WO2023138251A1 - 光刻设备、气浴装置及其气浴发生器 - Google Patents

光刻设备、气浴装置及其气浴发生器 Download PDF

Info

Publication number
WO2023138251A1
WO2023138251A1 PCT/CN2022/137428 CN2022137428W WO2023138251A1 WO 2023138251 A1 WO2023138251 A1 WO 2023138251A1 CN 2022137428 W CN2022137428 W CN 2022137428W WO 2023138251 A1 WO2023138251 A1 WO 2023138251A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
gas
bath generator
bath
annular
Prior art date
Application number
PCT/CN2022/137428
Other languages
English (en)
French (fr)
Inventor
王魁波
吴晓斌
韩晓泉
罗艳
沙鹏飞
李慧
孙家政
谢婉露
马赫
谭方蕊
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Publication of WO2023138251A1 publication Critical patent/WO2023138251A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps

Definitions

  • the invention relates to the technical field of photolithography, in particular to a photolithography equipment, an air bath device and an air bath generator thereof.
  • Lithography technology is one of the key technologies in the manufacture of very large scale integrated circuits. Whether it is projection lithography, proximity lithography or contact lithography, etc., lithography equipment has particularly strict requirements on the working environment, mainly in the prevention of particle pollution and gas pollution in the microenvironment of silicon wafers. Particle pollutants and gas pollutants in lithography equipment will reduce the lithography yield and shorten the life of optical components.
  • the purpose of the present invention is to at least solve the problem of how to reduce the gas pollution and particle pollution in the microenvironment of the silicon wafer in the lithography equipment. This purpose is achieved through the following technical solutions:
  • a first aspect of the invention proposes a gas bath generator comprising:
  • a closed ring body the closed ring body is arranged around the working area, and the inside of the closed ring body forms an annular flow channel, and the closed ring body is also provided with circumferentially distributed air outlets communicating with the annular flow channel, and the air outlets generate a closed air flow layer distributed around the working area.
  • the air outlet generates a closed air flow layer distributed around the working area, and the closed air flow layer prevents external particle pollutants and gas pollutants from entering the working area across the barrier.
  • the gas bath generator is arranged around the exposure area of the lithography equipment along the circumference, forming a circle of closed air flow layers isolated from the outside world around the exposure area, which can well reduce gas and particle pollution in the microenvironment of silicon wafers in the lithography equipment.
  • gas bath generator according to the present invention can also have the following additional technical features:
  • the air bath generator is in the shape of a ring, the gas outlet is arranged on the top of the air bath generator, and the side wall of the air bath generator is provided with at least one air inlet connected to a gas source.
  • the apertures and/or opening densities of the air outlets at different positions are different; the apertures of the air outlets close to the air inlet are smaller than the apertures of the air outlets far away from the air inlet; the aperture density of the air outlets near the air inlet is smaller than the aperture density of the air outlets far away from the air inlet.
  • At least one annular baffle is installed inside the air bath generator, and there is a communication gap between the top or bottom of each annular baffle and the air bath generator.
  • the plurality of flow gaps formed by the plurality of annular baffles radially divide the annular flow channel of the gas bath generator to form an S-shaped channel, the air inlet is located upstream of the S-shaped channel, and the gas outlet is located downstream of the S-shaped channel.
  • At least one annular perforated plate is installed on the annular flow channel of the gas bath generator, and the at least one annular perforated plate is arranged at intervals along the radial direction of the annular flow channel.
  • annular porous medium is installed between the inner top surface and the inner bottom surface of the air bath generator.
  • the present invention also provides a gas bath device, comprising: the gas bath generator as described above; and a gas cylinder, a gas pretreatment system, wherein the gas cylinder, the gas pretreatment system, and the gas bath generator are connected in sequence.
  • the gas pretreatment system includes a purifier, a flow controller and a temperature control device communicated in sequence, the purifier communicates with the gas cylinder, and the temperature control device communicates with the air inlet of the gas bath generator.
  • the air bath device according to the embodiment of the present invention has the same advantages as the air bath generator of the above air bath device, which will not be repeated here.
  • the present invention also provides a lithography equipment, comprising: the air bath device as described above; and an exposure device, a silicon wafer, a wafer stage, and a silicon wafer stage, wherein the exposure device, the silicon wafer, the wafer stage, and the silicon wafer stage are sequentially arranged from top to bottom, and an exposure area is formed between the exposure device and the silicon wafer, and an air bath generator of the air bath device is arranged around the exposure area.
  • the air outlet of the air bath generator generates an upwardly flowing first laminar airflow
  • the first laminar airflow hits the bottom surface of the exposure device to form a second laminar airflow flowing from the inside out
  • the first laminar airflow and the second laminar airflow form a closed airflow layer surrounding the exposure area between the air bath generator and the exposure device.
  • the clean gas flows through the air inlet, the annular flow channel, and the gas outlet successively to generate upwardly flowing, uniform and stable circles of the first laminar airflow.
  • the first laminar airflow hits the bottom surface of the exposure device in the exposure area to form a uniform and stable second laminar airflow from inside to outside. Due to the effects of the uniform and stable first laminar airflow and the uniform and stable second laminar airflow, the first laminar airflow and the second laminar airflow constitute a high-pressure space with a closed shape and a constant shape, and external particle pollutants and gas pollutants cannot cross the screen.
  • the barrier enters into the microenvironment of the silicon wafer, which greatly reduces the gas and particle pollution in the microenvironment of the silicon wafer in the lithography equipment.
  • FIG. 1 schematically shows a schematic structural diagram of a lithographic apparatus according to an embodiment of the present invention
  • Fig. 2 schematically shows a top view of a gas bath generator according to an embodiment of the present invention
  • Fig. 3 schematically shows the internal structure diagram of the gas bath generator according to Embodiment 1 of the present invention
  • Fig. 4 schematically shows the internal structure diagram of the gas bath generator according to Embodiment 2 of the present invention.
  • Fig. 5 schematically shows the internal structure diagram of the gas bath generator according to Embodiment 3 of the present invention.
  • Fig. 6 schematically shows the internal structure diagram of the gas bath generator according to Embodiment 4 of the present invention.
  • Fig. 7 schematically shows the internal structure diagram of the gas bath generator according to Embodiment 5 of the present invention.
  • Fig. 8 schematically shows the internal structure diagram of the gas bath generator according to Embodiment 6 of the present invention.
  • Fig. 9 schematically shows the internal structure of the gas bath generator according to Embodiment 7 of the present invention.
  • 1 is an air bath generator, 11 is an air inlet, 12 is an air outlet, 13 is an installation ear, 14 is a first laminar air flow, 15 is a second laminar air flow, 16 is an annular baffle, 17 is an S-shaped channel, 18 is an annular porous plate, and 19 is an annular porous medium;
  • 2 is an exposure device, and 21 is a projection objective lens
  • 71 is a purifier
  • 72 is a flow controller
  • 73 is a temperature control device.
  • first, second, third etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
  • spatial relative terms may be used herein to describe the relationship of one element or feature as shown in the figures relative to another element or feature, such as “inner”, “outer”, “inner”, “outer”, “below”, “below”, “above”, “above” and the like.
  • Such spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” or “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below.
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • a gas bath generator 1 comprising: a closed ring body, the closed ring body is arranged around the working area, and the inside of the closed ring body forms an annular flow channel, and the closed ring body is also provided with circumferentially distributed air outlets 12 communicating with the annular flow channel, and the air outlets 12 generate a closed air flow layer distributed around the working area.
  • the gas outlet 12 generates a closed air flow layer distributed around the working area.
  • the closed air flow layer prevents external particulate pollutants and gas pollutants from entering the working area across the barrier.
  • the gas bath generator is arranged around the exposure area of the lithography equipment in the circumferential direction, forming a circle of closed air flow layers isolated from the outside world around the exposure area, which greatly reduces gas and particle pollution in the microenvironment of the silicon wafer in the lithography equipment.
  • the gas bath generator 1 is circular, the gas outlet 12 is arranged on the top of the gas bath generator 1, and the side wall of the gas bath generator 1 is provided with at least one gas inlet 11 connected to the gas source.
  • the outer surface of the air bath generator 1 is also provided with mounting ears 13; the air bath generator 1 is installed on the top surface of the silicon wafer stage 5 or the top surface of the wafer stage 4 through the mounting ears 13. It is worth noting that the air bath generator 1 can be installed on the top surface of the silicon wafer stage 5 or the top surface of the wafer stage 4, as long as the air outlet can generate a closed air flow layer distributed around the working area.
  • the air bath generator 1 has one or a limited number of air inlets 11, and the air bath generator 1 is circular and has a narrow and long ring structure, the gas flow path is different from the air inlet 11 to the air outlet 12 at different positions in the direction of the annular flow channel, so different positions of the air outlet 12 will form different internal air pressures, which will lead to poor uniformity of the closed air flow layer flowing out of the air outlet 12.
  • the invention also provides several embodiments of the internal structure of the gas bath generator 1 .
  • the air bath generator 1 can also be set in a rectangular ring or elliptical ring structure, and such structural adjustments all belong to the scope of protection of the present application.
  • the opening of the air outlet 12 can be designed to be uneven in the ring direction.
  • the pore diameter and/or opening density of the air outlet 12 at different positions are different.
  • the density is less than the open -hole density of the air outlet 12 away from the air outlet 11.
  • the aperture of the air outlet 12 near the air inlet 11 is smaller than the aperture of the air outlet 12 far away from the air inlet 11;
  • annular baffle 16 is installed on the inner top surface of the gas bath generator 1, and there is a circulation gap between the annular baffle 16 and the inner bottom surface of the air bath generator 1.
  • the circulation gap is to facilitate the passage of the working gas.
  • the value range of the circulation gap is several microns to several millimeters.
  • the circulation gap can be a constant value or a variable value in the annular direction.
  • the annular baffle 16 is used to block the air flow.
  • the gas coming in from the air inlet 11 first passes through the barrier of the annular baffle 16, and then flows out from the circulation gap between the annular baffle 16 and the gas bath generator 1 into the space where the gas outlet 12 is located. Due to the blocking effect of the annular baffle 16, the uneven air pressure in the space where the air inlet 11 is located can be well homogenized, so that the internal air pressure in the space where the air outlet 12 is located tends to be uniform, thereby ensuring that the closed air flow layer coming out from the air outlet 12 is uniform and smooth. stable.
  • the opening arrangement of the air outlet 12 can also be designed to be uneven or uniform in the annular direction.
  • the opening arrangement of the air outlet 12 can also be designed to be uneven in the annular direction. ;
  • the opening density of the air outlet 12 close to the air inlet 11 is smaller than the opening density of the air outlet 12 far away from the air inlet 11 .
  • annular baffle 16 is installed on the inner bottom surface of the gas bath generator 1, and there is a circulation gap between the annular baffle 16 and the inner top surface of the air bath generator 1.
  • the circulation gap is to facilitate the passage of the working gas.
  • the value range of the circulation gap is several microns to several millimeters.
  • the circulation gap can be a constant value or a variable value in the annular direction.
  • the opening arrangement of the air outlet 12 can also be designed to be uneven or uniform in the annular direction.
  • the opening arrangement of the air outlet 12 can also be designed to be uneven in the annular direction.
  • the apertures and/or opening densities of the air outlets 12 at different positions are different. The aperture is smaller; the opening density of the air outlet 12 close to the air inlet 11 is smaller than the opening density of the air outlet 12 far away from the air inlet 11 .
  • a plurality of annular baffles 16 are alternately installed on the inner bottom surface and the inner top surface of the air bath generator 1, and the plurality of circulation gaps formed by the plurality of annular baffles 16 separate the annular flow channel of the air bath generator 1 radially to form an S-shaped channel 17.
  • the air inlet 11 is located upstream of the S-shaped channel 17, and the gas outlet 12 is located downstream of the S-shaped channel 17.
  • a plurality of annular baffles 16 are alternately installed on the inner bottom surface and the inner top surface of the air bath generator 1. Compared with one annular baffle 16, it can better stabilize the internal air pressure in the space where the air outlet 12 is located, and has a stronger homogenization effect on the air pressure.
  • the number of annular baffles 16 is not limited here.
  • the opening arrangement of the air outlet 12 can also be designed to be uneven or uniform in the annular direction.
  • the opening arrangement of the air outlet 12 can also be designed to be uneven in the annular direction.
  • the apertures and/or opening densities of the air outlets 12 at different positions are different. The aperture is smaller; the opening density of the air outlet 12 close to the air inlet 11 is smaller than the opening density of the air outlet 12 far away from the air inlet 11 .
  • annular perforated plate 18 is installed between the inner top surface and the inner bottom surface of the air bath generator 1.
  • the aperture value range of the annular perforated plate 18 is several microns to several millimeters, and the value range of the aperture can be a constant value or a variable value in the annular direction.
  • the annular perforated plate 18 is also used to block the air flow.
  • the gas coming in from the air inlet 11 is blocked by the annular perforated plate 18 at first, and then flows out from the through hole of the annular perforated plate 18 into the space where the air outlet 12 is located. Due to the blocking effect of the annular perforated plate 18, the uneven air pressure in the space where the air inlet 11 is located can be well homogenized, so that the internal air pressure in the space where the air outlet 12 is located tends to be uniform, thereby ensuring that the closed air flow layer coming out from the air outlet 12 is uniform and stable.
  • the opening arrangement of the air outlet 12 can also be designed to be uneven or uniform in the annular direction.
  • the opening arrangement of the air outlet 12 can also be designed to be uneven in the annular direction. ;
  • the opening density of the air outlet 12 close to the air inlet 11 is smaller than the opening density of the air outlet 12 far away from the air inlet 11 .
  • a plurality of annular perforated plates 18 are installed between the inner top surface and the inner bottom surface of the gas bath generator 1, and the annular perforated plates 18 are arranged at radial intervals along the annular flow channel, the aperture value range of the annular perforated plate 18 is several micrometers to several millimeters, and the value range of the aperture diameter can be a constant value or a variable value in the annular direction.
  • the opening arrangement of the air outlet 12 can also be designed to be uneven or uniform in the annular direction.
  • the opening arrangement of the air outlet 12 can also be designed to be uneven in the annular direction.
  • the apertures and/or opening densities of the air outlets 12 at different positions are different. The aperture is smaller; the opening density of the air outlet 12 close to the air inlet 11 is smaller than the opening density of the air outlet 12 far away from the air inlet 11 .
  • annular porous medium 19 is installed between the inner top surface and the inner bottom surface of the air bath generator 1 .
  • the annular porous medium 19 is also used to block the air flow.
  • the gas that comes in from the air inlet 11 first passes through the barrier of the annular porous medium 19, and then flows out from the through hole of the annular porous medium 19 into the space where the air outlet 12 is located. Due to the blocking effect of the annular porous medium 19, the uneven air pressure in the space where the air inlet 11 is located can be well homogenized, so that the internal air pressure in the space where the air outlet 12 is located tends to be uniform.
  • the opening arrangement of the air outlet 12 can also be designed to be uneven or uniform in the annular direction.
  • the opening arrangement of the air outlet 12 can also be designed to be uneven in the annular direction. ;
  • the opening density of the air outlet 12 close to the air inlet 11 is smaller than the opening density of the air outlet 12 far away from the air inlet 11 .
  • the material of the annular porous medium 19 is metal foam, porous polytetrafluoroethylene and the like.
  • the present invention also provides an air bath device, comprising: the above-mentioned air bath generator 1;
  • the gas cylinder 6, the gas pretreatment system, and the gas cylinder 6, the gas pretreatment system, and the gas bath generator 1 are connected in sequence.
  • the gas pretreatment system includes a purifier 71, a flow controller 72 and a temperature control device 73 connected in sequence, the purifier 71 is connected to the gas cylinder 6, and the temperature control device 73 is connected to the air inlet of the gas bath generator 1.
  • the gas cylinder 6 is used to provide clean working gas; the gas pretreatment system is used to pretreat the working gas, including but not limited to gas purification, particle filtration, flow control and temperature control type pretreatment functions.
  • the working gas in the gas cylinder 6 is preferably nitrogen, followed by dry air or other inert gases;
  • the gas pretreatment system includes a purifier 71, a flow controller 72 and a temperature control device 73, wherein the purifier 71 can filter out particles in the working gas, and absorb polluting gases such as water and hydrocarbons, so as to prevent polluting gases from polluting the silicon wafer 3;
  • the flow controller 72 is used to precisely control the gas flow rate, and provide a basis for the uniformity and stability of the closed air flow layer.
  • the temperature control device 73 controls the temperature of the working gas to ensure that it enters the gas bath
  • the working gas of the generator 1 has a constant temperature. It should be noted that the structures of the purifier 71 , the flow controller 72 and the temperature control device 73 all belong to the prior art in this field, and will not be repeated here.
  • the air bath device according to the embodiment of the present invention has the same advantages as the air bath generator 1 of the above air bath device, which will not be repeated here.
  • the present invention also provides a lithography equipment, comprising: the above-mentioned air bath device;
  • the exposure device 2, the silicon wafer 3, the wafer stage 4 and the silicon wafer stage 5, the exposure device 2, the silicon wafer 3, the wafer stage 4 and the silicon wafer stage 5 are sequentially arranged from top to bottom, and an exposure area is formed between the exposure device 2 and the silicon wafer 3, and the gas bath generator 1 of the air bath device is arranged around the exposure area.
  • the exposure device 2 mainly generates a light beam with a desired pattern, and performs pattern processing on the surface of the silicon wafer 3.
  • photolithography equipment can be divided into three categories: proximity photolithography, contact photolithography, direct writing photolithography, and projection photolithography. Proximity and contact copy the pattern on the mask by infinitely approaching; projection lithography uses projection objective lens 21 to project the structure on the mask onto the surface of the substrate; direct writing focuses the light beam to one point, and realizes arbitrary graphics processing through moving workpiece table or lens scanning, and optical projection lithography has always been the mainstream lithography technology for integrated circuits due to its high efficiency and non-destructive advantages. Therefore, for projection lithography, the bottom of exposure device 2 is projection objective 21; for the mask.
  • the air outlet 12 of the air bath generator 1 generates an upwardly flowing first laminar airflow 14, and the first laminar airflow 14 collides with the bottom surface of the exposure device 2 to form a second laminar airflow 15 flowing from the inside out, and the first laminar airflow 14 and the second laminar airflow 15 form a closed airflow layer around the exposure area between the air bath generator 1 and the exposure device 2.
  • the first laminar airflow 14 and the second laminar airflow 15 must be uniform and stable. Since the air bath generator 1 is sleeved on the wafer stage 4 or the silicon wafer stage 5, the microenvironment of the silicon wafer positioned inside the air bath generator 1 will form a relatively high-pressure zone, and the second laminar airflow 15 will flow from the inside to the outside instead of from the outside to the inside; The internal irregular movement of the first laminar airflow 14 and the second laminar airflow 15 leads to turbulent flow of the internal airflow and the generation of a large number of vortices, which in turn causes the first laminar airflow 14 and the second laminar airflow 15 to flow toward the microenvironment of the silicon wafer inside the gas bath generator 1, eventually driving the gaseous pollutants and particle pollutants to the microenvironment of the silicon wafer, and even causing the problem of aggravated pollution.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本发明提供一种光刻设备、气浴装置及其气浴发生器,其中气浴发生器包括封闭环体,所述封闭环体围绕工作区域设置,且所述封闭环体的内部形成环形流道,所述封闭环体上还设置有与所述环形流道连通的周向分布的出气口,所述出气口产生围绕所述工作区域分布的封闭气流层。本发明提供的气浴发生器能够用于光刻设备,并沿周向围绕光刻设备曝光区域设置,在曝光区域的周边形成一圈与外界隔离的封闭气流层,解决了如何降低光刻设备内位于曝光区域的硅片微环境的气体污染和颗粒污染的问题。

Description

光刻设备、气浴装置及其气浴发生器 技术领域
本发明涉及光刻技术领域,尤其涉及一种光刻设备、气浴装置及其气浴发生器。
背景技术
本部分提供的仅仅是与本公开相关的背景信息,其并不必然是现有技术。
光刻技术是极大规模集成电路制造的关键技术之一,无论是投影式光刻、接近式光刻还是接触式光刻等等,光刻设备对工作环境的要求特别苛刻,主要表现在防止硅片微环境的颗粒污染和气体污染,光刻设备内的颗粒污染物和气体污染物都会降低光刻良率,缩短光学元件寿命。
因此,需要对光刻设备内硅片微环境的气体污染物和颗粒污染物进行严格的控制。
发明内容
本发明的目的是至少解决如何降低光刻设备内硅片微环境的气体污染和颗粒污染的问题。该目的是通过以下技术方案实现的:
本发明的第一方面提出了一种气浴发生器,包括:
封闭环体,所述封闭环体围绕工作区域设置,且所述封闭环体的内部形成环形流道,所述封闭环体上还设置有与所述环形流道连通的周向分布 的出气口,所述出气口产生围绕所述工作区域分布的封闭气流层。
根据本发明的气浴发生器,出气口产生围绕工作区域分布的封闭气流层,封闭气流层使外部的颗粒污染物和气体污染物无法跨越屏障进入到工作区域内,在气浴发生器用于光刻设备的情况下,气浴发生器沿周向围绕光刻设备的曝光区域设置,在曝光区域的周边形成一圈与外界隔离的封闭气流层,很好地降低了光刻设备内硅片微环境的气体和颗粒污染。
另外,根据本发明的气浴发生器,还可具有如下附加的技术特征:
在本发明的一些实施例中,所述气浴发生器为圆环状,所述出气口设置于所述气浴发生器的顶部,所述气浴发生器的侧壁设置有气源连通的至少一个进气口。
在本发明的一些实施例中,不同位置的所述出气口的孔径和/或开孔密度不同;靠近所述进气口的出气口的孔径比远离所述进气口的出气口的孔径小;靠近所述进气口的出气口的开孔密度比远离所述进气口的出气口的开孔密度小。
在本发明的一些实施例中,所述气浴发生器的内部安装有至少一块环形折流板,且每一块所述环形折流板的顶部或底部与所述气浴发生器之间具有流通间隙。
在本发明的一些实施例中,多块所述环形折流板形成的多个所述流通间隙,将所述气浴发生器的环形流道沿径向分隔形成S形通道,所述进气口位于S形通道的上游,所述出气口位于S形通道的下游。
在本发明的一些实施例中,所述气浴发生器的所述环形流道安装有至少一块环形多孔板,且所述至少一块环形多孔板沿所述环形流道的径向间隔设置。
在本发明的一些实施例中,所述气浴发生器的内顶面和内底面之间安装有一块环形多孔介质。
本发明还提供了一种气浴装置,包括:如上所述的气浴发生器;还包括气瓶、气体预处理系统,所述气瓶、所述气体预处理系统、所述气浴发生器依次连通。
在本发明的一些实施例中,所述气体预处理系统包括依次连通的纯化器、流量控制器和温控装置,所述纯化器与所述气瓶连通,所述温控装置与所述气浴发生器的进气口连通。
根据本发明实施例的气浴装置与上述气浴装置的气浴发生器具有相同的优势,此处不再赘述。
本发明还提供了一种光刻设备,包括:如上所述的气浴装置;还包括曝光装置、硅片、承片台和硅片台,所述曝光装置、所述硅片、所述承片台和所述硅片台依次由上而下设置,且所述曝光装置与所述硅片之间形成曝光区域,所述气浴装置的气浴发生器围绕所述曝光区域设置。
在本发明的一些实施例中,所述气浴发生器的出气口产生向上流动的第一层流气流,所述第一层流气流撞击所述曝光装置的底面形成由内而外流动的第二层流气流,所述第一层流气流和所述第二层流气流在所述气浴发生器与所述曝光装置之间形成围绕所述曝光区域的封闭气流层。
根据本发明的气浴发生器,首先洁净气体依次流经进气口、环形流道、出气口产生向上流动、均匀、稳定的若干圈第一层流气流,第一层流气流在曝光区域内撞击曝光装置的底面形成由内而外流动、均匀、稳定的第二层流气流,由于均匀、稳定的第一层流气流和均匀、稳定的第二层流气流的作用,第一层流气流和第二层流气流构成了一道封闭形状、恒定形状的高压空间,外部的颗粒污染物和气体污染物无法跨越屏障进入到硅片微环境内,很好地降低了光刻设备内硅片微环境的气体和颗粒污染。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的附图标记表示相同的部件。在附图中:
图1示意性地示出了根据本发明实施方式的光刻设备的结构示意图;
图2示意性地示出了根据本发明实施方式的气浴发生器的俯视图;
图3示意性地示出了根据本发明实施例1的气浴发生器的内部结构图;
图4示意性地示出了根据本发明实施例2的气浴发生器的内部结构图;
图5示意性地示出了根据本发明实施例3的气浴发生器的内部结构图;
图6示意性地示出了根据本发明实施例4的气浴发生器的内部结构图;
图7示意性地示出了根据本发明实施例5的气浴发生器的内部结构图;
图8示意性地示出了根据本发明实施例6的气浴发生器的内部结构图;
图9示意性地示出了根据本发明实施例7的气浴发生器的内部结构图。
附图标记如下:
1为气浴发生器,11为进气口,12为出气口,13为安装耳,14为第一层流气流,15为第二层流气流,16为环形折流板,17为S形通道,18 为环形多孔板,19为环形多孔介质;
2为曝光装置,21为投影物镜;
3为硅片;4为承片台;5为硅片台;6为气瓶;
71为纯化器,72为流量控制器,73为温控装置。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
应理解的是,文中使用的术语仅出于描述特定示例实施方式的目的,而无意于进行限制。除非上下文另外明确地指出,否则如文中使用的单数形式“一”、“一个”以及“所述”也可以表示包括复数形式。术语“包括”、“包含”、“含有”以及“具有”是包含性的,并且因此指明所陈述的特征、步骤、操作、元件和/或部件的存在,但并不排除存在或者添加一个或多个其它特征、步骤、操作、元件、部件、和/或它们的组合。文中描述的方法步骤、过程、以及操作不解释为必须要求它们以所描述或说明的特定顺序执行,除非明确指出执行顺序。还应当理解,可以使用另外或者替代的步骤。
尽管可以在文中使用术语第一、第二、第三等来描述多个元件、部件、区域、层和/或部段,但是,这些元件、部件、区域、层和/或部段不应被这些术语所限制。这些术语可以仅用来将一个元件、部件、区域、层或部段与另一区域、层或部段区分开。除非上下文明确地指出,否则诸如“第一”、“第二”之类的术语以及其它数字术语在文中使用时并不暗示顺序 或者次序。因此,以下讨论的第一元件、部件、区域、层或部段在不脱离示例实施方式的教导的情况下可以被称作第二元件、部件、区域、层或部段。
为了便于描述,可以在文中使用空间相对关系术语来描述如图中示出的一个元件或者特征相对于另一元件或者特征的关系,这些相对关系术语例如为“内部”、“外部”、“内侧”、“外侧”、“下面”、“下方”、“上面”、“上方”等。这种空间相对关系术语意于包括除图中描绘的方位之外的在使用或者操作中装置的不同方位。例如,如果在图中的装置翻转,那么描述为“在其它元件或者特征下面”或者“在其它元件或者特征下方”的元件将随后定向为“在其它元件或者特征上面”或者“在其它元件或者特征上方”。因此,示例术语“在……下方”可以包括在上和在下的方位。装置可以另外定向(旋转90度或者在其它方向)并且文中使用的空间相对关系描述符相应地进行解释。
如图1-图2所示,根据本发明的实施方式,提出了一种气浴发生器1,包括:封闭环体,所述封闭环体围绕工作区域设置,且所述封闭环体的内部形成环形流道,所述封闭环体上还设置有与所述环形流道连通的周向分布的出气口12,所述出气口12产生围绕所述工作区域分布的封闭气流层。
根据本发明的气浴发生器1,出气口12产生围绕工作区域分布的封闭气流层,封闭气流层使外部的颗粒污染物和气体污染物无法跨越屏障进入到工作区域内,在气浴发生器用于光刻设备的情况下,气浴发生器沿周向围绕光刻设备的曝光区域设置,在曝光区域的周边形成一圈与外界隔离的封闭气流层,很好地降低了光刻设备内硅片微环境的气体和颗粒污染。
进一步的,气浴发生器1为圆环状,所述出气口12设置于所述气浴发生器1的顶部,所述气浴发生器1的侧壁设置有气源连通的至少一个进 气口11。
进一步的,气浴发生器1的外侧面还设置有安装耳13;气浴发生器1通过安装耳13安装在硅片台5的顶面或者承片台4的顶面,值得注意的是,气浴发生器1安装在硅片台5的顶面或者承片台4的顶面均可,只要保证所述出气口能够产生围绕所述工作区域分布的封闭气流层即可。
由于气浴发生器1具有一个或有限个进气口11,而且气浴发生器1为圆环状,具有狭长的环形结构,因此从进气口11到出气口12在环形流道方向上的不同位置,气体的流动路程是不同的,因此出气口12的不同位置会形成不同的内部气压,这会导致出气口12流出的封闭气流层均匀性较差,为了使气浴发生器1的顶面上流出的封闭气流层具有较好的均匀性,本发明还提供了几种气浴发生器1内部结构的实施例。
需要说明的是,将气浴发生器1设置为圆环状,只是本申请的优选实施例,并不是对气浴发生器1的形状结构的限制,例如,根据本申请的其他实施例,还可以将气浴发生器1设置为矩型环状或者椭圆环状结构,这种结构上的调整均属于本申请的保护范围。
实施例1
参阅图3所示,为了提高封闭气流层的均匀性,出气口12的开孔布置在环形方向上可以设计成不均匀的,例如,不同位置的出气口12的孔径和/或开孔密度不同,其中,靠近进气口11的出气口12的孔径比远离进气口11的出气口12的孔径小;靠近进气口11的出气口12的开孔密度比远离进气口11的出气口12的开孔密度小。
由于靠近进气口11的位置形成的气压相对较大,而远离进气口11的位置形成的气压相对较小,因此为了保证从出气口12流出封闭气流层的气流平均流速相同,因此将靠近进气口11的出气口12的孔径比远离进气 口11的出气口12的孔径小;靠近进气口11的出气口12的开孔密度比远离进气口11的出气口12的开孔密度小。
实施例2
参阅图4所示,为了提高封闭气流层的均匀性,在气浴发生器1的内顶面安装有一块环形折流板16,且环形折流板16与气浴发生器1的内底面存在流通间隙,所述流通间隙以方便工作气体通过,所述流通间隙的取值范围是几微米~几毫米,流通间隙在环形方向上可以是一个恒定值,也可以是一个变化的值。
环形折流板16用于阻挡气流,从进气口11进来的气体首先通过环形折流板16的阻挡,随后从环形折流板16与气浴发生器1之间的流通间隙流出进入出气口12所在的空间,由于环形折流板16的阻挡作用,能够对进气口11所在空间的不均匀气压起到很好地匀化作用,从而使出气口12所在空间的内部气压趋于均匀一致,进而保证从出气口12出来的封闭气流层均匀、稳定。出气口12的开孔布置在环形方向上还可以设计成不均匀的,也可以设计成均匀的,优选的,为了保证出气口12出来的封闭气流层完全均匀、稳定,出气口12的开孔布置在环形方向上还可以设计成不均匀的,例如不同位置的出气口12的孔径和/或开孔密度不同,其中,靠近进气口11的出气口12的孔径比远离进气口11的出气口12的孔径较小;靠近进气口11的出气口12的开孔密度比远离进气口11的出气口12的开孔密度较小。
实施例3
参阅图5所示,为了提高封闭气流层的均匀性,在气浴发生器1的内底面安装有一块环形折流板16,且环形折流板16与气浴发生器1的内顶面存在流通间隙,所述流通间隙以方便工作气体通过,所述流通间隙的取 值范围是几微米~几毫米,流通间隙在环形方向上可以是一个恒定值,也可以是一个变化的值。
在气浴发生器1的内底面安装有一块环形折流板16与在气浴发生器1的内顶面安装有一块环形折流板16效果相同,此处不做赘述。同理,出气口12的开孔布置在环形方向上还可以设计成不均匀的,也可以设计成均匀的,优选的,为了保证出气口12出来的封闭气流层完全均匀、稳定,出气口12的开孔布置在环形方向上还可以设计成不均匀的,例如不同位置的出气口12的孔径和/或开孔密度不同,其中,靠近进气口11的出气口12的孔径比远离进气口11的出气口12的孔径较小;靠近进气口11的出气口12的开孔密度比远离进气口11的出气口12的开孔密度较小。
实施例4
参阅图6所示,为了提高封闭气流层的均匀性,在气浴发生器1的内底面和内顶面交替安装有多块环形折流板16,多块环形折流板16形成的多个流通间隙,将气浴发生器1的环形流道沿径向分隔形成S形通道17,所述进气口11位于S形通道17的上游,所述出气口12位于S形通道17的下游。
在气浴发生器1的内底面和内顶面交替安装有多块环形折流板16相比于一块环形折流板16能够更好地稳定出气口12所在空间的内部气压,对气压的匀化作用更强,环形折流板16的数量此处不做限制。同理,出气口12的开孔布置在环形方向上还可以设计成不均匀的,也可以设计成均匀的,优选的,为了保证出气口12出来的封闭气流层完全均匀、稳定,出气口12的开孔布置在环形方向上还可以设计成不均匀的,例如不同位置的出气口12的孔径和/或开孔密度不同,其中,靠近进气口11的出气口12的孔径比远离进气口11的出气口12的孔径较小;靠近进气口11的出气口12的开孔密度比远离进气口11的出气口12的开孔密度较小。
实施例5
参阅图7所示,为了提高封闭气流层的均匀性,气浴发生器1的内顶面和内底面之间安装有一块环形多孔板18,环形多孔板18的孔径取值范围为几微米~几毫米,孔径的取值范围在环形方向上可以是一个恒定值,也可以是一个变化的值。
环形多孔板18同样用于阻挡气流,从进气口11进来的气体首先通过环形多孔板18的阻挡,随后从环形多孔板18的通孔流出进入出气口12所在的空间,由于环形多孔板18的阻挡作用,能够对进气口11所在空间的不均匀气压起到很好地匀化作用,从而使出气口12所在空间的内部气压趋于均匀一致,进而保证从出气口12出来的封闭气流层均匀、稳定。出气口12的开孔布置在环形方向上还可以设计成不均匀的,也可以设计成均匀的,优选的,为了保证出气口12出来的封闭气流层完全均匀、稳定,出气口12的开孔布置在环形方向上还可以设计成不均匀的,例如不同位置的出气口12的孔径和/或开孔密度不同,其中,靠近进气口11的出气口12的孔径比远离进气口11的出气口12的孔径较小;靠近进气口11的出气口12的开孔密度比远离进气口11的出气口12的开孔密度较小。
实施例6
参阅图8所示,为了提高封闭气流层的均匀性,在气浴发生器1的内顶面和内底面之间安装有多块环形多孔板18,且所述环形多孔板18沿所述环形流道的径向间隔设置,所述环形多孔板18的孔径取值范围为几微米~几毫米,孔径的取值范围在环形方向上可以是一个恒定值,也可以是一个变化的值。
在气浴发生器1的内顶面和内底面之间安装有多块环形多孔板18相比于一块环形多孔板18能够更好地稳定出气口12所在空间的内部气压, 对气压的匀化作用更强,环形多孔板18的数量此处不做限制。同理,出气口12的开孔布置在环形方向上还可以设计成不均匀的,也可以设计成均匀的,优选的,为了保证出气口12出来的封闭气流层完全均匀、稳定,出气口12的开孔布置在环形方向上还可以设计成不均匀的,例如不同位置的出气口12的孔径和/或开孔密度不同,其中,靠近进气口11的出气口12的孔径比远离进气口11的出气口12的孔径较小;靠近进气口11的出气口12的开孔密度比远离进气口11的出气口12的开孔密度较小。
实施例7
参阅图9所示,为了提高封闭气流层的均匀性,在气浴发生器1的内顶面和内底面之间安装有一块环形多孔介质19。
环形多孔介质19同样用于阻挡气流,从进气口11进来的气体首先通过环形多孔介质19的阻挡,随后从环形多孔介质19的通孔流出进入出气口12所在的空间,由于环形多孔介质19的阻挡作用,能够对进气口11所在空间的不均匀气压起到很好地匀化作用,从而使出气口12所在空间的内部气压趋于均匀一致,进而保证从出气口12出来的封闭气流层均匀、稳定。出气口12的开孔布置在环形方向上还可以设计成不均匀的,也可以设计成均匀的,优选的,为了保证出气口12出来的封闭气流层完全均匀、稳定,出气口12的开孔布置在环形方向上还可以设计成不均匀的,例如不同位置的出气口12的孔径和/或开孔密度不同,其中,靠近进气口11的出气口12的孔径比远离进气口11的出气口12的孔径较小;靠近进气口11的出气口12的开孔密度比远离进气口11的出气口12的开孔密度较小。
环形多孔介质19的材料为泡沫金属、多孔聚四氟乙烯等等。
本发明还提供了一种气浴装置,包括:如上所述的气浴发生器1;
气瓶6、气体预处理系统,气瓶6、所述气体预处理系统、气浴发生器1依次连通。
进一步的,所述气体预处理系统包括依次连通的纯化器71、流量控制器72和温控装置73,纯化器71与气瓶6连通,温控装置73与气浴发生器1的进气口连通。
具体而言,气瓶6用于提供清洁的工作气体;气体预处理系统用于对工作气体进行预处理,包括但不限于气体纯化、颗粒过滤、流量控制和温度控制类型的预处理功能。
进一步的,气瓶6内的工作气体首选氮气,其次干空气或其它惰性气体;气体预处理系统包括纯化器71、流量控制器72和温控装置73,其中纯化器71可以过滤掉工作气体中的颗粒,并吸收水、碳氢化合物等污染性气体,避免污染性气体可能对硅片3遭成污染;流量控制器72用来精确控制气体流量,为封闭气流层的均匀、稳定提供基础,温控装置73对工作气体进行恒温控制,保证进入气浴发生器1的工作气体具有恒定的温度。值得注意的是,纯化器71、流量控制器72和温控装置73的结构均属于本领域的现有技术,此处不再赘述。
根据本发明实施例的气浴装置与上述气浴装置的气浴发生器1具有相同的优势,此处不再赘述。
本发明还提供了一种光刻设备,包括:如上所述的气浴装置;
曝光装置2、硅片3、承片台4和硅片台5,曝光装置2、硅片3、承片台4和硅片台5依次由上而下设置,且所述曝光装置2与所述硅片3之间形成曝光区域,所述气浴装置的气浴发生器1围绕所述曝光区域设置。
具体而言,曝光装置2主要产生带有所需图案的光束,并在硅片3表面进行图形加工,目前光刻设备可以分为接近、接触式光刻、直写式光 刻、以及投影式光刻三大类。接近、接触式通过无限靠近,复制掩模板上的图案;投影式光刻采用投影物镜21,将掩模板上的结构投影到基片表面;而直写,则将光束聚焦为一点,通过运动工件台或镜头扫描实现任意图形加工,并且光学投影式光刻凭借其高效率、无损伤的优点,一直是集成电路主流光刻技术,因此,对于投影式光刻而言,曝光装置2的底部为投影物镜21;而对于接近、接触式光刻而言,曝光装置2的底部为掩模。
所述气浴发生器1的出气口12产生向上流动的第一层流气流14,所述第一层流气流14撞击所述曝光装置2的底面形成由内而外流动的第二层流气流15,所述第一层流气流14和所述第二层流气流15在所述气浴发生器1与所述曝光装置2之间形成围绕所述曝光区域的封闭气流层。
进一步的,位于曝光装置2下方的硅片3、承片台4以及硅片台5,其中,承片台4用于承接硅片,硅片3稳固连接在承片台4的顶部,避免第一层流气流14、第二层流气流15等等对硅片3的位置造成影响,最终方便曝光装置2对硅片3表面进行图形加工;硅片台5用于将硅片3移动到曝光装置2的底部进行图形加工,值得注意的是,关于硅片台5如何移动属于本领域的现有技术,此处不再赘述。
第一层流气流14和第二层流气流15必须均匀稳定,由于气浴发生器1套设于承片台4或者硅片台5,位于气浴发生器1内侧的硅片微环境会形成相对高压区,第二层流气流15会由内而外流动而不会由外而内流动;但是当第一层流气流14和第二层流气流15为非均匀稳定时,也就是当第一层流气流14和第二层流气流15为湍流时,风向、风速变换的第一层流气流14和第二层流气流15内部不规则运动,导致内部气流乱流和产生大量漩涡,进而导致第一层流气流14和第二层流气流15可能会向气浴发生器1内侧的硅片微环境处流动,最终带动气体污染物和颗粒污染物流向硅片微环境处,甚至会造成污染加剧的问题。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (11)

  1. 一种气浴发生器,其特征在于,包括;
    封闭环体,所述封闭环体围绕工作区域设置,且所述封闭环体的内部形成环形流道,所述封闭环体上还设置有与所述环形流道连通的周向分布的出气口,所述出气口产生围绕所述工作区域分布的封闭气流层。
  2. 根据权利要求1所述的气浴发生器,其特征在于,所述气浴发生器为圆环状,所述出气口设置于所述气浴发生器的顶部,所述气浴发生器的侧壁设置有与气源连通的至少一个进气口。
  3. 根据权利要求2所述的气浴发生器,其特征在于,不同位置的所述出气口的孔径和/或开孔密度不同;
    靠近所述进气口的出气口的孔径比远离所述进气口的出气口的孔径小;
    靠近所述进气口的出气口的开孔密度比远离所述进气口的出气口的开孔密度小。
  4. 根据权利要求2所述的气浴发生器,其特征在于,所述气浴发生器的内部安装有至少一块环形折流板,且每一块所述环形折流板的顶部或底部与所述气浴发生器之间具有流通间隙。
  5. 根据权利要求4所述的气浴发生器,其特征在于,多块所述环形折流板形成的多个所述流通间隙,将所述气浴发生器的环形流道沿径向分隔形成S形通道,所述进气口位于S形通道的上游,所述出气口位于S形通道的下游。
  6. 根据权利要求1所述的气浴发生器,其特征在于,所述气浴发生器的所述环形流道安装有至少一块环形多孔板,且所述至少一块环形多孔板沿所述环形流道的径向间隔设置。
  7. 根据权利要求1所述的气浴发生器,其特征在于,所述气浴发生器的内顶面和内底面之间安装有一块环形多孔介质。
  8. 一种气浴装置,其特征在于,包括如权利要求1-7中任一项所述的气浴发生器,还包括:
    气瓶、气体预处理系统,所述气瓶、所述气体预处理系统、所述气浴发生器依次连通。
  9. 根据权利要求8所述的气浴装置,其特征在于,所述气体预处理系统包括依次连通的纯化器、流量控制器和温控装置,所述纯化器与所述气瓶连通,所述温控装置与所述气浴发生器的进气口连通。
  10. 一种光刻设备,其特征在于,包括如权利要求8所述的气浴装置,还包括:
    曝光装置、硅片、承片台和硅片台,所述曝光装置、所述硅片、所述承片台和所述硅片台依次由上而下设置,且所述曝光装置与所述硅片之间形成曝光区域,所述气浴装置的气浴发生器围绕所述曝光区域设置。
  11. 根据权利要求10所述的光刻设备,其特征在于,所述气浴发生器的出气口产生向上流动的第一层流气流,所述第一层流气流撞击所述曝光装置的底面形成由内而外流动的第二层流气流,所述第一层流气流和所述第二层流气流在所述气浴发生器与所述曝光装置之间形成围绕所述曝光区域的封闭气流层。
PCT/CN2022/137428 2022-01-20 2022-12-08 光刻设备、气浴装置及其气浴发生器 WO2023138251A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210068296.5A CN114460814B (zh) 2022-01-20 2022-01-20 光刻设备、气浴装置及其气浴发生器
CN202210068296.5 2022-01-20

Publications (1)

Publication Number Publication Date
WO2023138251A1 true WO2023138251A1 (zh) 2023-07-27

Family

ID=81410052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137428 WO2023138251A1 (zh) 2022-01-20 2022-12-08 光刻设备、气浴装置及其气浴发生器

Country Status (2)

Country Link
CN (1) CN114460814B (zh)
WO (1) WO2023138251A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116841137A (zh) * 2023-08-31 2023-10-03 光科芯图(北京)科技有限公司 气浴装置、温控系统以及曝光设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460814B (zh) * 2022-01-20 2024-04-02 中国科学院微电子研究所 光刻设备、气浴装置及其气浴发生器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0143154A1 (de) * 1983-07-01 1985-06-05 Windmöller & Hölscher Vorrichtung zum Abstützen und Kalibrieren von Folienschläuchen aus thermoplastischem Kunststoff
JPH0986331A (ja) * 1995-09-22 1997-03-31 Nippon Seiko Kk エアバッグ装置
CN102841508A (zh) * 2011-06-23 2012-12-26 上海微电子装备有限公司 分流式气浴风道
CN107664263A (zh) * 2016-07-29 2018-02-06 上海微电子装备(集团)股份有限公司 一种气浴装置及控制方法和应用
CN110554570A (zh) * 2018-05-31 2019-12-10 上海微电子装备(集团)股份有限公司 一种污染控制装置及方法、物镜系统及光刻机设备
CN110764368A (zh) * 2018-07-27 2020-02-07 上海微电子装备(集团)股份有限公司 物镜防污染装置
CN112255886A (zh) * 2020-09-07 2021-01-22 中国科学院微电子研究所 极紫外光学元件的微环境控制系统
CN114460814A (zh) * 2022-01-20 2022-05-10 中国科学院微电子研究所 光刻设备、气浴装置及其气浴发生器
CN115390365A (zh) * 2022-08-09 2022-11-25 中国科学院微电子研究所 气浴发生器及光刻设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060119811A1 (en) * 2004-12-07 2006-06-08 Asml Netherlands B.V. Radiation exposure apparatus comprising a gas flushing system
US8988652B2 (en) * 2012-10-18 2015-03-24 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for ultraviolet (UV) patterning with reduced outgassing
CN112305866B (zh) * 2019-07-31 2021-12-03 上海微电子装备(集团)股份有限公司 气浴装置及光刻设备
CN111965950B (zh) * 2020-08-25 2024-01-19 中国科学院微电子研究所 动态气体隔离装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0143154A1 (de) * 1983-07-01 1985-06-05 Windmöller & Hölscher Vorrichtung zum Abstützen und Kalibrieren von Folienschläuchen aus thermoplastischem Kunststoff
JPH0986331A (ja) * 1995-09-22 1997-03-31 Nippon Seiko Kk エアバッグ装置
CN102841508A (zh) * 2011-06-23 2012-12-26 上海微电子装备有限公司 分流式气浴风道
CN107664263A (zh) * 2016-07-29 2018-02-06 上海微电子装备(集团)股份有限公司 一种气浴装置及控制方法和应用
CN110554570A (zh) * 2018-05-31 2019-12-10 上海微电子装备(集团)股份有限公司 一种污染控制装置及方法、物镜系统及光刻机设备
CN110764368A (zh) * 2018-07-27 2020-02-07 上海微电子装备(集团)股份有限公司 物镜防污染装置
CN112255886A (zh) * 2020-09-07 2021-01-22 中国科学院微电子研究所 极紫外光学元件的微环境控制系统
CN114460814A (zh) * 2022-01-20 2022-05-10 中国科学院微电子研究所 光刻设备、气浴装置及其气浴发生器
CN115390365A (zh) * 2022-08-09 2022-11-25 中国科学院微电子研究所 气浴发生器及光刻设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116841137A (zh) * 2023-08-31 2023-10-03 光科芯图(北京)科技有限公司 气浴装置、温控系统以及曝光设备
CN116841137B (zh) * 2023-08-31 2023-11-21 光科芯图(北京)科技有限公司 气浴装置、温控系统以及曝光设备

Also Published As

Publication number Publication date
CN114460814A (zh) 2022-05-10
CN114460814B (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
WO2023138251A1 (zh) 光刻设备、气浴装置及其气浴发生器
US7005249B2 (en) Apparatus for processing substrate and method of processing the same
JP5112403B2 (ja) 流体ハンドリング構造、リソグラフィ装置及びデバイス製造方法
JP4289906B2 (ja) 露光装置
KR100768946B1 (ko) 가스 플러싱 디바이스를 구비한 리소그래피 장치
KR100797085B1 (ko) 가스 샤워, 리소그래피 장치 및 가스 샤워의 사용
KR101527502B1 (ko) 침지 리소그래피 장치, 건조 디바이스, 침지 메트롤로지 장치 및 디바이스 제조 방법
JP5270700B2 (ja) 流体ハンドリング構造、リソグラフィ装置およびデバイス製造方法
CN1713075A (zh) 光刻装置和器件制造方法
KR20110105731A (ko) 리소그래피 장치, 조명 시스템, 투영 시스템, 및 리소그래피 장치를 이용한 디바이스 제조 방법
JP5065432B2 (ja) 流体ハンドリングデバイス、液浸リソグラフィ装置及びデバイス製造方法
KR20100103425A (ko) 기판 테이블, 액침 리소그래피 장치, 및 다바이스 제조 방법
JP2011151397A (ja) リソグラフィ装置およびデバイス製造方法
CN115390365A (zh) 气浴发生器及光刻设备
JP4580915B2 (ja) リソグラフィ装置及びデバイス製造装置の内部空間調整方法
JP2012089840A (ja) ガスマニホールド、リソグラフィ装置用モジュール、リソグラフィ装置、及びデバイス製造方法
KR20190046976A (ko) 노광 장치 및 물품 제조 방법
US6762412B1 (en) Optical apparatus, exposure apparatus using the same, and gas introduction method
TWI795860B (zh) 用於在粒子束誘導處理過程中處理樣品的處理配置、方法、清洗盤及清洗盤的用途
CN110554570B (zh) 一种污染控制装置及方法、物镜系统及光刻机设备
CN117631472A (zh) 气浴模块、气浴装置、光刻设备及其控制方法
TW202043946A (zh) 裝置、設備、微影裝置及方法
CN116736640A (zh) 一种防污染保护装置、物镜和光刻机
NL2022771A (en) A device, apparatus, lithographic device and method
JP2005129630A (ja) パージノズル及びそれを用いた露光装置並びにデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921675

Country of ref document: EP

Kind code of ref document: A1