WO2023137714A1 - 一种微型led芯片及其制备方法和包含其的共晶结构 - Google Patents
一种微型led芯片及其制备方法和包含其的共晶结构 Download PDFInfo
- Publication number
- WO2023137714A1 WO2023137714A1 PCT/CN2022/073260 CN2022073260W WO2023137714A1 WO 2023137714 A1 WO2023137714 A1 WO 2023137714A1 CN 2022073260 W CN2022073260 W CN 2022073260W WO 2023137714 A1 WO2023137714 A1 WO 2023137714A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- groove
- gallium nitride
- type gallium
- protrusion
- Prior art date
Links
- 230000005496 eutectics Effects 0.000 title claims abstract description 48
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 63
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 60
- 239000000463 material Substances 0.000 claims abstract description 35
- 239000000758 substrate Substances 0.000 claims description 58
- 229920002120 photoresistant polymer Polymers 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 19
- 239000012212 insulator Substances 0.000 claims description 16
- 239000010936 titanium Substances 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- JVPLOXQKFGYFMN-UHFFFAOYSA-N gold tin Chemical compound [Sn].[Au] JVPLOXQKFGYFMN-UHFFFAOYSA-N 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 8
- 239000010410 layer Substances 0.000 description 146
- 238000003466 welding Methods 0.000 description 21
- 230000000694 effects Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 6
- 239000003086 colorant Substances 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- JZDQXPACWMCLKT-UHFFFAOYSA-N [Ni].[Sn].[Au] Chemical compound [Ni].[Sn].[Au] JZDQXPACWMCLKT-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012797 qualification Methods 0.000 description 2
- YGVYHUGLHHFGNN-UHFFFAOYSA-N (2-phenylcyclobuten-1-yl)benzene Chemical compound C1CC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 YGVYHUGLHHFGNN-UHFFFAOYSA-N 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/58—Optical field-shaping elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
Definitions
- the patent of the invention belongs to the technical field of micro-LEDs, and specifically relates to a micro-LED chip, a preparation method thereof, and a eutectic structure containing the chip.
- Micro LED display technology refers to a display technology that uses self-luminous micron-scale LEDs as light-emitting pixel units and assembles them on the drive panel to form a high-density LED array. Due to the small size of the micro LED chip, high integration and self-luminescence, it has greater advantages in terms of brightness, resolution, contrast, energy consumption, service life, response speed and thermal stability compared with LCD and OLED in terms of display.
- Micro LED applications will expand from flat panel display to AR/VR/MR, space display, flexible transparent display, wearable/implantable optoelectronic devices, optical communication/optical interconnection, medical detection, smart car lights and many other fields. It is estimated that by 2025, products based on Micro-LED technology, such as high-end TVs, mobile phones, watches, etc. will be gradually launched, and the market value will exceed 2.8 billion US dollars. By 2035, my country will realize the display module of ultra-large-scale integrated light-emitting units based on Micro-LED, and realize the highly integrated system of Micro-LED in lighting, three-dimensional space display, space positioning and information communication.
- Micro LED will have great application prospects in the future, but the current manufacturing cost of Micro LED has seriously affected its commercialization process. The main reason is that the bottleneck of mass transfer technology still needs to be broken through.
- the traditional mass transfer is single-chip eutectic welding, which severely limits the process of Micro LED mass production. Due to the higher resolution of Micro LED, a small Micro LED display contains a large number of LED chips. For example, a 0.39-inch Micro LED display contains about 2.4 million LED chips.
- the method of single-chip transfer is particularly time-consuming and labor-intensive, and it is difficult to implement, and single-chip eutectic welding will greatly reduce the product qualification rate.
- the reason is that single-chip eutectic welding is to transfer one LED chip and heat the control substrate to weld it with the control substrate. After the next LED chip is transferred, it will heat the control substrate as a whole to weld the second LED chip and the control substrate. The problem of secondary and multiple melting occurs, causing damage to the LED chip and seriously affecting the product qualification rate.
- the present invention adopts laser eutectic welding, and eutectic laser welding is a eutectic method in which the entire LED array is aligned and welded on the control substrate, and then the sapphire substrate is removed.
- the invention aligns and mounts micro-LED chips with a plurality of LED wafers and a control substrate together; uses a laser eutectic welding system to heat welding points and complete welding. It can effectively avoid the secondary melting of the single transfer eutectic soldering point of a single Micro LED, which will cause damage to the Micro LED.
- the P pole (positive pole) in the micro-LED chip is located on the top of the LED light-emitting layer, its initial position is more than the thickness of the LED light-emitting layer relative to the N pole (negative pole), so the two are not on the same plane.
- the thickness of the N pole must be one more LED light-emitting layer than the P pole, which will cause the P pole to be melted during laser eutectic welding, while the N pole is too thick and has not yet melted. Complete the eutectic.
- This invention is to solve the problem that the positive and negative poles are not on the same plane when the Micro LED is eutectic. Since our LED structure adopts a common negative pole structure, the negative film layer of the LED and the positive film layer of the LED are not on the same plane, which leads to the problem that the eutectic points of the negative and positive metals are not on the same plane. During the eutectic, the eutectic effect cannot be achieved due to this problem.
- the gap between the LED and the LED is not filled, and the formed gap is heated by the laser during the eutectic, and there is no support on both sides of the pressurized LED, which will cause the deformation or even collapse of the LED, and the LED will affect each other when it emits light again, causing mixed light and affecting the display effect. Therefore, in the present invention, the negative pole of the LED is connected to the position on the same plane as the positive pole, and an anti-infrared material is filled in the gap between the LED light-emitting point and the LED light-emitting point. This material can form a barrier between the LEDs, preventing the LED from being deformed or even collapsed due to heating during the eutectic, and also preventing light blending of the LED light-emitting points on both sides.
- the first aspect of the present invention provides a micro-LED chip, which includes a substrate 1, and a U-type gallium nitride layer 2, an N-type gallium nitride layer 3, a light-emitting layer 4, and a P-type gallium nitride layer 5 extending outward from one side of the substrate 1 in sequence;
- the surface of the P-type gallium nitride layer 5 has a first groove 6 and a second groove 7 formed concavely and deep into the N-type gallium nitride layer 2,
- the periphery of the first groove 6 is a first protrusion 8
- the inner circle of the first groove 6 is a plurality of second protrusions 9, and the plurality of second protrusions 9 are separated by the second groove 7;
- An insulating layer 10 is provided on the P-type gallium nitride layer 5, the insulating layer 10 has a first opening 11 at the first groove 6, and the insulating layer 10 has a second opening 12 at the second protrusion 9;
- the first opening 11 has an N electrode layer 13, which is in contact with the N-type gallium nitride layer 2, and extends from the first opening 11 to the first protrusion 8;
- the second opening 12 has a P electrode layer 14, which is in contact with the P-type gallium nitride layer 2;
- the N electrode layer 13 on the first protrusion 8 has the same level as the P electrode layer 14 on the second protrusion 9 .
- the N electrode layer 13 on the first protrusion 8 of the present invention has the same level as the P electrode layer 14 on the second protrusion 9 .
- the negative electrode is led out to the same plane structure as the positive electrode. Since the positive electrode and the negative electrode of the Micro LED are not on the same coating layer, the positive and negative electrodes cannot be welded together in the eutectic at the same time.
- the method used before is to plate the lower negative electrode with two layers of metal conductive materials, so that the positive and negative electrodes are theoretically on the same plane.
- the disadvantage of this is that the coating is thick and uneven, and it is easy to cause missing soldering and excessive concentrated current at the welding contact point.
- the P-type gallium nitride layer 5 also has a flat conductive layer 15;
- the surface of the flat conductive layer 15 has a first groove 6 and a second groove 7 formed concavely and deep into the N-type gallium nitride layer 2,
- the periphery of the first groove 6 is a first protrusion 8
- the inner circle of the first groove 6 is a plurality of second protrusions 9, and the plurality of second protrusions 9 are separated by the second groove 7;
- the insulating layer 10 has a first opening 11 at the first groove 6, and the insulating layer 10 has a second opening 12 at the second protrusion 9;
- the first opening 11 has an N electrode layer 13, which is in contact with the N-type gallium nitride layer 2, and extends from the first opening 11 to the first protrusion 8;
- the second opening 12 has a P electrode layer 14, which is in contact with the flat conductive layer 15;
- the N electrode layer 13 on the first protrusion 8 has the same level as the P electrode layer 14 on the second protrusion 9 .
- the side away from the substrate 1 is “up" in the direction.
- the material of the flat conductive layer 15 is ITO material.
- the function of the flat conductive layer 15 is that since the surface of the P-type gallium nitride layer 5 is uneven and uneven, the luminescent effect of the light-emitting layer 4 is not good, and the function of the flat conductive layer 15 is to flatten the P-type gallium nitride layer 5 and have a conductive function to connect the P-type gallium nitride layer 14 to the P-type gallium nitride layer 2.
- first groove 7 and multiple second grooves 8 there is one first protrusion 8 and multiple second protrusions 9 are formed.
- the second groove 8 further contains a light insulator 16 .
- the material of the light insulator 16 is a material that does not absorb infrared light, selected from but not limited to photoresist, which is a commonly used material in the field, and is a high molecular polymer derived from diphenylcyclobutene.
- the effect of the light insulator 16 has three points: 1. The function of concentrating light to prevent the light generated by the luminescent layer 4 from being lost in the second groove 7; 2.
- the light generated by the luminescent layer 4 is the three primary colors of red, green and blue as required, and the light insulator 16 can avoid the problem of blending of lights of different colors on both sides; 3. Since the material of the light insulator 16 is a material that does not absorb infrared light, and the eutectic welding of the micro-LED chip and the control substrate is also used when the micro-LED chip is eutectic.
- the application number is: 2021106926206, and the title is: a patent application for a laser eutectic welding device and method for a micro-LED chip and a control substrate.
- the material of the light insulator 16 is a material that does not absorb infrared light, so it will not be melted by heat during the infrared laser eutectic welding process, and the structure of the micro LED chip is never guaranteed to be stable.
- the substrate 1 is selected from sapphire material, which is also a low-price substrate material conventionally used in this field; the material of the N electrode layer 13 and the P electrode layer 14 is Ti (titanium) Ni (nickel) gold tin AuSn; the size of the first opening 11 and the second opening 12 is also very critical, and it is determined according to the size of the plated area and the current transmitted by the LED power consumption.
- the second opening, that is, the P electrode opening is relatively small, because the opening is too large.
- the second aspect of the present invention provides a eutectic structure of a micro LED chip and a control substrate, which includes the micro LED chip described in the first aspect of the present invention, and a control substrate;
- the control substrate includes a control substrate body and a control substrate negative electrode and a plurality of control substrate positive electrodes located on the control substrate body;
- the N electrode layer 13 is aligned with the negative electrode of the control substrate, the P electrode layer 14 is aligned with the positive electrode of the control substrate, and then the micro LED chip and the control substrate are welded together by laser eutectic welding.
- the structure of the control substrate can refer to the patent application number 2021109313035 that the applicant has applied for, titled a eutectic structure of a micro LED chip and a control substrate and its preparation method.
- the description of the control substrate in this patent is also applicable to the present invention.
- the eutectic welding device please refer to the patent application filed by the applicant with the application number: 2021106926206, titled: A laser eutectic welding device and method for a micro LED chip and a control substrate.
- the description of the eutectic welding device in this patent is also applicable to the present invention.
- the third aspect of the present invention provides a method for preparing the micro-LED chip described in the first aspect of the present invention, comprising the following steps:
- first grooves 6 and second grooves 7 formed concavely and deep into the N-type gallium nitride layer 2;
- BM glue is filled between the LED light-emitting points, which can reflect the light emitted by the LED to achieve the purpose of concentrating light and preventing astigmatism. In this way, it is possible to prevent mutual influence between the LED light-emitting points when emitting light, and reduce the display image quality of the screen.
- BM glue is a transparent material or a photolithographic material that cannot absorb infrared light. One side absorbs laser infrared rays during laser eutectic, the filling material heats up and melts and deforms, and the laser wavelength is near-infrared light of 980nm.
- Invention point 2 Lead the negative electrode to the same plane structure as the positive electrode. Since the positive electrode and the negative electrode of the Micro LED are not on the same coating layer, the positive and negative electrodes cannot be welded together in the eutectic at the same time.
- the method used before is to plate the lower negative electrode with two layers of metal conductive materials, so that the positive and negative electrodes are theoretically on the same plane.
- the disadvantage of this is that the coating is thick and uneven, and it is easy to cause missing soldering and excessive concentrated current at the welding contact point. Overheating, and the problem of metal overflow due to excessive solder heating during eutectic.
- the present invention improves the LED structure, retains other film layers at the negative electrode of the Micro LED during processing, and then coats a layer of metal material as a lead to lead the negative electrode from the groove between the LED light-emitting point to the reserved negative electrode film layer. Leading from the bottom to the same plane as the positive electrode, this can ensure that the positive and negative electrodes are on the same plane to the greatest extent, and the quality of the eutectic will also be qualitatively improved.
- the present invention has the following beneficial effects:
- the N electrode layer 13 on the first protrusion 8 of the present invention has the same level as the P electrode layer 14 on the second protrusion 9 .
- the negative electrode is led out to the same plane structure as the positive electrode. Since the positive electrode and the negative electrode of the Micro LED are not on the same coating layer, the positive and negative electrodes cannot be welded together in the eutectic at the same time.
- the method used before is to plate the lower negative electrode with two layers of metal conductive materials, so that the positive and negative electrodes are theoretically on the same plane.
- the disadvantage of this is that the coating is thick and uneven, and it is easy to cause missing soldering and excessive concentrated current at the welding contact point.
- the invention improves the structure of the LED.
- the other film layers at the negative electrode of the Micro LED are retained, and then a layer of metal material is plated as a lead to lead the negative electrode from the groove between the LED light-emitting point to the reserved negative electrode grinding layer.
- a layer of metal material is plated as a lead to lead the negative electrode from the groove between the LED light-emitting point to the reserved negative electrode grinding layer.
- leading from the bottom to the same plane as the positive electrode this can ensure that the positive and negative electrodes are on the same plane to the greatest extent, and the quality of the eutectic will also be qualitatively improved.
- the P-type gallium nitride layer 5 also has a flat conductive layer 15.
- the function of the flat conductive layer 15 is that the light-emitting layer 4 has a poor light emitting effect due to the uneven and uneven surface of the P-type gallium nitride layer 5, and the flat conductive layer 15 is used to flatten the P-type gallium nitride layer 5 and have a conductive function to connect the P-type gallium nitride layer 14 to the P-type gallium nitride layer 2.
- the second groove 8 further contains a light insulator 16 .
- the material of the light insulator 16 is a material that does not absorb infrared light and is selected from photoresist.
- the effect of the light insulator 16 has three points: 1. The function of concentrating light to prevent the light generated by the luminescent layer 4 from being lost in the second groove 7; 2.
- the light generated by the luminescent layer 4 is the three primary colors of red, green and blue as required, and the light insulator 16 can avoid the problem of blending of lights of different colors on both sides;
- the material is a material that does not absorb infrared light, so it will not be melted by heat during the infrared laser eutectic welding process, and the structure of the micro LED chip has never been guaranteed to be stable.
- Figure 1 is a schematic diagram of the micro LED chip structure.
- the names of reference signs are: 1-substrate, 2-U-type gallium nitride layer, 3-N-type gallium nitride layer, 4-light-emitting layer, 5-P-type gallium nitride layer, 6-first groove, 7-second groove, 8-first protrusion, 9-second protrusion, 10-insulating layer, 11-first opening, 12-second opening, 13-N electrode layer, 14-P electrode layer, 15-flat conductive layer, 16-light insulator.
- plural means two or more.
- the orientation or state relationship indicated by the terms “inner”, “upper”, “lower”, etc. is based on the orientation or state relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as limiting the present invention.
- connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary.
- connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary.
- the electrode photoresist is photosensitive glue, which is coated.
- the way to remove the photoresist of the electrode is to soak it in the liquid medicine and wash it down with clean water.
- the micro-LED chip of this embodiment includes a substrate 1, and a U-type gallium nitride layer 2, an N-type gallium nitride layer 3, a light-emitting layer 4, and a P-type gallium nitride layer 5 extending outward in sequence from one side of the substrate 1; the surface of the P-type gallium nitride layer 5 has a first groove 6 and a second groove 7 that are concavely formed and penetrate deep into the N-type gallium nitride layer 2; the periphery of the first groove 6 is a first protrusion 8; An insulating layer 10 is provided on the P-type gallium nitride layer 5, and the insulating layer 10 has a first opening 11 at the first groove 6, and the insulating layer 10 has a second opening 12 at the second protrusion 9; the first opening 11 has an N electrode layer 13, which contacts the N-type gallium nitride layer 2, and extends from the first opening 11 to the first protru
- the P-type gallium nitride layer 5 also has a flat conductive layer 15;
- the flat conductive layer 15 has a concave first groove 6 and a second groove 7 formed deep into the N-type gallium nitride layer 2, the first groove 6 is surrounded by a first protrusion 8, and the inner circle of the first groove 6 is a plurality of second protrusions 9, and the plurality of second protrusions 9 are spaced by the second groove 7;
- the flat conductive layer 15 has an insulating layer 10, and the insulating layer 10 has a first opening 11 at the first groove 6, and the insulating layer 10 is in the first groove 6.
- the second protrusion 9 has a second opening 12; the first opening 11 has an N electrode layer 13, which is in contact with the N-type gallium nitride layer 2, and extends from the first opening 11 to the first protrusion 8; the second opening 12 has a P electrode layer 14, which is in contact with the flat conductive layer 15; the N electrode layer 13 on the first protrusion 8 has the same level as the P electrode layer 14 on the second protrusion 9.
- the side away from the substrate 1 is “up" in the direction.
- the material of the flat conductive layer 15 is ITO material.
- the second groove 8 also contains a light insulator 16 .
- the material of the light insulator 16 is a material that does not absorb infrared light and is selected from photoresist.
- the substrate 1 is selected from sapphire materials; the material of the N electrode layer 13 and the P electrode layer 14 is Ti (titanium) Ni (nickel) gold tin AuSn.
- the micro LED chip of this embodiment is eutectic with the control substrate.
- the control substrate includes a control substrate body and a control substrate negative electrode and a plurality of control substrate positive electrodes located on the control substrate body;
- the N electrode layer 13 is aligned with the negative electrode of the control substrate, the P electrode layer 14 is aligned with the positive electrode of the control substrate, and then the micro LED chip and the control substrate are welded together by laser eutectic welding.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Devices (AREA)
Abstract
本发明公开一种微型LED芯片及其制备方法和包含其的共晶结构,微型LED芯片的P型氮化镓层(5)表面具有内凹形成的并深入至N型氮化镓层(2)的第一凹槽(6)和第二凹槽(7),所述第一凹槽(6)外围为第一凸起(8),所述第一凹槽(6)内圈为多个第二凸起(9),多个所述第二凸起(9)通过第二凹槽(7)间隔;所述第一凸起(8)上的N电极层(13)与所述第二凸起(9)上的P电极层(14)具有相同的水平高度。本发明将LED负极引接到与正极同一平面的位置,并在LED发光点与LED发光点之间的间隙内填充抗红外线的材料,该材料可以在LED间形成一道挡墙,防止LED在共晶时因加热而变形甚至倒塌,也防止两侧LED发光点的光共混。
Description
本发明专利属于微型LED技术领域,具体涉及一种微型LED芯片及其制备方法和包含其的共晶结构。
Micro LED显示技术是指以自发光的微米量级的LED为发光像素单元,将其组装到驱动面板上形成高密度LED阵列的显示技术。由于micro LED芯片尺寸小、集成度高和自发光等特点,在显示方面与LCD、OLED相比在亮度、分辨率、对比度、能耗、使用寿命、响应速度和热稳定性等方面具有更大的优势.
Micro LED应用将从平板显示扩展到AR/VR/MR、空间显示、柔性透明显示、可穿戴/可植入光电器件、光通信/光互联、医疗探测、智能车灯等诸多领域。预计到2025年,基于Micro-LED技术的产品如高端电视机、手机、手表等将逐步上市,市场产值将超过28亿美元。到2035年,我国将实现基于Micro-LED的超大规模集成发光单元的显示模块,并实现Micro-LED在照明、空间三维显示、空间定位及信息通信高度集成系统.
Micro LED未来将具有极大地应用前景,但是目前Micro LED制造成本问题,严重影响了其商用化的进程,原因主要就是巨量转移技术瓶颈仍然有待突破,传统的巨量转移是单颗转移单颗共晶焊接,单颗转移严重限制了Micro LED量产化进程,由于MicroLED分辨率更高,很小的一块Micro LED显示屏中就含有大量的LED晶片,比如一块0.39寸左右的Micro LED显示屏,其中含有的LED晶片大概有240万颗,如果选用单颗转移的方法,特别耗时和耗费劳动力,难以实施,而单颗共晶焊接又会大大降低产品合格率,原因在于,单颗共晶焊接是将一颗LED晶片转移过来后,通过加热控制基板,将其与控制基板焊接在一起,而下一颗LED晶片转移过来后,又会整体加热控制基板,将第二颗LED晶片与控制基板焊接在一起,而整体加热控制基板时又会导致第一颗LED晶片的焊接点熔化。发生二次多次熔化的问题,对LED晶片造成损坏,严重影响产品合格率。
更具体的说,现有技术中由于电路板侧加热共晶的方式是一粒一粒LED放置在控制基板上,每放一次就会重复加热一次,重复加热会损坏已经共晶的LED 晶粒且难以实现LED巨量转移。本发明采用激光共晶焊接,共晶激光焊接是将整片LED阵列一次对位焊接在控制基板上,然后再揭掉蓝宝石衬底的一种共晶方法。本发明将具有多个LED晶片的微型LED芯片和控制基板对位并贴装在一起;利用激光共晶焊接系统工作对焊接点加热并完成焊接。可以有效避免单颗Micro LED单颗转移共晶焊接点二次融化,对Micro LED造成损害。
然而由于微型LED芯片中P极(正极)位于所述LED发光层顶部,其的初始位置相对于N极(负极)多出了LED发光层的厚度,所以两者并不在一个平面上,这导致在共晶时,微型LED芯片中P极(正极)和控制基板的正极刚好接触,而微型LED芯片中N极(负极)由于少LED发光层的厚度,其和控制基板的负极无法接触,因为这个问题无法达到共晶效果。为了解决这个问题,如果要保证微型LED芯片的N极和P极是同一个高度的平面时,N极的厚度就要比P极多出一个LED发光层,这样就会导致,在激光共晶焊接的时候,P极已经熔化,而N极厚度太厚,还未熔化,为了保证N极熔化,又会导致加热时间太长,可能会对LED晶片造成损坏,所以说达不到两者既能与控制基板的正负极同时接触,且保证两者的厚度是一样的,可以同时熔化完成共晶。
除此之外,之前微型LED芯片的发光点之间具有间隙,在共晶时由于激光的加热,加压LED发光点两边是间隙导致其没有支撑,会造成LED的变形甚至垮塌,且不同LED发光点在发光时为不同的三原色中的一种,而两个LED发光点之间的间隙会互相影响造成混光,影响显示效果。
为了解决以上问题,提出本发明。
发明内容
本发明是为解决Micro LED共晶时正负极不在一个平面上的问题,由于我们的LED结构采用的是共负极结构,LED负极膜层与LED正极膜层不在同一平面,这就导致负极和正极金属共晶点不在同一平面的问题,在共晶时会因为这个问题无法达到共晶效果。另外LED与LED之间的空隙,没有填充,形成的空隙在共晶时由于激光的加热,加压LED两边没有支撑,会造成LED的变形甚至垮塌,且LED再发光时会互相影响造成混光,影响显示效果。因此本发明将LED负极引接到与正极同一平面的位置,并在LED发光点与LED发光点之间的间隙内填充抗红外线的材料,该材料可以在LED间形成一道挡墙,防止LED在共晶 时因加热而变形甚至倒塌,也防止两侧LED发光点的光共混。
本发明第一方面提供一种微型LED芯片,其包括衬底1,以及从所述衬底1一侧依次向外延伸的U型氮化镓层2、N型氮化镓层3、发光层4和P型氮化镓层5;
所述P型氮化镓层5表面具有内凹形成的并深入至N型氮化镓层2的第一凹槽6和第二凹槽7,
所述第一凹槽6外围为第一凸起8,所述第一凹槽6内圈为多个第二凸起9,多个所述第二凸起9通过第二凹槽7间隔;
所述P型氮化镓层5上具有绝缘层10,所述绝缘层10在所述第一凹槽6处具有第一开口11,所述绝缘层10在所述第二凸起9处具有第二开口12;
所述第一开口11处具有N电极层13,其与所述N型氮化镓层2接触,并从第一开口11处延伸至所述第一凸起8上;所述第二开口12处具有P电极层14,其与所述P型氮化镓层2接触;
所述第一凸起8上的N电极层13与所述第二凸起9上的P电极层14具有相同的水平高度。
本发明第一凸起8上的N电极层13与所述第二凸起9上的P电极层14具有相同的水平高度。负极引出到与正极同一平面结构,由于Micro LED正极与负极不在同一镀层,在共晶无法将正负极同时焊接在一起。为了解决这一问题之前采用的方式是把位置较低的负极镀两层金属导电材料,使正负极理论上在同一平面上,这样做的缺点是镀层较厚不均匀,易产生漏焊及焊接接触点集中电流过大过热的现象,且在共晶时由于焊料过多加热后金属才料溢流的问题。所以我们改进了LED结构,在加工过程程中将Micro LED负极处的其他膜层保留,然后再镀一层金属才料作为引线将负极从与LED间的沟槽里引出到保留的负极磨层上。从底部引到与正极同一平面。这样做就可以最大限度保证正负极在同一平面上。共晶质量也会有质的提升。
优选地,所述P型氮化镓层5上还具有平坦导电层15;
所述平坦导电层15表面具有内凹形成的并深入至N型氮化镓层2的第一凹槽6和第二凹槽7,
所述第一凹槽6外围为第一凸起8,所述第一凹槽6内圈为多个第二凸起9, 多个所述第二凸起9通过第二凹槽7间隔;
所述平坦导电层15上具有绝缘层10,所述绝缘层10在所述第一凹槽6处具有第一开口11,所述绝缘层10在所述第二凸起9处具有第二开口12;
所述第一开口11处具有N电极层13,其与所述N型氮化镓层2接触,并从第一开口11处延伸至所述第一凸起8上;所述第二开口12处具有P电极层14,其与所述平坦导电层15接触;
所述第一凸起8上的N电极层13与所述第二凸起9上的P电极层14具有相同的水平高度。
本发明中远离所述衬底1一侧为方向上的“上”。
优选地,所述平坦导电层15的材料为ITO材料。所述平坦导电层15的作用在于,由于P型氮化镓层5表面不均匀,不平整,使得发光层4发光效果不好,而平坦导电层15起到的作用就是将P型氮化镓层5变平整,且具有导电的功能,以将P电极层14连通至所述P型氮化镓层2。
优选地,所述第一凹槽7为一个,所述第二凹槽8为多个;形成的所述第一凸起8为一个,所述第二凸起9为多个。
优选地,所述第二凹槽8内还含有隔光体16。
优选地,所述隔光体16的材料为不吸收红外光的材料,选自但是不限于光刻胶,该材料是本领域常用的一种材料,是一种来源于双苯环丁烯的高分子聚合物。
所述隔光体16的作用有三点:1、聚光的作用,防止发光层4产生的光散失到第二凹槽7中;2、根据需要发光层4产生的光为红绿蓝三原色,而隔光体16可以避免两侧的不同颜色的光产生共混的问题;3、由于所述隔光体16的材料为不吸收红外光的材料,而所述微型LED芯片与控制基板共晶的时候采用的也正是红外激光共晶焊接,此处可以参考本申请人已申请的申请号为:2021106926206,名称为:一种微型LED芯片与控制基板激光共晶焊接装置及方法,的专利申请。所述隔光体16的材料为不吸收红外光的材料,所以在红外激光共晶焊接过程中,其不会受热熔化,从未保证微型LED芯片结构稳定。
优选地,所述衬底1选自蓝宝石材料,这个材料也是本领域常规使用的价格较低的衬底材料;N电极层13和P电极层14的材料为Ti(钛)Ni(镍)金锡AuSn; 第一开口11和第二开口12的尺寸也很关键,要根据所镀面积以及LED耗电量所传输电流的大小确定,另外第二开口即P电极开口相对要小,因为开口太大会导致所所镀金属层平正面较小影响后续的共晶。
本发明第二方面提供一种微型LED芯片与控制基板的共晶结构,其包括本发明第一方面所述的微型LED芯片,以及控制基板;
所述控制基板包括控制基板主体以及位于所述控制基板主体上的一个控制基板负电极和多个控制基板正电极;
将N电极层13和控制基板负电极对位,将P电极层14和控制基板正电极对位,然后将微型LED芯片与控制基板利用激光共晶焊接到一起。
控制基板的结构可以参考本申请人已申请的申请号为2021109313035,名称为一种微型LED芯片与控制基板共晶结构及其制备方法,的专利。同样的,该专利中对控制基板的表述同样适用于本发明。共晶焊接的装置可以参考本申请人已申请的申请号为:2021106926206,名称为:一种微型LED芯片与控制基板激光共晶焊接装置及方法,的专利申请。同样的,该专利中对共晶焊接装置的表述同样适用于本发明。
本发明第三方面提供一种本发明第一方面所述的微型LED芯片的制备方法,包括以下步骤:
1.取所述衬底1,并在其表面依次外延U型氮化镓层2、N型氮化镓层3、发光层4和P型氮化镓层5;
2.在所述P型氮化镓层5表面具有内凹形成的并深入至N型氮化镓层2的第一凹槽6和第二凹槽7;
3.在所述P型氮化镓层5上形成绝缘层10;
4.在所述绝缘层10位于第一凹槽6处开设第一开口11,在所述第二凸起9处开设第二开口12;
5.形成N电极层13和P电极层14。
综上本发明的关键点在于:
关键点1:LED发光点之间填充BM胶,可以反射LED发出的光达到聚光防止散光的目的。这样可以杜绝LED发光点之间在发光时互相影响,降低屏幕的显示画面质量。BM胶为透明材质或不能吸收红外光的光刻材料。一面在激光 共晶时吸收激光红外线,填充材料发热融化变形,激光波长为980nm的近红外光。
发明点2:将负极引出到与正极同一平面结构,由于Micro LED正极与负极不在同一镀层,在共晶无法将正负极同时焊接在一起。为了解决这一问题之前采用的方式是把位置较低的负极镀两层金属导电材料,使正负极理论上在同一平面上,这样做的缺点是镀层较厚不均匀,易产生漏焊及焊接接触点集中电流过大过热的现象,且在共晶时由于焊料过多加热后金属才料溢流的问题。所以本发明改进了LED结构,在加工过程程中将Micro LED负极处的其他膜层保留,然后再镀一层金属材料作为引线将负极从与LED发光点间的沟槽里引出到保留的负极膜层上。从底部引到与正极同一平面,这样做就可以最大限度保证正负极在同一平面上,共晶质量也会有质的提升。
相对于现有技术,本发明具有以下有益效果:
1、本发明第一凸起8上的N电极层13与所述第二凸起9上的P电极层14具有相同的水平高度。负极引出到与正极同一平面结构,由于Micro LED正极与负极不在同一镀层,在共晶无法将正负极同时焊接在一起。为了解决这一问题之前采用的方式是把位置较低的负极镀两层金属导电材料,使正负极理论上在同一平面上,这样做的缺点是镀层较厚不均匀,易产生漏焊及焊接接触点集中电流过大过热的现象,且在共晶时由于焊料过多加热后金属才料溢流的问题。本发明改进了LED结构,在加工过程程中将Micro LED负极处的其他膜层保留,然后再镀一层金属才料作为引线将负极从与LED发光点间的沟槽里引出到保留的负极磨层上。从底部引到与正极同一平面,这样做就可以最大限度保证正负极在同一平面上,共晶质量也会有质的提升。
2、在本发明优选地实施方案中,所述P型氮化镓层5上还具有平坦导电层15,所述平坦导电层15的作用在于,由于P型氮化镓层5表面不均匀,不平整,使得发光层4发光效果不好,而平坦导电层15起到的作用就是将P型氮化镓层5变平整,且具有导电的功能,以将P电极层14连通至所述P型氮化镓层2。
3、在本发明优选地实施方案中,所述第二凹槽8内还含有隔光体16。所述隔光体16的材料为不吸收红外光的材料,选自光刻胶。所述隔光体16的作用有三点:1、聚光的作用,防止发光层4产生的光散失到第二凹槽7中;2、根据需 要发光层4产生的光为红绿蓝三原色,而隔光体16可以避免两侧的不同颜色的光产生共混的问题;3、由于所述隔光体16的材料为不吸收红外光的材料,而所述微型LED芯片与控制基板共晶的时候采用的也正是红外激光共晶焊接,所述隔光体16的材料为不吸收红外光的材料,所以在红外激光共晶焊接过程中,其不会受热熔化,从未保证微型LED芯片结构稳定。
图1为微型LED芯片结构示意图。
附图标记的名称为:1-衬底、2-U型氮化镓层、3-N型氮化镓层、4-发光层、5-P型氮化镓层、6-第一凹槽、7-第二凹槽、8-第一凸起、9-第二凸起、10-绝缘层、11-第一开口、12-第二开口、13-N电极层、14-P电极层、15-平坦导电层、16-隔光体。
下面结合实施例对本发明作进一步的详细描述。
本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用材料或设备未注明生产厂商者,均为可以通过购买获得的常规产品。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”到另一元件时,它可以直接连接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”可以包括无线连接。
在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。术语“内”、“上”、“下”等指示的方位或状态关系为基于附图所示的方位或状态关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安 装”、“连接”、“设有”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,根据具体情况理解上述术语在本发明中的具体含义。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语包括技术术语和科学术语具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
所述的电极光阻是感光胶,是涂覆上去的。去掉电极光阻的方法是用药液浸泡并用清水清洗下来。
实施例1
参考图21。本实施例的微型LED芯片,其包括衬底1,以及从所述衬底1一侧依次向外延伸的U型氮化镓层2、N型氮化镓层3、发光层4和P型氮化镓层5;所述P型氮化镓层5表面具有内凹形成的并深入至N型氮化镓层2的第一凹槽6和第二凹槽7,所述第一凹槽6外围为第一凸起8,所述第一凹槽6内圈为多个第二凸起9,多个所述第二凸起9通过第二凹槽7间隔;所述P型氮化镓层5上具有绝缘层10,所述绝缘层10在所述第一凹槽6处具有第一开口11,所述绝缘层10在所述第二凸起9处具有第二开口12;所述第一开口11处具有N电极层13,其与所述N型氮化镓层2接触,并从第一开口11处延伸至所述第一凸起8上;所述第二开口12处具有P电极层14,其与所述P型氮化镓层2接触;所述第一凸起8上的N电极层13与所述第二凸起9上的P电极层14具有相同的水平高度。
所述P型氮化镓层5上还具有平坦导电层15;所述平坦导电层15表面具有内凹形成的并深入至N型氮化镓层2的第一凹槽6和第二凹槽7,所述第一凹槽6外围为第一凸起8,所述第一凹槽6内圈为多个第二凸起9,多个所述第二凸起9通过第二凹槽7间隔;所述平坦导电层15上具有绝缘层10,所述绝缘层10在所述第一凹槽6处具有第一开口11,所述绝缘层10在所述第二凸起9处具有第二开口12;所述第一开口11处具有N电极层13,其与所述N型氮化镓层2 接触,并从第一开口11处延伸至所述第一凸起8上;所述第二开口12处具有P电极层14,其与所述平坦导电层15接触;所述第一凸起8上的N电极层13与所述第二凸起9上的P电极层14具有相同的水平高度。
本实施例中远离所述衬底1一侧为方向上的“上”。
所述平坦导电层15的材料为ITO材料。所述第一凹槽7为一个,所述第二凹槽8为多个;形成的所述第一凸起8为一个,所述第二凸起9为多个。
所述第二凹槽8内还含有隔光体16。所述隔光体16的材料为不吸收红外光的材料,选自光刻胶。所述衬底1选自蓝宝石材料;N电极层13和P电极层14的材料为Ti(钛)Ni(镍)金锡AuSn。
以上微型LED芯片具体的制备方法:
1.取已经外延有U型氮化镓层2、N型氮化镓层3、发光层4和P型氮化镓层5的物料,进行清洗;
2.在所述P型氮化镓层5上镀平坦导电层15ITO层;
3.在ITO层上上光阻;
4.利用曝光显影的方法曝光光阻;
5.在曝光形成的缺口处刻蚀ITO层;
6.去除光阻;
7.继续上光阻;
8.利用曝光显影的方法曝光光阻;
9.刻蚀LED,形成第一凹槽6和第二凹槽7;
10.去除光阻;
11.镀绝缘层10,SiO
2层;
12.定义上的开口位置,继续上光阻;
13.利用曝光显影的方法曝光光阻;
14.刻蚀SiO
2层;
15.去除光阻;
16.在所有凹槽中装填光刻胶,形成隔光体16;
17.去除第一凹槽6中的光刻胶,仅保留第二凹槽7内的光刻胶;
18.继续上光阻;
19.利用曝光显影的方法曝光光阻,在第一凹槽6处开设第一开口11,在所述第二凸起9处开设第二开口12;
20.在开口处镀电极层,形成N电极层13和P电极层14;
21.去除光阻,进行质量检测,并在检测后通过刻蚀工艺将连接到一起的P电极层14断开,得到微型LED芯片,图1。
将本实施例的微型LED芯片与控制基板共晶。
所述控制基板包括控制基板主体以及位于所述控制基板主体上的一个控制基板负电极和多个控制基板正电极;
将N电极层13和控制基板负电极对位,将P电极层14和控制基板正电极对位,然后将微型LED芯片与控制基板利用激光共晶焊接到一起。
Claims (10)
- 一种微型LED芯片,其特征在于,其包括衬底(1),以及从所述衬底(1)一侧依次向外延伸的U型氮化镓层(2)、N型氮化镓层(3)、发光层(4)和P型氮化镓层(5);所述P型氮化镓层(5)表面具有内凹形成的并深入至N型氮化镓层(2)的第一凹槽(6)和第二凹槽(7),所述第一凹槽(6)外围为第一凸起(8),所述第一凹槽(6)内圈为多个第二凸起(9),多个所述第二凸起(9)通过第二凹槽(7)间隔;所述P型氮化镓层(5)上具有绝缘层(10),所述绝缘层(10)在所述第一凹槽(6)处具有第一开口(11),所述绝缘层(10)在所述第二凸起(9)处具有第二开口(12);所述第一开口(11)处具有N电极层(13),其与所述N型氮化镓层(2)接触,并从第一开口(11)处延伸至所述第一凸起(8)上;所述第二开口(12)处具有P电极层(14),其与所述P型氮化镓层(2)接触;所述第一凸起(8)上的N电极层(13)与所述第二凸起(9)上的P电极层(14)具有相同的水平高度。
- 根据权利要求1所述的微型LED芯片,其特征在于,所述P型氮化镓层(5)上还具有平坦导电层(15);所述平坦导电层(15)表面具有内凹形成的并深入至N型氮化镓层(2)的第一凹槽(6)和第二凹槽(7),所述第一凹槽(6)外围为第一凸起(8),所述第一凹槽(6)内圈为多个第二凸起(9),多个所述第二凸起(9)通过第二凹槽(7)间隔;所述平坦导电层(15)上具有绝缘层(10),所述绝缘层(10)在所述第一凹槽(6)处具有第一开口(11),所述绝缘层(10)在所述第二凸起(9)处具有第二开口(12);所述第一开口(11)处具有N电极层(13),其与所述N型氮化镓层(2)接触,并从第一开口(11)处延伸至所述第一凸起(8)上;所述第二开口(12)处具有P电极层(14),其与所述平坦导电层(15)接触;所述第一凸起(8)上的N电极层(13)与所述第二凸起(9)上的P电极层(14)具有相同的水平高度。
- 根据权利要求2所述的微型LED芯片,其特征在于,所述平坦导电层(15)的材料为ITO材料。
- 根据权利要求1所述的微型LED芯片,其特征在于,所述第一凹槽(7)为一个,所述第二凹槽(8)为多个;形成的所述第一凸起(8)为一个,所述第二凸起(9)为多个。
- 根据权利要求1所述的微型LED芯片,其特征在于,所述第二凹槽(8)内还含有隔光体(16)。
- 根据权利要求1所述的微型LED芯片,其特征在于,所述隔光体(16)的材料为不吸收红外光的材料,选自光刻胶。
- 根据权利要求1所述的微型LED芯片,其特征在于,所述衬底(1)选自蓝宝石材料。
- 根据权利要求1所述的微型LED芯片,其特征在于,N电极层(13)和P电极层(14)的材料为钛、镍、金锡。
- 一种微型LED芯片与控制基板的共晶结构,其特征在于,其包括权利要求1-8任一项所述的微型LED芯片,以及控制基板;所述控制基板包括控制基板主体以及位于所述控制基板主体上的一个控制基板负电极和多个控制基板正电极;将N电极层(13)和控制基板负电极对位,将P电极层(14)和控制基板正电极对位,然后将微型LED芯片与控制基板利用激光共晶焊接到一起。
- 一种权利要求1-8所述的微型LED芯片的制备方法,其特征在于,包括以下步骤:(1)取所述衬底(1),并在其表面依次外延U型氮化镓层(2)、N型氮化镓层(3)、发光层(4)和P型氮化镓层(5);(2)在所述P型氮化镓层(5)表面具有内凹形成的并深入至N型氮化镓层(2)的第一凹槽(6)和第二凹槽(7);(3)在所述P型氮化镓层(5)上形成绝缘层(10);(4)在所述绝缘层(10)位于第一凹槽(6)处开设第一开口(11),在所述第二凸起(9)处开设第二开口(12);(5)形成N电极层(13)和P电极层(14)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/073260 WO2023137714A1 (zh) | 2022-01-21 | 2022-01-21 | 一种微型led芯片及其制备方法和包含其的共晶结构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/073260 WO2023137714A1 (zh) | 2022-01-21 | 2022-01-21 | 一种微型led芯片及其制备方法和包含其的共晶结构 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023137714A1 true WO2023137714A1 (zh) | 2023-07-27 |
Family
ID=87347583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/073260 WO2023137714A1 (zh) | 2022-01-21 | 2022-01-21 | 一种微型led芯片及其制备方法和包含其的共晶结构 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023137714A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106463572A (zh) * | 2014-05-15 | 2017-02-22 | 香港科技大学 | 氮化镓倒装芯片发光二极管 |
US20190228985A1 (en) * | 2016-03-30 | 2019-07-25 | Chih-Liang Hu | Process for packaging circuit component having copper circuits with solid electrical and thermal conductivities and circuit component thereof |
CN112018223A (zh) * | 2020-08-28 | 2020-12-01 | 武汉大学 | 粘合层转印的薄膜倒装结构Micro-LED芯片及其制备方法 |
US20210193863A1 (en) * | 2019-12-19 | 2021-06-24 | Lumileds Llc | Light Emitting Diode (LED) Devices With Nucleation Layer |
CN113675323A (zh) * | 2021-08-13 | 2021-11-19 | 乙力国际股份有限公司 | 一种微型led芯片与控制基板共晶结构及其制备方法 |
-
2022
- 2022-01-21 WO PCT/CN2022/073260 patent/WO2023137714A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106463572A (zh) * | 2014-05-15 | 2017-02-22 | 香港科技大学 | 氮化镓倒装芯片发光二极管 |
US20190228985A1 (en) * | 2016-03-30 | 2019-07-25 | Chih-Liang Hu | Process for packaging circuit component having copper circuits with solid electrical and thermal conductivities and circuit component thereof |
US20210193863A1 (en) * | 2019-12-19 | 2021-06-24 | Lumileds Llc | Light Emitting Diode (LED) Devices With Nucleation Layer |
CN112018223A (zh) * | 2020-08-28 | 2020-12-01 | 武汉大学 | 粘合层转印的薄膜倒装结构Micro-LED芯片及其制备方法 |
CN113675323A (zh) * | 2021-08-13 | 2021-11-19 | 乙力国际股份有限公司 | 一种微型led芯片与控制基板共晶结构及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI682436B (zh) | 微型發光二極體巨量轉移的方法及該方法所製作的發光面板組件 | |
US8129730B2 (en) | Solid state light sheet and bare die semiconductor circuits with series connected bare die circuit elements | |
TW535307B (en) | Package of light emitting diode with protective diode | |
TWI661575B (zh) | 微型發光元件及顯示裝置 | |
TW201937680A (zh) | 高密度像素化發光二極體及其之裝置和方法 | |
CN104617121A (zh) | 一种提高有源矩阵微型led显示器光学性能的方法 | |
JP2011233650A (ja) | 半導体発光装置 | |
TWI689092B (zh) | 具有透光基材之微發光二極體顯示模組及其製造方法 | |
CN105304805A (zh) | 发光器件封装 | |
CN113937093A (zh) | 硅基彩色iled显示器 | |
US9508695B2 (en) | Method of manufacturing light emitting device | |
TW201729657A (zh) | 電子元件的轉移方法、電子模組及光電裝置 | |
TW201606981A (zh) | 發光二極體封裝結構 | |
TW201909451A (zh) | 發光裝置封裝 | |
US20220367771A1 (en) | Display device using micro led, and manufacturing method therefor | |
US20220059512A1 (en) | Light-emitting device | |
TW201904048A (zh) | 微發光二極體顯示模組及其製造方法 | |
TWI611573B (zh) | 微發光二極體顯示模組的製造方法 | |
CN115377256A (zh) | 一种有色转换led芯片及其制备方法 | |
US11194089B2 (en) | Method for manufacturing light emitting module | |
WO2023137714A1 (zh) | 一种微型led芯片及其制备方法和包含其的共晶结构 | |
CN114975712A (zh) | 一种微型led芯片质量检测结构及其检测方法 | |
WO2023137713A1 (zh) | 一种微型led芯片检测结构及其制备方法 | |
CN216980600U (zh) | 一种微型led芯片及包含其的共晶结构 | |
CN114497309A (zh) | 一种微型led芯片及其制备方法和包含其的共晶结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22921155 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |