WO2023136192A1 - Chlorine dioxide generator - Google Patents

Chlorine dioxide generator Download PDF

Info

Publication number
WO2023136192A1
WO2023136192A1 PCT/JP2023/000053 JP2023000053W WO2023136192A1 WO 2023136192 A1 WO2023136192 A1 WO 2023136192A1 JP 2023000053 W JP2023000053 W JP 2023000053W WO 2023136192 A1 WO2023136192 A1 WO 2023136192A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorite
ozone generator
chlorine dioxide
ozone
reaction vessel
Prior art date
Application number
PCT/JP2023/000053
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 辻本
Original Assignee
大幸薬品株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大幸薬品株式会社 filed Critical 大幸薬品株式会社
Publication of WO2023136192A1 publication Critical patent/WO2023136192A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/12Apparatus, e.g. holders, therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone

Definitions

  • the present invention relates to a novel chlorine dioxide generator.
  • Chlorine dioxide gas is a safe gas for animal organisms at low concentrations (for example, 0.1 ppm or less), but even at such low concentrations, it has a deactivating effect on microorganisms such as bacteria, fungi, and viruses. It is known to have a deodorant effect.
  • Methods for generating chlorine dioxide include, for example, a method of stably generating chlorine dioxide using a composition containing dissolved chlorine dioxide gas, an aqueous chlorite solution, and a pH adjuster (Patent Document 1); A method of producing chlorine dioxide by electrolyzing an electrolytic solution containing an acid salt is known (Patent Document 2).
  • Patent Document 3 a device has also been proposed that generates chlorine dioxide by irradiating solid chlorite with visible light.
  • An object of the present invention is to provide a practical chlorine dioxide generator with a structure different from that of conventional chlorine dioxide generators.
  • the present invention is a chlorine dioxide generator comprising an ozone generator, a gas introduction mechanism, and a reaction vessel
  • the reaction vessel contains a chemical containing chlorite during the chlorine dioxide generation reaction
  • the apparatus delivers the ozone-containing gas generated by the ozone generator to the chlorite in the reaction vessel by the gas introduction mechanism, thereby producing the ozone-containing gas and the chlorite. configured to be in contact with Regarding the device.
  • An embodiment of the present invention is characterized in that the ozone generator is a discharge ozone generator, an electrolytic ozone generator, or a UV lamp ozone generator.
  • An embodiment of the present invention is characterized in that the chlorite-containing chemical in the reaction vessel is a chlorite aqueous solution or a solid chlorite-containing chemical.
  • the chlorite-containing chemical in the reaction vessel is a chlorite aqueous solution-containing chemical
  • the device contains ozone generated by the ozone generator. It is characterized in that it is configured such that gas is bubbled through the aqueous chlorite solution in the reaction vessel by the gas introduction mechanism.
  • An embodiment of the present invention is characterized in that the chlorite aqueous solution contains chlorite at a concentration of 0.01 to 45% by weight.
  • the chlorite-containing chemical in the reaction vessel is a solid chlorite-containing chemical
  • the device contains ozone generated by the ozone generator.
  • a gas is configured to be delivered by the gas introduction mechanism into the interior of the solid chlorite-containing agent in the reaction vessel to contact the ozone with the solid chlorite.
  • An embodiment of the present invention is characterized in that the drug containing solid chlorite is a drug containing a porous material supporting chlorite.
  • the chlorite-supported porous material is obtained by impregnating the porous material with an aqueous chlorite solution and drying the porous material. Characterized by
  • porous material is selected from the group consisting of sepiolite, palygorskite, montmorillonite, silica gel, diatomaceous earth, zeolite, perlite, and calcium silicate.
  • An embodiment of the present invention is characterized in that the drug containing solid chlorite is a particulate drug.
  • An embodiment of the present invention is characterized by further comprising a humidification mechanism for supplying moisture to the ozone-containing gas generated by the ozone generator.
  • An embodiment of the present invention is characterized in that the chlorite is an alkali metal chlorite or an alkaline earth metal chlorite.
  • the alkali metal chlorite is sodium chlorite, potassium chlorite, or lithium chlorite
  • the alkaline earth metal chlorite is chlorite It is characterized by being calcium, magnesium chlorite, or barium chlorite.
  • the device is characterized by further comprising a control mechanism for the ozone generator.
  • the ozone generator control mechanism controls the start/stop of the ozone generator according to a predetermined program, thereby controlling the amount of chlorine dioxide generated by the chlorine dioxide generator. It is characterized by controlling.
  • the present invention has at least one or more of the following advantages over conventional chlorine dioxide generation methods/generators.
  • the apparatus of the present invention utilizes the generation of chlorine dioxide through the reaction between ozone generated by an ozone generator and chlorite.
  • generation of chlorine dioxide can be easily controlled by turning on/off the ozone generator.
  • chlorite which is a material, is a substance that can be used as a food additive in Japan, and ozone (O 3 ) quickly changes to oxygen (O 2 ) in the air, so it is highly safe. .
  • the device of the present invention can stably generate chlorine dioxide with high efficiency in spite of its relatively simple configuration (see Examples in the specification of the present application).
  • the apparatus of the present invention has a simpler structure than, for example, an electrolysis chlorine dioxide generator or the like, so that downsizing/upsizing of the apparatus and cost reduction are easy. be.
  • FIG. 1 shows a schematic diagram of the apparatus used in Example 1.
  • FIG. 2 shows a graph of the results of Example 1.
  • FIG. 3 shows a schematic diagram of the apparatus used in Example 2.
  • FIG. 4 shows a schematic diagram of the apparatus used in Example 3.
  • FIG. 5 shows a graph of the results of Example 3.
  • FIG. 6 shows a schematic diagram of the apparatus used in Example 4.
  • FIG. 7 shows a schematic diagram of the apparatus used in Example 5.
  • FIG. 8 shows a graph of the results of Example 5.
  • Fig. 1 shows the simplest design example of the device of the present invention.
  • Gas containing ozone generated by the ozone generator is bubbled through the chlorite aqueous solution by the gas introduction mechanism, whereby ozone and chlorite react to generate chlorine dioxide gas.
  • ozone and chlorite react to generate chlorine dioxide gas.
  • the ozonizer in the device of the present invention can be of various types, as long as it is an ozonizer commonly available to those skilled in the art (e.g., discharge ozonator, electrolytic ozonator, UV lamp ozonizer). of ozone generators can be used.
  • the discharge type ozone generator means a general device that generates ozone by a silent discharge method or a creeping discharge method, and the electrolytic ozone generator generates ozone by electrolyzing a predetermined aqueous solution. It means all devices, and the UV lamp type ozone generator means all devices that generate ozone by irradiating an oxygen-containing gas with ultraviolet rays.
  • the gas introduction mechanism in the device of the present invention may be any mechanism capable of transporting gas containing oxygen in a certain direction, and for example, an air pump, gas cylinder, air compressor, etc. can be used.
  • the gas delivered by the gas introduction mechanism is not particularly limited as long as it contains oxygen. For example, using air can reduce costs, and using oxygen or a gas containing oxygen can improve the efficiency of ozone generation.
  • the chlorite which is a direct raw material of chlorine dioxide, may be an aqueous chlorite solution or a solid chlorite.
  • the chlorite used in the present invention includes, for example, alkali metal chlorites and alkaline earth metal chlorites.
  • Alkali metal chlorites include, for example, sodium chlorite, potassium chlorite, and lithium chlorite
  • alkaline earth metal chlorites include calcium chlorite, magnesium chlorite, and sodium chlorite. Barium chlorate is mentioned.
  • sodium chlorite and potassium chlorite are preferred, and sodium chlorite is most preferred, in terms of easy availability.
  • One of these alkali chlorites may be used alone, or two or more of them may be used in combination.
  • the concentration of chlorite in the aqueous solution is preferably 0.01% by weight to 45% by weight. If the concentration is less than 0.01% by weight, the chlorite necessary for generating chlorine dioxide may be depleted in a short period of time, and if the concentration exceeds 45% by weight, chlorite is saturated. As a result, there is a possibility that a problem that crystals are likely to precipitate may arise.
  • the preferred range is 0.1 wt% to 25 wt%, the more preferred range is 1 wt% to 20 wt%, and the more preferred range is 2 to 15% by weight.
  • the solid chlorite When solid chlorite is used in the device of the present invention, the solid chlorite may be supported on a porous material. By supporting the solid chlorite on the porous material, the surface area of the solid chlorite can be increased, and the contact efficiency with ozone can be improved. In addition, since porous materials tend to absorb moisture in the air, the combination of solid chlorite and porous materials reduces the amount of moisture required for the reaction between chlorite and ozone. can also contribute to ensuring Porous materials used in the present invention include, for example, sepiolite, palygorskite, montmorillonite, silica gel, diatomaceous earth, zeolite, perlite, and calcium silicate. Preferable are those which show alkalinity when immersed, more preferable are palygorskite and sepiolite, and particularly preferable is sepiolite.
  • the method for supporting chlorite on the porous material is not particularly limited.
  • a "porous material supporting chlorite” can be obtained by impregnating a porous material with an aqueous solution of chlorite and drying.
  • the water content of the "porous material supporting chlorite” is preferably 10% by weight or less, more preferably 5% by weight or less.
  • the "porous material supporting chlorite" used in the present invention may have any particle size, but preferably has an average particle size of 1 mm to 3 mm. Available.
  • the average particle size of the "porous material supporting chlorite” in the present invention is obtained by measuring the particle size of the "porous material supporting chlorite” using, for example, an optical microscope. It can be calculated by processing and calculating the mean and standard deviation.
  • the concentration of chlorite in the "porous material supporting chlorite" used in the present invention is effective at 1% by weight or more, but if it exceeds 25% by weight, it corresponds to a deleterious substance. Therefore, it is preferably 1% by weight or more and 25% by weight or less, more preferably 5% by weight or more and 20% by weight or less.
  • the apparatus of the present invention may further include a humidification mechanism for supplying moisture to the ozone-containing gas generated by the ozone generator.
  • a humidification mechanism for supplying moisture to the ozone-containing gas generated by the ozone generator.
  • the mechanism of the humidification mechanism is not limited, for example, a "bubbling chamber (to humidify the gas by bubbling the delivered gas into water)" may be provided in the gas delivery path in the device of the present invention.
  • Examples of other humidification mechanisms include Peltier elements, evaporative humidification mechanisms (moisture is permeated into the humidifying material and vaporized by passing air currents through it), and steam humidification mechanisms (water is boiled by electric heat and humidified). ), and a water spray type humidification mechanism (water is vibrated with ultrasonic waves to disperse extremely small water droplets in gas).
  • the device of the present invention can control the amount of chlorine dioxide generated by further comprising a control mechanism for the ozone generator.
  • the control mechanism of the ozone generator may be, for example, a mechanism that controls the amount of chlorine dioxide generated by the chlorine dioxide generator by controlling start/stop of the ozone generator according to a predetermined program.
  • Non-limiting examples of control mechanisms include a switch that shuts off the ozone generator for a period of time when a specified concentration of chlorine dioxide is exceeded, and a switch with a timer that cycles on and off for a period of time. can.
  • the device of the present invention may further include a blower fan for discharging chlorine dioxide gas generated in the device to the outside of the device.
  • a blower fan for discharging chlorine dioxide gas generated in the device to the outside of the device.
  • the blower fan By providing the blower fan, the chlorine dioxide gas generated inside the device can be efficiently sent out of the device.
  • the amount of chlorine dioxide gas sent out of the device can be adjusted by adjusting the air volume of the fan. For example, when the amount of chlorine dioxide gas generated is relatively large, the air volume of the blower fan is increased to diffuse the chlorine dioxide gas further outside the device, and when the amount of chlorine dioxide gas generated is relatively small, By reducing the air volume of the blower fan to prevent the chlorine dioxide gas outside the device from being diffused more than necessary, the concentration of the chlorine dioxide gas outside the device can be adjusted to be within a certain range.
  • Example 1 Generation of chlorine dioxide gas by the device of the present invention Apparatus Configuration
  • a chlorine dioxide generator shown in FIG. 1 was used.
  • the apparatus is equipped with an air pump, an ozone generator (discharge type), and a reaction vessel containing a 10% chlorite aqueous solution.
  • the air pump and the ozone generator, and the ozone generator and the reaction container are connected by conduits, respectively, and the operation of the air pump causes the ozone generated by the ozone generator to bubble into the chlorite aqueous solution in the reaction container.
  • a collection liquid was used to collect the gas released from the outlet of the chlorine dioxide gas measuring apparatus.
  • the collected chlorine dioxide gas was measured by the iodometric titration method.
  • the collection time per time was 30 minutes, and the measurement was periodically performed up to about 360 hours.
  • Table 1 and FIG. 2 show the measurement data of the amount of chlorine dioxide generated from the test . Since the gas collection time was 30 minutes, the amount of gas generated per hour was obtained by doubling the measured value. As shown in Table 1 and FIG. 2, the device of the present invention was able to stably generate 6 to 9 mg/h of chlorine dioxide over a long period of time.
  • Example 2 Comparison between discharge ozone generator and lamp ozone generator Apparatus configuration
  • ozone and chlorine dioxide were generated using a chlorine dioxide generator equipped with a discharge type ozone generator (same as the apparatus used in Example 1) and a chlorine dioxide generator equipped with a lamp type ozone generator. were compared (see FIG. 3).
  • test Method In each apparatus, the air pump was activated to pass air through the chlorite aqueous solution in the reaction vessel at 1 L/min, and then the ozone generator was activated. Air temperature and humidity are not controlled. All ozone generators were operated continuously.
  • a collection liquid was used to collect the gas released from the outlet of the chlorine dioxide gas measuring apparatus.
  • the collected chlorine dioxide gas was measured by the iodometric titration method.
  • the collection time per time was 10 minutes.
  • the amount of ozone generated and the amount of chlorine dioxide generated in each of the test results are shown below. As shown in the table, the amount of ozone generated and the final amount of chlorine dioxide generated were greater when the discharge-type ozonizer was used than when the lamp-type ozonizer was used.
  • Example 3 Stabilization of chlorine dioxide generation by addition of humidification mechanism Configuration of equipment
  • changes in chlorine dioxide generation efficiency due to differences in humidity conditions were investigated.
  • two types of chlorine dioxide generators each having a discharge ozone generator and two air pumps (for path 1 and path 2) were prepared.
  • humidified air containing ozone is configured to contact chlorite
  • dry air containing ozone is configured to contact chlorite. configured to
  • path 1 of the humidified condition (Fig. 4A) humidified air is delivered by bubbling air into the water.
  • path 1 of the dry condition (Fig. 4B) dried air is delivered by passing the air through a desiccant.
  • Path 2 is common to both devices and delivers desiccant-dried air mixed with ozone generated by an ozone generator.
  • a collection liquid was used to collect the gas released from the outlet of the chlorine dioxide gas measuring apparatus.
  • the collected chlorine dioxide gas was measured by the iodometric titration method.
  • the collection time per time was 30 minutes, and the measurement was periodically performed up to about 360 hours.
  • the device of the present invention was able to generate chlorine dioxide over a long period of time under both humidified and dry conditions.
  • the amount of chlorine dioxide generated was generally less than under humid conditions, and there was variation in the amount of chlorine dioxide generated at each measurement point.
  • the amount of chlorine dioxide generated can be increased by providing a humidification mechanism in the air supply path. Furthermore, chlorine dioxide can be stably generated for a long time by providing a humidification mechanism in the air supply path.
  • Example 4 Examination of Air Delivery Method Apparatus configuration
  • the method of delivering ozone-laden air to the chlorite in the reaction vessel was investigated.
  • the method of delivery of air containing chlorite (aqueous solution or solid drug) and ozone in the reaction vessel delivery inside solution or solid drug, or 4 types of devices (devices C, D, E, F) were prepared by combining drug surface delivery).
  • Apparatus A and apparatus B are controls without an ozone generator.
  • a collection liquid was used to collect the gas released from the outlet of the chlorine dioxide gas measuring apparatus.
  • the collected chlorine dioxide gas was measured by the iodometric titration method.
  • Test results The amount of chlorine dioxide generated in each device is shown below.
  • the amount of chlorine dioxide generated can be increased by configuring the ozone-containing air to be delivered to the inside of the chlorite-containing agent. That is, when solid chlorite is used as the chlorine dioxide generating source in the apparatus of the present invention, it is preferable to construct the apparatus so that ozone-containing air is passed through the inside of the solid chlorite. Further, when the apparatus of the present invention uses an aqueous chlorite solution as a chlorine dioxide generating source, it is preferable to configure the apparatus so that ozone-containing air is bubbled into the aqueous chlorite solution.
  • Example 5 Control of chlorine dioxide generation Apparatus configuration
  • controllability of chlorine dioxide generation by turning on/off the ozone generator was confirmed.
  • an apparatus (Apparatus I) using an aqueous chlorite solution (100 g of 1% sodium chlorite aqueous solution) and solid chlorite (100 g of 10% sodium chlorite solid impregnant) was prepared (Apparatus II).
  • an apparatus (apparatus III) was also prepared using an aqueous solution containing chlorite and citric acid (100 g of 1% sodium chlorite aqueous solution + 0.1 g of citric acid). In both devices, air was configured to be delivered inside the chlorite-containing agent.
  • the ozone generator was operated at the beginning of the test, and stopped after 30 minutes. The above pattern was repeated twice and the test was performed up to 120 minutes. The air pump was always in operation. Also, the air flow rate of the air pump under each condition was set to 1 L/min.
  • the amount of chlorine dioxide generated in each device is shown in Table 9 and FIG. 8 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

[Problem] To provide a practical chlorine dioxide generator which differs in configuration from conventional chlorine dioxide generators. [Solution] Provided is a chlorine dioxide generator which comprises an ozonizer, a gas introduction mechanism, and a reaction vessel.

Description

二酸化塩素発生装置chlorine dioxide generator
 本発明は、新規な二酸化塩素発生装置に関する。 The present invention relates to a novel chlorine dioxide generator.
 二酸化塩素ガスは、低濃度(例えば、0.1ppm以下)では動物の生体に対して安全なガスである一方、そのような低濃度でも、細菌・真菌・ウイルス等の微生物に対する失活作用や、消臭作用等を有していることが知られている。 Chlorine dioxide gas is a safe gas for animal organisms at low concentrations (for example, 0.1 ppm or less), but even at such low concentrations, it has a deactivating effect on microorganisms such as bacteria, fungi, and viruses. It is known to have a deodorant effect.
 二酸化塩素の発生方法としては、例えば、溶存二酸化塩素ガス、亜塩素酸塩水溶液、および、pH調整剤を含む組成物により、安定的に二酸化塩素を発生させる方法(特許文献1)や、亜塩素酸塩を含有する電解液を電気分解して二酸化塩素を製造する方法が知られている(特許文献2)。 Methods for generating chlorine dioxide include, for example, a method of stably generating chlorine dioxide using a composition containing dissolved chlorine dioxide gas, an aqueous chlorite solution, and a pH adjuster (Patent Document 1); A method of producing chlorine dioxide by electrolyzing an electrolytic solution containing an acid salt is known (Patent Document 2).
 また、近年、固形の亜塩素酸塩に可視光を照射することによって二酸化塩素を発生させる装置も提案されている(特許文献3) In recent years, a device has also been proposed that generates chlorine dioxide by irradiating solid chlorite with visible light (Patent Document 3).
WO2008/111357WO2008/111357 WO2009/154143WO2009/154143 WO2015/098732WO2015/098732
 本発明は、従来の二酸化塩素発生装置とは異なる構成の、実用的な二酸化塩素発生装置を提供することを課題とした。 An object of the present invention is to provide a practical chlorine dioxide generator with a structure different from that of conventional chlorine dioxide generators.
 本発明は、一実施形態において、オゾン発生器、気体導入機構、反応用容器を備える二酸化塩素発生装置であって、
 前記反応用容器は、二酸化塩素発生反応時において亜塩素酸塩を含む薬剤を含み、
 前記装置は、前記オゾン発生器で発生したオゾンを含む気体を、前記気体導入機構によって前記反応用容器中の前記亜塩素酸塩に送達することで、前記オゾンを含む気体と前記亜塩素酸塩とを接触させるように構成される、
装置に関する。
In one embodiment, the present invention is a chlorine dioxide generator comprising an ozone generator, a gas introduction mechanism, and a reaction vessel,
The reaction vessel contains a chemical containing chlorite during the chlorine dioxide generation reaction,
The apparatus delivers the ozone-containing gas generated by the ozone generator to the chlorite in the reaction vessel by the gas introduction mechanism, thereby producing the ozone-containing gas and the chlorite. configured to be in contact with
Regarding the device.
 本発明の一実施形態においては、前記オゾン発生器が、放電式オゾン発生器、電気分解式オゾン発生器、または、UVランプ式オゾン発生器であることを特徴とする。 An embodiment of the present invention is characterized in that the ozone generator is a discharge ozone generator, an electrolytic ozone generator, or a UV lamp ozone generator.
 本発明の一実施形態においては、前記反応用容器中の前記亜塩素酸塩を含む薬剤が、亜塩素酸塩水溶液または固形の亜塩素酸塩を含む薬剤であることを特徴とする。 An embodiment of the present invention is characterized in that the chlorite-containing chemical in the reaction vessel is a chlorite aqueous solution or a solid chlorite-containing chemical.
 本発明の一実施形態においては、前記反応用容器中の前記亜塩素酸塩を含む薬剤が、亜塩素酸塩水溶液を含む薬剤であり、前記装置が、前記オゾン発生器で発生したオゾンを含む気体を、前記気体導入機構によって前記反応用容器中の前記亜塩素酸塩水溶液にバブリングするように構成されることを特徴とする。 In one embodiment of the present invention, the chlorite-containing chemical in the reaction vessel is a chlorite aqueous solution-containing chemical, and the device contains ozone generated by the ozone generator. It is characterized in that it is configured such that gas is bubbled through the aqueous chlorite solution in the reaction vessel by the gas introduction mechanism.
 本発明の一実施形態においては、前記亜塩素酸塩水溶液が、0.01~45重量%の濃度で亜塩素酸塩を含むことを特徴とする。 An embodiment of the present invention is characterized in that the chlorite aqueous solution contains chlorite at a concentration of 0.01 to 45% by weight.
 本発明の一実施形態においては、前記反応用容器中の前記亜塩素酸塩を含む薬剤が固形の亜塩素酸塩を含む薬剤であり、前記装置が、前記オゾン発生器で発生したオゾンを含む気体を、前記気体導入機構によって前記反応用容器中の前記固形の亜塩素酸塩を含む薬剤の内部に送達し、前記オゾンと前記固形の亜塩素酸塩とを接触させるように構成されることを特徴とする。 In one embodiment of the present invention, the chlorite-containing chemical in the reaction vessel is a solid chlorite-containing chemical, and the device contains ozone generated by the ozone generator. A gas is configured to be delivered by the gas introduction mechanism into the interior of the solid chlorite-containing agent in the reaction vessel to contact the ozone with the solid chlorite. characterized by
 本発明の一実施形態においては、前記固形の亜塩素酸塩を含む薬剤が、亜塩素酸塩を担持させた多孔質物質を含む薬剤であることを特徴とする。 An embodiment of the present invention is characterized in that the drug containing solid chlorite is a drug containing a porous material supporting chlorite.
 本発明の一実施形態においては、前記の亜塩素酸塩を担持させた多孔質物質は、亜塩素酸塩水溶液を多孔質物質に含浸させ、さらに乾燥させることによって得られたものであることを特徴とする。 In one embodiment of the present invention, the chlorite-supported porous material is obtained by impregnating the porous material with an aqueous chlorite solution and drying the porous material. Characterized by
 本発明の一実施形態においては、前記多孔質物質が、セピオライト、パリゴルスカイト、モンモリロナイト、シリカゲル、珪藻土、ゼオライト、パーライト、および、ケイ酸カルシウムからなる群から選択されることを特徴とする。 An embodiment of the present invention is characterized in that the porous material is selected from the group consisting of sepiolite, palygorskite, montmorillonite, silica gel, diatomaceous earth, zeolite, perlite, and calcium silicate.
 本発明の一実施形態においては、前記固形の亜塩素酸塩を含む薬剤が、粒子状の薬剤であることを特徴とする。 An embodiment of the present invention is characterized in that the drug containing solid chlorite is a particulate drug.
 本発明の一実施形態においては、前記オゾン発生器で発生したオゾンを含む気体に水分を供給する加湿機構をさらに備えることを特徴とする。 An embodiment of the present invention is characterized by further comprising a humidification mechanism for supplying moisture to the ozone-containing gas generated by the ozone generator.
 本発明の一実施形態においては、前記亜塩素酸塩が、亜塩素酸アルカリ金属塩または亜塩素酸アルカリ土類金属塩であることを特徴とする。 An embodiment of the present invention is characterized in that the chlorite is an alkali metal chlorite or an alkaline earth metal chlorite.
 本発明の一実施形態においては、前記亜塩素酸アルカリ金属塩が、亜塩素酸ナトリウム、亜塩素酸カリウム、または、亜塩素酸リチウムであり、亜塩素酸アルカリ土類金属塩が、亜塩素酸カルシウム、亜塩素酸マグネシウム、または、亜塩素酸バリウムであることを特徴とする。 In one embodiment of the present invention, the alkali metal chlorite is sodium chlorite, potassium chlorite, or lithium chlorite, and the alkaline earth metal chlorite is chlorite It is characterized by being calcium, magnesium chlorite, or barium chlorite.
 本発明の一実施形態においては、装置が、前記オゾン発生器の制御機構をさらに備えることを特徴とする。 In one embodiment of the present invention, the device is characterized by further comprising a control mechanism for the ozone generator.
 本発明の一実施形態においては、前記オゾン発生器の制御機構が、事前に決定されたプログラムに従って前記オゾン発生器の起動/停止を制御することにより、前記二酸化塩素発生装置の二酸化塩素発生量を制御することを特徴とする。 In one embodiment of the present invention, the ozone generator control mechanism controls the start/stop of the ozone generator according to a predetermined program, thereby controlling the amount of chlorine dioxide generated by the chlorine dioxide generator. It is characterized by controlling.
 上記に挙げた本発明の一又は複数の特徴を任意に組みわせた発明も、本発明の範囲に含まれる。 Inventions that arbitrarily combine one or more of the features of the present invention listed above are also included in the scope of the present invention.
 本発明は、従来の二酸化塩素発生方法/発生装置に対して、少なくとも以下の1つ以上の利点を有する。 The present invention has at least one or more of the following advantages over conventional chlorine dioxide generation methods/generators.
(1)安全性
 本発明の装置は、オゾン発生器により発生させたオゾンと亜塩素酸塩との反応による二酸化塩素の発生を利用する。本装置では、オゾン発生器のオン/オフにより二酸化塩素の発生を容易に制御することができる。また、材料である亜塩素酸塩は日本においては食品添加物としても使用可能な物質であり、オゾン(O)は空気中で速やかに酸素(O)に変化するため、安全性が高い。
(1) Safety The apparatus of the present invention utilizes the generation of chlorine dioxide through the reaction between ozone generated by an ozone generator and chlorite. In this device, generation of chlorine dioxide can be easily controlled by turning on/off the ozone generator. In addition, chlorite, which is a material, is a substance that can be used as a food additive in Japan, and ozone (O 3 ) quickly changes to oxygen (O 2 ) in the air, so it is highly safe. .
(2)装置の耐久性
 本発明の装置は構成が比較的単純であるため、故障のリスクが低く、また、装置が故障した場合の修繕も容易である。
(2) Durability of Device Since the device of the present invention has a relatively simple configuration, the risk of failure is low, and the device can be easily repaired in the event of failure.
(3)二酸化塩素発生効率
 本発明の装置は、比較的単純な構成にも関わらず、安定的に高効率で二酸化塩素を発生させることができる(本願明細書の実施例を参照のこと)。
(3) Chlorine Dioxide Generation Efficiency The device of the present invention can stably generate chlorine dioxide with high efficiency in spite of its relatively simple configuration (see Examples in the specification of the present application).
(4)小型化/大型化、コストダウン
 本発明の装置は、例えば電気分解による二酸化塩素発生装置等と比較して単純な構造であるため、装置の小型化/大型化やコストダウンが容易である。
(4) Downsizing/upsizing and cost reduction The apparatus of the present invention has a simpler structure than, for example, an electrolysis chlorine dioxide generator or the like, so that downsizing/upsizing of the apparatus and cost reduction are easy. be.
図1は、実施例1において用いた装置の模式図を示す。FIG. 1 shows a schematic diagram of the apparatus used in Example 1. FIG. 図2は、実施例1の結果のグラフを示す。2 shows a graph of the results of Example 1. FIG. 図3は、実施例2において用いた装置の模式図を示す。3 shows a schematic diagram of the apparatus used in Example 2. FIG. 図4は、実施例3において用いた装置の模式図を示す。4 shows a schematic diagram of the apparatus used in Example 3. FIG. 図5は、実施例3の結果のグラフを示す。5 shows a graph of the results of Example 3. FIG. 図6は、実施例4において用いた装置の模式図を示す。6 shows a schematic diagram of the apparatus used in Example 4. FIG. 図7は、実施例5において用いた装置の模式図を示す。7 shows a schematic diagram of the apparatus used in Example 5. FIG. 図8は、実施例5の結果のグラフを示す。8 shows a graph of the results of Example 5. FIG.
 本発明の装置の最も簡易的な設計例を図1に示す。オゾン発生器により発生させたオゾンを含む気体を、気体導入機構によって亜塩素酸塩水溶液にバブリングさせることにより、オゾンと亜塩素酸塩が反応し、二酸化塩素ガスが発生する。なお、本発明の装置による二酸化塩素発生効果については、本願の実施例を参照のこと。 Fig. 1 shows the simplest design example of the device of the present invention. Gas containing ozone generated by the ozone generator is bubbled through the chlorite aqueous solution by the gas introduction mechanism, whereby ozone and chlorite react to generate chlorine dioxide gas. For the effect of chlorine dioxide generation by the apparatus of the present invention, refer to Examples of the present application.
 本発明の装置におけるオゾン発生器は、当業者が通常入手可能なオゾン発生器(例えば、放電式オゾン発生器、電気分解式オゾン発生器、UVランプ式オゾン発生器)であれば、様々な種類のオゾン発生器を使用することができる。本開示において、放電式オゾン発生器とは、無声放電方式または沿面放電方式によってオゾンを発生させる装置全般を意味し、電気分解式オゾン発生器とは、所定の水溶液の電気分解によってオゾンを発生させる装置全般を意味し、UVランプ式オゾン発生装置とは、酸素を含む気体に紫外線を照射してオゾンを発生させる装置全般を意味する。 The ozonizer in the device of the present invention can be of various types, as long as it is an ozonizer commonly available to those skilled in the art (e.g., discharge ozonator, electrolytic ozonator, UV lamp ozonizer). of ozone generators can be used. In the present disclosure, the discharge type ozone generator means a general device that generates ozone by a silent discharge method or a creeping discharge method, and the electrolytic ozone generator generates ozone by electrolyzing a predetermined aqueous solution. It means all devices, and the UV lamp type ozone generator means all devices that generate ozone by irradiating an oxygen-containing gas with ultraviolet rays.
 本発明の装置における気体導入機構は、酸素を含む気体を一定方向に輸送可能な機構であればよく、例えばエアポンプ、ガスボンベ、エアーコンプレッサー等を使用することができる。また、気体導入機構によって送達される気体は、酸素を含む気体であれば特に限定されない。例えば、空気を使用すればコストを抑えることができ、酸素または酸素を含む気体を用いればオゾンの発生効率を向上させることができる。 The gas introduction mechanism in the device of the present invention may be any mechanism capable of transporting gas containing oxygen in a certain direction, and for example, an air pump, gas cylinder, air compressor, etc. can be used. Also, the gas delivered by the gas introduction mechanism is not particularly limited as long as it contains oxygen. For example, using air can reduce costs, and using oxygen or a gas containing oxygen can improve the efficiency of ozone generation.
 本発明の装置において、二酸化塩素の直接の原料となる亜塩素酸塩は、亜塩素酸塩水溶液であってもよく、固形の亜塩素酸塩であってもよい。本発明で使用される亜塩素酸塩としては、例えば亜塩素酸アルカリ金属塩や亜塩素酸アルカリ土類金属塩が挙げられる。亜塩素酸アルカリ金属塩としては、例えば亜塩素酸ナトリウム・亜塩素酸カリウム・亜塩素酸リチウムが挙げられ、亜塩素酸アルカリ土類金属塩としては、亜塩素酸カルシウム・亜塩素酸マグネシウム・亜塩素酸バリウムが挙げられる。なかでも、入手が容易という点から、亜塩素酸ナトリウム・亜塩素酸カリウムが好ましく、亜塩素酸ナトリウムが最も好ましい。これらの亜塩素酸素アルカリは1種を単独で用いてもよいし、2種以上を併用しても構わない。  In the apparatus of the present invention, the chlorite, which is a direct raw material of chlorine dioxide, may be an aqueous chlorite solution or a solid chlorite. The chlorite used in the present invention includes, for example, alkali metal chlorites and alkaline earth metal chlorites. Alkali metal chlorites include, for example, sodium chlorite, potassium chlorite, and lithium chlorite, and alkaline earth metal chlorites include calcium chlorite, magnesium chlorite, and sodium chlorite. Barium chlorate is mentioned. Among these, sodium chlorite and potassium chlorite are preferred, and sodium chlorite is most preferred, in terms of easy availability. One of these alkali chlorites may be used alone, or two or more of them may be used in combination.
 本発明の装置において、亜塩素酸塩水溶液を使用する場合、水溶液中の亜塩素酸塩の濃度は、0.01重量%~45重量%であることが好ましい。濃度が0.01重量%未満の場合は、二酸化塩素の発生に必要な亜塩素酸塩が短期間で枯渇する可能性があり、濃度が45重量%を超える場合は、亜塩素酸塩が飽和して結晶が析出しやすいという問題が生じる可能性がある。安全性や安定性、二酸化塩素の発生効率などを考慮すると、好ましい範囲は、0.1重量%~25重量%であり、より好ましい範囲は1重量%~20重量%であり、さらに好ましい範囲は2重量~15重量%である。 When a chlorite aqueous solution is used in the apparatus of the present invention, the concentration of chlorite in the aqueous solution is preferably 0.01% by weight to 45% by weight. If the concentration is less than 0.01% by weight, the chlorite necessary for generating chlorine dioxide may be depleted in a short period of time, and if the concentration exceeds 45% by weight, chlorite is saturated. As a result, there is a possibility that a problem that crystals are likely to precipitate may arise. Considering safety, stability, chlorine dioxide generation efficiency, etc., the preferred range is 0.1 wt% to 25 wt%, the more preferred range is 1 wt% to 20 wt%, and the more preferred range is 2 to 15% by weight.
 本発明の装置において、固形の亜塩素酸塩を使用する場合、固形の亜塩素酸塩は、多孔質物質に担持されていてもよい。固形の亜塩素酸塩を多孔質物質に担持させることにより、固形の亜塩素酸塩の表面積を拡大することができ、オゾンとの接触効率を高めることができる。また、多孔質物質は空気中の水分を吸収しやすいため、固形の亜塩素酸塩と多孔質物質とを組み合わせて使用することにより、亜塩素酸塩とオゾンとの反応に必要とされる水分の確保にも寄与し得る。本発明において使用される多孔質物質は、例えばセピオライト、パリゴルスカイト、モンモリロナイト、シリカゲル、珪藻土、ゼオライト、パーライト、ケイ酸カルシウム等使用できるが、亜塩素酸塩の分解を防ぐ観点から、水に懸濁させた場合にアルカリ性を示すものが好ましく、パリゴルスカイトとセピオライトがより好ましく、セピオライトが特に好ましい。 When solid chlorite is used in the device of the present invention, the solid chlorite may be supported on a porous material. By supporting the solid chlorite on the porous material, the surface area of the solid chlorite can be increased, and the contact efficiency with ozone can be improved. In addition, since porous materials tend to absorb moisture in the air, the combination of solid chlorite and porous materials reduces the amount of moisture required for the reaction between chlorite and ozone. can also contribute to ensuring Porous materials used in the present invention include, for example, sepiolite, palygorskite, montmorillonite, silica gel, diatomaceous earth, zeolite, perlite, and calcium silicate. Preferable are those which show alkalinity when immersed, more preferable are palygorskite and sepiolite, and particularly preferable is sepiolite.
 本発明においては、亜塩素酸塩を多孔質物質に担持させる方法は特に限定されない。例えば、「亜塩素酸塩を担持させた多孔質物質」は、亜塩素酸塩水溶液を多孔質物質に含浸させ、乾燥させることによって得ることができる。「亜塩素酸塩を担持させた多孔質物質」の含水率は10重量%以下であることが好ましく、5重量%以下であることがさらに好ましい。 In the present invention, the method for supporting chlorite on the porous material is not particularly limited. For example, a "porous material supporting chlorite" can be obtained by impregnating a porous material with an aqueous solution of chlorite and drying. The water content of the "porous material supporting chlorite" is preferably 10% by weight or less, more preferably 5% by weight or less.
 本発明において使用される「亜塩素酸塩を担持させた多孔質物質」は、どのような粒子径のものを使用してもよいが、例えば、平均粒子径が1mm~3mmのものを好適に使用できる。 The "porous material supporting chlorite" used in the present invention may have any particle size, but preferably has an average particle size of 1 mm to 3 mm. Available.
 本発明における「亜塩素酸塩を担持させた多孔質物質」の平均粒子径は、例えば、光学顕微鏡によって、用いる「亜塩素酸塩を担持させた多孔質物質」の粒子径を測定し、統計処理を行い、平均値と標準偏差を計算することによって算出することができる。 The average particle size of the "porous material supporting chlorite" in the present invention is obtained by measuring the particle size of the "porous material supporting chlorite" using, for example, an optical microscope. It can be calculated by processing and calculating the mean and standard deviation.
 本発明において使用される「亜塩素酸塩を担持させた多孔質物質」中の亜塩素酸塩の濃度は、1重量%以上で有効であるが、25重量%を超えると劇物に該当するため、1重量%以上25重量%以下が好ましく、5重量%以上20重量%以下であることがより好ましい。 The concentration of chlorite in the "porous material supporting chlorite" used in the present invention is effective at 1% by weight or more, but if it exceeds 25% by weight, it corresponds to a deleterious substance. Therefore, it is preferably 1% by weight or more and 25% by weight or less, more preferably 5% by weight or more and 20% by weight or less.
 本発明の装置においては、固形の亜塩素酸塩を使用する場合、オゾン発生器で発生したオゾンを含む気体に水分を供給する加湿機構をさらに備えてよい。加湿機構の仕組みは限定されないが、例えば、本発明の装置における気体の送達経路中に「バブリング室(送達される気体を水にバブリングすることにより、気体を加湿する)」を設けてもよい。他の加湿機構の例としては、ペルチェ素子、気化式加湿機構(加湿材へ水分を浸透させ、気流を通過させることにより気化蒸発させる)、蒸気式加湿機構(電熱により水を沸騰させて加湿する)、水噴霧式加湿機構(超音波で水を振動させ、気体中に極めて小さい水滴を分散させる)を挙げることができる。 When solid chlorite is used, the apparatus of the present invention may further include a humidification mechanism for supplying moisture to the ozone-containing gas generated by the ozone generator. Although the mechanism of the humidification mechanism is not limited, for example, a "bubbling chamber (to humidify the gas by bubbling the delivered gas into water)" may be provided in the gas delivery path in the device of the present invention. Examples of other humidification mechanisms include Peltier elements, evaporative humidification mechanisms (moisture is permeated into the humidifying material and vaporized by passing air currents through it), and steam humidification mechanisms (water is boiled by electric heat and humidified). ), and a water spray type humidification mechanism (water is vibrated with ultrasonic waves to disperse extremely small water droplets in gas).
 本発明の装置は、オゾン発生器の制御機構をさらに備えることで、二酸化塩素の発生量を制御することができる。オゾン発生器の制御機構は、例えば、事前に決定されたプログラムに従ってオゾン発生器の起動/停止を制御することにより、二酸化塩素発生装置の二酸化塩素発生量を制御する機構であってよい。制御機構の非限定的な例として、規定の二酸化塩素濃度を越えると一定時間オゾン発生器を停止させるようなスイッチや、一定時間でオン/オフのサイクルを繰り返す、タイマー付きのスイッチを挙げることができる。 The device of the present invention can control the amount of chlorine dioxide generated by further comprising a control mechanism for the ozone generator. The control mechanism of the ozone generator may be, for example, a mechanism that controls the amount of chlorine dioxide generated by the chlorine dioxide generator by controlling start/stop of the ozone generator according to a predetermined program. Non-limiting examples of control mechanisms include a switch that shuts off the ozone generator for a period of time when a specified concentration of chlorine dioxide is exceeded, and a switch with a timer that cycles on and off for a period of time. can.
 本発明の装置は、装置において発生した二酸化塩素ガスを装置の外へと放出するための送風ファンをさらに備えてもよい。送風ファンを備えることによって、装置内で発生した二酸化塩素ガスを効率よく装置外へと送り出すことができる。また、ファンの風量を調節することによって、装置外へと送り出す二酸化塩素ガスの量を調節することもできる。例えば、二酸化塩素ガスの発生量が比較的多い場合は、送風ファンの風量を強めることによって装置外の二酸化塩素ガスをより遠くへ拡散させ、二酸化塩素ガスの発生量が比較的少ない場合には、送風ファンの風量を弱めることによって装置外の二酸化塩素ガスが必要以上に拡散されることを防ぐことにより、装置外の二酸化塩素ガス濃度が一定の範囲内に収まるように調節することができる。 The device of the present invention may further include a blower fan for discharging chlorine dioxide gas generated in the device to the outside of the device. By providing the blower fan, the chlorine dioxide gas generated inside the device can be efficiently sent out of the device. Also, the amount of chlorine dioxide gas sent out of the device can be adjusted by adjusting the air volume of the fan. For example, when the amount of chlorine dioxide gas generated is relatively large, the air volume of the blower fan is increased to diffuse the chlorine dioxide gas further outside the device, and when the amount of chlorine dioxide gas generated is relatively small, By reducing the air volume of the blower fan to prevent the chlorine dioxide gas outside the device from being diffused more than necessary, the concentration of the chlorine dioxide gas outside the device can be adjusted to be within a certain range.
 本明細書において用いられる用語は、特定の実施態様を説明するために用いられるのであり、発明を限定する意図ではない。 The terms used in this specification are used to describe specific embodiments and are not intended to limit the invention.
 また、本明細書において用いられる「含む」との用語は、文脈上明らかに異なる理解をすべき場合を除き、記載された事項(部材、ステップ、要素または数字等)が存在することを意図するものであり、それ以外の事項(部材、ステップ、要素または数字等)が存在することを排除しない。 In addition, the term "comprising" used in this specification means that the described items (members, steps, elements, numbers, etc.) exist, except when the context clearly requires a different understanding. It does not exclude the existence of other items (members, steps, elements, numbers, etc.).
 異なる定義が無い限り、ここに用いられるすべての用語(技術用語および科学用語を含む。)は、本発明が属する技術の当業者によって広く理解されるのと同じ意味を有する。ここに用いられる用語は、異なる定義が明示されていない限り、本明細書および関連技術分野における意味と整合的な意味を有するものとして解釈されるべきであり、理想化され、または、過度に形式的な意味において解釈されるべきではない。 Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as widely understood by a person skilled in the art to which this invention belongs. Terms used herein are to be construed as having a meaning consistent with that in this specification and related art, unless a different definition is expressly provided, and are idealized or overly formal. should not be interpreted in any meaningful sense.
 本発明の実施態様は模式図を参照しつつ説明される場合があるが、模式図である場合、説明を明確にするために、誇張されて表現されている場合がある。 Embodiments of the present invention may be described with reference to schematic diagrams, but in the case of schematic diagrams, the representation may be exaggerated for clarity of explanation.
 本明細書において、例えば、「1~10w/w%」と表現されている場合、当業者は、当該表現が、1、2、3、4、5、6、7、8、9、または10w/w%を個別具体的に指すことを理解する。 For example, when the expression “1 to 10 w/w%” is used herein, those skilled in the art will recognize that the expression is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 w /w% is individually and specifically referred to.
 本明細書において、成分含有量や数値範囲を示すのに用いられるあらゆる数値は、特に明示がない限り、用語「約」の意味を包含するものとして解釈される。例えば、「10倍」とは、特に明示がない限り、「約10倍」を意味するものと理解される。 In this specification, all numerical values used to indicate component contents and numerical ranges are interpreted as including the meaning of the term "about" unless otherwise specified. For example, "10 times" is understood to mean "about 10 times" unless otherwise specified.
 本明細書中に引用される文献は、それらのすべての開示が、本明細書中に援用されているとみなされるべきであって、当業者は、本明細書の文脈に従って、本発明の精神および範囲を逸脱することなく、それらの先行技術文献における関連する開示内容を、本明細書の一部として援用して理解する。 All references cited herein are to be considered incorporated herein in their entirety, and one skilled in the art will appreciate the spirit of the invention in accordance with the context of the specification. and without departing from the scope, the relevant disclosures in those prior art documents are hereby incorporated by reference.
実施例1:本発明の装置による二酸化塩素ガスの発生
装置の構成
 本試験においては、図1に図示する二酸化塩素発生装置を用いた。装置はエアポンプ、オゾン発生器(放電式)、反応用容器を備え、反応用容器には10%亜塩素酸塩水溶液が含まれる。エアポンプとオゾン発生器、および、オゾン発生器と反応用容器はそれぞれ導管で接続されており、エアポンプの作動により、オゾン発生器で発生したオゾンが反応用容器中の亜塩素酸塩水溶液にバブリングされるように構成されている。
Example 1: Generation of chlorine dioxide gas by the device of the present invention
Apparatus Configuration In this test, a chlorine dioxide generator shown in FIG. 1 was used. The apparatus is equipped with an air pump, an ozone generator (discharge type), and a reaction vessel containing a 10% chlorite aqueous solution. The air pump and the ozone generator, and the ozone generator and the reaction container are connected by conduits, respectively, and the operation of the air pump causes the ozone generated by the ozone generator to bubble into the chlorite aqueous solution in the reaction container. is configured as follows.
試験方法
 エアポンプを作動させて反応用容器中の亜塩素酸塩水溶液に空気を通気させ(1L/min)、次いでオゾン発生器を作動させた。空気の温度、湿度は制御していない。なお、オゾン発生器は、ON=5sec、OFF=20secの間欠運転を行った。
Test Method The air pump was activated to aerate air (1 L/min) through the aqueous chlorite solution in the reaction vessel, and then the ozone generator was activated. Air temperature and humidity are not controlled. The ozone generator was intermittently operated for ON=5 sec and OFF=20 sec.
二酸化塩素ガスの測定
 装置出口より放出されるガスを、捕集液を用いて捕集した。捕集した二酸化塩素ガスはヨウ素滴定法により測定した。なお、1回あたりの捕集時間は30分であり、約360時間まで定期的に測定を実施した。
A collection liquid was used to collect the gas released from the outlet of the chlorine dioxide gas measuring apparatus. The collected chlorine dioxide gas was measured by the iodometric titration method. In addition, the collection time per time was 30 minutes, and the measurement was periodically performed up to about 360 hours.
試験結果
 二酸化塩素発生量の測定データを表1と図2に示す。なお、ガスの捕集時間が30分であるため、測定値を2倍することで1時間あたりの発生量とした。表1と図2に示すとおり、本発明の装置によって、長時間にわたり安定して6~9mg/hの二酸化塩素発生させることができた。
Table 1 and FIG. 2 show the measurement data of the amount of chlorine dioxide generated from the test . Since the gas collection time was 30 minutes, the amount of gas generated per hour was obtained by doubling the measured value. As shown in Table 1 and FIG. 2, the device of the present invention was able to stably generate 6 to 9 mg/h of chlorine dioxide over a long period of time.
実施例2:放電式オゾン発生器とランプ式オゾン発生器の比較
装置の構成
 本試験においては、放電式オゾン発生器を備える二酸化塩素発生装置(実施例1で用いた装置と同様)とランプ式オゾン発生器を備える二酸化塩素発生装置を用いて、オゾンと二酸化塩素の発生量を比較した(図3参照)。
Example 2: Comparison between discharge ozone generator and lamp ozone generator
Apparatus configuration In this test, ozone and chlorine dioxide were generated using a chlorine dioxide generator equipped with a discharge type ozone generator (same as the apparatus used in Example 1) and a chlorine dioxide generator equipped with a lamp type ozone generator. were compared (see FIG. 3).
試験方法
 それぞれの装置においてエアポンプを作動させて反応用容器中の亜塩素酸塩水溶液に1L/minで空気を通気させ、次いでオゾン発生器を作動させた。空気の温度、湿度は制御していない。なお、オゾン発生器はいずれも連続的に稼働させた。
Test Method In each apparatus, the air pump was activated to pass air through the chlorite aqueous solution in the reaction vessel at 1 L/min, and then the ozone generator was activated. Air temperature and humidity are not controlled. All ozone generators were operated continuously.
二酸化塩素ガスの測定
 装置出口より放出されるガスを、捕集液を用いて捕集した。捕集した二酸化塩素ガスはヨウ素滴定法により測定した。なお、1回あたりの捕集時間は10分である。
A collection liquid was used to collect the gas released from the outlet of the chlorine dioxide gas measuring apparatus. The collected chlorine dioxide gas was measured by the iodometric titration method. The collection time per time was 10 minutes.
試験結果
 それぞれの装置におけるオゾンの発生量と二酸化塩素の発生量を以下に示す。
 表に示すとおり、ランプ式のオゾン発生器を用いた場合と比較して、放電式のオゾン発生器を用いた場合のほうがオゾンの発生量が多く、最終的な二酸化塩素発生量も多かった。本結果から、本発明の装置において放電式オゾン発生器を用いることで、装置の小型化、コスト低減、高効率化が期待できることが示唆された。
The amount of ozone generated and the amount of chlorine dioxide generated in each of the test results are shown below.
As shown in the table, the amount of ozone generated and the final amount of chlorine dioxide generated were greater when the discharge-type ozonizer was used than when the lamp-type ozonizer was used. These results suggest that the use of the discharge ozone generator in the apparatus of the present invention can be expected to reduce the size, cost, and efficiency of the apparatus.
実施例3:加湿機構の追加による二酸化塩素発生の安定化
装置の構成
 本試験においては、湿度条件の違いによる二酸化塩素発生効率の変化を検討した。図4に示すとおり、放電式オゾン発生器と2台のエアポンプ(経路1用、経路2用)を備える二酸化塩素発生装置を2種類準備した。図4Aの装置においては、オゾンを含む加湿された空気が亜塩素酸塩と接触するように構成され、図4Bの装置においては、オゾンを含む乾燥された空気が亜塩素酸塩と接触するように構成される。
Example 3: Stabilization of chlorine dioxide generation by addition of humidification mechanism
Configuration of equipment In this test, changes in chlorine dioxide generation efficiency due to differences in humidity conditions were investigated. As shown in FIG. 4, two types of chlorine dioxide generators each having a discharge ozone generator and two air pumps (for path 1 and path 2) were prepared. In the apparatus of FIG. 4A, humidified air containing ozone is configured to contact chlorite, and in the apparatus of FIG. 4B, dry air containing ozone is configured to contact chlorite. configured to
 加湿条件(図4A)の経路1においては、空気を水にバブリングすることにより、加湿された空気が送達される。乾燥条件(図4B)の経路1においては、空気を乾燥剤に通過させることにより、乾燥された空気が送達される。経路2は両装置で共通であり、乾燥剤によって乾燥された空気がオゾン発生器によって発生されたオゾンと混合されて送達される。 In path 1 of the humidified condition (Fig. 4A), humidified air is delivered by bubbling air into the water. In path 1 of the dry condition (Fig. 4B), dried air is delivered by passing the air through a desiccant. Path 2 is common to both devices and delivers desiccant-dried air mixed with ozone generated by an ozone generator.
試験方法
 それぞれの装置において経路1用および経路2用のエアポンプを作動させて反応用容器中の固形の亜塩素酸塩に空気を通気させ(経路1から0.5L/minと経路2から0.5L/minで合計1L/min)、次いでオゾン発生器を作動させた。なお、放電式オゾン発生器は、ON=1sec、OFF=36secの間欠運転を行った。
Test Method The air pumps for path 1 and path 2 were activated in each apparatus to aerate air through the solid chlorite in the reaction vessel (0.5 L/min from path 1 and 0.5 L/min from path 2). 5 L/min for a total of 1 L/min), then the ozone generator was turned on. The discharge ozone generator was operated intermittently for ON=1 sec and OFF=36 sec.
二酸化塩素ガスの測定
 装置出口より放出されるガスを、捕集液を用いて捕集した。捕集した二酸化塩素ガスはヨウ素滴定法により測定した。なお、1回あたりの捕集時間は30分であり、約360時間まで定期的に測定を実施した。
A collection liquid was used to collect the gas released from the outlet of the chlorine dioxide gas measuring apparatus. The collected chlorine dioxide gas was measured by the iodometric titration method. In addition, the collection time per time was 30 minutes, and the measurement was periodically performed up to about 360 hours.
試験結果
 それぞれの装置におけるオゾンの発生量と二酸化塩素の発生量を以下に示す。
The amount of ozone generated and the amount of chlorine dioxide generated in each of the test results are shown below.
 表4、5および図5に示すとおり、本発明の装置によれば、加湿条件・乾燥条件のいずれにおいても、長時間に渡って二酸化塩素を発生させることができた。ただし、乾燥条件においては、総じて加湿条件よりも二酸化塩素の発生量が少なく、各測定ポイントにおける二酸化塩素の発生量にもバラツキがあった。 As shown in Tables 4, 5 and FIG. 5, the device of the present invention was able to generate chlorine dioxide over a long period of time under both humidified and dry conditions. However, under dry conditions, the amount of chlorine dioxide generated was generally less than under humid conditions, and there was variation in the amount of chlorine dioxide generated at each measurement point.
 以上のとおり、本発明の装置において二酸化塩素の発生源として固形の亜塩素酸塩を用いる場合、空気の供給経路に加湿機構を設けることで、二酸化塩素発生量を増加させることができる。さらに、空気の供給経路に加湿機構を設けることで、長時間安定して二酸化塩素を発生させることができる。 As described above, when solid chlorite is used as the chlorine dioxide generation source in the apparatus of the present invention, the amount of chlorine dioxide generated can be increased by providing a humidification mechanism in the air supply path. Furthermore, chlorine dioxide can be stably generated for a long time by providing a humidification mechanism in the air supply path.
実施例4:空気の送達方法の検討
装置の構成
 本試験においては、反応用容器内の亜塩素酸塩へのオゾンを含む空気の送達方法について検討した。以下の表および図6に示すとおり、反応用容器内の亜塩素酸塩(水溶液または固形薬剤)とオゾンを含む空気の送達方法(溶液または固形の薬剤の内部に送達、または、溶液または固形の薬剤の表面に送達)の組み合わせによって、4種類の装置(装置C、D、E、F)を準備した。なお、装置Aおよび装置Bは、オゾン発生器を備えないコントロールである。
Example 4: Examination of Air Delivery Method
Apparatus configuration In this study, the method of delivering ozone-laden air to the chlorite in the reaction vessel was investigated. As shown in the table below and Figure 6, the method of delivery of air containing chlorite (aqueous solution or solid drug) and ozone in the reaction vessel (delivery inside solution or solid drug, or 4 types of devices (devices C, D, E, F) were prepared by combining drug surface delivery). Apparatus A and apparatus B are controls without an ozone generator.
試験方法
・装置A
 エアポンプを用いて、1L/minの流量で空気を10%亜塩素酸ナトリウム水溶液100gに通気させた。
・装置B
 エアポンプを用いて、1L/minの流量で空気を10%亜塩素酸ナトリウム固形含浸材50gに通気させた。
・装置C
 エアポンプを用いて、1L/minの流量で空気を放電式オゾン発生器に供給し、生成したオゾンガスを10%亜塩素酸ナトリウム水溶液100gの上方を通気させることでそれぞれを接触させた。
・装置D
 エアポンプを用いて、1L/minの流量で空気を放電式オゾン発生器に供給し、生成したオゾンガスを10%亜塩素酸ナトリウム固形含浸材50gの上方を通気させることでそれぞれを接触させた。
・装置E
 エアポンプを用いて、1L/minの流量で空気を放電式オゾン発生器に供給し、生成したオゾンガスを10%亜塩素酸ナトリウム水溶液100gに通気させた。
・装置F
 エアポンプを用いて、1L/minの流量で空気を放電式オゾン発生器に供給し、生成したオゾンガスを10%亜塩素酸ナトリウム固形含浸材50gに通気させた。
 なお、それぞれの装置において、放電式オゾン発生器は、ON=0.5 sec、OFF=2 secの間欠運転を行った。
Test method /equipment A
Air was passed through 100 g of a 10% sodium chlorite aqueous solution at a flow rate of 1 L/min using an air pump.
・Device B
Air was passed through 50 g of the 10% sodium chlorite solid impregnated material at a flow rate of 1 L/min using an air pump.
・Device C
Using an air pump, air was supplied to the discharge ozone generator at a flow rate of 1 L/min, and the generated ozone gas was passed over 100 g of a 10% sodium chlorite aqueous solution to bring them into contact with each other.
・Device D
Using an air pump, air was supplied to the discharge ozone generator at a flow rate of 1 L/min, and the generated ozone gas was passed over 50 g of the 10% sodium chlorite solid impregnated material to bring them into contact with each other.
・Equipment E
Using an air pump, air was supplied to the discharge ozone generator at a flow rate of 1 L/min, and the generated ozone gas was passed through 100 g of a 10% sodium chlorite aqueous solution.
・Equipment F
Using an air pump, air was supplied to the discharge ozone generator at a flow rate of 1 L/min, and the generated ozone gas was passed through 50 g of the 10% sodium chlorite solid impregnated material.
In each device, the discharge ozone generator was intermittently operated with ON=0.5 sec and OFF=2 sec.
二酸化塩素ガスの測定
 装置出口より放出されるガスを、捕集液を用いて捕集した。捕集した二酸化塩素ガスはヨウ素滴定法により測定した。
A collection liquid was used to collect the gas released from the outlet of the chlorine dioxide gas measuring apparatus. The collected chlorine dioxide gas was measured by the iodometric titration method.
試験結果
 それぞれの装置における二酸化塩素の発生量を以下に示す。
Test results The amount of chlorine dioxide generated in each device is shown below.
 表7に示すとおり、本発明の装置においては、オゾンを含む空気が亜塩素酸塩を含む薬剤の内部に送達されるように構成することで、二酸化塩素の発生量を増加させることができる。すなわち、本発明の装置において二酸化塩素の発生源として固形の亜塩素酸塩を用いる場合は、オゾンを含む空気を固形の亜塩素酸塩の内部に通気させるように構成することが好ましい。また、本発明の装置において二酸化塩素の発生源として亜塩素酸塩水溶液を用いる場合は、オゾンを含む空気を亜塩素酸塩水溶液中にバブリングさせるように構成することが好ましい。 As shown in Table 7, in the apparatus of the present invention, the amount of chlorine dioxide generated can be increased by configuring the ozone-containing air to be delivered to the inside of the chlorite-containing agent. That is, when solid chlorite is used as the chlorine dioxide generating source in the apparatus of the present invention, it is preferable to construct the apparatus so that ozone-containing air is passed through the inside of the solid chlorite. Further, when the apparatus of the present invention uses an aqueous chlorite solution as a chlorine dioxide generating source, it is preferable to configure the apparatus so that ozone-containing air is bubbled into the aqueous chlorite solution.
実施例5:二酸化塩素発生の制御
装置の構成
 本試験においては、オゾン発生装置のオン/オフによる二酸化塩素発生の制御性を確認した。図7に示すとおり、亜塩素酸塩水溶液(1%亜塩素酸塩ナトリウム水溶液100g)を使用する装置(装置I)と固形の亜塩素酸塩(10%亜塩素酸塩ナトリウム固形含浸材100g)を使用する装置(装置II)を準備した。コントロールとして、亜塩素酸塩とクエン酸を含む水溶液(1%亜塩素酸塩ナトリウム水溶液100g+クエン酸0.1 g)を使用する装置(装置III)も準備した。いずれの装置においても、空気が亜塩素酸塩を含む薬剤の内部に送達されるように構成した。
Example 5: Control of chlorine dioxide generation
Apparatus configuration In this test, controllability of chlorine dioxide generation by turning on/off the ozone generator was confirmed. As shown in FIG. 7, an apparatus (Apparatus I) using an aqueous chlorite solution (100 g of 1% sodium chlorite aqueous solution) and solid chlorite (100 g of 10% sodium chlorite solid impregnant) was prepared (Apparatus II). As a control, an apparatus (apparatus III) was also prepared using an aqueous solution containing chlorite and citric acid (100 g of 1% sodium chlorite aqueous solution + 0.1 g of citric acid). In both devices, air was configured to be delivered inside the chlorite-containing agent.
試験方法
 装置I、IIについては、試験開始時はオゾン発生器を作動させ、30分後にオゾン発生器を停止した。上記のパターンを2回繰り返し、120分まで試験を実施した。なお、エアポンプは常に稼働している状態であった。また、各条件におけるエアポンプの空気流量は、1L/minとした。装置IIIについては、亜塩素酸塩とクエン酸を含む水溶液に、エアポンプを用いて空気を通気させた。
 なお、放電式オゾン発生器は、ON=0.5 sec、OFF=2 secの間欠運転を行った。
With respect to test method devices I and II, the ozone generator was operated at the beginning of the test, and stopped after 30 minutes. The above pattern was repeated twice and the test was performed up to 120 minutes. The air pump was always in operation. Also, the air flow rate of the air pump under each condition was set to 1 L/min. For Apparatus III, air was bubbled through the aqueous solution containing chlorite and citric acid using an air pump.
The discharge ozone generator was intermittently operated with ON=0.5 sec and OFF=2 sec.
二酸化塩素ガスの測定
 各装置において、ガス吹き出し口の二酸化塩素ガス濃度を、ガス検知管23Mを用いて10分おきに測定した。
Measurement of Chlorine Dioxide Gas In each device, the chlorine dioxide gas concentration at the gas outlet was measured every 10 minutes using the gas detector tube 23M.
 それぞれの装置における二酸化塩素の発生量を以下の表9および図8に示す。
The amount of chlorine dioxide generated in each device is shown in Table 9 and FIG. 8 below.
 表9および図8に示すとおり、本発明の装置I、IIにおいて、オゾン発生器を停止させると、二酸化塩素の発生量が速やかに減少した。一方、再びオゾン発生器を作動させると、二酸化塩素の発生量が速やかに上昇した。すなわち、本発明の装置においては、オゾン発生器の運転を制御することにより二酸化塩素発生量の制御ができることが示された。 As shown in Table 9 and FIG. 8, in the devices I and II of the present invention, when the ozone generator was stopped, the amount of chlorine dioxide generated rapidly decreased. On the other hand, when the ozone generator was activated again, the amount of chlorine dioxide generated quickly increased. That is, it was shown that the amount of chlorine dioxide generated can be controlled by controlling the operation of the ozone generator in the apparatus of the present invention.

Claims (15)

  1.  オゾン発生器、気体導入機構、反応用容器を備える二酸化塩素発生装置であって、
     前記反応用容器は、二酸化塩素発生反応時において亜塩素酸塩を含む薬剤を含み、
     前記装置は、前記オゾン発生器で発生したオゾンを含む気体を、前記気体導入機構によって前記反応用容器中の前記亜塩素酸塩に送達することで、前記オゾンを含む気体と前記亜塩素酸塩とを接触させるように構成される、
    装置。
    A chlorine dioxide generator comprising an ozone generator, a gas introduction mechanism, and a reaction vessel,
    The reaction vessel contains a chemical containing chlorite during the chlorine dioxide generation reaction,
    The apparatus delivers the ozone-containing gas generated by the ozone generator to the chlorite in the reaction vessel by the gas introduction mechanism, thereby producing the ozone-containing gas and the chlorite. configured to be in contact with
    Device.
  2.  請求項1に記載の装置であって、
     前記オゾン発生器が、放電式オゾン発生器、電気分解式オゾン発生器、または、UVランプ式オゾン発生器である、
    装置。
    2. The device of claim 1, wherein
    wherein the ozone generator is a discharge ozone generator, an electrolytic ozone generator, or a UV lamp ozone generator;
    Device.
  3.  請求項1または2に記載の装置であって、
     前記反応用容器中の前記亜塩素酸塩を含む薬剤が、亜塩素酸塩水溶液または固形の亜塩素酸塩を含む薬剤である、
    装置。
    3. A device according to claim 1 or 2,
    The chlorite-containing chemical in the reaction vessel is a chlorite aqueous solution or a solid chlorite-containing chemical,
    Device.
  4.  請求項3に記載の装置であって、
     前記反応用容器中の前記亜塩素酸塩を含む薬剤が、亜塩素酸塩水溶液を含む薬剤であり、
     前記装置が、前記オゾン発生器で発生したオゾンを含む気体を、前記気体導入機構によって前記反応用容器中の前記亜塩素酸塩水溶液にバブリングするように構成される、
    装置。
    4. A device according to claim 3, wherein
    the chemical containing chlorite in the reaction vessel is a chemical containing an aqueous solution of chlorite;
    The device is configured to bubble gas containing ozone generated by the ozone generator into the aqueous chlorite solution in the reaction vessel by the gas introduction mechanism.
    Device.
  5.  請求項4に記載の装置であって、
     前記亜塩素酸塩水溶液が、0.01~45重量%の濃度で亜塩素酸塩を含む、
    装置。
    5. A device according to claim 4, wherein
    The chlorite aqueous solution contains chlorite at a concentration of 0.01 to 45% by weight,
    Device.
  6.  請求項3に記載の装置であって、
     前記反応用容器中の前記亜塩素酸塩を含む薬剤が固形の亜塩素酸塩を含む薬剤であり、
     前記装置が、前記オゾン発生器で発生したオゾンを含む気体を、前記気体導入機構によって前記反応用容器中の前記固形の亜塩素酸塩を含む薬剤の内部に送達し、前記オゾンと前記固形の亜塩素酸塩とを接触させるように構成される、
    装置。
    4. A device according to claim 3, wherein
    wherein the chlorite-containing chemical in the reaction vessel is a solid chlorite-containing chemical;
    The device delivers the ozone-containing gas generated by the ozone generator to the interior of the solid chlorite-containing chemical in the reaction vessel by the gas introduction mechanism, and configured to contact with chlorite;
    Device.
  7.  請求項6に記載の装置であって、
     前記固形の亜塩素酸塩を含む薬剤が、亜塩素酸塩を担持させた多孔質物質を含む薬剤である、
    装置。
    7. A device according to claim 6, wherein
    The drug containing solid chlorite is a drug containing a porous material supporting chlorite,
    Device.
  8.  請求項7に記載の装置であって、
     前記の亜塩素酸塩を担持させた多孔質物質は、亜塩素酸塩水溶液を多孔質物質に含浸させ、さらに乾燥させることによって得られたものである、
    装置。
    8. A device according to claim 7, wherein
    The chlorite-supported porous material is obtained by impregnating the porous material with an aqueous chlorite solution and drying the porous material.
    Device.
  9.  請求項7または8に記載の装置であって、
     前記多孔質物質が、セピオライト、パリゴルスカイト、モンモリロナイト、シリカゲル、珪藻土、ゼオライト、パーライト、および、ケイ酸カルシウムからなる群から選択される、
    装置。
    9. A device according to claim 7 or 8,
    said porous material is selected from the group consisting of sepiolite, palygorskite, montmorillonite, silica gel, diatomaceous earth, zeolite, perlite and calcium silicate;
    Device.
  10.  請求項7に記載の装置であって、
     前記固形の亜塩素酸塩を含む薬剤が、粒子状の薬剤である、
    装置。
    8. A device according to claim 7, wherein
    The solid chlorite-containing drug is a particulate drug,
    Device.
  11.  請求項6~10のいずれか1項に記載の装置であって、
     前記オゾン発生器で発生したオゾンを含む気体に水分を供給する加湿機構をさらに備える、
    装置。
    A device according to any one of claims 6 to 10,
    Further comprising a humidification mechanism for supplying moisture to the ozone-containing gas generated by the ozone generator,
    Device.
  12.  請求項1~11のいずれか1項に記載の装置であって、
     前記亜塩素酸塩が、亜塩素酸アルカリ金属塩または亜塩素酸アルカリ土類金属塩である、
    装置。
    A device according to any one of claims 1 to 11,
    The chlorite is an alkali metal chlorite or an alkaline earth metal chlorite,
    Device.
  13.  請求項12に記載の装置であって、
     前記亜塩素酸アルカリ金属塩が、亜塩素酸ナトリウム、亜塩素酸カリウム、または、亜塩素酸リチウムであり、
     亜塩素酸アルカリ土類金属塩が、亜塩素酸カルシウム、亜塩素酸マグネシウム、または、亜塩素酸バリウムである、
    装置。
    13. A device according to claim 12, wherein
    The alkali metal chlorite is sodium chlorite, potassium chlorite, or lithium chlorite,
    the alkaline earth metal chlorite is calcium chlorite, magnesium chlorite, or barium chlorite;
    Device.
  14.  請求項1~13のいずれか1項に記載の装置であって、
     前記オゾン発生器の制御機構をさらに備える、
    装置。
    A device according to any one of claims 1 to 13,
    further comprising a control mechanism for the ozone generator;
    Device.
  15.  請求項14に記載の装置であって、
     前記オゾン発生器の制御機構は、事前に決定されたプログラムに従って前記オゾン発生器の起動/停止を制御することにより、前記二酸化塩素発生装置の二酸化塩素発生量を制御する、
    装置。

     
    15. A device according to claim 14, comprising:
    The control mechanism of the ozone generator controls the amount of chlorine dioxide generated by the chlorine dioxide generator by controlling start/stop of the ozone generator according to a predetermined program.
    Device.

PCT/JP2023/000053 2022-01-13 2023-01-05 Chlorine dioxide generator WO2023136192A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-003808 2022-01-13
JP2022003808 2022-01-13

Publications (1)

Publication Number Publication Date
WO2023136192A1 true WO2023136192A1 (en) 2023-07-20

Family

ID=87278989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000053 WO2023136192A1 (en) 2022-01-13 2023-01-05 Chlorine dioxide generator

Country Status (2)

Country Link
TW (1) TW202340080A (en)
WO (1) WO2023136192A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319408A (en) * 1988-06-17 1989-12-25 Kikuo Oikawa Preparation of stabilized chlorine dioxide aqueous solution
US5476579A (en) * 1995-04-24 1995-12-19 Choi; Hyeong S. Process for generating chlorine dioxide and apparatus therefor
KR20120135133A (en) * 2011-06-02 2012-12-12 재단법인 포항산업과학연구원 Method for produciing chlorine dioxide and device for the same
WO2015098730A1 (en) * 2013-12-27 2015-07-02 大幸薬品株式会社 Chlorine dioxide generation device and unit for chlorine dioxide generation
WO2015098732A1 (en) * 2013-12-27 2015-07-02 大幸薬品株式会社 Unit for chlorine dioxide generation and chlorine dioxide generation device
US20160251219A1 (en) * 2015-02-26 2016-09-01 Chemtreat, Inc. Methods and systems for producing high purity gaseous chlorine dioxide
WO2016194883A1 (en) * 2015-06-03 2016-12-08 大幸薬品株式会社 Chlorine dioxide generating unit and chlorine dioxide generating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319408A (en) * 1988-06-17 1989-12-25 Kikuo Oikawa Preparation of stabilized chlorine dioxide aqueous solution
US5476579A (en) * 1995-04-24 1995-12-19 Choi; Hyeong S. Process for generating chlorine dioxide and apparatus therefor
KR20120135133A (en) * 2011-06-02 2012-12-12 재단법인 포항산업과학연구원 Method for produciing chlorine dioxide and device for the same
WO2015098730A1 (en) * 2013-12-27 2015-07-02 大幸薬品株式会社 Chlorine dioxide generation device and unit for chlorine dioxide generation
WO2015098732A1 (en) * 2013-12-27 2015-07-02 大幸薬品株式会社 Unit for chlorine dioxide generation and chlorine dioxide generation device
US20160251219A1 (en) * 2015-02-26 2016-09-01 Chemtreat, Inc. Methods and systems for producing high purity gaseous chlorine dioxide
WO2016194883A1 (en) * 2015-06-03 2016-12-08 大幸薬品株式会社 Chlorine dioxide generating unit and chlorine dioxide generating device

Also Published As

Publication number Publication date
TW202340080A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
JP6537452B2 (en) Unit for generating chlorine dioxide and chlorine dioxide generator
JP4621095B2 (en) Air purifier
TWI687370B (en) Chlorine dioxide producing unit and chlorine dioxide producing apparatus
JP2005523867A (en) Simple generator of chlorine dioxide gas
JP6761563B2 (en) Decontamination equipment and decontamination method
JPH0415059A (en) Deodorizer and sterilizer device
CN110124079B (en) Dynamic space disinfection method and device for realizing human-machine coexistence
JP6680306B2 (en) Light deodorizing method and light deodorizing device
WO2001078793A1 (en) Sterilization process for air, liquid and surfaces
WO2023136192A1 (en) Chlorine dioxide generator
JP6047699B2 (en) Production method, production apparatus and ozone-containing aqueous solution of ozone-containing aqueous solution
KR102399992B1 (en) Air conditioner
KR20210017694A (en) Smart food storage system
KR20200080525A (en) Plasma technology-based smart storage systems and storage methods
JP5933182B2 (en) Hazardous substance removing device and air purifying device for purifying air using the same
JP6617288B2 (en) Air purification device
KR200373329Y1 (en) Air disinfection purifier that generates hot and cold air
EP2639204A1 (en) Process and device for generating chlorine dioxide for the disinfection of water
KR20210126404A (en) Preparation method of chlorine dioxide gas carrier & discharge kit capable of high adsorption capacity and emission persistency
JP2977852B2 (en) Ozone water generator
JP2004166742A (en) Ozone fumigation apparatus
US20230293757A1 (en) Air cleaning system and air cleaning method
JP2015226598A (en) Sterilizable air cleaning machine
WO2020203698A1 (en) Ozone water manufacturing device, ozone water manufacturing method, ozone water, ozone water processing device, and evaluation method
JPH08281064A (en) Ozone removing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740201

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023574004

Country of ref document: JP

Kind code of ref document: A