WO2023139316A1 - Tambour de frein comportant des ponts thermiques, et vehicule comprenant un tel tambour - Google Patents

Tambour de frein comportant des ponts thermiques, et vehicule comprenant un tel tambour Download PDF

Info

Publication number
WO2023139316A1
WO2023139316A1 PCT/FR2022/052130 FR2022052130W WO2023139316A1 WO 2023139316 A1 WO2023139316 A1 WO 2023139316A1 FR 2022052130 W FR2022052130 W FR 2022052130W WO 2023139316 A1 WO2023139316 A1 WO 2023139316A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
brake drum
thermal
bowl
thermal crown
Prior art date
Application number
PCT/FR2022/052130
Other languages
English (en)
Inventor
Vincent SCHANG
Christophe Briand
Original Assignee
Psa Automobiles Sa
Gmd Stamping
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Psa Automobiles Sa, Gmd Stamping filed Critical Psa Automobiles Sa
Publication of WO2023139316A1 publication Critical patent/WO2023139316A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/10Drums for externally- or internally-engaging brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/78Features relating to cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/1304Structure
    • F16D2065/132Structure layered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/1304Structure
    • F16D2065/1332Structure external ribs, e.g. for cooling or reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/78Features relating to cooling
    • F16D2065/785Heat insulation or reflection

Definitions

  • the present invention relates to a brake drum, in particular for braking a motor vehicle, as well as a method of manufacturing such a drum, and a motor vehicle equipped with this type of brake drum.
  • Motor vehicles generally include a braking system comprising a brake pedal acting on a master cylinder, to transmit, via hydraulic circuits, fluid pressure to the brakes which act on each wheel of the vehicle.
  • a known type of brake comprises a drum fixed to a hub rotating with the wheel, comprising an inner cylindrical surface receiving the pressure from two brake shoes which move apart from each other under the effect of a hydraulic control cylinder.
  • the brake drums of the prior art are generally 100% cast iron today because it is the most economical solution with the disadvantage of mass. We have now come to the end of the possible optimizations on a cast iron technology to reduce the mass. The transition to a two-material solution is inevitable to continue the path of lightening.
  • the main disadvantage of the brake drum is the mass. A brake drum is obtained by foundry processes and requires minimum thicknesses to ensure manufacturing and reduce defects during casting.
  • a problem that arises with brake drums of the bi-material type is that they involve significant mechanical and thermomechanical stresses. Indeed, the mechanical connection between the cylindrical sheet and the mass generally overmoulded, has an adhesion which is very rigid because of the overmoulding process giving a bonding of the materials. In use, high differential expansion during pronounced braking generates strong heating of the brake drum.
  • a first objective of the invention is to propose an optimization of the brake drum so as to limit the disadvantages of strong overheating which can prematurely deteriorate certain components of the brake drum. It is therefore necessary to find materials with high thermal capacity or high thermal conductivity associated with a large exchange surface with the outside to quickly evacuate the heat.
  • a second objective of the invention is to propose an improvement in the mechanical cohesion of the brake drum.
  • the invention proposes a brake drum comprising
  • a bowl comprising a circular part of cylindrical shape having inside a braking track, and a part forming a hub centered on an axis;
  • the brake drum comprises at least one thermal insulation zone between contact surfaces of the circular part of cylindrical shape of the bowl and of the ring or between contact surfaces of the ring (F) and of the thermal crown (DT). This is in particular one or more circumferential grooves forming said thermal insulation zone.
  • this ring is intended to evacuate the heat.
  • These grooves make it possible to reduce the heat exchange surface by contact, and to produce thermal bridges between said components.
  • the thermal bridges make it possible to create thermal insulation zones limiting the heating of the thermal crown, generally in aluminium, a material more sensitive to temperature than steel. This aspect is interesting for intensive and short braking (high power).
  • the thermal bridges therefore make it possible to reduce the thermal gradients and therefore the stresses thermomechanical in aluminum.
  • These circumferential grooves make it possible to regulate the heat flow or smooth the heat flow so that the temperature rise of the thermal crown is as homogeneous as possible.
  • the brake drum comprises several circumferential grooves between the contact surfaces of the ring and of the thermal crown.
  • these grooves make it possible to reduce the heat exchange surface by contact between these components.
  • the brake drum comprises shrinking and/or knurling between the contact surfaces of the ring and of the cylindrical part.
  • this improves the mechanical cohesion of the ring and the cylindrical part, and can allow the ring to be blocked in translation relative to the cylindrical part.
  • the brake drum comprises at least one tangential punch for holding at least two of its components.
  • this allows a stop in translation in the axial direction.
  • the brake drum comprises at least one local bowl fold holding the thermal crown, and/or at least one local ring fold projecting beyond an edge of the thermal crown, holding said crown.
  • this arrangement participates in the blocking of axial sliding of the thermal crown.
  • the thermal crown comprises at least one chamfer in an interlocking zone, the chamfer having an angle of less than 20° with respect to the axis of the bowl.
  • this configuration makes it easier to fit the thermal crown with the ring.
  • the thermal crown comprises radial fins, characterized in that the number of fins is a multiple of a prime number from 29 inclusive to 127 inclusive.
  • this configuration makes it possible to reduce squealing problems and brake noise.
  • the thermal crown comprises radial fins, the fins comprising a base having a radius of curvature.
  • this configuration makes it possible to reduce the mechanical stresses at the base of the fins.
  • the invention further relates to a motor vehicle comprising a brake drum according to the invention.
  • Another object of the invention relates to a method of manufacturing a brake drum comprising a bowl comprising a circular part of cylindrical shape comprising a braking track inside, and a part forming a hub centered on an axis;
  • the method being characterized by at least one step for producing a circumferential groove between contact surfaces of components of the brake drum.
  • the thermal crown surrounding the ring is produced by extrusion.
  • FIG.1 schematically illustrates an isometric view of a brake drum according to a preferred embodiment of the invention
  • FIG.2 schematically illustrates the fins of a thermal ring of the brake drum of Figure 1;
  • FIG.3 schematically illustrates a bowl rim of the brake drum of Figure 1;
  • FIG.4 schematically illustrates a punch for holding the brake drum of Figure 1;
  • FIG.5 schematically illustrates circumferential grooves on the ring
  • FIG.6 schematically illustrates details of the circumferential grooves of Figure 5 in a tangential view
  • FIG.7 schematically illustrates details of the circumferential grooves of Figures 5 and 6 in an isometric view
  • the invention relates to a brake drum.
  • the brake drum comprises a bowl B, can be made of stamped sheet metal, for example steel.
  • the bowl B comprises a cylindrical part B1, here centered on an axis of rotation A1.
  • the cylindrical part B1 has an inner surface forming a friction track, for example for brake pads which press on it.
  • the bowl B further comprises a part forming a hub B2.
  • the cylindrical part B1 is connected to the hub B2, for example by a connection comprising a substantially constant large radius on the outline of the drum.
  • the hub B2 may include holes receiving screws for fixing a wheel of the vehicle.
  • the hub is centered on the axis of rotation A1.
  • the bowl B can be made by stamping a steel, which can in particular be a stainless steel. Unlike the cast iron generally used, steel is simple, easy to handle and has a reduced thickness and therefore a reduced mass with almost identical cast iron/steel density, while making it possible to obtain a rigid part by a Young's modulus of steel greater than cast iron.
  • this allows a lightening of the brake drum, increasing the robustness of the concept.
  • these materials correspond to technical solutions for mass production.
  • the mass gain was calculated at at least 20%. This gain depends on the diameter of the drum.
  • the brake drum further comprises a ring F (or hoop) surrounding the cylindrical part B1.
  • the ring F is substantially held against the cylindrical part B1, that is to say that these parts are in direct or indirect contact with each other.
  • the ring F is fitted against the cylindrical part B1.
  • Ring F can be made of steel, which can in particular be stainless steel. The same material is preferably used for bowl B and ring F.
  • the brake drum further comprises a thermal crown DT (or heat sink) surrounding the ring F.
  • the thermal crown DT is substantially held against the ring F, that is to say that these parts are in direct or indirect contact with each other.
  • the DT thermal crown is circular. It is made of a material specifically designed to dissipate heat such as aluminum or an aluminum alloy.
  • the DT thermal crown can be produced by extrusion and machining of the inside diameter.
  • the DT thermal crown includes AR radial fins forming radial outward projections, further improving heat dissipation.
  • the fins can be formed by extrusion.
  • the AR fins comprise a base having a radius of curvature R2.
  • this configuration makes it possible to reduce the stresses at the base of the fins.
  • the minimum radius of curvature R2 is 2 mm.
  • the DT thermal crown can also be made in pressure or gravity casting, by machining, by extrusion, etc..., however the extrusion process makes it possible to produce a greater number of fins than a pressure or gravity casting process.
  • the exchange surface with the outside can be at least twice that of a traditional cast iron drum.
  • the thermal crown DT includes a specific number of radial fins AR, namely a multiple of a prime number from 29 to 127.
  • the number of fins AR is a number among the prime numbers between 25 and 135.
  • the number of fins can be chosen from 29, 31, 37, 41, 43, 47, 53, 59, 61 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131.
  • this configuration makes it possible to reduce the problems of squealing and brake noise.
  • the thermal crown DT comprises at least one chamfer C in a zone of interlocking with the ring F.
  • the chamfer C has an angle of less than about 20° with respect to the axis A1 of the bowl.
  • the chamfer C can be in two sections, a first of approximately 20° close to the contact zone, then a second section of an angle which may be greater than 20° away from the contact zone. This makes it possible to limit the extent of the chamfer C.
  • Double chamfer C makes it possible to clear in relation to the radii of curvature on the ring F and makes it easier to fit.
  • Such a chamfer can also be provided on ring F, in particular for interlocking with the thermal crown DT.
  • the chamfer C makes it easier to fit the thermal crown DT onto the ring F and/or to facilitate the fitting of the ring F onto the bowl B.
  • the fitting of the bowl B with the ring F is preferably done by the curvature between the cylindrical part B1 and the hub B2.
  • the brake drum comprises at least one thermal insulation zone between contact surfaces of its components.
  • This is in particular one or more circumferential grooves RC forming said thermal insulation zone.
  • the circumferential grooves RC make it possible to reduce the heat exchange surface by contact, and to create thermal bridges between said components.
  • Thermal bridges make it possible to create areas of thermal insulation thanks to the presence of air in the grooves and to limit overheating of the DT thermal crown in areas of high thermal stress.
  • the brake drum comprises at least one, preferably several circumferential grooves RC between the contact surfaces of the ring F and the cylindrical part B1.
  • this makes it possible to limit overheating during high-power braking with rapid temperature rises by a plurality of insulation zones.
  • the RC circumferential grooves make it possible to position and size thermal bridges at the desired locations and to better distribute the heat flow, without reducing the contact surfaces too much.
  • the circumferential grooves RC are formed in the contact surface of the ring F only with regard to the contact ring F - cylindrical part B1. Setting up the RC grooves on the F ring is preferred because there are more degrees of freedom compared to the B bowl or the B2 hub and it is easier to make the grooves on the F ring.
  • thermal bridge via the RC grooves makes it possible to limit the diffusion of heat in the thermal crown DT during heavy braking. Indeed, if the DT thermal crown is made of aluminium, it is not recommended for aluminum to reach temperatures above 300°C because its mechanical characteristics drop sharply.
  • Powerful braking provides a significant amount of calories in a short time and leads to a rapid rise in the temperature of the components, without the heat dissipation effect by convection having time to act.
  • the invention proposes making thermal bridges via the aforementioned circular grooves, between the components of the brake drum, so that the components most sensitive to temperature limit the increase in temperature.
  • These are, for example, circumferential RC grooves, the number and width of which is to be determined according to the functional need.
  • Grooves can be made on the other components to reduce the exchange surfaces, in particular between the DT thermal crown and the ring, or in the bowl.
  • the heat gain has been validated by finite element calculations and can be viewed in Figure 8.
  • the references F2, F1, C1 and C2 are respectively colder and less cold, less hot and hotter isothermal lines. A smoothing of the temperatures and a lower thermal gradient are thus obtained. Consequently, the thermomechanical stresses will be lower.
  • FIG. 8 clearly illustrates the thermal bridges around the circumferential grooves RC.
  • the insulating effect of the circumferential RC grooves is demonstrated because the heat is not transmitted in the thermal crown DT.
  • the heat transfer is channeled according to the dimensions of the grooves RC, and the heat flow is distributed between the ring F and the bowl B.
  • Certain additional aspects are provided to avoid relative axial slippage of the ring F with respect to the thermal crown DT and/or the cylindrical part B1. These aspects avoid mechanical or geometric impacts on the bowl B with a risk of deformation of the braking track. Indeed, the tolerances on the braking track are tight to avoid vibration problems. In operation and during braking, these solutions make it possible to limit thermal gradients and to have, as far as possible, homogeneous temperatures.
  • the brake drum comprises at least one tangential punch P for holding at least two of its components.
  • the number is preferably greater than 1 with a uniform circular distribution to avoid unbalance problems.
  • This is at least the ring F and the cylindrical part B1, as can be seen in figure 5.
  • the punch P is in the tangential direction and parallel to the axis A1.
  • the P punch is represented by a small disc on the edge of the component in question showing the crushed material.
  • the diameter of the punch depends on the sheet thickness. It is possible to cover the ring F and the thermal crown DT.
  • the punch P can be cylindrical or in another shape. Its basis may be different, for example oval or other, to improve the mechanical strength of the punch. It is of course possible to apply the punch P axially on the side of the hub or on the side of the opening of the bowl B.
  • the brake drum comprises at least one local fold RF of ring F, overflowing from an edge of the thermal crown DT, maintaining said crown DT in the axial direction.
  • the local fold RF of ring F which can be called lug RF, is visible in Figures 5 and 7.
  • a tab of the ring F is locally folded over an edge of the thermal ring DT on the side of the opening of the bowl B or preferably on the side of the hub as can be seen in Figure 5.
  • the thermal ring DT has straight edges and the base of the ring is of the same thickness as the cylindrical part B1. The material needed to achieve this fold is not very important because the ring F is against the thermal crown DT.
  • the number is greater than 1 with a uniform circular distribution to avoid unbalance problems.
  • the brake drum comprises at least one local fold RT of bowl B maintaining the thermal crown DT in the axial direction.
  • the local bowl fold RT is visible in figure 3.
  • This technical solution locally folds a tongue of the cylindrical part B1 onto an edge of the thermal crown DT on the side of the hub or preferably on the side of the opening of the bowl B. The material necessary to achieve this fold is greater than in the previous case.
  • the locking in translation of the ring F with respect to the bowl B is ensured by a hooping of the assembly, in other words a fitting with tightening.
  • This hooping can be increased by adding knurling to one of these two components.
  • the ring F and the cylindrical part B1 can be bonded with a high temperature glue, for example based on silicone or ceramic glue.
  • the glue has for example a resistance greater than 300°C.
  • the invention further relates to a motor vehicle comprising a brake drum as described above.
  • the invention further relates to a method of manufacturing a brake drum as described above.
  • the brake drum comprises a bowl B, a ring F and a thermal crown DT described above.
  • the method comprises at least one step for putting in place at least one circumferential groove RC between contact surfaces of components of the brake drum with respect to at least one zone of high thermal stresses. These are in particular the contact surfaces of the ring F and the cylindrical part B1.
  • the DT thermal crown is made by extruding a bar, then performing a cutting operation and then performing a machining step. Then comes a fitting of the ring F on the bowl B. Then we implement a fitting of the thermal crown DT on the assembly (ring F and bowl B). Then, we implement a folding of the lugs RF on the ring F for the stop in translation of the ring F on the bowl B, and/or a punching of the ring F and of the cylindrical part B1.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

L'invention concerne un tambour de frein comprenant un bol (B) comprenant une partie circulaire de forme cylindrique (B1) comportant à l'intérieur une piste de freinage, et une partie formant un moyeu (B2) centré sur un axe; un anneau (F) entourant la partie cylindrique (B1), maintenu contre la partie cylindrique (B1) et une couronne thermique (DT) entourant l'anneau (F), maintenue contre l'anneau (F), caractérisé en ce qu'il comprend au moins une rainure circonférentielle (RC) entre des surfaces de contact de ses composants (F, B1).

Description

DESCRIPTION
TITRE DE L’INVENTION : TAMBOUR DE FREIN COMPORTANT DES PONTS THERMIQUES, ET VEHICULE COMPRENANT UN TEL TAMBOUR
La présente invention revendique la priorité de la demande française N°2200474 déposée le 20.01.2022 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
La présente invention concerne un tambour de frein, en particulier pour le freinage d'un véhicule automobile, ainsi qu'un procédé de fabrication d'un tel tambour, et un véhicule automobile équipé de ce type de tambour de frein.
Les véhicules automobiles comportent généralement un système de freinage comprenant une pédale de frein agissant sur un maître-cylindre, pour transmettre, par des circuits hydrauliques, une pression de fluide vers des freins qui agissent sur chaque roue du véhicule.
Un type de frein connu comporte un tambour fixé à un moyeu tournant avec la roue, comprenant une surface cylindrique intérieure recevant la pression de deux segments de freins qui s'écartent l'un de l'autre sous l'effet d'un vérin hydraulique de commande.
Les tambours de freins de l’art antérieur sont généralement 100% en fonte aujourd’hui car c’est la solution la plus économique avec l’inconvénient de la masse. Nous sommes arrivés aujourd’hui au bout des optimisations possibles sur une technologie en fonte pour réduire la masse. Le passage à une solution bi- matière est inévitable pour continuer la piste de l’allègement. La masse présente le principal inconvénient du tambour de frein. Un tambour de frein est obtenu par procédés de fonderie et demande des épaisseurs minimales pour assurer la fabrication et réduire les défauts lors de la coulée.
La faible élasticité de la fonte rend un tambour de freins fragile au choc et cet autre inconvénient amène aussi à augmenter les épaisseurs et alourdir le composant.
Un problème qui se pose avec des tambours de frein de type bi-matière est qu’ils impliquent des contraintes mécaniques et thermomécaniques importantes. En effet, la liaison mécanique entre la tôle cylindrique et la masse thermique généralement surmoulée, comporte une adhérence qui est très rigide à cause du procédé de surmoulage donnant un collage des matériaux. En utilisation, des dilatations différentielles élevées lors des freinages prononcés, génèrent un fort échauffement du tambour de frein.
Un premier objectif de l’invention est de proposer une optimisation de tambour de frein de sorte à limiter les inconvénients des forts échauffements pouvant détériorer prématurément certains composants du tambour de frein. Il est donc nécessaire de trouver des matériaux à forte capacité thermique ou à conductivité thermique élevé associé à une surface d’échange importante avec l’extérieur pour évacuer rapidement la chaleur.
Un deuxième objectif de l’invention est de proposer une amélioration de la cohésion mécanique du tambour de frein.
Pour atteindre ces objectifs, l’invention propose un tambour de frein comprenant
- un bol comprenant une partie circulaire de forme cylindrique comportant à l'intérieur une piste de freinage, et une partie formant un moyeu centré sur un axe ;
- un anneau entourant la partie cylindrique, maintenu contre la partie cylindrique ; et
- une couronne thermique entourant l’anneau, maintenue contre l’anneau.
Selon un premier aspect le tambour de frein comprend au moins une zone d’isolation thermique entre des surfaces de contact de la partie circulaire de forme cylindrique du bol et de l’anneau ou entre des surfaces de contact de l’anneau (F) et de la couronne thermique (DT). Il s’agit en particulier d’une ou plusieurs rainures circonférentielles formant ladite zone d’isolation thermique.
Avantageusement, cette couronne a pour vocation d’évacuer la chaleur. Ces rainures permettent de réduire la surface d’échanges de chaleur par contact, et de réaliser des ponts thermiques entre lesdits composants. Les ponts thermiques permettent de créer des zones d’isolation thermique limitant les échauffements de la couronne thermique, généralement en aluminium, matériau plus sensible à la température que l’acier. Cet aspect est intéressant pour les freinages intensifs et courts (puissance élevée). Les ponts thermiques permettent donc de réduire les gradients thermiques et donc les contraintes thermomécaniques dans l’aluminium. Ces rainures circonférentielles permettent de réguler le flux thermique ou lisser le flux thermique afin que la montée en température de la couronne thermique soit la plus homogène possible.
Selon une variante, le tambour de frein comprend plusieurs rainures circonférentielles entre les surfaces de contact de l’anneau et de la couronne thermique. Avantageusement, ces rainures permettent de réduire la surface d’échange de chaleur par contact entre ces composants.
Selon une variante, le tambour de frein comprend un frettage et/ou moletage entre les surfaces de contact de l’anneau et de la partie cylindrique. Avantageusement, cela améliore la cohésion mécanique de l’anneau et de la partie cylindrique, et peut permettre un blocage en translation de l’anneau par rapport à la partie cylindrique.
Selon une variante, le tambour de frein comprend au moins un poinçon tangentiel de maintien d’au moins deux de ses composants. Avantageusement, cela permet un arrêt en translation dans le sens axial.
Selon une variante, le tambour de frein comprend au moins un repli local de bol maintenant la couronne thermique, et/ou au moins un repli local d’anneau débordant un bord de la couronne thermique, maintenant ladite couronne. Avantageusement, cet agencement participe au blocage de glissement axial de la couronne thermique.
Selon une variante, la couronne thermique comprend au moins un chanfrein dans une zone d’emboitement, le chanfrein présentant un angle de moins de 20° par rapport à l’axe du bol. Avantageusement, cette configuration permet de faciliter l’emmanchement de la couronne thermique avec l’anneau.
Selon une variante, la couronne thermique comprend des ailettes radiales, caractérisé en ce que le nombre d’ailettes est un multiple d’un nombre premier de 29 inclus à 127 inclus. Avantageusement, cette configuration permet de réduire les problèmes de crissement et les bruits de freins.
Selon une variante, la couronne thermique comprend des ailettes radiales, les ailettes comportant une base présentant un rayon de courbure. Avantageusement, cette configuration permet de réduire les contraintes mécaniques au niveau de la base des ailettes. L’invention concerne en outre un véhicule automobile comprenant un tambour de frein selon l’invention.
Un autre objet de l’invention concerne un procédé de fabrication d’un tambour de frein comprenant un bol comprenant une partie circulaire de forme cylindrique comportant à l'intérieur une piste de freinage, et une partie formant un moyeu centré sur un axe ;
- un anneau entourant la partie cylindrique, maintenu contre la partie cylindrique ; et
- une couronne thermique entourant l’anneau, maintenue contre l’anneau, le procédé étant caractérisé par au moins une étape pour réaliser une rainure circonférentielle entre des surfaces de contact de composants du tambour de frein.
Selon une variante, la couronne thermique entourant l’anneau est réalisée par extrusion.
L’invention sera davantage détaillée par la description de modes de réalisation non limitatifs, et sur la base des figures annexées illustrant des variantes de l’invention, dans lesquelles :
- [Fig.1 ] illustre schématiquement une vue isométrique d’un tambour de frein selon un mode de réalisation préféré de l’invention ;
- [Fig.2] illustre schématiquement des ailettes d’une couronne thermique du tambour de frein de la figure 1 ;
- [Fig.3] illustre schématiquement un rebord de bol du tambour de frein de la figure 1 ;
- [Fig.4] illustre schématiquement un poinçon de maintien du tambour de frein de la figure 1 ;
- [Fig.5] illustre schématiquement des rainures circonférentielles sur l’anneau ;
- [Fig.6] illustre schématiquement des détails des rainures circonférentielles de la figure 5 dans une vue tangentielle ;
- [Fig.7] illustre schématiquement des détails des rainures circonférentielles des figures 5 et 6 dans une vue isométrique ;
- [Fig.8] illustre schématiquement la répartition d’échauffements du tambour de frein en utilisation. L’invention concerne un tambour de frein. Le tambour de frein comporte un bol B, peut être en tôle emboutie, par exemple en acier. Le bol B comprend une partie cylindrique B1 , ici centrée sur un axe de rotation A1. La partie cylindrique B1 comporte une surface intérieure formant une piste de frottement par exemple pour des patins de freins qui viennent presser dessus.
Le bol B comprend en outre une partie formant un moyeu B2. En particulier, la partie cylindrique B1 est reliée au moyeu B2, par exemple par un raccordement comprenant un grand rayon sensiblement constant sur le contour du tambour. Le moyeu B2 peut comporter des perçages recevant des vis permettant de fixer une roue du véhicule. Le moyeu est centré sur l’axe de rotation A1 .
Le bol B peut être réalisé par emboutissage d'un acier, qui peut être en particulier un acier inoxydable. Contrairement à la fonte généralement utilisée, l’acier est simple, facile à manipuler et comporte, une épaisseur réduite et donc une masse réduite à densité quasi identique fonte/acier, tout en permettant d'obtenir une pièce rigide par un module d’Young de l’acier supérieur à la fonte.
Avantageusement, cela permet un allègement du tambour de frein, en augmentant la robustesse du concept. En outre, ces matériaux correspondent aux solutions techniques pour une production grande série. Le gain masse a été calculé à au moins 20%. Ce gain dépend du diamètre du tambour.
Le tambour de frein comprend en outre un anneau F (ou frette) entourant la partie cylindrique B1 . L’anneau F est sensiblement maintenu contre la partie cylindrique B1 , c'est-à-dire que ces pièces sont en contact directement ou indirectement l’une avec l’autre. Par exemple l’anneau F est emmanché contre la partie cylindrique B1 .
L’anneau F peut être réalisé en acier, qui peut être en particulier un acier inoxydable. Le même matériau est de préférence utilisé pour le bol B et l’anneau F.
Le tambour de frein comprend en outre une couronne thermique DT (ou dissipateur thermique) entourant l’anneau F. La couronne thermique DT est sensiblement maintenue contre l’anneau F, c'est-à-dire que ces pièces sont en contact directement ou indirectement l’une avec l’autre.
La couronne thermique DT est circulaire. Elle est réalisée dans un matériau spécifiquement désigné pour dissiper la chaleur tel que de l’aluminium ou un alliage d'aluminium. La couronne thermique DT peut être réalisée par extrusion et usinage du diamètre intérieur.
La couronne thermique DT comprend des ailettes radiales AR formant projections radiales vers l’extérieur, améliorant davantage la dissipation de chaleur. Les ailettes peuvent être formées par extrusion. De préférence, les ailettes AR comportent une base présentant un rayon de courbure R2. Avantageusement, cette configuration permet de réduire les contraintes à la base des ailettes. En particulier, le rayon de courbure R2 minimal est de 2 mm. La couronne thermique DT peut également être réalisée en fonderie sous pression ou gravitaire, par usinage, par extrusion, etc..., cependant le procédé d’extrusion permet de réaliser un plus grand nombre d’ailettes qu’un procédé de fonderie sous pression ou gravitaire.
Grâce aux ailettes radiales AR, la surface d’échange avec l’extérieur peut être au moins deux fois supérieure à celle d’un tambour traditionnel en fonte.
Selon une variante, la couronne thermique DT comprend un nombre d’ailettes radiales AR spécifique, à savoir un multiple d’un nombre premier de 29 à 127. En particulier, le nombre d’ailettes AR est un nombre parmi les nombres premiers compris entre 25 et 135. Par exemple, le nombre d’ailettes peut être choisi parmi 29, 31 , 37, 41 , 43, 47, 53, 59, 61 , 67, 71 , 73, 79, 83, 89, 97, 101 , 103, 107, 109, 113, 127, 131. Avantageusement, cette configuration permet de réduire les problèmes de crissement et bruits de freins.
Selon une variante, la couronne thermique DT comprend au moins un chanfrein C dans une zone d’emboitement avec l’anneau F. De préférence, le chanfrein C présente un angle de moins d’environ 20° par rapport à l’axe A1 du bol. Le chanfrein C peut être en deux sections une première d’environ 20° proche de la zone de contact, puis une deuxième section d’un angle pouvant être supérieur à 20° éloignée de la zone de contact. Cela permet de limiter l’étendue du chanfrein C. On pourra parler de double chanfrein. Le double chanfrein C permet de dégager par rapport aux rayons de courbure sur l’anneau F et permet de faciliter l’emmanchement.
On peut également prévoir un tel chanfrein sur l’anneau F, en particulier pour l’ emboîtement avec la couronne thermique DT.
Avantageusement, le chanfrein C permet de faciliter l’emmanchement de la couronne thermique DT sur l’anneau F et/ou de faciliter l’emmanchement de l’anneau F sur le bol B.
L’emboîtement du bol B avec l’anneau F se fait de préférence par la courbure entre la partie cylindrique B1 et le moyeu B2.
Selon l’invention, le tambour de frein comprend au moins une zone d’isolation thermique entre des surfaces de contact de ses composants. Il s’agit en particulier d’une ou plusieurs rainures circonférentielles RC formant ladite zone d’isolation thermique. Avantageusement, les rainures circonférentielles RC permettent de diminuer la surface d’échanges de chaleur par contact, et de réaliser des ponts thermiques entre lesdits composants. Les ponts thermiques permettent de créer des zones d’isolation thermique grâce à la présence de l’air dans les rainures et de limiter les échauffements de la couronne thermique DT dans des zones de fortes contraintes thermiques.
En particulier, le tambour de frein comprend au moins une, de préférence plusieurs rainures circonférentielles RC entre les surfaces de contact de l’anneau F et de la partie cylindrique B1 . Avantageusement, cela permet de limiter les échauffements lors de freinage à forte puissance avec des montées en température rapide par une pluralité de zones d’isolation.
Il est préférable de réduire autant que possible la perte de surface de contact aux extrémités pour éviter des points chauds et gradients thermiques sources de déformations et contraintes. Les rainures circonférentielles RC permettent de positionner et dimensionner des ponts thermiques aux endroits désirés et de mieux répartir le flux thermique, sans trop réduire les surfaces de contact.
On peut envisager des rainures partiellement aménagées d’un côté et de l’autre de la surface de contact en cause. De préférence, les rainures circonférentielles RC sont ménagées dans la surface de contact de l’anneau F uniquement pour ce qui concerne le contact anneau F - partie cylindrique B1. Mettre en place les rainures RC sur l’anneau F est préféré car il y a plus de degrés de liberté comparé au bol B où le moyeu B2 et il est plus facile de réaliser les rainures sur l’anneau F.
On peut en outre envisager une ou plusieurs rainures circonférentielles entre les surfaces de contact de l’anneau F et de la couronne thermique DT.
L’utilisation d’un pont thermique via les rainures RC permet de limiter la diffusion de chaleur dans la couronne thermique DT lors de freinages puissants. En effet, si la couronne thermique DT est en aluminium, il est déconseillé que l’aluminium atteigne des températures au-dessus de 300 °C car ses caractéristiques mécaniques chutent fortement.
Les freinages puissants apportent une quantité importante de calories en peu de temps et conduisent à une élévation rapide de la température des composants, sans que l’effet dissipation thermique par convection ait le temps d’agir.
Pour préserver la couronne thermique DT, l’invention propose de réaliser des ponts thermiques via les rainures circulaires susvisées, entre les composants du tambour de frein, pour que les composants les plus sensibles à la température limitent l’augmentation de la température. Il s’agit par exemple de rainures circonférentielles RC, dont le nombre et la largeur est à déterminer suivant le besoin fonctionnel.
Cette solution permet de protéger thermiquement la couronne thermique DT comprenant de l’aluminium, en plus de limiter le flux thermique en réduisant la surface d’échange par contact direct de la frette (anneau F) avec le bol B.
Des rainures peuvent être réalisées sur les autres composants pour réduire les surfaces d’échanges, notamment entre la couronne thermique DT et l’anneau, ou dans le bol.
L’avantage de ces rainures par rapport à une solution de réduction de la largeur L de la partie cylindrique B1 (ici de 46,5 mm) est de pouvoir :
- Positionner des ponts thermiques à des endroits où le flux thermique est maximal ;
- Ne pas réduire la largeur de la couronne thermique DT et conserver les propriétés correspondantes pour des cycles thermiques à forts niveaux énergétiques.
Le gain thermique a été validé par calculs par éléments finis et est visualisable en figure 8. Les références F2, F1 , C1 et C2 sont des lignes isothermes respectivement plus froide et moins froide, moins chaude et plus chaude. On obtient ainsi un lissage des températures et un gradient thermique plus faible. Par conséquent, les contraintes thermomécaniques seront moins élevées.
La figure 8 illustre bien les ponts thermiques autour des rainures circonférentielles RC. L’effet isolant des rainures circonférentielles RC est démontré car la chaleur n’est pas transmise dans la couronne thermique DT.
Ainsi, on canalise le transfert chaleur en fonction des dimensions des rainures RC, et on répartit le flux thermique entre l’anneau F et le bol B.
Certains aspects supplémentaires sont prévus pour éviter un glissement axial relatif de l’anneau F par rapport à la couronne thermique DT et/ou la partie cylindrique B1. Ces aspects évitent des impacts mécaniques ou géométriques sur le bol B avec un risque de déformation de la piste de freinage. En effet, les tolérances sur la piste de freinage sont serrées pour éviter les problèmes de vibration. En fonctionnement et lors de freinages, ces solutions permettent de limiter les gradients thermiques et d’avoir, autant que possible, des températures homogènes.
Ainsi, dans une variante, le tambour de frein comprend au moins un poinçon tangentiel P de maintien d’au moins deux de ses composants. Le nombre est de préférence supérieur à 1 avec une répartition circulaire uniforme pour éviter les problèmes de balourd. Il s’agit d’au moins l’anneau F et la partie cylindrique B1 , comme on peut le voir sur la figure 5. Le poinçon P est dans le sens tangentiel et parallèle à l’axe A1 . Le poinçon P est représenté par un petit disque sur le bord du composant en cause montrant la matière écrasée.
Plus précisément, il s’agit des emboutis locaux (par poinçonnage) répartis tangentiellement de manière uniforme et dont le nombre est dépendant de la tenue souhaitée. Le diamètre du poinçon dépend de l’épaisseur de tôle. Il est possible de couvrir l’anneau F et la couronne thermique DT. Le poinçon P peut être cylindrique ou dans une autre forme. Sa base peut être différente, par exemple ovale ou autre, pour améliorer la tenue mécanique du poinçon. Il est bien sûr possible d’appliquer axialement le poinçon P du côté du moyeu ou du côté de l’ouverture du bol B.
Selon une variante, le tambour de frein comprend au moins un repli local RF d’anneau F, débordant d’un bord de la couronne thermique DT, maintenant ladite couronne DT dans le sens axial. Le repli local RF d’anneau F, pouvant être appelé ergot RF, est visible sur les figures 5 et 7. Dans cette solution technique, on replie localement une languette de l’anneau F sur un bord de la couronne thermique DT du côté de l’ouverture du bol B ou de préférence du côté du moyeu comme on peut le voir sur la figure 5. Dans l’exemple illustré, la couronne thermique DT a des bords droits et la base de la couronne est de même épaisseur que la partie cylindrique B1. La matière nécessaire pour réaliser ce repli est peu importante car l’anneau F est contre la couronne thermique DT. Le nombre est supérieur à 1 avec une répartition circulaire uniforme pour éviter les problèmes de balourd.
Selon une variante, le tambour de frein comprend au moins un repli local RT de bol B maintenant la couronne thermique DT dans le sens axial. Le repli local RT de bol est visible sur la figure 3. Cette solution technique repli localement une languette de la partie cylindrique B1 sur un bord de la couronne thermique DT du côté du moyeu ou de préférence du côté de l’ouverture du bol B. La matière nécessaire pour réaliser ce repli est plus importante que dans le cas précédent.
Le blocage en translation de l’anneau F par rapport au bol B est assuré par un frettage de l’ensemble, autrement dit un emmanchement avec serrage. Ce frettage peut être accru par l’ajout de moletage sur l’un de ces deux composants.
Alternativement, un collage de l’anneau F et de la partie cylindrique B1 peut être réalisé avec une colle à haute température par exemple à base silicone ou colle céramique. La colle a par exemple une résistance supérieure à 300°C.
L’invention concerne en outre un véhicule automobile comprenant un tambour de frein tel que décrit précédemment. L’invention porte en outre un procédé de fabrication d’un tambour de frein tel que décrit précédemment.
Le tambour de frein comprend un bol B, un anneau F et une couronne thermique DT décrits précédemment. Le procédé comprend au moins une étape pour mettre en place au moins une rainure circonférentielle RC entre des surfaces de contact de composants du tambour de frein par rapport à au moins une zone de fortes contraintes thermiques. Il s’agit en particulier les surfaces de contact l’anneau F et de la partie cylindrique B1. La couronne thermique DT est réalisée en extrudant une barre, puis en réalisant une opération de tronçonnage et ensuite est effectuée une étape d’usinage. Ensuite intervient un emmanchement de l’anneau F sur le bol B. Puis on met en oeuvre un emmanchement de la couronne thermique DT sur l’ensemble (anneau F et bol B). Ensuite, on met en oeuvre un repli des ergots RF sur l’anneau F pour l’arrêt en translation de l’anneau F sur le bol B, et/ou un poinçonnage de l’anneau F et de la partie cylindrique B1 .
Enfin intervient l’usinage de finition de l’ensemble et de la piste de freinage.

Claims

REVENDICATIONS
1. Tambour de frein comprenant
- un bol (B) comprenant une partie circulaire de forme cylindrique (B1 ) comportant à l'intérieur une piste de freinage, et une partie formant un moyeu (B2) centré sur un axe (A1 ) ;
- un anneau (F) entourant la partie cylindrique (B1 ), maintenu contre la partie cylindrique (B1 ) ; et
- une couronne thermique (DT) entourant l’anneau (F), maintenue contre l’anneau (F), caractérisé en ce qu’il comprend au moins une zone d’isolation thermique, entre des surfaces de contact de la partie circulaire de forme cylindrique (B1 ) du bol et de l’anneau (F) ou entre des surfaces de contact de l’anneau (F) et de la couronne thermique (DT).
2. Tambour de frein selon la revendication 1 , caractérisé en ce qu’il comprend une ou plusieurs rainures circonférentielles (RC) formant ladite zone d’isolation thermique.
3. Tambour de frein selon la revendication 1 ou la revendication 2, caractérisé en ce qu’il comprend plusieurs rainures circonférentielles (RC) entre les surfaces de contact de l’anneau (F) et de la couronne thermique (DT).
4. Tambour de frein selon l’une quelconque des revendications 1 à 3, caractérisé en ce qu’il comprend un frettage et/ou un moletage entre les surfaces de contact de l’anneau (F) et de la partie cylindrique (B1 ).
5. Tambour de frein selon l’une quelconque des revendications 1 à 4, caractérisé en ce qu’il comprend au moins un poinçon tangentiel (P) de maintien d’au moins deux de ses composants (F, B1 ).
6. Tambour de frein selon l’une quelconque des revendications 1 à 5, caractérisé en ce qu’il comprend au moins un repli local de bol (RT) maintenant la couronne thermique (DT), et/ou au moins un repli local d’anneau (RF) débordant un bord de la couronne thermique (DT), maintenant ladite couronne (DT).
7. Tambour de frein selon l’une quelconque des revendications 1 à 6, dans lequel la couronne thermique (DT) comprend des ailettes radiales (AR), caractérisé en ce que les ailettes (AR) comportent une base présentant un rayon de courbure (R2).
8. Tambour de frein selon l’une quelconque des revendications 1 à 7, dans lequel la couronne thermique (DT) comprend des ailettes radiales (AR), caractérisé en ce que le nombre d’ailettes (AR) est un multiple d’un nombre premier de 29 inclus à 127 inclus.
9. Véhicule automobile comprenant un tambour de frein selon l’une quelconque des revendications 1 à 8.
10. Procédé de fabrication d’un tambour de frein comprenant
- un bol (B) comprenant une partie circulaire de forme cylindrique (B1 ) comportant à l'intérieur une piste de freinage, et une partie formant un moyeu (B2) centré sur un axe (A) ;
- un anneau (F) entourant la partie cylindrique (B1 ), maintenu contre la partie cylindrique (B1 ) ; et
- une couronne thermique (DT) entourant l’anneau (F), maintenue contre l’anneau (F), le procédé étant caractérisé par au moins une étape pour réaliser au moins une rainure circonférentielle (RC) entre des surfaces de contact de composants (F, B1 ) du tambour de frein.
PCT/FR2022/052130 2022-01-20 2022-11-21 Tambour de frein comportant des ponts thermiques, et vehicule comprenant un tel tambour WO2023139316A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2200474 2022-01-20
FR2200474A FR3131946B1 (fr) 2022-01-20 2022-01-20 Tambour de frein comportant des ponts thermiques, et vehicule comprenant un tel tambour

Publications (1)

Publication Number Publication Date
WO2023139316A1 true WO2023139316A1 (fr) 2023-07-27

Family

ID=81448616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/052130 WO2023139316A1 (fr) 2022-01-20 2022-11-21 Tambour de frein comportant des ponts thermiques, et vehicule comprenant un tel tambour

Country Status (2)

Country Link
FR (1) FR3131946B1 (fr)
WO (1) WO2023139316A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3035667A (en) * 1959-11-04 1962-05-22 Kelsey Hayes Co Brake drum
GB1260475A (en) * 1969-01-18 1972-01-19 Accessair Sa Improvements relating to frictional heat producing machine elements
FR2200474A1 (fr) 1972-09-19 1974-04-19 Aga Ab
JP3304733B2 (ja) * 1995-04-25 2002-07-22 日産自動車株式会社 制動装置用回転放熱板及びドラム式ブレーキ
FR2996891A1 (fr) * 2012-10-11 2014-04-18 Peugeot Citroen Automobiles Sa Tambour de frein comportant une couronne thermique avec un anneau de serrage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3035667A (en) * 1959-11-04 1962-05-22 Kelsey Hayes Co Brake drum
GB1260475A (en) * 1969-01-18 1972-01-19 Accessair Sa Improvements relating to frictional heat producing machine elements
FR2200474A1 (fr) 1972-09-19 1974-04-19 Aga Ab
JP3304733B2 (ja) * 1995-04-25 2002-07-22 日産自動車株式会社 制動装置用回転放熱板及びドラム式ブレーキ
FR2996891A1 (fr) * 2012-10-11 2014-04-18 Peugeot Citroen Automobiles Sa Tambour de frein comportant une couronne thermique avec un anneau de serrage

Also Published As

Publication number Publication date
FR3131946B1 (fr) 2023-12-08
FR3131946A1 (fr) 2023-07-21

Similar Documents

Publication Publication Date Title
FR2489754A1 (fr) Ensemble de moyeu de roue pour vehicule automobile
WO2012052647A1 (fr) Tambour de frein, en particulier pour vehicule automobile, comportant un surmoulage
FR2811044A1 (fr) Plateau de pression pour un embrayage a friction et embrayage equipe d'un tel plateau de pression
EP1016803B1 (fr) Méthode de fabrication d'un disque de frein ventilé
FR2732427A1 (fr) Appareil d'accouplement hydrocinetique, notamment pour vehicule automobile
WO2023139316A1 (fr) Tambour de frein comportant des ponts thermiques, et vehicule comprenant un tel tambour
EP0166640A1 (fr) Disque de friction d'embrayage de type progressif à construction simplifiée
FR3001015A1 (fr) Disque de frein comportant une couronne surmoulee sur le moyeu en tole
WO2008053126A2 (fr) Disque de friction d'embrayage
EP1358412B1 (fr) Disque de friction et procede de fabrication d'une garniture le composant
CA2198566C (fr) Cylindre de coulee d'une installation de coulee continue sur un ou entre deux cylindres
EP0650789A1 (fr) Cylindre de coulée d'une installation de coulée continue sur un ou entre deux cylindres
FR2996891A1 (fr) Tambour de frein comportant une couronne thermique avec un anneau de serrage
EP2097652B1 (fr) Disque de friction d'embrayage
EP2893622A1 (fr) Rotor de ralentisseur électromagnétique pour véhicule, ralentisseur comprenant un tel rotor et véhicule muni d'un tel ralentisseur
FR2724434A1 (fr) Volant amortisseur, notamment pour vehicule automobile
FR2830914A1 (fr) Tambour de freinage de masse reduite et a performances augmentees
FR2999672A1 (fr) Tambour de frein comportant une couronne thermique realisee par extrusion d'un alliage aluminium
EP0506496B1 (fr) Cage à éléments assemblés, notamment pour roulements à haute température de fonctionnement
EP4025802B1 (fr) Couronne de friction pour un tambour de frein composite, méthode et système pour sa fabrication, et méthode de fabrication d'un tambour de frein composite
FR2780463A1 (fr) Procede d'assemblage d'un volant d'inertie d'un embrayage a un carter d'embrayage
FR2878593A1 (fr) Disque monobloc de frein a disque, frein a disque pour vehicule automobile et moule pour disque monobloc de frein a disque
EP3175135A1 (fr) Tambour de frein comportant une masse annulaire espacée de la couronne de frottement
FR2612585A1 (fr) Ensemble de palier de debrayage pour un embrayage de vehicule automobile
FR3012855A1 (fr) Tambour de frein comportant une masse thermique annulaire rapportee, qui est serree entre deux rebords

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22826132

Country of ref document: EP

Kind code of ref document: A1