WO2023137929A1 - 一种具备耗能承载双功能的抗震构件及缓冲器 - Google Patents

一种具备耗能承载双功能的抗震构件及缓冲器 Download PDF

Info

Publication number
WO2023137929A1
WO2023137929A1 PCT/CN2022/093023 CN2022093023W WO2023137929A1 WO 2023137929 A1 WO2023137929 A1 WO 2023137929A1 CN 2022093023 W CN2022093023 W CN 2022093023W WO 2023137929 A1 WO2023137929 A1 WO 2023137929A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
mandrel
component
support member
load bearing
Prior art date
Application number
PCT/CN2022/093023
Other languages
English (en)
French (fr)
Inventor
陈政清
华旭刚
杨鸥
周帅
李水生
Original Assignee
湖南大学
中国建筑第五工程局有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南大学, 中国建筑第五工程局有限公司 filed Critical 湖南大学
Publication of WO2023137929A1 publication Critical patent/WO2023137929A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground

Definitions

  • the invention relates to the technical field of structural shock absorption and isolation, in particular to an anti-seismic component and a buffer with dual functions of energy dissipation and load bearing.
  • buckling-resistant bracing (BRB) members are the most widely used parts with both lateral support and energy dissipation capacity in earthquake resistance of steel structures. These members generally use plastic metal materials with low yield strength as inner cores, and are composed of constraining parts (usually steel pipes filled with mortar) and unbonded materials or gaps between the two. Among them, the plastic metal inner core is connected with the main structure to provide lateral support when the structure is subjected to earthquakes.
  • the plastic deformation of the inner core is used to dissipate energy;
  • the buckling instability of the core under pressure ensures that the metal inner core can achieve full cross-section yield under pressure and enhances the energy dissipation capacity of the inner core;
  • the non-bonding material is to eliminate the axial force transmission between the metal inner core and the restraint parts.
  • the structure of this type of member is relatively complicated, especially when the mortar filling inside the steel pipe is difficult to guarantee the construction quality, and the above-mentioned structural measures to prevent buckling of the inner core also lead to high steel consumption and cost of BRB members.
  • the purpose of the present invention is to overcome the shortcomings of existing buckling-resistant support members, such as relatively complex structure, large amount of steel, and difficulty in ensuring construction quality when filling the interior with mortar, and provide an anti-seismic member and buffer with dual functions of energy dissipation and load bearing.
  • the present invention provides the following technical solutions:
  • An anti-seismic component with dual functions of energy dissipation and load bearing comprising a mandrel, a first support and a second support are connected to the mandrel, a cantilever section of the first support and a cantilever section of the second support are respectively arranged on both sides of the mandrel, and the angle between the first support and the second support is less than 180°.
  • the included angle is an initial included angle, preferably, the included angle is 90°-160°.
  • the anti-seismic component with dual functions of energy dissipation and load bearing according to the present invention is adopted.
  • the core component adopts the mandrel as the energy dissipation component.
  • the first support and the second support that are arranged opposite to each other can be used to connect the corresponding positions of the main structure, which is consistent with the rotation connection mode between the existing BRB component and the main structure, forming an oblique support structure along the diagonal of the frame.
  • the cantilever section of the first support and the cantilever section of the second support are relatively arranged on both sides of the mandrel.
  • the seismic member forms a broken-line structure.
  • each component is determined according to the design requirements.
  • the stiffness of the first support and the second support, the structural size of the mandrel and the initial angle the mandrel can enter the full-section plastic state after the external load exceeds a certain critical value, and the in-plane torsional shear stress is equal everywhere, while the first support member and the second support member are in the elastic range.
  • the plastic energy dissipation performance of metal materials is fully utilized to achieve the effect of consuming earthquake energy, so the component has the ability of energy dissipation and anti-seismic, so it has the dual function of energy dissipation and load bearing.
  • This component breaks through the energy consumption mode of traditional BRB components in axial tension and compression, eliminates the problem of buckling of supporting components under compression, simplifies the structure of energy-dissipating diagonal braces in steel structures, does not need to set external restraint components, reduces steel consumption, avoids filling mortar, effectively shortens the installation period, improves the reliability of components, and greatly reduces the manufacturing cost of components. It has a wide range of application prospects.
  • the mandrel is a tube structure.
  • the mandrel is a round tube, and the ratio of the outer diameter to the wall thickness of the round tube is less than 8.
  • the thick wall ensures effective energy dissipation and avoids local buckling of the mandrel, ensuring the reliability of the components and reducing the amount of steel used for each component.
  • both the first support and the second support are hollow rods.
  • the cross-sectional form can be circular, rectangular, etc., and its size and wall thickness are determined according to the length and bearing capacity requirements.
  • first support member and the second support member are equal-section members with the same shape and size.
  • the first support is connected to the mandrel through a first connecting sleeve sleeved in the middle of the mandrel
  • the second support is respectively connected to the mandrel through two second connecting sleeves sleeved at corresponding ends of the mandrel
  • the first support and the second support are arranged opposite to each other.
  • the first supporting member can be replaced by being fixedly sleeved on one end of the mandrel through a first connecting sleeve
  • the second supporting member can be replaced by being fixedly sleeved on the other end of the mandrel through a second connecting sleeve.
  • the first support member and the second support member are respectively located at two ends of the mandrel and arranged in a dislocation manner.
  • the mandrel can be replaced by two, the first support member and the second support member are respectively connected to the corresponding mandrel, and the two mandrels are connected through a connecting member.
  • the mandrel is fixedly connected with the connecting part, and the first supporting part and the second supporting part respectively drive the corresponding mandrel to be twisted and deformed.
  • both the cantilevered end of the first support and the cantilevered end of the second support have installation holes.
  • the mounting hole can also be used to mount the mandrel.
  • a buffer comprising two opposing anti-seismic members with dual functions of energy dissipation and bearing as described above, the cantilevered ends of the two first supports are connected by a connector, the cantilevered ends of the two second supports are connected by a connector, and the cantilevered ends of the first support and the cantilevered ends of the second support are rotatably connected to the corresponding connecting plates.
  • the mandrel when the relative positions of the two opposite connecting pieces change, the mandrel can be torsionally deformed to dissipate energy, thereby effectively realizing buffering.
  • this type of buffer generally use foam aluminum as energy -consuming materials, but it can only be used at one time and difficult to establish accurate computing models.
  • the calculation mode of the application of this application is clear. Energy is consumed; and in general, only the core axis is reversed, other components will not be damaged, and the metal core shafts with good delay can also be forced to restore deformation and can be used multiple times.
  • the openings of the two anti-vibration members are arranged facing each other. It is beneficial to further reduce the amount of steel used.
  • both the cantilevered end of the first support member and the cantilevered end of the second support member can be replaced by being fixedly connected to the connecting member through a mandrel.
  • the mandrel is used at both ends to effectively enhance the energy dissipation capacity.
  • the anti-seismic component with dual functions of energy dissipation and load bearing according to the present invention, the relative position between the cantilevered end of the first support and the cantilevered end of the second support will change, so that the included angle between the first support and the second support will change, and then the mandrel can be twisted and deformed, thereby generating torque, which in turn will cause the support rod to generate bending moment and axial force, thereby resisting the external load and making the component have bearing capacity; Therefore, the component has the ability of energy dissipation and anti-seismic, so it has the dual function of energy dissipation and load bearing.
  • the torsional energy consumption mode of this component replaces the axial tension and compression energy consumption mode of the traditional BRB component, which eliminates the problem of buckling of the supporting component, simplifies the structure of the energy-dissipating bracing of the steel structure, does not need to set external restraint components, reduces the amount of steel used, avoids filling mortar, effectively shortens the installation period, improves the reliability of the component, and greatly reduces the manufacturing cost of the component.
  • the design calculation mode is clear; by increasing the length of the support, the stroke and energy consumption can be increased; and in general, only the mandrel is twisted, and other parts will not be damaged, and the metal mandrel with good ductility can also be forced to recover from deformation, so that it can be used many times.
  • Fig. 1 is a structural schematic diagram of an anti-seismic component with dual functions of energy dissipation and load bearing in embodiment 1;
  • Fig. 2 is the top view of the structure of Fig. 1;
  • Fig. 3 is a schematic diagram of the use of an anti-seismic member with dual functions of energy dissipation and load bearing in embodiment 1;
  • Fig. 4 is a structural schematic diagram of an anti-seismic member with dual functions of energy dissipation and load bearing in embodiment 2;
  • Figure 5 is a top view of the structure of Figure 4.
  • Fig. 6 is the structural representation of a kind of buffer of embodiment 3.
  • An anti-seismic component with dual functions of energy dissipation and load bearing includes a mandrel 1, the mandrel 1 is connected with a first support 21 and a second support 22, the cantilever section of the first support 21 and the cantilever section of the second support 22 are respectively arranged on both sides of the mandrel 1, the first support 21 and the second support 22 should be arranged oppositely, that is, they should be located in the same plane as much as possible, so as to ensure that the mandrel 1 only undergoes torsional deformation, the angle between the first support 21 and the second support 22 Less than 180°, forming a zigzag structure as shown in Figure 1, the angle between the first support 21 and the second support 22 is designed according to energy consumption requirements, application scenarios, etc., more than one first support 21 and second support 22 can be set on the mandrel 1.
  • the material and structural parameters of the mandrel 1 are determined according to component deformation and energy consumption requirements. If steel components are used, the mandrel 1 can be a solid member or a hollow member. Preferably, the mandrel 1 adopts a hollow tube structure with a circular cross-section, and its wall thickness and diameter are determined according to energy consumption and load-bearing requirements. The ratio of the outer diameter of the circular tube to the wall thickness is less than 8, which further reduces steel consumption.
  • the angle between the first support member 21 and the second support member 22 is the initial installation angle.
  • the mandrel 1 can be designed according to the allowable elastic displacement angle and plastic displacement angle between the frame layers given by the seismic design, so that the axial force in the first support member 21 and the second support member 22 is in a reasonable state; when the allowable elastic deformation displacement angle is exceeded, the mandrel 1 enters the plastic yield energy dissipation zone in time, and within the allowable displacement angle of plastic deformation, the mandrel 1 produces as large a torsional strain as possible to achieve the best energy dissipation effect.
  • the first support member 21 and the second support member 22 are both hollow rods, with good structural support and low steel consumption.
  • the cross-sectional form can be circular, rectangular, or I-shaped.
  • the first support member 21 and the second support member 22 can be connected to the mandrel 1 by means such as welding.
  • the first support member 21 is fixedly sleeved on the middle of the mandrel 1 through the first connecting sleeve 31
  • the second support member 22 is fixedly sleeved on the mandrel 1 through two second connecting sleeves 32.
  • the two second connecting sleeves 32 are symmetrically arranged on both sides of the first connecting sleeve 31 respectively.
  • the two second connecting sleeves 32 are respectively located at the corresponding ends of the mandrel 1 to further reduce the amount of steel used, as shown in FIG. 2 .
  • the connection between the first connection sleeve 31 and the first support member 21 and the connection between the second connection sleeve 32 and the second support member 22 are subject to a certain bending moment, which can be solved by enhancing local stiffness.
  • the rotational connection with the main structure is consistent with the existing linear BRB components, forming an oblique diagonal installation.
  • This embodiment takes a frame structure building as an example.
  • the first support 21 is rotatably connected to the left side of the lower frame
  • the second support 22 is rotatably connected to the right side of the upper frame.
  • the included angle between the first support member 21 and the second support member 22 should be 140°-150°, so as to facilitate the oblique arrangement and installation of this member and the shear deformation under the horizontal force, the distal ends of the first support member 21 and the second support member 22 can rotate.
  • the connection hole is connected, and the installation efficiency is high.
  • This component breaks through the energy consumption mode of axial tension and compression of traditional BRB components, adopts a torsional energy-consuming support structure, eliminates the problem of buckling of support components under compression, simplifies the structure of energy-dissipating diagonal braces in steel structures, does not need to set external restraint components, reduces steel consumption, avoids filling mortar, effectively shortens the installation period, improves the reliability of components, and greatly reduces the manufacturing cost of components. It has a wide range of application prospects.
  • the inner diameter of the mandrel 1 is 40mm
  • the outer diameter is 80mm
  • the length is 160mm
  • the initial opening angle is 150°
  • the center distance of the installation hole 4 in Fig. 4 is 2770mm
  • the overall steel consumption is about 140kg
  • the steel consumption is significantly reduced
  • the yield torque is 51.6kN*m
  • the corresponding maximum support force is 209.44kN
  • the elongation of the connection end is 2%
  • the single-way work is about 8.92k J.
  • the performance of the anti-seismic component of the present invention is better than that of the existing BRB component.
  • the second supporting member 22 may only be connected to one second connecting sleeve 32, and the first connecting sleeve 31 and the second connecting sleeve 32 may also be sleeved on both ends of the mandrel 1, so that the first supporting member 21 and the second supporting member 22 are arranged in a misaligned manner.
  • An anti-seismic component with dual functions of energy dissipation and load bearing, its structure is roughly the same as that of Embodiment 1, the difference is that the mandrel 1 can be replaced by two, the first support 21 and the second support 22 are respectively connected to the corresponding mandrel 1, and the two mandrels 1 are connected by a connecting piece 5, as shown in Figure 4-5, the first support 21 and the second support 22 are still symmetrically arranged, and the first connecting sleeve 31 and the second connecting sleeve 32 can be the same structure as the first connecting sleeve 31 in Embodiment 1, both sleeved In the middle of the corresponding mandrel 1, the connecting member 5 can be a groove-shaped structural member, and the two mandrels 1 are fixedly connected to the two side plates of the groove-shaped structural member, and the first support member 21 and the second support member 22 respectively drive the corresponding The mandrel 1 is torsionally deformed.
  • a buffer comprising two anti-seismic members with dual functions of energy dissipation and bearing as described in Embodiment 1 or 2.
  • the cantilevered ends of the two first supports 21 are connected by the connecting member 5, and the cantilevered ends of the two second supports 22 are connected by the connecting member 5.
  • the cantilevered ends of the first supporting member 21 and the cantilevered end of the second supporting member 22 of another anti-seismic member are connected by the connecting member 5.
  • the cantilevered ends of the first supporting member 21 and the cantilevered ends of the second supporting member 22 are connected to the corresponding
  • the plates 5 are connected in rotation, for example, the mounting holes 4 are passed through the pin shafts to connect the connecting plates 5 .
  • the two anti-seismic members should adopt the same structure, such as the structure in which the first support 21 and the second support 22 in Embodiment 1 are both sleeved on the same mandrel 1, or the first support 21 and the second support 22 in Embodiment 2 are respectively sleeved on a structure of the mandrel 1.
  • the left and right sides are seismic components on each side of an Example 2.
  • the opening of the two seismic components can be settled.
  • the two seismic components can be connected by connecting parts 5 between the connecting parts 5.
  • Connect 5 (from the left and right sides of Figure 6) is used to occur for relative position changes, or it can also be used to connect two seismic components 5 (in Figure 6 in Figure 6) for relative position changes. If it is used for vertical buffering on the ground, the lower connector 5 in Fig. 6 is fixedly connected to the ground, and the upper connector 5 is used to bear external impacts. Correspondingly, the bottom plates of the two connectors 5 should be widened, as shown in Fig. 6 .
  • the cantilevered end of the first support member 21 and the cantilevered end of the second support member 22 can be replaced by being fixedly connected to the connecting member 5 through the mandrel 1, that is, the position of the mounting hole 4 in the figure can be connected to the corresponding connecting member 5 using the mandrel 1, which is beneficial to enhance the energy dissipation capacity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

本发明公开了一种具备耗能承载双功能的抗震构件及缓冲器。抗震构件包含芯轴,所述芯轴上连接有第一支撑件和第二支撑件,所述第一支撑件的悬挑段和所述第二支撑件的悬挑段分别设置于所述芯轴两侧,所述第一支撑件和第二支撑件之间的夹角小于180°。本构件可直接用于建筑框架结构的斜撑构件,用圆管扭转耗能模式取代了传统BRB构件的轴向拉压的耗能模式,消除了支撑构件受压屈曲的问题,简化了钢结构耗能斜撑的构造,无需设置外在约束构件,减少用钢量,避免填充砂浆,有效缩短安装工期,提高构件的可靠性,大大降低构件的制造成本,具有广泛的应用前景。

Description

一种具备耗能承载双功能的抗震构件及缓冲器 技术领域
本发明涉及结构减隔震技术领域,特别涉及一种具备耗能承载双功能的抗震构件及缓冲器。
背景技术
目前钢结构抗震中同时具备侧向支撑及耗能能力的部件中应用最广的是防屈曲支撑(BRB)构件,该类构件一般采用屈服强度较低的塑性金属材料作为内芯,并通过约束部件(通常为内填砂浆的钢管)以及二者之间的无粘结材料或者间隙所构成;其中,塑性金属内芯与主体结构相连接,在结构承受地震作用时提供侧向支撑力,并利用内芯的塑性变形进行耗能;约束部件主要作用是抑制金属内芯在受压时发生屈曲失稳,保证金属内芯在受压时可达到全截面屈服,增强内芯的耗能能力;无粘结材料则是为了消除金属内芯和约束部件之间的轴力传递。但该类构件构造较为复杂,尤其是进行钢管内部砂浆填充时施工质量难以保证,并且,上述防止内芯屈曲的构造措施也导致BRB构件的用钢量和成本偏高。
发明内容
本发明的目的在于克服现有的防屈曲支撑构件存在的构造较为复杂、用钢量较大、内部砂浆填充时施工质量难以保证等缺点,提供一种具备耗能承载双功能的抗震构件及缓冲器。
为了实现上述目的,本发明提供了以下技术方案:
一种具备耗能承载双功能的抗震构件,包含芯轴,所述芯轴上连接有第一支撑件和第二支撑件,所述第一支撑件的悬挑段和所述第二支撑件的悬挑段分别设置于所述芯轴两侧,所述第一支撑件和第二支撑件之间的夹角小于180°。
该夹角为初始夹角,优选的,所述夹角为90°-160°。
采用本发明所述的一种具备耗能承载双功能的抗震构件,核心部件采用芯轴作为耗能构件,相对设置的第一支撑件和第二支撑件可分别用于连接主体结构的对应位置,与现有的BRB构件与主体结构上的转动连接方式保持一致,形成沿框架对角线的斜向支撑结构,所述第一支撑件的悬挑段和所述第二支撑件的悬挑段相对设置于所述芯轴两侧,所述第一支撑件和第二支撑件之间的夹角小于180°,即使得抗震构件形成折线型的结构,当第一支撑件的悬挑端(远离芯轴的一端)和第二支撑件的悬挑端(远离芯轴的一端)受到外荷载作用时,第一支撑件的悬挑端和第二支撑件的悬挑端之间的相对位置会发生变化,使第一支撑件 和第二支撑件之间的夹角发生改变,进而能够使芯轴产生扭转变形,从而产生扭矩,该扭矩又会使得支撑杆产生弯矩和轴力,从而抵抗外荷载作用,使得构件具有承载能力。
各构件的参数根据设计需求进行确定,通过调节第一支撑件和第二支撑件的刚度、芯轴的结构尺寸以及初始夹角可在外荷载作用超过某一临界值后实现芯轴进入全截面塑性状态,面内扭转剪应力处处相等,而第一支撑杆件和第二支撑杆件均处于弹性范围。充分利用了金属材料的塑性耗能性能,达到消耗地震能量的效果,所以该构件又具有耗能抗震的能力,从而具备耗能承载的双功能。本构件突破了传统BRB构件的轴向拉压的耗能模式,消除了支撑构件受压屈曲的问题,简化了钢结构耗能斜撑的构造,无需设置外在约束构件,减少用钢量,避免填充砂浆,有效缩短安装工期,提高构件的可靠性,大大降低构件的制造成本,具有广泛的应用前景。
优选的,所述芯轴为管结构。
进一步优选的,所述芯轴为圆管,所述圆管的外直径与壁厚的比值小于8。
进一步降低用钢量,同时,通过厚壁保证有效的耗能能力又避免芯轴发生局部屈曲,保证构件的可靠性,并且可以降低各个部件的用钢量。
优选的,所述第一支撑件和第二支撑件均为空心杆件。
相对于实心构件,利于进一步降低用钢量,截面形式可采用如圆形、矩形等,其尺寸、壁厚根据长度、承载力需求等确定。
进一步优选的,所述第一支撑件和第二支撑件的形状尺寸均相同的等截面构件。
优选的,所述第一支撑件通过套设于所述芯轴中部的第一连接套连接所述芯轴,所述第二支撑件分别通过套设于所述芯轴对应端部的两个第二连接套连接所述芯轴,所述第一支撑件和第二支撑件相对设置。
优选的,所述第一支撑件能够替换为通过第一连接套固定套设于所述芯轴的一端部,所述第二支撑件能够替换为通过第二连接套固定套设于所述芯轴的另一端部。所述第一支撑件和第二支撑件分别位于所述芯轴的两端,错位布置。
优选的,所述芯轴能够替换为两个,所述第一支撑件和第二支撑件分别连接于对应的所述芯轴,两个所述芯轴通过连接件连接。
所述芯轴与连接件固定连接,所述第一支撑件和第二支撑件分别带动对应的所述芯轴发生扭转变形。
进一步优选的,所述第一支撑件的悬挑端和第二支撑件的悬挑端均具有安装孔。
可通过安装孔连接插销进行安装,有效提升安装效率。所述安装孔也可以用于安装 芯轴。
一种缓冲器,包含两个相对设置的如上述任一所述的具备耗能承载双功能的抗震构件,两个第一支撑件的悬挑端通过连接件连接,两个第二支撑件的悬挑端通过连接件连接,所述第一支撑件的悬挑端和第二支撑件的悬挑端均与对应的所述连接板转动连接。
采用本发明所述的一种缓冲器,当相对的两个连接件的相对位置发生变化时,能够使所述芯轴发生扭转变形进而耗能,有效实现缓冲。目前火箭和空投重物的着陆保护,或者为保护地面和结构不受高速下落的重物损毁,都需要大行程高耗能的缓冲器,目前这类缓冲器一般使用泡沫铝作为耗能材料,但其只能一次性使用且难以建立准确的计算模型,采用本申请的缓冲器计算模式明确;通过加大支撑件的长度,可以增加行程和耗能;并且一般情况下只有芯轴发生扭转,其它部件不会破坏,延性好的金属芯轴还可以强制恢复变形,从而可以多次使用。
优选的,两个所述抗震构件的开口相向设置。利于进一步降低用钢量。
进一步优选的,所述第一支撑件的悬挑端和所述第二支撑件的悬挑端均能够替换为通过芯轴固定连接于所述连接件。
即两端均采用芯轴,有效增强耗能能力。
综上所述,与现有技术相比,本发明的有益效果是:
1、采用本发明所述的一种具备耗能承载双功能的抗震构件,第一支撑件的悬挑端和第二支撑件的悬挑端之间的相对位置会发生变化,使第一支撑件和第二支撑件之间的夹角发生改变,进而能够使芯轴产生扭转变形,从而产生扭矩,该扭矩又会使得支撑杆产生弯矩和轴力,从而抵抗外荷载作用,使得构件具有承载能力;在外力作用下,芯轴的截面将进入塑性屈服状态,达到消耗地震能量的效果,所以该构件又具有耗能抗震的能力,从而具备耗能承载的双功能。
2、本构件用扭转耗能模式取代了传统BRB构件的轴向拉压的耗能模式,消除了支撑构件受压屈曲的问题,简化了钢结构耗能斜撑的构造,无需设置外在约束构件,减少用钢量,避免填充砂浆,有效缩短安装工期,提高构件的可靠性,大大降低构件的制造成本。
3、用钢量低且芯轴不会发生局部屈曲,构件的可靠性高。
4、采用本发明所述的一种缓冲器,设计计算模式明确;通过加大支撑件的长度,可以增加行程和耗能;并且一般情况下只有芯轴发生扭转,其它部件不会破坏,延性好的金属芯轴还可以强制恢复变形,从而可以多次使用。
附图说明:
图1为实施例1的一种具备耗能承载双功能的抗震构件的结构示意图;
图2为图1的结构俯视图;
图3为实施例1的一种具备耗能承载双功能的抗震构件的使用示意图;
图4为实施例2的一种具备耗能承载双功能的抗震构件的结构示意图;
图5为图4的结构俯视图;
图6为实施例3的一种缓冲器的结构示意图;
图中标记:1-芯轴,21-第一支撑件,22-第二安装板,31-第一连接套,32-第二连接套,4-安装孔,5-连接件。
具体实施方式
下面结合附图及具体实施例对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
实施例1
一种具备耗能承载双功能的抗震构件,如图1-2所示,包含芯轴1,所述芯轴1连接有第一支撑件21和第二支撑件22,所述第一支撑件21的悬挑段和所述第二支撑件22的悬挑段分别设置于所述芯轴1两侧,所述第一支撑件21和第二支撑件22宜相对布置,即尽量位于同一平面内,以保证芯轴1只发生扭转变形,所述第一支撑件21和第二支撑件22之间的夹角小于180°,形成如图1所示的折线型结构,所述第一支撑件21和第二支撑件22之间的夹角根据耗能需求、应用场景等进行设计,所述芯轴1上可设置不止一个所述第一支撑件21和第二支撑件22。
具体的,芯轴1的材料、结构参数根据构件变形和耗能需求确定,如采用钢制构件,所述芯轴1可采用实心构件或空心构件,优选的,所述芯轴1采用圆形截面的空心管结构,其壁厚、直径根据耗能及承载的需求确定,所述圆管的外直径与壁厚的比值小于8,进一步降低用钢量,同时,避免芯轴1发生局部屈曲,保证构件的可靠性,当然在一些场景下也可以采用其他的截面形式。所述第一支撑件21和第二支撑件22之间的夹角为初始安装夹角,如可根据抗震设计给定的框架层间容许弹性位移角和塑性位移角进行设计,使得第一支撑件21和第二支撑件22内的轴力处于合理状态;在超过容许弹性变形位移角时,使芯轴1及时进入塑性屈服耗能区,并且在塑性变形容许位移角内,芯轴1产生尽可能大的扭转应变,以达到最佳耗能效果。
优选的,所述第一支撑件21和第二支撑件22均为空心杆件,结构支撑性好且用钢 量低,截面形式可以为圆形、矩形,也可以选择工字型等,为便于设计,所述第一支撑件21和第二支撑件22的宜为形状尺寸相同的等截面构件。所述第一支撑件21和第二支撑件22可通过如焊接的方式连接所述芯轴1,本实施例中,所述第一支撑件21通过第一连接套31固定套设于所述芯轴1的中部,所述第二支撑件22通过两个第二连接套32固定套设于所述芯轴1,两个所述第二连接套32分别对称设于所述第一连接套31两侧,所述第一支撑件21和第二支撑件22均位于所述芯轴1的中部共面设置,进一步保证构件的稳定性,优选的,两个所述第二连接套32分别位于所述芯轴1的对应端部,以进一步降低用钢量,如图2所示。第一连接套31和第一支撑件21之间的连接处、第二连接套32和第二支撑件22之间的连接处,均要承受一定的弯矩,可以通过增强局部刚度解决。
使用时,与主体结构的转动连接方式与现有的直线型BRB构件一致,形成斜向的对角安装,本实施例以框架结构建筑为例,如图3所示,所述第一支撑件21转动连接于下层框架左侧,所述第二支撑件22转动连接于上层框架右侧,所述第一支撑件21和第二支撑件22的连接位置也可以左右侧互换、上下层互换,但不再是核心构件(耗能构件)两端直接连接主体结构。所述第一支撑件21和第二支撑件22之间的夹角宜为140°-150°,以利于本构件的斜向布置安装和在水平力下的剪切变形,所述第一支撑件21和第二支撑件22的远端能够转动,为便于安装,所述第一支撑件21的远端和第二支撑件22的远端均具有安装孔4,如通过设置连接板,在连接板上设置安装孔4,通过销钉穿设安装孔4与框架结构上的节点板的连接孔进行连接,安装效率高。
当第一支撑件21的下端和第二支撑件22的上端因水平荷载发生剪切变形时,两端之间的相对位置会发生变化,使第一支撑件21和第二支撑件22之间的夹角发生也改变,进而能够使芯轴1产生扭转变形,从而产生扭矩,该扭矩又会使得支撑杆产生弯矩和轴力,从而抵抗外荷载作用,使得构件具有承载能力;在地震水平力的作用下,芯轴1的截面将进入塑性屈服状态,充分利用了金属材料的塑性耗能性能,达到消耗地震能量的效果,所以该构件又具有耗能抗震的能力,从而具备耗能承载的双功能。本构件突破了传统BRB构件的轴向拉压的耗能模式,采用扭转耗能的支撑结构,消除了支撑构件受压屈曲的问题,简化了钢结构耗能斜撑的构造,无需设置外在约束构件,减少用钢量,避免填充砂浆,有效缩短安装工期,提高构件的可靠性,大大降低构件的制造成本,具有广泛的应用前景。
以芯轴1采用Q235钢材为例,其拉伸屈服强度约为305MPa,扭转屈服强度约为220MPa。若采用现有的直线型BRB构件,取屈服耗能段长度1650mm,面积419mm 2,过渡段(核心构件的外伸段和屈服段之间的部分)长度1120mm,防屈曲套管为 200*100*10mm,整体用钢量约为180kg;屈服荷载(支撑力)为127.8kN,假定直线型BRB构件伸长率为2%,则单程做功约为7.05kJ。若采用本申请的抗震构件,取芯轴1的内径40mm、外径80mm,长度160mm,初始张开角150°,取图4中安装孔4的中心距离2770mm,则整体用钢量约为140kg,明显减少用钢量,屈服扭矩为51.6kN*m,对应的最大支撑力为209.44kN;假定连接端伸长率为2%,则单程做功约为8.92kJ,综上,本发明的抗震构件的各项性能均优于现有的BRB构件。
另外的,所述第二支撑件22也可只连接一个所述第二连接套32,所述第一连接套31和第二连接套32也可分别套设于所述芯轴1的两端部,使所述第一支撑件21和第二支撑件22错位布置。
实施例2
一种具备耗能承载双功能的抗震构件,其结构与实施例1大致相同,其不同之处在于,所述芯轴1能够替换为两个,所述第一支撑件21和第二支撑件22分别连接于对应的所述芯轴1,两个所述芯轴1通过连接件5连接,如图4-5所示,所述第一支撑件21和第二支撑件22仍对称设置,所述第一连接套31与第二连接套32可以是实施例1中所述第一连接套31相同的结构,均套设于对应芯轴1的中部,所述连接件5可采用槽型结构件,两个所述芯轴1均固定连接槽型结构件的两个侧板,所述第一支撑件21和第二支撑件22分别带动对应的所述芯轴1发生扭转变形。
实施例3
一种缓冲器,包含相对设置的两个如实施例1或2所述的具备耗能承载双功能的抗震构件,两个第一支撑件21的悬挑端通过连接件5连接,两个第二支撑件22的悬挑端通过连接件5连接,也可以是所述第一支撑件21的悬挑端和另一个抗震构件的所述第二支撑件22的悬挑端通过连接件5连接,所述第一支撑件21的悬挑端和第二支撑件22的悬挑端均与对应的所述连接板5转动连接,如均通过销轴穿设安装孔4连接所述连接板5。两个所述抗震构件宜采用相同的结构,如均为实施例1中的第一支撑件21和第二支撑件22套设于同一个所述芯轴1的结构或均为实施例2中的第一支撑件21和第二支撑件22分别套设于一个所述芯轴1的结构。
如图6所示,左右两侧各为一个如实施例2所述的抗震构件,两个所述抗震构件的开口相向设置,也可以背向设置,两个抗震构件之间通过连接件5连接,所述连接件5可采用与实施例2相同的槽型结构件,在具体使用时,可以是所述抗震构件内部的两个连接件5(图6中左右两侧的)用于发生相对位置变化,也可以是用于连接两个抗震构件的连接件5 (图6中上下两侧的)用于发生相对位置变化。如用于地面上的竖向缓冲,则图6中下侧的连接件5固定连接地面、上侧的连接件5用于承载外部冲击,对应的,这两个连接件5的底板宜加宽设置,如图6中所示。
另外的,所述第一支撑件21的悬挑端和所述第二支撑件22的悬挑端均能够替换为通过芯轴1固定连接于所述连接件5,即图中的安装孔4的位置可采用芯轴1连接对应的连接件5,利于增强耗能能力。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种具备耗能承载双功能的抗震构件,其特征在于,包含芯轴(1),所述芯轴(1)上连接有第一支撑件(21)和第二支撑件(22),所述第一支撑件(21)的悬挑段和所述第二支撑件(22)的悬挑段分别设置于所述芯轴(1)两侧,所述第一支撑件(21)和第二支撑件(22)之间的夹角小于180°。
  2. 根据权利要求1所述的一种具备耗能承载双功能的抗震构件,其特征在于,所述芯轴(1)为管结构。
  3. 根据权利要求2所述的一种具备耗能承载双功能的抗震构件,其特征在于,所述芯轴(1)为圆管,所述圆管的外直径与壁厚的比值小于8。
  4. 根据权利要求1所述的一种具备耗能承载双功能的抗震构件,其特征在于,所述第一支撑件(21)和第二支撑件(22)均为空心杆件。
  5. 根据权利要求1-4任一所述的一种具备耗能承载双功能的抗震构件,其特征在于,所述第一支撑件(21)通过固定套设于所述芯轴(1)中部的第一连接套(31)连接所述芯轴(1),所述第二支撑件(22)分别通过固定套设于所述芯轴(1)对应端部的两个第二连接套(32)连接所述芯轴(1),所述第一支撑件(21)和第二支撑件(22)相对设置。
  6. 根据权利要求5所述的一种具备耗能承载双功能的抗震构件,其特征在于,所述第一支撑件(21)能够替换为通过第一连接套(31)套设于所述芯轴(1)的一端部,所述第二支撑件(22)能够替换通过第二连接套(32)套设于所述芯轴(1)的另一端部。
  7. 根据权利要求1-4任一所述的一种具备耗能承载双功能的抗震构件,其特征在于,所述芯轴(1)能够替换为两个,所述第一支撑件(21)和第二支撑件(22)分别连接于对应的所述芯轴(1),两个所述芯轴(1)通过连接件(5)连接。
  8. 根据权利要求1-4任一所述的一种具备耗能承载双功能的抗震构件,其特征在于,所述第一支撑件(21)的悬挑端和第二支撑件(22)的悬挑端均具有安装孔(4)。
  9. 一种缓冲器,其特征在于,包含两个相对设置的如权利要求1-8任一所述的具备耗能承载双功能的抗震构件,两个第一支撑件(21)的悬挑端通过连接件(5)连接,两个第二支撑件(22)的悬挑端通过连接件(5)连接,所述第一支撑件(21)的悬挑端和第二支撑件(22)的悬挑端均与对应的所述连接板(5)转动连接。
  10. 根据权利要求9所述的一种缓冲器,其特征在于,所述第一支撑件(21)的悬挑端和所述第二支撑件(22)的悬挑端均能够替换为通过芯轴(1)固定连接于所述连接件(5)。
PCT/CN2022/093023 2022-01-18 2022-05-16 一种具备耗能承载双功能的抗震构件及缓冲器 WO2023137929A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210055863.3 2022-01-18
CN202210055863.3A CN114263289A (zh) 2022-01-18 2022-01-18 一种具备耗能承载双功能的抗震构件及缓冲器

Publications (1)

Publication Number Publication Date
WO2023137929A1 true WO2023137929A1 (zh) 2023-07-27

Family

ID=80833049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093023 WO2023137929A1 (zh) 2022-01-18 2022-05-16 一种具备耗能承载双功能的抗震构件及缓冲器

Country Status (2)

Country Link
CN (1) CN114263289A (zh)
WO (1) WO2023137929A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117005542A (zh) * 2023-10-07 2023-11-07 德州高通机械有限公司 一种抗震钢结构

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114263289A (zh) * 2022-01-18 2022-04-01 湖南大学 一种具备耗能承载双功能的抗震构件及缓冲器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812879A (zh) * 2010-03-26 2010-08-25 北京工业大学 控制建筑结构三维平动及水平扭转的调谐质量阻尼器及其制作方法
CN102535671A (zh) * 2012-02-14 2012-07-04 扬州大学 双向扭转型铅剪切阻尼器
JP2013129982A (ja) * 2011-12-21 2013-07-04 Daiwa House Industry Co Ltd 圧縮ブレースによる耐震補強構造および補強方法
CN105507132A (zh) * 2015-12-02 2016-04-20 同济大学 一种扭转型三管屈曲约束支撑
CN105672523A (zh) * 2016-04-05 2016-06-15 浙江建科减震科技有限公司 装配式高承载型防屈曲支撑
CN108505640A (zh) * 2018-04-25 2018-09-07 西安建筑科技大学 一种回形控力防屈曲支撑结构
CN111962707A (zh) * 2020-09-02 2020-11-20 兰州理工大学 一种屈曲约束支撑和耗能板的组合抗侧力结构
US20200392752A1 (en) * 2018-02-09 2020-12-17 Murat Dicleli Multidirectional adaptive re-centering torsion isolator
CN114263289A (zh) * 2022-01-18 2022-04-01 湖南大学 一种具备耗能承载双功能的抗震构件及缓冲器
CN217105630U (zh) * 2022-01-18 2022-08-02 湖南大学 一种具备耗能承载双功能的抗震构件及缓冲器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812879A (zh) * 2010-03-26 2010-08-25 北京工业大学 控制建筑结构三维平动及水平扭转的调谐质量阻尼器及其制作方法
JP2013129982A (ja) * 2011-12-21 2013-07-04 Daiwa House Industry Co Ltd 圧縮ブレースによる耐震補強構造および補強方法
CN102535671A (zh) * 2012-02-14 2012-07-04 扬州大学 双向扭转型铅剪切阻尼器
CN105507132A (zh) * 2015-12-02 2016-04-20 同济大学 一种扭转型三管屈曲约束支撑
CN105672523A (zh) * 2016-04-05 2016-06-15 浙江建科减震科技有限公司 装配式高承载型防屈曲支撑
US20200392752A1 (en) * 2018-02-09 2020-12-17 Murat Dicleli Multidirectional adaptive re-centering torsion isolator
CN108505640A (zh) * 2018-04-25 2018-09-07 西安建筑科技大学 一种回形控力防屈曲支撑结构
CN111962707A (zh) * 2020-09-02 2020-11-20 兰州理工大学 一种屈曲约束支撑和耗能板的组合抗侧力结构
CN114263289A (zh) * 2022-01-18 2022-04-01 湖南大学 一种具备耗能承载双功能的抗震构件及缓冲器
CN217105630U (zh) * 2022-01-18 2022-08-02 湖南大学 一种具备耗能承载双功能的抗震构件及缓冲器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117005542A (zh) * 2023-10-07 2023-11-07 德州高通机械有限公司 一种抗震钢结构
CN117005542B (zh) * 2023-10-07 2023-12-01 德州高通机械有限公司 一种抗震钢结构

Also Published As

Publication number Publication date
CN114263289A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2023137929A1 (zh) 一种具备耗能承载双功能的抗震构件及缓冲器
WO2022037530A1 (zh) 一种自复位防屈曲支撑及其消能方法
CN105256913B (zh) 一种形状记忆合金绞线自复位摩擦防屈曲支撑
CN109853773B (zh) 多级-多阶段耗能复合型防屈曲支撑及安装方法
CN109868912B (zh) 多阶段耗能泡沫金属球复合型内板防屈曲支撑及安装方法
CN104005490B (zh) 一种加强屈服后刚度的防屈曲限位支撑构件
CN110295780B (zh) 一种多阶屈服的双重管约束型自复位防屈曲支撑装置
CN113175117A (zh) 带屈曲约束支撑的桁架型可更换消能连梁
CN108505640A (zh) 一种回形控力防屈曲支撑结构
CN105714952A (zh) 竹形屈曲约束支撑
CN112392163A (zh) 一种多级自恢复型消能支撑及其消能方法
CN113266104A (zh) 一种防止放大装置面外失稳的复合消能伸臂
CN101761145B (zh) 自动恢复轴线居中功能的复合型耗能支撑构件
CN105926795B (zh) 一种具有对称初始缺陷的套管约束防屈曲支撑
CN217105630U (zh) 一种具备耗能承载双功能的抗震构件及缓冲器
CN216973812U (zh) 一种带限位功能的双屈服点钢棒屈曲约束支撑
CN103243832B (zh) 一种钢管内灌聚氨酯高效支撑
CN113293878A (zh) 一种带限位功能的双屈服点钢棒屈曲约束支撑
CN211548196U (zh) 一种带强边缘构件的钢板混凝土剪力墙
CN209854964U (zh) 一种具备双阶屈服特性的承载-消能结构
CN210002596U (zh) 一种多级耗能复合型防屈曲支撑
CN109519025B (zh) 一种剪刀撑机构伸臂桁架消能减震系统
CN214272474U (zh) 一种多级自恢复型消能支撑
CN110847423A (zh) 一种半钢接框架内填钢筋混凝土剪力墙结构
CN216552506U (zh) 具有竖向与多向水平地震隔震能力的自复位隔震支座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921360

Country of ref document: EP

Kind code of ref document: A1