WO2023137910A1 - 天线结构和电子设备 - Google Patents

天线结构和电子设备 Download PDF

Info

Publication number
WO2023137910A1
WO2023137910A1 PCT/CN2022/090649 CN2022090649W WO2023137910A1 WO 2023137910 A1 WO2023137910 A1 WO 2023137910A1 CN 2022090649 W CN2022090649 W CN 2022090649W WO 2023137910 A1 WO2023137910 A1 WO 2023137910A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
dielectric substrate
area
radiation
antenna structure
Prior art date
Application number
PCT/CN2022/090649
Other languages
English (en)
French (fr)
Inventor
焦涛
刘会
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Publication of WO2023137910A1 publication Critical patent/WO2023137910A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of terminals, and in particular to an antenna structure and electronic equipment.
  • a rectangular slice radiator and a power-dividing feed structure can be used to form a row of grounding vias in the middle of the rectangular slice radiator as a partition wall to separate the rectangular slice radiator into two parts, and further adjust the power input to the two parts through the power-dividing feed structure to achieve dual-frequency resonance in the UWB frequency band.
  • the solution of adopting the power split feed structure is very easy to cause the risk of impedance mismatch due to the processing error of the power split feed structure, which affects the radiation performance.
  • the present disclosure provides an antenna structure and electronic equipment to solve the deficiencies in the related art.
  • an antenna structure including:
  • the dielectric substrate is disposed on the surface of the ground layer
  • the feeder line is arranged in the dielectric substrate
  • a radiator the radiator is disposed on the surface of the dielectric substrate away from the ground layer, the radiator includes a radiation part, a hollow area, a feed point, and a ground point spaced apart from the feed point, the radiation part encloses the hollow area, the feed point and the ground point are both arranged in the radiation part, the ground point is electrically connected to the ground layer, and the feed point is electrically connected to the feeder line;
  • the radiation part includes a first radiation area and a second radiation area spaced apart from the first radiation area, the first radiation area is used to radiate signals in a first frequency band, the second radiation area is used to radiate signals in a second frequency band, the first frequency band is different from the second frequency band, and both the first frequency band and the second frequency band belong to the ultra-wideband frequency band.
  • the frequency of the first frequency band is lower than the frequency of the second frequency band
  • the radiator is arranged in a rectangular shape
  • the first radiation area and the second radiation area are respectively located at corners of the radiation part, and the corner where the first radiation area is located is adjacent to the corner where the second radiation area is located;
  • the feed point is located in the middle of an edge of the radiating part connected to the second radiating area and away from the first radiating area, and the grounding point is located at a corner of a focus position with the second radiating area.
  • the first radiation area and/or the second radiation area includes a stepped portion, and the stepped portion is used to limit a current path.
  • the first radiation area and the second radiation area respectively include stepped portions, and the stepped portions are located on adjacent two side edges of the radiation portion.
  • the width of the edge of the radiation part located between the first radiation area and the second radiation area is smaller than the width of the opposite side edge.
  • the radiator has a length of 11.56 mm and a width of 9.35 mm, and an edge between the first radiation area and the second radiation area is arranged along the length direction of the radiation part.
  • a protection layer is further included, the protection layer is disposed on a side of the dielectric substrate away from the ground layer and covers the radiator.
  • the dielectric substrate includes a first dielectric substrate and a second dielectric substrate stacked, the feeder is disposed between the first dielectric substrate and the second dielectric substrate, the radiator is disposed on the surface of the first dielectric substrate, the second dielectric substrate is connected to the ground layer, the first dielectric substrate includes a through hole, and the feed point and the feeder are connected through the through hole.
  • the center frequency of the first frequency band is 6.5 GHz
  • the center frequency of the second frequency band is 8 GHz.
  • an electronic device including the antenna structure according to any one of the foregoing embodiments.
  • the disclosure forms a hollow area by hollowing out the middle area on the radiator, and cooperates with the reasonable arrangement of the feed point and the grounding point to adjust the current path of the radiator when the first frequency band signal is radiated and the current path when the second frequency band signal is radiated, so that the positions of the current strong point and the current weak point on the current path are different, so that the radiator can achieve dual-frequency resonance.
  • the adjustment of the current path can be realized by adjusting the structure of the radiator, so as to achieve dual-frequency resonance while avoiding the partition wall and the power distribution feed structure in the related art, simplify the feed structure, and reduce the risk of impedance mismatch caused by the processing error of the power distribution feed structure.
  • Fig. 1 is a schematic structural diagram of an antenna structure according to an exemplary embodiment.
  • FIG. 2 is an exploded schematic diagram of the structure of the antenna in FIG. 1 .
  • FIG. 3 is a schematic cross-sectional view of the antenna structure in FIG. 1 .
  • FIG. 4 is a top view of the antenna structure in FIG. 1 .
  • Fig. 5 is an S-parameter curve diagram of an antenna structure according to an exemplary embodiment.
  • Fig. 6 is a graph showing an antenna efficiency curve of an antenna structure according to an exemplary embodiment.
  • Fig. 7 is a far-field radiation diagram of an antenna structure at 6.5 GHz according to an exemplary embodiment.
  • Fig. 8 is an electric field distribution diagram of an antenna structure at 6.5 GHz according to an exemplary embodiment.
  • Fig. 9 is a current distribution diagram of an antenna structure at 6.5 GHz according to an exemplary embodiment.
  • Fig. 10 is a far-field radiation diagram of an antenna structure at 8 GHz according to an exemplary embodiment.
  • Fig. 11 is an electric field distribution diagram of an antenna structure at 8 GHz according to an exemplary embodiment.
  • Fig. 12 is a current distribution diagram of an antenna structure at 8 GHz according to an exemplary embodiment.
  • first, second, third, etc. may be used in the present disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or “when” or “in response to a determination.”
  • Fig. 1 is a schematic structural view of an antenna structure 100 according to an exemplary embodiment
  • Fig. 2 is a schematic exploded view of the antenna structure 100 in Fig. 1
  • Fig. 3 is a schematic cross-sectional view of the antenna structure 100 in Fig. 1
  • the antenna structure 100 may include a ground layer 1, a dielectric substrate 2, a feeder 3 and a radiator 4.
  • the dielectric substrate 2 may be disposed on the surface of the ground layer 1
  • the radiator 4 may be disposed on the surface of the dielectric substrate 2 away from the ground layer 1
  • the feeder 3 may be arranged in the dielectric substrate 2.
  • the radiator 4 may include a radiation part 41, a hollow area 42, a feed point 43, and a ground point 44.
  • the ground point 44 and the feed point 43 are arranged at intervals on the radiation part 41.
  • the ground point 44 can be connected to the ground layer 1 through a ground hole provided on the dielectric substrate 2, so that the signal fed by the feeder 3 can be returned to the ground.
  • a single radiator 4 can be arranged on the same dielectric substrate 2, and in other embodiments, multiple radiators 4 can also be arranged on the same dielectric substrate 2, and each radiator 4 is electrically connected to a feeder 3 correspondingly.
  • the radiation portion 41 can surround a hollow area 42, the radiation portion 41 can include a first radiation area 411 and a second radiation area 412, the first radiation area 411 and the second radiation area 412 are arranged at intervals on the radiation portion 41, wherein the first radiation area 411 can be used to radiate signals of the first frequency band, and the second radiation area 412 can be used to radiate signals of the second frequency band, the first frequency band is different from the second frequency band, and both the first frequency band and the second frequency band belong to UWB (Ultra Wide Band, ultra-wideband) frequency band; by hollowing out the middle area on the radiator 4 to form a hollow area 42 and cooperating with the reasonable arrangement of the feed point 43 and the grounding point 44, the current path when the radiation part 41 radiates the first frequency band signal and the current path when radiating the second frequency band signal can be adjusted, so that the positions of the current strong point and the current weak point on the current path are different, so that the radiator 4 can achieve the purpose of dual-frequency resonance.
  • UWB Ultra
  • the structure of the radiator 4 can be adjusted to realize the adjustment of the current path, so as to achieve dual-frequency resonance while avoiding the separation wall and the power distribution feed structure in the related art, simplify the feed structure, and reduce the risk of impedance mismatch caused by the processing error of the power distribution feed structure.
  • the antenna structure 100 can also include a protective layer 5, the protective layer 5 is disposed on the side of the dielectric substrate 2 away from the ground layer 1, and the protective layer 5 can cover the radiator 4 to reduce scratches on the radiator 4.
  • the protective layer 5 may include an insulating layer, such as a plastic film, so as to prevent the radiation from the radiator 4 from being affected.
  • the dielectric substrate 2 may include a first dielectric substrate 21 and a second dielectric substrate 22, the feeder 3 may be disposed between the first dielectric substrate 21 and the second dielectric substrate 22, the radiator 4 may be disposed on the surface of the first dielectric substrate 21, the second dielectric substrate 22 may be connected to the ground layer 1, a through hole (not shown) may be provided on the first dielectric substrate 21, the feed point 43 and the feeder 3 may be connected through a conductive member disposed in the through hole, and the first dielectric substrate 21 and the second dielectric substrate 22 may be connected. Adhesive fixation can prevent the feeder 3 from being exposed.
  • the first dielectric substrate 21 and the second dielectric substrate 22 may include a liquid crystal polymer substrate, and the signal loss in the first frequency band and the second frequency band may be reduced by utilizing the high-frequency and low-loss characteristics of the liquid crystal polymer substrate.
  • the UWB frequency band can cover the frequency range of 3.1GHz-10.6GHz, and the minimum operating bandwidth is 500MHz.
  • the center frequencies of the current domestic mainstream UWB frequency bands are 6.5GHz and 8GHz, and the bandwidth is above 500MHz. Therefore, by adjusting the size and shape of the radiator 4, the center frequency of the first frequency band can be 6.5 GHz, the range of the first frequency band is 6.25 GHz-6.75 GHz, the center frequency of the second frequency band is 8 GHz, and the range of the second frequency band is 7.75 GHz-8.25 GHz, so as to realize the coverage of the mainstream UWB frequency band by the antenna structure 100.
  • the radiator 4 can be arranged in a rectangular shape, and the hollow area 42 can also be arranged in a rectangular shape.
  • the first radiation area 411 and the second radiation area 412 can be located at the corners of the radiation part 41 respectively, and the corner where the first radiation area 411 is located is adjacent to the corner where the second radiation area 412 is located.
  • the feed point 43 can be located on the edge of the radiation part 41 that is connected to the second radiation area 412 and away from the first radiation area 411
  • the ground point 44 may be located at the corner of the diagonal position of the second radiation area 412.
  • the first radiation area 411 can be located at the upper left corner of the radiator 4
  • the second radiation area 412 can be located at the upper right corner of the radiator 4
  • the feed point 43 is located at the right edge middle area of the radiation part 41
  • the grounding point 44 is located at the small left corner, so that the effective current path length of the first radiation area 411 is greater than the effective current path length of the second radiation area 412, and the effective current path length is inversely proportional to the radiation frequency.
  • the frequency of the first band will be less than the frequency of the second band.
  • the center frequency of the first frequency band is 6.5 GHz
  • the range of the first frequency band is 6.25 GHz-6.75 GHz
  • the center frequency of the second frequency band is 8 GHz
  • the range of the second frequency band is 7.75 GHz-8.25 GHz for simulation, as shown in the S parameter curve shown in Fig.
  • the antenna efficiency reaches -7.38dB, which meets the communication requirements of the antenna structure 100 .
  • the relevant simulation diagrams when the center frequency is 6.5Ghz as shown in FIGS. 7-9 and the relevant simulation diagrams when the center frequency is 8Ghz as shown in FIGS. 10-12 can be obtained.
  • the first radiation area 411 and the second radiation area 412 can achieve good omnidirectional radiation, which is conducive to improving the radiation efficiency of the antenna structure 100; according to the electric field distribution diagrams shown in Figures 8 and 11, the electric field of the first radiation area 411 is the strongest at 6.5 GHz, so the first radiation area 411 is the main radiation area for radiating signals in the first frequency band, and the second radiation area 41 is at 8 GHz. 2, the electric field is the strongest, so the second radiation area 412 is the main radiation area for signals in the second frequency band.
  • the current strong point is located near the ground point 44, and the current direction is from left to right and from top to bottom, forming a current weak point in the first radiation area 411; at 8 GHz, the current strong point is located near the feed point 43, and the current direction is from bottom to top to form a current weak point in the second radiation area 412. It can be seen that at 6.5 GHz and 8 GHz, the current strong point and the current weak point on the current path are different, and the direction of the current path is also the same. Different, it is possible to achieve dual-frequency resonance while reducing mutual interference between resonances in different frequency bands.
  • the first radiation area 411 can include a first step portion 413
  • the second radiation area 412 can include a second step portion 414.
  • the current path at 6.5 GHz can be limited by the first step portion 413, and the effective length of the current path at 6.5 GHz can be adjusted to avoid frequency deviation caused by the internal environment of the electronic device; caused by frequency deviation.
  • the first stepped portion 413 and the second stepped portion 414 are located on adjacent two side edges of the radiating portion 41. For example, as shown in FIG. In this way, while the first step portion 413 restricts the current path at 6.5 GHz, the influence on the current path at 8 GHz can be reduced, which is beneficial to realize the independent adjustment of the first frequency band and the second frequency band.
  • the first radiation area 411 includes the first step portion 413
  • the second radiation area 412 includes the second step portion 414.
  • the center frequency of the first frequency band is 6.5 GHz
  • the center frequency of the second frequency band is 8 GHz.
  • the center frequency of the first frequency band can also be the center frequency of other channels in the UWB frequency band
  • the center frequency of the second frequency band can also be the center frequency of other channels in the UWB frequency band. This disclosure does not limit this.
  • the width of the edge of the radiation portion 41 located between the first radiation area 411 and the second radiation area 412 is smaller than the width of the edge on the opposite side. That is, as shown in FIG. 4 , the width of the upper edge in the vertical direction is smaller than the width of the lower edge in the vertical direction, so that the amount of current on the edge between the first radiation area 411 and the second radiation area 412 can be reduced, which is conducive to reducing the interference between signals in the first frequency band and signals in the second frequency band. Still as shown in FIG.
  • the length dimension of the radiator 4 can be 11.56 mm, and the width dimension can be 9.35 mm, and the edge between the first radiation area 411 and the second radiation area 412 is arranged along the length direction of the radiation part 41.
  • the present disclosure further provides an electronic device, which may include the antenna structure 100 described in any one of the above embodiments.
  • an electronic device which may include the antenna structure 100 described in any one of the above embodiments.

Abstract

本公开是关于一种天线结构和电子设备。天线结构包括:接地层;介质基板,介质基板设置于接地层的表面;馈线,馈线设置于介质基板内;辐射体,辐射体设置于介质基板背离接地层的表面,辐射体包括辐射部、中空区、馈点和与馈点间隔设置的接地点,辐射部围成中空区,馈点和接地点均设置于辐射部,接地点与接地层导通,馈点与馈线电连接;其中,辐射部包括第一辐射区和与第一辐射区间隔设置的第二辐射区,第一辐射区用于辐射第一频段的信号,第二辐射区用于辐射第二频段的信号,第一频段区别于第二频段,第一频段和第二频段均属于超宽带频段。

Description

天线结构和电子设备
相关申请的交叉引用
本申请基于申请日为2022年1月20日、申请号为202210066983.3号的中国专利申请,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入作为参考。
技术领域
本公开涉及终端技术领域,尤其涉及一种天线结构和电子设备。
背景技术
近年来,随着UWB技术方案的成熟以及成本的下降,同时基于UWB技术精准的室内定位功能,各大厂商分别尝试将UWB天线应用于用户日常所需的终端设备中,比如手机终端,以完善当前手机终端在隧道、或者室内定位差的弊端。
在一相关技术中,可以采用矩形片辐射体和功分馈电结构,在矩形片辐射体的中部形成一排接地通孔作为隔离墙,将矩形片辐射体分隔为两个部分,进一步通过功分馈电结构调整输入至两个部分的功率,达到在UWB频段内实现双频谐振的目的。但是,采用功分馈电结构的方案,极易由于功分馈电结构的加工误差造成阻抗失配的风险,影响辐射性能。
发明内容
本公开提供一种天线结构和电子设备,以解决相关技术中的不足。
根据本公开实施例的第一方面,提供一种天线结构,包括:
接地层;
介质基板,所述介质基板设置于所述接地层的表面;
馈线,所述馈线设置于所述介质基板内;
辐射体,所述辐射体设置于所述介质基板背离所述接地层的表面,所述辐射体包括辐射部、中空区、馈点和与所述馈点间隔设置的接地点,所述辐射部围成所述中空区,所述馈点和所述接地点均设置于所述辐射部,所述接地点与所述接地层导通,所述馈点与所述馈线电连接;
其中,所述辐射部包括第一辐射区和与所述第一辐射区间隔设置的第二辐射区,所述第一辐射区用于辐射第一频段的信号,所述第二辐射区用于辐射第二频段的信号,所述第一频段区别于所述第二频段,所述第一频段和所述第二频段均属于超宽带频段。
可选的,所述第一频段的频率小于第二频段的频率,所述辐射体呈矩形状设置,所述第一辐射区和所述第二辐射区分别位于所述辐射部的拐角处,且所述第一辐射区所处的拐角处与所述第二辐射区所处的拐角处相邻设置;
所述馈点位于所述辐射部与所述第二辐射区连接、且远离所述第一辐射区的边缘中部,所述接地点位于与所述第二辐射区对焦位置的拐角处。
可选的,所述第一辐射区和/或所述第二辐射区包括台阶部,所述台阶部用于限制电流路径。
可选的,所述第一辐射区和所述第二辐射区分别包括台阶部,所述台阶部位于所述辐射部上的相邻两侧边缘。
可选的,所述辐射部位于所述第一辐射区和所述第二辐射区之间边缘的宽度小于、相对的另一侧边缘的宽度。
可选的,所述辐射体的长度尺寸为11.56毫米,宽度尺寸为9.35mm,所述第一辐射区和所述第二辐射区之间的边缘沿所述辐射部的长度方向设置。
可选的,还包括保护层,所述保护层设置于所述介质基板背离所述接地层的一侧且覆盖所述辐射体。
可选的,所述介质基板包括堆叠设置的第一介质基板和第二介质基板,所述馈线设置于所述第一介质基板和所述第二介质基板之间,所述辐射体设置于所述第一介质基板的表面,所述第二介质基板与所述接地层连接,所述第一介质基板包括贯通孔,所述馈点和所述馈线通过所述贯通孔导通。
可选的,所述第一频段的中心频率为6.5GHz,所述第二频段的中心频率为8GHz。
根据本公开实施例的第二方面,提供一种电子设备,包括如上述中任一项实施例所述的天线结构。
本公开的实施例提供的技术方案可以包括以下有益效果:
由上述实施例可知,本公开通过在辐射体上挖空中部区域形成中空区,配合馈点和接地点的合理布置,可以调整辐射部辐射第一频段信号时的电流路径和辐射第二频段信号时的电流路径,使得电流路径上的电流强点和电流弱点的位置不同,从而可以达到辐射体实现双频谐振的目的,相对于相关技术中通过在同一辐射体上设置一排接地通孔作为隔离墙,进一步借助功分馈电结构进行功率分配实现双频辐射的方案,本公开中可以通过调整辐射体的结构实现电流路径的调整,在达到双频谐振的同时规避相关技术中的隔离墙和功分馈电结构,简化馈电结构,而且可以降低由于功分馈电结构的加工误差导致的阻抗失配风险。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种天线结构的结构示意图。
图2是图1中天线结构分解示意图。
图3是图1中天线结构的截面示意图。
图4是图1中天线结构的俯视图。
图5是根据一示例性实施例示出的一种天线结构的S参数曲线图。
图6是根据一示例性实施例示出的一种天线结构的天线效率曲线图。
图7是根据一示例性实施例示出的一种天线结构处于6.5GHz时的远场辐射图。
图8是根据一示例性实施例示出的一种天线结构处于6.5GHz时的电场分布图。
图9是根据一示例性实施例示出的一种天线结构处于6.5GHz时的电流分布图。
图10是根据一示例性实施例示出的一种天线结构处于8GHz时的远场辐射图。
图11是根据一示例性实施例示出的一种天线结构处于8GHz时的电场分布图。
图12是根据一示例性实施例示出的一种天线结构处于8GHz时的电流分布图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图1是根据一示例性实施例示出的一种天线结构100的结构示意图,图2是图1中天线结构100分解示意图,图3是图1中天线结构100的截面示意图。如图1-图3所示,该天线结构100可以包括接地层1、介质基板2、馈线3和辐射体4,该介质基板2可以设置于接地层1的表面,辐射体4可以设置于介质基板2背离接地层1的表面,馈线3可以布置于介质基板2内。该辐射体4可以包括辐射部41、中空区42、馈点43和接地点44,该接地点44和馈点43间隔布置于辐射部41上,接地点44可以通过设置于介质基板2上的接地通孔与接地层1导通,实现馈线3馈入的信号回地,馈点43可以通过设置在介质基板2上的馈电盲孔导通,具体可以通过位于馈电盲孔内的金属或者导电丝或者导电弹片实现电导通。其中,同一介质基板2上可以设置单个辐射体4,在其他实施例中,同一介质 基板2上也可以设置多个辐射体4,且每一辐射体4对应与一个馈线3电连接。
该辐射部41可以围成中空区42,该辐射部41可以包括第一辐射区411和第二辐射区412,该第一辐射区411和第二辐射区412间隔布置于该辐射部41上,其中该第一辐射区411可以用于辐射第一频段的信号,第二辐射区412可以用于辐射第二频段的信号,该第一频段区别于第二频段,且该第一频段和第二频段均属于UWB(Ultra Wide Band,超带宽)频段;通过在辐射体4上挖空中部区域形成中空区42并且配合馈点43和接地点44的合理布置,可以调整辐射部41辐射第一频段信号时的电流路径和辐射第二频段信号时的电流路径,使得电流路径上的电流强点和电流弱点的位置不同,从而可以达到辐射体4实现双频谐振的目的,相对于相关技术中通过在同一辐射体上设置一排接地通孔作为隔离墙,进一步借助功分馈电结构进行功率分配实现双频辐射的方案,本公开中可以通过调整辐射体4的结构实现电流路径的调整,在达到双频谐振的同时规避相关技术中的隔离墙和功分馈电结构,简化馈电结构,而且可以降低由于功分馈电结构的加工误差导致的阻抗失配风险。
进一步地,为了对辐射体4进行保护,该天线结构100还可以包括保护层5,该保护层5设置于介质基板2背离接地层1的一侧,且该保护层5可以覆盖辐射体4,减少对辐射体4的刮蹭。该保护层5可以包括绝缘层,比如可以包括塑胶膜,避免对辐射体4的辐射造成影响。
在上述实施例中,介质基板2可以包括第一介质基板21和第二介质基板22,馈线3可以设置于该第一介质基板21和第二介质基板22之间,辐射体4可以设置于第一介质基板21的表面,第二介质基板22可以与接地层1连接,该第一介质基板21上可以设置贯通孔(未示出),馈点43与馈线3可以通过设置于该贯通孔内的导电件导通,第一介质基板21和第二介质基板22之间可以粘接固定,以此可以避免馈线3外露。该第一介质基板21和第二介质基板22可以包括液晶聚合物基板,利用液晶聚合物基板高频低损的特性,可以减少第一频段和第二频段内的信号损失。
目前,根据美国联邦通信委员会规定,UWB频段可以覆盖3.1GHz-10.6GHz的频率范围,最小工作频宽为500MHz,当前国内主流的UWB频段的中心频率为6.5GHz和8GHz,带宽在500MHz以上,其工作于UWB信道划分的第五信道和第九信道,其中第五信道的频段为6.25GHz-6.75GHz,第九信道的频段为7.75GHz-8.25GHz。因此,通过调整辐射体4的尺寸和形状,可以使得该第一频段的中心频率为6.5GHz,第一频段的范围为6.25GHz-6.75GHz,第二频段的中心频率为8GHz,第二频段的范围为7.75GHz-8.25GHz,以实现该天线结构100对主流UWB频段的覆盖。
举例而言,如本公开中提供的实施例中,该辐射体4可以呈矩形状设置,中空区42也可以呈矩形状设置,第一辐射区411和第二辐射区412可以分别位于辐射部41的拐角处,并且该第一辐射区411所处的拐角处与第二辐射区412所处的拐角处相邻设置,馈点43可以位于辐射部41上与第二辐射区412连接、且远离第一辐射区411的边缘中部,接 地点44可以位于第二辐射区412对角位置的拐角处。以如图4所示实施例为例,第一辐射区411可以位于辐射体4的左上角拐角处,第二辐射区412可以位于辐射体4的右上角拐角处,馈点43位于辐射部41的右边缘中部区域,接地点44位于左小角拐角处,从而第一辐射区411的有效电流路径的长度为大于第二辐射区412的有效电流路径长度,有效电流路径长度与辐射频率成反比,因此辐射部41辐射的第一频段的频率会小于第二频段的频率。
基于图4中提供的天线结构100,以第一频段的中心频率为6.5GHz,第一频段的范围为6.25GHz-6.75GHz,第二频段的中心频率为8GHz,第二频段的范围为7.75GHz-8.25GHz进行仿真,如图5所示的S参数曲线可见,该天线而结构可以覆盖上述频段,并且根据图6所示的天线效率曲线可见,在6.5GHz处天线效率达到-8.35dB,在8GHz处天线效率达到-7.38dB,满足天线结构100的通信需求。进一步地,基于该仿真可以得到图7-图9所示中心频率为6.5Ghz时的相关仿真图、和如图10-图12所示中心频率为8Ghz时的相关仿真图。
根据图7和图10所示的远场辐射图,可见在辐射体4背离介质基板2以上的平面内,第一辐射区411和第二辐射区412可以实现良好的全向辐射,有利于提升天线结构100的辐射效率;根据图8和图11所示的电场分布图,在6.5GHz处第一辐射区411的电场最强,因而该第一辐射区411为辐射第一频段内信号的主辐射区域,在8GHz处第二辐射区412的电场最强,因而该第二辐射区412为第二频段内信号的主辐射区域。根据图9和图12所示的电流分布图,在6.5GHz处,电流强点位于接地点44附近,电流方向为自左至右、自上而下,形成位于第一辐射区411的电流弱点;在8GHz处,电流强点位于馈点43附近,电流方向为自下而上形成位于第二辐射区412的电流弱点,可见,在6.5GHz处和8GHz处,电流路径上的电流强点和电流弱点不同,电流路径的方向也不同,可以在实现双频谐振动同时减少不同频段谐振之间的相互干扰。
可以理解的是,在天线结构100应用于不同的电子设备时,由于电子设备内的环境不同,因此对天线结构100可能造成一定的频偏影响。所以,如图4所示,该第一辐射区411可以包括第一台阶部413,第二辐射区412可以包括第二台阶部414,通过该第一台阶部413可以限制6.5GHz处电流路径,调整6.5GHz处电流路径的有效长度,从而规避由于电子设备内环境造成的频偏;相类似地,通过该第二台阶部414可以限制8GHz处电流路径,调整8GHz处电流路径的有效长度,从而规避由于电子设备内环境造成的频偏。
第一台阶部413和第二台阶部414位于辐射部41上的相邻两侧边缘,比如如图4所示,第一台阶部413位于辐射部41的左侧边缘,第二台阶部414位于辐射部41的上侧边缘。以此,可以在第一台阶部413限制6.5GHz处的电流路径的同时减少对8GHz处的电流路径的影响,有利于实现第一频段和第二频段的独立调整。在本公开的技术方案中以第一辐射区411包括第一台阶部413、第二辐射区412包括第二台阶部414为例进行说明,在其他实施例中,也可以是第一辐射区411包括第一台阶部413或者第二辐射区412包括第 二台阶部414,本公开对此并不进行限制。上述实施例中均以第一频段的中心频率为6.5GHz,第二频段的中心频率为8GHz为例进行说明,固然通过合理设置,该第一频段的中心频率也可以是UWB频段其他信道的中心频率,第二频段的中心频率也可以是UWB频段其他信道的中心频率,本公开对此并不进行限制。
仍以图4所示的实施例为例,该辐射部41位于第一辐射区411和第二辐射区412之间边缘的宽度小于相对的另一侧边缘的宽度。即在图4中所示,上边缘在上下方向上的宽度尺寸小于下边缘在上下方向上的宽度尺寸,以此可以减少第一辐射区411和第二辐射区412之间边缘上的电流量,有利于减少第一频段内信号和第二频段内信号之间的干扰。仍以图4所示,以以第一频段的中心频率为6.5GHz,第一频段的范围为6.25GHz-6.75GHz,第二频段的中心频率为8GHz,第二频段的范围为7.75GHz-8.25GHz为例,该辐射体4的长度尺寸可以为11.56毫米,宽度尺寸可以为9.35毫米,并且第一辐射区411和第二辐射区412之间的边缘沿辐射部41的长度方向设置。
基于上述各个实施例,本公开还提供一种电子设备,该电子设备可以包括上述任一项实施例中所述的天线结构100。电子设备通过配置该天线结构100,有利于实现电子设备的室内定位,尤其可以弥补GPS定位系统在相对封闭环境内定位差的弊端。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种天线结构,其特征在于,包括:
    接地层;
    介质基板,所述介质基板设置于所述接地层的表面;
    馈线,所述馈线设置于所述介质基板内;
    辐射体,所述辐射体设置于所述介质基板背离所述接地层的表面,所述辐射体包括辐射部、中空区、馈点和与所述馈点间隔设置的接地点,所述辐射部围成所述中空区,所述馈点和所述接地点均设置于所述辐射部,所述接地点与所述接地层导通,所述馈点与所述馈线电连接;
    其中,所述辐射部包括第一辐射区和与所述第一辐射区间隔设置的第二辐射区,所述第一辐射区用于辐射第一频段的信号,所述第二辐射区用于辐射第二频段的信号,所述第一频段区别于所述第二频段,所述第一频段和所述第二频段均属于超宽带频段。
  2. 根据权利要求1所述的天线结构,其特征在于,所述第一频段的频率小于第二频段的频率,所述辐射体呈矩形状设置,所述第一辐射区和所述第二辐射区分别位于所述辐射部的拐角处,且所述第一辐射区所处的拐角处与所述第二辐射区所处的拐角处相邻设置;
    所述馈点位于所述辐射部与所述第二辐射区连接、且远离所述第一辐射区的边缘中部,所述接地点位于与所述第二辐射区对焦位置的拐角处。
  3. 根据权利要求2所述的天线结构,其特征在于,所述第一辐射区和/或所述第二辐射区包括台阶部,所述台阶部用于限制电流路径。
  4. 根据权利要求3所述的天线结构,其特征在于,所述第一辐射区和所述第二辐射区分别包括台阶部,所述台阶部位于所述辐射部上的相邻两侧边缘。
  5. 根据权利要求2所述的天线结构,其特征在于,所述辐射部位于所述第一辐射区和所述第二辐射区之间边缘的宽度小于、相对的另一侧边缘的宽度。
  6. 根据权利要求2所述的天线结构,其特征在于,所述辐射体的长度尺寸为11.56毫米,宽度尺寸为9.35mm,所述第一辐射区和所述第二辐射区之间的边缘沿所述辐射部的长度方向设置。
  7. 根据权利要求1所述的天线结构,其特征在于,还包括保护层,所述保护层设置于所述介质基板背离所述接地层的一侧且覆盖所述辐射体。
  8. 根据权利要求1所述的天线结构,其特征在于,所述介质基板包括堆叠设置的第一介质基板和第二介质基板,所述馈线设置于所述第一介质基板和所述第二介质基板之间,所述辐射体设置于所述第一介质基板的表面,所述第二介质基板与所述接地层连接,所述第一介质基板包括贯通孔,所述馈点和所述馈线通过所述贯通孔导通。
  9. 根据权利要求1所述的天线结构,其特征在于,所述第一频段的中心频率为6.5GHz,所述第二频段的中心频率为8GHz。
  10. 一种电子设备,其特征在于,包括如权利要求1-9中任一项所述的天线结构。
PCT/CN2022/090649 2022-01-20 2022-04-29 天线结构和电子设备 WO2023137910A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210066983.3 2022-01-20
CN202210066983.3A CN116526127A (zh) 2022-01-20 2022-01-20 天线结构和电子设备

Publications (1)

Publication Number Publication Date
WO2023137910A1 true WO2023137910A1 (zh) 2023-07-27

Family

ID=87347705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090649 WO2023137910A1 (zh) 2022-01-20 2022-04-29 天线结构和电子设备

Country Status (2)

Country Link
CN (1) CN116526127A (zh)
WO (1) WO2023137910A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303005A (ja) * 1994-03-10 1995-11-14 Nippondenso Co Ltd 車両用アンテナ装置
JP2011030196A (ja) * 2009-07-01 2011-02-10 Nec Corp マルチバンドループアンテナ
CN104022349A (zh) * 2014-06-12 2014-09-03 电子科技大学 基于完整金属边框的多频段智能手机天线
CN106384886A (zh) * 2016-12-11 2017-02-08 杨明 一种微型无线传感器内电小环天线系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303005A (ja) * 1994-03-10 1995-11-14 Nippondenso Co Ltd 車両用アンテナ装置
JP2011030196A (ja) * 2009-07-01 2011-02-10 Nec Corp マルチバンドループアンテナ
CN104022349A (zh) * 2014-06-12 2014-09-03 电子科技大学 基于完整金属边框的多频段智能手机天线
CN106384886A (zh) * 2016-12-11 2017-02-08 杨明 一种微型无线传感器内电小环天线系统

Also Published As

Publication number Publication date
CN116526127A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
EP4047746A1 (en) Antenna module and electronic device
US20040222936A1 (en) Multi-band dipole antenna
US7466267B2 (en) Antenna device and electronic apparatus
US11355853B2 (en) Antenna structure and wireless communication device using the same
US20230369744A1 (en) MIMO Antenna System, Wireless Device, and Wireless Communication System
US8130169B2 (en) Multi-input multi-output antenna system
US20210320408A1 (en) Antenna structure and high-frequency multi-band wireless communication terminal
WO2020019960A1 (zh) 毫米波低剖面宽带天线
WO2017054127A1 (zh) 一种通信设备
WO2018018474A1 (zh) 无线收发装置和基站
CN114498003B (zh) 一种低剖面低交叉极化的双极化电磁偶极子天线
EP1530258B1 (en) A small antenna and a multiband antenna
Nithya et al. MIMO antenna with isolation enrichment for 5G mobile information
WO2021083055A1 (zh) 一种天线组件及通信设备
WO2023137910A1 (zh) 天线结构和电子设备
CN107785649A (zh) 一种三极化天线
WO2019227651A1 (zh) 便携式通信终端及其pifa天线
CN114498006B (zh) 一种天线及终端设备
JP5626130B2 (ja) ループアンテナ
CN113054423B (zh) 天线组件
CN211017399U (zh) 一种y形结构加载l形缝隙的三频天线
TWM561337U (zh) 雙極化天線
US20190379127A1 (en) Terminal Antenna and Terminal
Kumar et al. A printed semi-circular disc UWB MIMO/diversity antenna with cross shape slot stub
KR20150032992A (ko) 그라운드 패치 구조를 이용한 마이크로스트립 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921341

Country of ref document: EP

Kind code of ref document: A1