WO2023136437A1 - 세탁물 처리 장치 및 이의 제어 방법 - Google Patents

세탁물 처리 장치 및 이의 제어 방법 Download PDF

Info

Publication number
WO2023136437A1
WO2023136437A1 PCT/KR2022/017020 KR2022017020W WO2023136437A1 WO 2023136437 A1 WO2023136437 A1 WO 2023136437A1 KR 2022017020 W KR2022017020 W KR 2022017020W WO 2023136437 A1 WO2023136437 A1 WO 2023136437A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
washing tub
liquefied carbon
washing
tank
Prior art date
Application number
PCT/KR2022/017020
Other languages
English (en)
French (fr)
Inventor
이장석
김양규
김정한
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2023136437A1 publication Critical patent/WO2023136437A1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F43/00Dry-cleaning apparatus or methods using volatile solvents
    • D06F43/005Solvent condition control devices, e.g. humidity content
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F43/00Dry-cleaning apparatus or methods using volatile solvents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F43/00Dry-cleaning apparatus or methods using volatile solvents
    • D06F43/08Associated apparatus for handling and recovering the solvents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F43/00Dry-cleaning apparatus or methods using volatile solvents
    • D06F43/08Associated apparatus for handling and recovering the solvents
    • D06F43/081Reclaiming or recovering the solvent from a mixture of solvent and contaminants, e.g. by distilling

Definitions

  • the present disclosure relates to a 2-tank laundry treatment apparatus including a distillation tank and a washing tub, rather than a 3-tank laundry treatment apparatus including a storage tank, a washing tub, and a distillation tank.
  • Laundry e.g. clothes
  • PCE perchlorethylene
  • CFC-113 instead of water. It can be cleaned through dry cleaning.
  • a storage tank 300 for storing liquefied carbon dioxide for storing liquefied carbon dioxide
  • a washing agitator 400 for washing for washing
  • 3 Disclosed is a laundry treatment apparatus having a structure using a 3-tank such as a vaporization separator 500 for recycling waste carbon dioxide after washing.
  • Embodiments of the present specification are proposed to solve the above problems, and each function of the storage tank and the distillation tank of the laundry treatment apparatus of the 3-tank structure is performed in the distillation tank of the laundry treatment apparatus of the 2-tank structure. It aims to provide technology. Therefore, according to an embodiment of the present specification, a relatively small space may be required for installation due to a compact laundry treatment device.
  • embodiments of the present specification are intended to provide a technology having an advantageous structure in terms of safety and cost by reducing the vessel pressure management target for safety from a storage tank and a distillation tank to one tank.
  • an object of the present specification is to provide a technique in which the total washing time is reduced by controlling the washing machine to operate at a relatively low internal pressure compared to a laundry treatment apparatus having a 3-tank structure.
  • a laundry treatment device having a 3-tank structure compared to a laundry treatment device having a 3-tank structure, it operates at a relatively low internal pressure in the washing tub, so that the time for reducing the internal pressure in the washing tub is relatively reduced in the recovery process after washing, thereby reducing the total washing time.
  • a washing tub including laundry in an inner space; a distillation tank storing liquefied carbon dioxide; a compressor for sucking and discharging gaseous carbon dioxide from which the liquefied carbon dioxide is evaporated in the distillation tank; a cooler for cooling the discharged gaseous carbon dioxide to supply liquefied carbon dioxide to the washing tub; And, a laundry treatment apparatus including a control unit may be provided.
  • the storage tank may further contain impurities in addition to the liquefied carbon dioxide, and the controller may control a distillation operation so that gaseous carbon dioxide from which the impurities are removed is supplied to the washing tub.
  • control unit may control the internal pressure of the washing tub to be relatively low during the washing cycle so that a relatively short time is required to decrease the internal pressure of the washing tub after the washing cycle.
  • the controller may control the distillation operation of supplying the liquefied carbon dioxide to the washing tub to operate in a state separated from the washing operation.
  • control unit may control the distillation operation so that the liquefied carbon dioxide supplied to the washing tub corresponds to a preset level.
  • control unit may control the liquefied carbon dioxide contained in the washing tub to be discharged to the distillation tank when the washing cycle is finished.
  • control unit supplies the liquefied carbon dioxide to the washing tub through the distillation operation before the washing, and controls the liquefied carbon dioxide contained in the washing tub to be discharged to the distillation tank after the washing is finished. possible.
  • control unit supplies the liquefied carbon dioxide to the washing tub through the distillation operation before the rinsing, and controls the liquefied carbon dioxide contained in the washing tub to be discharged to the distillation tank after the rinsing is finished. possible.
  • the vacuum pump may further include a vacuum pump, and the vacuum pump may reduce an internal pressure of the washing tub before liquefied carbon dioxide is supplied to the washing tub through a distillation operation.
  • the amount of liquefied carbon dioxide stored in the storage tank may correspond to an amount required for one washing cycle.
  • the laundry treatment apparatus having a 2-tank structure, controlling the inside of the washing tub to a vacuum state; first supplying liquefied carbon dioxide to the washing tub based on a distillation operation; first discharging the liquefied carbon dioxide from the washing tub to a distillation tank after performing washing according to a set mode using the first supplied liquefied carbon dioxide; secondly supplying liquefied carbon dioxide to the washing tub based on the distillation operation; and secondly discharging the liquefied carbon dioxide of the washing tub to a distillation tank after rinsing using the second supplied liquefied carbon dioxide.
  • the laundry treatment apparatus according to the proposed embodiment can expect one or more of the following effects.
  • the distillation tank contains impurities such as sludge and used liquefied carbon dioxide, it is possible to supply pure gaseous carbon dioxide by removing impurities through a distillation operation.
  • the laundry treatment apparatus has an advantage in terms of safety and cost by reducing the container pressure management target from the storage tank and the distillation tank to one tank.
  • FIG. 1 is a diagram illustrating a laundry treatment apparatus having a structure using a 3-tank according to an embodiment.
  • FIG. 2 is a diagram for explaining an operation process in a laundry treatment apparatus having a structure using a 3-tank according to an embodiment.
  • FIG. 3 is a view showing a laundry treatment apparatus having a structure using a 2-tank according to an embodiment different from that of FIG. 1 .
  • FIG. 4 is a diagram for explaining an operation process in a laundry treatment apparatus having a structure using a 2-tank according to another embodiment.
  • FIG. 5 is a diagram for explaining an operation process of the laundry treatment apparatus according to an embodiment.
  • FIG. 6 is a diagram for explaining a control method of a laundry treatment apparatus according to an embodiment.
  • ⁇ unit and “ ⁇ module” described in the specification mean a unit that processes at least one function or operation, which may be implemented as hardware or software, or a combination of hardware and software.
  • a “terminal” referred to below may be implemented as a computer or portable terminal capable of accessing a server or other terminals through a network.
  • the computer includes, for example, a laptop, desktop, laptop, etc. equipped with a web browser
  • the portable terminal is, for example, a wireless communication device that ensures portability and mobility.
  • IMT International Mobile Telecommunication
  • CDMA Code Division Multiple Access
  • W-CDMA Wide-Code Division Multiple Access
  • LTE Long Term Evolution
  • FIG. 1 is a diagram illustrating a laundry treatment apparatus having a structure using a 3-tank according to an embodiment.
  • the laundry treatment device may be a drum-type laundry treatment device in which laundry is inserted into the washing tub 120 in a front direction.
  • the laundry treatment device may be a laundry treatment device in which laundry is inserted into the washing tub 120 from an upward direction.
  • Such a laundry treatment device may be a device into which laundry is inserted and performs at least one of washing, rinsing, spin-drying, and drying.
  • the washing tub 120 of the laundry treatment apparatus includes a cabinet forming an exterior, a tub disposed inside the cabinet and supported by the cabinet, a drum disposed inside the tub and washing laundry, a motor driving the drum, and an interior of the cabinet. It may include a supply device (not shown) for supplying liquefied carbon dioxide to the tub, and a drainage device (not shown) formed below the tub to discharge liquefied carbon dioxide and impurities.
  • the drum may have a plurality of through holes through which liquefied carbon dioxide is supplied, and a lifter may be disposed on an inner side surface of the drum so that laundry is lifted to a predetermined height and then dropped by gravity when the drum rotates.
  • the cabinet includes a cabinet body, a cabinet cover disposed on the front surface of the cabinet body and coupled thereto, a control panel disposed above the cabinet cover and coupled to the cabinet body, and a top plate disposed above the control panel and coupled to the cabinet body. can do.
  • the cabinet cover may include a hole through which laundry can enter and exit and a door rotatably disposed left and right to open and close the hole.
  • the control panel may include operation keys for manipulating the operation state of the laundry treatment apparatus and a display disposed on one side of the operation keys and displaying the operation state of the laundry treatment apparatus.
  • Operation keys and a display in the control panel are electrically connected to a control unit (not shown), and the control unit (not shown) may electrically control each component of the laundry treatment apparatus. Details about the operation of the control unit (not shown) will be described later.
  • the laundry treatment device may further include various sensors and other devices.
  • the laundry treatment apparatus may further include a sensor for measuring the level of liquefied carbon dioxide supplied into the washing tub 120 .
  • the motor may be driven by the controller, and the drum in the tub may rotate according to the driving of the motor.
  • the control unit may control operations by receiving operation signals from operation keys, and may control, for example, washing processes such as washing, rinsing, spin-drying, and drying.
  • the controller may control the display to display operating states related to the washing process, such as a washing course, washing time, spin-drying time, and rinsing time.
  • the laundry treatment apparatus of FIG. 1 may further include a storage tank 110, a distillation tank 130, a compressor 140, and a refrigerator 150 in addition to the washing tub 120.
  • the laundry treatment apparatus may have a 3-tank structure including a storage tank 110, a washing tub 120, and a distillation tank 130.
  • the storage tank 110 stores liquefied carbon dioxide, and when a valve installed in a connecting pipe between the storage tank 110 and the washing tub 120 is turned on, the liquefied carbon dioxide stored in the storage tank 110 is transferred to the washing tub 120 by gravity. ) can be supplied internally. When the valve installed in the connection pipe between the storage tank 110 and the washing tub 120 is turned off, the liquefied carbon dioxide stored in the storage tank 110 cannot be supplied into the washing tub 120 even by gravity.
  • Laundry included in the drum inside the washing tub 120 may be subjected to a washing process such as washing and rinsing using liquefied carbon dioxide.
  • the liquefied carbon dioxide and impurities contained in the washing tub 120 move to the distillation tank 130 by gravity.
  • the valve installed in the connecting pipe between the washing tub 120 and the distillation tank 130 is turned off, the liquefied carbon dioxide and impurities contained in the washing tub 120 cannot move to the distillation tank 130 even by gravity.
  • the impurities may include sludge generated during the washing process.
  • the liquefied carbon dioxide moved to the distillation tank 130 may be vaporized using the heat of the compressor 140, and impurities and gaseous carbon dioxide may be separated through this distillation process. At this time, the impurities are located at the bottom of the distillation tank 130 and the gaseous carbon dioxide is located at the top of the distillation tank 130 and can be separated without being mixed.
  • the compressor 140 may suck in and discharge gaseous carbon dioxide, and the discharged gaseous carbon dioxide may be cooled and liquefied in the refrigerator 150 and converted into liquefied carbon dioxide.
  • the refrigerator 150 may correspond to a condenser, and the condenser is a device included in a heat exchanger and may discharge liquefied carbon dioxide by cooling and condensing gaseous carbon dioxide that has passed through a compressor.
  • the liquefied carbon dioxide discharged from the refrigerator 150 may flow into the storage tank 150, and the storage tank 150 may store the liquefied carbon dioxide.
  • distillation operations may be performed in parallel during the washing cycle.
  • the storage tank 110 of the laundry treatment apparatus using a 3-tank may store liquefied carbon dioxide corresponding to 2A, including the amount A of liquefied carbon dioxide required for washing and the amount A of liquefied carbon dioxide required for rinsing.
  • the recovery rate of liquefied carbon dioxide discharged from the storage tank 150 during one washing cycle is about 98%, and uncollected liquefied carbon dioxide can be replenished from the outside.
  • the level of liquefied carbon dioxide in the storage tank 150 may be sensed and externally replenished when the level is below a predetermined standard, or liquefied carbon dioxide externally replenished when the number of washing cycles reaches a predetermined number.
  • FIG. 2 is a diagram for explaining an operation process in a laundry treatment apparatus having a structure using a 3-tank according to an embodiment.
  • liquefied carbon dioxide between the storage tank 110, the washing tub 120, and the distillation tank 130 may flow by gravity using a height difference.
  • the liquefied carbon dioxide stored in the storage tank 110 may flow to the washing tub 120 by gravity, and the liquefied carbon dioxide and impurities may flow to the distillation tank 130 when the washing operation is finished in the washing tub 120.
  • the liquefied carbon dioxide is evaporated into gaseous carbon dioxide by the second heat, the compressor 140 sucks the evaporated gaseous carbon dioxide and discharges it to the refrigerator 150, and the refrigerator 150 cools the gaseous carbon dioxide.
  • the liquefied carbon dioxide may be discharged to the storage tank 110 while condensing and releasing the first heat.
  • the storage tank 110, the washing tub 120, and the distillation tank 130 need to be arranged in a vertical direction for a height difference. There is a problem with miniaturization.
  • the storage tank 110 and the distillation tank 130 can increase the pressure inside the tank through heat transfer to the outside, so internal pressure management is essential for safety, and a mechanical safety device for this is separately installed for each tank. There is a problem that the structure becomes complicated because it needs to be.
  • FIG. 3 is a view showing a laundry treatment apparatus having a structure using a 2-tank according to an embodiment different from that of FIG. 1 .
  • the laundry treatment apparatus may include a distillation tank 310 , a washing tub 320 , a compressor 330 and a refrigerator 340 .
  • the laundry treatment apparatus has a two-tank structure including a distillation tank 310 and a washing tub 320, and the distillation tank 310 may perform the functions of the storage tank 110 and the distillation tank 130 of FIG. 1 .
  • the washing tub 320, the compressor 330, and the refrigerator 340 the above description may be applied.
  • liquefied carbon dioxide stored in the storage tank 110 is supplied to the washing tub 120
  • liquefied carbon dioxide stored in the distillation tank 310 is separated from impurities through a distillation process, and pure gaseous carbon dioxide is supplied to the compressor ( 330) and cooled and liquefied in the refrigerator 340
  • the liquefied carbon dioxide may be supplied into the washing tub 320.
  • the washing process and the distillation operation may be performed serially.
  • the storage tank 110 of the laundry treatment apparatus using a 2-tank is serial Due to the operation, it is possible to store liquefied carbon dioxide corresponding to total A. That is, liquefied carbon dioxide corresponding to A may be supplied through a distillation operation before washing and recovered, and then liquefied carbon dioxide corresponding to A may be supplied through a distillation operation before rinsing and recovered again.
  • the distillation tank 310 functions as both the storage tank 110 and the distillation tank 130 Therefore, it can be relatively miniaturized.
  • FIG. 3 including the storage tank 110 and the distillation tank 130 subject to pressure management for safety
  • pressure management for safety The silver distillation tank 310 may be one. Therefore, since the number of tanks subject to pressure management for safety is reduced, a relatively simple and safe laundry treatment device may be constructed.
  • FIG. 4 is a diagram for explaining an operation process in a laundry treatment apparatus having a structure using a 2-tank according to another embodiment.
  • liquefied carbon dioxide stored in the distillation tank 310 is supplied into the washing tub 320 through a distillation operation, and liquefied carbon dioxide and impurities are transferred from the washing tub 320 to the distillation tank 310 after the washing process is finished. this can be released.
  • the compressor 330 may suck (S401) gaseous carbon dioxide obtained by evaporating liquefied carbon dioxide stored in the distillation tank 310 before washing or rinsing. Gaseous carbon dioxide discharged from the compressor 330 may move to the distillation tank 310 (S403), and the refrigerator 340 may inhale (S405) the gaseous carbon dioxide discharged through the pipe inside the distillation tank 310.
  • S401 gaseous carbon dioxide obtained by evaporating liquefied carbon dioxide stored in the distillation tank 310 before washing or rinsing.
  • Gaseous carbon dioxide discharged from the compressor 330 may move to the distillation tank 310 (S403), and the refrigerator 340 may inhale (S405) the gaseous carbon dioxide discharged through the pipe inside the distillation tank 310.
  • the refrigerator 340 may cool and condense the inhaled gaseous carbon dioxide to discharge liquefied carbon dioxide (S407), and the discharged liquefied carbon dioxide may be supplied to the inside of the washing tub 320.
  • liquefied carbon dioxide S407
  • impurities along with liquefied carbon dioxide may flow from the washing tub 320 to the distillation tank 310 through on/off control of the pipe (S409).
  • the recovery rate of liquefied carbon dioxide is 98%, and the liquefied carbon dioxide that is lost can be supplemented separately from the outside.
  • FIG. 5 is a diagram for explaining an operation process of the laundry treatment apparatus according to an embodiment.
  • the laundry treatment apparatus may control the inside of the washing tub to be in a vacuum state.
  • the laundry treatment apparatus may include a vacuum pump (not shown), and may reduce the pressure inside the washing tub by sucking air inside the washing tub together with the laundry by using the vacuum pump.
  • the vacuum state may be controlled by reducing the pressure inside the washing tub. If not controlled in a vacuum state, the compressor then sucks in air together with gaseous carbon dioxide, which may cause a malfunction.
  • the laundry treatment device may determine whether to replenish the inside of the distillation tank. Specifically, replenishment may be determined based on a comparison between a water level corresponding to the amount of liquefied carbon dioxide in the distillation tank and a reference water level. More specifically, when the water level inside the distillation tank is lower than the reference water level in S505, liquefied carbon dioxide may be replenished from the outside. Alternatively, when the water level is higher than the reference water level, the liquefied carbon dioxide may not be replenished from the outside.
  • the reference water level may be a water level corresponding to an amount required for one time of washing or rinsing.
  • the laundry treatment device of FIG. can store the amount of liquefied carbon dioxide corresponding to the total A. Therefore, unlike FIG. 1 , the size of the distillation tank can be relatively miniaturized.
  • the laundry treatment device may first supply liquefied carbon dioxide to the washing tub.
  • the liquefied carbon dioxide may be supplied to the washing tub through a distillation operation until the level of the liquefied carbon dioxide inside the washing tub reaches the set level required for the set washing operation mode.
  • the required amount of liquefied carbon dioxide may be different for each set washing operation mode, and a water level corresponding to the required amount for each mode may be set in advance.
  • the set water level may correspond to a preset level. Accordingly, the liquefied carbon dioxide may be supplied to the washing tub through the distillation operation until the level of the liquefied carbon dioxide detected by the sensor inside the washing tub reaches a preset level.
  • the laundry treatment device may perform washing during the washing operation. For example, when washing is previously set to be performed for 300 seconds, the laundry treatment apparatus may perform washing by rotating the drum inside the washing tub for the set 300 seconds.
  • the laundry treatment device may first discharge liquefied carbon dioxide inside the washing tub. After washing is finished, the laundry treatment apparatus may discharge liquefied carbon dioxide and impurities in the washing tub to the distillation tank by controlling the valve on/off of the pipe. At this time, as the recovery rate of liquefied carbon dioxide between S507 and S511 is about 98%, some liquefied carbon dioxide may be lost during the washing operation. When the amount of liquefied carbon dioxide stored in the distillation tank due to loss is less than a certain level, the amount of liquefied carbon dioxide may be supplemented through S503.
  • the laundry treatment device may secondly supply liquefied carbon dioxide to the washing tub.
  • liquefied carbon dioxide may be supplied to the washing tub through a distillation operation until the level of liquefied carbon dioxide in the washing tub reaches the set level required for the set rinsing operation mode.
  • the amount of liquefied carbon dioxide required for each set rinsing operation mode may be different, and a water level corresponding to the amount required for each mode may be set in advance.
  • the liquefied carbon dioxide may be supplied to the washing tub through the distillation operation until the level of the liquefied carbon dioxide detected by the sensor inside the washing tub reaches the set level.
  • the laundry treatment device may perform rinsing during the washing process. For example, when rinsing is performed for 300 seconds in advance, the laundry treatment apparatus may perform rinsing by rotating the drum inside the washing tub for the set 300 seconds.
  • the laundry treatment apparatus may secondly discharge the liquefied carbon dioxide inside the washing tub. After washing is finished, the laundry treatment apparatus may discharge liquefied carbon dioxide and impurities in the washing tub to the distillation tank by controlling the valve on/off of the pipe. At this time, as the recovery rate of liquefied carbon dioxide between S513 and S517 is about 98%, some liquefied carbon dioxide may be lost during the washing process.
  • the laundry treatment apparatus may additionally perform a washing tub collection process.
  • the washing tub recovery process converts the first stage to second stage compression at the washing tub internal pressure X1 bar (ex: 30 bar), turns off the freezer at the washing tub pressure X2 bar (ex: 15 bar), and the washing tub pressure X3 bar (ex: 2.5 bar). bar) may include a process of exhausting after recovery is completed. That is, the laundry treatment apparatus may perform the above-described preset operation when responding to a specific pressure in a process in which the internal pressure of the washing tub is reduced through the washing tub recovery process.
  • the internal pressure of the washing tub is about Y bar (ex: 52 to 58 bar) during the washing cycle, and the internal pressure of the washing tub is increased from Y bar to X1, X2, Reduction to X3 bar may take a relatively long time.
  • the internal pressure of the washing tub is about Z bar (ex: 38 to 42 bar) during the washing cycle, and the internal pressure of the washing tub increases from Z bar to X1 through the washing tub recovery process.
  • X2, X3 bar may require relatively little time in the process.
  • the internal pressure of the washing tub is about 38 to 42 bar, and the washing tub recovery process
  • the time for the pressure inside the washing tub to decrease from Z bar to X1, X2, and X3 bar may be relatively short. After the washing tub collection process, the user may open the washing tub to take out the laundry.
  • a laundry treatment apparatus having a 2-tank structure may require less time by using a relatively small pressure difference.
  • FIG. 6 is a diagram for explaining a control method of a laundry treatment apparatus according to an embodiment.
  • the above description regarding the 2-tank laundry treatment apparatus may be applied.
  • the laundry treatment apparatus may control the inside of the washing tub to be in a vacuum state by using a vacuum pump.
  • the laundry treatment apparatus may first supply liquefied carbon dioxide to the washing tub based on the distillation operation. Based on the distillation operation, liquefied carbon dioxide may be supplied into the washing tub until the water level inside the washing tub reaches a reference water level.
  • the laundry treatment apparatus may first discharge the liquefied carbon dioxide in the washing tub to the distillation tank after performing washing according to the set mode using the first supplied liquefied carbon dioxide.
  • the laundry treatment apparatus may secondly supply liquefied carbon dioxide to the washing tub based on the distillation operation.
  • the laundry treatment apparatus may perform rinsing using the second supplied liquefied carbon dioxide, and then secondly discharge the liquefied carbon dioxide in the washing tub to the distillation tank. Thereafter, the laundry treatment device may additionally perform a washing tub recovery process.
  • an operation of supplying liquefied carbon dioxide to a washing tub through a distillation operation in a laundry treatment apparatus having a 2-tank structure may be performed serially in a separate state from a washing operation.
  • the distillation operation may be performed in parallel with the washing operation.
  • a laundry treatment apparatus having a 2-tank structure may be used to design a miniaturized structure.
  • the tank to be managed for vessel pressure for safety is reduced from the storage tank 110 and the distillation tank 130 to the distillation tank 310, so that the structure can be relatively simplified.
  • An electronic device or terminal includes a processor, a memory for storing and executing program data, a permanent storage unit such as a disk drive, a communication port for communicating with an external device, a touch panel, and a key ), user interface devices such as buttons, and the like.
  • Methods implemented as software modules or algorithms may be stored on a computer-readable recording medium as computer-readable codes or program instructions executable on the processor.
  • the computer-readable recording medium includes magnetic storage media (e.g., read-only memory (ROM), random-access memory (RAM), floppy disk, hard disk, etc.) and optical reading media (e.g., CD-ROM) ), and DVD (Digital Versatile Disc).
  • a computer-readable recording medium may be distributed among computer systems connected through a network, and computer-readable codes may be stored and executed in a distributed manner.
  • the medium may be readable by a computer, stored in a memory, and executed by a processor.
  • This embodiment can be presented as functional block structures and various processing steps. These functional blocks may be implemented with any number of hardware or/and software components that perform specific functions.
  • an embodiment is an integrated circuit configuration such as memory, processing, logic, look-up table, etc., which can execute various functions by control of one or more microprocessors or other control devices. can employ them.
  • the present embodiments include data structures, processes, routines, or various algorithms implemented as combinations of other programming constructs, such as C, C++, Java ( It can be implemented in a programming or scripting language such as Java), assembler, or the like. Functional aspects may be implemented in an algorithm running on one or more processors.
  • this embodiment may employ conventional techniques for electronic environment setting, signal processing, and/or data processing.
  • Terms such as “mechanism”, “element”, “means” and “composition” may be used broadly and are not limited to mechanical and physical components. The term may include a meaning of a series of software routines in association with a processor or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Accessory Of Washing/Drying Machine, Commercial Washing/Drying Machine, Other Washing/Drying Machine (AREA)

Abstract

저장 탱크, 세탁조 및 증류 탱크를 포함하는 3-tank 구조의 세탁물 처리 장치가 아닌, 증류 탱크 및 세탁조를 포함하는 2-tank 구조를 갖는 세탁물 처리 장치 및 이의 제어 방법에 대한 기술이 개시된다. 세탁물 처리 장치는 내부 공간에 세탁물을 포함하는 세탁조, 액화 이산화탄소를 저장하고 있는 증류 탱크, 증류 탱크에서 액화 이산화탄소가 증발된 기체 이산화탄소를 흡입하여 토출하는 압축기, 세탁조로 액화 이산화탄소를 공급하기 위해 토출된 기체 이산화탄소를 냉각시키는 냉각기, 및 제어부를 포함한다.

Description

세탁물 처리 장치 및 이의 제어 방법
본 개시는 저장 탱크, 세탁조 및 증류 탱크를 포함하는 3-tank 구조의 세탁물 처리 장치가 아닌 증류 탱크 및 세탁조를 포함하는 2-tank 구조의 세탁물 처리 장치와 관련된 기술에 관한 것이다.
세탁물(예컨대, 의류)는 세제와 물을 이용하여 세척되거나, 또는 물을 이용한 세척이 적합하지 않을 경우 물 대신에 퍼클로로에틸렌(PCE), 트리클로로에틸렌 및 CFC-113 와 같은 화학 약품을 사용하는 드라이클리닝을 통해 세척될 수 있다.
이때 드라이클리닝에 사용되는 화학 약품은 모두 건강상의 위험, 안전상의 위험이 동반되고 환경에 유해한 것으로 알려져 있다. 예를 들면, PCE는 발암 물질로 추정되고 있으며, CFC-113은 오존을 파괴할 가능성이 있는 등 많은 부작용이 있다고 알려져 있다.
드라이클리닝 산업은 보통 소형 주택가 점포에서 운영되며, 이와 같은 화학 약품을 사용할 경우 일반인에게도 많은 위험을 초래할 우려가 있다. 또한 건강상의 위험, 안전성 및 환경 제약에 대한 규정을 만족하기 위하여 많은 비용이 필요하여 이윤을 내기가 어려운 문제가 있다.
따라서, 건강상의 위험, 안전성 및 환경 제약을 충족하면서 이윤을 내기 위하여 액화 이산화탄소와 같은 대체 물질을 사용하는 연구가 진행 중에 있다.
액화 이산화탄소를 이용하는 드라이클리닝과 관련하여, 종래 기술 1(한국등록특허공보 10-062260호)에서는 1) 액화 이산화탄소를 저장하는 저장 탱크(300), 2) 세탁을 수행하는 세탁교반기(400) 및 3) 세탁 후 폐 이산화탄소를 재활용하기 위한 기화분리기(500)과 같은 3-tank를 사용하는 구조를 갖는 세탁물 처리 장치에 대하여 개시하고 있다.
또한, 종래 기술 2(일본등록특허공보 4,394,293)에서도 1) 액상 이산화탄소를 공급하기 위한 공급 탱크(18), 2) 의복을 세척하는 처리 용기(10) 및 3) 사용된 이산화탄소를 재순환시키기 위한 증발용기(36)과 같은 3-tank를 사용하는 구조를 갖는 세탁물 처리 장치에 대하여 개시하고 있다.
하지만, 이와 같은 3-tank를 사용하는 종래 기술들은 각 탱크의 수직적인 배치로 인하여 세탁물 처리 장치의 소형화가 어려워 큰 공간을 필요로 하는 문제가 있다.
또한, 저장 탱크와 증발기의 경우 높은 압력으로 인하여 안전을 위한 내부 압력 관리가 필수적이어서, 이를 위한 기계적 안전 장치가 각 탱크마다 별도로 설치될 필요가 있어 구조가 복잡해지는 문제가 있다.
본 명세서의 실시 예는 상술한 문제점을 해결하기 위하여 제안된 것으로, 3-tank 구조의 세탁물 처리 장치의 저장 탱크와 증류 탱크의 각 기능을 2-tank 구조의 세탁물 처리 장치의 증류 탱크에서 수행하도록 하는 기술을 제공하는 것을 목적으로 한다. 따라서, 본 명세서의 실시 예에 따르면, 컴팩트한 세탁물 처리 장치로 인하여 상대적으로 설치에 적은 공간이 필요 할 수 있다.
또한, 본 명세서의 실시 예는, 안전을 위한 용기 압력 관리 대상이 저장 탱크와 증류 탱크에서 하나의 탱크로 감소함으로써 안전과 비용 측면에서 유리한 구조를 갖는 기술을 제공하는 것을 목적으로 한다.
또한, 본 명세서의 실시 예는, 3-tank 구조의 세탁물 처리 장치와 비교하여 상대적으로 세탁조 내부 압력이 낮은 상태에서 동작하도록 제어하여 전체 세탁 시간이 줄어드는 기술을 제공하는 것을 목적으로 한다.
구체적으로, 3-tank 구조의 세탁물 처리 장치와 비교하여 상대적으로 낮은 세탁조 내부 압력에서 동작하여, 세탁 이후 회수 과정에서 세탁조 내부 압력을 감소시키는 시간이 상대적으로 줄어들어 전체 세탁 시간이 감소되는 기술을 제공하는 것을 목적으로 한다.
본 실시 예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 이하의 실시 예 들로부터 또 다른 기술적 과제들이 유추될 수 있다.
2-tank 구조를 갖는 본 명세서의 제1 실시 예에 따르면, 내부 공간에 세탁물을 포함하는 세탁조; 액화 이산화탄소를 저장하고 있는 증류 탱크; 상기 증류 탱크에서 상기 액화 이산화탄소가 증발된 기체 이산화탄소를 흡입하여 토출하는 압축기; 상기 세탁조로 액화 이산화탄소를 공급하기 위해 상기 토출된 기체 이산화탄소를 냉각시키는 냉각기; 및 제어부를 포함하는, 세탁물 처리 장치가 제공될 수 있다.
이때, 상기 저장 탱크는, 상기 액화 이산화탄소 외에 불순물을 더 포함하며, 상기 제어부는, 상기 불순물이 제거된 기체 이산화탄소가 상기 세탁조에 공급될 수 있도록 증류 운전을 제어하는 것이 가능하다.
또한, 상기 제어부는, 세탁 행정 이후 상기 세탁조 내부 압력을 감소시키는데 상대적으로 적은 시간이 소요될 수 있도록, 상기 세탁 행정 중 상기 세탁조 내부 압력을 상대적으로 낮게 제어하는 것이 가능하다.
바람직하게는, 상기 제어부는, 상기 세탁조에 상기 액화 이산화탄소를 공급하는 상기 증류 운전을 세탁 행정과 분리된 상태에서 동작하도록 제어하는 것이 가능하다.
또한, 상기 제어부는, 상기 세탁조에 공급되는 상기 액화 이산화탄소가 기설정된 레벨에 대응할 수 있도록 상기 증류 운전을 제어하는 것이 가능하다.
또한, 상기 제어부는, 상기 세탁 행정이 종료된 경우 상기 세탁조에 포함된 상기 액화 이산화탄소가 상기 증류 탱크로 배출될 수 있도록 제어하는 것이 가능하다.
구체적으로, 상기 제어부는, 상기 세탁 전에 상기 증류 운전을 통해 상기 세탁조에 상기 액화 이산화탄소를 공급하고, 상기 세탁 종료된 후에 상기 세탁조에 포함된 상기 액화 이산화탄소가 상기 증류 탱크로 배출될 수 있도록 제어하는 것이 가능하다.
뿐만 아니라, 상기 제어부는, 상기 헹굼 전에 상기 증류 운전을 통해 상기 세탁조에 상기 액화 이산화탄소를 공급하고, 상기 헹굼 종료된 후에 상기 세탁조에 포함된 상기 액화 이산화탄소가 상기 증류 탱크로 배출될 수 있도록 제어하는 것이 가능하다.
또한, 진공 펌프를 더 포함하고, 상기 진공 펌프는, 상기 세탁조에 증류 운전을 통해 액화 이산화탄소가 공급되기 전에 상기 세탁조 내부 압력을 감소시키는 것이 가능하다.
또한, 상기 저장 탱크에 저장된 상기 액화 이산화탄소의 양은, 1회의 세탁 행정에 필요한 양에 대응할 수 있다.
2-tank 구조를 갖는 세탁물 처리 장치를 제어하기 위한 본 명세서의 제2 실시 예에 따르면, 세탁조 내부를 진공 상태로 제어하는 단계; 증류 운전에 기초하여 세탁조에 액화 이산화탄소를 제1 공급하는 단계; 상기 제1 공급된 액화 이산화탄소를 이용하여 설정 모드에 따른 세탁을 수행한 후, 상기 세탁조의 상기 액화 이산화탄소를 증류 탱크로 제1 배출하는 단계; 상기 증류 운전에 기초하여 상기 세탁조에 액화 이산화탄소를 제2 공급하는 단계; 및 상기 제2 공급된 액화 이산화탄소를 이용하여 헹굼을 수행한 후, 상기 세탁조의 상기 액화 이산화탄소를 증류 탱크로 제2 배출하는 단계를 포함하는, 제어 방법이 제공될 수 있다.
기타 실시 예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
제안되는 실시 예에 따른 세탁물 처리 장치는 다음과 같은 효과를 하나 혹은 그 이상 기대할 수 있다.
본 명세서의 실시 예에 의한 세탁물 처리 장치는 3-tank와 달리 2-tank 구조를 이용하여 소형화됨으로써 상대적으로 설치에 적은 공간을 필요로 하는 이점이 있다.
이때, 증류 탱크에서는 슬러지와 같은 불순물과 사용된 액화 이산화탄소를 포함하고 있지만, 증류 운전을 통해 불순물을 제거하여 순수한 기체 이산화탄소를 공급할 수 있다.
또한, 세탁 행정 도중에 세탁조 내부 압력이 상대적으로 낮게 유지되어, 세탁 행정 이후 회수 과정에서 세탁조 내부 압력을 감소시킬 때 상대적으로 적은 시간이 소요되어 전체 세탁 시간이 줄어드는 이점이 있다.
구체적으로, 증류 운전과 세탁 행정이 병렬적으로 실행되는 3-tank 구조의 세탁물 처리 장치와 비교하여, 2-tank 구조의 세탁물 처리 장치의 경우 증류 운전과 세탁 행정이 직렬적으로 실행되지만 세탁조 내부 압력 감소에 필요한 시간이 줄어들어 전체 세탁 시간이 줄어드는 이점이 있다.
또한, 본 명세서의 실시 예에 의한 세탁물 처리 장치는, 용기 압력 관리 대상이 저장 탱크와 증류 탱크에서 하나의 탱크로 감소함으로써 안전과 비용 측면에서 유리한 이점이 있다.
발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당해 기술 분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1은 일 실시 예에 따른 3-tank를 사용하는 구조의 세탁물 처리 장치를 도시한 도면이다.
도 2는 일 실시 예에 따른 3-tank를 사용하는 구조의 세탁물 처리 장치에서 동작 과정을 설명하기 위한 도면이다.
도 3은 도 1과 다른 일 실시 예에 따른 2-tank를 사용하는 구조의 세탁물 처리 장치를 도시한 도면이다.
도 4는 다른 일 실시 예에 따른 2-tank를 사용하는 구조의 세탁물 처리 장치에서 동작 과정을 설명하기 위한 도면이다.
도 5는 일 실시 예에 따른 세탁물 처리 장치의 동작 과정을 설명하기 위한 도면이다.
도 6은 일 실시 예에 따른 세탁물 처리 장치의 제어 방법을 설명하기 위한 도면이다.
실시 예들에서 사용되는 용어는 본 개시에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 개시에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 개시의 전반에 걸친 내용을 토대로 정의되어야 한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에 기재된 "~부", "~모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.
명세서 전체에서 기재된 "a, b, 및 c 중 적어도 하나"의 표현은, 'a 단독', 'b 단독', 'c 단독', 'a 및 b', 'a 및 c', 'b 및 c', 또는 'a,b,c 모두'를 포괄할 수 있다.
이하에서 언급되는 "단말"은 네트워크를 통해 서버나 타 단말에 접속할 수 있는 컴퓨터나 휴대용 단말로 구현될 수 있다. 여기서, 컴퓨터는 예를 들어, 웹 브라우저(WEB Browser)가 탑재된 노트북, 데스크톱(desktop), 랩톱(laptop) 등을 포함하고, 휴대용 단말은 예를 들어, 휴대성과 이동성이 보장되는 무선 통신 장치로서, IMT(International Mobile Telecommunication), CDMA(Code Division Multiple Access), W-CDMA(W-Code Division Multiple Access), LTE(Long Term Evolution) 등의 통신 기반 단말, 스마트폰, 태블릿 PC 등과 같은 모든 종류의 핸드헬드(Handheld) 기반의 무선 통신 장치를 포함할 수 있다.
아래에서는 첨부한 도면을 참고하여 본 개시의 실시 예에 대하여 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 개시는 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다.
이하에서는 도면을 참조하여 본 개시의 실시 예들을 상세히 설명한다.
도 1은 일 실시 예에 따른 3-tank를 사용하는 구조의 세탁물 처리 장치를 도시한 도면이다.
도 1을 참조하면, 세탁물 처리 장치는 세탁물이 전면(front) 방향에서 세탁조(120)로 삽입되는 드럼식 세탁물 처리 장치일 수 있다. 또는 도 1과 달리, 세탁물 처리 장치는 세탁물이 상부 방향에서 세탁조(120)로 삽입되는 세탁물 처리 장치 일 수 있다. 이와 같은 세탁물 처리 장치는 세탁물이 삽입되어 세탁, 헹굼, 탈수 및 건조 중에서 적어도 하나를 수행하는 장치일 수 있다.
세탁물 처리 장치의 세탁조(120)는 외관을 형성하는 캐비닛과 캐비닛 내부에 배치되며, 캐비닛에 의해 지지되는 터브와, 터브 내부에 배치되며 세탁물이 세탁되는 드럼과, 드럼을 구동시키는 모터와, 캐비닛 내부로 액화 이산화탄소를 공급하는 공급 장치(미도시)와, 터브 하측에 형성되어 액화 이산화탄소 및 불순물을 배출하는 배수장치(미도시)를 포함할 수 있다.
이때, 드럼은 액화 이산화탄소가 공급되도록 복수개의 통공이 형성되어 있으며, 드럼의 회전시 세탁물이 일정 높이로 들어 올려진 후 중력에 의해 낙하되도록 내부 측면에 리프터가 배치될 수 있다. 캐비닛은, 캐비닛 본체와, 캐비닛 본체의 전면에 배치되어 결합하는 캐비닛 커버와, 캐비닛 커버 상측에 배치되며 캐비닛 본체와 결합하는 컨트롤 패널과, 컨트롤 패널 상측에 배치되며 캐비닛 본체와 결합하는 탑 플레이트를 포함할 수 있다. 캐비닛 커버는 세탁물의 출입이 가능한 홀과 홀의 개폐가 가능하도록 좌우로 회동가능하게 배치되는 도어를 포함할 수 있다. 컨트롤 패널은 세탁물 처리 장치의 동작 상태를 조작하는 조작키들과 조작키들의 일측에 배치되며 세탁물 처리 장치의 동작 상태를 표시하는 디스플레이를 포함할 수 있다.
컨트롤 패널 내의 조작키들 및 디스플레이는 제어부(미도시)에 전기적으로 연결되며, 제어부(미도시)는 세탁물 처리 장치의 각 구성요소들을 전기적으로 제어할 수 있다. 제어부(미도시)의 동작에 대해 구체적인 내용은 이하 후술한다. 도면에는 도시하지 않았지만, 세탁물 처리 장치는 각종 센서 및 기타 기기를 더 포함할 수 있다. 예를 들면, 세탁물 처리 장치는 세탁조(120) 내부로 공급된 액화 이산화탄소의 수위를 측정하는 센서를 더 포함할 수 있다. 제어부에 의해 모터가 구동될 수 있으며, 모터의 구동에 따라 터브 내의 드럼이 회전할 수 있다. 제어부는 조작키로부터 동작 신호를 입력 받아 동작을 제어할 수 있으며, 예를 들면 세탁, 헹굼, 탈수, 건조 등 세탁 행정을 제어할 수 있다. 또한, 제어부는 디스플레이가 세탁 코스, 세탁 시간, 탈수 시간, 헹굼 시간 등 세탁 행정과 관련된 동작 상태를 표시하도록 제어할 수 있다.
도 1의 세탁물 처리 장치는 세탁조(120) 외에도, 저장 탱크(110), 증류 탱크(130), 압축기(140) 및 냉동기(150)을 더 포함할 수 있다. 이와 같이, 세탁물 처리 장치는, 저장 탱크(110), 세탁조(120) 및 증류 탱크(130)를 포함하는 3-tank 구조일 수 있다.
저장 탱크(110)는 액화 이산화탄소를 저장하고 있으며, 저장 탱크(110)와 세탁조(120) 사이의 연결 배관에 설치된 밸브가 on된 경우 중력에 의해 저장 탱크(110)에 저장된 액화 이산화탄소가 세탁조(120) 내부로 공급될 수 있다. 저장 탱크(110)와 세탁조(120) 사이의 연결 배관에 설치된 밸브가 off된 경우에는 중력에 의해서도 저장 탱크(110)에 저장된 액화 이산화탄소는 세탁조(120) 내부로 공급될 수 없다.
세탁조(120) 내부의 드럼에 포함된 세탁물은 액화 이산화탄소에 의한 세탁, 헹굼 등 세탁 행정을 처리될 수 있다.
세탁 행정이 종료된 경우, 세탁조(120)와 증류 탱크(130) 사이의 연결 배관에 설치된 밸브가 on된 경우 중력에 의해 세탁조(120)에 포함된 액화 이산화탄소와 불순물이 증류 탱크(130)으로 이동할 수 있거나, 세탁조(120)와 증류 탱크(130) 사이의 연결 배관에 설치된 밸브가 off된 경우에는 중력에 의해서도 세탁조(120)에 포함된 액화 이산화탄소와 불순물이 증류 탱크(130)으로 이동할 수 없다. 여기서, 불순물은 세탁 행정 과정에서 생성된 슬러지를 포함할 수 있다.
증류 탱크(130)로 이동한 액화 이산화탄소는 압축기(140)의 열을 이용하여 기화될 수 있고, 이와 같은 증류 과정을 통해 불순물과 기체 이산화탄소는 분리될 수 있다. 이때, 불순물은 증류 탱크(130)의 바닥에 위치하고 기체 이산화탄소는 증류 탱크(130)의 상부에 위치하여 섞이지 않고 분리될 수 있다.
압축기(140)는 기체 이산화탄소를 흡입하여 토출할 수 있고, 토출된 기체 이산화탄소는 냉동기(150)에서 냉각 액화되어 액화 이산화탄소로 변환될 수 있다.
냉동기(150)는 응축기에 대응할 수 있으며, 응축기는 열 교환기에 포함되는 기기로서 압축기를 통과한 기체 이산화탄소를 냉각 응축시켜 액화 이산화탄소를 토출할 수 있다. 냉동기(150)에서 토출된 액화 이산화탄소는 저장 탱크(150)로 유동할 수 있고, 저장 탱크(150)는 액화 이산화탄소를 저장할 수 있다. 도 1과 같은 구조의 세탁물 처리 장치의 경우 세탁 행정 도중에 증류 동작이 병렬적으로 수행될 수 있다.
3-tank를 이용하는 세탁물 처리 장치의 저장 탱크(110)는 세탁에 필요한 액화 이산화탄소의 양 A 및 헹굼에 필요한 액화 이산화탄소의 양 A를 포함한 2A에 대응하는 액화 이산화탄소를 저장할 수 있다.
1회의 세탁 행정동안 저장 탱크(150)에서 토출된 액화 이산화탄소의 회수율은 약 98%로서, 미회수된 액화 이산화탄소는 외부에서 보충될 수 있다. 구체적으로, 저장 탱크(150)에서 액화 이산화탄소의 수위를 감지하여 수위가 일정 기준 미만인 경우 외부에서 보충되거나 또는, 세탁 행정의 횟수가 기설정된 횟수에 도달한 경우 외부에서 액화 이산화탄소가 보충될 수 있다.
도 2는 일 실시 예에 따른 3-tank를 사용하는 구조의 세탁물 처리 장치에서 동작 과정을 설명하기 위한 도면이다.
도 2를 참조하면, 저장 탱크(110), 세탁조(120) 및 증류 탱크(130) 사이 액화 이산화탄소는 높이 차를 이용한 중력에 의해 유동할 수 있다.
저장 탱크(110)에 저장된 액화 이산화탄소는 중력에 의해 세탁조(120)로 유동할 수 있고, 세탁조(120)에서 세탁 행정이 종료된 경우 증류 탱크(130)로 액화 이산화탄소와 불순물이 유동할 수 있다. 증류 탱크(130)에서 제2 열에 의해 액화 이산화탄소는 기체 이산화탄소로 증발되고, 압축기(140)는 증발된 기체 이산화탄소를 흡입하여 냉동기(150)로 토출할 수 있고, 냉동기(150)는 기체 이산화탄소를 냉각 응축하면서 제1 열을 방출하면서 액화 이산화탄소를 저장 탱크(110)로 토출할 수 있다.
도 2와 같은 구조의 3-tank를 사용하는 세탁물 처리 장치의 경우, 높이 차를 위해 저장 탱크(110), 세탁조(120) 및 증류 탱크(130)는 수직 방향으로 배열될 필요가 있고, 이로 인해 소형화가 어려운 문제가 있다. 또한, 저장 탱크(110)와 증류 탱크(130)는 외부와 열 전달을 통해 탱크 내부의 압력이 증가할 수 있어 안전을 위하여 내부 압력 관리가 필수적이며, 이를 위한 기계적 안전 장치가 각 탱크마다 별도로 설치될 필요가 있어 구조가 복잡해지는 문제가 있다.
도 3은 도 1과 다른 일 실시 예에 따른 2-tank를 사용하는 구조의 세탁물 처리 장치를 도시한 도면이다.
도 3을 참조하면, 세탁물 처리 장치는 증류 탱크(310), 세탁조(320), 압축기(330) 및 냉동기(340)을 포함할 수 있다. 세탁물 처리 장치는 증류 탱크(310) 및 세탁조(320)을 포함하는 2-tank 구조로서, 증류 탱크(310)는 도 1의 저장 탱크(110)와 증류 탱크(130)의 기능을 수행할 수 있다. 세탁조(320), 압축기(330) 및 냉동기(340)과 관련하여 자세한 설명은 전술한 기재가 적용될 수 있다.
구체적으로, 저장 탱크(110)에 저장된 액화 이산화탄소를 세탁조(120)로 공급하는 도 1과 달리, 증류 탱크(310)에 저장된 액화 이산화탄소를 증류 과정을 통해 불순물과 분리하고, 순수한 기체 이산화탄소가 압축기(330)로 흡입 및 토출되어 냉동기(340)에서 냉각 액화되어 액화 이산화탄소가 세탁조(320) 내부로 공급될 수 있다. 도 1과 달리, 도 3과 같은 구조의 세탁물 처리 장치의 경우 세탁 행정과 증류 동작은 직렬적으로 수행될 수 있다.
또한, 세탁 행정과 증류 운전 간의 병렬적 동작을 수행하기 위해 총 2A에 대응하는 액화 이산화탄소를 저장하는 도 1의 세탁물 처리 장치와 달리, 2-tank를 이용하는 세탁물 처리 장치의 저장 탱크(110)는 직렬적 동작으로 인하여 총 A에 대응하는 액화 이산화탄소를 저장할 수 있다. 즉, 세탁 전에 증류 운전을 통해 A에 대응하는 액화 이산화탄소를 공급할 수 있고 회수된 이후, 다시 헹굼 전에 증류 운전을 통해 A에 대응하는 액화 이산화탄소를 공급할 수 있고 이를 다시 회수할 수 있다.
3-tank 구조를 갖는 도 1의 세탁물 처리 장치와 달리, 2-tank 구조를 갖는 도 3의 세탁물 처리 장치의 경우 증류 탱크(310)에서 저장 탱크(110) 및 증류 탱크(130)의 기능을 모두 수행하므로, 상대적으로 소형화될 수 있다.
또한, 안전을 위한 압력 관리 대상이 되는 저장 탱크(110) 및 증류 탱크(130)를 포함하는 도 1과 달리, 2-tank 구조를 갖는 도 3과 같은 세탁물 처리 장치의 경우 안전을 위한 압력 관리 대상은 증류 탱크(310) 하나일 수 있다. 따라서, 안전을 위한 압력 관리 대상이 되는 탱크의 수가 줄어들어 구조가 비교적 간단하면서 안전한 세탁물 처리 장치일 수 있다.
도 4는 다른 일 실시 예에 따른 2-tank를 사용하는 구조의 세탁물 처리 장치에서 동작 과정을 설명하기 위한 도면이다.
도 4를 참조하면, 증류 탱크(310)에 저장된 액화 이산화탄소가 증류 운전을 통해 세탁조(320) 내부로 공급되고, 세탁 행정이 종료된 후 세탁조(320)에서 증류 탱크(310)로 액화 이산화탄소와 불순물이 배출될 수 있다.
구체적으로, 세탁 또는 헹굼 전에 증류 탱크(310)에 저장된 액화 이산화탄소가 증발된 기체 이산화탄소를 압축기(330)는 흡입(S401)할 수 있다. 압축기(330)에서 토출된 기체 이산화탄소는 증류 탱크(310)로 이동(S403)할 수 있고, 증류 탱크(310) 내부의 배관을 통과하여 배출된 기체 이산화탄소를 냉동기(340)는 흡입(S405)할 수 있다.
냉동기(340)는 흡입한 기체 이산화탄소를 냉각 응축하여 액화 이산화탄소를 배출(S407)할 수 있고, 배출된 액화 이산화탄소는 세탁조(320) 내부에 공급될 수 있다. 세탁조(320)에서 세탁 또는 헹굼이 종료된 경우, 배관의 on/off 제어를 통해 세탁조(320)에서 증류 탱크(310)로 액화 이산화탄소와 함께 불순물이 유동(S409)할 수 있다.
이와 같은 사이클을 순환하는 동안 액화 이산화탄소의 회수율은 98%로서, 손실되는 액화 이산화탄소는 외부에서 별도로 보충될 수 있다.
도 5는 일 실시 예에 따른 세탁물 처리 장치의 동작 과정을 설명하기 위한 도면이다.
도 5를 참조하면, S501에서 세탁물 처리 장치는 세탁조 내부를 진공 상태로 제어할 수 있다. 세탁물 처리 장치는 진공 펌프(미도시)를 포함하고 있으며, 세탁물과 함께 들어온 세탁조 내부의 공기를 진공 펌프로 흡입하여 세탁조 내부의 압력을 감소시킬 수 있다. 구체적으로, 세탁조 내부의 압력을 감소시켜 진공 상태로 제어할 수 있다. 진공 상태로 제어하지 않을 경우, 이후 압축기는 기체 이산화탄소와 함께 공기를 흡입하여 이로 인한 고장이 발생할 수 있다.
S503에서, 세탁물 처리 장치는 증류 탱크 내부의 보충 여부를 결정할 수 있다. 구체적으로, 증류 탱크 내부의 액화 이산화탄소의 양에 대응하는 수위와 기준 수위 간의 비교에 기초하여 보충 여부를 결정할 수 있다. 보다 구체적으로, S505에서 증류 탱크 내부의 수위가 기준 수위 보다 작은 경우 액화 이산화탄소가 외부에서 보충될 수 있다. 또는, 기준 수위 보다 큰 경우 액화 이산화탄소가 외부에서 보충되지 않을 수 있다.
이때, 기준 수위는 1회의 세탁 또는 헹굼에 필요한 양에 대응하는 수위일 수 있다. 세탁에 필요한 액화 이산화탄소의 양 A와 헹굼에 필요한 액화 이산화탄소의 양 A 총 2A가 저장 탱크에 포함된 도 1과 달리, 도 3의 세탁물 처리 장치는 병렬적 동작이 아닌 직렬적 동작을 수행하므로 증류 탱크는 총 A에 대응하는 액화 이산화탄소의 양을 저장할 수 있다. 따라서, 도 1과 달리, 증류 탱크의 크기는 상대적으로 소형화될 수 있다.
S507에서, 세탁물 처리 장치는 액화 이산화탄소를 세탁조에 제1 공급할 수 있다. 구체적으로, 설정된 세탁 동작 모드에 필요한 세탁조 내부의 액화 이산화탄소의 수위가 설정 수위에 도달할 때까지, 증류 운전을 통해 세탁조로 액화 이산화탄소가 공급될 수 있다. 이때, 각 설정된 세탁 동작 모드 별로 필요한 액화 이산화탄소의 양이 상이할 수 있으며, 각 모드 별로 필요한 양에 대응하는 수위가 사전에 설정될 수 있다. 여기서, 설정 수위는 기설정된 레벨에 대응할 수 있다. 따라서, 세탁조 내부의 센서를 통해 감지된 액화 이산화탄소의 수위가 기설정된 레벨에 도달할 때까지, 증류 운전을 통해 세탁조로 액화 이산화탄소가 공급될 수 있다.
S509에서, 세탁물 처리 장치는 세탁 행정 중에서 세탁을 수행할 수 있다. 예를 들면, 300초 동안 세탁이 수행되도록 사전에 설정된 경우, 세탁물 처리 장치는 설정된 300초 동안 세탁조 내부의 드럼을 회전하여 세탁을 수행할 수 있다.
S511에서, 세탁물 처리 장치는 세탁조 내부 액화 이산화탄소를 제1 배출할 수 있다. 세탁이 끝난 후에, 세탁물 처리 장치는 배관의 밸브 on/off 제어를 통해 세탁조 내부의 액화 이산화탄소와 불순물을 증류 탱크로 배출할 수 있다. 이때, S507과 S511 간의 액화 이산화탄소의 회수율을 약 98%로서 세탁 행정을 수행하는 동안 일부 액화 이산화탄소가 손실될 수 있다. 손실에 의해 증류 탱크에 저장된 액화 이산화탄소의 양이 일정 수위 보다 작을 경우, S503을 통해 액화 이산화탄소의 양의 보충될 수 있다.
S513에서, 세탁물 처리 장치는 액화 이산화탄소를 세탁조에 제2 공급할 수 있다. 구체적으로, 설정된 헹굼 동작 모드에 필요한 세탁조 내부의 액화 이산화탄소의 수위가 설정 수위에 도달할 때까지, 증류 운전을 통해 세탁조로 액화 이산화탄소가 공급될 수 있다. 이때, 각 설정된 헹굼 동작 모드 별로 필요한 액화 이산화탄소의 양이 상이할 수 있으며, 각 모드 별로 필요한 양에 대응하는 수위가 사전에 설정될 수 있다. 따라서, 세탁조 내부의 센서를 통해 감지된 액화 이산화탄소의 수위가 설정 수위에 도달할 때까지, 증류 운전을 통해 세탁조로 액화 이산화탄소가 공급될 수 있다.
S515에서, 세탁물 처리 장치는 세탁 행정 중에서 헹굼을 수행할 수 있다. 예를 들면, 300초 동안 헹굼이 수행되도록 사전에 설정된 경우, 세탁물 처리 장치는 설정된 300초 동안 세탁조 내부의 드럼을 회전하여 헹굼을 수행할 수 있다.
S517에서, 세탁물 처리 장치는 세탁조 내부 액화 이산화탄소를 제2 배출할 수 있다. 세탁이 끝난 후에, 세탁물 처리 장치는 배관의 밸브 on/off 제어를 통해 세탁조 내부의 액화 이산화탄소와 불순물을 증류 탱크로 배출할 수 있다. 이때, S513과 S517 간의 액화 이산화탄소의 회수율을 약 98%로서 세탁 행정을 수행하는 동안 일부 액화 이산화탄소가 손실될 수 있다.
S517 이후, 세탁물 처리 장치는 세탁조 회수 과정을 추가적으로 수행할 수 있다. 세탁조 회수 과정은 세탁조 내부 압력 X1 bar(ex: 30 bar)에서 1단에서 2단 압축으로 전환하고, 세탁조 압력 X2 bar(ex: 15 bar)에서 냉동기를 off하고, 세탁조 압력 X3 bar(ex: 2.5 bar)에서 회수 완료 후 배기하는 과정을 포함할 수 있다. 즉, 세탁물 처리 장치는 세탁조 회수 과정을 통해 세탁조 내부 압력이 감소되는 과정에서 특정 압력에 대응할 경우 전술한 바와 같은 기 설정된 동작을 수행할 수 있다.
도 1과 같은 3-tank 구조의 세탁물 처리 장치의 경우 세탁 행정 과정에서 세탁조 내부 압력이 Y bar(ex: 52~58 bar) 정도로서, 세탁조 회수 과정을 통해 세탁조 내부 압력이 Y bar에서 X1, X2, X3 bar로 감소되는 과정에서 상대적으로 오랜 시간이 필요할 수 있다. 반면에, 도 3과 같은 2-tank 구조의 세탁물 처리 장치의 경우 세탁 행정 과정에서 세탁조 내부 압력이 Z bar(ex: 38~42 bar) 정도로서, 세탁조 회수 과정을 통해 세탁조 내부 압력이 Z bar에서 X1, X2, X3 bar로 감소되는 과정에서 상대적으로 적은 시간이 필요할 수 있다. 즉, 도 3과 같은 2-tank 구조의 세탁물 처리 장치의 경우, 세탁 행정 과정에서 3-tank와 비교하여 상대적으로 낮은 압력에서 동작하므로, 세탁조 내부 압력이 38~42 bar 정도로서, 세탁조 회수 과정을 통해 세탁조 내부 압력이 Z bar에서 X1, X2, X3 bar로 감소되는 시간이 상대적으로 적을 수 있다. 세탁조 회수 과정 이후, 사용자는 세탁조를 개방하여 세탁물을 꺼낼 수 있다.
따라서, 3-tank 구조의 세탁물 처리 장치와 비교하여 2-tank 구조를 갖는 세탁물 처리 장치의 경우 상대적으로 적은 압력차를 이용하여 적은 시간을 필요로 할 수 있다.
도 6은 일 실시 예에 따른 세탁물 처리 장치의 제어 방법을 설명하기 위한 도면이다. 도 6에 대한 자세하 설명은 2-tank의 세탁물 처리 장치와 관련하여 전술한 내용이 적용될 수 있다.
도 6을 참조하면, S610에서 세탁물 처리 장치는 진공 펌프를 이용하여 세탁조 내부를 진공 상태로 제어할 수 있다. S620에서, 세탁물 처리 장치는 증류 운전에 기초하여 세탁조에 액화 이산화탄소를 제1 공급할 수 있다. 증류 운전에 기초하여 세탁조 내부 수위가 기준 수위에 도달할 때까지 세탁조로 액화 이산화탄소가 공급될 수 있다. S630에서, 세탁물 처리 장치는 제1 공급된 액화 이산화탄소를 이용하여 설정 모드에 따른 세탁을 수행한 후, 세탁조의 액화 이산화탄소를 증류 탱크로 제1 배출할 수 있다. S640에서, 세탁물 처리 장치는 증류 운전에 기초하여 세탁조에 액화 이산화탄소를 제2 공급할 수 있다. S650에서, 세탁물 처리 장치는 제2 공급된 액화 이산화탄소를 이용하여 헹굼을 수행한 후, 세탁조의 액화 이산화탄소를 증류 탱크로 제2 배출할 수 있다. 이후, 세탁물 처리 장치는 세탁조 회수 과정을 추가적으로 수행할 수 있다.
실시 예에 따르면, 2-tank 구조를 갖는 세탁물 처리 장치에서 증류 운전을 통한 세탁조로 액화 이산화탄소를 공급하는 동작은 세탁 행정과 별도로 분리된 상태에서 직렬적으로 실행될 수 있다. 반면에, 3-tank 구조를 갖는 세탁물 처리 장치의 경우 증류 운전은 세탁 행정과 병렬적으로 실행될 수 있다. 증류 운전과 세탁 행정 간의 직렬적 실행 또는 병렬적 실행에 의해 소요되는 시간 차이가 발생할 수 있지만, 세탁조 회수 과정에서 적은 압력차를 이용하는 2-tank 구조의 세탁물 처리 장치에서 상대적으로 적은 시간이 소요될 수 있다.
실시 예에 따르면, 3-tank 구조를 갖는 세탁물 처리 장치와 달리 2-tank 구조를 갖는 세탁물 처리 장치를 이용함으로써 소형화된 구조로 설계될 수 있다.
실시 예에 따르면, 안전을 위한 용기 압력 관리 대상 탱크가 저장 탱크(110)와 증류 탱크(130)에서, 증류 탱크(310)로 감소하여 상대적으로 구조가 간단해질 수 있다.
전술한 실시예들에 따른 전자 장치 또는 단말은, 프로세서, 프로그램 데이터를 저장하고 실행하는 메모리, 디스크 드라이브와 같은 영구 저장부(permanent storage), 외부 장치와 통신하는 통신 포트, 터치 패널, 키(key), 버튼 등과 같은 사용자 인터페이스 장치 등을 포함할 수 있다. 소프트웨어 모듈 또는 알고리즘으로 구현되는 방법들은 상기 프로세서상에서 실행 가능한 컴퓨터가 읽을 수 있는 코드들 또는 프로그램 명령들로서 컴퓨터가 읽을 수 있는 기록 매체 상에 저장될 수 있다. 여기서 컴퓨터가 읽을 수 있는 기록 매체로 마그네틱 저장 매체(예컨대, ROM(read-only memory), RAM(random-Access memory), 플로피 디스크, 하드 디스크 등) 및 광학적 판독 매체(예컨대, 시디롬(CD-ROM), 디브이디(DVD: Digital Versatile Disc)) 등이 있다. 컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템들에 분산되어, 분산 방식으로 컴퓨터가 판독 가능한 코드가 저장되고 실행될 수 있다. 매체는 컴퓨터에 의해 판독가능하며, 메모리에 저장되고, 프로세서에서 실행될 수 있다.
본 실시 예는 기능적인 블록 구성들 및 다양한 처리 단계들로 나타내어질 수 있다. 이러한 기능 블록들은 특정 기능들을 실행하는 다양한 개수의 하드웨어 또는/및 소프트웨어 구성들로 구현될 수 있다. 예를 들어, 실시 예는 하나 이상의 마이크로프로세서들의 제어 또는 다른 제어 장치들에 의해서 다양한 기능들을 실행할 수 있는, 메모리, 프로세싱, 로직(logic), 룩 업 테이블(look-up table) 등과 같은 직접 회로 구성들을 채용할 수 있다. 구성 요소들이 소프트웨어 프로그래밍 또는 소프트웨어 요소들로 실행될 수 있는 것과 유사하게, 본 실시 예는 데이터 구조, 프로세스들, 루틴들 또는 다른 프로그래밍 구성들의 조합으로 구현되는 다양한 알고리즘을 포함하여, C, C++, 자바(Java), 어셈블러(assembler) 등과 같은 프로그래밍 또는 스크립팅 언어로 구현될 수 있다. 기능적인 측면들은 하나 이상의 프로세서들에서 실행되는 알고리즘으로 구현될 수 있다. 또한, 본 실시 예는 전자적인 환경 설정, 신호 처리, 및/또는 데이터 처리 등을 위하여 종래 기술을 채용할 수 있다. “매커니즘”, “요소”, “수단”, “구성”과 같은 용어는 넓게 사용될 수 있으며, 기계적이고 물리적인 구성들로서 한정되는 것은 아니다. 상기 용어는 프로세서 등과 연계하여 소프트웨어의 일련의 처리들(routines)의 의미를 포함할 수 있다.
전술한 실시예들은 일 예시일 뿐 후술하는 청구항들의 범위 내에서 다른 실시예들이 구현될 수 있다.

Claims (11)

  1. 내부 공간에 세탁물을 포함하는 세탁조;
    액화 이산화탄소를 저장하고 있는 증류 탱크;
    상기 증류 탱크에서 상기 액화 이산화탄소가 증발된 기체 이산화탄소를 흡입하여 토출하는 압축기;
    상기 세탁조로 액화 이산화탄소를 공급하기 위해 상기 토출된 기체 이산화탄소를 냉각시키는 냉각기; 및
    제어부를 포함하는,
    세탁물 처리 장치.
  2. 제1항에 있어서,
    상기 저장 탱크는,
    상기 액화 이산화탄소 외에 불순물을 더 포함하며,
    상기 제어부는,
    상기 불순물이 제거된 기체 이산화탄소가 상기 세탁조에 공급될 수 있도록 증류 운전을 제어하는 것을 특징으로 하는,
    세탁물 처리 장치.
  3. 제1항에 있어서,
    상기 제어부는,
    세탁 행정 이후 상기 세탁조 내부 압력을 감소시키는데 상대적으로 적은 시간이 소요될 수 있도록, 상기 세탁 행정 중 상기 세탁조 내부 압력을 상대적으로 낮게 제어하는 것을 특징으로 하는,
    세탁물 처리 장치.
  4. 제2항에 있어서,
    상기 제어부는,
    상기 세탁조에 상기 액화 이산화탄소를 공급하는 상기 증류 운전을 세탁 행정과 분리된 상태에서 동작하도록 제어하는 것을 특징으로 하는,
    세탁물 처리 장치.
  5. 제4항에 있어서,
    상기 제어부는,
    상기 세탁조에 공급되는 상기 액화 이산화탄소가 기설정된 레벨에 대응할 수 있도록 상기 증류 운전을 제어하는 것을 특징으로 하는,
    세탁물 처리 장치.
  6. 제4항에 있어서,
    상기 제어부는,
    상기 세탁 행정이 종료된 경우 상기 세탁조에 포함된 상기 액화 이산화탄소가 상기 증류 탱크로 배출될 수 있도록 제어하는 것을 특징으로 하는,
    세탁물 처리 장치.
  7. 제6항에 있어서,
    상기 세탁 행정은, 세탁 및 헹굼을 포함하고,
    상기 제어부는,
    상기 세탁 전에 상기 증류 운전을 통해 상기 세탁조에 상기 액화 이산화탄소를 공급하고, 상기 세탁 종료된 후에 상기 세탁조에 포함된 상기 액화 이산화탄소가 상기 증류 탱크로 배출될 수 있도록 제어하는 것을 특징으로 하는,
    세탁물 처리 장치.
  8. 제7항에 있어서,
    상기 제어부는,
    상기 헹굼 전에 상기 증류 운전을 통해 상기 세탁조에 상기 액화 이산화탄소를 공급하고, 상기 헹굼 종료된 후에 상기 세탁조에 포함된 상기 액화 이산화탄소가 상기 증류 탱크로 배출될 수 있도록 제어하는 것을 특징으로 하는,
    세탁물 처리 장치.
  9. 제1항에 있어서,
    진공 펌프를 더 포함하고,
    상기 진공 펌프는,
    상기 세탁조에 증류 운전을 통해 액화 이산화탄소가 공급되기 전에 상기 세탁조 내부 압력을 감소시키는 것을 특징으로 하는,
    세탁물 처리 장치.
  10. 제1항에 있어서,
    상기 저장 탱크에 저장된 상기 액화 이산화탄소의 양은, 1회의 세탁 행정에 필요한 양에 대응하는 것을 특징으로 하는,
    세탁물 처리 장치.
  11. 세탁물 처리 장치의 제어 방법에 있어서,
    세탁조 내부를 진공 상태로 제어하는 단계;
    증류 운전에 기초하여 세탁조에 액화 이산화탄소를 제1 공급하는 단계;
    상기 제1 공급된 액화 이산화탄소를 이용하여 설정 모드에 따른 세탁을 수행한 후, 상기 세탁조의 상기 액화 이산화탄소를 증류 탱크로 제1 배출하는 단계;
    상기 증류 운전에 기초하여 상기 세탁조에 액화 이산화탄소를 제2 공급하는 단계; 및
    상기 제2 공급된 액화 이산화탄소를 이용하여 헹굼을 수행한 후, 상기 세탁조의 상기 액화 이산화탄소를 증류 탱크로 제2 배출하는 단계를 포함하는,
    제어 방법.
PCT/KR2022/017020 2022-01-13 2022-11-02 세탁물 처리 장치 및 이의 제어 방법 WO2023136437A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220005494A KR20230109476A (ko) 2022-01-13 2022-01-13 세탁물 처리 장치 및 이의 제어 방법
KR10-2022-0005494 2022-01-13

Publications (1)

Publication Number Publication Date
WO2023136437A1 true WO2023136437A1 (ko) 2023-07-20

Family

ID=87279244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017020 WO2023136437A1 (ko) 2022-01-13 2022-11-02 세탁물 처리 장치 및 이의 제어 방법

Country Status (2)

Country Link
KR (1) KR20230109476A (ko)
WO (1) WO2023136437A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030182731A1 (en) * 1999-09-24 2003-10-02 Worm Steve Lee Cleaning apparatus having multiple wash tanks for carbon dioxide dry cleaning and methods of using same
JP2005313060A (ja) * 2004-04-28 2005-11-10 Mitsubishi Materials Corp 洗浄装置及び洗浄方法
JP2009262016A (ja) * 2008-04-23 2009-11-12 Sharp Corp 二酸化炭素の分離方法および分離装置ならびに洗浄装置
JP2009285602A (ja) * 2008-05-30 2009-12-10 Sharp Corp 二酸化炭素の蒸留装置とそれを備える洗浄装置
KR20120115533A (ko) * 2010-01-05 2012-10-18 씨오2넥서스 아이엔씨. 고밀도화된 세정액을 이용하는 세탁품들을 위한 시스템 및 방법, 및 그 안에서의 유체 이동 장치의 이용 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030182731A1 (en) * 1999-09-24 2003-10-02 Worm Steve Lee Cleaning apparatus having multiple wash tanks for carbon dioxide dry cleaning and methods of using same
JP2005313060A (ja) * 2004-04-28 2005-11-10 Mitsubishi Materials Corp 洗浄装置及び洗浄方法
JP2009262016A (ja) * 2008-04-23 2009-11-12 Sharp Corp 二酸化炭素の分離方法および分離装置ならびに洗浄装置
JP2009285602A (ja) * 2008-05-30 2009-12-10 Sharp Corp 二酸化炭素の蒸留装置とそれを備える洗浄装置
KR20120115533A (ko) * 2010-01-05 2012-10-18 씨오2넥서스 아이엔씨. 고밀도화된 세정액을 이용하는 세탁품들을 위한 시스템 및 방법, 및 그 안에서의 유체 이동 장치의 이용 방법

Also Published As

Publication number Publication date
KR20230109476A (ko) 2023-07-20

Similar Documents

Publication Publication Date Title
WO2017030364A1 (ko) 건조기
WO2010056086A2 (ko) 세탁기
WO2021080218A1 (ko) 일체형 세탁 건조기 및 그 제어방법
WO2010101403A2 (en) Heat pump module and laundry treatment device using the same
WO2010056085A2 (ko) 세탁기
EP2393973A2 (en) Laundry treatment device
WO2017003181A1 (en) Laundry treatment apparatus
WO2023136437A1 (ko) 세탁물 처리 장치 및 이의 제어 방법
WO2018217035A1 (ko) 세탁물 처리기기
WO2009128603A2 (en) Controlling method of washing machine
WO2010087683A2 (ko) 세탁장치
WO2018217033A1 (ko) 세탁물 처리기기
WO2022108181A1 (ko) 세제공급장치 및 이를 갖는 세탁기
WO2017126822A1 (ko) 의류처리장치
WO2010095866A1 (en) Washing machine and control method for the same
WO2022085932A1 (en) Laundry treatment apparatus
CN214401103U (zh) 衣物护理机
WO2023075208A1 (ko) 의류처리장치
WO2017119608A1 (en) Dishwasher and controlling method thereof
WO2010080004A2 (ko) 세탁장치 및 그 제어방법
WO2022108100A1 (ko) 건조기 및 그 제어 방법
WO2010128725A2 (en) Washing machine
KR20230138758A (ko) 세탁물 처리 장치 및 이의 제어 방법
WO2013103237A1 (ko) 세탁물 처리장치
WO2020055024A1 (en) Clothing treatment apparatus and controlling method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920767

Country of ref document: EP

Kind code of ref document: A1