1]と後述の本実施形態の蛍光体[2]とをまとめて「本実施形態の蛍光体」と称す場合がある)である。
 本発明は別の実施形態において、本実施形態の蛍光体[1]を備える発光装置である。
 ReMAMBMC   [1]
(上記式[1]中、
 MAはSr、Ca、Ba、Na、K、Y、Gd、及びLaから成る群から選ばれる1種以上の元素を含み、
 MBはLi、Mg、及びZnから成る群から選ばれる1種以上の元素を含み、
 MCはAl、Si、Ga、In、及びScから成る群から選ばれる1種以上の元素を含み、
 XはF、Cl、Br、及びIから成る群から選ばれる1種以上の元素を含み、
 ReはEu、Ce、Pr、Tb、及びDyから成る群から選ばれる1種以上の元素を含み、
 a、b、c、d、e、xは、それぞれ、下記式を満たす。
  0.7≦a≦1.3
  0.7≦b≦1.3
  2.4≦c≦3.6
  3.2≦d≦4.8
  0.0≦e≦0.2
  0.0<x≦0.2)
 式[1]中、Reにはユーロピウム(Eu)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)及びイッテルビウム(Yb)等を用いることができるが、発光波長および発光量子効率を向上する観点から、Reは好ましくはEu、Ce、Pr、Tb、及びDyから成る群から選ばれる1種以上の元素を含み、より好ましくはEuを含み、更に好ましくはReの80モル%以上はEuであり、より更に好ましくはReはEuである。
 式[1]中、MAはカルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ナトリウム(Na)、カリウム(K)、イットリウム(Y)、ガドリニウム(Gd)、及びランタン(La)から成る群から選ばれる1種以上の元素を含み、好ましくはCa、Sr、Baから成る群より選ばれる1種以上の元素を含み、より好ましくはMAはSrを含む。また、好ましくは、MAの80モル%以上は上記好ましい元素から成り、より好ましくはMAは上記好ましい元素から成る。
 式[1]中、MBはリチウム(Li)、マグネシウム(Mg)、及び亜鉛(Zn)から成る群から選ばれる1種以上の元素を含み、好ましくはLiを含み、より好ましくはMBの80モル%以上はLiであり、更に好ましくはMBはLiである。
 式[1]中、MCはアルミニウム(Al)、ケイ素(Si)、ガリウム(Ga)、インジウム(In)、及びスカンジウム(Sc)から成る群から選ばれる1種以上の元素を含み、好ましくはAl、Ga又はSiを含み、より好ましくはAl及びGaから成る群より選ばれる1種以上の元素を含み、更に好ましくはMCの80モル%以上はAl及びGaから成る群より選ばれる1種以上の元素から成り、特に好ましくはMCの90モル%以上はAl及びGaから成る群より選ばれる1種以上の元素から成り、最も好ましくはMCはAl及びGaから成る群より選ばれる1種以上の元素から成る。
 一実施形態において、MCの80モル%以上はAlであり、好ましくは90モル%以上、より好ましくは95モル%以上、さらに好ましくは98モル%以上がAlである。MCの80モル%以上がAlであることで、S/CASN等の既存の赤色蛍光体と同程度の発光ピーク波長および発光強度を示し、かつスペクトル半値幅が狭い赤色蛍光体を提供することができ、この様な赤色蛍光体を用いることで、従来と同程度かそれ以上の変換効率(Conversion Efficiensy、Lm/W)を維持しつつ、演色性又は色再現性に優れる発光装置を提供することができる。
 式[1]中、Nは窒素を表す。結晶相全体の電荷バランスを保つため、又は発光ピーク波長を調整するため、Nは一部が酸素(O)で置換されていてもよい。
 式[1]中、Xはフッ素(F)、塩素(Cl)、臭素(Br)、及びヨウ素(I)から成る群から選ばれる1種以上の元素を含む。すなわち、特定の実施形態においては、結晶構造安定化及び蛍光体全体の電荷バランスを保つ観点から、Nは、その一部がXで表した上記ハロゲン元素で置換されていてもよい。
 前記式[1]は、明記した以外の成分が、不可避的に、意図せず、又は微量添加成分等に由来して、微量に含まれる場合を含む。
 明記した以外の成分としては、意図的に加えた元素と元素番号1つ異なる元素、意図的に加えた元素の同族元素、意図的に加えた希土類元素と別の希土類元素、及びRe原料にハロゲン化物を用いた際のハロゲン元素、その他各種原料に不純物として一般的に含まれ得る元素などが挙げられる。
 明記した以外の成分が不可避的に、又は意図せず含まれる場合としては、例えば原料の不純物由来、及び粉砕工程、合成工程等の製造プロセスにおいて導入される場合が考えられる。また、微量添加成分としては反応助剤、及びRe原料などが挙げられる。
 上記式[1]中、a、b、c、d、e、xはそれぞれ蛍光体に含まれるMA、MB、MC、N、X及びReのモル含有量を示す。
 aの値は、通常0.6以上、好ましくは0.7以上、より好ましくは0.8以上、更に好ましくは0.9以上であり、通常1.4以下、好ましくは1.3以下、より好ましくは1.2以下、更に好ましくは1.1以下である。
 bの値は、通常0.6以上、好ましくは0.7以上、より好ましくは0.8以上、更に好ましくは0.9以上であり、通常1.4以下、好ましくは1.3以下、より好ましくは1.2以下、更に好ましくは1.1以下である。
 cの値は、通常2.1以上、好ましくは2.4以上、より好ましくは2.6以上、更に好ましくは2.8以上であり、通常3.9以下、好ましくは3.6以下、より好ましくは3.4以下、更に好ましくは3.2以下である。
 dの値は、通常3以上、好ましくは3.2以上、より好ましくは3.4以上、更に好ましくは3.6以上、より更に好ましくは3.8以上であり、通常5以下、好ましくは4.8以下、より好ましくは4.6以下、更に好ましくは4.4以下、より更に好ましくは4.2以下である。
 eの値は特に制限されないが、通常0以上であり、通常0.2以下、好ましくは0.1以下、より好ましくは0.06以下、更に好ましくは0.04以下、より更に好ましくは0.02以下である。
 xの値は、通常0より大きい値であり、好ましくは0.0001以上、より好ましくは0.001以上であり、通常0.2以下、好ましくは0.15以下、より好ましくは0.12以下、更に好ましくは0.1以下、より更に好ましくは0.08以下である。xの値が上記下限以上又は上記下限より大きい値であることで、良好な発光強度の蛍光体を得ることができ、xの値が上記上限以下であることで、Reが良好に結晶内に取り込まれ、発光中心として機能しやすい蛍光体を得ることができる。
 b、c、d、eが上記範囲にあることで、結晶構造が安定化する。また、d、eの値は蛍光体全体の電荷バランスを保つ目的で適度に調節できる。
 また、aの値が上記範囲にあることで、結晶構造が安定化し、異相の少ない蛍光体が得られる。
 b+cの値は、通常3.1以上、好ましくは3.4以上、より好ましくは3.7以上であり、通常4.9以下、好ましくは4.6以下、より好ましくは4.3以下である。
 b+cの値が上記範囲であることで、結晶構造が安定化する。
 d+eの値は、通常3.2以上、好ましくは3.4以上、より好ましくは3.7以上であり、通常5.0以下、好ましくは4.6以下、より好ましくは4.3以下である。
 d+eの値が上記範囲であることで、結晶構造が安定化する。
 いずれの値も上記した範囲であると得られる蛍光体の発光ピーク波長及び発光スペクトルにおける半値幅が良好である点で好ましい。
 なお、前記蛍光体の元素組成の特定方法は特に限定されず、常法で求めることができ、例えばGD-MS、ICP分光分析法、又はエネルギー分散型X線分析装置(EDX)等により特定できる。
 本発明は一実施形態において、下記式[2]で表される組成を有する結晶相を含む蛍光体であり、該蛍光体の発光ピーク波長から800nmの波長領域における反射率の最小値が20%以上の蛍光体(以下、「本実施形態の蛍光体[2]」と称す場合がある。)である。
 また、本発明は別の実施形態においては、本実施形態の蛍光体[2]を備える発光装置である。
 ReMAMB(MC’1-yMD   [2]
(上記式[2]中、
 MAはSr、Ca、Ba、Na、K、Y、Gd、及びLaから成る群から選ばれる1種以上の元素を含み、
 MBはLi、Mg、及びZnから成る群から選ばれる1種以上の元素を含み、
 MC’はAlであり、
 MDはSi、Ga、In、及びScから成る群から選ばれる1種以上の元素を含み、
 XはF、Cl、Br、及びIから成る群から選ばれる1種以上の元素を含み、
 ReはEu、Ce、Pr、Tb、及びDyから成る群から選ばれる1種以上の元素を含み、
 a、b、c、d、e、x、yは、それぞれ、下記式を満たす。
  0.7≦a≦1.3
  0.7≦b≦1.3
  2.4≦c≦3.6
  3.2≦d≦4.8
  0.0≦e≦0.2
  0.0<x≦0.2
  0.0<y≦1.0)
 前記式[2]におけるMA、MB、N、X、Re元素の種類及び構成は、前記式[1]と同様とすることができる。
 前記MC’はAlである。
 前記MDはSi、Ga、In、及びScから成る群から選ばれる1種以上の元素を含み、結晶安定性および発光強度を向上する観点から、好ましくはGa及びSiから成る群から選ばれる1種以上の元素を含み、より好ましくはGaを含む。
 更に好ましい特定の実施形態においては、MDの80モル%以上はGaであり、MDはGaから成る構成としてもよい。
 前記式[2]におけるa、b、c、d、e及びxの値及び好ましい範囲は、前記式[1]と同様とすることができる。
 前記式[2]におけるyの値は、0.0より大きく、通常0.01以上、好ましくは0.015以上、より好ましくは0.03以上、更に好ましくは0.05以上、特に好ましくは0.10以上であり、通常1.00以下、好ましくは0.70以下、より好ましくは0.50以下、更に好ましくは0.30以下、特に好ましくは0.25以下である。
 yの値が上記下限以上であることで、蛍光体の発光ピーク波長が短波化し、この様な蛍光体を用いることで、演色性又は色再現性の良好な発光装置を提供できる。また、yの値が上記上限以下であることで、発光強度が良好な蛍光体を得ることができ、この様な蛍光体を用いることで変換効率の良好な発光装置を提供できる。目的に応じて好ましい発光強度と発光ピーク波長を得るため、yの値は適宜調整することができる。
[結晶相の粒径]
 本実施形態の蛍光体の結晶相の粒径は、体積基準の中央粒径(体積メジアン粒径)で通常2μm以上35μm以下であり、下限値は、好ましくは3μm、より好ましくは4μm、更に好ましくは5μmであり、また上限値は、好ましくは30μm以下、より好ましくは25μm以下、更に好ましくは20μm、特に好ましくは15μmである。
 体積基準の中央粒径(体積メジアン粒径)が上記下限以上であると結晶相がLEDパッケージ内で示す発光特性を向上する観点から好ましく、上記上限以下であると結晶相がLEDパッケージの製造工程においてノズルの閉塞を回避できる点から好ましい。
 蛍光体の結晶相の体積基準の中央粒径(体積メジアン粒径)は、当業者に周知の測定技術により測定できるが、好ましい実施形態においては、例えばレーザー粒度計により測定できる。本明細書における実施例において、体積基準の中央粒径(体積メジアン粒径、(d50))とは、レーザー回折・散乱法を測定原理とする粒度分布測定装置を用いて、試料を測定し、粒度分布(累積分布)を求めたときの体積基準の相対粒子量が50%になる粒子径と定義される。
{蛍光体の物性など}
[空間群]
 本実施形態の蛍光体における結晶系(空間群)は、P-1であることがより好ましい。本実施形態の蛍光体における空間群は、粉末X線回折又は単結晶X線回折にて区別しうる範囲において統計的に考えた平均構造が上記の長さの繰り返し周期を示していれば特に限定されないが、「International Tables for Crystallography(Third,revised edition),Volume A SPACE-GROUP SYMMETRY」に基づく2番に属するものであることが好ましい。
 上記の空間群であることで、発光スペクトルにおける半値幅(FWHM)が狭くなり、発光効率の良い蛍光体が得られる。
 ここで、空間群は常法に従って求めることができ、例えば電子線回折や粉末又は単結晶を用いたX線回折構造解析及び中性子線回折構造解析等により求めることができる。
 本実施形態の蛍光体の粉末X線回析スペクトルにおいて2θ=38~39度の領域に現れるピークの強度をIx、2θ=37~38度の領域に現れるピークの強度をIyとして、Iyを1としたときのIxの相対強度であるIx/Iyは好ましくは0.140以下であり、より好ましくは0.120以下、更に好ましくは0.110以下、より更に好ましくは0.080以下、特に好ましくは0.060以下、とりわけ好ましくは0.040以下であり、また通常0以上であるが、小さければ小さいほど良い。
 2θ=37~38度の領域のピークは結晶系(空間群)がP-1である際に観察される特徴的なピークの1つであり、Iyが相対的に高いことで、よりP-1の相純度が高い蛍光体を得られる。Ix/Iyが上記上限以下であることで、相純度が高く、発光スペクトルにおける半値幅(FWHM)の狭い蛍光体を得られるため、発光装置の発光効率が向上する。
[特定波長領域における反射率]
 一つの実施形態においては、本実施形態の蛍光体は、所定の波長領域における反射率の最小値(以降、A%と記載することもある)が通常20%以上であり、前記所定の波長領域は、前記蛍光体の発光ピーク波長から800nmまでの領域である。前記反射率の最小値は、好ましくは25%以上、より好ましくは30%以上、更に好ましくは35%以上、特に好ましくは50%以上、殊更好ましくは60%以上、極めて好ましくは70%以上である。
 この反射率の上限は特に制限されず、高ければ高いほど良いが、通常100%以下である。反射率が上記下限以上であることで、発光強度又は量子効率に優れる赤色蛍光体を提供し、この様な蛍光体を用いることで、変換効率が良好な発光装置を提供できる。
 一つの実施形態において、本実施形態の蛍光体の反射率A(%)に係る所定の波長領域は、発光ピーク波長から800nmまでの波長領域である。本実施形態の蛍光体の反射率を規定するに当たり、上記波長領域を選択した理由を、以下に説明する。
 本発明者らは以下の知見を得た;
 1.前記式[1]又は[2]で表される結晶相を有する蛍光体の一部は、励起されない状態で、自然光の下、粉末状の蛍光体のボディカラーを目視で確認した際に、わずかに灰色がかって見える。本明細書中では、この状態を「くすんで」いる、又は「くすみ」がある、と表現することもある。
 2.前記式[1]又は[2]で表される結晶相を有する蛍光体の内、上記「くすみ」の少ない蛍光体は発光強度又は量子効率に優れ、この様な蛍光体を用いることで、変換効率が良好な発光装置を提供できる。
 3.前記式[1]又は[2]で表される結晶相を有する蛍光体の内、「くすみ」の少ない蛍光体は、全体的に反射率が高い傾向にあり、特に、特定の波長領域の光に対する反射率を以て規定し、或いは前記特定の波長領域の光に対する反射率を含む指標を以て規定することで、的確に特定できる。
 前記特定の波長領域は、通常励起スペクトルが存在する波長領域と異なる波長領域に属する波長が好ましい。
 1つの視点からは、前記特定の波長領域は、発光ピーク波長以上、かつ発光スペクトルの長波長側の端部以下の波長領域における波長が好ましい。
 特定の実施形態においては、前記特定の波長領域は、通常、発光ピーク波長以上900nm以下の波長を選択することができ、上限は好ましくは800nm以下、より好ましくは780nm以下である。波長領域は、必要に応じて、上記下限以上上限以下の任意の波長領域を取ることができる。
 本実施形態の蛍光体の励起スペクトルが存在する波長領域は主に300nm~520nmであるが、600nm付近にも吸収が生じる場合がある。ここで、励起スペクトルが存在する波長領域における波長の反射率を測定した場合、入射した光を蛍光体が吸収してしまい、反射率が吸収率の影響を受けるため、励起スペクトルが存在する波長領域における波長の反射率のみでは、蛍光体のボディカラーを規定するには不適である。
 以上の観点から、本実施形態の蛍光体を反射率で規定するに当たっては、蛍光体の吸収の影響が少ない前記波長領域の反射率によって、或いは個の反射率が関係する指標を用いることで、蛍光体のボディカラーを正確に規定できる。
 一つの実施形態においては、本実施形態の蛍光体は、発光ピーク波長Wp(nm)から[Wp-50](nm)までの波長領域における反射率の最小値をB%としたとき、前記反射率A(%)との差[A-B]の値は好ましくは-1.5ポイント以上であり、より好ましくは0.0ポイント以上、更に好ましくは3.0ポイント以上、特に好ましくは4.0ポイント以上である。[A-B]の上限は特に制限されないが、通常50.0ポイント以下である。
 [A-B]の値が上記下限以上であることで、発光強度の高い蛍光体を得ることができ、この様な蛍光体を用いることで、変換効率の高い発光装置を提供できる。
 前記[A-B]の値が高いことで発光強度の高い蛍光体を得られる理由は定かではないが、例えば、反射率A(%)に係る発光ピーク波長以上の波長領域においてはRe元素(賦活剤元素)による光の吸収が無いため、吸収率が低く反射率が高いことが望ましいとと考えられる一方、前記反射率B(%)にはRe元素(賦活剤元素)による光の吸収が反映され、吸収率が高いほど反射率が低下することから、[A-B]の値が大きいことで賦活剤元素による発光に寄与する光の吸収が高く、従って発光強度が高い蛍光体が得られる可能性が挙げられる。この場合、前記反射率A(%)とB(%)に係る波長領域は連続しているため、A(%)とB(%)は比較的近い値となる可能性が高いため、結果としてB(%)単独でなく、A(%)とB(%)の比較によって規定することが好ましいと考えられる。
 一つの実施形態においては、本実施形態の蛍光体は、400nmから550nmの波長領域における反射率の最小値をC%としたとき、前記反射率A(%)との差[A-C]の値は好ましくは0.0ポイント以上であり、より好ましくは2.0ポイント以上、更に好ましくは5.0ポイント以上、特に好ましくは10.0ポイント以上、殊更好ましくは15.0ポイント以上、極めて好ましくは20.0ポイント以上である。[A-C]の上限は特に制限されないが、通常50.0ポイント以下である。
 [A-C]の値が上記下限以上であることで、発光強度の高い蛍光体を得ることができ、この様な蛍光体を用いることで、変換効率の高い発光装置を提供できる。
 一つの実施形態においては、本実施形態の蛍光体は、400nmから550nmの波長領域における反射率の最小値をC%としたとき、前記反射率A(%)との比率C/Aの値は好ましくは1.05以下であり、より好ましくは1.00以下、更に好ましくは0.90以下、特に好ましくは0.80以下、殊更好ましくは0.75以下である。C/Aの下限は特に制限されないが、通常0.0以上である。
 C/Aの値が上記上限以下であることで、発光強度の高い蛍光体を得ることができ、この様な蛍光体を用いることで、変換効率の高い発光装置を提供できる。
 前記[A-C]の値が大きいこと、又はC/Aの値が小さいことで発光強度の高い蛍光体を得られる理由は定かではないが、例えば、反射率A%に係る発光ピーク波長以上の波長領域においては発光に寄与する光の吸収があまり無いため、吸収率が低く反射率が高いことが望ましいと考えられる一方、前記反射率C(%)に係る波長領域は励起光源に青色光を用いることが多い波長領域であり、吸収率が高いほど反射率は下がるため、反射率C(%)が低い蛍光体は発光に寄与する励起光の吸収が高く、従って発光強度が高い蛍光体が得られる、等の可能性が挙げられる。
 なお、後述の実施例にも見て取れる様に、不純物などによって発光に寄与しない吸収が大きな蛍光体は、広い波長領域で全般的に反射率が低下する傾向があるため、上記の視点で蛍光体を特定する場合、C(%)単独でなく、A(%)とC(%)の比較によって規定することが好ましいと考えられる。
[発光スペクトルの特性]
 本実施形態の蛍光体は、適切な波長を有する光を照射することで励起し、発光スペクトルにおいて良好な発光ピーク波長およびスペクトル半値幅(FWHM)を示す赤色光を放出する。以下、上記発光スペクトル及び励起波長、発光ピーク波長およびスペクトル半値幅(FWHM)について記載する。
(励起波長)
 本実施形態の蛍光体は、通常270nm以上、好ましくは300nm以上、より好ましくは320nm以上、更に好ましくは350nm以上、特に好ましくは400nm以上、また、通常500nm以下、好ましくは480nm以下、より好ましくは460nm以下の波長範囲に励起ピークを有する。即ち、近紫外から青色領域の光で励起される。
 なお、発光スペクトルの形状、及び下記発光ピーク波長およびスペクトル半値幅の記載は励起波長に寄らず適用できるが、量子効率を向上させる観点からは、吸収及び励起の効率が良い上記範囲の波長を有する光を照射することが好ましい。
(発光ピーク波長)
 本実施形態の蛍光体は、発光スペクトルにおけるピーク波長が通常620nm以上、好ましくは625nm以上、より好ましくは630nm以上である。また、この発光スペクトルにおけるピーク波長は通常670nm以下、好ましくは660nm以下、より好ましくは655nm以下である。
 蛍光体の発光スペクトルにおけるピーク波長が上記範囲であることで、発光色が良好な赤色となり、これを用いることで演色性又は色再現性の良い発光装置を提供できる。また、蛍光体の発光スペクトルにおけるピーク波長が上記上限以下であることで、赤色の視感度が良好で、ルーメン当量lm/Wの良好な発光装置を提供できる。
 発光装置においては、用途に応じてピーク波長の異なる蛍光体を用いることができる。ピーク波長の異なる蛍光体を得る方法は特に制限されないが、1つの方法としては、MC元素の構成を変えることで実現できる。
 一実施形態においては、前記式[1]においてMCにAlを用い、かつAlの比率を高くすることで発光ピーク波長が長い蛍光体を得ることができる。この実施形態においては、発光ピーク波長は好ましくは640nm以上、より好ましくは645nm以上であり、通常670nm以下、好ましくは660nm以下である。発光波長がこの範囲にある蛍光体を備えることで、例えば照明用途に用いる発光装置において、発光効率と演色性を両立させた発光装置、又は液晶ディスプレイのバックライトユニットに用いる発光装置において、発光効率と色再現範囲を両立させた発光装置を提供できる。
 別の一実施形態においては、MC’(Al)及びMD元素を用いる前記式[2]で表される組成を有する結晶相を含む蛍光体を備えることで、発光ピーク波長が相対的に短い蛍光体を得ることができる。この実施形態においては、発光ピーク波長は通常615nm以上、好ましくは620nm以上、より好ましくは625nm以上、更に好ましくは630nm以上であり、通常660nm以下、好ましくは645nm以下、より好ましくは640nm以下である。発光波長が上記範囲にある蛍光体を備えることで、演色性又は色再現性の良好な発光装置を得ることができる。
(発光スペクトルの半値幅)
 本実施形態の蛍光体は、発光スペクトルにおける半値幅が、通常80nm以下、好ましくは70nm以下、より好ましくは60nm以下、更に好ましくは55nm以下、特に好ましくは50nm以下であり、また通常10nm以上である。
 発光スペクトルにおける半値幅が上記範囲内である蛍光体を用いることで、液晶ディスプレイなどの画像表示装置において色純度を低下させずに色再現範囲を広くすることができる。
 また、発光ピーク波長およびスペクトル半値幅が上記上限以下にあることで、発光波長領域の視感度が相対的に高い蛍光体を提供でき、このような蛍光体を発光装置に用いることで、変換効率の高い発光装置を提供することができる。
 なお、前記蛍光体を波長450nm前後の光で励起するには、例えば、GaN系LEDを用いることができる。また、前記蛍光体の発光スペクトルの測定、並びにその発光ピーク波長、ピーク相対強度及びスペクトル半値幅の算出は、例えば、市販のキセノンランプ等300~400nmの発光波長を有する光源と、一般的な光検出器を備える蛍光測定装置など、市販のスペクトル測定装置を用いて行うことができる。
<蛍光体の製造方法>
 本実施形態の蛍光体は、蛍光体を構成する各元素の原料を、各元素の割合が前記式[1]又は[2]を満たすように混合し、加熱することで合成することができる。
[原料]
 各元素(MA、MB、MC、MC’、MD、Re)の原料は特に制限されないが、例えば各元素の単体、酸化物、窒化物、水酸化物、塩化物、フッ化物などハロゲン化物、硫酸塩、硝酸塩、リン酸塩などの無機塩、酢酸塩などの有機酸塩などが挙げられる。その他、前記元素群が2種以上含まれる化合物を用いてもよい。また、各化合物は水和物などであってもよい。
 なお、後述の実施例においては、Sr、LiN、AlN、GaN、及びEuF或いはEuを出発原料として用いた。
 各原料の入手方法は特に制限されず、市販のものを購入して用いることができる。
 各原料の純度は特に制限されないが、元素比を厳密にする観点、及び不純物による異相の出現を避ける観点から、純度は高いほど好ましく、通常90モル%以上、好ましくは95モル%以上、より好ましくは97モル%以上、更に好ましくは99モル%以上であり、上限は特に制限されないが、通常100モル%以下であり、不可避的に混入する不純物が含まれていてもよい。
 後述の実施例においては、いずれも純度95モル%以上の原料を用いた。
 酸素元素(O)、窒素元素(N)、ハロゲン元素(X)については、前記各元素の原料に酸化物、窒化物、及びハロゲン化物等を用いることで供給できるほか、合成反応の際に酸素又は窒素含有雰囲気とすることで適宜含ませることができる。
[混合工程]
 原料の混合方法は特に制限されず、常法を用いることができる。例えば、目的組成が得られるように蛍光体原料を秤量し、ボールミル等を用いて十分混合し、蛍光体原料混合物を得る。上記混合手法としては、特に限定はされないが、具体的には、下記(a)及び(b)の手法が挙げられる。
(a)例えばハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機、又は、乳鉢と乳棒等を用いる粉砕と、例えばリボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の混合機、又は、乳鉢と乳棒を用いる混合とを組み合わせ、前述の蛍光体原料を粉砕混合する乾式混合法。
(b)前述の蛍光体原料に水等の溶媒又は分散媒を加え、例えば粉砕機、乳鉢と乳棒、又は蒸発皿と撹拌棒等を用いて混合し、溶液又はスラリーの状態とした上で、噴霧乾燥、加熱乾燥、又は自然乾燥等により乾燥させる湿式混合法。
 蛍光体原料の混合は、上記乾式混合法又は湿式混合法のいずれでもよいが、水分による蛍光体原料の汚染を避けるために、乾式混合法や非水溶性溶媒を使った湿式混合法が好ましい。
 なお、後述の実施例においては、(a)の方法を採用した。
[加熱工程]
 加熱工程では、例えば、混合工程で得られた蛍光体原料混合物をるつぼに入れ、引き続き、それを500℃~1200℃の温度、好ましくは600℃~1000℃、より好ましくは700~950℃の温度で加熱する。
 るつぼの材質は蛍光体原料又は反応物と反応しないものが好ましくアルミナ、石英、窒化ホウ素、炭化ケイ素、窒化ケイ素等のセラミック、ニッケル、白金、モリブデン、タングステン、タンタル、ニオブ、イリジウム、ロジウム等の金属、あるいは、それらを主成分とする合金等が挙げられる。
 なお、後述の実施例においては、窒化ホウ素製るつぼを用いた。
 加熱は不活性雰囲気下で行うことが好ましく、窒素、アルゴン、ヘリウム等が主成分のガスを用いることができる。
 なお、後述の実施例においては、窒素雰囲気下で加熱を行った。
 加熱工程では、上記の温度帯において、通常10分~200時間、好ましくは1時間~100時間、より好ましくは3~50時間にわたって加熱を行う。また、本加熱工程は1回で行ってもよく、複数回に分けて行ってもよい。複数回に分けて行う態様としては、欠陥を修復するために加圧下で加熱するアニール工程を含む態様、一次粒子又は中間物を得る一次加熱の後に、二次粒子又は最終生成物を得る二次加熱を行う態様などが挙げられる。
 これにより、本実施形態の蛍光体が得られる。
[蛍光体の選別]
 以上の方法で概ね本実施形態の蛍光体を得られるが、反応容器中の微小な付着物、各試薬の不純物、各原料試薬のロット等、微細な差異によって、得られた蛍光体が本実施形態の要件の範囲からわずかに外れる粒子を一部に含む場合があるほか、粒子径の大きい物と小さい物、反射率等の異なる蛍光体等が混ざり合う場合がある。
 このため、例えば、いくつか条件を変化させて蛍光体を製造し、得られた蛍光体を分級、洗浄等で選別し、反射率、XRDスペクトル等を分析し、本実施形態の要件を満たす蛍光体を選別することで、上記実施形態の蛍光体を確実に得ることができる。
<発光装置>
 本発明は一実施形態において、第1の発光体(励起光源)と、当該第1の発光体からの光の照射によって可視光を発する第2の発光体とを含む発光装置であって、該第2の発光体として、前記式[1]又は[2]で表される組成を有する結晶相を含む本実施形態の蛍光体を含む発光装置である。ここで、第2の発光体は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 本実施形態における発光装置は、該第2の発光体として、前記式[1]又は[2]で表される組成を有する結晶相を含む本実施形態の蛍光体を備えるほか、更に、励起光源からの光の照射下において、黄色、緑色、ないし赤色領域(橙色ないし赤色)の蛍光を発する蛍光体を使用することができる。
 また、特定の実施形態において、本発明に係る発光装置は、前記式[1]又は[2]で表される組成を有する結晶相を含む蛍光体を備え、更に黄色蛍光体及び/又は緑色蛍光体を備える、発光装置である。
 具体的には、発光装置を構成する場合、黄色蛍光体としては、550nm以上、600nm以下の波長範囲に発光ピークを有するものが好ましく、緑色蛍光体としては、500nm以上、560nm以下の波長範囲に発光ピークを有するものが好ましい。また、橙色ないし赤色蛍光体は、通常615nm以上、好ましくは620nm以上、より好ましくは625nm以上、更に好ましくは630nm以上で、通常660nm以下、好ましくは650nm以下、より好ましくは645nm以下、更に好ましくは640nm以下の波長範囲に発光ピークを有するものである。
 上記の波長領域の蛍光体を適切に組み合わせることで、優れた色再現性を示す発光装置を提供できる。尚、励起光源については、420nm未満の波長範囲に発光ピークを有するものを用いてもよい。
 以下、赤色蛍光体として、620nm以上660nm以下の波長範囲に発光ピークを有する、前記式[1]又は[2]で表される組成を有する結晶相を含む本実施形態の蛍光体を用い、且つ第1の発光体が300nm以上460nm以下の波長範囲に発光ピークを有するものを用いる場合の、発光装置の態様について記載するが、本実施形態はこれらに限定されるものではない。
 上記の場合、本実施形態の発光装置は、例えば、次の(A)、(B)又は(C)の態様とすることができる。
(A)第1の発光体として、300nm以上460nm以下の波長範囲に発光ピークを有するものを用い、第2の発光体として、550nm以上600nm以下の波長範囲に発光ピークを有する少なくとも1種の蛍光体(黄色蛍光体)、及び前記[1]又は[2]で表される組成を有する結晶相を含む本実施形態の蛍光体を用いる態様。
(B)第1の発光体として、300nm以上460nm以下の波長範囲に発光ピークを有するものを用い、第2の発光体として、500nm以上560nm以下の波長範囲に発光ピークを有する少なくとも1種の蛍光体(緑色蛍光体)、及び前記[1]又は[2]で表される組成を有する結晶相を含む本実施形態の蛍光体を用いる態様。
(C)第1の発光体として、300nm以上460nm以下の波長範囲に発光ピークを有するものを用い、第2の発光体として、550nm以上600nm以下の波長範囲に発光ピークを有する少なくとも1種の蛍光体(黄色蛍光体)、500nm以上560nm以下の波長範囲に発光ピークを有する少なくとも1種の蛍光体(緑色蛍光体)、及び前記[1]又は[2]で表される組成を有する結晶相を含む本実施形態の蛍光体を用いる態様。
 上記の態様における緑色又は黄色の蛍光体としては市販のものを用いることができ、例えば、ガーネット系蛍光体、シリケート系蛍光体、窒化物蛍光体、酸窒化物蛍光体などを用いることができる。
(黄色蛍光体)
 黄色蛍光体に用いることができるガーネット系蛍光体としては、例えば、(Y,Gd,Lu,Tb,La)(Al,Ga)12:(Ce,Eu,Nd)、シリケート系蛍光体としては、例えば、(Ba,Sr,Ca,Mg)SiO:(Eu,Ce)、窒化物蛍光体及び酸窒化物蛍光体としては、例えば、(Ba,Ca,Mg)Si:Eu(SION系蛍光体)、(Li,Ca)(Si,Al)12(O,N)16:(Ce,Eu)(α-サイアロン蛍光体)、(Ca,Sr)AlSi(O,N):(Ce,Eu)(1147蛍光体)、(La,Ca,Y、Gd)(Al,Si)11:(Ce、Eu)(LSN蛍光体)などが挙げられる。
 これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 黄色蛍光体としては、上記蛍光体においてガーネット系蛍光体が好ましく、中でも、YAl12:Ceで表されるYAG系蛍光体が最も好ましい。
(緑色蛍光体)
 緑色蛍光体に用いることができるガーネット系蛍光体としては、例えば、(Y,Gd,Lu,Tb,La)(Al,Ga)12:(Ce,Eu,Nd)、Ca(Sc,Mg)Si12:(Ce,Eu)(CSMS蛍光体)、シリケート系蛍光体としては、例えば、(Ba,Sr,Ca,Mg)SiO10:(Eu,Ce)、(Ba,Sr,Ca,Mg)SiO:(Ce,Eu)(BSS蛍光体)、酸化物蛍光体としては、例えば、(Ca,Sr,Ba,Mg)(Sc,Zn):(Ce,Eu)(CASO蛍光体)、窒化物蛍光体及び酸窒化物蛍光体としては、例えば、(Ba,Sr,Ca,Mg)Si:(Eu,Ce)、Si6-zAl8-z:(Eu,Ce)(β-サイアロン蛍光体)(0<z≦1)、(Ba,Sr,Ca,Mg,La)(Si,Al)12:(Eu,Ce)(BSON蛍光体)、アルミネート蛍光体としては、例えば、(Ba,Sr,Ca,Mg)Al1017:(Eu,Mn)(GBAM系蛍光体)などが挙げられる。
 これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(赤色蛍光体)
 赤色蛍光体としては、前記式[1]又は[2]で表される組成を有する結晶相を含む本実施形態の蛍光体を用いるが、本実施形態の蛍光体に加えて、例えばMn賦活フッ化物蛍光体、ガーネット系蛍光体、硫化物蛍光体、ナノ粒子蛍光体、窒化物蛍光体、酸窒化物蛍光体などの他の橙色ないし赤色蛍光体を用いることができる。他の橙色ないし赤色蛍光体としては、例えば下記の蛍光体を用いることができる。
 Mn賦活フッ化物蛍光体としては、例えば、K(Si,Ti)F:Mn、KSi1-xNaAl:Mn(0<x<1)(まとめてKSF蛍光体)、硫化物蛍光体としては、例えば、(Sr,Ca)S:Eu(CAS蛍光体)、LaS:Eu(LOS蛍光体)、ガーネット系蛍光体としては、例えば、(Y,Lu,Gd,Tb)MgAlSi12:Ce、ナノ粒子としては、例えば、CdSe、窒化物又は酸窒化物蛍光体としては、例えば、(Sr,Ca)AlSiN:Eu(S/CASN蛍光体)、(CaAlSiN1-x・(SiO:Eu(CASON蛍光体)、(La,Ca)(Al,Si)11:Eu(LSN蛍光体)、(Ca,Sr,Ba)Si(N,O):Eu(258蛍光体)、(Sr,Ca)Al1+xSi4-x7-x:Eu(1147蛍光体)、M(Si,Al)12(O,N)16:Eu(Mは、Ca,Srなど)(αサイアロン蛍光体)、Li(Sr,Ba)Al:Eu(上記のxは、いずれも0<x<1)などが挙げられる。
 これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[発光装置の構成]
 本実施形態に係る発光装置は、第1の発光体(励起光源)を有し、且つ、第2の発光体として少なくとも前記式[1]又は[2]で表される組成を有する結晶相を含む本実施形態の蛍光体を使用することができ、その構成は制限されず、公知の装置構成を任意にとることが可能である。
 装置構成及び発光装置の実施形態としては、例えば、特開2007-291352号公報に記載のものが挙げられる。その他、発光装置の形態としては、砲弾型、カップ型、チップオンボード、リモートフォスファー等が挙げられる。
{発光装置の用途}
 発光装置の用途は特に制限されず、通常の発光装置が用いられる各種の分野に使用することが可能であるが、演色性が高い発光装置は、中でも照明装置や画像表示装置の光源として、とりわけ好適に用いることができる。
 また、発光波長が良好な赤色の蛍光体を備える発光装置は、赤色の車両用表示灯、又は該赤色を含む白色光の車両用表示灯に用いることもできる。
[照明装置]
 本発明は一実施形態において、前記発光装置を光源として備える照明装置とすることができる。
 前記発光装置を照明装置に適用する場合、その照明装置の具体的構成に制限はなく、前述のような発光装置を公知の照明装置に適宜組み込んで用いればよい。例えば、保持ケースの底面に多数の発光装置を並べた面発光照明装置等を挙げることができる。
[画像表示装置]
 本発明は一実施形態において、前記発光装置を光源として備える画像表示装置とすることができる。
 前記発光装置を画像表示装置の光源として用いる場合、その画像表示装置の具体的構成に制限はないが、カラーフィルターとともに用いることが好ましい。例えば、画像表示装置として、カラー液晶表示素子を利用したカラー画像表示装置とする場合は、前記発光装置をバックライトとし、液晶を利用した光シャッターと赤、緑、青の画素を有するカラーフィルターとを組み合わせることにより画像表示装置を形成することができる。
[車両用表示灯]
 本発明は一実施形態において、前記発光装置を備える車両用表示灯とすることができる。
 車両用表示灯に用いる発光装置は、特定の実施形態においては、白色光を放射する発光装置であることが好ましい。白色光を放射する発光装置は、発光装置から放射される光が、光色の黒体輻射軌跡からの偏差duv(Δuvとも言う)が-0.0200~0.0200であり、かつ色温度が5000K以上、30000K以下であることが好ましい。
 車両用表示灯に用いる発光装置は、特定の実施形態においては、赤色光を放射する発光装置であることが好ましい。該実施形態においては、例えば、発光装置が青色LEDチップから照射される青色光を吸収して赤色に発光することで、赤色光の車両用表示灯としてもよい。
 車両用表示灯は、車両のヘッドランプ、サイドランプ、バックランプ、ウインカー、ブレーキランプ、フォグランプなど、他の車両や人等に対して何らかの表示を行う目的で車両に備えられた照明を含む。
 以下、本発明のいくつかの具体的な実施形態を実施例により説明するが、本発明はその要旨を逸脱しない限り、下記のものに限定されるものではない。
{測定方法}
[粉末X線回折測定]
 粉末X線回折(XRD)は、粉末X線回折装置SmartLab 3(Rigaku社製)にて精密測定した。
 測定条件は以下の通りである。
CuKα管球使用
X線出力=45kV、200mA
発散スリット=自動
検出器=高速1次元X線検出器(D/teX Ultra 250)
捜査範囲2θ=5~95度
読み込み幅=0.02度
[反射率の測定]
 反射率スペクトルは、紫外可視分光光度計(日本分光社製、V-560)にて以下の測定条件の通り測定した。反射率は、発泡樹脂加工したPTFE製の標準反射板(ラブズフェア社製、スペクトラロン標準反射板)を100%として、発光ピーク波長から800nmの波長領域における反射率の最小値を求めた。
光源:重水素放電管(190~350nm)
  :タングステンよう素ランプ(330~900nm)
測定波長範囲:200~800nm
測定間隔:0.5nm
[発光スペクトルの測定]
 発光スペクトルは、分光蛍光光度計F-4500(Hitachi High Technology社製)にて以下の測定条件の通り測定した。
光源:キセノンランプ
励起波長:455nm
測定波長範囲:200~800nm
測定間隔:0.2nm
[量子効率の測定]
 量子効率は、量子効率測定システムQE-2100(Ohtsuka Electronics社製)にて以下の測定条件の通り測定した。
光源:キセノンランプ
励起波長:455nm
測定波長範囲:200~850nm
測定間隔:0.5nm
<蛍光体の特性評価>
 前述の蛍光体の製造方法に従って蛍光体を製造し、発光スペクトル及び反射率を測定した上で、発光ピーク波長から800nmまでの波長領域における反射率の最小値が本実施形態の要件を満たす蛍光体を選別することで、前記式[1]又は[2]で表される組成を有する結晶相を含む本実施形態の蛍光体に該当する赤色蛍光体(実施例1~2)を用意した。また、本実施形態との比較対象として、発光ピーク波長から800nmの波長領域における反射率の最小値が17.74%である比較例1の蛍光体を用意した。
 各蛍光体の組成、発光ピーク波長から800nmの波長領域における反射率の最小値、発光ピーク波長、スペクトル半値幅、及び比較例1の蛍光体の発光強度を1とした時の相対発光強度を、表1に示す。また、実施例1と比較例1の蛍光体のXRDパターン及び発光スペクトルをそれぞれ図1及び図2に示す。
 実施例1~2の蛍光体の空間群はP-1であり、発光ピーク波長は644nm付近であった。また、スペクトル半値幅はそれぞれ54nm、57nmと良好であり、かつ、発光強度が比較例1の蛍光体と比較して数倍又は10倍以上と大幅に向上しており、発光装置に適用した場合、変換効率が良好な発光装置を得られることが分かる。
Figure JPOXMLDOC01-appb-T000001
 次に、式[1]におけるMC元素(或いは式[2]におけるMD)の構成及び前記反射率を種々変更した蛍光体(実施例3~12)を用意した。各実施例の組成、発光ピーク波長から800nmの波長領域における反射率の最小値、発光ピーク波長、スペクトル半値幅、比較例1の発光強度を1とした時の相対発光強度、及び内部量子効率(iQE)を表1に示す。なお、実施例3~12の空間群はいずれもP-1であった。また、表2に、所定波長領域における反射率の最小値、及び各領域に係る反射率の最小値同士の差又は比率を示す。
 また、既存蛍光体の例を示す参考例1として、CaAlSiN:Euで表される組成を有する市販のCASN蛍光体(三菱ケミカル社製、BR-101/J)を用意した。参考例1の蛍光体の空間群はCmc2、発光ピーク波長は646nm、スペクトル半値幅は87nmであった。
Figure JPOXMLDOC01-appb-T000002
 実施例4~10の蛍光体のXRDパターンを図3に示す。実施例4~12の蛍光体の発光スペクトルを図4A~Bに示す。実施例4、5、9、及び参考例1の蛍光体の発光ピーク強度を1とした時の規格化発光スペクトルを図5に示す。また、各実施例及び比較例の蛍光体の反射率スペクトルを図6A~Dに、各実施例の蛍光体の相対発光強度と、前記反射率A~Cに係る反射率A-B、A-C、C/A、並びにB/Aとの関係を図7A~Dに示す。なお、参考例1の蛍光体の発光ピーク波長は646nm、スペクトル半値幅は87nmであった。
 上記実施例で例示された様に、本実施形態に係る蛍光体は、組成を調整することで用途に応じて様々な発光ピーク波長を実現できる。また、各実施例の蛍光体は比較例1の蛍光体と比べていずれも非常に高い発光強度を示した。
 また、各実施例の蛍光体は参考例1の蛍光体と比較してスペクトル半値幅が非常に狭く、この様な蛍光体を用いることで、演色性又は色再現度と変換効率が共に良好な発光装置を提供できる。
 次に、本実施形態の蛍光体を備える発光装置の特性に係るシミュレーションの結果S1~S9を記載する。
 第一の赤色蛍光体として発光ピーク波長620nmのSCASN蛍光体(三菱ケミカル社製、BR-102/D)と、第二の赤色蛍光体として下記表3に示す前記実施例及び比較例の蛍光体、又は発光ピーク波長646nmのCASN蛍光体(三菱ケミカル社製、BR-101/J)と、緑色蛍光体としてLuAG蛍光体(三菱ケミカル社製、BG-801/B4)とを用いる想定で、各蛍光体の発光スペクトル、内部量子効率(iQE)等の情報を元に、各蛍光体を備える白色LEDの発光スペクトルを導出した。全てのシミュレーションは、449nmの光を放出する青色LEDチップを仮定して実施した。また、平均演色評価数Raが90以上を満たしたうえで色度座標がプランク曲線上の3000Kの白色光の座標と一致する様に緑色蛍光体及び第一、第二の赤色蛍光体の量を調整し、特性を比較した。結果を図8A~Gに示す。また、各スペクトルから平均演色評価数Ra、赤色の演色評価数R9、並びに変換効率(LER)を求めた結果を表3に示す。
 なお、表3における「蛍光体質量 相対値」とは、各蛍光体の合計質量を100%とした際の、各蛍光体の質量割合であり、「緑」は前記LuAG蛍光体、「赤1」は前記第一の赤色蛍光体、「赤2」は前記第二の赤色蛍光体である。
Figure JPOXMLDOC01-appb-T000003
 表3に示す通り、各実施例の蛍光体を用いた発光装置は、比較例1の蛍光体を用いた場合と比べて平均演色評価数Raが飛躍的に改善した他、参考例1の蛍光体を用いた場合と比べてLER又は赤色の演色評価数R9、もしくはその両方が改善し、変換効率と演色性又は色再現性が共に優れる。なお、第二の赤色蛍光体に比較例1の蛍光体を用いた例では、赤色領域の発光強度が低いため、赤色の演色性を示すR9の値が非常に低く、正確に評価できなかった。
 以上示す通り、本実施形態によれば、発光ピーク波長が良好で、スペクトル半値幅が狭く、及び/又は発光強度の高い蛍光体を提供することができ、また、該蛍光体を備えることで、演色性又は色再現性が良好であり、かつ変換効率が良好な発光装置、照明装置、画像表示装置及び/又は車両用表示灯を提供することができる。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2022年1月20日出願の日本特許出願(特願2022-007317)および2022年1月20日出願の日本特許出願(特願2022-007319)に基づくものであり、その内容は本出願の中に参照として援用される。
 本発明の発光装置は、演色性又は色再現性が良好であり、かつ変換効率が良好であるため、照明装置、画像表示装置及び車両用表示灯に適用することができる。

Claims (28)

  1.  蛍光体を備える発光装置であって、
     前記蛍光体が下記式[1]で表される組成を有する結晶相を含み、かつ、
     前記蛍光体の所定の波長領域における反射率の最小値が20%以上であり、前記所定の波長領域は、前記蛍光体の発光ピーク波長から800nmまでの領域である、発光装置。
    ReMAMBMC   [1]
    (上記式[1]中、
     MAはSr、Ca、Ba、Na、K、Y、Gd、及びLaから成る群から選ばれる1種以上の元素を含み、
     MBはLi、Mg、及びZnから成る群から選ばれる1種以上の元素を含み、
     MCはAl、Si、Ga、In、及びScから成る群から選ばれる1種以上の元素を含み、XはF、Cl、Br、及びIから成る群から選ばれる1種以上の元素を含み、
     ReはEu、Ce、Pr、Tb、及びDyから成る群から選ばれる1種以上の元素を含み、
     a、b、c、d、e、xは、それぞれ、下記式を満たす。
      0.7≦a≦1.3
      0.7≦b≦1.3
      2.4≦c≦3.6
      3.2≦d≦4.8
      0.0≦e≦0.2
      0.0<x≦0.2)
  2.  蛍光体を備える発光装置であって、
     前記蛍光体が下記式[2]で表される組成を有する結晶相を含み、かつ、
     前記蛍光体の所定の波長領域における反射率の最小値が20%以上であり、前記所定の波長領域は、前記蛍光体の発光ピーク波長から800nmまでの領域である、発光装置。
     ReMAMB(MC’1-yMD   [2]
    (上記式[2]中、
     MAはSr、Ca、Ba、Na、K、Y、Gd、及びLaから成る群から選ばれる1種以上の元素を含み、
     MBはLi、Mg、及びZnから成る群から選ばれる1種以上の元素を含み、
     MC’はAlであり、
     MDはSi、Ga、In、及びScから成る群から選ばれる1種以上の元素を含み、
     XはF、Cl、Br、及びIから成る群から選ばれる1種以上の元素を含み、
     ReはEu、Ce、Pr、Tb、及びDyから成る群から選ばれる1種以上の元素を含み、
     a、b、c、d、e、x、yは、それぞれ、下記式を満たす。
      0.7≦a≦1.3
      0.7≦b≦1.3
      2.4≦c≦3.6
      3.2≦d≦4.8
      0.0≦e≦0.2
      0.0<x≦0.2
      0.0<y≦1.0)
  3.  前記式[1]又は式[2]において、MAの80モル%以上がSr、Ca及びBaから成る群より選ばれる1種以上の元素である、請求項1又は2に記載の発光装置。
  4.  前記式[1]又は式[2]において、MBの80モル%以上がLiである、請求項1又は2に記載の発光装置。
  5.  前記式[1]において、MCの80モル%以上がAl及びGaから成る群より選ばれる1種以上の元素から成る、請求項1に記載の発光装置。
  6.  前記式[1]において、MCの80モル%以上がAlである、請求項5に記載の発光装置。
  7.  前記式[2]において、MDの80モル%以上がGaである、請求項2に記載の発光装置。
  8.  前記式[1]又は式[2]において、Reの80モル%以上がEuである、請求項1又は2に記載の発光装置。
  9.  前記式[1]又は式[2]で表される組成を有する結晶相の空間群がP-1である、請求項1又は2に記載の発光装置。
  10.  前記蛍光体は、発光スペクトルにおいて620nm以上、660nm以下の範囲に発光ピーク波長を有する、請求項1又は2に記載の発光装置。
  11.  前記蛍光体は、発光スペクトルにおける半値幅(FWHM)が70nm以下である、請求項1又は2に記載の発光装置。
  12.  更に黄色蛍光体及び/又は緑色蛍光体を備える、請求項1又は2に記載の発光装置。
  13.  前記黄色蛍光体及び/又は緑色蛍光体は、ガーネット系蛍光体、シリケート系蛍光体、窒化物蛍光体、及び酸窒化物蛍光体のいずれか1種以上を含む、請求項12に記載の発光装置。
  14.  第1の発光体と、該第1の発光体からの光の照射によって可視光を発する第2の発光体とを備え、該第2の発光体が前記式[1]又は式[2]で表される組成を有する結晶相を含む蛍光体を含む、請求項1又は2に記載の発光装置。
  15.  請求項14に記載の発光装置を光源として備える照明装置。
  16.  請求項14に記載の発光装置を光源として備える画像表示装置。
  17.  請求項14に記載の発光装置を光源として備える車両用表示灯。
  18.  下記式[1]で表される組成を有する結晶相を含み、かつ、
     所定の波長領域における反射率の最小値が20%以上であり、前記所定の波長領域は、発光ピーク波長から800nmまでの領域である、蛍光体。
    ReMAMBMC   [1]
    (上記式[1]中、
     MAはSr、Ca、Ba、Na、K、Y、Gd、及びLaから成る群から選ばれる1種以上の元素を含み、
     MBはLi、Mg、及びZnから成る群から選ばれる1種以上の元素を含み、
     MCはAl、Si、Ga、In、及びScから成る群から選ばれる1種以上の元素を含み、XはF、Cl、Br、及びIから成る群から選ばれる1種以上の元素を含み、
     ReはEu、Ce、Pr、Tb、及びDyから成る群から選ばれる1種以上の元素を含み、
     a、b、c、d、e、xは、それぞれ、下記式を満たす。
      0.7≦a≦1.3
      0.7≦b≦1.3
      2.4≦c≦3.6
      3.2≦d≦4.8
      0.0≦e≦0.2
      0.0<x≦0.2)
  19.  下記式[2]で表される組成を有する結晶相を含み、かつ、
     所定の波長領域における反射率の最小値が20%以上であり、前記所定の波長領域は、発光ピーク波長から800nmまでの領域である、蛍光体。
     ReMAMB(MC’1-yMD   [2]
    (上記式[2]中、
     MAはSr、Ca、Ba、Na、K、Y、Gd、及びLaから成る群から選ばれる1種以上の元素を含み、
     MBはLi、Mg、及びZnから成る群から選ばれる1種以上の元素を含み、
     MC’はAlであり、
     MDはSi、Ga、In、及びScから成る群から選ばれる1種以上の元素を含み、
     XはF、Cl、Br、及びIから成る群から選ばれる1種以上の元素を含み、
     ReはEu、Ce、Pr、Tb、及びDyから成る群から選ばれる1種以上の元素を含み、
     a、b、c、d、e、x、yは、それぞれ、下記式を満たす。
      0.7≦a≦1.3
      0.7≦b≦1.3
      2.4≦c≦3.6
      3.2≦d≦4.8
      0.0≦e≦0.2
      0.0<x≦0.2
      0.0<y≦1.0)
  20.  前記式[1]又は式[2]において、MAの80モル%以上がSr、Ca及びBaから成る群より選ばれる1種以上の元素である、請求項18又は19に記載の蛍光体。
  21.  前記式[1]又は式[2]において、MBの80モル%以上がLiである、請求項18又は19に記載の蛍光体。
  22.  前記式[1]において、MCの80モル%以上がAl及びGaから成る群より選ばれる1種以上の元素から成る、請求項18に記載の蛍光体。
  23.  前記式[1]において、MCの80モル%以上がAlである、請求項22に記載の蛍光体。
  24.  前記式[2]において、MDの80モル%以上がGaである、請求項19に記載の蛍光体。
  25.  前記式[1]又は式[2]において、Reの80モル%以上がEuである、請求項18又は19に記載の蛍光体。
  26.  前記式[1]又は式[2]で表される組成を有する結晶相の空間群がP-1である、請求項18又は19に記載の蛍光体。
  27.  発光スペクトルにおいて620nm以上、660nm以下の範囲に発光ピーク波長を有する、請求項18又は19に記載の蛍光体。
  28.  発光スペクトルにおける半値幅(FWHM)が70nm以下である、請求項18又は19に記載の蛍光体。
PCT/JP2022/031466 2022-01-20 2022-08-19 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯 WO2023139823A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP22921977.9A EP4293732A4 (en) 2022-01-20 2022-08-19 PHOSPHOR, LIGHT-EMITTING DEVICE, LIGHTING DEVICE, IMAGE DISPLAY DEVICE AND INDICATOR LIGHT FOR VEHICLES
KR1020227045597A KR102599818B1 (ko) 2022-01-20 2022-08-19 형광체, 발광 장치, 조명 장치, 화상 표시 장치 및 차량용 표시등
CN202280005282.7A CN117043971A (zh) 2022-01-20 2022-08-19 荧光体、发光装置、照明装置、图像显示装置和车辆用显示灯
US17/931,641 US11655416B1 (en) 2022-01-20 2022-09-13 Phosphor, light-emitting device, illumination device, image display device, and indicator lamp for vehicle
TW111141187A TWI822425B (zh) 2022-01-20 2022-10-28 螢光體、發光裝置、照明裝置、圖像顯示裝置及車輛用顯示燈
US18/192,417 US11891554B2 (en) 2022-01-20 2023-03-29 Phosphor, light-emitting device, illumination device, image display device, and indicator lamp for vehicle
US18/192,776 US11891555B2 (en) 2022-01-20 2023-03-30 Phosphor, light-emitting device, illumination device, image display device, and indicator lamp for vehicle
US18/527,927 US20240117248A1 (en) 2022-01-20 2023-12-04 Phosphor, light-emitting device, illumination device, image display device, and indicator lamp for vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022007319A JP7311866B1 (ja) 2022-01-20 2022-01-20 蛍光体
JP2022007317 2022-01-20
JP2022-007317 2022-01-20
JP2022-007319 2022-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/931,641 Continuation US11655416B1 (en) 2022-01-20 2022-09-13 Phosphor, light-emitting device, illumination device, image display device, and indicator lamp for vehicle

Publications (1)

Publication Number Publication Date
WO2023139823A1 true WO2023139823A1 (ja) 2023-07-27

Family

ID=87348510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031466 WO2023139823A1 (ja) 2022-01-20 2022-08-19 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯

Country Status (1)

Country Link
WO (1) WO2023139823A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291352A (ja) 2006-03-27 2007-11-08 Mitsubishi Chemicals Corp 蛍光体及びそれを使用した発光装置
JP2017008130A (ja) * 2015-06-16 2017-01-12 日亜化学工業株式会社 窒化物蛍光体、その製造方法及び発光装置
JP6335884B2 (ja) 2012-05-22 2018-05-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 固体照明のための新規狭帯域赤色発光蛍光体のような新規蛍光体
US20190300788A1 (en) * 2018-03-27 2019-10-03 Bell Ceramics Co., Ltd. Red nitride phosphor and light-emitting device using the same
JP2022007319A (ja) 2020-06-26 2022-01-13 シャープ株式会社 動画像符号化装置、復号装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291352A (ja) 2006-03-27 2007-11-08 Mitsubishi Chemicals Corp 蛍光体及びそれを使用した発光装置
JP6335884B2 (ja) 2012-05-22 2018-05-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 固体照明のための新規狭帯域赤色発光蛍光体のような新規蛍光体
JP2017008130A (ja) * 2015-06-16 2017-01-12 日亜化学工業株式会社 窒化物蛍光体、その製造方法及び発光装置
US20190300788A1 (en) * 2018-03-27 2019-10-03 Bell Ceramics Co., Ltd. Red nitride phosphor and light-emitting device using the same
JP2022007319A (ja) 2020-06-26 2022-01-13 シャープ株式会社 動画像符号化装置、復号装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"International Tables for Crystallography", vol. A, SPACE-GROUP SYMMETRY
FANG MU-HUAI, MENG SHU-YI, MAJEWSKA NATALIA, LEŚNIEWSKI TADEUSZ, MAHLIK SEBASTIAN, GRINBERG MAREK, SHEU HWO-SHUENN, LIU RU-SHI: "Chemical Control of SrLi(Al 1– x Ga x ) 3 N 4 :Eu 2+ Red Phosphors at Extreme Conditions for Application in Light-Emitting Diodes", CHEMISTRY OF MATERIALS, AMERICAN CHEMICAL SOCIETY, US, vol. 31, no. 12, 25 June 2019 (2019-06-25), US , pages 4614 - 4618, XP093079711, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.9b01783 *
See also references of EP4293732A1
WEI-WEI HU, WEI-WEI JI, SAYED ALI KHAN, LU-YUAN HAO, XIN XU, LIANG-JUN YIN, SIMEON AGATHOPOULOS: "Preparation of Sr 1− x Ca x LiAl 3 N 4 :Eu 2+ Solid Solutions and Their Photoluminescence Properties", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, BLACKWELL PUBLISHING, MALDEN, MA., US, vol. 99, no. 10, 1 October 2016 (2016-10-01), US , pages 3273 - 3279, XP055435701, ISSN: 0002-7820, DOI: 10.1111/jace.14335 *

Similar Documents

Publication Publication Date Title
TWI822425B (zh) 螢光體、發光裝置、照明裝置、圖像顯示裝置及車輛用顯示燈
KR102599819B1 (ko) 형광체, 발광 장치, 조명 장치, 화상 표시 장치 및 차량용 표시등
US20160108311A1 (en) Phosphors
TWI673343B (zh) 螢光體、發光裝置、照明裝置及影像顯示裝置
JP6201848B2 (ja) 蛍光体、蛍光体含有組成物、発光装置、照明装置及び液晶表示装置
JP5402008B2 (ja) 蛍光体の製造方法及び蛍光体並びにこれを用いた発光装置
JP2010196049A (ja) 蛍光体及びその製造方法、蛍光体含有組成物、並びに、該蛍光体を用いた発光装置、画像表示装置及び照明装置
CN116987502A (zh) 荧光体、发光装置、照明装置、图像显示装置和车辆用显示灯
WO2023139823A1 (ja) 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯
WO2023139824A1 (ja) 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯
JP7253214B1 (ja) 発光装置、照明装置、画像表示装置及び車両用表示灯
JP7311866B1 (ja) 蛍光体
JP7311867B1 (ja) 蛍光体
JP7369410B1 (ja) 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯
JP7369409B1 (ja) 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯
WO2023063251A1 (ja) 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯
TWI841022B (zh) 螢光體、發光裝置、照明裝置、圖像顯示裝置及車輛用顯示燈
JP7464959B1 (ja) 発光装置、照明装置、画像表示装置及び車両用表示灯
JP2023057391A (ja) 蛍光体
CN116987501A (zh) 荧光体、发光装置、照明装置、图像显示装置和车辆用显示灯
CN117043971A (zh) 荧光体、发光装置、照明装置、图像显示装置和车辆用显示灯
CN118043979A (zh) 荧光体、发光装置、照明装置、图像显示装置和车辆用显示灯

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280005282.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022921977

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022921977

Country of ref document: EP

Effective date: 20230914