WO2023136073A1 - 画像表示装置および画像表示方法 - Google Patents

画像表示装置および画像表示方法 Download PDF

Info

Publication number
WO2023136073A1
WO2023136073A1 PCT/JP2022/047174 JP2022047174W WO2023136073A1 WO 2023136073 A1 WO2023136073 A1 WO 2023136073A1 JP 2022047174 W JP2022047174 W JP 2022047174W WO 2023136073 A1 WO2023136073 A1 WO 2023136073A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
central
peripheral
display
output unit
Prior art date
Application number
PCT/JP2022/047174
Other languages
English (en)
French (fr)
Inventor
誠 小泉
Original Assignee
株式会社ソニー・インタラクティブエンタテインメント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソニー・インタラクティブエンタテインメント filed Critical 株式会社ソニー・インタラクティブエンタテインメント
Publication of WO2023136073A1 publication Critical patent/WO2023136073A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to an image display device and an image display method that allow a user to visually recognize an image.
  • An image display system that allows you to appreciate the target space from any point of view has become widespread.
  • a system has been developed in which a panoramic image is displayed on a head-mounted display, and when the user wearing the head-mounted display rotates his or her head, a panoramic image corresponding to the line-of-sight direction is displayed.
  • a head-mounted display By using a head-mounted display, it is possible to increase the sense of immersion in images and improve the operability of applications such as games.
  • a walk-through system has also been developed in which a user wearing a head-mounted display physically moves to virtually walk around in a space displayed as an image.
  • the present invention has been made in view of these problems, and its purpose is to provide a technology that allows a user to easily view high-definition, wide-field images without discomfort.
  • An aspect of the present invention relates to an image display device.
  • This image display device includes a central image generating unit that generates a central image representing a central portion in an image plane of a displayed image, and a peripheral image generating unit that generates a peripheral image representing an area outside the central image of the displayed image. and a central image output unit for displaying a central image, a peripheral image output unit for displaying a peripheral image, a central image output unit for displaying a peripheral image, and a central and an image synthesizing unit for synthesizing the image and the peripheral image for visual recognition.
  • This image display method includes the steps of: generating a central image representing a central portion in an image plane of a displayed image; generating a peripheral image representing a region outside the central image of the displayed image; a step of displaying a central image by a central image output unit of a laser scanning type for projecting an image by two-dimensionally scanning a laser beam by reflection of a mirror; a step of displaying a peripheral image by a peripheral image output unit; and a step of synthesizing and visually recognizing the peripheral image.
  • a high-definition, wide-field image can be easily viewed without discomfort.
  • FIG. 4 is a diagram for explaining the relationship between human visual characteristics and the display format of the present embodiment
  • FIG. 3 is a diagram for explaining the relationship between a laser scanning display mechanism and areas on an image, which are employed in the present embodiment
  • It is a figure which shows the external appearance example of the head mounted display of this Embodiment.
  • 3 is a diagram showing an internal circuit configuration of the head mounted display of the embodiment
  • FIG. 3 is a diagram showing the configuration of functional blocks of the head-mounted display of this embodiment
  • FIG. FIG. 4 is a diagram schematically showing changes in a central image and peripheral images with respect to movement of a gaze point in the present embodiment
  • FIG. 10 is a diagram for explaining changes in resolution with respect to the size of a central image in this embodiment; 4 is a flow chart showing a processing procedure for displaying an image by the head-mounted display of the embodiment;
  • FIG. 10 is a diagram showing a structural example of an image synthesizing unit that synthesizes a central image and a peripheral image for visual recognition in the head-mounted display of the present embodiment;
  • FIG. 10 is a diagram showing another example of the structure of the image synthesizing unit that synthesizes the central image and the peripheral images for visual recognition in the head-mounted display of the present embodiment;
  • FIG. 10 is a diagram showing another example of the structure of the image synthesizing unit that synthesizes the central image and the peripheral images for visual recognition in the head-mounted display of the present embodiment
  • FIG. 10 is a diagram showing another example of the structure of the image synthesizing unit that synthesizes the central image and the peripheral images for visual recognition in the head-mounted display of the present embodiment
  • FIG. 10 is a diagram showing another example of the structure of the image synthesizing unit that synthesizes the central image and the peripheral images for visual recognition in the head-mounted display of the present embodiment
  • FIG. 1 is a diagram for explaining the relationship between human visual characteristics and the display format of the present embodiment.
  • the point of gaze 202 of the user indicated by the circle exists near the center.
  • a region 204 corresponding to within 5° of the line of sight from the pupil to the point of gaze as the central axis is called a discriminative visual field, and has excellent visual functions such as visual acuity.
  • a region 206 corresponding to within about 30° in the horizontal direction and about 20° in the vertical direction is called an effective visual field, and information can be instantly received only by eye movement.
  • the area 208 corresponding to within 60 to 90 degrees horizontally and 45 to 70 degrees vertically is a stable fixation area
  • the area 210 corresponding to within 100 to 200 degrees horizontally and 85 to 130 degrees vertically is auxiliary.
  • the region 212 of a predetermined range including the gaze point 202 is basically represented with a higher resolution than the region 214 outside it. In order to achieve this, the area 212 and the area 214 are represented by different display mechanisms so that they are finally viewed in a combined state.
  • the laser scanning method is a technique of forming an image on a projection surface by two-dimensionally scanning laser light corresponding to pixels using a deflection mirror.
  • a technique of converging a laser beam on a user's pupil and projecting an image onto the retina has been mainly applied to wearable displays (see, for example, International Publication No. 2009/066465).
  • a small projector that projects an image onto an external screen or the like has also been put to practical use (see, for example, Japanese Unexamined Patent Application Publication No. 2017-83657).
  • FIG. 2 is a diagram for explaining the relationship between the laser scanning display mechanism and the regions on the image, which are employed in the present embodiment.
  • the upper part of (a) and (b) is a schematic side view of a laser scanning display mechanism.
  • the laser light source 220 outputs laser light containing red, blue and green components.
  • the laser light is reflected by the mirror 222 and projected onto the projection plane (image plane 200).
  • the laser light is two-dimensionally scanned on the projection plane, and an image is formed with the laser light output at each time as pixels.
  • the mirror 222 is swung symmetrically with respect to the posture in which the reflected laser light reaches the center of the image plane 200 as a reference.
  • the center of the area 212a represented by the laser scanning method coincides with the center of the image plane.
  • the gist of the present embodiment is not limited to this.
  • a head-mounted display is assumed, and the user's eyes 224 are shown on the opposite side of the projection plane such as a transparent screen.
  • the image may be drawn directly on the retina, and a screen is not essential.
  • a MEMS (Micro Electro Mechanical Systems) mirror is introduced.
  • a MEMS mirror is a compact, low power consumption device that can accurately control angle changes around two axes by electromagnetic drive.
  • the mirror driving method is not particularly limited.
  • the size of the area represented by the laser scanning method is expanded as the gaze point is further away from the center of the image plane 200 .
  • the gaze point 202a is at the center of the image plane 200 as shown in FIG.
  • the amplitude of the angle of the mirror 222 at this time, and by extension the amplitude of the scanning angle of the laser light, is taken as a reference value ⁇ std .
  • the reference value ⁇ std may be a predetermined minimum value.
  • the gazing point 202b is moved in the lower left direction of the image plane 200.
  • FIG. the amplitude ⁇ of the angle of the mirror 222 is made larger than ⁇ std .
  • the angular amplitude ⁇ of the mirror 222 is increased to extend the region 212b so that the edge of the region 212b represented by the laser scanning method maintains a constant distance from the gaze point 202b.
  • the amplitude ⁇ of the angle can be determined as follows.
  • tan ⁇ n ⁇ tan( ⁇ std )
  • the angular amplitude of the mirror 222 can be determined in the lateral direction as well.
  • the scanning angle and resolution are inversely proportional. That is, when expanding the region 212a by n times, the number of pixels per unit angle in the expansion direction is 1/n.
  • the resolution of the outer regions 214a, 214b represented by another display mechanism may be constant. According to such control, first, since the gaze point is always inside the regions 212a and 212b represented by the laser scanning method, it is difficult to gaze at the boundary portion where the resolution is different. Also, the closer the point of gaze is to the edge of the image plane 200, the smaller the difference in resolution between the regions, and the less conspicuous the boundary becomes. Therefore, even if the gaze point exceeds the area that can be represented by laser scanning, the boundary line will be difficult to recognize.
  • the reference value ⁇ std should be determined according to general visual characteristics, such as by setting the edge of the region 212a represented by the laser scanning method to be at least outside the effective field of view.
  • general visual characteristics such as by setting the edge of the region 212a represented by the laser scanning method to be at least outside the effective field of view.
  • the boundary becomes difficult to be visually recognized.
  • the resolution of the area 212a can be increased, and a high-quality image can be viewed without discomfort. Since the above effects are naturally obtained by controlling the amplitude of the angle of the mirror 222 in the laser scanning display method, an increase in the processing load can be suppressed.
  • FIG. 3 shows an appearance example of the head mounted display of this embodiment.
  • the head mounted display 100 is composed of an output mechanism section 102 and a mounting mechanism section 104 .
  • the mounting mechanism section 104 includes a mounting band 106 that is worn by the user so as to go around the head and fix the device.
  • the output mechanism unit 102 includes a housing 108 shaped to cover the left and right eyes of a user wearing the head-mounted display 100, and contains the above-described laser scanning display mechanism and other areas. and a mechanism for displaying an image of
  • the housing 108 there is also a mechanism for synthesizing the images of the two areas displayed, and an eyepiece lens that expands the viewing angle.
  • Stereoscopic vision may be realized by displaying stereo images with parallax for each of the left and right eyes.
  • a point-of-gaze detector that detects the user's point-of-regard with respect to the displayed image.
  • the head mounted display 100 may further include speakers and earphones at positions corresponding to the ears of the user when worn.
  • the head-mounted display 100 includes a stereo camera 110 on the front surface of the housing 108, and captures moving images of the surrounding real space in a field of view corresponding to the line of sight of the user.
  • the head mounted display 100 is provided with any one of various sensors such as an acceleration sensor, a gyro sensor, a geomagnetic sensor, and a GPS inside or outside the housing 108 for deriving the movement, attitude, position, etc. of the head mounted display 100. you can
  • FIG. 4 shows the internal circuit configuration of the head mounted display 100.
  • the head mounted display 100 includes a CPU (Central Processing Unit) 120 , a GPU (Graphics Processing Unit) 122 and a main memory 124 . These units are interconnected via a bus 140 .
  • An input/output interface 138 is also connected to the bus 140 .
  • Input/output interface 138 is connected to communication unit 126 , motion sensor 128 , stereo camera 110 , gaze point detector 130 , first display unit 132 , second display unit 134 , and audio output unit 136 .
  • the CPU 120 controls the entire head mounted display 100 by executing an operating system stored in the main memory 124 .
  • CPU 120 also executes various programs downloaded via communication unit 126 and reproduces electronic content.
  • the GPU 122 has a geometry engine function and a rendering processor function, draws a display image according to a drawing command from the CPU 120 , and outputs it to the first display unit 132 and the second display unit 134 .
  • the main memory 124 is composed of RAM (Random Access Memory) and stores programs and data necessary for processing by the CPU 120 and the like.
  • the communication unit 126 is a network interface such as a wired or wireless LAN or Bluetooth (registered trademark), and realizes communication with an external device.
  • the motion sensor 128 is composed of at least one of sensors such as an acceleration sensor, a gyro sensor, a geomagnetic sensor, and a GPS, and measures the position, posture, and movement of the head mounted display 100 and the head of the user wearing it. .
  • the stereo camera 110 is a pair of video cameras that shoot the surrounding real space from left and right viewpoints with a field of view corresponding to the user's viewpoint. If the moving images captured by the stereo camera 110 are immediately displayed on the first display unit 132 and the second display unit 134, so-called video see-through can be realized in which the real space in the direction the user faces can be seen as it is. Furthermore, augmented reality can be realized by drawing a virtual object on the image of the real object in the captured image. Also, by analyzing the images captured by the stereo camera 110 using a known technique such as Visual SLAM (Simultaneous Localization and Mapping), the position and posture of the head mounted display 100 and thus the user's head can be tracked.
  • Visual SLAM Simultaneous Localization and Mapping
  • the movement of the user's head may be acquired with higher accuracy.
  • the point-of-regard detector 130 detects the position coordinates of the point-of-regard of the user viewing the images displayed by the first display unit 132 and the second display unit 134 at a predetermined rate.
  • the gaze point detector 130 is composed of, for example, a mechanism that irradiates the eyeball with infrared rays and a camera that captures the reflected light. track.
  • various techniques have been put into practical use as means for detecting the gaze point, and any of them may be employed in the present embodiment.
  • the first display unit 132 is composed of the laser scanning display mechanism described in FIG. 2, and projects and displays an image of an area including the center of the image plane.
  • a partial image displayed by the first display unit 132 is hereinafter referred to as a "central image”.
  • the second display unit 134 displays an image of an area outside the central image.
  • a partial image displayed by the second display unit 134 is hereinafter referred to as a "peripheral image”.
  • the display method of the second display unit 134 is not particularly limited, and may be a display panel consisting of a two-dimensional array of light emitting elements such as a liquid crystal panel or an organic EL panel, or a laser scanning display mechanism similar to the first display unit 132. good. In any case, the second display unit 134 displays peripheral images with a lower resolution than the central image displayed by the first display unit 132 .
  • the first display unit 132 and the second display unit 134 respectively display the central image and peripheral images generated by the GPU 122 at a predetermined rate.
  • the images displayed by the first display unit 132 and the second display unit 134 are synthesized by a synthesizing mechanism, which will be described later, and viewed by the user as one display image.
  • stereoscopic vision may be realized by displaying stereoscopic images to the left and right eyes.
  • the stereo image is a pair of images obtained by synthesizing the central image and the peripheral images.
  • the audio output unit 136 includes speakers and earphones provided at positions corresponding to the ears of the user when the head mounted display 100 is worn, and allows the user to hear audio.
  • Some of the functions of the illustrated head mounted display 100 may be provided in an external device that has established communication with the head mounted display 100. For example, at least one of a process of determining an appropriate field of view and generating an overall image, a process of controlling the boundary between the central image and the peripheral image according to the gaze point, and a process of generating data of the central image and the peripheral image.
  • the processing may be performed by an external image generating device or an image providing server connected via a network.
  • FIG. 5 shows the functional block configuration of the head mounted display 100.
  • FIG. Each functional block shown in the figure can be realized by various circuits shown in FIG. It is realized by a program that exhibits various functions such as a display function and a communication function. Therefore, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof, and are not limited to either one.
  • the head mounted display 100 includes an image data acquisition unit 50 that acquires data of an image to be displayed, a gaze point acquisition unit 52 that acquires the user's gaze point with respect to the displayed image, and a center image size control that controls the size of the center image.
  • unit 54 a central image generating unit 56 that generates a central image
  • a peripheral image generating unit 58 that generates peripheral images
  • a central image output unit 60 that outputs the central image as a display target
  • a peripheral image output that outputs the peripheral images as display targets.
  • a unit 62 and an image synthesizing unit 64 for synthesizing the central image and the peripheral images to reach the user's eyes.
  • the image data acquisition unit 50 acquires data necessary for generating moving images or still images to be displayed.
  • the content represented by the image here is not particularly limited, and may be game images, movies, live images, recorded images, animations, photographs, environmental images, websites, documents, digital signage, or the like.
  • an image captured by the stereo camera 110 or an image obtained by processing the image or drawing a virtual object may be used.
  • the data acquisition destination of the image data acquisition unit 50 may vary.
  • the image data acquisition unit 50 may acquire moving image data that is stream-transferred by an external image generation device or server, or may draw or reproduce an image using data stored in an internal storage device.
  • the point-of-regard acquisition unit 52 includes the point-of-regard detector 130 shown in FIG. 4, and acquires the position coordinates of the user's point-of-regard with respect to the display image at a predetermined rate.
  • the display image may be an image within the field of view of the user, and projection of laser light is also referred to as "display".
  • the center image size control unit 54 controls the size of the center image according to the position of the gaze point of the user. Specifically, as described with reference to FIG. 2, the reference state is set when the point of gaze is at the center of the image plane, and the range is expanded so that the central image includes it as the point of gaze moves. As a result, the central image expands as the point of gaze moves away from the center, and narrows as the point of gaze approaches the center.
  • a central image size control 54 determines the size of the central image at a predetermined rate or on demand and provides that information to a central image generator 56 , a peripheral image generator 58 and a central image output 60 .
  • the central image generation unit 56 includes the GPU 122 shown in FIG. 4, acquires necessary data from the image data acquisition unit 50, and generates a central image.
  • the surrounding image generation unit 58 also includes the GPU 122 shown in FIG. 4, acquires necessary data from the image data acquisition unit 50, and generates a surrounding image.
  • the peripheral image is an image in which the area of the central image is blacked out (invalidated) in the entire display image. The boundary between the central image and the peripheral images is appropriately updated according to information from the central image size control section 54 .
  • the central image output section 60 includes the first display section 132 shown in FIG. 4, and displays the central image generated by the central image generating section 56 at a predetermined rate by laser scanning. Specifically, the central image output unit 60 determines the amplitude of the mirror angle for each of the two axes according to the size of the central image notified from the central image size control unit 54 . Then, laser light representing the color of each pixel of the central image is two-dimensionally scanned at a scanning angle corresponding to the amplitude, and projected onto the retina of the user or the screen in front of the user's eyes.
  • the peripheral image output unit 62 includes the second display unit 134 shown in FIG. 4, and displays the peripheral image by a display panel made up of light emitting elements or by laser scanning.
  • a display panel made up of light emitting elements or by laser scanning.
  • the central image area is not illuminated.
  • laser scanning method is employed, laser light is not output to the area of the central image. In any case, regardless of the size of the central image, the density of pixels for displaying the peripheral images is constant.
  • the image synthesizing unit 64 is an optical system that synthesizes the displayed central image and peripheral images so that they reach the eye as one image. That is, the image synthesizing unit 64 is a hardware structure that synthesizes the central image and the peripheral images without any deviation and displays the positional relationship between the first display unit 132 and the second display unit 134, and the arrangement required for the gaze point detector 130. It can take various forms depending on such as. A specific example will be described later.
  • FIG. 6 schematically shows changes in the central image and the peripheral images with respect to movement of the gaze point.
  • the upper part of the figure is the entire display image
  • the middle part is the central image
  • the lower part is the peripheral image.
  • the center image and the peripheral images indicate the range of the area for the entire image by making the outside of the range dark, and do not indicate the size of the image as data.
  • the central image is an area of a predetermined size (X std , Y std ) centering on it
  • the peripheral images are the areas of the central image from the entire image. is the area excluding
  • the size of the central image (X std , Y std ) is desirably determined based on the relationship between the angle with the line of sight as the central axis and the visual acuity, as described with reference to FIG.
  • the central image is expanded so as to include it.
  • the displacement vector of the gaze point from the image center is (.DELTA.x, .DELTA.y) as shown in the figure
  • Y 2*(
  • m x and m y are margins given to the distance between the point of interest and the two sides closest to the point of interest among the edges of the central image.
  • the edge of the central image is always controlled to be at least (m x , m y ) outside the gaze point.
  • (m x , m y ) it is desirable to prepare a decision rule in advance based on the relationship between the angle when the line of sight is the central axis and the visual acuity.
  • (m x , my ) (X std /2, Y std /2).
  • (m x , m y ) may be a function of the displacement vector ( ⁇ x, ⁇ y).
  • the peripheral image is an area obtained by excluding the area of the central image from the entire image.
  • the central image size control unit 54 may update the size of the central image at any time according to changes in the displacement vector of the gaze point, or may stepwise change the size of the central image when the displacement vector changes by a threshold value or more. Image size may be updated.
  • the center image generator 56 and the peripheral image generator 58 When stereoscopically viewing an image, the center image generator 56 and the peripheral image generator 58 generate the illustrated center image and peripheral image for both the left-eye image and the right-eye image. Further, the central image generating unit 56 and the peripheral image generating unit 58 generate a central image and a peripheral image that are distorted in a direction opposite to the distortion aberration and chromatic aberration of the eyepiece lens of the head mounted display 100. To visually recognize an image without distortion and color shift when viewed. Also, depending on the configuration of the first display unit 132, the shape of the central image is not limited to a rectangle, and naturally the shape of the black region of the peripheral images also depends on the shape of the central image.
  • FIG. 7 is a diagram for explaining changes in resolution with respect to the size of the central image.
  • the upper part of the drawing shows the entire display image, where (a) is a reference state in which the point of interest 72a is at the center, and (b) is a state in which the point of interest 72b is displaced from the center on the image plane.
  • the lower part shows the distribution of resolution in the horizontal directions AA' and BB' passing through the fixation points 72a and 72b on the image plane.
  • Resolution does not refer to the fineness of the image data, but to the number of physical representations of the image per unit area (or unit angle), that is, the pixel density.
  • the laser scanning display mechanism has the characteristic that the smaller the projection area, the higher the resolution. For example, in the case of a device capable of displaying an image of 600 pixels within a horizontal viewing angle of 30°, the angular resolution is 20 ppd (pixel per degree). If the amplitude of the angle of the mirror is halved in this state, an image of 600 pixels is similarly displayed in the range of the viewing angle of 15°, so the angular resolution is 40 ppd.
  • the resolution of that portion is maximized, and as shown in (b), the resolution decreases as the size of the central image 74b increases. Since the user sees the image centering on the gazing points 72a and 72b, the resolution gradually decreases as the line of sight moves toward the edge of the image, and the surrounding images appear to be connected smoothly. Also, since the peripheral image continues to be displayed at a constant resolution that is acceptable for viewing, the range of the field of view is maintained. As a result, regardless of how the point of gaze is displaced, it is possible to continue to visually recognize a wide field of view image with high definition while minimizing the sense of discomfort given by the area boundaries.
  • FIG. 8 is a flowchart showing a processing procedure for displaying an image by head mounted display 100 of the present embodiment.
  • This flowchart starts when the user wears the head mounted display 100 and selects content to be displayed via an input device or the like (not shown).
  • the image data acquisition unit 50 starts acquiring image data of the content.
  • the head-mounted display 100 may perform information processing such as a game internally, or establish communication with an external device to request image data, but the drawing particularly shows image display processing.
  • the head mounted display 100 displays an initial image of content (S10).
  • the initial image may also be an image obtained by synthesizing the central image displayed by the central image output unit 60 and the peripheral images displayed by the peripheral image output unit 62.
  • the central image has a size preset for the initial image. You can do it.
  • the point-of-regard acquisition unit 52 acquires the user's point-of-regard for the initial image (S12).
  • the center image size control unit 54 first confirms whether or not the gaze point is within the drawable range of the center image output unit 60, that is, laser scanning for displaying the center image (S14).
  • the central image size control unit 54 determines the size of the central image according to the position of the gaze point as shown in FIG. (S16). If the gaze point is outside the drawable range of the central image output unit 60 (N in S14), the central image size control unit 54 determines the maximum size of the central image, that is, the maximum drawable range (S18). As a result, the resolution of the center image becomes the lowest, and the possibility of the difference in resolution between the surrounding images being unnaturally recognized is suppressed. It should be noted that the minimum resolution of the central image and the resolution of the peripheral images may be made uniform so that the resolutions are made uniform when there is a gaze point in the peripheral images.
  • the central image size control unit 54 notifies the central image output unit 60 of the determined size of the central image at any time, thereby setting the amplitude of the angle of the MEMS mirror corresponding to the size (S20).
  • the central image generation unit 56 and the peripheral image generation unit 58 acquire necessary data from the image data acquisition unit 50 based on the size of the central image notified from the central image size control unit 54, and then generate the central image and the peripheral images. are respectively generated (S22).
  • the central image output unit 60 and the peripheral image output unit 62 display the central image and the peripheral images, respectively, so that the display image synthesized by the image synthesizing unit 64 reaches the user's eyes (S24).
  • FIG. 9 shows an example of the structure of the image synthesizing unit 64 that synthesizes the central image and the peripheral images for visual recognition in the head-mounted display 100 of the present embodiment.
  • This figure schematically shows the positional relationship between the user's eyes 224 and the display units including the first display unit 132 and the second display unit 134 when the head-mounted display 100 is worn, in a cross-sectional view in the vertical direction. .
  • FIGS. 10 to 13 which will be described later.
  • the first display unit 132 is provided with a laser light source 220, a mirror 222, and a center image screen 232 made of a member that diffuses and transmits reflected laser light.
  • a peripheral image display panel 234 consisting of a two-dimensional array of light emitting elements is provided as the second display unit 134.
  • the central image screen 232 and the peripheral image display panel 234 form an angle of 90°, and the central image and the peripheral image are combined by a half mirror 236 arranged at an angle of 45° between them.
  • Half mirror 236 may be a general one that transmits a predetermined percentage of incident light and reflects the rest.
  • the laser light reflected by the mirror 222 is diffusely transmitted by the central image screen 232, transmitted through the half mirror 236, and reaches the eye 224 via the eyepiece 238. That is, the first display unit 132 controls the operation of the mirror 222 and the like so that the original image is displayed in the state of being diffused and transmitted by the central image screen 232 .
  • the light from the peripheral image display panel 234 is reflected by the half mirror 236 and reaches the eye 224 via the eyepiece 238 .
  • the central image and the peripheral images are viewed in a combined state.
  • the positional relationship between the first display unit 132 and the second display unit 134 is reversed, the laser light from the mirror 222 is reflected by the half mirror 236, and the light from the peripheral image display panel 234 is transmitted and reaches the eye 224.
  • the peripheral image may be displayed by a laser scanning method.
  • the eyeball camera 240 included in the point-of-regard detector 130 can be arranged beside the eyepiece 238 as shown.
  • FIG. 10 shows another example of the structure of the image synthesizing unit 64 for synthesizing the central image and the peripheral images and making them visible in the head-mounted display 100 of the present embodiment.
  • This configuration is different from FIG. 9 in that a center image screen is not provided as the first display unit 132, and an image composed of laser light is directly projected onto the user's retina.
  • a known technique can be applied as described above for the method of projecting an image onto the retina. That is, the first display unit 132 controls the operation of the mirror 222 and the like so that the original image can be viewed when the laser light is converged by the pupil and formed on the retina.
  • the central image by projecting the central image through the half mirror 236, it is displayed on the peripheral image display panel 234 and is combined with the peripheral image reflected by the half mirror 236 for visual recognition.
  • the degree of freedom in arranging the eyeball shooting camera 240 included in the point-of-regard detector 130 increases. For example, as shown in the figure, it is also possible to photograph the eyeball from near the front via the half mirror 236 .
  • FIG. 11 shows another example of the structure of the image synthesizing unit 64 for synthesizing and visually recognizing the central image and peripheral images in the head-mounted display 100 of the present embodiment.
  • This configuration is different from FIG. 9 in that a central image screen 242 for diffusing and transmitting the laser light of the first display section 132 is provided integrally with a peripheral image display 244 and no half mirror is provided.
  • a transmissive display capable of transmitting light from a background in an area (non-display area) of a display panel where no image is displayed is known (see International Publication No. 2014/010585, for example). In the present embodiment, this is applied, and the peripheral image display 244 is formed by using a translucent material as the base material of the light transmission type display.
  • the area in which the peripheral image is not displayed on the peripheral image display 244 can be used as the central image screen 242 for diffusing and transmitting the laser light reflected by the mirror 222 .
  • the range covered by the peripheral images also changes. Therefore, the range of the central image screen 242 appropriately changes according to the size of the central image.
  • part of the center image output section 60 and the peripheral image output section 62 also serves as the image synthesizing section 64 .
  • the optical system can be simplified compared to projecting two types of images from different directions.
  • the eyeball camera 240 included in the point-of-regard detector 130 may be arranged on the side of the eyepiece 238 or the like.
  • FIG. 12 shows another example of the structure of the image synthesizing unit 64 for synthesizing the central image and the peripheral images and making them visible in the head-mounted display 100 of the present embodiment. Similar to FIG. 11, this configuration employs a light transmission type display to integrally provide a central image screen 242 and a peripheral image display 244 . On the other hand, it differs from FIG. 11 in that a half mirror 246 is provided between it and the eyepiece 238 . That is, the light from the center image screen 242 and the peripheral image display 244 is visually recognized through the half mirror 246 .
  • the half mirror 246 is arranged so as to form an angle of 45° with the plane of the eye 224, the image of the eye 224 can be photographed by the eye camera 240 due to its reflection. Therefore, the point of gaze can be detected with the same quality as when shooting from the front.
  • FIG. 13 shows another example of the structure of the image synthesizing unit 64 for synthesizing the central image and the peripheral images and making them visible in the head-mounted display 100 of the present embodiment.
  • a center image screen 250 and a peripheral image display panel 252 are provided separately, as in FIG. Image synthesis is realized by guiding each image in an appropriate direction.
  • the center image screen 250 and the peripheral image display panel 252 and their respective optical systems 254 and 256 are arranged so as to avoid the front of the eye 224, so that the eyeball photographing optical system 258 and the eyeball photographing optical system 258 are arranged.
  • An eye camera 240 can be placed in front of the eye 224 . This facilitates the detection of the gaze point.
  • the positions and orientations of the central image screen 250 and the peripheral image display panel 252 may vary depending on the design of the central image optical system 254 and the peripheral image optical system 256 .
  • the display image is divided into the central image and the peripheral images, which are displayed by individual mechanisms so that the central image can be represented with higher resolution, and then synthesized and visually recognized.
  • the display mechanism for displaying the central image is of a laser scanning method in which an image is formed by two-dimensionally scanning a laser by reflection on a mirror. According to the laser scanning method, by controlling the amplitude of the angle of the mirror, it is possible to change the display range and the resolution as the density of the pixels representing it. Therefore, compared to a display panel having a fixed density of light emitting elements, it is easier to control the distribution of resolution in a display image.
  • the amplitude of the mirror angle is changed so that the central image is expanded to include it.
  • the boundary line between the central image and the peripheral images is separated from the point of interest, making it difficult to recognize the difference in resolution at the boundary.
  • the resolution gradually decreases as the center image expands, the actual resolution difference also becomes smaller.
  • an image with a distribution of resolutions can be recognized without a sense of incongruity without high-load processing such as processing of image data.
  • resources can be concentrated on areas with high discrimination ability, and even wide-field images can be seen with low delay and high definition.
  • the implementation of the present invention is not limited to head-mounted displays, but can also be applied to projectors and general television receivers.
  • the internal structure may be the same as in any one of FIGS.
  • a projector instead of the eyepiece lens 238, a projection lens for projecting an image onto an external screen or the like is provided.
  • a screen through which an image is transmitted is used as the display surface.
  • a transmissive display that implements the peripheral image display 244 can be used as it is.
  • the point-of-regard detector naturally has a camera for taking eyeballs in the direction of the eyes of the user looking at the screen or display surface.
  • the size of the central image is controlled according to the movement of the gaze point. The size may be controlled so that it is included in the central image. Since there is a high possibility that a main object or important area will be watched, it is conceivable that the same effects as in the present embodiment can be obtained even in this manner.
  • the present invention can be used for display devices such as head-mounted displays, projectors, and television receivers, and image display systems including at least one of them.
  • image data acquisition unit 52 fixation point acquisition unit, 54 center image size control unit, 56 center image generation unit, 58 peripheral image generation unit, 60 center image output unit, 62 peripheral image output unit, 64 image synthesis unit, 100 head Mount display, 110 stereo camera, 120 CPU, 122 GPU, 124 main memory, 130 gaze point detector, 132 first display unit, 134 second display unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

本発明の画像表示装置は、表示画像のうち、画像平面における中心部分を表す中心画像を生成する中心画像生成部と、前記表示画像のうち、前記中心画像の外側の領域を表す周辺画像を生成する周辺画像生成部と、画素を表すレーザ光を、ミラー(222)の反射により2次元走査させて画像を投影するレーザ走査方式により、前記中心画像を表す中心画像出力部と、前記周辺画像を表示する周辺画像出力部(234)と、前記中心画像と前記周辺画像を合成して視認させる画像合成部(236)と、を備えたことを特徴とする。

Description

画像表示装置および画像表示方法
 本発明は、ユーザに画像を視認させる画像表示装置および画像表示方法に関する。
 対象空間を自由な視点から鑑賞できる画像表示システムが普及している。例えばヘッドマウントディスプレイにパノラマ映像を表示し、ヘッドマウントディスプレイを装着したユーザが頭部を回転させると視線方向に応じたパノラマ画像が表示されるようにしたシステムが開発されている。ヘッドマウントディスプレイを利用することで、映像への没入感を高めたり、ゲームなどのアプリケーションの操作性を向上させたりすることもできる。また、ヘッドマウントディスプレイを装着したユーザが物理的に移動することで映像として表示された空間内を仮想的に歩き回ることのできるウォークスルーシステムも開発されている。
 映像体験の質を高めるには、広い視野の画像を高精細に表現することが求められる。ところが解像度や視野角を拡張するほど処理すべき画像のデータサイズが増大し、処理や転送に時間を要する結果、表示までの遅延が生じやすくなる。そこで、視野の中心から端に至るほど視力が低下する人の視覚特性を利用し、中心領域とその外側で画像の解像度に差を設け、視認上の画質を維持しつつ処理の無駄を軽減させる技術が提案されている(例えば特許文献1参照)。
米国特許第10140695号明細書
 ヘッドマウントディスプレイに限らず画像表示技術の分野において、広い視野で精細な画像を低遅延に表示できるようにすることは常に共通の課題である。例えば特許文献1の技術の場合、中心領域とそれ以外の領域で個別にディスプレイを設け、表示解像度に明確な差を与えることにより、処理リソースの適切な分配が容易になる。一方で、個別に表された解像度の異なる画像が合成されることにより、境界線が不自然に見えユーザに違和感を与えてしまう問題が生じ得る。これを解消するには、データ上で解像度を滑らかつなぐことが考えられるが、画像加工の処理が別途必要となる。高解像度の領域をユーザの注視点に連動させる場合は特に、変動する領域の切り取りや解像度調整のため、看過できない処理時間が生じることが考えられる。
 本発明はこうした課題に鑑みてなされたものであり、その目的は、高精細、広視野の画像を、違和感なく容易に視認させることのできる技術を提供することにある。
 本発明のある態様は画像表示装置に関する。この画像表示装置は、表示画像のうち、画像平面における中心部分を表す中心画像を生成する中心画像生成部と、表示画像のうち、中心画像の外側の領域を表す周辺画像を生成する周辺画像生成部と、画素を表すレーザ光を、ミラーの反射により2次元走査させて画像を投影するレーザ走査方式により、中心画像を表す中心画像出力部と、周辺画像を表示する周辺画像出力部と、中心画像と周辺画像を合成して視認させる画像合成部と、を備えたことを特徴とする。
 本発明の別の態様は画像表示方法に関する。この画像表示方法は、表示画像のうち、画像平面における中心部分を表す中心画像を生成するステップと、表示画像のうち、中心画像の外側の領域を表す周辺画像を生成するステップと、画素を表すレーザ光を、ミラーの反射により2次元走査させて画像を投影するレーザ走査方式の中心画像出力部により、中心画像を表すステップと、周辺画像出力部により、周辺画像を表示するステップと、中心画像と前記周辺画像を合成して視認させるステップと、を含むことを特徴とする。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、コンピュータプログラム、コンピュータプログラムを記録した記録媒体などの間で変換したものもまた、本発明の態様として有効である。
 本発明によると、高精細、広視野の画像を、違和感なく容易に視認させることができる。
人の視覚特性と本実施の形態の表示形式との関係を説明するための図である。 本実施の形態で採用する、レーザ走査方式の表示機構と画像上の領域との関係を説明するための図である。 本実施の形態のヘッドマウントディスプレイの外観例を示す図である。 本実施の形態のヘッドマウントディスプレイの内部回路構成を示す図である。 本実施の形態のヘッドマウントディスプレイの機能ブロックの構成を示す図である。 本実施の形態における、注視点の移動に対する中心画像と周辺画像の変化を模式的に示す図である。 本実施の形態における、中心画像のサイズに対する解像度の変化を説明するための図である。 本実施の形態のヘッドマウントディスプレイが画像を表示する処理手順を示すフローチャートである。 本実施の形態のヘッドマウントディスプレイにおいて、中心画像と周辺画像を合成して視認させる画像合成部の構造例を示す図である。 本実施の形態のヘッドマウントディスプレイにおいて、中心画像と周辺画像を合成して視認させる画像合成部の構造の別の例を示す図である。 本実施の形態のヘッドマウントディスプレイにおいて、中心画像と周辺画像を合成して視認させる画像合成部の構造の別の例を示す図である。 本実施の形態のヘッドマウントディスプレイにおいて、中心画像と周辺画像を合成して視認させる画像合成部の構造の別の例を示す図である。 本実施の形態のヘッドマウントディスプレイにおいて、中心画像と周辺画像を合成して視認させる画像合成部の構造の別の例を示す図である。
 図1は、人の視覚特性と本実施の形態の表示形式との関係を説明するための図である。まず(a)に示す画像平面200において、丸印で示したユーザの注視点202が中心付近に存在するとする。一般的な人の視覚特性として、瞳孔から注視点へ向かう視線を中心軸として5°以内に対応する領域204は弁別視野と呼ばれ、視力などの視機能が優れている。また水平方向に約30°、垂直方向に約20°以内に対応する領域206は有効視野と呼ばれ、眼球運動だけで瞬時に情報を受容できる。
 さらに水平方向に60~90°、垂直方向に45~70°以内に対応する領域208は安定注視野、水平方向に100~200°、垂直方向に85~130°以内に対応する領域210は補助視野、というように、注視点202から離れるほど情報の識別能力が低くなる。この特性を踏まえ、本実施の形態では(b)に示すように、注視点202を含む所定範囲の領域212を、その外側の領域214より高い解像度で表すことを基本とする。これを実現するため、領域212と領域214を異なる表示機構で表し、最終的にはそれらが合成された状態で視認されるようにする。
 注視点202を含む領域212の表示機構として、本実施の形態ではレーザ走査方式を採用する。レーザ走査方式とは、画素に対応するレーザ光を、偏向用のミラーを用いて2次元走査させることにより、投影面に画像を形成する技術である。例えばレーザ光をユーザの瞳孔に収束させ、網膜に画像を投影する技術は、主にウェアラブルディスプレイへの適用が進められている(例えば国際公開第2009/066465号参照)。また、外部のスクリーンなどに画像を投影する小型のプロジェクタも実用化されている(例えば特開2017-83657号公報参照)。
 図2は本実施の形態で採用する、レーザ走査方式の表示機構と画像上の領域との関係を説明するための図である。(a)、(b)の上段は、レーザ走査方式の表示機構を側面から見た模式図である。レーザ光源220は赤、青、緑の成分を含むレーザ光を出力する。当該レーザ光はミラー222により反射され投影面(画像平面200)に投影される。
 ミラー222を2軸周りで揺動させることにより、レーザ光が投影面上で2次元走査され、各時刻で出力したレーザ光を画素とする画像が形成される。なおこの例でミラー222は、レーザの反射光が画像平面200の中心に到達する状態での姿勢を基準として対称に揺動させる。これによりレーザ走査方式で表現する領域212aの中心は、画像平面の中心と一致することになる。ただし本実施の形態をこれに限る主旨ではない。
 また図ではヘッドマウントディスプレイを想定し、透過性を有するスクリーンなどの投影面の逆側にユーザの目224を示している。ただし上述のとおり網膜に直描してもよく、スクリーンは必須でない。ミラー222として、例えばMEMS(Micro Electro Mechanical Systems)ミラーを導入する。MEMSミラーは、電磁駆動により2軸周りの角度変化を精度よく制御できる、小型かつ低消費電力の装置である。ただしミラーの駆動方式は特に限定されない。
 本実施の形態では、注視点の移動に応じてミラー222の角度の振幅を変化させることにより、画像平面200の中心から注視点が離れるほど、レーザ走査方式で表現する領域のサイズを拡張させる。まず(a)に示すケースは、図1で示したように、注視点202aが画像平面200の中心にある。このときのミラー222の角度の振幅、ひいてはレーザ光の走査角の振幅を基準値θstdとする。基準値θstdは、あらかじめ定められた最小値でよい。
 一方、(b)に示すケースは、注視点202bが画像平面200の左下方向に移動している。このとき、ミラー222の角度の振幅θを、θstdより大きくする。具体的には、レーザ走査方式で表現する領域212bの縁が注視点202bから一定の距離を保つように、ミラー222の角度の振幅θを増加させ、領域212bを拡張させる。例えば(a)に示す基準状態の領域212aを縦方向にn倍に拡張する場合、次のように角度の振幅θを決定できる。
 tanθ=n×tan(θstd
当然、横方向についても同様に、ミラー222の角度の振幅を決定できる。
 レーザ走査による表示方式では、フレームレートを固定とした場合、走査角と解像度が反比例の関係となる。すなわち領域212aをn倍に拡張する場合、拡張方向における単位角度当たりの画素の数は1/nとなる。一方、別の表示機構によって表される外側の領域214a、214bの解像度は一定でよい。このような制御によれば、まず、注視点は常に、レーザ走査方式で表現する領域212a、212bの内部にあるため、解像度に差が生じている境界部分が注視されづらい。また注視点が画像平面200の端に近づくほど、領域間の解像度差が小さくなるため境界が目立ちにくくなる。そのため仮に注視点がレーザ走査によって表現できる領域を超えても、境界線が認識されづらくなる。
 なお(a)に示す基準状態においては、レーザ走査方式で表現する領域212aの縁が、少なくとも有効視野の外側になるようにするなど、一般的な視覚特性に応じて基準値θstdを決定すれば、解像度にある程度の差があってもその境界が視認されづらくなる。これにより、領域212aの解像度を高くし、高品質な画像を違和感なく見せることができる。以上のような効果は、レーザ走査型の表示方式においてミラー222の角度の振幅を制御することにより自ずと得られるため、処理負荷の増大を抑えることができる。
 本実施の形態を適用できる表示装置は特に限定されないが、以後、ヘッドマウントディスプレイを例に説明する。図3は、本実施の形態のヘッドマウントディスプレイの外観例を示している。この例においてヘッドマウントディスプレイ100は、出力機構部102および装着機構部104で構成される。装着機構部104は、ユーザが被ることにより頭部を一周し装置の固定を実現する装着バンド106を含む。出力機構部102は、ヘッドマウントディスプレイ100をユーザが装着した状態において左右の目を覆うような形状の筐体108を含み、内部には上述したようなレーザ走査方式の表示機構と、その他の領域の画像を表示する機構とを備える。
 筐体108内部にはさらに、表示された2領域の画像を合成する機構、および、視野角を拡大する接眼レンズを備える。左右の目のそれぞれに、視差を有するステレオ画像を表示することにより立体視を実現してもよい。筐体108内部にはさらに、表示された画像に対するユーザの注視点を検出する注視点検出器を備える。
 ヘッドマウントディスプレイ100はさらに、装着時にユーザの耳に対応する位置にスピーカーやイヤホンを備えてよい。この例でヘッドマウントディスプレイ100は、筐体108の前面にステレオカメラ110を備え、ユーザの視線に対応する視野で周囲の実空間を動画撮影する。さらにヘッドマウントディスプレイ100は筐体108の内部あるいは外部に、加速度センサ、ジャイロセンサ、地磁気センサ、GPSなど、ヘッドマウントディスプレイ100の動き、姿勢、位置などを導出するための各種センサのいずれかを備えてよい。
 図4は、ヘッドマウントディスプレイ100の内部回路構成を示している。ヘッドマウントディスプレイ100は、CPU(Central Processing Unit)120、GPU(Graphics Processing Unit)122、メインメモリ124を含む。これらの各部は、バス140を介して相互に接続されている。バス140にはさらに入出力インターフェース138が接続されている。入出力インターフェース138には、通信部126、モーションセンサ128、ステレオカメラ110、注視点検出器130、第1表示部132、第2表示部134、および音声出力部136が接続される。
 CPU120は、メインメモリ124に格納されているオペレーティングシステムを実行することによりヘッドマウントディスプレイ100の全体を制御する。CPU120はまた、通信部126を介してダウンロードされた各種プログラムを実行したり、電子コンテンツを再生したりする。GPU122は、ジオメトリエンジンの機能とレンダリングプロセッサの機能とを有し、CPU120からの描画命令に従って表示画像を描画し、第1表示部132、第2表示部134に出力する。
 メインメモリ124はRAM(Random Access Memory)により構成され、CPU120などの処理に必要なプログラムやデータを記憶する。通信部126は、有線又は無線LANやBluetooth(登録商標)などのネットワークインターフェースであり、外部の装置との通信を実現する。モーションセンサ128は加速度センサ、ジャイロセンサ、地磁気センサ、GPSなどのセンサの少なくともいずれかで構成され、ヘッドマウントディスプレイ100、ひいてはそれを装着しているユーザの頭部の位置、姿勢、動きを計測する。
 ステレオカメラ110は図3で示したとおり、ユーザの視点に対応する視野で、周囲の実空間を左右の視点から撮影するビデオカメラの対である。ステレオカメラ110が撮影した動画像を第1表示部132、第2表示部134に即時に表示させれば、ユーザが向いた方向の実空間の様子がそのまま見える、いわゆるビデオシースルーを実現できる。さらに撮影画像に写っている実物体の像上に仮想オブジェクトを描画すれば、拡張現実を実現できる。またステレオカメラ110が撮影した画像を、Visual SLAM(Simultaneous Localization and Mapping)など公知の技術で解析することにより、ヘッドマウントディスプレイ100、ひいてはユーザの頭部の位置や姿勢を追跡できる。
 撮影画像の解析結果とモーションセンサ128の計測結果を統合することにより、より高い精度でユーザ頭部の動きを取得してもよい。これにより、頭部の動きに応じた視野での表示画像を高精度に生成でき、映像世界への没入感を高められる。また、ユーザの頭部の動きを、コンテンツに対するユーザ操作として受け付け、それに応じて処理を分岐させることもできる。
 注視点検出器130は、第1表示部132、第2表示部134により表される画像を見ているユーザの注視点の位置座標を所定のレートで検出する。注視点検出器130は例えば、眼球に赤外線を照射する機構と、その反射光を撮影するカメラで構成され、撮影画像から瞳孔の向きを特定することにより、画像上でユーザが注視しているポイントを追跡する。その他、注視点を検出する手段としては様々な技術が実用化されており、本実施の形態ではそのいずれを採用してもよい。
 第1表示部132は図2で説明したレーザ走査方式の表示機構で構成され、画像平面の中心を含む領域の画像を投影表示する。以後、第1表示部132により表される部分的な画像を「中心画像」と呼ぶ。第2表示部134は、中心画像の外側の領域の画像を表示する。以後、第2表示部134により表される部分的な画像を「周辺画像」と呼ぶ。第2表示部134の表示方式は特に限定されず、液晶パネルや有機ELパネルなど発光素子の2次元配列からなる表示パネルでもよいし、第1表示部132と同様のレーザ走査方式の表示機構でもよい。いずれにしろ第2表示部134は、第1表示部132が表示する中心画像より低い解像度で周辺画像を表示する。
 第1表示部132、第2表示部134はそれぞれ、GPU122が生成した中心画像と周辺画像を所定のレートで表示する。第1表示部132、第2表示部134が表示した画像は、後述する合成機構により合成され、1つの表示画像としてユーザに視認される。なお上述のとおり、左右の目に対しステレオ画像を表示することにより立体視を実現してもよい。この場合、ステレオ画像は、中心画像と周辺画像を合成した画像の対となる。音声出力部136は、ヘッドマウントディスプレイ100の装着時にユーザの耳に対応する位置に設けたスピーカーやイヤホンで構成され、ユーザに音声を聞かせる。
 なお図示するヘッドマウントディスプレイ100の機能の一部は、ヘッドマウントディスプレイ100と通信を確立した外部の装置に設けてもよい。例えば、適切な視野を決定し全体的な画像を生成する処理、注視点に応じて中心画像と周辺画像の境界を制御する処理、中心画像と周辺画像のデータを生成する処理、などの少なくとも一部は、外部の画像生成装置やネットワークを介して接続した画像提供サーバが行ってもよい。
 図5は、ヘッドマウントディスプレイ100の機能ブロックの構成を示している。同図に示す各機能ブロックは、ハードウェア的には、図4で示した各種回路によりで実現でき、ソフトウェア的には、記録媒体からメインメモリ124にロードした、情報処理機能、画像処理機能、表示機能、通信機能などの諸機能を発揮するプログラムで実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。
 ヘッドマウントディスプレイ100は、表示対象の画像のデータを取得する画像データ取得部50、表示された画像に対するユーザの注視点を取得する注視点取得部52、中心画像のサイズを制御する中心画像サイズ制御部54、中心画像を生成する中心画像生成部56、周辺画像を生成する周辺画像生成部58、中心画像を表示対象として出力する中心画像出力部60、周辺画像を表示対象として出力する周辺画像出力部62、中心画像と周辺画像を合成した状態でユーザの目に到達させる画像合成部64を備える。
 画像データ取得部50は、表示すべき動画像または静止画像の生成に必要なデータを取得する。ここで画像が表す内容は特に限定されず、ゲーム画像、映画、ライブ映像、録画映像、アニメーション、写真、環境映像、ウェブサイト、文書、デジタルサイネージなどのいずれでもよい。またステレオカメラ110が撮影した画像や、それに加工を施したり仮想オブジェクトを描画したりした画像であってもよい。このような画像の内容によって、画像データ取得部50によるデータの取得先は様々でよい。
 例えば画像データ取得部50は、外部の画像生成装置やサーバがストリーム転送する動画像のデータを取得してもよいし、内部の記憶装置に格納されたデータを用いて画像を描画したり再生したりしてもよい。注視点取得部52は図4で示した注視点検出器130を含み、表示画像に対するユーザの注視点の位置座標を所定のレートで取得する。なお本実施の形態において表示画像とは、ユーザの視界に入る画像であればよく、レーザ光の投影も「表示」としている。
 中心画像サイズ制御部54は、ユーザの注視点の位置に応じて中心画像のサイズを制御する。具体的には図2で説明したように、注視点が画像平面の中心にあるときを基準状態とし、注視点の移動に応じて中心画像がそれを内包するように範囲を拡張する。結果として中心画像は、注視点が中心から離れるほど広がり、注視点が中心に近づくほど狭くなる。中心画像サイズ制御部54は、所定のレートまたは必要に応じて中心画像のサイズを決定し、中心画像生成部56、周辺画像生成部58、および中心画像出力部60にその情報を供給する。
 中心画像生成部56は図4で示したGPU122を含み、画像データ取得部50から必要なデータを取得して中心画像を生成する。周辺画像生成部58も図4で示したGPU122を含み、画像データ取得部50から必要なデータを取得して周辺画像を生成する。ここで周辺画像は、表示画像全体のうち、中心画像の領域を黒抜きにした(無効にした)画像である。中心画像と周辺画像の境界は、中心画像サイズ制御部54からの情報に従い適宜更新する。
 中心画像出力部60は、図4で示した第1表示部132を含み、中心画像生成部56が生成した中心画像を、レーザ走査により所定のレートで表示する。詳細には中心画像出力部60は、中心画像サイズ制御部54から通知された中心画像のサイズに応じて、ミラーの角度の振幅を2軸周りのそれぞれに対して決定する。そして中心画像の各画素の色を表すレーザ光を、当該振幅に対応する走査角で2次元走査させることにより、ユーザの網膜または眼前のスクリーンなどに投影する。
 周辺画像出力部62は、図4で示した第2表示部134を含み、発光素子からなる表示パネルまたはレーザ走査により周辺画像を表示する。表示パネルを用いる場合、中心画像の領域は発光させない。レーザ走査方式を採用する場合、中心画像の領域に対してはレーザ光を出力しない。いずれにしろ中心画像のサイズによらず、周辺画像を表示するための画素の密度は一定である。
 画像合成部64は、表示された中心画像と周辺画像が1つの画像として目に到達するように合成する光学系である。すなわち画像合成部64は、中心画像と周辺画像をずれなく合成して見せるハードウェア構造であり、第1表示部132と第2表示部134の位置関係や、注視点検出器130に求められる配置などに応じて様々な形態をとり得る。具体例は後述する。
 図6は、注視点の移動に対する中心画像と周辺画像の変化を模式的に示している。図の上段は表示画像全体、中段は中心画像、下段は周辺画像である。なお中心画像および周辺画像は、画像全体に対する領域の範囲を、範囲外を暗色とすることで示しており、データとしての画像のサイズを示すものではない。(a)に示すように注視点70aが画像全体の中心にある場合、中心画像はそれを中心とする所定サイズ(Xstd,Ystd)の領域、周辺画像は、画像全体から中心画像の領域を除いた領域とする。
 ここで中心画像のサイズ(Xstd,Ystd)は、厳密には図1で説明したように、視線を中心軸としたときの角度と視力との関係に基づき決定することが望ましい。一方、(b)に示すように、注視点70bが画像平面上で中心から変位した場合、それを内包するように中心画像を拡張する。例えば図示するように画像中心からの注視点の変位ベクトルが(Δx,Δy)のとき、中心画像のサイズ(X,Y)を次のように決定する。
 X=2*(|Δx|+m
 Y=2*(|Δy|+m
 ここでm、mは、中心画像の縁のうち注視点の最近傍にある2辺と注視点との距離に与えるマージンである。換言すれば、中心画像の縁は常に、注視点から少なくとも(m、m)だけ外側に位置するように制御する。(m,m)も、視線を中心軸としたときの角度と視力との関係に基づき、決定規則をあらかじめ準備しておくことが望ましい。例えば(m,m)=(Xstd/2,Ystd/2)としてもよい。あるいは(m、m)を、変位ベクトル(Δx,Δy)の関数としてもよい。この場合も周辺画像は、画像全体から中心画像の領域を除いた領域とする。
 なお中心画像サイズ制御部54は、注視点の変位ベクトルの変化に応じて随時、中心画像のサイズを更新してもよいし、変位ベクトルがしきい値以上変化したときなどに、段階的に中心画像のサイズを更新してもよい。画像を立体視させる場合、中心画像生成部56および周辺画像生成部58は、左目用画像と右目用画像の双方について、図示するような中心画像、周辺画像を生成する。また中心画像生成部56および周辺画像生成部58は、ヘッドマウントディスプレイ100の接眼レンズによる歪曲収差や色収差と逆方向の歪みを与えた中心画像、周辺画像を生成することにより、接眼レンズを介して見たときに歪みや色ずれのない画像が視認されるようにする。また第1表示部132の構成によっては、中心画像の形状は矩形に限定されず、当然、周辺画像の黒抜きの領域の形状も中心画像の形状に依存する。
 図7は、中心画像のサイズに対する解像度の変化を説明するための図である。図の上段は表示画像全体を示しており、(a)は注視点72aが中心にある基準状態、(b)は注視点72bが画像平面上で中心から変位した状態とする。下段は、画像平面上、注視点72a、72bを通る水平方向AA’とBB’における解像度の分布を示している。(a)に示す、基準状態における最小サイズの中心画像74aと比較し、(b)に示すように中心画像74bが広がると、その部分の解像度が低くなる。
 ここで「解像度」とは、画像のデータ上の細かさではなく、単位面積(または単位角度)あたりの物理的な画像の描写数、すなわち画素密度を指す。レーザ走査方式の表示機構は上述のとおり、投影面積が小さいほど解像度が増加する特性を持つ。例えば水平方向の視野角30°の範囲に600画素分の画像を表示できる装置の場合、角解像度は20ppd(pixel per degree)である。その状態でミラーの角度の振幅を半減させると、視野角15°の範囲に同じく600画素分の画像が表示されることになるため、角解像度は40ppdになる。
 この特性により、(a)に示す最小サイズの中心画像74aでは、その部分の解像度が最大となり、(b)に示すように中心画像74bのサイズが大きくなるほど解像度が減少する。ユーザは注視点72a、72bを中心に画像を見るため、視線を画像端方向に移すに従い解像度が逓減し周辺画像と滑らかにつながるように見える。また周辺画像は鑑賞に堪え得る一定の解像度で表示され続けているため、視野の範囲は維持される。結果として注視点がどのように変位しようと、領域境界が与える違和感を最小限に、広い視野の画像を高精細に視認させ続けることができる。
 次に、以上の構成により実現できるヘッドマウントディスプレイ100の動作について説明する。図8は、本実施の形態のヘッドマウントディスプレイ100が画像を表示する処理手順を示すフローチャートである。このフローチャートは、ユーザがヘッドマウントディスプレイ100を装着し、図示しない入力装置などを介して表示対象のコンテンツを選択することにより開始される。これに応じて画像データ取得部50は、当該コンテンツの画像データ取得を開始する。なおヘッドマウントディスプレイ100は、内部でゲームなどの情報処理を行ったり、外部の装置と通信を確立し画像データを要求したりしてよいが、図では特に画像の表示処理について示している。
 まずヘッドマウントディスプレイ100は、コンテンツの初期画像を表示する(S10)。当該初期画像も、中心画像出力部60が表示した中心画像と周辺画像出力部62が表示した周辺画像を合成した画像でよく、この場合の中心画像は初期画像に対しあらかじめ設定されたサイズを有していてよい。次に注視点取得部52は、初期画像に対するユーザの注視点を取得する(S12)。すると中心画像サイズ制御部54はまず、当該注視点が、中心画像出力部60、すなわち中心画像を表示するためのレーザ走査による描画可能範囲以内にあるか否かを確認する(S14)。
 注視点が中心画像出力部60の描画可能範囲以内にある場合(S14のY)、中心画像サイズ制御部54は、図6で示したように注視点の位置に応じて中心画像のサイズを決定する(S16)。注視点が中心画像出力部60の描画可能範囲の外にある場合(S14のN)、中心画像サイズ制御部54は中心画像を最大サイズ、すなわち描画可能な最大範囲に決定する(S18)。これにより、中心画像の解像度は最低となり、周辺画像との解像度の差が不自然に視認される可能性を抑える。なお中心画像の解像度の最小値と、周辺画像の解像度を統一するように構成することにより、周辺画像に注視点があるときは解像度が均一化されるようにしてもよい。
 中心画像サイズ制御部54は随時、決定した中心画像のサイズを中心画像出力部60に通知することにより、当該サイズに対応する、MEMSミラーの角度の振幅を設定させる(S20)。一方、中心画像生成部56および周辺画像生成部58は、中心画像サイズ制御部54から通知された中心画像のサイズに基づき、画像データ取得部50から必要なデータを取得したうえ中心画像および周辺画像をそれぞれ生成する(S22)。そして中心画像出力部60および周辺画像出力部62がそれぞれ、中心画像と周辺画像を表示することで、画像合成部64により合成された表示画像がユーザの目に到達する(S24)。
 コンテンツの表示を終了させるユーザ操作がなされるなど、表示を終了する必要が生じない期間は、S12からS24の処理を繰り返す(S26のN)。これにより、注視点の移動によって中心画像の範囲と解像度を変化させながら画像表示が継続される。表示を終了する必要が生じたら全処理を終了させる(S26のY)。
 次に、中心画像と周辺画像を合成して視認させる具体的な構造について説明する。図9は本実施の形態のヘッドマウントディスプレイ100において、中心画像と周辺画像を合成して視認させる画像合成部64の構造例を示している。同図はヘッドマウントディスプレイ100を装着した際のユーザの目224と、第1表示部132、第2表示部134を含む表示部の位置関係を、垂直方向の断面図で模式的に示している。後述する図10~13も同様である。
 図9の態様では、第1表示部132として、レーザ光源220、ミラー222とともに、反射したレーザ光を拡散透過させる部材からなる中心画像用スクリーン232を設ける。一方、第2表示部134として、発光素子の2次元配列からなる周辺画像用ディスプレイパネル234を設ける。そして中心画像用スクリーン232と周辺画像用ディスプレイパネル234のなす角度を90°とし、その中間に、それぞれと45°をなすように配置したハーフミラー236により、中心画像と周辺画像を合成する。ハーフミラー236は、入射光のうち所定の割合を透過させ、残りを反射させる一般的なものでよい。
 図の例では、ミラー222で反射したレーザ光は、中心画像用スクリーン232で拡散透過し、ハーフミラー236を透過し接眼レンズ238を介して目224に到達する。すなわち第1表示部132は、中心画像用スクリーン232で拡散透過された状態で本来の像が表されるようにミラー222の動作等を制御する。一方、周辺画像用ディスプレイパネル234からの光はハーフミラー236で反射し、接眼レンズ238を介して目224に到達する。これにより中心画像と周辺画像が合成された状態で視認される。
 ただし第1表示部132と第2表示部134の位置関係を逆とし、ミラー222からのレーザ光をハーフミラー236で反射させ、周辺画像用ディスプレイパネル234からの光を透過させて目224に到達させてもよい。また周辺画像用ディスプレイパネル234の代わりに、レーザ走査方式により周辺画像を表示してもよい。いずれにしろこの構成では、注視点検出器130に含まれる、眼球撮影用カメラ240は、図示するように接眼レンズ238の脇などに配置することが考えられる。
 図10は本実施の形態のヘッドマウントディスプレイ100において、中心画像と周辺画像を合成して視認させる画像合成部64の構造の別の例を示している。この構成では、第1表示部132として中心画像用スクリーンを設けず、レーザ光からなる画像をユーザの網膜に直接投影させる点が図9と異なる。マックスウェル視の原理により、映像を網膜に投影する手法については上述のとおり公知の技術を応用できる。つまり第1表示部132は、レーザ光が瞳孔で収束され網膜に結像したとき本来の像が視認されるようにミラー222の動作等を制御する。
 ただし本実施の形態では、ハーフミラー236を介して中心画像を投影することにより、周辺画像用ディスプレイパネル234で表示されハーフミラー236で反射される周辺画像と合成して視認させる。なおこの場合、中心画像用スクリーンを設けないことにより、注視点検出器130に含まれる眼球撮影用カメラ240の配置の自由度が高くなる。例えば図示するように、ハーフミラー236を介して眼球を正面近傍から撮影することも可能になる。
 図11は本実施の形態のヘッドマウントディスプレイ100において、中心画像と周辺画像を合成して視認させる画像合成部64の構造の別の例を示している。この構成では、第1表示部132のレーザ光を拡散透過させる中心画像用スクリーン242を、周辺画像用ディスプレイ244と一体的に設け、ハーフミラーを設けない点が図9と異なる。ディスプレイパネルのうち画像を表示していない領域(非表示領域)においては背景からの光を透過可能な光透過型ディスプレイが知られている(例えば国際公開第2014/010585号参照)。本実施の形態ではこれを応用し、光透過型ディスプレイの基材を半透明の素材としたものを周辺画像用ディスプレイ244とする。
 これにより、周辺画像用ディスプレイ244において周辺画像を表示していない領域を、ミラー222で反射したレーザ光を拡散透過させる中心画像用スクリーン242として利用できる。当然、中心画像のサイズ変化に応じて周辺画像の及ぶ範囲も変化するため、中心画像用スクリーン242の範囲は中心画像のサイズに応じて適切に変化する。なおこの場合、中心画像出力部60および周辺画像出力部62の一部が画像合成部64を兼ねることになる。このような構成とすることで、異なる方向から2種類の画像を投影するのと比較し、光学系をシンプルにできる。この構成では図9と同様、注視点検出器130に含まれる眼球撮影用カメラ240を、接眼レンズ238の脇などに配置することが考えられる。
 図12は本実施の形態のヘッドマウントディスプレイ100において、中心画像と周辺画像を合成して視認させる画像合成部64の構造の別の例を示している。この構成は図11と同様、光透過型ディスプレイを応用することで、中心画像用スクリーン242と周辺画像用ディスプレイ244とを一体的に設けている。一方、接眼レンズ238との間にハーフミラー246を設ける点が図11と異なる。すなわち中心画像用スクリーン242と周辺画像用ディスプレイ244からの光を、ハーフミラー246ごしに視認させる。このようにすると画像の光量は低下するが、目224の面と45°をなすようにハーフミラー246を配置すれば、その反射により目224の像を眼球撮影用カメラ240で撮影することができるため、正面からの撮影と同等の質で注視点を検出できる。
 図13は本実施の形態のヘッドマウントディスプレイ100において、中心画像と周辺画像を合成して視認させる画像合成部64の構造の別の例を示している。この構成では図9と同様、中心画像用スクリーン250と周辺画像用ディスプレイパネル252を個別に設けるが、それらを略同一平面に配置したうえ、中心画像用光学系254および周辺画像用光学系256によりそれぞれの像を適切な方向に誘導することにより画像合成を実現する。
 自由曲面の光学系をヘッドマウントディスプレイに導入し、複数のディスプレイに表示した画像を反射や屈折により適切な位置に誘導して1つの画像として視認させる手法は、例えば国際公開第2019/147946号などに開示される。この構成によれば、異なる方向から2種類の画像を投影するのと比較し、ヘッドマウントディスプレイ100を小型化できる。また比較的自由に光路を設計できるため、眼球撮影用カメラ240の配置の自由度を高められる。
 例えば図示するように、中心画像用スクリーン250と周辺画像用ディスプレイパネル252、およびそれぞれの光学系254、256を、目224の正面を避けて配置することにより、眼球撮影用光学系258と眼球撮影用カメラ240を目224の正面に配置することができる。これにより注視点の検出が容易になる。なお中心画像用光学系254および周辺画像用光学系256の設計によって、中心画像用スクリーン250および周辺画像用ディスプレイパネル252の位置や姿勢は様々であってよい。
 以上述べた本実施の形態によれば、表示画像を中心画像と周辺画像に分割し、中心画像がより高い解像度で表されるように個別の機構で表示させたうえで合成して視認させる。ここで少なくとも中心画像を表す表示機構は、ミラーでの反射によりレーザを2次元走査させ画像を形成するレーザ走査方式とする。レーザ走査方式によれば、ミラーの角度の振幅を制御することにより、表示範囲と、それを表す画素の密度としての解像度とを変化させることができる。したがって、発光素子の密度が固定の表示パネルと比較し、表示画像における解像度の分布を制御しやすい。
 例えばユーザの注視点が画像平面の中心から離れるに従い、それを包含する範囲に中心画像が拡張されるように、ミラーの角度の振幅を変化させる。これにより注視点の位置によらず、中心画像と周辺画像の境界線が注視点から離隔された状態となり、境界における解像度差が認識されづらくなる。また中心画像の拡張に伴い解像度が逓減するため、実際の解像度差も小さくなる。これにより、画像データの加工といった高負荷の処理を伴わずに、解像度に分布のある画像を違和感なく認識させることができる。結果として、視覚特性上、識別能力の高い領域にリソースを集中させることができ、広視野の画像であっても低遅延かつ高精細に見せることができる。
 以上、本発明を実施の形態をもとに説明した。上記実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 例えば本発明の実装形態はヘッドマウントディスプレイに限らず、プロジェクタや一般的なテレビ受像器などにも適用できる。これらの場合も内部構造は、図9、11、12、13のいずれかと同様でよい。プロジェクタの場合、接眼レンズ238の代わりに外部のスクリーンなどへ画像を投影する投射レンズを設ける。テレビ受像器の場合は、接眼レンズ238の代わりに像を透過させるスクリーンを表示面とする。あるいは図11の構成によれは、周辺画像用ディスプレイ244を実現する光透過型ディスプレイをそのまま用いることができる。
 これらの場合、注視点検出器は当然、スクリーンや表示面を見ているユーザの目の方向に眼球撮影用のカメラを設ける。なお本実施の形態では注視点の移動に応じて中心画像のサイズを制御したが、注視点の代わりに、主要なオブジェクトの表示位置や、表示上、重要な領域の位置に応じて、それが中心画像に含まれるようにサイズを制御してもよい。主要なオブジェクトや重要な領域は注視される可能性が高いため、このようにしても本実施の形態と同様の効果を奏することが考えられる。
 以上のように本発明は、ヘッドマウントディスプレイ、プロジェクタ、テレビ受像器などの表示装置や、それらの少なくともいずれかを含む画像表示システムなどに利用可能である。
 50 画像データ取得部、 52 注視点取得部、 54 中心画像サイズ制御部、 56 中心画像生成部、 58 周辺画像生成部、 60 中心画像出力部、 62 周辺画像出力部、 64 画像合成部、 100 ヘッドマウントディスプレイ、 110 ステレオカメラ、 120 CPU、 122 GPU、 124 メインメモリ、 130 注視点検出器、 132 第1表示部、 134 第2表示部。

Claims (12)

  1.  表示画像のうち、画像平面における中心部分を表す中心画像を生成する中心画像生成部と、
     前記表示画像のうち、前記中心画像の外側の領域を表す周辺画像を生成する周辺画像生成部と、
     画素を表すレーザ光を、ミラーの反射により2次元走査させて画像を投影するレーザ走査方式により、前記中心画像を表す中心画像出力部と、
     前記周辺画像を表示する周辺画像出力部と、
     前記中心画像と前記周辺画像を合成して視認させる画像合成部と、
     を備えたことを特徴とする画像表示装置。
  2.  前記中心画像のサイズを制御する中心画像サイズ制御部をさらに備え、
     前記中心画像出力部は、前記中心画像サイズ制御部が決定した中心画像のサイズに応じて、前記ミラーの角度の振幅を変化させることを特徴とする請求項1に記載の画像表示装置。
  3.  表示画像に対するユーザの注視点を取得する注視点取得部をさらに備え、
     前記中心画像サイズ制御部は、前記注視点が前記中心画像に含まれるように、前記注視点が画像平面の中心から離れるに従い、前記中心画像を拡張させることを特徴とする請求項2に記載の画像表示装置。
  4.  前記中心画像サイズ制御部は、前記注視点が、前記中心画像出力部が表示可能な範囲の上限を超えた状態において、前記中心画像のサイズを、当該上限に設定することを特徴とする請求項3に記載の画像表示装置。
  5.  前記画像合成部は、前記中心画像出力部が表す像と前記周辺画像出力部が表す像の一方を透過させ、他方を反射させることにより、両者を合成するハーフミラーを含むことを特徴とする請求項1から4のいずれかに記載の画像表示装置。
  6.  前記中心画像出力部は、前記ミラーにおいて反射したレーザ光を拡散透過させるスクリーンを含み、
     前記画像合成部は、前記スクリーンを拡散透過してなる像を、前記ハーフミラーにより、前記周辺画像出力部が表す像と合成することを特徴とする請求項5に記載の画像表示装置。
  7.  前記中心画像出力部は、マックスウェル視により視認される前記中心画像を表すレーザ光をユーザの目の方向に投影し、
     前記画像合成部は、前記ハーフミラーで、前記レーザ光を透過させるとともに、前記周辺画像出力部が表す像を反射させることにより、両者を合成して視認させることを特徴とする請求項5に記載の画像表示装置。
  8.  前記周辺画像出力部は、非表示領域において背景の光を透過する光透過型ディスプレイにより前記周辺画像を表示し、
     前記中心画像出力部は、前記ミラーにおいて反射したレーザ光を、前記光透過型ディスプレイの対応する領域に投影して拡散透過させることを特徴とする請求項1から4のいずれかに記載の画像表示装置。
  9.  前記光透過型ディスプレイからの光を透過させるとともに、ユーザの眼球の像を反射させるハーフミラーと、
     前記ハーフミラーで反射してなる前記眼球の像を撮影し注視点を取得するためのカメラと、
     をさらに備えたことを特徴とする請求項8に記載の画像表示装置。
  10.  前記中心画像出力部は、前記ミラーにおいて反射したレーザ光を拡散透過させるスクリーンを含み、
     前記画像合成部は、前記スクリーンを拡散透過してなる像と、前記周辺画像出力部が表す像とを、画像平面上の対応する位置に誘導する自由曲面光学系により、両者の像を合成することを特徴とする請求項1から4のいずれかに記載の画像表示装置。
  11.  ユーザの眼球の正面方向に、当該眼球を撮影し注視点を取得するためのカメラをさらに備え、前記スクリーンおよび、前記周辺画像出力部を構成するディスプレイパネルは、前記カメラの周囲に配置されることを特徴とする請求項10に記載の画像表示装置。
  12.  表示画像のうち、画像平面における中心部分を表す中心画像を生成するステップと、
     前記表示画像のうち、前記中心画像の外側の領域を表す周辺画像を生成するステップと、
     画素を表すレーザ光を、ミラーの反射により2次元走査させて画像を投影するレーザ走査方式の中心画像出力部により、前記中心画像を表すステップと、
     周辺画像出力部により、前記周辺画像を表示するステップと、
     前記中心画像と前記周辺画像を合成して視認させるステップと、
     を含むことを特徴とする画像表示方法。
PCT/JP2022/047174 2022-01-17 2022-12-21 画像表示装置および画像表示方法 WO2023136073A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022005236A JP2023104319A (ja) 2022-01-17 2022-01-17 画像表示装置および画像表示方法
JP2022-005236 2022-01-17

Publications (1)

Publication Number Publication Date
WO2023136073A1 true WO2023136073A1 (ja) 2023-07-20

Family

ID=87279011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047174 WO2023136073A1 (ja) 2022-01-17 2022-12-21 画像表示装置および画像表示方法

Country Status (2)

Country Link
JP (1) JP2023104319A (ja)
WO (1) WO2023136073A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202221A (ja) * 2004-01-16 2005-07-28 Toshiba Corp 表示装置
US20130194244A1 (en) * 2010-10-12 2013-08-01 Zeev Tamir Methods and apparatuses of eye adaptation support
JP2020528564A (ja) * 2017-05-29 2020-09-24 アイウェイ ビジョン リミテッドEyeWay Vision Ltd. 画像投影システム
CN113933998A (zh) * 2021-10-22 2022-01-14 小派科技(上海)有限责任公司 光学模组/系统、显示装置、头戴式显示设备和显示系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202221A (ja) * 2004-01-16 2005-07-28 Toshiba Corp 表示装置
US20130194244A1 (en) * 2010-10-12 2013-08-01 Zeev Tamir Methods and apparatuses of eye adaptation support
JP2020528564A (ja) * 2017-05-29 2020-09-24 アイウェイ ビジョン リミテッドEyeWay Vision Ltd. 画像投影システム
CN113933998A (zh) * 2021-10-22 2022-01-14 小派科技(上海)有限责任公司 光学模组/系统、显示装置、头戴式显示设备和显示系统

Also Published As

Publication number Publication date
JP2023104319A (ja) 2023-07-28

Similar Documents

Publication Publication Date Title
EP0618471B1 (en) Image display apparatus
WO2017086263A1 (ja) 情報処理装置および画像生成方法
US10382699B2 (en) Imaging system and method of producing images for display apparatus
JP2017204674A (ja) 撮像装置、ヘッドマウントディスプレイ、情報処理システム、および情報処理方法
JP2020515895A (ja) 操作可能な中心窩ディスプレイ
US20030107643A1 (en) Method and system for controlling the motion of stereoscopic cameras based on a viewer's eye motion
US10602033B2 (en) Display apparatus and method using image renderers and optical combiners
JP7358448B2 (ja) 画像生成装置、ヘッドマウントディスプレイ、および画像生成方法
US11143876B2 (en) Optical axis control based on gaze detection within a head-mountable display
US11030719B2 (en) Imaging unit, display apparatus and method of displaying
US11557020B2 (en) Eye tracking method and apparatus
JPH08313843A (ja) 視線追従方式による広視野高解像度映像提示装置
WO2020170455A1 (ja) ヘッドマウントディスプレイおよび画像表示方法
US11366315B2 (en) Image processing apparatus, method for controlling the same, non-transitory computer-readable storage medium, and system
WO2020170456A1 (ja) 表示装置および画像表示方法
GB2568241A (en) Content generation apparatus and method
US10771774B1 (en) Display apparatus and method of producing images having spatially-variable angular resolutions
WO2023136073A1 (ja) 画像表示装置および画像表示方法
WO2023136072A1 (ja) キャリブレーション装置、表示装置、キャリブレーション方法、および画像表示方法
WO2024122191A1 (ja) 画像処理装置及び方法、プログラム、記憶媒体
US20230214011A1 (en) Method and system for determining a current gaze direction
EP4261768A1 (en) Image processing system and method
WO2023079623A1 (ja) 画像表示システム、画像送信装置、表示制御装置、および画像表示方法
JP7365183B2 (ja) 画像生成装置、ヘッドマウントディスプレイ、コンテンツ処理システム、および画像表示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920590

Country of ref document: EP

Kind code of ref document: A1