WO2023138037A1 - 通信链路运行特征测试系统及测试方法 - Google Patents

通信链路运行特征测试系统及测试方法 Download PDF

Info

Publication number
WO2023138037A1
WO2023138037A1 PCT/CN2022/111593 CN2022111593W WO2023138037A1 WO 2023138037 A1 WO2023138037 A1 WO 2023138037A1 CN 2022111593 W CN2022111593 W CN 2022111593W WO 2023138037 A1 WO2023138037 A1 WO 2023138037A1
Authority
WO
WIPO (PCT)
Prior art keywords
dut
test
signal
communication
gnd
Prior art date
Application number
PCT/CN2022/111593
Other languages
English (en)
French (fr)
Inventor
刘矗
谢乐寅
莫莽
Original Assignee
上海同星智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海同星智能科技有限公司 filed Critical 上海同星智能科技有限公司
Priority to JP2023547855A priority Critical patent/JP2024507487A/ja
Priority to MX2023010683A priority patent/MX2023010683A/es
Priority to KR1020237011062A priority patent/KR20230113723A/ko
Priority to CA3209551A priority patent/CA3209551A1/en
Priority to EP22921466.3A priority patent/EP4340316A1/en
Publication of WO2023138037A1 publication Critical patent/WO2023138037A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/316Testing of analog circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising
    • G01R31/2844Fault-finding or characterising using test interfaces, e.g. adapters, test boxes, switches, PIN drivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising
    • G01R31/2846Fault-finding or characterising using hard- or software simulation or using knowledge-based systems, e.g. expert systems, artificial intelligence or interactive algorithms
    • G01R31/2848Fault-finding or characterising using hard- or software simulation or using knowledge-based systems, e.g. expert systems, artificial intelligence or interactive algorithms using simulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/24Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using dedicated network management hardware

Definitions

  • the invention belongs to the technical field of communication testing, and in particular relates to a communication link operation characteristic testing system and testing method.
  • the current common on-site communication technologies include 485, CAN, FlexRay, vehicle Ethernet, etc., and their interfaces adopt differential signal transmission.
  • Differential signal transmission is a method of information transmission using two complementary electrical signals.
  • twisted-pair wires are used as the physical transmission medium, which can not only reduce its own interference to the outside world, but also reduce capacitive coupling and inductive coupling with external interference sources.
  • the purpose of the present invention is to provide a communication link operation characteristic test system and test method.
  • the present invention provides a communication link operation characteristic test system, including:
  • the analog component is arranged on the relay combination circuit board;
  • the interface component is arranged on the relay combination circuit board, and the interface component is suitable for connecting the device under test;
  • the DUT By opening and closing the relays on the combined circuit board, the DUT is connected to the required devices in the analog component, so that the DUT can be tested under the working environment simulated by the analog component.
  • analog components include: a program-controlled oscilloscope, a multimeter, a waveform generator, a programmable power supply device, a four-quadrant waveform amplifier, a program-controlled adjustable resistance/capacitance load and an external branch chain.
  • interface components include:
  • H_in interface connected to the high level of the differential signal of the communication line of the DUT
  • L_in interface connected to the low level of the differential signal of the communication line of the DUT
  • GND_in interface connected to the communication GND of the DUT
  • DUT_BAT interface connect the power supply signal of the DUT
  • DUT_GND interface connected to the GND signal of the DUT.
  • the present invention also provides a method for testing communication link operating characteristics using the above-mentioned communication link operating characteristic testing system, including:
  • the method of connecting corresponding devices according to the working environment to test the DUT includes:
  • the DUT is powered normally, and the DUT is powered by a programmable power supply.
  • the industrial computer communicates with the DUT through the embedded controller based on the differential communication link, and the oscilloscope obtains the network signal characteristics by capturing the differential signal waveform.
  • the method of connecting corresponding devices according to the working environment to test the DUT includes:
  • test types include: power down and live;
  • the device under test is not powered, and the resistance value is read through the multimeter
  • resistance R (serial impedance value)*(H_in or L_in voltage)/(DUT power supply-H_in or L_in voltage).
  • the method of connecting corresponding devices according to the working environment to test the DUT includes:
  • the operating characteristics are captured by the oscilloscope to test the fault tolerance of the DUT.
  • the method of connecting corresponding devices according to the working environment to test the DUT includes:
  • the waveform following module is connected in series between the transceiver and the GND of the DUT to achieve common mode interference
  • the present invention uses a relay combination circuit board, an analog component, the simulation component is arranged on the relay combination circuit board; an interface component, the interface component is arranged on the relay combination circuit board, and the interface component is suitable for connecting the device under test; by opening and closing each relay on the relay combination circuit board, the device under test is connected with the required device in the simulation component, so that the test component is tested in the working environment simulated by the simulation component, so as to cope with different working conditions, test and verify various signal characteristics of the test component and operating characteristics under various working conditions, and can target various differences Communication technology to avoid omissions caused by manual testing.
  • Fig. 1 is the schematic circuit diagram of the communication link operating characteristic test system of the present invention
  • Fig. 2 is a schematic diagram of a normal working condition test circuit of the present invention
  • Fig. 3 is a schematic diagram of a termination resistance testing circuit of the present invention.
  • Fig. 4 is a schematic diagram of the common mode/differential mode interference test circuit of the present invention.
  • the present embodiment provides a communication link operating characteristic test system, comprising: a relay combination circuit board, an analog component, the simulation component is arranged on the relay combination circuit board; an interface component, the interface component is arranged on the relay combination circuit board, and the interface component is suitable for connecting the device under test; by opening and closing each relay on the relay combination circuit board, the device under test is connected to the required device in the simulation component, so that the device under test is tested under the working environment simulated by the analog component, so as to cope with different working conditions, and test and verify multiple signal characteristics and various working conditions of the test component Under the operating characteristics, it can avoid omissions caused by manual testing for a variety of differential communication technologies; simulate various on-site abnormal operating conditions, not only measure communication operating characteristics, but also verify the fault tolerance of the DUT under electrical fault conditions such as connector aging and ground potential offset, and provide testing solutions for high-safety occasions, avoid manual testing omissions, and improve testing efficiency.
  • the simulation components include: a programmable oscilloscope, a multimeter, a waveform generator, a programmable power supply, a four-quadrant waveform amplifier, a four-quadrant power supply, a program-controlled adjustable resistance/capacitance load, and external branch chains.
  • the test system is divided into the front facing the DUT and the back facing the standard measuring equipment.
  • the interface components include: H_in interface, connected to the high level of the differential signal of the communication line of the DUT; L_in interface, connected to the low level of the differential signal of the communication line of the DUT; GND_in interface, connected to the communication GND of the DUT; DUT_BAT interface, connected to the power supply signal of the DUT;
  • the H_in interface is connected to the serial impedance through the relay and then connected to the DUT for power supply.
  • the H_in interface is connected to the parallel impedance and another serial impedance through the relay.
  • the in interface and the L_in interface are connected to the communication transceiver through the relay;
  • the GND_in interface is connected to the communication transceiver through the relay;
  • the H_in interface is connected to the diode through the relay and then connected to the waveform follower module through the relay;
  • the L_in interface is connected to the resistor through the relay and then connected to the waveform follower module through the relay;
  • the voltage level of the multimeter is connected to the H_in interface, L_in interface and the power supply of the DUT through the relay;
  • the current level of the multimeter is connected to the H_in interface and the L_in interface through the relay;
  • the GND of the multimeter is connected to the L_in interface and the GND_in interface through the relay;
  • a communication link operation characteristic testing method using the above-mentioned communication link operation characteristic testing system including: judging the working environment required by the DUT; and connecting corresponding devices according to the working environment to test the DUT.
  • the method for connecting corresponding devices according to the working environment to test the DUT includes: when the working environment is a normal working condition test, the communication line differential signal high-level signal, the communication line differential signal low-level signal and the communication GND signal of the DUT are connected to the oscilloscope and the communication transceiver at the same time; the communication transceiver is connected to the embedded controller; _in interface, L_in interface, and GND_in interface; that is, the DUT is powered normally at this time, and the DUT is powered by a programmable power supply.
  • the industrial computer communicates with the DUT through the embedded controller based on the differential communication link, and the oscilloscope captures the differential signal waveform to obtain network signal characteristics, such as signal extreme value, high/low value, waveform overshoot, signal rise/fall rate, and bit time accuracy, thereby verifying the consistency of the DUT.
  • network signal characteristics such as signal extreme value, high/low value, waveform overshoot, signal rise/fall rate, and bit time accuracy
  • the method for connecting the corresponding device according to the working environment to test the DUT includes: when the working environment is a termination resistance test, measure the GND resistance and differential resistance of the H_in end and the L_in end of the DUT by a multimeter; all test types include: power-off and electrification; during the power-down test, the DUT does not supply power, and the resistance value is read by the multimeter; (DUT power supply - H_in or L_in voltage).
  • H is powered off to GND resistor, H_in interface is connected to multimeter resistance file, GND_in interface is connected to multimeter GND, H_in interface is connected to GND_in interface to resistor R; L is to GND resistor to power off, L_in interface is connected to multimeter resistance file, GND_in interface is connected to multimeter GND, L_in interface is connected to GND_in interface to resistor R; H is powered off to L resistor, H_in interface is connected to multimeter resistance file, L_in interface is connected to multimeter GND, L_in Connect the resistor R to the interface and the H_in interface; H is charged to the GND resistor, the H_in interface is connected to the serial impedance and then connected to the power supply of the DUT, the serial impedance is connected in parallel to the voltage range of the multimeter, the GND_in interface is connected to the GND of the multimeter, the resistance R is connected between the H_in interface and the GND_in interface, and the DUT_BAT interface and
  • the method of connecting corresponding devices according to the working environment to test the DUT includes: when the working environment is a short circuit/open circuit test, set the serial and parallel impedances to 0 ⁇ , and switch between the relays to realize the short circuit conditions of H_in/L_in and L_in/H_in, DUT_BAT, DUT_GND respectively; by turning off the relays, the H_in or L_in open circuit conditions can be realized; in short circuit conditions and short circuit conditions, the operating characteristics of the test are captured by an oscilloscope. Test piece fault tolerance.
  • the method for connecting corresponding devices according to the working environment to test the DUT includes: when the working environment is a common mode/differential mode interference test, connecting the high-level signal of the communication line differential signal, the low-level signal of the communication line differential signal and the communication GND signal of the DUT to the communication transceiver, connecting the high-level signal of the communication line differential signal to the oscilloscope, and connecting the H_in interface, the L_in interface and the GND_in interface to the communication transceiver; between the high-level signals of the communication line differential signal of the DUT, And connect the waveform following module between the communication GND signal and the communication transceiver; connect the communication transceiver to the embedded controller; connect the embedded controller to the industrial computer, and connect the programmable power supply to the power supply signal and GND signal of the DUT, and connect the programmable power supply to the industrial computer; that is, the waveform following module is connected in series between the transceiver and the GND of the DUT to
  • test path can verify the fault tolerance of the DUT under short circuit fault; >Normal working condition -> Verification of termination resistance.
  • This test path can verify the tolerance and fault tolerance of the DUT under complex faults. At the same time, it can verify the recovery ability of the electrical characteristics of the DUT after the fault is removed. It can cope with different working conditions.
  • the test verifies the various signal characteristics of the DUT and the operating characteristics under various working conditions. It can be used for various differential communication technologies to avoid omissions caused by manual testing.
  • the present invention uses a relay combined circuit board, an analog component, the analog component is arranged on the relay combined circuit board; an interface component, the interface component is arranged on the relay combined circuit board, and the interface component is suitable for connecting the device under test; by opening and closing each relay on the relay combined circuit board, the device under test is connected to the required device in the analog component, so that the tested part is tested in the working environment simulated by the analog component, so as to cope with different working conditions, test and verify various signal characteristics and operating characteristics of the tested part under various working conditions, and can target various differential communication technologies , to avoid omissions caused by manual testing.
  • each block in the flowchart or block diagram may represent a module, program segment, or a portion of code that includes one or more executable instructions for implementing specified logical functions. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures.
  • each functional module in each embodiment of the present invention can be integrated together to form an independent part, or each module can exist independently, or two or more modules can be integrated to form an independent part.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present invention is essentially or the part that contributes to the prior art or part of the technical solution can be embodied in the form of a software product
  • the computer software product is stored in a storage medium, and includes several instructions to make a computer device (which can be a personal computer, server, or network device, etc.) execute all or part of the steps of the method described in each embodiment of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical discs and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Electromagnetism (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Dc Digital Transmission (AREA)

Abstract

本发明属于通信测试技术领域,具体涉及一种通信链路运行特征测试系统及测试方法,其中通信链路运行特征测试系统包括:继电器组合电路板,模拟组件,所述模拟组件设置在所述继电器组合电路板上;接口组件,所述接口组件设置在所述继电器组合电路板上,所述接口组件适于连接被测件;通过开闭继电器组合电路板上的各继电器,将被测件与模拟组件中所需的器件连接,以在模拟组件模拟的工作环境下对被测件进行测试,实现了应对不同的工况条件,测试验证被测件多种信号特征和各工况下运行特性,可针对多种差分通信技术,避免手工测试带来的遗漏。

Description

通信链路运行特征测试系统及测试方法 技术领域
本发明属于通信测试技术领域,具体涉及一种通信链路运行特征测试系统及测试方法。
背景技术
当前常见现场通信技术包括485,CAN,FlexRay,车载以太网等,其接口采用差分信号传输方式。差分信号传输是一种使用两个互补电信号进行信息传递的方法,根据通讯技术原理不同,其电气参数细节存在差异,但均采用双绞线作为物理传输介质,不仅可以降低自身对外界的干扰,同时可以减少与外界干扰源的电容耦合和感应耦合。
由于不同技术细节特征、产品应用环境差异较大,研发人员通常针对某一通信技术进行测试,然而工业和车载现场作业环境复杂,通信过程不可避免遇到短路/断路/电位偏移/波形质量恶化等共有问题,因此需要对产品容错能力和信号特征进行测试,暴露潜在问题。
因此,基于上述技术问题需要设计一种新的通信链路运行特征测试系统及测试方法。
技术问题
本发明的目的是提供一种通信链路运行特征测试系统及测试方法。
技术解决方案
为了解决上述技术问题,本发明提供了一种通信链路运行特征测试系统,包括:
继电器组合电路板,
模拟组件,所述模拟组件设置在所述继电器组合电路板上;
接口组件,所述接口组件设置在所述继电器组合电路板上,所述接口组件适于连接被测件;
通过开闭继电器组合电路板上的各继电器,将被测件与模拟组件中所需的器件连接,以在模拟组件模拟的工作环境下对被测件进行测试。
进一步,所述模拟组件包括:程控示波器、万用表、波形发生器、可编程电源设备、四象限波形放大器、程控调节电阻/电容负载和外接支链。
进一步,所述接口组件包括:
H_in接口,连接被测件通信线差分信号高电平;
L_in接口,连接被测件通信线差分信号低电平;
GND_in接口,连接被测件通信GND;
DUT_BAT接口,连接被测件供电信号;
DUT_GND接口,连接被测件GND信号。
第二方面,本发明还提供一种采用上述通信链路运行特征测试系统的通信链路运行特征测试方法,包括:
判断被测件所需的工作环境;以及
根据工作环境连接对应器件以对被测件进行测试。
进一步,所述根据工作环境连接对应器件以对被测件进行测试的方法包括:
当工作环境为正常工况测试时,将被测件的通信线差分信号高电平信号、通信线差分信号低电平信号和通信GND信号同时连接示波器和通信收发器;
将通信收发器连接至嵌入式控制器;
将嵌入式控制器连接至工控机,同时可编程电源连接被测件的供电信号和GND信号,以及可编程电源连接工控机;即
此时被测件正常供电,被测件通过可编程电源供电,同时工控机通过嵌入式控制器基于差分通信链路与被测件通信,以及示波器通过抓取差分信号波形,进而获取网络信号特征。
进一步,所述根据工作环境连接对应器件以对被测件进行测试的方法包括:
当工作环境为端接电阻测试时,通过万用表,测量被测件H_in端和L_in端对GND电阻和差分电阻;
所有测试种类包括:掉电和带电;
掉电测试过程中,被测件不供电,通过万用表读取电阻值;
带电测试过程中,电阻R=(串行阻抗值)*(H_in或L_in电压)/(被测件供电-H_in或L_in电压)。
进一步,所述根据工作环境连接对应器件以对被测件进行测试的方法包括:
当工作环境为短路/断路测试时,将串行和并行阻抗设为0Ω,通过继电器切换,即可实现H_in/L_in分别与L_in/H_in, DUT_BAT, DUT_GND短路工况;
通过继电器关断,即可实现H_in或L_in断路工况;
在短路工况和短路工况时,通过示波器抓取运行特征,测试被测件容错能力。
进一步,所述根据工作环境连接对应器件以对被测件进行测试的方法包括:
当工作环境为共模/差模干扰测试时,将被测件的通信线差分信号高电平信号、通信线差分信号低电平信号和通信GND信号连接通信收发器,将通信线差分信号高电平信号连接示波器;
在被测件的通信线差分信号高电平信号之间,以及通信GND信号与通信收发器之间连接波形跟随模块;
将通信收发器连接至嵌入式控制器;
将嵌入式控制器连接至工控机,同时可编程电源连接被测件的供电信号和GND信号,以及可编程电源连接工控机;即
波形跟随模块串联在收发器和被测件GND间,实现共模干扰;
将波形跟随模块串联在H_in和L_in间,实现差模干扰;
在该共模干扰和差模干扰工况下,通过示波器抓取运行特征,测试被测件容错能力。
有益效果
本发明的有益效果是,本发明通过继电器组合电路板,模拟组件,所述模拟组件设置在所述继电器组合电路板上;接口组件,所述接口组件设置在所述继电器组合电路板上,所述接口组件适于连接被测件;通过开闭继电器组合电路板上的各继电器,将被测件与模拟组件中所需的器件连接,以在模拟组件模拟的工作环境下对被测件进行测试,实现了应对不同的工况条件,测试验证被测件多种信号特征和各工况下运行特性,可针对多种差分通信技术,避免手工测试带来的遗漏。
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点在说明书以及附图中所特别指出的结构来实现和获得。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的通信链路运行特征测试系统的电路示意图;
图2是本发明的正常工况测试电路示意图;
图3是本发明的端接电阻测试电路示意图;
图4是本发明的共模/差模干扰测试电路示意图。
本发明的实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本实施例提供了一种通信链路运行特征测试系统,包括:继电器组合电路板,模拟组件,所述模拟组件设置在所述继电器组合电路板上;接口组件,所述接口组件设置在所述继电器组合电路板上,所述接口组件适于连接被测件;通过开闭继电器组合电路板上的各继电器,将被测件与模拟组件中所需的器件连接,以在模拟组件模拟的工作环境下对被测件进行测试,实现了应对不同的工况条件,测试验证被测件多种信号特征和各工况下运行特性,可针对多种差分通信技术,避免手工测试带来的遗漏;模拟各类现场异常运行条件,不仅测量通信运行特性,也验证了连接器老化、地电位偏移等电气故障条件下被测件容错能力,为高安全需求场合提供测试方案,避免手工测试遗漏,提升测试效率。
在本实施例中,所述模拟组件包括:程控示波器、万用表、波形发生器、可编程电源设备、四象限波形放大器、四象限电源、程控调节电阻/电容负载和外接支链等特殊工况模拟设备。
在本实施例中,本测试系统分为面向被测件的正面和面向标准测量设备的背面,所述接口组件包括:H_in接口,连接被测件通信线差分信号高电平;L_in接口,连接被测件通信线差分信号低电平;GND_in接口,连接被测件通信GND;DUT_BAT接口,连接被测件供电信号;DUT_GND接口,连接被测件GND信号。
在本实施例中,具体的电路图如图1所示,H_in接口通过继电器连接串行阻抗后连接被测件供电,H_in接口通过继电器连接并性阻抗和另一串行阻抗,H_in接口通过继电器连接可调容抗后连接GND_in接口,并通过继电器连接另一可调容抗;L_in接口通过继电器连接串行阻抗和并行阻抗,通过串行阻抗后连接继电器后连接GND_in接口,L_in接口通过继电器连接可调容抗并连接GND_in接口,H_in接口和L_in接口通过继电器连接通信收发器;GND_in接口通过继电器连接通信收发器;H_in接口通过继电器连接二极管后通过继电器连接波形跟随模块,L_in接口通过继电器连接电阻后通过继电器连接波形跟随模块,收发器通过继电器连接波形跟随模块,波形跟随模块通过继电器连接GND_in接口和通信收发器;通信收发器上连接终端电阻和差分支链。万用表电压档通过继电器连接H_in接口、L_in接口和被测件供电;万用表电流档通过继电器连接H_in接口、L_in接口;万用表GND通过继电器连接L_in接口和GND_in接口;示波器通道1通过继电器连接H_in接口和H收发器侧;示波器通道2通过继电器连接L_in接口和L收发器侧;示波器GND通过继电器连GND_in接口和收发器GND;被测件电源通过继电器连接可编程电源后通过继电器连接收发器GND;嵌入式控制器连接隔离通信接口和IO继电器控制。
在本实施例中,还提供一种采用上述通信链路运行特征测试系统的通信链路运行特征测试方法,包括:判断被测件所需的工作环境;以及根据工作环境连接对应器件以对被测件进行测试。
如图2所示,在本实施例中,所述根据工作环境连接对应器件以对被测件进行测试的方法包括:当工作环境为正常工况测试时,将被测件的通信线差分信号高电平信号、通信线差分信号低电平信号和通信GND信号同时连接示波器和通信收发器;将通信收发器连接至嵌入式控制器;将嵌入式控制器连接至工控机,同时可编程电源连接被测件的供电信号和GND信号,以及可编程电源连接工控机;通信收发器同时连接H_in接口、L_in接口和GND_in接口;即此时被测件正常供电,被测件通过可编程电源供电,同时工控机通过嵌入式控制器基于差分通信链路与被测件通信,以及示波器通过抓取差分信号波形,进而获取网络信号特征,例如信号极值、高/低值、波形过冲、信号上升/下降速率、位时间精度,从而验证被测设备一致性。基于正常工况,同时可以通过自定义测试脚本,验证通信在应用层数据、网络管理等通信行为正确性和鲁棒性。
如图3所示,在本实施例中,所述根据工作环境连接对应器件以对被测件进行测试的方法包括:当工作环境为端接电阻测试时,通过万用表,测量被测件H_in端和L_in端对GND电阻和差分电阻;所有测试种类包括:掉电和带电;掉电测试过程中,被测件不供电,通过万用表读取电阻值;带电测试过程中,电阻R=(串行阻抗值)*(H_in或L_in电压)/(被测件供电-H_in或L_in电压)。H对GND电阻掉电,H_in接口连接万用表电阻档,GND_in接口连接万用表GND,H_in接口与GND_in接口连接电阻R;L对GND电阻掉电,L_in接口连接万用表电阻档,GND_in接口连接万用表GND,L_in接口与GND_in接口连接电阻R;H对L电阻掉电,H_in接口连接万用表电阻档,L_in接口连接万用表GND,L_in接口与H_in接口连接电阻R;H对GND电阻带电,H_in接口连接串行阻抗后连接被测件供电,串行阻抗并联万用表电压档,GND_in接口连接万用表GND,H_in接口与GND_in接口之间连接电阻R,DUT_BAT接口和DUT_GND接口连接可编程电源;L对GND电阻带电,L_in接口连接串行阻抗后连接被测件供电,串行阻抗并联万用表电压档,GND_in接口连接万用表GND,L_in接口与GND_in接口之间连接电阻R,DUT_BAT接口和DUT_GND接口连接可编程电源;H对L电阻带电,H_in接口连接串行阻抗后连接被测件供电,串行阻抗并联万用表电压档,L_in接口连接万用表GND,L_in接口与H_in接口之间连接电阻R,DUT_BAT接口和DUT_GND接口连接可编程电源。
在本实施例中,所述根据工作环境连接对应器件以对被测件进行测试的方法包括:当工作环境为短路/断路测试时,将串行和并行阻抗设为0Ω,通过继电器切换,即可实现H_in/L_in分别与L_in/H_in, DUT_BAT, DUT_GND短路工况;通过继电器关断,即可实现H_in或L_in断路工况;在短路工况和短路工况时,通过示波器抓取运行特征,测试被测件容错能力。
如图4所示,在本实施例中,所述根据工作环境连接对应器件以对被测件进行测试的方法包括:当工作环境为共模/差模干扰测试时,将被测件的通信线差分信号高电平信号、通信线差分信号低电平信号和通信GND信号连接通信收发器,将通信线差分信号高电平信号连接示波器,H_in接口、L_in接口和GND_in接口连接通信收发器;在被测件的通信线差分信号高电平信号之间,以及通信GND信号与通信收发器之间连接波形跟随模块;将通信收发器连接至嵌入式控制器;将嵌入式控制器连接至工控机,同时可编程电源连接被测件的供电信号和GND信号,以及可编程电源连接工控机;即波形跟随模块串联在收发器和被测件GND间,实现共模干扰;将波形跟随模块串联在H_in和L_in间,实现差模干扰;在该共模干扰和差模干扰工况下,通过示波器抓取运行特征,测试被测件容错能力。
在本实施例中,可以根据测试需求将不同测试结合,例如端接电阻验证->正常工况->短路/断路故障注入->正常工况,该测试路径可验证被测件在短路故障下容错能力;端接电阻验证->正常工况->共模/差模故障注入->正常工况,该测试路径可验证被测件在信号干扰故障下容忍能力;端接电阻验证->正常工况->短路/断路故障和共模/差模故障同时注入->正常工况->端接电阻验证,该测试路径可验证被测件在复杂故障下容忍和容错能力,同时可以验证被测件在故障移除后元器件电气特性恢复能力,能够应对不同的工况条件,测试验证被测件多种信号特征和各工况下运行特性,可针对多种差分通信技术,避免手工测试带来的遗漏。
综上所述,本发明通过继电器组合电路板,模拟组件,所述模拟组件设置在所述继电器组合电路板上;接口组件,所述接口组件设置在所述继电器组合电路板上,所述接口组件适于连接被测件;通过开闭继电器组合电路板上的各继电器,将被测件与模拟组件中所需的器件连接,以在模拟组件模拟的工作环境下对被测件进行测试,实现了应对不同的工况条件,测试验证被测件多种信号特征和各工况下运行特性,可针对多种差分通信技术,避免手工测试带来的遗漏。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本发明的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本发明各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (8)

  1. 一种通信链路运行特征测试系统,其特征在于,包括:
    继电器组合电路板,
    模拟组件,所述模拟组件设置在所述继电器组合电路板上;
    接口组件,所述接口组件设置在所述继电器组合电路板上,所述接口组件适于连接被测件;
    通过开闭继电器组合电路板上的各继电器,将被测件与模拟组件中所需的器件连接,以在模拟组件模拟的工作环境下对被测件进行测试。
  2. 如权利要求1所述的通信链路运行特征测试系统,其特征在于,
    所述模拟组件包括:程控示波器、万用表、波形发生器、可编程电源设备、四象限波形放大器、程控调节电阻/电容负载和外接支链。
  3. 如权利要求1所述的通信链路运行特征测试系统,其特征在于,
    所述接口组件包括:
    H_in接口,连接被测件通信线差分信号高电平;
    L_in接口,连接被测件通信线差分信号低电平;
    GND_in接口,连接被测件通信GND;
    DUT_BAT接口,连接被测件供电信号;
    DUT_GND接口,连接被测件GND信号。
  4. 一种采用如权利要求1所述通信链路运行特征测试系统的通信链路运行特征测试方法,其特征在于,包括:
    判断被测件所需的工作环境;以及
    根据工作环境连接对应器件以对被测件进行测试。
  5. 如权利要求4所述的通信链路运行特征测试方法,其特征在于,
    所述根据工作环境连接对应器件以对被测件进行测试的方法包括:
    当工作环境为正常工况测试时,将被测件的通信线差分信号高电平信号、通信线差分信号低电平信号和通信GND信号同时连接示波器和通信收发器;
    将通信收发器连接至嵌入式控制器;
    将嵌入式控制器连接至工控机,同时可编程电源连接被测件的供电信号和GND信号,以及可编程电源连接工控机;即
    此时被测件正常供电,被测件通过可编程电源供电,同时工控机通过嵌入式控制器基于差分通信链路与被测件通信,以及示波器通过抓取差分信号波形,进而获取网络信号特征。
  6. 如权利要求4所述的通信链路运行特征测试方法,其特征在于,
    所述根据工作环境连接对应器件以对被测件进行测试的方法包括:
    当工作环境为端接电阻测试时,通过万用表,测量被测件H_in端和L_in端对GND电阻和差分电阻;
    所有测试种类包括:掉电和带电;
    掉电测试过程中,被测件不供电,通过万用表读取电阻值;
    带电测试过程中,电阻R=(串行阻抗值)*(H_in或L_in电压)/(被测件供电-H_in或L_in电压)。
  7. 如权利要求4所述的通信链路运行特征测试方法,其特征在于,
    所述根据工作环境连接对应器件以对被测件进行测试的方法包括:
    当工作环境为短路/断路测试时,将串行和并行阻抗设为0Ω,通过继电器切换,即可实现H_in/L_in分别与L_in/H_in, DUT_BAT, DUT_GND短路工况;
    通过继电器关断,即可实现H_in或L_in断路工况;
    在短路工况和短路工况时,通过示波器抓取运行特征,测试被测件容错能力。
  8. 如权利要求4所述的通信链路运行特征测试方法,其特征在于,
    所述根据工作环境连接对应器件以对被测件进行测试的方法包括:
    当工作环境为共模/差模干扰测试时,将被测件的通信线差分信号高电平信号、通信线差分信号低电平信号和通信GND信号连接通信收发器,将通信线差分信号高电平信号连接示波器;
    在被测件的通信线差分信号高电平信号之间,以及通信GND信号与通信收发器之间连接波形跟随模块;
    将通信收发器连接至嵌入式控制器;
    将嵌入式控制器连接至工控机,同时可编程电源连接被测件的供电信号和GND信号,以及可编程电源连接工控机;即
    波形跟随模块串联在收发器和被测件GND间,实现共模干扰;
    将波形跟随模块串联在H_in和L_in间,实现差模干扰;
    在该共模干扰和差模干扰工况下,通过示波器抓取运行特征,测试被测件容错能力。
PCT/CN2022/111593 2022-01-19 2022-08-10 通信链路运行特征测试系统及测试方法 WO2023138037A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023547855A JP2024507487A (ja) 2022-01-19 2022-08-10 通信リンク動作特性テストシステム及びテスト方法
MX2023010683A MX2023010683A (es) 2022-01-19 2022-08-10 Sistema de prueba de caracteristicas de operacion de enlace de comunicacion y metodo de prueba del mismo.
KR1020237011062A KR20230113723A (ko) 2022-01-19 2022-08-10 통신 링크 실행 특징의 테스트 시스템 및 테스트 방법
CA3209551A CA3209551A1 (en) 2022-01-19 2022-08-10 Communication link operation characteristic testing system and testing methof thereof
EP22921466.3A EP4340316A1 (en) 2022-01-19 2022-08-10 Communication link operation characteristic test system and test method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210059599.0 2022-01-19
CN202210059599.0A CN114448854B (zh) 2022-01-19 2022-01-19 通信链路运行特征测试系统及测试方法

Publications (1)

Publication Number Publication Date
WO2023138037A1 true WO2023138037A1 (zh) 2023-07-27

Family

ID=81368280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111593 WO2023138037A1 (zh) 2022-01-19 2022-08-10 通信链路运行特征测试系统及测试方法

Country Status (7)

Country Link
EP (1) EP4340316A1 (zh)
JP (1) JP2024507487A (zh)
KR (1) KR20230113723A (zh)
CN (2) CN114448854B (zh)
CA (1) CA3209551A1 (zh)
MX (1) MX2023010683A (zh)
WO (1) WO2023138037A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114448854B (zh) * 2022-01-19 2023-11-24 上海同星智能科技有限公司 通信链路运行特征测试系统及测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621800A (zh) * 2003-11-28 2005-06-01 中兴通讯股份有限公司 一种集中模拟被测设备环境量的装置及其方法
CN207096361U (zh) * 2017-09-12 2018-03-13 成都和晟航空技术有限公司 一种测试装置及系统
CN212846496U (zh) * 2020-10-28 2021-03-30 四川海特高新技术股份有限公司 一种Imotion控制器测试台
CN114448854A (zh) * 2022-01-19 2022-05-06 上海同星智能科技有限公司 通信链路运行特征测试系统及测试方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698618B (zh) * 2013-12-18 2016-08-17 陕西海泰电子有限责任公司 瞬变电磁脉冲电场测试仪
CN108459580A (zh) * 2018-02-13 2018-08-28 上海大学 一种汽车tcu的通用型环境耐久测试系统
CN111694337A (zh) * 2019-03-14 2020-09-22 上海锐勤电子科技有限公司 Ecu网络自动化测试系统
US20210181252A1 (en) * 2019-12-16 2021-06-17 Celerint, Llc Method for semiconductor device interface circuitry functionality and compliance testing
CN111459136A (zh) * 2020-04-03 2020-07-28 全球能源互联网研究院有限公司 一种柔性直流阀基控制设备的闭环测试装置及测试方法
CN113534765A (zh) * 2020-04-22 2021-10-22 北京新能源汽车股份有限公司 一种实车网络测试系统
CN113358968A (zh) * 2021-06-30 2021-09-07 上海华兴数字科技有限公司 工程机械产品自动化测试方法、系统和可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621800A (zh) * 2003-11-28 2005-06-01 中兴通讯股份有限公司 一种集中模拟被测设备环境量的装置及其方法
CN207096361U (zh) * 2017-09-12 2018-03-13 成都和晟航空技术有限公司 一种测试装置及系统
CN212846496U (zh) * 2020-10-28 2021-03-30 四川海特高新技术股份有限公司 一种Imotion控制器测试台
CN114448854A (zh) * 2022-01-19 2022-05-06 上海同星智能科技有限公司 通信链路运行特征测试系统及测试方法

Also Published As

Publication number Publication date
CN114448854A (zh) 2022-05-06
CN117478568A (zh) 2024-01-30
CN114448854B (zh) 2023-11-24
EP4340316A1 (en) 2024-03-20
MX2023010683A (es) 2023-09-22
JP2024507487A (ja) 2024-02-20
KR20230113723A (ko) 2023-08-01
CA3209551A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
CN102901905B (zh) 一种并行总线测试方法
CN104246521B (zh) 智能变电站继电保护功能自动测试的方法及装置
CN104298224A (zh) 车载电子控制单元can总线通信自动化测试装置及系统
CN102169154A (zh) 一种hdmi接口的测试方法及设备
WO2023138037A1 (zh) 通信链路运行特征测试系统及测试方法
US6550029B1 (en) Testing system and methods with protocol pattern injection and external verification
CN110658439B (zh) 一种保护电路的测试方法及系统
JP7086169B2 (ja) 充電装置のテストシステム及び方法
CN110446213B (zh) 一种LoRa无线单灯控制器用测试系统及其测试方法
CN111141501B (zh) 一种机载设备测试性试验的试验用例生成系统及方法
CN102156425B (zh) 一种对数字集成电路焊点健康状态实时监测的装置
CN204925333U (zh) Io板的测试系统
CN111707966A (zh) 一种cpld的漏电检测方法及装置
CN109709935B (zh) 一种压力传感器信号模拟电路及测试装置
WO2023231279A1 (zh) 一种车身控制单元故障码测试系统及方法
CN110988770A (zh) 电动汽车高压预充电模拟装置及预充电过程的模拟方法
CN110749798B (zh) 一种大功率群充直流充电单元测试系统及测试方法
CN207051682U (zh) Can总线工作模式的在线仿真系统
CN209964309U (zh) 一种LoRa无线单灯控制器用测试系统
JP3375597B2 (ja) 差分信号の交差電圧をテストするための装置及びその方法
CN101752013A (zh) 测试装置
CN220626628U (zh) 一种信号短路到地的检测装置
CN107450345A (zh) Can总线工作模式的在线仿真系统
CN218940668U (zh) 一种设备板卡保护电路
TWI837980B (zh) 具擴展性的傳輸線檢測系統及其方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023547855

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3209551

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921466

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/010683

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2022921466

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022921466

Country of ref document: EP

Effective date: 20231102