WO2023136123A1 - Outdoor unit of air conditioner, and air conditioner - Google Patents

Outdoor unit of air conditioner, and air conditioner Download PDF

Info

Publication number
WO2023136123A1
WO2023136123A1 PCT/JP2022/048021 JP2022048021W WO2023136123A1 WO 2023136123 A1 WO2023136123 A1 WO 2023136123A1 JP 2022048021 W JP2022048021 W JP 2022048021W WO 2023136123 A1 WO2023136123 A1 WO 2023136123A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
panel
air
orthogonal
heat exchanger
Prior art date
Application number
PCT/JP2022/048021
Other languages
French (fr)
Japanese (ja)
Inventor
忠聖 関
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023573966A priority Critical patent/JPWO2023136123A1/ja
Publication of WO2023136123A1 publication Critical patent/WO2023136123A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Definitions

  • the present disclosure relates to outdoor units of air conditioners and air conditioners.
  • Patent Document 1 the heat generated in the power module is transferred to the heat dissipation fins via a heat pipe having a higher thermal conductivity than the heat sink, and the temperature difference between the air to which heat is dissipated and the heat sink surface.
  • An outdoor unit is disclosed that cools a power module by keeping .
  • the heat radiation fins are installed on the leeward side of the outdoor air flow path with respect to the heat exchanger. For this reason, air that has been warmed by heat exchange with the heat exchanger and has a higher temperature than the outside air flows into the radiation fins. Therefore, there is a possibility that a sufficient effect of heat dissipation from the power module cannot be obtained. And this problem occurs not only when the heat generator is a power module, but also when other heat generating parts are used.
  • the present disclosure has been made in view of the above circumstances, and aims to provide an outdoor unit of an air conditioner and an air conditioner that can efficiently dissipate the heat of a heating element.
  • the outdoor unit of an air conditioner includes a housing in which an exhaust port and an air intake are formed, and an air path that is disposed in the housing and connects the air intake and the exhaust port.
  • a blower that generates wind
  • a heat exchanger that is at least partly arranged in an air passage and exchanges heat between the air flowing in the air passage by the blower and a heat medium
  • a partition plate that divides the inside of the heat transfer member and the housing into a blower room in which the blower and the heat exchanger are arranged and a machine room in which the heating element is stored, and thermally connected to the heat transfer member and a heat radiating part provided on the air path connecting the air inlet and the air outlet, arranged on the windward side of the heat exchanger, and arranged at the corner of the housing in the fan chamber.
  • the heat of the heating element is radiated from the heat radiating section via the heat transfer member. Since this heat radiating part is arranged on the windward side of the heat exchanger in the air passage that connects the intake port and the exhaust port, less heat flows into the heat radiating part than when the heat radiating part is installed on the leeward side of the heat exchanger. The temperature of the air used can be lowered. Thereby, the heat of the heating element can be efficiently radiated.
  • FIG. 1A Front view of the outdoor unit according to Embodiment 1 Front view with the front panel of the outdoor unit shown in FIG. 1A removed The top view which removed the top panel of the outdoor unit shown to FIG. 1A The left side view of the outdoor unit shown in FIG. 1A with the left side panel removed.
  • FIG. 1B is a perspective view of the cooling unit shown in FIG. 1B.
  • Side view of the outdoor unit according to Embodiment 2 The perspective view of the cooling unit of the outdoor unit according to Embodiment 3
  • FIG. 11 is a rear view of the outdoor unit according to Embodiment 3 with the rear panel removed;
  • FIG. 5B is a top view of the outdoor unit shown in FIG. 5A with the front panel removed; Left side view of the outdoor unit shown in FIG.
  • FIG. 5A with the left side panel removed
  • FIG. 5A shows the structure of the outdoor unit which concerns on Embodiment 4
  • the perspective view of the cooling unit of the outdoor unit according to Embodiment 5 The top view of the outdoor unit according to Embodiment 6 with the top panel removed
  • the perspective view of the cooling unit of the outdoor unit according to Embodiment 6 1 is a diagram showing the configuration of an air conditioner according to an embodiment
  • an outdoor unit of an air conditioner and an air conditioner will be described below with reference to the drawings.
  • the same reference numerals are given to the same or equivalent parts.
  • an XYZ orthogonal coordinate system is set and referred to as appropriate.
  • the horizontal direction is the X-axis direction
  • the height direction is the Y-axis direction
  • the direction perpendicular to the X-axis and the Y-axis is the Z-axis. direction.
  • an air conditioner 100 As shown in FIG. 9 , an air conditioner 100 according to this embodiment includes an outdoor unit 1 and an indoor unit 200 .
  • the outdoor unit 1 is connected to an indoor unit 200 installed inside a building 400 via a heat medium pipe 300 .
  • the outdoor unit 1 includes a rectangular parallelepiped housing 2, a compressor 12 stored in the lower part of the machine room 10, a fan 13 stored in the fan room 11, and a machine room. 10 , a heat exchanger 20 arranged on the rear surface of the fan chamber 11 , and a cooling unit 30 for cooling the power module 15 .
  • the housing 2 has a rectangular box shape as a whole, and includes a front panel 7 forming the front surface of the outdoor unit 1, a rear panel 3 forming the rear surface of the outdoor unit 1, a right side surface of the outdoor unit 1 and A side panel 5 forming a left side surface and a top panel 27 forming the top surface of the outdoor unit 1 are provided.
  • the housing 2 has a partition plate 9 that divides the inside of the housing 2 into a machine room 10 in which the compressor 12 is arranged and a blower room 11 in which the heat exchanger 20 and the blower 13 are arranged. Prepare.
  • the front panel 7 is provided with an exhaust port 8 that opens circularly.
  • the back panel 3 is provided with an intake port 4 that is an opening for taking air into the fan chamber 11, and the side panel 5 on the blower chamber 11 side is provided with an intake port that is an opening for taking air into the fan chamber 11. 6 is provided. Air inlet 4 and air inlet 6 are each formed from one rectangular opening.
  • the rear panel 3 is an example of a facing panel
  • the side panel 5 is an example of an orthogonal panel
  • the front panel 7 is an example of an exhaust panel.
  • the compressor 12 is arranged in the machine room 10 of the housing 2, and by compressing the sucked refrigerant, discharges the high-temperature and high-pressure refrigerant to the outside.
  • the blower 13 includes a drive motor and a fan, and is arranged in the blower chamber 11 of the housing 2 .
  • the blower 13 sucks outdoor air from the air inlets 4 and 6 of the housing 2 by rotating the drive motor, and blows the sucked air to the outside from the air outlet 8 .
  • the power module 15 is mounted on the control board 14 and fixed to the partition plate 9 above the machine room 10 .
  • the power module 15 is adhered to the partition plate 9 using a heat dissipation adhesive sheet having high thermal conductivity.
  • the power module 15 is formed from a semiconductor device such as an SiC element, an IGBT (Insulated Gate Bipolar Transistor) element, a power MOS element, a bipolar transistor, or the like, and drives the compressor 12 and the blower 13 .
  • the power module 15 generates heat due to heat loss as it operates.
  • the power module 15 and the control board 14 are desirably installed at a high position, for example, above the compressor 12, in order to avoid short circuits due to water intrusion. Also, it is desirable to store them in a control board storage box.
  • the heat exchanger 20 is a finned-tube type heat exchanger, and is a device that includes heat transfer tubes, which are circular copper tubes, and aluminum fins that are thermally bonded to the heat transfer tubes by pressure bonding.
  • the heat exchanger 20 exchanges heat between the air sucked from the air inlet 4 and the air inlet 6 and the refrigerant.
  • the heat exchanger 20 acts as an evaporator when the air conditioner is in heating operation, and acts as a condenser when it is in cooling operation.
  • the heat exchanger 20 is arranged in an L shape in plan view along the rear panel 3 of the outdoor unit 1 and the side panel 5 having the intake port 6 .
  • the heat exchanger 20 includes a rear portion 21 arranged to face the air intake 4 of the rear panel 3, a side portion 22 arranged to face the air intake 6 of the side panel 5, and a rear portion 21. and a bent portion 23 connecting the side portion 22 .
  • a housing space 24 is formed for housing the radiating fins 33 of the cooling unit 30, which will be described later. Therefore, the side surface portion 22 of the heat exchanger 20 has a shape having a step or a recess at the end.
  • the rear surface portion 21 is an example of the facing portion
  • the side surface portion 22 is an example of the orthogonal portion.
  • the heat transfer tubes of the heat exchanger 20 are provided with a plurality of straight tube members and U-shaped U-bend tubes 26 that connect adjacent straight tube members, and are formed in a meandering shape.
  • meandering heat transfer tubes are horizontally arranged in two rows. Since the curvature radii of the bent portions 23 of the heat transfer tubes arranged near the rear panel 3 or the side panel 5 and the heat transfer tubes arranged inside the heat transfer tubes are different, the side portions 22 of the heat exchanger 20 The end of the has a shape in which the outside protrudes from the inside.
  • the heat transfer tube of the side portion 22 of the heat exchanger 20 has a U-shaped U-bend tube 26 at its end.
  • the U-bend tube 26 passes from the heat transfer tube on the back side portion 21 side of the heat exchanger 20 through the heat transfer tube of the bent portion 23 and reaches the end portion of the heat transfer tube on the side portion 22 without stagnation. heat transfer tubes.
  • the cooling unit 30 cools the power module 15 .
  • the cooling unit 30 includes a heat receiving block 31 to which heat generated by the power module 15 is transferred, a heat pipe 32 to transfer the heat transferred to the heat receiving block 31 to the heat dissipation fins 33, and a heat pipe 32 and a radiating fin 33 for radiating heat transferred from.
  • the heat radiation fins 33 are an example of a heat radiation portion
  • the heat pipes 32 are an example of a heat transfer member.
  • the heat receiving block 31 is a rectangular member made of aluminum, and one main surface of the heat receiving block 31 is connected to the power module 15 via thermal grease.
  • the partition plate 9 has an opening through which the heat receiving block 31 passes in the X-axis direction.
  • the partition plate 9 and the heat receiving block 31 are joined by welding.
  • a surface of the heat receiving block 31 different from the surface connected to the power module 15 is provided with a circular hole, into which one end 32a of the heat pipe 32 is inserted. .
  • the heat pipe 32 has a cylindrical member made of copper. One end portion 32a of the heat pipe 32 is inserted into a hole portion of the heat receiving block 31, and the other end portion 32b of the heat pipe 32 is press-fitted with a radiation fin 33. As shown in FIG.
  • the heat pipe 32 has a cylindrical member filled with a coolant. Heat generated by the power module 15 is transmitted to one end portion 32 a of the heat pipe 32 via the heat receiving block 31 . The one end portion 32a transfers the transferred heat to the coolant to evaporate the coolant. The vaporized coolant moves inside the heat pipe 32 to the other end 32b where the temperature is low. The vaporized coolant radiates heat from the heat radiating fins 33 provided on the other end 32b, condenses, and becomes a liquid.
  • a groove is formed in the inner wall of the heat pipe 32, and the condensed liquid coolant is circulated to the one end 32a by capillary force.
  • the heat pipe 32 efficiently transfers heat from the one end 32a to the other end 32b by circulating the coolant in the heat pipe 32 while changing the phase.
  • the shape of the heat pipe from one end 32a to the other end 32b does not need to be the shortest path, and any path may be used.
  • the heat pipe 32 is an example of a heat transfer member.
  • the radiation fins 33 include a plurality of plate-like fins made of aluminum, as shown in FIG. Each fin is arranged side by side in the axial direction of the heat pipe 32 .
  • the radiation fins 33 are in close contact with the other end 32 b of the heat pipe 32 and release heat transferred from the coolant inside the heat pipe 32 .
  • the heat radiating fins 33 are located on the sides of the side panel 5, the front panel 7, and the heat exchanger 20 at the corners of the housing 2 inside the fan chamber 11 formed by the side panel 5 and the front panel 7. It is arranged in a receiving space 24 between the ends of the portion 22 .
  • the radiation fins 33 are installed on the windward side of the heat exchanger 20 on the air path that connects the intake port 4 or the intake port 6 and the exhaust port 8 .
  • the corner of the housing 2 is, for example, an area formed by any one of the rear panel 3, the side panel 5, the front panel 7, and the top panel 27, or an area along any of the panels. , a region away from the corner of the housing 2 .
  • the power module 15 drives the blower 13 to rotate the blower fan of the blower 13 .
  • the blower 13 draws outdoor air into the blower chamber 11 of the housing 2 in the direction of the arrow shown in the figure from the air intake 4 provided on the rear panel 3 and the air intake 6 provided on the side panel 5.
  • the blower 13 blows out the outdoor air taken into the blower room 11 outside the room from the exhaust port 8 provided in the front panel 7 in the direction of the arrow shown in the figure.
  • the air entering the blower chamber 11 through the air inlet 4 provided in the back panel 3 mainly exchanges heat with the heat exchanger 20 .
  • the air entering the intake port 6 provided in the side panel 5 exchanges heat mainly between the radiation fins 33 and the heat exchanger 20 .
  • the power module 15 By driving the compressor 12 and the blower 13, the power module 15 generates heat.
  • the generated heat is transferred to the heat receiving block 31 of the cooling unit 30 in close contact with the power module 15 via the thermal grease.
  • the transferred heat is conducted in the heat receiving block 31 and transferred to the one end portion 32 a of the heat pipe 32 .
  • the refrigerant in the one end 32a of the heat pipe 32 receives heat and evaporates.
  • the vaporized refrigerant moves to the other end 32b having a lower temperature inside the heat pipe 32, heat is transferred to the other end 32b.
  • the conveyed heat is conducted from the other end 32b of the heat pipe 32 to the radiating fins 33 that are in close contact with the other end 32b of the heat pipe 32 .
  • the heat transmitted to the radiation fins 33 enters the intake port 6 provided on the side panel 5 and exchanges heat with the air flowing around the radiation fins 33 . Since the temperature of the air flowing around the radiation fins 33 is lower than the temperature of the radiation fins 33, heat is radiated from the radiation fins 33 to the air. Thus, the heat generated in the power module 15 is released to the air flowing around the radiation fins 33, and the power module 15 is cooled.
  • the air conditioner is normally operated for cooling in the summer, and the heat exchanger 20 of the outdoor unit 1 of the air conditioner works as a condenser. Therefore, the surface temperature of the heat exchanger 20 is higher than the outside air temperature, and the temperature of the air flowing downstream of the heat exchanger 20 is higher than the outside air temperature. Since the heat radiation fins 33 of the cooling unit 30 are provided in the accommodation space 24 between the side panel 5, the front panel 7, and the side portion 22 of the heat exchanger 20, the air inlet 4 or the air inlet 6 and the air outlet 8 are provided.
  • the temperature of the air flowing between the heat dissipating fins 33 can be made lower than when the heat dissipating fins 33 are installed on the leeward side of the heat exchanger 20 . Therefore, the heat of the power module 15 can be efficiently radiated, the temperature rise of the power module 15 can be suppressed, and the reliability can be improved.
  • the power module 15 is used as an example of the heat generating element to be cooled, but it is not limited to this.
  • an electrical component such as a microcomputer or a control integrated circuit (IC) may be used as a heating element to be cooled.
  • the object to be cooled is not limited to electrical components, and may be anything as long as it generates heat.
  • the heat receiving block 31 and the power module 15 are connected via thermal grease, but the power module 15 is housed in an electrical component box made of aluminum, copper, or the like having high thermal and electrical conductivity.
  • the heat conducted from the power module 15 to the electrical component box may be conducted to the heat receiving block 31 .
  • the electrical component box and the heat receiving block 31 are thermally connected via thermally conductive grease, a thermally conductive sheet, or the like.
  • Embodiment 2 The present disclosure is not limited to Embodiment 1, and the configuration can be appropriately changed as long as the heat generated by the power module 15 can be radiated upstream of the heat exchange air passage from the heat exchanger 20. .
  • Embodiment 1 as shown in FIG. 2, an example in which the fins forming the radiation fins 33 have the same size has been described, but the present invention is not limited to this.
  • the size of each fin of the radiating fins 33 may be appropriately changed in consideration of the distance from other members such as the housing 2 and the heat exchanger 20 .
  • the fins forming the radiation fins 33 may have different lengths in the Z-axis direction.
  • each fin forming the heat radiation fins 33a of the outdoor unit 1a according to Embodiment 2 is aligned with the bending shape of the U bend pipe 26 of the side surface portion 22 of the heat exchanger 20, and They are formed into shapes with different lengths in the directions.
  • the radiation fins 33a have the above structure, the radiation fins 33 shown in FIG. , the total surface area of the radiation fins 33a is increased. This makes it possible to increase the heat dissipation performance. Thereby, the heat of the power module can be efficiently radiated, the temperature rise of the power module 15 can be suppressed, and the reliability can be improved. Both the heat radiation fins 33 and the heat radiation fins 33a may be arranged.
  • the shape and arrangement position thereof can be changed as appropriate.
  • the heat radiation fins 33 of the cooling unit 30 are provided in the housing space 24 between the side panel 5, the front panel 7, and the side portion 22 of the heat exchanger 20.
  • the heat radiation fins 33 may have any shape and arrangement position as long as they are arranged on the windward side of the heat exchanger 20 on the air path connecting the air intake port 4 or the air intake port 6 and the air discharge port 8. .
  • the heat radiation fins 33b of the cooling unit 30a are formed of a plurality of flat triangular fins.
  • 5A is a rear view of the outdoor unit 1b with the rear panel 3 removed
  • FIG. 5B is a top view of the outdoor unit 1b with the top panel 27 shown in FIG. 1A removed
  • FIG. 5C is shown in FIG. 1A.
  • Fig. 3 is a left side view of the outdoor unit 1b with the left side panel 5 removed;
  • the heat radiation fins 33b of the outdoor unit 1b are located at the corners of the housing 2 in the fan chamber 11 formed by the side panel 5 and the rear panel 3. 5 and the bent portion 23 of the heat exchanger 20 . Therefore, the radiation fins 33 b are installed on the windward side of the heat exchanger 20 on the air path connecting the air intake port 4 or the air intake port 6 and the air discharge port 8 .
  • the radiation fins 33b are arranged as described above, the temperature of the air flowing into the radiation fins 33b can be lowered compared to the case where the radiation fins are installed on the leeward side of the heat exchanger 20. Therefore, the heat of the power module can be efficiently radiated, the temperature rise of the power module 15 can be suppressed, and the reliability can be improved. Moreover, since it is arranged in the space formed by the rear panel 3, the side panel 5, and the bent portion 23 of the heat exchanger 20, the space can be effectively utilized. In this case, the configuration and shape of the side surface portion 22 are arbitrary, and the end portion need not be stepped.
  • the radiation fins 33b are formed of a plurality of flat triangular fins, but the present invention is not limited to this.
  • the shape of each fin may be appropriately changed in consideration of the distance from other members such as the housing 2 and the heat exchanger 20.
  • FIG. 6 the radiation fins 33c of the outdoor unit 1c may have a curved shape in which the side closest to the bent portion 23 of the heat exchanger 20 is along the bent portion 23 in plan view.
  • the heat radiation fins 33c have the above configuration, the total surface area of the heat radiation fins 33c is larger than that of the heat radiation fins 33b formed of a plurality of triangular fins, and the heat radiation performance can be increased. Thereby, the heat of the power module can be efficiently radiated, the temperature rise of the power module 15 can be suppressed, and the reliability can be improved.
  • heat radiation is mainly performed by the heat radiation fins 33 and 33b, but other heat radiation members may be arranged in the air passage.
  • the heat radiation effect may be enhanced by providing the heat receiving block 31 with fins.
  • the heat receiving block 31a of the cooling unit 30b according to the fifth embodiment has flat additional fins 34 made of aluminum on the surface opposite to the surface in close contact with the power module 15. is crimped.
  • the blower 13 When the air conditioner is in operation, the blower 13 is in operation and air flows around the additional fins 34. As a result, the heat is radiated from the surfaces of the additional fins 34 to the surrounding air, which has the effect of cooling the power module 15 . Thus, compared to the case where the heat receiving block 31 does not have the additional fins 34, the heat of the power module 15 can be efficiently radiated.
  • the radiation fins 33c are installed only on the windward side of the heat exchanger 20 on the air path connecting the air intake port 4 or the air intake port 6 and the air discharge port 8. there were.
  • the heat pipe 32 may be provided with a plurality of radiating fins.
  • the outdoor unit 1d of the sixth embodiment includes heat radiation fins 33d on the leeward side of the heat exchanger 20 in addition to the radiation fins 33c installed on the windward side of the heat exchanger 20. is installed.
  • the radiation fins 33d are formed of a plurality of flat plate-like fins made of aluminum and are crimped to the heat pipes 32 .
  • the heat transfer area that contributes to heat radiation can be increased. Performance can be improved. Thereby, the temperature rise of the power module 15 can be suppressed, and the reliability can be improved.
  • each of the intake port 4 and the intake port 6 is formed from one opening, but the present invention is not limited to this.
  • the inlet 6 may be formed from multiple openings.
  • the heat exchanger 20 is formed of aluminum fins and copper circular tubes, but is not limited to this, and may be formed of a material with high thermal conductivity.
  • the heat exchanger 20 may be formed of aluminum fins and aluminum circular tubes.
  • the heat-receiving block 31 is made of aluminum in the above embodiment, it is not limited to this and may be made of a material having high thermal conductivity.
  • the heat receiving block 31 may be made of copper.
  • the heat receiving block 31 is made of aluminum and has a rectangular parallelepiped shape. is.
  • the heat receiving block 31 may be made of copper and may have a rectangular parallelepiped shape with a part missing.
  • the cooling unit 30 has a configuration in which one end portion 32a of the heat pipe 32 is inserted into the heat receiving block 31.
  • the present invention is not limited to this. Any configuration that allows heat transfer with
  • one end 32a of the heat pipe 32 may be adhered to the surface of the heat receiving block 31 by soldering.
  • the cooling unit 30 is formed of one heat pipe 32, the heat receiving block 31, and the heat radiation fins 33, but is not limited to this.
  • the cooling unit 30 may be formed with two or more heat pipes 32 .
  • the present invention is not limited to this, and air may be blown by a pump or the like.
  • thermo pipe 32 As a member for transferring heat generated in the heat generating portion to the heat dissipating portion was shown, but it is not limited to the heat pipe as long as it functions as a heat transfer member capable of transferring heat with high efficiency. configuration may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

This outdoor unit (1) for an air conditioner comprises: a housing (2) in which a discharge port (8) and intake ports (4, 6) are formed; a fan (13) which is located within the housing (2) and generates an air flow in an air flow path that connects the intake ports (4, 6) and the discharge port (8); a heat exchanger (20) which is located in the air flow path at least in part and by which heat is exchanged between a heat medium and the air flow generated in the air flow path by the fan 13; a heat transfer member which is thermally connected to a heat generation element accommodated in the housing 2; a partition plate (9) which divides the inside of the housing (2) into a fan chamber (11), in which the fan (13) and the heat exchanger (20) are located, and a mechanism chamber (10), in which the heat generation element is accommodated; and a heat dissipation part which is provided on the heat transfer member so as to be thermally connected thereto, is located upstream of the heat exchanger (20) in the air flow path connecting the intake ports (4, 6) and the discharge port (8), and is located in a corner portion of the housing (2) inside the fan chamber (11).

Description

空気調和機の室外機および空気調和機Air conditioner outdoor unit and air conditioner
 本開示は、空気調和機の室外機および空気調和機に関する。 The present disclosure relates to outdoor units of air conditioners and air conditioners.
 近年、空気調和機の室外機は大型化の傾向にある。このため、室外機のパワーモジュールの熱損失も大きくなる傾向にある。このため、パワーモジュールを冷却するヒートシンクも大型化する傾向にある。 In recent years, the outdoor units of air conditioners have tended to become larger. Therefore, the heat loss of the power module of the outdoor unit also tends to increase. Therefore, the heat sink for cooling the power module also tends to increase in size.
 しかしながら、ヒートシンクの大型化によってパワーモジュールと放熱部との距離が大きくなるにつれて、ヒートシンクの熱抵抗により、放熱先である空気と放熱部との温度差が小さくなる。したがって、熱損失の増加に対して、ヒートシンクの大型化による対応が困難となってきている。これに対して、特許文献1には、パワーモジュールで生じた熱を、ヒートシンクより熱伝導率が高いヒートパイプを経由して、放熱フィンへ伝達させ、放熱先である空気とヒートシンク表面の温度差を大きく保つことで、パワーモジュールを冷却する室外ユニットが開示されている。 However, as the distance between the power module and the heat dissipation part increases due to the size of the heat sink, the temperature difference between the heat dissipation destination air and the heat dissipation part decreases due to the thermal resistance of the heat sink. Therefore, it is becoming difficult to cope with the increase in heat loss by increasing the size of the heat sink. On the other hand, in Patent Document 1, the heat generated in the power module is transferred to the heat dissipation fins via a heat pipe having a higher thermal conductivity than the heat sink, and the temperature difference between the air to which heat is dissipated and the heat sink surface. An outdoor unit is disclosed that cools a power module by keeping .
特開2019-32142号公報Japanese Patent Application Laid-Open No. 2019-32142
 この室外ユニットでは、放熱フィンは、熱交換器に対して室外空気流の流路の風下側に設置されている。このため、放熱フィンへは、熱交換器と熱交換して暖められ、外気温度より高くなった空気が流入する。そのため、パワーモジュールの放熱に充分な効果が得られない可能性がある。そして、この問題は、発熱体がパワーモジュールの場合に限られず、他の発熱部品の場合にも発生する。 In this outdoor unit, the heat radiation fins are installed on the leeward side of the outdoor air flow path with respect to the heat exchanger. For this reason, air that has been warmed by heat exchange with the heat exchanger and has a higher temperature than the outside air flows into the radiation fins. Therefore, there is a possibility that a sufficient effect of heat dissipation from the power module cannot be obtained. And this problem occurs not only when the heat generator is a power module, but also when other heat generating parts are used.
 本開示は、上記実情に鑑みてなされたものであり、発熱体の熱を効率良く放熱することができる空気調和機の室外機、および空気調和機を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and aims to provide an outdoor unit of an air conditioner and an air conditioner that can efficiently dissipate the heat of a heating element.
 上記目的を達成するために、本開示にかかる空気調和機の室外機は排気口と吸気口とが形成された筐体と、筐体内に配置され、吸気口と排気口とを繋ぐ風路に風を発生する送風機と、風路に少なくとも一部が配置され、送風機により風路を流れる風と熱媒体との間で熱交換する熱交換器と、筐体に格納された発熱体と熱的に接続された熱伝達部材と筐体の内部を、送風機および熱交換器が配置される送風機室と発熱体が格納される機械室とに区画する仕切り板と、熱伝達部材に熱的に接続されて設けられ、吸気口と排気口とを繋ぐ風路において、熱交換器より風上側に配置され、送風機室内の筐体の隅部に配置される放熱部と、を備える。 In order to achieve the above object, the outdoor unit of an air conditioner according to the present disclosure includes a housing in which an exhaust port and an air intake are formed, and an air path that is disposed in the housing and connects the air intake and the exhaust port. a blower that generates wind; a heat exchanger that is at least partly arranged in an air passage and exchanges heat between the air flowing in the air passage by the blower and a heat medium; A partition plate that divides the inside of the heat transfer member and the housing into a blower room in which the blower and the heat exchanger are arranged and a machine room in which the heating element is stored, and thermally connected to the heat transfer member and a heat radiating part provided on the air path connecting the air inlet and the air outlet, arranged on the windward side of the heat exchanger, and arranged at the corner of the housing in the fan chamber.
 本開示によれば、発熱体の熱は、熱伝達部材を介して放熱部で放熱される。この放熱部は、吸気口と排気口とを繋ぐ風路において、熱交換器より風上側に配置されるため、熱交換器の風下側へ放熱部を設置する場合に比べて、放熱部へ流入する空気の温度を低くすることができる。これにより、発熱体の熱を効率良く放熱することができる。 According to the present disclosure, the heat of the heating element is radiated from the heat radiating section via the heat transfer member. Since this heat radiating part is arranged on the windward side of the heat exchanger in the air passage that connects the intake port and the exhaust port, less heat flows into the heat radiating part than when the heat radiating part is installed on the leeward side of the heat exchanger. The temperature of the air used can be lowered. Thereby, the heat of the heating element can be efficiently radiated.
実施の形態1に係る室外機の正面図Front view of the outdoor unit according to Embodiment 1 図1Aに示す室外機の正面パネルを取り除いた正面図Front view with the front panel of the outdoor unit shown in FIG. 1A removed 図1Aに示す室外機の上面パネルを取り除いた上面図The top view which removed the top panel of the outdoor unit shown to FIG. 1A 図1Aに示す室外機の左側面パネルを取り除いた左側面図The left side view of the outdoor unit shown in FIG. 1A with the left side panel removed. 図1Bに示す冷却ユニットの斜視図FIG. 1B is a perspective view of the cooling unit shown in FIG. 1B. 実施の形態2に係る室外機の側面図Side view of the outdoor unit according to Embodiment 2 実施の形態3に係る室外機の冷却ユニットの斜視図The perspective view of the cooling unit of the outdoor unit according to Embodiment 3 実施の形態3に係る室外機の背面図で背面パネルを取り除いた図FIG. 11 is a rear view of the outdoor unit according to Embodiment 3 with the rear panel removed; 図5Aに示す室外機の正面パネルを取り除いた上面図FIG. 5B is a top view of the outdoor unit shown in FIG. 5A with the front panel removed; 図5Aに示す室外機の左側面パネルを取り除いた左側面図Left side view of the outdoor unit shown in FIG. 5A with the left side panel removed 実施の形態4に係る室外機の構成を示す図The figure which shows the structure of the outdoor unit which concerns on Embodiment 4 実施の形態5に係る室外機の冷却ユニットの斜視図The perspective view of the cooling unit of the outdoor unit according to Embodiment 5 実施の形態6に係る室外機の上面パネルを取り除いた上面図The top view of the outdoor unit according to Embodiment 6 with the top panel removed 実施の形態6に係る室外機の冷却ユニットの斜視図The perspective view of the cooling unit of the outdoor unit according to Embodiment 6 実施の形態に係る空気調和機の構成を示す図1 is a diagram showing the configuration of an air conditioner according to an embodiment;
 以下、本開示の実施の形態に係る空気調和機の室外機、および空気調和機について、図面を参照して説明する。図中、同一又は同等の部分には同一の符号を付す。また、理解を容易にするため、XYZ直交座標系を設定し、適宜参照する。図1Aに示す通り、室外機1の排気口を有する正面パネルを正面とした場合の水平方向をX軸方向、高さ方向をY軸方向、X軸とY軸とに直交する方向をZ軸方向とする。 An outdoor unit of an air conditioner and an air conditioner according to an embodiment of the present disclosure will be described below with reference to the drawings. In the drawings, the same reference numerals are given to the same or equivalent parts. In order to facilitate understanding, an XYZ orthogonal coordinate system is set and referred to as appropriate. As shown in FIG. 1A, when the front panel having the exhaust port of the outdoor unit 1 is the front, the horizontal direction is the X-axis direction, the height direction is the Y-axis direction, and the direction perpendicular to the X-axis and the Y-axis is the Z-axis. direction.
 (実施の形態1)
 図9に示す通り、本実施の形態に係る空気調和機100は、室外機1と室内機200とを備える。室外機1は、建物400内に設置された室内機200と熱媒体管300を介して接続されている。
(Embodiment 1)
As shown in FIG. 9 , an air conditioner 100 according to this embodiment includes an outdoor unit 1 and an indoor unit 200 . The outdoor unit 1 is connected to an indoor unit 200 installed inside a building 400 via a heat medium pipe 300 .
 図1A-図1Dに示すように、室外機1は、直方体形状の筐体2と、機械室10の下部に格納された圧縮機12と、送風機室11に格納された送風機13と、機械室10の上部に格納されたパワーモジュール15と、送風機室11の背面に配設された熱交換器20と、パワーモジュール15を冷却する冷却ユニット30と、を備える。 As shown in FIGS. 1A to 1D, the outdoor unit 1 includes a rectangular parallelepiped housing 2, a compressor 12 stored in the lower part of the machine room 10, a fan 13 stored in the fan room 11, and a machine room. 10 , a heat exchanger 20 arranged on the rear surface of the fan chamber 11 , and a cooling unit 30 for cooling the power module 15 .
 筐体2は、全体として短形箱状の外形を有し、室外機1の前面を形成する正面パネル7と、室外機1の背面を形成する背面パネル3と、室外機1の右側面および左側面を形成する側面パネル5と、室外機1の上面を形成する上面パネル27と、を備える。また、筐体2は、筐体2の内部を、圧縮機12が配置される機械室10と、熱交換器20および送風機13が配置される送風機室11と、に仕切る仕切り板9と、を備える。 The housing 2 has a rectangular box shape as a whole, and includes a front panel 7 forming the front surface of the outdoor unit 1, a rear panel 3 forming the rear surface of the outdoor unit 1, a right side surface of the outdoor unit 1 and A side panel 5 forming a left side surface and a top panel 27 forming the top surface of the outdoor unit 1 are provided. In addition, the housing 2 has a partition plate 9 that divides the inside of the housing 2 into a machine room 10 in which the compressor 12 is arranged and a blower room 11 in which the heat exchanger 20 and the blower 13 are arranged. Prepare.
 正面パネル7には、円形に開口した排気口8が設けられている。背面パネル3には、送風機室11に空気を取り入れるための開口である吸気口4が設けられ、送風機室11側の側面パネル5には、送風機室11に空気を取り入れるための開口である吸気口6が設けられている。吸気口4および吸気口6は、それぞれ1つの短形状の開口部から形成される。なお、背面パネル3は、対向パネルの一例であり、側面パネル5は、直交パネルの一例であり、正面パネル7は、排気パネルの一例である。 The front panel 7 is provided with an exhaust port 8 that opens circularly. The back panel 3 is provided with an intake port 4 that is an opening for taking air into the fan chamber 11, and the side panel 5 on the blower chamber 11 side is provided with an intake port that is an opening for taking air into the fan chamber 11. 6 is provided. Air inlet 4 and air inlet 6 are each formed from one rectangular opening. The rear panel 3 is an example of a facing panel, the side panel 5 is an example of an orthogonal panel, and the front panel 7 is an example of an exhaust panel.
 圧縮機12は、筐体2の機械室10に配置され、吸引した冷媒を圧縮することにより、高温・高圧の冷媒を外部に吐出する。 The compressor 12 is arranged in the machine room 10 of the housing 2, and by compressing the sucked refrigerant, discharges the high-temperature and high-pressure refrigerant to the outside.
 送風機13は、駆動モータとファンとを備え、筐体2の送風機室11に配置される。送風機13は、駆動モータが回転することで、室外空気を筐体2の吸気口4および吸気口6から吸引し、吸引した空気を排気口8から外部へ吹き出す。 The blower 13 includes a drive motor and a fan, and is arranged in the blower chamber 11 of the housing 2 . The blower 13 sucks outdoor air from the air inlets 4 and 6 of the housing 2 by rotating the drive motor, and blows the sucked air to the outside from the air outlet 8 .
 パワーモジュール15は、制御基板14に実装され、機械室10の上部の仕切り板9に固定されている。例えば、パワーモジュール15は、高い熱伝導性を有する放熱接着シートを用いて仕切り板9に接着される。パワーモジュール15は、SiC素子、IGBT(Insulated Gate Bipolar Transistor)素子、パワーMOS素子、バイポーラトランジスタなどの半導体装置から形成され、圧縮機12および送風機13を駆動する。パワーモジュール15は、動作に伴って熱損失を生じ、発熱する。なお、パワーモジュール15および制御基板14は、浸水によるショートを回避するため、高い位置に設置されることが望ましく、例えば、圧縮機12より上方に設置されることが望ましい。また、これらを制御基板収納箱へ格納することが望ましい。 The power module 15 is mounted on the control board 14 and fixed to the partition plate 9 above the machine room 10 . For example, the power module 15 is adhered to the partition plate 9 using a heat dissipation adhesive sheet having high thermal conductivity. The power module 15 is formed from a semiconductor device such as an SiC element, an IGBT (Insulated Gate Bipolar Transistor) element, a power MOS element, a bipolar transistor, or the like, and drives the compressor 12 and the blower 13 . The power module 15 generates heat due to heat loss as it operates. The power module 15 and the control board 14 are desirably installed at a high position, for example, above the compressor 12, in order to avoid short circuits due to water intrusion. Also, it is desirable to store them in a control board storage box.
 熱交換器20は、フィンチューブ式の熱交換器であり、銅製の円管である伝熱管と伝熱管に圧着させて熱的に結合されたアルミニウム製のフィンとを含む機器である。熱交換器20は、吸気口4および吸気口6から吸引した空気と冷媒との間で熱交換を行う。熱交換器20は、空気調和機が暖房運転のときには蒸発器として作用し、冷房運転のときには凝縮器として作用する。 The heat exchanger 20 is a finned-tube type heat exchanger, and is a device that includes heat transfer tubes, which are circular copper tubes, and aluminum fins that are thermally bonded to the heat transfer tubes by pressure bonding. The heat exchanger 20 exchanges heat between the air sucked from the air inlet 4 and the air inlet 6 and the refrigerant. The heat exchanger 20 acts as an evaporator when the air conditioner is in heating operation, and acts as a condenser when it is in cooling operation.
 図1Cに示す通り、熱交換器20は、室外機1の背面パネル3、吸気口6を有する側面パネル5に沿って、平面視でL字形状に配設される。熱交換器20は、背面パネル3の吸気口4に対向して配設される背面部21と、側面パネル5の吸気口6に対面して配設される側面部22と、背面部21と側面部22とを接続する曲げ部23とから形成される。図1B~1Dに示すように、側面パネル5と正面パネル7とから形成される角部に、冷却ユニット30の後述する放熱フィン33を収容する収容空間24を形成する。そのため、熱交換器20の側面部22は、端部に段差又は凹みを有する形状を有する。なお、背面部21は、対向部の一例であり、側面部22は、直交部の一例である。 As shown in FIG. 1C, the heat exchanger 20 is arranged in an L shape in plan view along the rear panel 3 of the outdoor unit 1 and the side panel 5 having the intake port 6 . The heat exchanger 20 includes a rear portion 21 arranged to face the air intake 4 of the rear panel 3, a side portion 22 arranged to face the air intake 6 of the side panel 5, and a rear portion 21. and a bent portion 23 connecting the side portion 22 . As shown in FIGS. 1B to 1D, at the corner formed by the side panel 5 and the front panel 7, a housing space 24 is formed for housing the radiating fins 33 of the cooling unit 30, which will be described later. Therefore, the side surface portion 22 of the heat exchanger 20 has a shape having a step or a recess at the end. The rear surface portion 21 is an example of the facing portion, and the side surface portion 22 is an example of the orthogonal portion.
 熱交換器20の伝熱管は、複数の直管部材と、隣接する直管部材同士を接続するU字形状のUベンド管26を備え、蛇行状に形成される。熱交換器20には、蛇行状形成された伝熱管が水平方向に並列して、2列配列される。背面パネル3又は側面パネル5に近い位置に配設される伝熱管とこの伝熱管の内側に配設される伝熱管との曲げ部23の曲率半径が異なるため、熱交換器20の側面部22の端部は、内側より外側が突き出る形状となる。 The heat transfer tubes of the heat exchanger 20 are provided with a plurality of straight tube members and U-shaped U-bend tubes 26 that connect adjacent straight tube members, and are formed in a meandering shape. In the heat exchanger 20, meandering heat transfer tubes are horizontally arranged in two rows. Since the curvature radii of the bent portions 23 of the heat transfer tubes arranged near the rear panel 3 or the side panel 5 and the heat transfer tubes arranged inside the heat transfer tubes are different, the side portions 22 of the heat exchanger 20 The end of the has a shape in which the outside protrudes from the inside.
 図1Dに示す通り、熱交換器20の側面部22の伝熱管は、その端部にU字型のUベンド管26を有する。Uベンド管26は、熱交換器20の背面部21側の伝熱管から、曲げ部23の伝熱管内を通り、側面部22の伝熱管の端部に到達した冷媒を停滞させることなく、他の伝熱管へ流動させる。 As shown in FIG. 1D, the heat transfer tube of the side portion 22 of the heat exchanger 20 has a U-shaped U-bend tube 26 at its end. The U-bend tube 26 passes from the heat transfer tube on the back side portion 21 side of the heat exchanger 20 through the heat transfer tube of the bent portion 23 and reaches the end portion of the heat transfer tube on the side portion 22 without stagnation. heat transfer tubes.
 冷却ユニット30は、パワーモジュール15を冷却する。図1Bに示す通り、冷却ユニット30は、パワーモジュール15で発生した熱が伝達される受熱ブロック31と、受熱ブロック31に伝達された熱を放熱フィン33に伝達するヒートパイプ32と、ヒートパイプ32から伝達された熱を放熱する放熱フィン33と、を備える。放熱フィン33は放熱部の一例であり、ヒートパイプ32は伝熱部材の一例である。 The cooling unit 30 cools the power module 15 . As shown in FIG. 1B, the cooling unit 30 includes a heat receiving block 31 to which heat generated by the power module 15 is transferred, a heat pipe 32 to transfer the heat transferred to the heat receiving block 31 to the heat dissipation fins 33, and a heat pipe 32 and a radiating fin 33 for radiating heat transferred from. The heat radiation fins 33 are an example of a heat radiation portion, and the heat pipes 32 are an example of a heat transfer member.
 受熱ブロック31は、方形状のアルミニウムで形成された部材であり、受熱ブロック31の一主面は、サーマルグリースを介してパワーモジュール15と接続される。仕切り板9の上部には、受熱ブロック31をX軸方向に貫通させる開口が設けられており、受熱ブロック31は、機械室10と送風機室11とを跨がって配置される。仕切り板9と受熱ブロック31とは溶接により接合される。図2に示す通り、受熱ブロック31の、パワーモジュール15と接続される面と異なる面には、円形の穴部が設けられており、その穴部にヒートパイプ32の一端部32aが挿入される。 The heat receiving block 31 is a rectangular member made of aluminum, and one main surface of the heat receiving block 31 is connected to the power module 15 via thermal grease. The partition plate 9 has an opening through which the heat receiving block 31 passes in the X-axis direction. The partition plate 9 and the heat receiving block 31 are joined by welding. As shown in FIG. 2, a surface of the heat receiving block 31 different from the surface connected to the power module 15 is provided with a circular hole, into which one end 32a of the heat pipe 32 is inserted. .
 ヒートパイプ32は、銅で形成された円筒状部材を有する。ヒートパイプ32の一端部32aは、受熱ブロック31の穴部に挿入され、ヒートパイプ32の他端部32bには、放熱フィン33が圧着されている。ヒートパイプ32は、円筒状部材の内部に冷媒が封入されている。パワーモジュール15で発生した熱は、受熱ブロック31を介してヒートパイプ32の一端部32aに伝達される。一端部32aは、伝達された熱を、冷媒に伝達して、冷媒を気化させる。気化した冷媒は、ヒートパイプ32の内部で温度が低い他端部32b移動する。気化した冷媒は、他端部32bに設けられた放熱フィン33で熱を放出して凝縮し、液体となる。ヒートパイプ32の内壁には溝が形成されており、毛細管力によって、凝縮された液体の冷媒は一端部32aへ還流される。このように、ヒートパイプ32は、冷媒が相変化しながらヒートパイプ32内を循環することで一端部32aから他端部32bへ熱を効率的に搬送する。また、ヒートパイプの一端部32aから他端部32bまでの形状は、最短経路である必要はなく、任意の経路でよい。なお、ヒートパイプ32は、熱伝達部材の一例である。 The heat pipe 32 has a cylindrical member made of copper. One end portion 32a of the heat pipe 32 is inserted into a hole portion of the heat receiving block 31, and the other end portion 32b of the heat pipe 32 is press-fitted with a radiation fin 33. As shown in FIG. The heat pipe 32 has a cylindrical member filled with a coolant. Heat generated by the power module 15 is transmitted to one end portion 32 a of the heat pipe 32 via the heat receiving block 31 . The one end portion 32a transfers the transferred heat to the coolant to evaporate the coolant. The vaporized coolant moves inside the heat pipe 32 to the other end 32b where the temperature is low. The vaporized coolant radiates heat from the heat radiating fins 33 provided on the other end 32b, condenses, and becomes a liquid. A groove is formed in the inner wall of the heat pipe 32, and the condensed liquid coolant is circulated to the one end 32a by capillary force. In this manner, the heat pipe 32 efficiently transfers heat from the one end 32a to the other end 32b by circulating the coolant in the heat pipe 32 while changing the phase. Also, the shape of the heat pipe from one end 32a to the other end 32b does not need to be the shortest path, and any path may be used. Note that the heat pipe 32 is an example of a heat transfer member.
 放熱フィン33は、図2に示す通り、アルミニウムで形成された平板状の複数のフィンを含む。各フィンは、ヒートパイプ32の軸方向に並んで配置される。放熱フィン33は、ヒートパイプ32の他端部32bと密着され、ヒートパイプ32内の冷媒から伝達された熱を放出する。図1Cに示す通り、放熱フィン33は、側面パネル5と正面パネル7とにより形成される送風機室11内の筐体2の隅部における、側面パネル5と正面パネル7と熱交換器20の側面部22の端部との間の収容空間24に配置されている。そのため、放熱フィン33は、吸気口4又は吸気口6と排気口8とを繋ぐ風路上において、熱交換器20の風上側に設置されている。なお、筐体2の隅部は、例えば、背面パネル3、側面パネル5、正面パネル7、上面パネル27のいずれか複数のパネルにより形成される領域、いずれかのパネルに沿った領域等であり、筐体2の隅から離れた領域であってもよい。 The radiation fins 33 include a plurality of plate-like fins made of aluminum, as shown in FIG. Each fin is arranged side by side in the axial direction of the heat pipe 32 . The radiation fins 33 are in close contact with the other end 32 b of the heat pipe 32 and release heat transferred from the coolant inside the heat pipe 32 . As shown in FIG. 1C, the heat radiating fins 33 are located on the sides of the side panel 5, the front panel 7, and the heat exchanger 20 at the corners of the housing 2 inside the fan chamber 11 formed by the side panel 5 and the front panel 7. It is arranged in a receiving space 24 between the ends of the portion 22 . Therefore, the radiation fins 33 are installed on the windward side of the heat exchanger 20 on the air path that connects the intake port 4 or the intake port 6 and the exhaust port 8 . The corner of the housing 2 is, for example, an area formed by any one of the rear panel 3, the side panel 5, the front panel 7, and the top panel 27, or an area along any of the panels. , a region away from the corner of the housing 2 .
 次に、上記構成を有する室外機1において、パワーモジュール15を冷却する仕組みについて、図1Cを参照して説明する。 Next, the mechanism for cooling the power module 15 in the outdoor unit 1 having the above configuration will be described with reference to FIG. 1C.
 パワーモジュール15は、送風機13を駆動して、送風機13の送風ファンを回転させる。送風機13は、その回転により、背面パネル3に設けられた吸気口4および側面パネル5に設けられた吸気口6から、図示する矢印の方向で、筐体2の送風機室11に室外空気を取り込む。送風機13は、送風機室11に取り込まれた室外空気を、正面パネル7に設けられた排気口8から、図示する矢印の方向で、室外に吹き出す。このとき、背面パネル3に設けられた吸気口4から送風機室11に進入した空気は、主に熱交換器20との間で熱交換する。また、側面パネル5に設けられた吸気口6に進入した空気は、主に放熱フィン33および熱交換器20との間で熱交換する。 The power module 15 drives the blower 13 to rotate the blower fan of the blower 13 . As the blower 13 rotates, it draws outdoor air into the blower chamber 11 of the housing 2 in the direction of the arrow shown in the figure from the air intake 4 provided on the rear panel 3 and the air intake 6 provided on the side panel 5. . The blower 13 blows out the outdoor air taken into the blower room 11 outside the room from the exhaust port 8 provided in the front panel 7 in the direction of the arrow shown in the figure. At this time, the air entering the blower chamber 11 through the air inlet 4 provided in the back panel 3 mainly exchanges heat with the heat exchanger 20 . Also, the air entering the intake port 6 provided in the side panel 5 exchanges heat mainly between the radiation fins 33 and the heat exchanger 20 .
 圧縮機12および送風機13を駆動することによってパワーモジュール15は発熱する。発生した熱は、サーマルグリースを介して、パワーモジュール15に密着した冷却ユニット30の受熱ブロック31へ伝達される。伝達された熱は受熱ブロック31内を熱伝導し、ヒートパイプ32の一端部32aへ伝達される。 By driving the compressor 12 and the blower 13, the power module 15 generates heat. The generated heat is transferred to the heat receiving block 31 of the cooling unit 30 in close contact with the power module 15 via the thermal grease. The transferred heat is conducted in the heat receiving block 31 and transferred to the one end portion 32 a of the heat pipe 32 .
 ヒートパイプ32の一端部32aに熱が伝達されると、ヒートパイプ32の一端部32a内の冷媒が熱を受け取り、気化する。気化した冷媒が、ヒートパイプ32の内部で、温度が低い他端部32bへ移動することにより、熱が他端部32bまで搬送される。搬送された熱は、ヒートパイプ32の他端部32bから、ヒートパイプ32の他端部32bに密着した放熱フィン33に熱伝導する。 When heat is transferred to the one end 32a of the heat pipe 32, the refrigerant in the one end 32a of the heat pipe 32 receives heat and evaporates. As the vaporized refrigerant moves to the other end 32b having a lower temperature inside the heat pipe 32, heat is transferred to the other end 32b. The conveyed heat is conducted from the other end 32b of the heat pipe 32 to the radiating fins 33 that are in close contact with the other end 32b of the heat pipe 32 .
 放熱フィン33に伝わった熱は、側面パネル5に設けられた吸気口6に進入して放熱フィン33の周囲を流通する空気と熱交換をする。放熱フィン33の周囲を流通する空気の温度は、放熱フィン33の温度より低いため、放熱フィン33から空気へ放熱される。このようにして、パワーモジュール15で発生した熱が、放熱フィン33の周囲を流通する空気へ放出され、パワーモジュール15は冷却される。 The heat transmitted to the radiation fins 33 enters the intake port 6 provided on the side panel 5 and exchanges heat with the air flowing around the radiation fins 33 . Since the temperature of the air flowing around the radiation fins 33 is lower than the temperature of the radiation fins 33, heat is radiated from the radiation fins 33 to the air. Thus, the heat generated in the power module 15 is released to the air flowing around the radiation fins 33, and the power module 15 is cooled.
 通常、夏期において空気調和機は冷房運転され、空気調和機の室外機1の熱交換器20は凝縮器として働く。このため、熱交換器20の表面の温度は、外気温度より高く、熱交換器20の下流側を流れる空気の温度は、外気温度より高くなる。冷却ユニット30の放熱フィン33は、側面パネル5と正面パネル7と熱交換器20の側面部22との間の収容空間24に設けられているため、吸気口4又は吸気口6と排気口8とを繋ぐ風路上において、熱交換器20の風上側に設置されている。この構成により、熱交換器20の風下側へ放熱フィン33を設置する場合に比べて、放熱フィン33間へ流入する空気の温度を低くすることができる。したがって、パワーモジュール15の熱を効率良く放熱することが可能となり、パワーモジュール15の温度上昇を抑制し、信頼性を向上させることができる。 The air conditioner is normally operated for cooling in the summer, and the heat exchanger 20 of the outdoor unit 1 of the air conditioner works as a condenser. Therefore, the surface temperature of the heat exchanger 20 is higher than the outside air temperature, and the temperature of the air flowing downstream of the heat exchanger 20 is higher than the outside air temperature. Since the heat radiation fins 33 of the cooling unit 30 are provided in the accommodation space 24 between the side panel 5, the front panel 7, and the side portion 22 of the heat exchanger 20, the air inlet 4 or the air inlet 6 and the air outlet 8 are provided. It is installed on the windward side of the heat exchanger 20 on the air passage that connects the With this configuration, the temperature of the air flowing between the heat dissipating fins 33 can be made lower than when the heat dissipating fins 33 are installed on the leeward side of the heat exchanger 20 . Therefore, the heat of the power module 15 can be efficiently radiated, the temperature rise of the power module 15 can be suppressed, and the reliability can be improved.
 なお、上記説明において、冷却の対象の発熱体として、パワーモジュール15を例にして説明したが、これに限られない。例えば、マイコン、制御用集積回路(IC)などの電装部品を発熱体として被冷却対象としてもよい。被冷却対象は電装部品に限定されず、熱を発生するものならばなんでもよい。 In the above description, the power module 15 is used as an example of the heat generating element to be cooled, but it is not limited to this. For example, an electrical component such as a microcomputer or a control integrated circuit (IC) may be used as a heating element to be cooled. The object to be cooled is not limited to electrical components, and may be anything as long as it generates heat.
 また、受熱ブロック31とパワーモジュール15とサーマルグリースを介して接続されることとしたが、パワーモジュール15は、高い熱伝性と導電性を有するアルミニウム、銅などにより形成された電装品箱に収容され、パワーモジュール15から電装品箱に伝導された熱を受熱ブロック31に伝導してもよい。電装品箱と受熱ブロック31とは、熱伝導グリス、熱伝導シートなどを介して熱接続される。 Also, the heat receiving block 31 and the power module 15 are connected via thermal grease, but the power module 15 is housed in an electrical component box made of aluminum, copper, or the like having high thermal and electrical conductivity. The heat conducted from the power module 15 to the electrical component box may be conducted to the heat receiving block 31 . The electrical component box and the heat receiving block 31 are thermally connected via thermally conductive grease, a thermally conductive sheet, or the like.
(実施の形態2)
 本開示は、実施の形態1に限定されず、パワーモジュール15が発生した熱を、熱交換器20よりも熱交換用風路の上流側で放熱できるならば、その構成は適宜変更可能である。例えば、実施の形態1では、図2に示す通り、放熱フィン33を形成する各フィンの大きさが同じである場合の例を示したが、これに限られない。放熱フィン33の各フィンの大きさは、筐体2、熱交換器20などの他の部材との距離を考慮して、適宜変更してもよい。例えば、放熱フィン33を形成する各フィンのZ軸方向の長さが異なっていてもよい。
(Embodiment 2)
The present disclosure is not limited to Embodiment 1, and the configuration can be appropriately changed as long as the heat generated by the power module 15 can be radiated upstream of the heat exchange air passage from the heat exchanger 20. . For example, in Embodiment 1, as shown in FIG. 2, an example in which the fins forming the radiation fins 33 have the same size has been described, but the present invention is not limited to this. The size of each fin of the radiating fins 33 may be appropriately changed in consideration of the distance from other members such as the housing 2 and the heat exchanger 20 . For example, the fins forming the radiation fins 33 may have different lengths in the Z-axis direction.
 例えば、図3に示す通り、実施の形態2に係る室外機1aの放熱フィン33aを形成する各フィンは、熱交換器20の側面部22のUベンド管26の曲げ形状に合わせて、Z軸方向の長さが異なる形状に形成される。 For example, as shown in FIG. 3, each fin forming the heat radiation fins 33a of the outdoor unit 1a according to Embodiment 2 is aligned with the bending shape of the U bend pipe 26 of the side surface portion 22 of the heat exchanger 20, and They are formed into shapes with different lengths in the directions.
 放熱フィン33aが上記の構成を有するため、図1Dに示す、放熱フィン33の各フィンのZ軸方向の長さがUベンド管26の曲げ部と接触しない同じ長さで形成される放熱フィン33と比べて、放熱フィン33aの総表面積が大きくなる。これにより、放熱性能を大きくすることが可能となる。これにより、パワーモジュールの熱を効率良く放熱することが可能となり、パワーモジュール15の温度上昇を抑制し、信頼性を向上させることができる。
 なお、放熱フィン33と放熱フィン33aを両方配置してもよい。
Since the radiation fins 33a have the above structure, the radiation fins 33 shown in FIG. , the total surface area of the radiation fins 33a is increased. This makes it possible to increase the heat dissipation performance. Thereby, the heat of the power module can be efficiently radiated, the temperature rise of the power module 15 can be suppressed, and the reliability can be improved.
Both the heat radiation fins 33 and the heat radiation fins 33a may be arranged.
(実施の形態3)
 本開示は、パワーモジュール15が発生した熱を、熱交換器20よりも熱交換用風路の上流側で放熱できるならば、その形状や配置位置も適宜変更可能である。例えば、実施の形態1では、図1Cに示す通り、冷却ユニット30の放熱フィン33が、側面パネル5と正面パネル7と熱交換器20の側面部22との間の収容空間24に設けられていたが、これに限られない。放熱フィン33は、吸気口4又は吸気口6と排気口8とを繋ぐ風路上において、熱交換器20の風上側に位置する場所に配置されれば、フィンの形状及び配置位置は任意である。
(Embodiment 3)
According to the present disclosure, if the heat generated by the power module 15 can be radiated upstream of the heat exchange air passage from the heat exchanger 20, the shape and arrangement position thereof can be changed as appropriate. For example, in Embodiment 1, as shown in FIG. 1C, the heat radiation fins 33 of the cooling unit 30 are provided in the housing space 24 between the side panel 5, the front panel 7, and the side portion 22 of the heat exchanger 20. However, it is not limited to this. The heat radiation fins 33 may have any shape and arrangement position as long as they are arranged on the windward side of the heat exchanger 20 on the air path connecting the air intake port 4 or the air intake port 6 and the air discharge port 8. .
 例えば、図4に示すように、実施の形態3に係る冷却ユニット30aの放熱フィン33bは、三角形状をした複数の平板のフィンで形成されている。図5Aは、背面パネル3を取り外した室外機1bの背面図であり、図5Bは、図1Aに示す上面パネル27を取り除いた室外機1bの上面図であり、図5Cは、図1Aに示す左側の側面パネル5を取り除いた室外機1bの左側面図である。これらに図示する通り、室外機1bの放熱フィン33bは、側面パネル5と背面パネル3とにより形成される送風機室11内の筐体2の隅部における、筐体2の背面パネル3と側面パネル5と熱交換器20の曲げ部23とに囲まれた領域に設けられる。したがって、吸気口4又は吸気口6と排気口8とを繋ぐ風路上において、放熱フィン33bは、熱交換器20の風上側に設置されることとなる。 For example, as shown in FIG. 4, the heat radiation fins 33b of the cooling unit 30a according to the third embodiment are formed of a plurality of flat triangular fins. 5A is a rear view of the outdoor unit 1b with the rear panel 3 removed, FIG. 5B is a top view of the outdoor unit 1b with the top panel 27 shown in FIG. 1A removed, and FIG. 5C is shown in FIG. 1A. Fig. 3 is a left side view of the outdoor unit 1b with the left side panel 5 removed; As shown in these drawings, the heat radiation fins 33b of the outdoor unit 1b are located at the corners of the housing 2 in the fan chamber 11 formed by the side panel 5 and the rear panel 3. 5 and the bent portion 23 of the heat exchanger 20 . Therefore, the radiation fins 33 b are installed on the windward side of the heat exchanger 20 on the air path connecting the air intake port 4 or the air intake port 6 and the air discharge port 8 .
 放熱フィン33bが上記の配置となるため、熱交換器20の風下側へ放熱フィンを設置する場合に比べて、放熱フィン33bへ流入する空気の温度を低くすることができる。したがって、パワーモジュールの熱を効率良く放熱することが可能となり、パワーモジュール15の温度上昇を抑制し、信頼性を向上させることができる。また、背面パネル3と側面パネル5と熱交換器20の曲げ部23とで形成される空間に配置されるため、空間を有効活用することができる。この場合、側面部22の構成と形状は任意であり、端部を段差形状とする必要はない。 Since the radiation fins 33b are arranged as described above, the temperature of the air flowing into the radiation fins 33b can be lowered compared to the case where the radiation fins are installed on the leeward side of the heat exchanger 20. Therefore, the heat of the power module can be efficiently radiated, the temperature rise of the power module 15 can be suppressed, and the reliability can be improved. Moreover, since it is arranged in the space formed by the rear panel 3, the side panel 5, and the bent portion 23 of the heat exchanger 20, the space can be effectively utilized. In this case, the configuration and shape of the side surface portion 22 are arbitrary, and the end portion need not be stepped.
(実施の形態4)
 実施の形態3では、図4に示す通り、放熱フィン33bは、三角形状をした複数の平板のフィンで形成されていたが、これに限られない。放熱フィン33bの放熱効果を高めるために、各フィンの形状を、筐体2、熱交換器20などの他の部材との距離を考慮して、適宜変更してもよい。例えば、図6に示す通り、室外機1cの放熱フィン33cを、平面視で、熱交換器20の曲げ部23に最も近い辺が曲げ部23に沿った曲線形状としてもよい。
(Embodiment 4)
In Embodiment 3, as shown in FIG. 4, the radiation fins 33b are formed of a plurality of flat triangular fins, but the present invention is not limited to this. In order to enhance the heat dissipation effect of the heat dissipation fins 33b, the shape of each fin may be appropriately changed in consideration of the distance from other members such as the housing 2 and the heat exchanger 20. FIG. For example, as shown in FIG. 6, the radiation fins 33c of the outdoor unit 1c may have a curved shape in which the side closest to the bent portion 23 of the heat exchanger 20 is along the bent portion 23 in plan view.
 放熱フィン33cが上記の構成を有するため、三角形状の複数のフィンで形成された放熱フィン33bと比べて、放熱フィン33cの総表面積が大きくなり、放熱性能を大きく出来る。これにより、パワーモジュールの熱を効率良く放熱することが可能となり、パワーモジュール15の温度上昇を抑制し、信頼性を向上させることができる。 Since the heat radiation fins 33c have the above configuration, the total surface area of the heat radiation fins 33c is larger than that of the heat radiation fins 33b formed of a plurality of triangular fins, and the heat radiation performance can be increased. Thereby, the heat of the power module can be efficiently radiated, the temperature rise of the power module 15 can be suppressed, and the reliability can be improved.
(実施の形態5)
 上記実施の形態では、放熱は主に放熱フィン33、33bによって行われているが、他の放熱用の部材を風路に配置してもよい。例えば、受熱ブロック31にフィンを設けることで、放熱効果を高めてもよい。例えば、図7に例示するように、実施の形態5に係る冷却ユニット30bの受熱ブロック31aは、パワーモジュール15と密着する面の反対側の面に、アルミニウムで形成された平板状の追加フィン34が圧着されている。
(Embodiment 5)
In the above embodiment, heat radiation is mainly performed by the heat radiation fins 33 and 33b, but other heat radiation members may be arranged in the air passage. For example, the heat radiation effect may be enhanced by providing the heat receiving block 31 with fins. For example, as illustrated in FIG. 7, the heat receiving block 31a of the cooling unit 30b according to the fifth embodiment has flat additional fins 34 made of aluminum on the surface opposite to the surface in close contact with the power module 15. is crimped.
 空調機の稼働中は、送風機13が稼働し、追加フィン34の周囲に空気が流れる。これにより、追加フィン34の表面から周囲の空気に放熱され、パワーモジュール15を冷却する作用がある。このように、受熱ブロック31に追加フィン34がない場合に比べて、パワーモジュール15の熱を効率良く放熱することが可能となる。 When the air conditioner is in operation, the blower 13 is in operation and air flows around the additional fins 34. As a result, the heat is radiated from the surfaces of the additional fins 34 to the surrounding air, which has the effect of cooling the power module 15 . Thus, compared to the case where the heat receiving block 31 does not have the additional fins 34, the heat of the power module 15 can be efficiently radiated.
(実施の形態6)
 上記実施の形態3では、図6に示す通り、放熱フィン33cが、吸気口4又は吸気口6と排気口8とを繋ぐ風路上において、熱交換器20の風上側のみに設置された構成であった。しかしながら、本開示はこれに限られず、ヒートパイプ32に複数の放熱フィンを設けても良い。例えば、図8A、図8Bに示す通り、実施の形態6の室外機1dは、熱交換器20の風上側に設置された放熱フィン33cに加えて、熱交換器20の風下側に放熱フィン33dが設置された構成である。
(Embodiment 6)
In the third embodiment, as shown in FIG. 6, the radiation fins 33c are installed only on the windward side of the heat exchanger 20 on the air path connecting the air intake port 4 or the air intake port 6 and the air discharge port 8. there were. However, the present disclosure is not limited to this, and the heat pipe 32 may be provided with a plurality of radiating fins. For example, as shown in FIGS. 8A and 8B, the outdoor unit 1d of the sixth embodiment includes heat radiation fins 33d on the leeward side of the heat exchanger 20 in addition to the radiation fins 33c installed on the windward side of the heat exchanger 20. is installed.
 放熱フィン33dは、アルミニウムで形成された平板状の複数のフィンにより形成され、ヒートパイプ32に圧着されている。熱交換器20の風上側に設置された放熱フィン33cに加えて、熱交換器20の風下側に放熱フィン33dを設置することにより、放熱に寄与する伝熱面積を増加することができ、放熱性能を高くすることが可能となる。これにより、パワーモジュール15の温度上昇を抑制し、信頼性を向上させることができる。 The radiation fins 33d are formed of a plurality of flat plate-like fins made of aluminum and are crimped to the heat pipes 32 . In addition to the radiating fins 33c installed on the windward side of the heat exchanger 20, by installing the radiating fins 33d on the leeward side of the heat exchanger 20, the heat transfer area that contributes to heat radiation can be increased. Performance can be improved. Thereby, the temperature rise of the power module 15 can be suppressed, and the reliability can be improved.
(変形例1)
 上記実施の形態では、吸気口4および吸気口6は、それぞれ、1つの開口から形成されていたが、これに限られない。例えば、吸気口6は、複数の開口から形成されていてもよい。
(Modification 1)
In the above-described embodiment, each of the intake port 4 and the intake port 6 is formed from one opening, but the present invention is not limited to this. For example, the inlet 6 may be formed from multiple openings.
(変形例2)
 上記実施の形態では、熱交換器20はアルミニウム製のフィンと銅製の円管で形成されていたが、これに限られず、熱伝導率の高い材料で形成されればよい。例えば、熱交換器20はアルミニウム製のフィンとアルミニウム製の円管で形成されていてもよい。
(Modification 2)
In the above embodiment, the heat exchanger 20 is formed of aluminum fins and copper circular tubes, but is not limited to this, and may be formed of a material with high thermal conductivity. For example, the heat exchanger 20 may be formed of aluminum fins and aluminum circular tubes.
(変形例3)
 上記実施の形態では、受熱ブロック31はアルミニウム製であったが、これに限られず、熱伝導率の高い材料で形成されればよい。例えば、受熱ブロック31は、銅製でもよい。
(Modification 3)
Although the heat-receiving block 31 is made of aluminum in the above embodiment, it is not limited to this and may be made of a material having high thermal conductivity. For example, the heat receiving block 31 may be made of copper.
(変形例4)
 上記実施の形態では、受熱ブロック31はアルミニウム製の直方体形状であったが、パワーモジュール15の熱が伝達され、伝達された熱をヒートパイプ32に伝達できるならば、その形状と材質は変更可能である。例えば、受熱ブロック31は銅製で直方体形状の一部が欠けた形状でもよい。
(Modification 4)
In the above-described embodiment, the heat receiving block 31 is made of aluminum and has a rectangular parallelepiped shape. is. For example, the heat receiving block 31 may be made of copper and may have a rectangular parallelepiped shape with a part missing.
(変形例5)
 上記実施の形態では、冷却ユニット30は、ヒートパイプ32の一端部32aが受熱ブロック31に挿入された構成であったが、これに限られず、ヒートパイプ32の一端部32aと受熱ブロック31の間で伝熱が可能な構成であればよい。例えば、冷却ユニット30は、ヒートパイプ32の一端部32aが受熱ブロック31の表面とはんだ付けにより密着されてもよい。
(Modification 5)
In the above-described embodiment, the cooling unit 30 has a configuration in which one end portion 32a of the heat pipe 32 is inserted into the heat receiving block 31. However, the present invention is not limited to this. Any configuration that allows heat transfer with For example, in the cooling unit 30, one end 32a of the heat pipe 32 may be adhered to the surface of the heat receiving block 31 by soldering.
(変形例6)
 上記実施の形態では、冷却ユニット30は、1本のヒートパイプ32と受熱ブロック31と放熱フィン33とで形成されていたが、これに限られない。例えば、冷却ユニット30は、2本以上のヒートパイプ32で形成されていてもよい。
(Modification 6)
In the above embodiment, the cooling unit 30 is formed of one heat pipe 32, the heat receiving block 31, and the heat radiation fins 33, but is not limited to this. For example, the cooling unit 30 may be formed with two or more heat pipes 32 .
(変形例7)
 送風機13が発生する空気、即ち風に放熱するための放熱部として放熱フィン33,33bなどを例示したが、放熱できるならば、放熱部はフィンに限定されない。
(Modification 7)
Although the heat radiation fins 33 and 33b have been exemplified as the heat radiation portion for radiating heat to the air generated by the blower 13, that is, the wind, the heat radiation portion is not limited to the fins as long as the heat can be radiated.
 送風機13としてファンを使用する例を示したが、これに限定されず、ポンプなどで送風してもよい。 Although an example of using a fan as the blower 13 has been shown, the present invention is not limited to this, and air may be blown by a pump or the like.
 発熱部で発生した熱を放熱部に伝達する部材としてヒートパイプ32を使用する例を示したが、熱を高効率で伝達できる伝熱部材として機能するならば、ヒートパイプに限定されず、他の構成を用いてもよい。 An example of using the heat pipe 32 as a member for transferring heat generated in the heat generating portion to the heat dissipating portion was shown, but it is not limited to the heat pipe as long as it functions as a heat transfer member capable of transferring heat with high efficiency. configuration may be used.
 本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本開示を説明するためのものであり、本開示の範囲を限定するものではない。つまり、本開示の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、本開示の範囲内とみなされる。 Various embodiments and modifications of the present disclosure are possible without departing from the broad spirit and scope of the present disclosure. Moreover, the embodiments described above are for explaining the present disclosure, and do not limit the scope of the present disclosure. In other words, the scope of the present disclosure is indicated by the claims rather than the embodiments. Various modifications made within the scope of the claims and within the scope of equivalent disclosure are considered to be within the scope of the present disclosure.
 本出願は、2022年1月11日に出願された日本国特許出願特願2022-002427号に基づく。本明細書中に日本国特許出願特願2022-002427号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2022-002427 filed on January 11, 2022. The entire specification, claims, and drawings of Japanese Patent Application No. 2022-002427 are incorporated herein by reference.
1,1a、1b,1c,1d室外機、2 筐体、3 背面パネル、4,6 吸気口、5 側面パネル、7 正面パネル、8 排気口、9 仕切り板、10 機械室、11 送風機室、12 圧縮機、13 送風機、14 制御基板、15 パワーモジュール、20 熱交換器、21 背面部、22 側面部、23 曲げ部、24 収容空間、 26 Uベンド管、30,30a、30b 冷却ユニット、31,31a 受熱ブロック、32 ヒートパイプ、32a 一端部、32b 他端部、33,33a、33b,33c,33d 放熱フィン、34 追加フィン、100 空気調和機、200 室内機、300 冷媒管、400 建物。 1, 1a, 1b, 1c, 1d outdoor unit, 2 housing, 3 rear panel, 4, 6 intake port, 5 side panel, 7 front panel, 8 exhaust port, 9 partition plate, 10 machine room, 11 blower room, 12 compressor, 13 blower, 14 control board, 15 power module, 20 heat exchanger, 21 rear part, 22 side part, 23 bending part, 24 accommodation space, 26 U bend pipe, 30, 30a, 30b cooling unit, 31 , 31 a heat receiving block, 32 heat pipe, 32 a one end, 32 b the other end, 33, 33 a, 33 b, 33 c, 33 d radiation fins, 34 additional fins, 100 air conditioners, 200 indoor units, 300 refrigerant pipes, 400 buildings.

Claims (9)

  1.  排気口と吸気口とが形成された筐体と、
     前記筐体内に配置され、前記吸気口と前記排気口とを繋ぐ風路に風を発生する送風機と、
     前記風路に少なくとも一部が配置され、前記送風機により前記風路を流れる風と熱媒体との間で熱交換する熱交換器と、
     前記筐体に格納された発熱体と熱的に接続された熱伝達部材と、
     前記筐体の内部を、前記送風機および前記熱交換器が配置される送風機室と前記発熱体が格納される機械室とに区画する仕切り板と、
     該熱伝達部材に熱的に接続されて設けられ、前記吸気口と前記排気口とを繋ぐ前記風路において、前記熱交換器より風上側に配置され、前記送風機室内の前記筐体の隅部に配置される放熱部と、
     を備える空気調和機の室外機。
    a housing in which an exhaust port and an intake port are formed;
    an air blower that is arranged in the housing and generates wind in an air passage that connects the intake port and the exhaust port;
    a heat exchanger, at least a portion of which is disposed in the air passage, and which exchanges heat between the air flowing in the air passage and a heat medium by the blower;
    a heat transfer member thermally connected to the heating element housed in the housing;
    a partition plate that divides the inside of the housing into a blower chamber in which the blower and the heat exchanger are arranged and a machine chamber in which the heating element is stored;
    A corner portion of the housing in the fan chamber, which is thermally connected to the heat transfer member, is arranged on the windward side of the heat exchanger in the air passage connecting the air inlet and the air outlet, and a heat radiating part disposed in the
    An outdoor unit of an air conditioner.
  2.  前記筐体は、複数のパネルにより形成され、前記排気口が形成された排気パネルと対向する対向パネルおよび該排気パネルに直交し互いに対向する2つの直交パネルの内いずれかのパネルそれぞれに吸気口が形成され、
     前記熱交換器は、複数の伝熱管を含み、前記対向パネルおよび前記直交パネルに平行に視てL字形であり、前記対向パネルの側に配設される対向部と、前記吸気口が形成された直交パネル側に配設される直交部と、前記対向部と前記直交部とを接続する曲げ部とにより形成され、
     前記放熱部は、前記筐体の前記排気パネルと、前記吸気口が形成された直交パネルと、前記熱交換器の前記直交部との間の領域に配置される、
     請求項1に記載の空気調和機の室外機。
    The housing is formed of a plurality of panels, and an air intake port is provided in each of a facing panel facing the exhaust panel in which the exhaust port is formed and two orthogonal panels orthogonal to the exhaust panel and facing each other. is formed and
    The heat exchanger includes a plurality of heat transfer tubes, is L-shaped when viewed parallel to the facing panel and the orthogonal panel, and has a facing portion disposed on the side of the facing panel and the intake port. formed by an orthogonal portion disposed on the orthogonal panel side and a bent portion connecting the opposing portion and the orthogonal portion,
    The heat radiating part is arranged in a region between the exhaust panel of the housing, the orthogonal panel in which the intake port is formed, and the orthogonal part of the heat exchanger.
    The outdoor unit of the air conditioner according to claim 1.
  3.  前記筐体は、直方体であり、複数のパネルにより形成され、前記排気口が形成された排気パネルと対向する対向パネルおよび該排気パネルに直交し互いに対向する2つの直交パネルの内いずれかのパネルそれぞれに吸気口が形成され、
     前記熱交換器は、複数の伝熱管を含み、前記対向パネルおよび前記直交パネルに平行に視てL字形であり、前記対向パネルの側に配設される対向部と、前記吸気口が形成された直交パネル側に配設される直交部と、前記対向部と前記直交部とを接続する曲げ部とにより形成され、
     前記放熱部は、前記筐体の前記対向パネルと、前記吸気口が形成された直交パネルと、前記熱交換器の前記曲げ部との間の領域に配置される、
     請求項1に記載の空気調和機の室外機。
    The housing is a rectangular parallelepiped and is formed of a plurality of panels, one of a facing panel that faces the exhaust panel in which the exhaust port is formed, and two orthogonal panels that are orthogonal to the exhaust panel and face each other. An intake port is formed in each,
    The heat exchanger includes a plurality of heat transfer tubes, is L-shaped when viewed parallel to the facing panel and the orthogonal panel, and has a facing portion disposed on the side of the facing panel and the intake port. formed by an orthogonal portion disposed on the orthogonal panel side and a bent portion connecting the opposing portion and the orthogonal portion,
    The heat dissipation part is arranged in a region between the facing panel of the housing, the orthogonal panel in which the air intake is formed, and the bent part of the heat exchanger.
    The outdoor unit of the air conditioner according to claim 1.
  4.  前記熱伝達部材は、内部に冷媒が封入されているヒートパイプから形成され、
     前記放熱部は、前記ヒートパイプに固定された複数の放熱フィンを含む、
     請求項2または3に記載の空気調和機の室外機。
    The heat transfer member is formed of a heat pipe in which a refrigerant is sealed,
    The heat dissipation unit includes a plurality of heat dissipation fins fixed to the heat pipe,
    The outdoor unit for an air conditioner according to claim 2 or 3.
  5.  前記伝熱管は、複数の直管部材と、隣接する直管部材同士を接続するU字形状のUベンド管とを含み、
     前記放熱部に含まれる複数の放熱フィンは、前記熱交換器の前記直交部の一端に配置される前記Uベンド管に沿った形状である、
     請求項4に記載の空気調和機の室外機。
    The heat transfer tube includes a plurality of straight tube members and a U-shaped U-bend tube connecting adjacent straight tube members,
    The plurality of heat dissipating fins included in the heat dissipating portion has a shape along the U-bend pipe arranged at one end of the orthogonal portion of the heat exchanger,
    The outdoor unit of the air conditioner according to claim 4.
  6.  前記発熱体が取り付けられる受熱ブロックをさらに備え、
     該受熱ブロックは、前記熱伝達部材と接続され、前記発熱体が取り付けられる面と対向する面にフィンが配置される、
     請求項1から5のいずれか1項に記載の空気調和機の室外機。
    further comprising a heat receiving block to which the heating element is attached;
    The heat-receiving block is connected to the heat transfer member, and has fins on a surface opposite to the surface on which the heating element is attached.
    The outdoor unit for an air conditioner according to any one of claims 1 to 5.
  7.  前記受熱ブロックは、前記吸気口と前記排気口とを繋ぐ風路の、前記熱交換器よりも風下側に配置され、
     前記放熱部は、前記排気口が形成された排気パネルと対向し前記吸気口が形成された対向パネル、または、該排気パネルに直交し互いに対向する2つの直交パネルの内前記吸気口が形成された直交パネルと前記熱交換器との間に、前記吸気口に少なくとも一部が対向して配置される、
     請求項6に記載の空気調和機の室外機。
    The heat-receiving block is arranged on the leeward side of the heat exchanger in an air passage connecting the air intake port and the air exhaust port,
    The heat dissipating portion may be a facing panel facing the exhaust panel having the exhaust port formed thereon and having the air intake port formed thereon, or two orthogonal panels orthogonal to the exhaust panel facing each other and having the air intake port formed thereon. positioned at least partially opposite the air inlet between the orthogonal panel and the heat exchanger;
    The outdoor unit of the air conditioner according to claim 6.
  8.  前記熱伝達部材には、前記吸気口と前記排気口とを繋ぐ前記風路において、前記熱交換器より風下側に、複数のフィンがさらに配置される、
     請求項1から7のいずれか1項に記載の空気調和機の室外機。
    In the heat transfer member, a plurality of fins are further arranged on the leeward side of the heat exchanger in the air passage connecting the air inlet and the air outlet.
    The outdoor unit for an air conditioner according to any one of claims 1 to 7.
  9.  請求項1から8のいずれか1項に記載の空気調和機の室外機を備える、
     空気調和機。
    Equipped with the outdoor unit of the air conditioner according to any one of claims 1 to 8,
    Air conditioner.
PCT/JP2022/048021 2022-01-11 2022-12-26 Outdoor unit of air conditioner, and air conditioner WO2023136123A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023573966A JPWO2023136123A1 (en) 2022-01-11 2022-12-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022002427 2022-01-11
JP2022-002427 2022-01-11

Publications (1)

Publication Number Publication Date
WO2023136123A1 true WO2023136123A1 (en) 2023-07-20

Family

ID=87279072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048021 WO2023136123A1 (en) 2022-01-11 2022-12-26 Outdoor unit of air conditioner, and air conditioner

Country Status (2)

Country Link
JP (1) JPWO2023136123A1 (en)
WO (1) WO2023136123A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192269U (en) * 1985-05-22 1986-11-29
JP2005331141A (en) * 2004-05-19 2005-12-02 Mitsubishi Electric Corp Cooling system, air conditioner, refrigeration air conditioning device, and cooling method
JP2006266547A (en) * 2005-03-23 2006-10-05 Mitsubishi Electric Corp Air conditioner
JP2015233074A (en) * 2014-06-10 2015-12-24 ダイキン工業株式会社 Member for cooling component
WO2018062170A1 (en) * 2016-09-27 2018-04-05 三菱電機株式会社 Outdoor unit for air conditioner, and air conditioner
JP2019178802A (en) * 2018-03-30 2019-10-17 株式会社富士通ゼネラル Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192269U (en) * 1985-05-22 1986-11-29
JP2005331141A (en) * 2004-05-19 2005-12-02 Mitsubishi Electric Corp Cooling system, air conditioner, refrigeration air conditioning device, and cooling method
JP2006266547A (en) * 2005-03-23 2006-10-05 Mitsubishi Electric Corp Air conditioner
JP2015233074A (en) * 2014-06-10 2015-12-24 ダイキン工業株式会社 Member for cooling component
WO2018062170A1 (en) * 2016-09-27 2018-04-05 三菱電機株式会社 Outdoor unit for air conditioner, and air conditioner
JP2019178802A (en) * 2018-03-30 2019-10-17 株式会社富士通ゼネラル Air conditioner

Also Published As

Publication number Publication date
JPWO2023136123A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
US20060254752A1 (en) Radiator and heatsink apparatus having the radiator
JP2004125381A (en) Heat pipe unit and heat pipe cooler
JP6254349B2 (en) Heat pump equipment outdoor unit
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
US20230164950A1 (en) Air conditioning apparatus and electric control box
JP2005331141A (en) Cooling system, air conditioner, refrigeration air conditioning device, and cooling method
JP2017152614A (en) Liquid cooling type cooling device
JP4687093B2 (en) Air conditioner
JP2005210088A (en) Cooling device in closed cabinet
JP4682858B2 (en) Cooling device for electronic equipment
WO2023136123A1 (en) Outdoor unit of air conditioner, and air conditioner
JPH07243782A (en) Heat pipe type radiator
KR20080070398A (en) Outdoor unit of air conditioner
CN210014482U (en) Air condensing units and air conditioner
CN210014483U (en) Air condensing units and air conditioner
JP3861361B2 (en) COOLING DEVICE AND CASE COOLING DEVICE HAVING THE COOLING DEVICE
CN210014474U (en) Radiator, air condensing units and air conditioner
JP2017048960A (en) Outdoor unit of air conditioner and air conditioner
JP2000022363A (en) Heat dissipation fin for electric circuit element, outdoor unit and air conditioner
US11982459B2 (en) Air conditioning apparatus and electric control box
JP2001060788A (en) Plane type improved heat mobile unit heat sink
KR20140139803A (en) An air conditioner
CN216903299U (en) Heat abstractor and phased array radar antenna
CN210399246U (en) Air condensing units and air conditioner
CN220507796U (en) Heat transfer device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920640

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023573966

Country of ref document: JP