WO2023135850A1 - Lens and method for manufacturing same - Google Patents

Lens and method for manufacturing same Download PDF

Info

Publication number
WO2023135850A1
WO2023135850A1 PCT/JP2022/031841 JP2022031841W WO2023135850A1 WO 2023135850 A1 WO2023135850 A1 WO 2023135850A1 JP 2022031841 W JP2022031841 W JP 2022031841W WO 2023135850 A1 WO2023135850 A1 WO 2023135850A1
Authority
WO
WIPO (PCT)
Prior art keywords
core member
mold
gate
lens
protrusion
Prior art date
Application number
PCT/JP2022/031841
Other languages
French (fr)
Japanese (ja)
Inventor
俊允 高岡
祐 櫻井
Original Assignee
ナルックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナルックス株式会社 filed Critical ナルックス株式会社
Priority to JP2022578841A priority Critical patent/JP7366469B1/en
Publication of WO2023135850A1 publication Critical patent/WO2023135850A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present invention relates to a lens and its manufacturing method.
  • a lens configured to easily improve the quality of a molded lens when a core member is held in a mold and only the outer layer of the core member is injection molded into a cavity between the core member and the mold. and methods for its production have not been developed so far.
  • JP-A-63-315216 Japanese Patent Application Laid-Open No. 2018-109658
  • An object of the present invention is to easily improve the quality of a molded lens when holding a core member in a mold and injection molding only the outer layer of the core member into a cavity between the core member and the mold.
  • An object of the present invention is to provide a lens configured as above and a method for manufacturing the same.
  • the lens of the first aspect of the present invention comprises a core member and an outer layer covering the core member.
  • the core member has a flange portion protruding in a direction substantially perpendicular to the optical axis of the lens and having first and second surfaces, and the flange portion is provided on the first surface and on the first surface.
  • a first protrusion protruding substantially perpendicularly along the outer periphery of the core member and provided in an area of 0.5% or more of the outer periphery; and a second projection provided along the perimeter in an area of 0.5 percent or more of the perimeter.
  • the lens of this aspect uses the first and second protrusions when the core member is held in a mold and only the outer layer of the core member is injection molded into the cavity between the core member and the mold. It is possible to control the flow rate of the molten material flowing into the cavity by means of injection molding, so that defects due to injection molding are few and the quality is high.
  • the first protrusion and the portion corresponding to the gate of the lens are configured to partially overlap, and the second protrusion and the portion corresponding to the gate of the lens partially overlap each other.
  • the first protrusion and the second protrusion are spaced apart along the outer circumference.
  • the first and second projections are used when the core member is held in the mold and only the outer layer of the core member is injection molded into the cavity between the core member and the mold. It is easy to control the flow rate of molten material flowing into the cavity by
  • the distance between the first protrusion and the second protrusion along the outer circumference is 40 percent or less of the outer circumference.
  • the lens according to claim 1 wherein the material of the core member and the material of the outer layer are the same.
  • the material of the core member and the material of the outer layer are different.
  • a method for manufacturing a lens according to the second aspect of the present invention is a method for manufacturing a lens comprising a core member and an outer layer covering the core member.
  • the method includes a core member having a flange portion projecting in a direction substantially perpendicular to the optical axis of the lens and having first and second surfaces, the flange portion having the first surface and the a first protrusion projecting substantially perpendicularly to the first surface and provided along the outer periphery of the core member in an area of 0.5% or more of the outer periphery; a second protrusion projecting along the outer periphery of the core member and provided in an area of 0.5 percent or more of the outer periphery; Prior to molding the outer layer by injection molding between the mold and the core member, material flows appropriately from the gate to the first protrusion side and the second protrusion side of the flange. adjusting the relative positional relationship between the first protrusion and the second protrusion and the gate or adjusting the shape of the gate; molding
  • the first and second The projections can be used to control the flow rate of the molten material flowing into the cavity, resulting in a high quality lens with less defects due to injection molding.
  • the relative positional relationship between the first protrusion and the second protrusion and the gate or the shape of the gate is adjusted.
  • the nested mold can be used to easily adjust the relative positional relationship between the first and second protrusions and the gate or the shape of the gate. .
  • FIG. 1 is a perspective view of a lens according to one embodiment of the invention
  • FIG. 1 is a perspective view of a core member of a lens according to one embodiment of the present invention
  • FIG. It is a top view of a core member.
  • FIG. 3 is a perspective view of a mold for molding a core member
  • FIG. 6 is an enlarged view of a portion indicated by a square in FIG. 5
  • FIG. 2 is a plan view of an outer layer molding die used when holding a core member in the die and injection molding an outer layer into a cavity between the core member and the die. It is a figure which shows the AA cross section of FIG. It is a figure which shows the BB cross section of FIG.
  • FIG. 3 is a perspective view of a mold for molding a core member
  • FIG. 6 is an enlarged view of a portion indicated by a square in FIG. 5
  • FIG. 2 is a plan view of an outer layer molding die used when holding a core member in the die and injection molding an outer layer
  • FIG. 8 is a view showing a CC cross section of FIG. 7;
  • FIG. 8 is a diagram showing a DD cross section of FIG. 7;
  • FIG. 4 is a perspective view of a mold for molding an outer layer in which a core member is incorporated in a second portion corresponding to the other side of the lens other than the convex side.
  • 14 is an enlarged view of the portion indicated by the square in FIG. 13;
  • FIG. It is a figure which shows the gate periphery part of the cross section corresponding to FIG. 12 of the metal mold
  • FIG. 15 is a diagram showing a portion 150 corresponding to the gate of the lens molded by the outer layer molding die described using FIGS. 13 to 15.
  • FIG. FIG. 4 is a perspective view of a mold for molding an outer layer in which a core member is incorporated in a second portion corresponding to the other side of the lens other than the convex side.
  • 18 is an enlarged view of the portion indicated by the square in FIG. 17;
  • FIG. It is a figure which shows the gate periphery part of the cross section corresponding to FIG. 12 of the metal mold
  • FIG. 20 is a diagram showing a portion corresponding to a gate of a molded lens molded by the outer layer molding die described using FIGS.
  • FIG. 17 to 19 is a view showing a cross section corresponding to FIG. 12 of the gate peripheral portion of the mold for molding the outer layer.
  • FIG. FIG. 22 is a diagram showing a portion corresponding to a molded lens gate molded by the outer layer molding die described using FIG. 21;
  • FIG. 4 is a side view of a combination of the second portion of the mold for molding the outer layer and the core member;
  • FIG. 24 is a cross-sectional view taken along line A1-A1 in FIG.
  • FIG. 24 is a cross-sectional view taken along the line A1-A1 in FIG. 23 of a combination of the second part of the mold for molding the outer layer and the core member of Example 2;
  • FIG. 24 is a cross-sectional view taken along line A1-A1 in FIG. 23 of a combination of the second part of the mold for molding the outer layer and the core member of Example 3;
  • FIG. 3 shows the positions of weld lines generated when injection molding is performed in the state of the gate before adjustment.
  • Fig. 10 shows the positions of weld lines generated when injection molding is performed in the state of the gate after adjustment.
  • Fig. 10 shows the positions of air traps when injection molding is performed with the gates before adjustment.
  • FIG. 10 shows the positions of air traps when injection molding is performed with the gates after adjustment.
  • FIG. 5 shows the stress distribution in the cross section of the core member when injection molding is performed in the state of the gate before adjustment.
  • FIG. 5 shows the stress distribution in the cross section of the core member when injection molding is performed in the state of the adjusted gate.
  • 1 is a plan view of a conventional outer layer molding die;
  • FIG. It is a figure which shows the FF cross section of FIG.
  • FIG. 36 is a view showing a GG section of FIG. 35;
  • FIG. 1 is a perspective view of a lens 100 according to one embodiment of the invention.
  • FIG. 2 is a perspective view of the core member 110 of the lens 100 of one embodiment of the invention.
  • Lens 100 is manufactured by holding core member 110 in a mold and injection molding an outer layer into the cavity between core member 110 and the mold.
  • Core member 110 has a flange portion 1100 with projections 1110 and 1120 . The function of flange portion 1100 and protrusions 1110 and 1120 will be described later.
  • the core member 110 also has a retaining flange 1130 that is used to retain the core member 100 within the mold.
  • the flange portion 1100 and the holding flange portion 1130 are formed along the outer periphery of the core member 110 so as to protrude in a direction substantially perpendicular to the optical axis of the lens.
  • FIG. 3 is a plan view of the core member 110.
  • FIG. 4 is a flowchart for explaining the method of manufacturing the lens 100.
  • the core member 110 having the flange portion 1100 with the projections 1110 and 1120 on both sides is manufactured by injection molding.
  • FIG. 5 is a perspective view of the mold 400 for molding the core member.
  • FIG. 5 shows a portion of the mold 400 for molding the core member 110 corresponding to the convex side of the lens.
  • FIG. 6 is an enlarged view of the portion indicated by the square in FIG. FIG. 6 shows the gate portion of the mold.
  • the gate portion of the mold is formed by nesting molds 210 . Molten material is injected from runner 300 into nesting mold 210 .
  • the recessed portion 2110 of the mold is a portion for forming the projecting portion 1110 of the core member 110 . By exchanging the nesting mold 210, the position and shape of the projection 1110 can be changed.
  • FIG. 7 is a plan view of an outer layer molding die 500 used when holding the core member 110 in the die and injection molding the outer layer into the cavity between the core member 110 and the die.
  • FIG. 8 is a diagram showing the AA cross section of FIG.
  • a gate portion of the outer layer molding die 500 is also formed by the nesting die 220 .
  • Molten material is injected into the cavity 120 between the core member 110 and the mold 500 from the runner 300 through the nesting mold 220 .
  • the portion corresponding to the convex surface side of the lens of the outer layer molding die 500 is referred to as the first portion, and the portion corresponding to the other surface side is referred to as the second portion.
  • the molten material is divided by the flange 1100 into one that flows into the first portion of the mold 500 and one that flows into the second portion of the mold 500 .
  • protrusion 1120 is on the path through which molten material flows into the second portion of mold 500 .
  • FIG. 9 is a diagram showing a BB cross section in FIG. In the cross-section shown in FIG. 9, there are no protrusions on the path through which molten material flows into the first and second portions of mold 500 .
  • FIG. 10 is a diagram showing a CC cross section of FIG. In the cross-section shown in FIG. 10, protrusions 1110 are on the path through which molten material flows into the first portion of mold 500 .
  • FIG. 11 is a diagram showing a DD cross section of FIG.
  • the core member 110 can be retained within the mold 500 by sandwiching the retaining flange 1130 with the first and second portions of the mold 500 .
  • FIG. 12 is a diagram showing the EE cross section of FIG. A gate is located in the portion indicated by the circle in FIG.
  • Projections 1110 and 1120 are provided on the upper and lower surfaces of the flange portion 1100 of the core member 110 .
  • the protrusion 1110 protrudes substantially perpendicularly to the upper surface of the flange portion 1100
  • the protrusion 1120 protrudes substantially perpendicularly to the lower surface of the flange portion 1100 .
  • Protrusions 1110 and 1120 are formed along the outer circumference of the core member. Protrusions 1110 and 1120 act as barriers on the path of molten material flowing from the gate to the first and second portions of mold 500, respectively. Thus, by varying the area over which protrusions 1110 and 1120 partially close the opening of the gate, the flow rate of molten material flowing into the first and second portions of mold 500, respectively, can be varied.
  • FIG. 35 is a plan view of a conventional outer layer molding die.
  • FIG. 35 corresponds to FIG.
  • FIG. 36 is a diagram showing the FF section of FIG. FIG. 36 corresponds to FIGS. 8-10. There are no protrusions on the path through which the molten material flows into the first left and second right portions of the mold in prior art core members.
  • FIG. 37 is a diagram showing a GG section of FIG. FIG. 38 corresponds to FIG.
  • step S1020 of FIG. 4 before holding the core member 110 in the mold 500 and molding the outer layer into the cavity 120 between the mold 500 and the core member 110 by injection molding, the flange of the cavity 120 from the gate
  • the first protrusion 1110 and the second protrusion 1120 and the gate are arranged so that the material flows into the first protrusion 1110 side and the second protrusion 1120 side of the portion 1100 at an appropriate flow rate. Adjust the relative position or shape of the gate.
  • FIG. 13 is a perspective view of the core member 110 incorporated in the second portion of the mold 500 for molding the outer layer corresponding to the other side of the lens other than the convex side.
  • FIG. 14 is an enlarged view of the portion indicated by the square in FIG. FIG. 14 shows the gate portion of the mold.
  • the gate portion of the mold is formed by nesting molds 220 . Molten material is injected into the cavity 120 between the core member 110 and the mold 500 from the runner 300 through the nesting mold 220 .
  • a cavity 120 (not shown in FIG. 14) is formed between the core member 110 and the first portion of the outer layer molding die 500 corresponding to the convex side of the lens.
  • a gate nesting mold 220 has slots 2010 and is secured to the second part of the mold 500 by securing bolts 2020 in the slots 2010 .
  • the position of the gate nest 220 with respect to the second portion of the mold 500 can be varied longitudinally of the slot 2010 by varying the position of the fixing bolt 2020 within the slot 2010 .
  • Reference numeral 2030 represents spacers.
  • FIG. 15 is a diagram showing the gate peripheral portion of the cross section corresponding to FIG. 12 of the mold 500 for molding the outer layer.
  • the gate peripheral portion shown in FIG. 15 is the circular portion shown in FIG.
  • the opening of the gate is shaded in FIG.
  • the dark shading indicates the position of the gate opening of the first portion of the outer layer molding die 500
  • the light shading indicates the position of the gate opening of the second portion of the outer layer molding die 500 .
  • a portion of the opening of the gate of the first portion, indicated by dark shading overlaps and is partially closed by the first protrusion 1110
  • the opening of the gate of the second portion, indicated by light shading overlaps and is partially closed by the first protrusion 1110.
  • the effective length of the gate opening in the first portion and the effective length of the gate opening in the second portion can be represented by W1 and W2, respectively.
  • the width of the gate opening in the first portion and the width of the gate opening in the second portion are the same, the flow rate of the molten material flowing into the first and second portions of the mold 500 will The ratio of the flow rate of molten material flowing into the second portion is W1/W2.
  • the width of the opening is the length of the opening in the vertical direction in the drawing.
  • the initial value of W1/W2 is also expressed as the ratio of the volume of the cavity between the core member 110 and the first portion of the mold to the volume of the cavity between the core member 110 and the second portion of the mold. good.
  • step S1030 of FIG. 4 the core member 110 is held in the mold 500 and the outer layer is formed in the cavity 120 between the mold 500 and the core member 110 by injection molding.
  • FIG. 16 is a diagram showing a portion 150 corresponding to the gate of the lens 100 molded by the outer layer molding die 500 described using FIGS. 13-15.
  • step S1040 in FIG. 4 it is determined whether the quality of the molded lens 100 is acceptable. Specifically, the quality of the lens 100 is evaluated based on the occurrence of weld lines and air traps in the molded lens. If the quality is acceptable, the process ends. If the quality is not acceptable, return to step S1020 to make any necessary adjustments. Specifically, the ratio of the flow rate of molten material flowing into the first and second portions of mold 500 to the flow rate of molten material flowing into the second portion of mold 500 is adjusted.
  • FIG. 17 is a perspective view of the core member 110 incorporated in the second portion of the mold 500 for molding the outer layer corresponding to the other side of the lens other than the convex side.
  • FIG. 18 is an enlarged view of the portion indicated by the square in FIG. In FIG. 18, the fixing bolt 2020 is located at the right end of the slot 2010 and the gate nest 220 has been moved as far to the left as possible relative to the second portion of the mold 500 .
  • FIG. 19 is a view showing the gate peripheral portion of the cross section corresponding to FIG. 12 of the mold 500 for molding the outer layer.
  • the gate peripheral portion shown in FIG. 19 is the circular portion shown in FIG.
  • the portion is partially closed by the second protrusion 1120 and the effective length W2' of the opening of the gate of the second portion is smaller than W2.
  • step S1030 of FIG. 4 the core member 110 is held in the mold 500 and the outer layer is formed in the cavity 120 between the mold 500 and the core member 110 by injection molding.
  • FIG. 20 is a diagram showing a portion 150 corresponding to the gate of the molded lens 100 molded by the outer layer molding die 500 described using FIGS. 17-19.
  • the cross-section of the corresponding portion 150 is not rectangular, but is two rectangles offset from each other along adjacent sides.
  • the reason why the cross-section of the part 150 has the above shape is that the amount of telescoping of the gates in the first part of the mold 500 and the amount of telescoping of the gates in the second part of the mold 500 are different. is.
  • portion 150 the effective lengths of the openings of the gates of the first and second portions can be adjusted without moving the gate nests of the first and second portions, respectively.
  • the core member 110 with the distance between the first and second protrusions of the flange 1100 adjusted to W1′ and W2′ is molded in step S1010, and step S1030 is performed using this core member 110. good too.
  • FIG. 21 shows the core member with the distance between the first and second protrusions of the flange 1100 adjusted so that the effective lengths of the gate openings of the first and second portions are W1′ and W2′, respectively.
  • FIG. 13 is a view showing a cross section corresponding to FIG. 12 of the gate peripheral portion of the outer layer molding die 500 when used.
  • FIG. 22 is a diagram showing a portion 150 corresponding to the gate of the molded lens 100 molded by the outer layer molding die 500 described using FIG.
  • step S1040 in FIG. 4 it is determined whether the quality of the molded lens 100 is acceptable.
  • steps S1020-S1040 in FIG. 4 may be repeated. Therefore, it is preferable to manufacture a plurality of core members 110 in S1010.
  • the first protrusion 1110 and the second protrusion 1120 shown in FIGS. 15, 19 and 21 are arranged along the outer circumference of the core member 110 with a gap therebetween.
  • the first protrusions 1110 and the second protrusions 1120 may be arranged along the outer circumference of the core member 110 such that they partially or wholly overlap each other. In that case, the adjustment described above is performed by changing the positions of the first protrusion 1110 and the second protrusion 1120 along the outer periphery, respectively.
  • the material of the core member 110 and outer layers in the example is polymethyl methacrylate.
  • the present invention can also be applied when the material of the core member 110 and the material of the outer layer are different.
  • FIG. 23 is a side view of a combination of the second portion of the outer layer molding die 500 and the core member 110.
  • FIG. 24 is a cross-sectional view taken along line A1-A1 in FIG. 23 of a combination of the second portion of the outer layer molding die 500 and the core member 110 of Example 1.
  • numbers shown near double arrows indicate lengths. The unit of length is millimeters.
  • the gate nesting is positioned at the leftmost of the adjustable range.
  • the core member 110 of Example 1 is shown in FIG.
  • the length of the second protrusion 1120 of Example 1 along the outer periphery of the core member 110 is 4 millimeters, and the length of the entire outer periphery of the core member 110 is 220 millimeters.
  • the ratio of the length of the second protrusion 1120 along the outer periphery of the core member 110 in Example 1 to the length of the entire outer periphery of the core member 110 is 1.8%.
  • the distance along the outer circumference of the core member 110 between the first protrusion 1110 and the second protrusion 1120 (not shown in FIG. 24) is 4 millimeters, and the entire length of the core member 110 with the above distance.
  • the ratio to the perimeter length is 1.8 percent.
  • the holding flange portions 1130 are provided only on the left and right side surfaces of the core member 110 .
  • FIG. 25 is a cross-sectional view taken along line A1-A1 in FIG. 23 of a combination of the second portion of the outer layer molding die 500 and the core member 110 of Example 2.
  • the length of the second protrusion 1120 of Example 2 along the outer periphery of the core member 110 is 4 millimeters, and the length of the entire outer periphery of the core member 110 is 220 millimeters. Therefore, the ratio of the length of the second protrusion 1120 along the outer periphery of the core member 110 in Example 2 to the length of the entire outer periphery of the core member 110 is 1.8%.
  • Example 2 the distance along the outer periphery of the core member 110 between the first protrusion 1110 and the second protrusion 1120 (not shown in FIG. 25) is 4 millimeters, and the entire length of the core member 110 at the above distance.
  • the ratio to the perimeter length is 1.8 percent.
  • the retaining flange portion 1130 is the portion of the outer circumference of the core member 110 other than the second protrusion 1120 which is 4 millimeters in length along the circumference and the gate which is 8 millimeters in length along the circumference. Prepared for. In other words, the second projecting portion 1120 and the holding flange portion 1130 are formed continuously.
  • FIG. 26 is a cross-sectional view taken along line A1-A1 in FIG. 23 of a combination of the second portion of the outer layer molding die 500 and the core member 110 of Example 3.
  • the length along the outer periphery of the core member 110 of the second protrusion 1120 of Example 3 is 4 millimeters, and the length of the entire outer periphery of the core member 110 is 220 millimeters. Therefore, the ratio of the length of the second protrusion 1120 along the outer periphery of the core member 110 in Example 3 to the length of the entire outer periphery of the core member 110 is 1.8%.
  • Example 3 the distance along the outer periphery of the core member 110 between the first projection 1110 and the second projection 1120 (not shown in FIG. 26) is 4 millimeters, and the entire length of the core member 110 at the above distance.
  • the ratio to the perimeter length is 1.8 percent.
  • the holding flange portions 1130 of Example 3 are formed at regular intervals on the outer periphery of the core member 110 .
  • the above constant spacing is 6 millimeters.
  • the core member 110 used in the simulation has a holding flange portion 1130 around the entire periphery other than the periphery of the gate.
  • the results of the simulations vary little. Therefore, the configuration of the retaining member does not significantly affect how the molten material flows from the gate into cavity 120 .
  • Table 1 is a table showing the effective length and effective cross-sectional area of the gates of the first portion and the second portion of the mold 500 before and after adjustment.
  • the effective length of the gate in the first portion before adjustment corresponds to W1 in FIG. 15, and the effective length of the gate in the second portion before adjustment corresponds to W2 in FIG.
  • the effective length of the gate in the first portion after adjustment corresponds to W1' in FIG. 19, and the effective length of the gate in the second portion after adjustment corresponds to W2' in FIG.
  • the effective length of the gate of the first portion before adjustment corresponding to W1 is equal to the effective length of the gate of the first portion after adjustment corresponding to W1'.
  • the effective cross-sectional area of the gates of the first and second portions before adjustment is 7 square millimeters.
  • the effective cross-sectional area of the gate in the first portion after adjustment is 7 square millimeters, and the effective cross-sectional area of the gate in the second portion after adjustment is 4 square millimeters.
  • FIG. 27 shows the time from the start of injection of the molten material to the arrival of the molten material at each position in the cavity 120 when injection molding is performed in the state of the gate before adjustment.
  • the unit of time is seconds.
  • FIG. 28 shows the time from the start of injection of the molten material to the arrival of the molten material at each position in the cavity 120 when injection molding is performed in the adjusted gate state.
  • the unit of time is seconds.
  • FIG. 29 shows the positions of weld lines generated when injection molding is performed in the state of the gate before adjustment.
  • a weld line is a linear molding defect that occurs at the junction of molten resin in a mold during injection molding.
  • FIG. 30 shows the positions of weld lines generated when injection molding is performed in the gate state after adjustment.
  • Fig. 31 shows the positions where air traps are generated when injection molding is performed in the state of the gate before adjustment.
  • An air trap is a phenomenon in which air bubbles are taken in by resin flowing from multiple directions and air bubbles are generated in a molded product.
  • FIG. 32 shows the positions where air traps are generated when injection molding is performed in the state of the gate after adjustment.
  • FIG. 33 shows the cross-sectional stress distribution of the core member 110 when injection molding is performed in the state of the gate before adjustment.
  • the unit of stress is megapascal.
  • FIG. 34 shows the cross-sectional stress distribution of the core member 110 when injection molding is performed in the gate state after adjustment.
  • the unit of stress is megapascal.
  • the height reached by the molten material flowing from the lower gate into the cavity 120 of the lower second part of the mold 500 is It is approximately one-half the height of core member 110 . Therefore, when injection molding is performed in the state of the gate before adjustment, a weld line is formed in a wide range of the cavity 120 of the first portion of the mold 500 as shown in FIG. Also, when injection molding is performed in the state of the gate before adjustment, an air trap occurs in the cavity 120 of the first portion of the mold 500 as shown in FIG. Also, when injection molding is performed in the state of the gate before adjustment, a relatively large stress is generated near the holding flange 1130 of the core member 110 as shown in FIG.
  • the adjustment reduces the effective cross-sectional area of the bottom gate of mold 500 from 7 square millimeters to 4 square millimeters. Accordingly, the flow rate of molten material flowing from the lower gate of mold 500 into cavity 120 of the lower second portion of mold 500 is reduced.
  • the height reached by the molten material flowing from the lower gate into the cavity 120 of the lower second part of the mold 500 is It is approximately one-fifth the height of core member 110 . Therefore, when injection molding is performed in the state of the adjusted gate, the weld line is formed only near the boundary between the first portion and the second portion of the mold 500 as shown in FIG.
  • the weld line hardly affects the optical surface of the optical member 100 .
  • the number of air traps generated is smaller than that before the adjustment shown in FIG. 31, as shown in FIG. Limited to the flange part. Therefore, there is no effect on the optical surface 100 of the optical member of the air trap.
  • molten metal is melted almost simultaneously in the cavity 120 of the upper first portion of the mold 500 and the cavity 120 of the lower second portion of the mold 500 . material is filled. Therefore, the pressure in the lower second portion of the mold 500 is higher than the pressure in the upper first portion, and no pressure is generated from the bottom to the top, and as shown in FIG.
  • the pressure developed near flange 1130 is less than in FIG.
  • the present invention can also be applied when the material of the core member 110 and the material of the outer layer are different.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

This lens is composed of a core member and an outer layer covering the core member. The core member has flange parts that have first and second surfaces and that protrude in directions substantially perpendicular to the optical axis of the lens. The flange parts have, on the first surface, a first protrusion that protrudes substantially perpendicularly to the first surface and that is provided in a region along the outer circumference of the core member so as to correspond to 0.5% or more of the outer circumference, and have, on the second surface, a second protrusion that protrudes substantially perpendicularly to the second surface and that is provided in a region along the outer circumference of the core member so as to correspond to 0.5% or more of the outer circumference.

Description

レンズ及びその製造方法Lens and manufacturing method thereof
 本発明は、レンズ及びその製造方法に関する。 The present invention relates to a lens and its manufacturing method.
 射出成形によって厚肉のレンズを製造する場合に、成形されたレンズにウエルドラインやエアトラップなどの不良が生じやすい。また、レンズの肉厚が厚いので、冷却に時間がかかり、レンズが冷却されて固化する際にレンズの表面に歪みやヒケなどが生じやすい。そこで、レンズの芯部材を予め製造しておき、芯部材を金型内に保持して芯部材と金型との間のキャビティに芯部材の外層のみを製品仕様に合わせて射出成形する厚肉のレンズの製造方法が開発されている(たとえば、特許文献1及び特許文献2)。 When manufacturing thick lenses by injection molding, defects such as weld lines and air traps are likely to occur in the molded lenses. In addition, since the thickness of the lens is large, it takes a long time to cool the lens, and when the lens is cooled and solidified, the surface of the lens is likely to be distorted or dented. Therefore, the core member of the lens is manufactured in advance, the core member is held in a mold, and only the outer layer of the core member is injection-molded in the cavity between the core member and the mold according to the product specifications. have been developed (for example, Patent Documents 1 and 2).
 しかし、芯部材を金型内に保持して芯部材と金型との間のキャビティに芯部材の外層のみを射出成形する場合であっても、なお、成形されたレンズにウエルドラインやエアトラップなどの不良が生じる場合がある。また、芯部材の保持フランジ部によって芯部材を金型内に保持する場合には、成形された保持フランジ部周辺に応力が生じる場合がある。 However, even when the core member is held in the mold and only the outer layer of the core member is injection molded into the cavity between the core member and the mold, weld lines and air traps may still occur in the molded lens. and other defects may occur. Further, when the core member is held in the mold by the holding flange portion of the core member, stress may be generated around the formed holding flange portion.
 芯部材を金型内に保持して芯部材と金型との間のキャビティに芯部材の外層のみを射出成形する際に、成形されたレンズの品質を簡単に向上させるように構成されたレンズ及びその製造方法はこれまで開発されていない。 A lens configured to easily improve the quality of a molded lens when a core member is held in a mold and only the outer layer of the core member is injection molded into a cavity between the core member and the mold. and methods for its production have not been developed so far.
 したがって、芯部材を金型内に保持して芯部材と金型との間のキャビティに芯部材の外層のみを射出成形する際に、成形されたレンズの品質を簡単に向上させるように構成されたレンズ及びその製造方法に対するニーズがある。 Therefore, when the core member is held in the mold and only the outer layer of the core member is injection molded into the cavity between the core member and the mold, the quality of the molded lens can be easily improved. There is a need for improved lenses and methods of making the same.
特開昭63-315216号公報JP-A-63-315216 特開2018-109658号公報Japanese Patent Application Laid-Open No. 2018-109658
 本発明の課題は、芯部材を金型内に保持して芯部材と金型との間のキャビティに芯部材の外層のみを射出成形する際に、成形されたレンズの品質を簡単に向上させるように構成されたレンズ及びその製造方法を提供することである。 An object of the present invention is to easily improve the quality of a molded lens when holding a core member in a mold and injection molding only the outer layer of the core member into a cavity between the core member and the mold. An object of the present invention is to provide a lens configured as above and a method for manufacturing the same.
 本発明の第1の態様のレンズは、芯部材及び該芯部材を覆う外層からなる。該芯部材は、該レンズの光軸にほぼ垂直な方向に突出し第1及び第2の面を備えるフランジ部を有し、該フランジ部は、該第1の面に、該第1の面にほぼ垂直に突出し該芯部材の外周に沿って該外周の0.5パーセント以上の領域に備わる第1の突起部と、該第2の面に、該第2の面にほぼ垂直に突出し該芯部材の外周に沿って該外周の0.5パーセント以上の領域に備わる第2の突起部と、を有する。 The lens of the first aspect of the present invention comprises a core member and an outer layer covering the core member. The core member has a flange portion protruding in a direction substantially perpendicular to the optical axis of the lens and having first and second surfaces, and the flange portion is provided on the first surface and on the first surface. a first protrusion protruding substantially perpendicularly along the outer periphery of the core member and provided in an area of 0.5% or more of the outer periphery; and a second projection provided along the perimeter in an area of 0.5 percent or more of the perimeter.
 本態様のレンズは、芯部材を金型内に保持して芯部材と金型との間のキャビティに芯部材の外層のみを射出成形する際に、第1及び第2の突起部を使用してキャビティに流れ込む溶融材料の流量を制御することができるので射出成形に起因する不良が少なく高品質である。 The lens of this aspect uses the first and second protrusions when the core member is held in a mold and only the outer layer of the core member is injection molded into the cavity between the core member and the mold. It is possible to control the flow rate of the molten material flowing into the cavity by means of injection molding, so that defects due to injection molding are few and the quality is high.
 本発明の第1の態様の第1の実施形態のレンズにおいては、該第1の突起部と該レンズのゲートに相当する部分とが部分的に重なるように構成され、該第2の突起部と該レンズのゲートに相当する部分とが部分的に重なるように構成されている。 In the lens of the first embodiment of the first aspect of the present invention, the first protrusion and the portion corresponding to the gate of the lens are configured to partially overlap, and the second protrusion and the portion corresponding to the gate of the lens partially overlap each other.
 本発明の第1の態様の第2の実施形態のレンズにおいては、該外周に沿って該第1の突起部及び該第2の突起部が間隔を空けて配置されている。 In the lens of the second embodiment of the first aspect of the present invention, the first protrusion and the second protrusion are spaced apart along the outer circumference.
 本実施形態によれば、芯部材を金型内に保持して芯部材と金型との間のキャビティに芯部材の外層のみを射出成形する際に、第1及び第2の突起部を使用してキャビティに流れ込む溶融材料の流量を制御するのが容易である。 According to this embodiment, the first and second projections are used when the core member is held in the mold and only the outer layer of the core member is injection molded into the cavity between the core member and the mold. It is easy to control the flow rate of molten material flowing into the cavity by
 本発明の第1の態様の第3の実施形態のレンズにおいては、該外周に沿った該第1の突起部及び該第2の突起部の間の距離が該外周の40パーセント以下である。 In the lens of the third embodiment of the first aspect of the present invention, the distance between the first protrusion and the second protrusion along the outer circumference is 40 percent or less of the outer circumference.
 本発明の第1の態様の第4の実施形態のレンズにおいては、該芯部材の材料と該外層の材料とが同じである請求項1に記載のレンズ。 In the lens of the fourth embodiment of the first aspect of the present invention, the lens according to claim 1, wherein the material of the core member and the material of the outer layer are the same.
 本発明の第1の態様の第5の実施形態のレンズにおいては、該芯部材の材料と該外層の材料とが異なる。 In the lens of the fifth embodiment of the first aspect of the present invention, the material of the core member and the material of the outer layer are different.
 本発明の第2の態様のレンズの製造方法は、芯部材及び該芯部材を覆う外層からなるレンズの製造方法である。該方法は、芯部材であって、該レンズの光軸にほぼ垂直な方向に突出し第1及び第2の面を備えるフランジ部を有し、該フランジ部は、該第1の面に、該第1の面にほぼ垂直に突出し該芯部材の外周に沿って該外周の0.5パーセント以上の領域に備わる第1の突起部と、該第2の面に、該第2の面にほぼ垂直に突出し該芯部材の外周に沿って該外周の0.5パーセント以上の領域に備わる第2の突起部と、を有する該芯部材を製造するステップと、金型内に該芯部材を保持して該金型と該芯部材との間に射出成形によって該外層を成形する前に、ゲートから該フランジ部の該第1の突起部の側及び該第2の突起部の側へ適切に材料が流入するように、該第1の突起部及び該第2の突起部と該ゲートとの相対的な位置関係または該ゲートの形状を調整するステップと、該金型内に該芯部材を保持して該金型と該芯部材との間に射出成形によって該外層を成形するステップと、を含む。 A method for manufacturing a lens according to the second aspect of the present invention is a method for manufacturing a lens comprising a core member and an outer layer covering the core member. The method includes a core member having a flange portion projecting in a direction substantially perpendicular to the optical axis of the lens and having first and second surfaces, the flange portion having the first surface and the a first protrusion projecting substantially perpendicularly to the first surface and provided along the outer periphery of the core member in an area of 0.5% or more of the outer periphery; a second protrusion projecting along the outer periphery of the core member and provided in an area of 0.5 percent or more of the outer periphery; Prior to molding the outer layer by injection molding between the mold and the core member, material flows appropriately from the gate to the first protrusion side and the second protrusion side of the flange. adjusting the relative positional relationship between the first protrusion and the second protrusion and the gate or adjusting the shape of the gate; molding the outer layer by injection molding between a mold and the core member.
 本態様のレンズの製造方法によれば、芯部材を金型内に保持して芯部材と金型との間のキャビティに芯部材の外層のみを射出成形する際に、第1及び第2の突起部を使用してキャビティに流れ込む溶融材料の流量を制御することができるので射出成形に起因する不良が少なく高品質なレンズが得られる。 According to the lens manufacturing method of this aspect, when the core member is held in the mold and only the outer layer of the core member is injection-molded into the cavity between the core member and the mold, the first and second The projections can be used to control the flow rate of the molten material flowing into the cavity, resulting in a high quality lens with less defects due to injection molding.
 本発明の第2の態様の第1の実施形態のレンズの製造方法は、該第1の突起部及び該第2の突起部と該ゲートとの相対的な位置関係または該ゲートの形状を調整するステップにおいて、入れ子型を使用する。 In the method for manufacturing a lens according to the first embodiment of the second aspect of the present invention, the relative positional relationship between the first protrusion and the second protrusion and the gate or the shape of the gate is adjusted. Use nested types in the
 本実施形態によれば、入れ子型を使用して、該第1の突起部及び該第2の突起部と該ゲートとの相対的な位置関係または該ゲートの形状を容易に調整することができる。 According to this embodiment, the nested mold can be used to easily adjust the relative positional relationship between the first and second protrusions and the gate or the shape of the gate. .
本発明の一実施形態のレンズの透視図である。1 is a perspective view of a lens according to one embodiment of the invention; FIG. 本発明の一実施形態のレンズの芯部材の透視図である。1 is a perspective view of a core member of a lens according to one embodiment of the present invention; FIG. 芯部材の平面図である。It is a top view of a core member. レンズの製造方法を説明するための流れ図である。It is a flowchart for demonstrating the manufacturing method of a lens. 芯部材成形用金型の透視図である。FIG. 3 is a perspective view of a mold for molding a core member; 図5の四角で示した部分の拡大図である。FIG. 6 is an enlarged view of a portion indicated by a square in FIG. 5; 芯部材を金型内に保持して芯部材と金型との間のキャビティに外層を射出成形する際に使用される外層成型用金型の平面図である。FIG. 2 is a plan view of an outer layer molding die used when holding a core member in the die and injection molding an outer layer into a cavity between the core member and the die. 図7のA-A断面を示す図である。It is a figure which shows the AA cross section of FIG. 図7のB-B断面を示す図である。It is a figure which shows the BB cross section of FIG. 図7のC―C断面を示す図である。FIG. 8 is a view showing a CC cross section of FIG. 7; 図7のD-D断面を示す図である。FIG. 8 is a diagram showing a DD cross section of FIG. 7; 図7のE―E断面を示す図である。It is a figure which shows the EE cross section of FIG. 外層成型用金型のレンズの凸面の側以外の他方の面の側に対応する第2の部分に芯部材を組み込んだものの透視図である。FIG. 4 is a perspective view of a mold for molding an outer layer in which a core member is incorporated in a second portion corresponding to the other side of the lens other than the convex side. 図13の四角で示した部分の拡大図である。14 is an enlarged view of the portion indicated by the square in FIG. 13; FIG. 外層成型用金型の図12に対応する断面のゲート周辺部分を示す図である。It is a figure which shows the gate periphery part of the cross section corresponding to FIG. 12 of the metal mold|die for molding an outer layer. 図13-図15を使用して説明した外層成型用金型によって成形されたレンズのゲートに対応する部分150を示す図である。FIG. 15 is a diagram showing a portion 150 corresponding to the gate of the lens molded by the outer layer molding die described using FIGS. 13 to 15. FIG. 外層成型用金型のレンズの凸面の側以外の他方の面の側に対応する第2の部分に芯部材を組み込んだものの透視図である。FIG. 4 is a perspective view of a mold for molding an outer layer in which a core member is incorporated in a second portion corresponding to the other side of the lens other than the convex side. 図17の四角で示した部分の拡大図である。18 is an enlarged view of the portion indicated by the square in FIG. 17; FIG. 外層成型用金型の図12に対応する断面のゲート周辺部分を示す図である。It is a figure which shows the gate periphery part of the cross section corresponding to FIG. 12 of the metal mold|die for molding an outer layer. 図17-図19を使用して説明した外層成型用金型によって成形された成形されたレンズのゲートに対応する部分を示す図である。FIG. 20 is a diagram showing a portion corresponding to a gate of a molded lens molded by the outer layer molding die described using FIGS. 17 to 19; 第1及び第2の部分のゲートの開口部の有効長をそれぞれW1’及びW2’とするようにフランジ1100の第1及び第2の突起部間の距離を調整した芯部材を使用した場合の、外層成型用金型のゲート周辺部分の図12に対応する断面を示す図である。When using a core member in which the distance between the first and second protrusions of the flange 1100 is adjusted so that the effective lengths of the gate openings of the first and second portions are W1′ and W2′, respectively 13 is a view showing a cross section corresponding to FIG. 12 of the gate peripheral portion of the mold for molding the outer layer. FIG. 図21を使用して説明した外層成型用金型によって成形された成形されたレンズゲートに対応する部分を示す図である。FIG. 22 is a diagram showing a portion corresponding to a molded lens gate molded by the outer layer molding die described using FIG. 21; 外層成型用金型の第2の部分と芯部材とを組み合わせたものの側面図である。FIG. 4 is a side view of a combination of the second portion of the mold for molding the outer layer and the core member; 外層成型用金型の第2の部分と実施例1の芯部材とを組み合わせたものの、図23のA1-A1断面を示す図である。FIG. 24 is a cross-sectional view taken along line A1-A1 in FIG. 23 of a combination of the second portion of the mold for molding the outer layer and the core member of Example 1; 外層成型用金型の第2の部分と実施例2の芯部材とを組み合わせたものの、図23のA1-A1断面を示す図である。FIG. 24 is a cross-sectional view taken along the line A1-A1 in FIG. 23 of a combination of the second part of the mold for molding the outer layer and the core member of Example 2; 外層成型用金型の第2の部分と実施例3の芯部材とを組み合わせたものの、図23のA1-A1断面を示す図である。FIG. 24 is a cross-sectional view taken along line A1-A1 in FIG. 23 of a combination of the second part of the mold for molding the outer layer and the core member of Example 3; 調整前のゲートの状態で射出成形を実施した場合に、溶融材料の射出を開始してからキャビティの各位置に溶融材料が到達するまでの時間を示す。When injection molding is performed in the state of the gate before adjustment, the time from the start of injection of the molten material to the arrival of the molten material at each position in the cavity is shown. 調整後のゲートの状態で射出成形を実施した場合に、溶融材料の射出を開始してからキャビティの各位置に溶融材料が到達するまでの時間を示す。When injection molding is performed in the state of the gate after adjustment, the time from the start of injection of the molten material to the arrival of the molten material at each position in the cavity is shown. 調整前のゲートの状態で射出成形を実施した場合のウエルドラインの発生位置を示す。Fig. 3 shows the positions of weld lines generated when injection molding is performed in the state of the gate before adjustment. 調整後のゲートの状態で射出成形を実施した場合のウエルドラインの発生位置を示す。Fig. 10 shows the positions of weld lines generated when injection molding is performed in the state of the gate after adjustment. 調整前のゲートの状態で射出成形を実施した場合のエアトラップの発生位置を示す。Fig. 10 shows the positions of air traps when injection molding is performed with the gates before adjustment. 調整後のゲートの状態で射出成形を実施した場合のエアトラップの発生位置を示す。FIG. 10 shows the positions of air traps when injection molding is performed with the gates after adjustment. 調整前のゲートの状態で射出成形を実施した場合の芯部材の断面の応力分布を示す。FIG. 5 shows the stress distribution in the cross section of the core member when injection molding is performed in the state of the gate before adjustment. 調整後のゲートの状態で射出成形を実施した場合の芯部材の断面の応力分布を示す。FIG. 5 shows the stress distribution in the cross section of the core member when injection molding is performed in the state of the adjusted gate. 従来技術の外層成型用金型の平面図である。1 is a plan view of a conventional outer layer molding die; FIG. 図35のF-F断面を示す図である。It is a figure which shows the FF cross section of FIG. 図35のG-G断面を示す図である。FIG. 36 is a view showing a GG section of FIG. 35;
 図1は、本発明の一実施形態のレンズ100の透視図である。 FIG. 1 is a perspective view of a lens 100 according to one embodiment of the invention.
 図2は、本発明の一実施形態のレンズ100の芯部材110の透視図である。レンズ100は、芯部材110を金型内に保持して芯部材110と金型との間のキャビティに外層を射出成形することによって製造される。芯部材110は突起部1110及び1120を備えたフランジ部1100を有する。フランジ部1100ならびに突起部1110及び1120の機能については後で説明する。また、芯部材110は、芯部材100を金型内に保持するために使用される保持フランジ部1130を有する。フランジ部1100及び保持フランジ部1130は、レンズの光軸にほぼ垂直な方向に突出するように芯部材110の外周に沿って形成されている。 FIG. 2 is a perspective view of the core member 110 of the lens 100 of one embodiment of the invention. Lens 100 is manufactured by holding core member 110 in a mold and injection molding an outer layer into the cavity between core member 110 and the mold. Core member 110 has a flange portion 1100 with projections 1110 and 1120 . The function of flange portion 1100 and protrusions 1110 and 1120 will be described later. The core member 110 also has a retaining flange 1130 that is used to retain the core member 100 within the mold. The flange portion 1100 and the holding flange portion 1130 are formed along the outer periphery of the core member 110 so as to protrude in a direction substantially perpendicular to the optical axis of the lens.
 図3は、芯部材110の平面図である。 3 is a plan view of the core member 110. FIG.
 図4は、レンズ100の製造方法を説明するための流れ図である。 FIG. 4 is a flowchart for explaining the method of manufacturing the lens 100. FIG.
 図4のステップS1010において、両面に突起部1110及び1120を備えたフランジ部1100を有する芯部材110を射出成形によって製造する。 At step S1010 in FIG. 4, the core member 110 having the flange portion 1100 with the projections 1110 and 1120 on both sides is manufactured by injection molding.
 図5は、芯部材成形用金型400の透視図である。図5は、芯部材成形用金型400のうち、芯部材110のレンズの凸面の側に対応する部分を成形するための金型の部分である。 FIG. 5 is a perspective view of the mold 400 for molding the core member. FIG. 5 shows a portion of the mold 400 for molding the core member 110 corresponding to the convex side of the lens.
 図6は、図5の四角で示した部分の拡大図である。図6は金型のゲート部を示す。金型のゲート部は入れ子型210によって形成される。ランナー300から入れ子型210に溶融材料が注入される。金型の凹部2110は、芯部材110の突起部1110を形成するための部分である。入れ子型210を交換することによって突起部1110の位置及び形状を変更することができる。 FIG. 6 is an enlarged view of the portion indicated by the square in FIG. FIG. 6 shows the gate portion of the mold. The gate portion of the mold is formed by nesting molds 210 . Molten material is injected from runner 300 into nesting mold 210 . The recessed portion 2110 of the mold is a portion for forming the projecting portion 1110 of the core member 110 . By exchanging the nesting mold 210, the position and shape of the projection 1110 can be changed.
 つぎに、芯部材110を金型内に保持して芯部材110と金型との間のキャビティに外層を射出成形するプロセスを説明する。 Next, the process of holding the core member 110 in the mold and injection molding the outer layer into the cavity between the core member 110 and the mold will be described.
 図7は、芯部材110を金型内に保持して芯部材110と金型との間のキャビティに外層を射出成形する際に使用される外層成型用金型500の平面図である。 FIG. 7 is a plan view of an outer layer molding die 500 used when holding the core member 110 in the die and injection molding the outer layer into the cavity between the core member 110 and the die.
 図8は、図7のA-A断面を示す図である。外層成型用金型500のゲート部も入れ子型220によって形成される。ランナー300から入れ子型220を介して芯部材110と金型500との間のキャビティ120に溶融材料が注入される。本明細書において、外層成型用金型500のレンズの凸面の側に対応する部分を第1の部分と呼称し、他方の面の側に対応する部分を第2の部分と呼称する。溶融材料はフランジ部1100によって金型500の第1の部分に流れ込むものと金型500の第2の部分に流れ込むものとに分けられる。図8に示す断面においては、溶融材料が金型500の第2の部分に流れ込む経路上に突起部1120が存在する。 FIG. 8 is a diagram showing the AA cross section of FIG. A gate portion of the outer layer molding die 500 is also formed by the nesting die 220 . Molten material is injected into the cavity 120 between the core member 110 and the mold 500 from the runner 300 through the nesting mold 220 . In this specification, the portion corresponding to the convex surface side of the lens of the outer layer molding die 500 is referred to as the first portion, and the portion corresponding to the other surface side is referred to as the second portion. The molten material is divided by the flange 1100 into one that flows into the first portion of the mold 500 and one that flows into the second portion of the mold 500 . In the cross-section shown in FIG. 8, protrusion 1120 is on the path through which molten material flows into the second portion of mold 500 .
 図9は、図7のB-B断面を示す図である。図9に示す断面においては、溶融材料が金型500の第1及びの第2の部分に流れ込む経路上に突起部は存在しない。 FIG. 9 is a diagram showing a BB cross section in FIG. In the cross-section shown in FIG. 9, there are no protrusions on the path through which molten material flows into the first and second portions of mold 500 .
 図10は、図7のC-C断面を示す図である。図10に示す断面においては、溶融材料が金型500の第1の部分に流れ込む経路上に突起部1110が存在する。 FIG. 10 is a diagram showing a CC cross section of FIG. In the cross-section shown in FIG. 10, protrusions 1110 are on the path through which molten material flows into the first portion of mold 500 .
 図11は、図7のD-D断面を示す図である。金型500の第1及びの第2の部分によって保持フランジ1130を挟み込むことによって金型500内に芯部材110を保持することができる。 FIG. 11 is a diagram showing a DD cross section of FIG. The core member 110 can be retained within the mold 500 by sandwiching the retaining flange 1130 with the first and second portions of the mold 500 .
 図12は、図7のE-E断面を示す図である。図12の円形で示した部分にゲートが位置する。 FIG. 12 is a diagram showing the EE cross section of FIG. A gate is located in the portion indicated by the circle in FIG.
 芯部材110のフランジ部1100の上側の面及び下側の面には突起部1110及び1120が備わる。突起部1110はフランジ部1100の上側の面にほぼ垂直に突出し、突起部1120はフランジ部1100の下側の面にほぼ垂直に突出している。突起部1110及び1120は芯部材の外周に沿って形成されている。突起部1110及び1120は、ゲートからそれぞれ金型500の第1及びの第2の部分に溶融材料が流れ込む経路上の障壁として機能する。したがって、突起部1110及び1120がゲートの開口を部分的に閉じる面積を変えることによってそれぞれ金型500の第1及び金型500の第2の部分に流れ込む溶融材料の流量を変えることができる。 Projections 1110 and 1120 are provided on the upper and lower surfaces of the flange portion 1100 of the core member 110 . The protrusion 1110 protrudes substantially perpendicularly to the upper surface of the flange portion 1100 , and the protrusion 1120 protrudes substantially perpendicularly to the lower surface of the flange portion 1100 . Protrusions 1110 and 1120 are formed along the outer circumference of the core member. Protrusions 1110 and 1120 act as barriers on the path of molten material flowing from the gate to the first and second portions of mold 500, respectively. Thus, by varying the area over which protrusions 1110 and 1120 partially close the opening of the gate, the flow rate of molten material flowing into the first and second portions of mold 500, respectively, can be varied.
 図35は、従来技術の外層成型用金型の平面図である。図35は図7に相当する。 FIG. 35 is a plan view of a conventional outer layer molding die. FIG. 35 corresponds to FIG.
 図36は、図35のF-F断面を示す図である。図36は図8-図10に対応する。従来の技術の芯部材において溶融材料が金型の左側の第1及びの右側の第2の部分に流れ込む経路上に突起部は存在しない。 FIG. 36 is a diagram showing the FF section of FIG. FIG. 36 corresponds to FIGS. 8-10. There are no protrusions on the path through which the molten material flows into the first left and second right portions of the mold in prior art core members.
 図37は、図35のG-G断面を示す図である。図38は図11に対応する。 FIG. 37 is a diagram showing a GG section of FIG. FIG. 38 corresponds to FIG.
 つぎに、金型500の第1及の部分及び金型500の第2の部分に流れ込む溶融材料の流量の調整方法を詳細に説明する。 Next, a method for adjusting the flow rate of the molten material flowing into the first and second portions of the mold 500 and the second portion of the mold 500 will be described in detail.
 図4のステップS1020において、金型500内に芯部材110を保持して金型500と芯部材110との間のキャビティ120に射出成形によって外層を成形する前に、ゲートからキャビティ120の、フランジ部1100の第1の突起部1110の側及び該第2の突起部1120の側へ適切な流量で材料が流入するように、第1の突起部1110及び第2の突起部1120とゲートとの相対的な位置関係またはゲートの形状を調整する。 In step S1020 of FIG. 4, before holding the core member 110 in the mold 500 and molding the outer layer into the cavity 120 between the mold 500 and the core member 110 by injection molding, the flange of the cavity 120 from the gate The first protrusion 1110 and the second protrusion 1120 and the gate are arranged so that the material flows into the first protrusion 1110 side and the second protrusion 1120 side of the portion 1100 at an appropriate flow rate. Adjust the relative position or shape of the gate.
 図13は、外層成型用金型500のレンズの凸面の側以外の他方の面の側に対応する第2の部分に芯部材110を組み込んだものの透視図である。 FIG. 13 is a perspective view of the core member 110 incorporated in the second portion of the mold 500 for molding the outer layer corresponding to the other side of the lens other than the convex side.
 図14は、図13の四角で示した部分の拡大図である。図14は金型のゲート部を示す。金型のゲート部は入れ子型220によって形成される。ランナー300から入れ子型220を介して芯部材110と金型500との間のキャビティ120に溶融材料が注入される。図14に図示しないキャビティ120は、芯部材110と外層成型用金型500のレンズの凸面の側に対応する第1の部分との間に形成される。ゲートの入れ子型220はスロット(長穴)2010を有し、スロット2010内の固定ボルト2020によって金型500の第2の部分に固定される。スロット2010内の固定ボルト2020による固定位置を変化させることによって、ゲートの入れ子型220の金型500の第2の部分に対する位置をスロット2010の長手方向に変化させることができる。符号2030はスペーサを表す。 FIG. 14 is an enlarged view of the portion indicated by the square in FIG. FIG. 14 shows the gate portion of the mold. The gate portion of the mold is formed by nesting molds 220 . Molten material is injected into the cavity 120 between the core member 110 and the mold 500 from the runner 300 through the nesting mold 220 . A cavity 120 (not shown in FIG. 14) is formed between the core member 110 and the first portion of the outer layer molding die 500 corresponding to the convex side of the lens. A gate nesting mold 220 has slots 2010 and is secured to the second part of the mold 500 by securing bolts 2020 in the slots 2010 . The position of the gate nest 220 with respect to the second portion of the mold 500 can be varied longitudinally of the slot 2010 by varying the position of the fixing bolt 2020 within the slot 2010 . Reference numeral 2030 represents spacers.
 図15は、外層成型用金型500の図12に対応する断面のゲート周辺部分を示す図である。図15に示すゲート周辺部分は図12の円形で示した部分である。図15においてゲートの開口部を陰影で示した。濃い陰影は、外層成型用金型500の第1の部分のゲートの開口部の位置を示し、薄い陰影は、外層成型用金型500の第2の部分のゲートの開口部の位置を示す。濃い陰影で示す第1の部分のゲートの開口部の一部は第1の突起部1110に重なり、第1の突起部1110によって部分的に閉じられ、薄い陰影で示す第2の部分のゲートの開口部の一部は第2の突起部1120に重なり、第2の突起部1120によって部分的に閉じられる。したがって、第1の部分のゲートの開口部の有効長及び第2の部分のゲートの開口部の有効長はそれぞれW1及びW2で表せる。第1の部分のゲートの開口部の幅及び第2の部分のゲートの開口部の幅が同じであるとすると、金型500の第1及の部分に流れ込む溶融材料の流量と金型500の第2の部分に流れ込む溶融材料の流量との比は、W1/W2である。ここで開口部の幅とは、開口部の図における鉛直方向の長さである。W1/W2の初期値は、芯部材110と金型の第1の部分との間のキャビティの体積と芯部材110と金型の第2の部分との間のキャビティの体積との比としてもよい。 FIG. 15 is a diagram showing the gate peripheral portion of the cross section corresponding to FIG. 12 of the mold 500 for molding the outer layer. The gate peripheral portion shown in FIG. 15 is the circular portion shown in FIG. The opening of the gate is shaded in FIG. The dark shading indicates the position of the gate opening of the first portion of the outer layer molding die 500 , and the light shading indicates the position of the gate opening of the second portion of the outer layer molding die 500 . A portion of the opening of the gate of the first portion, indicated by dark shading, overlaps and is partially closed by the first protrusion 1110, and the opening of the gate of the second portion, indicated by light shading, overlaps and is partially closed by the first protrusion 1110. A portion of the opening overlaps the second protrusion 1120 and is partially closed by the second protrusion 1120 . Therefore, the effective length of the gate opening in the first portion and the effective length of the gate opening in the second portion can be represented by W1 and W2, respectively. Assuming that the width of the gate opening in the first portion and the width of the gate opening in the second portion are the same, the flow rate of the molten material flowing into the first and second portions of the mold 500 will The ratio of the flow rate of molten material flowing into the second portion is W1/W2. Here, the width of the opening is the length of the opening in the vertical direction in the drawing. The initial value of W1/W2 is also expressed as the ratio of the volume of the cavity between the core member 110 and the first portion of the mold to the volume of the cavity between the core member 110 and the second portion of the mold. good.
 図4のステップS1030において、金型500内に芯部材110を保持して金型500と芯部材110との間のキャビティ120に射出成形によって外層を成形する。 In step S1030 of FIG. 4, the core member 110 is held in the mold 500 and the outer layer is formed in the cavity 120 between the mold 500 and the core member 110 by injection molding.
 図16は、図13-図15を使用して説明した外層成型用金型500によって成形されたレンズ100のゲートに対応する部分150を示す図である。 FIG. 16 is a diagram showing a portion 150 corresponding to the gate of the lens 100 molded by the outer layer molding die 500 described using FIGS. 13-15.
 図4のステップS1040において、成形されたレンズ100の品質が許容できるかどうか判断する。具体的には成形されたレンズにおけるウエルドラインやエアトラップの発生状況によってレンズ100の品質を評価する。品質が許容できれば処理を終了する。品質が許容できなければステップS1020に戻り必要な調整を実施する。具体的に、金型500の第1及の部分に流れ込む溶融材料の流量と金型500の第2の部分に流れ込む溶融材料の流量との比を調整する。 At step S1040 in FIG. 4, it is determined whether the quality of the molded lens 100 is acceptable. Specifically, the quality of the lens 100 is evaluated based on the occurrence of weld lines and air traps in the molded lens. If the quality is acceptable, the process ends. If the quality is not acceptable, return to step S1020 to make any necessary adjustments. Specifically, the ratio of the flow rate of molten material flowing into the first and second portions of mold 500 to the flow rate of molten material flowing into the second portion of mold 500 is adjusted.
 一例として、金型500の第1及の部分に流れ込む溶融材料の流量と金型500の第2の部分に流れ込む溶融材料の流量との比を大きくする場合の調整について以下に説明する。 As an example, adjustment for increasing the ratio between the flow rate of the molten material flowing into the first and second portions of the mold 500 and the flow rate of the molten material flowing into the second portion of the mold 500 will be described below.
 図17は、外層成型用金型500のレンズの凸面の側以外の他方の面の側に対応する第2の部分に芯部材110を組み込んだものの透視図である。 FIG. 17 is a perspective view of the core member 110 incorporated in the second portion of the mold 500 for molding the outer layer corresponding to the other side of the lens other than the convex side.
 図18は、図17の四角で示した部分の拡大図である。図18において、固定ボルト2020は、スロット2010の右端に位置し、ゲートの入れ子型220は金型500の第2の部分に対して可能な限り左側に移動されている。 FIG. 18 is an enlarged view of the portion indicated by the square in FIG. In FIG. 18, the fixing bolt 2020 is located at the right end of the slot 2010 and the gate nest 220 has been moved as far to the left as possible relative to the second portion of the mold 500 .
 図19は、外層成型用金型500の図12に対応する断面のゲート周辺部分を示す図である。図19に示すゲート周辺部分は図12の円形で示した部分である。金型500の第1の部分のゲート入れ子型を金型500の第1の部分に対して左側に移動させることにより、濃い陰影で示す第1の部分のゲートの開口部の、第1の突起部1110によって部分的に閉じられる部分は小さくなり、第1の部分のゲートの開口部の有効長W1’はW1よりも大きくなる。また、金型500の第2の部分のゲートの入れ子型を金型500の第2の部分に対して左側に移動させることによって、薄い陰影で示す第2の部分のゲートの開口部のより大きな部分が第2の突起部1120によって部分的に閉じられ第2の部分のゲートの開口部の有効長W2’はW2よりも小さくなる。この結果、上述の調整により金型500の第1及の部分に流れ込む溶融材料の流量と金型500の第2の部分に流れ込む溶融材料の流量との比が大きくなることが期待される。 FIG. 19 is a view showing the gate peripheral portion of the cross section corresponding to FIG. 12 of the mold 500 for molding the outer layer. The gate peripheral portion shown in FIG. 19 is the circular portion shown in FIG. By moving the gate nesting die of the first portion of the mold 500 to the left with respect to the first portion of the mold 500, the first projection of the opening of the gate of the first portion, shown in dark shading, is removed. The portion partially closed by portion 1110 becomes smaller, and the effective length W1' of the opening of the gate in the first portion becomes greater than W1. Also, by moving the gate nests of the second portion of the mold 500 to the left with respect to the second portion of the mold 500, a larger opening of the second portion gates, shown in light shading, can be achieved. The portion is partially closed by the second protrusion 1120 and the effective length W2' of the opening of the gate of the second portion is smaller than W2. As a result, it is expected that the above adjustment will increase the ratio of the flow rate of molten material flowing into the first and second portions of mold 500 to the flow rate of molten material flowing into the second portion of mold 500 .
 図4のステップS1030において、金型500内に芯部材110を保持して金型500と芯部材110との間のキャビティ120に射出成形によって外層を成形する。 In step S1030 of FIG. 4, the core member 110 is held in the mold 500 and the outer layer is formed in the cavity 120 between the mold 500 and the core member 110 by injection molding.
 図20は、図17-図19を使用して説明した外層成型用金型500によって成形された成形されたレンズ100のゲートに対応する部分150を示す図である。対応する部分150の断面は矩形ではなく、二つの矩形を隣接する辺に沿って互いにずらせた形状である。部分150の断面が上記の形状となる理由は、金型500の第1の部分のゲートの入れ子型の移動量と金型500の第2の部分のゲートの入れ子型の移動量とが異なるためである。 FIG. 20 is a diagram showing a portion 150 corresponding to the gate of the molded lens 100 molded by the outer layer molding die 500 described using FIGS. 17-19. The cross-section of the corresponding portion 150 is not rectangular, but is two rectangles offset from each other along adjacent sides. The reason why the cross-section of the part 150 has the above shape is that the amount of telescoping of the gates in the first part of the mold 500 and the amount of telescoping of the gates in the second part of the mold 500 are different. is.
 部分150の上記のような断面形状が好ましくない場合には、第1及び第2の部分のゲートの入れ子型を移動させずに第1及び第2の部分のゲートの開口部の有効長をそれぞれW1’及びW2’とするようにフランジ1100の第1及び第2の突起部間の距離を調整した芯部材110をステップS1010によって成形し、この芯部材110を使用してステップS1030を実施してもよい。 If such a cross-sectional shape of portion 150 is not preferred, the effective lengths of the openings of the gates of the first and second portions can be adjusted without moving the gate nests of the first and second portions, respectively. The core member 110 with the distance between the first and second protrusions of the flange 1100 adjusted to W1′ and W2′ is molded in step S1010, and step S1030 is performed using this core member 110. good too.
 図21は、第1及び第2の部分のゲートの開口部の有効長をそれぞれW1’及びW2’とするようにフランジ1100の第1及び第2の突起部間の距離を調整した芯部材を使用した場合の、外層成型用金型500のゲート周辺部分の図12に対応する断面を示す図である。 FIG. 21 shows the core member with the distance between the first and second protrusions of the flange 1100 adjusted so that the effective lengths of the gate openings of the first and second portions are W1′ and W2′, respectively. FIG. 13 is a view showing a cross section corresponding to FIG. 12 of the gate peripheral portion of the outer layer molding die 500 when used.
 図22は、図21を使用して説明した外層成型用金型500によって成形された成形されたレンズ100のゲートに対応する部分150を示す図である。 FIG. 22 is a diagram showing a portion 150 corresponding to the gate of the molded lens 100 molded by the outer layer molding die 500 described using FIG.
 図4のステップS1040において、成形されたレンズ100の品質が許容できるかどうか判断する。 At step S1040 in FIG. 4, it is determined whether the quality of the molded lens 100 is acceptable.
 このように本発明の製造方法においては、図4のステップS1020-S1040を繰り返し実施する可能性がある。したがって、S1010において複数個の芯部材110を製造しておくのが好ましい。 Thus, in the manufacturing method of the present invention, steps S1020-S1040 in FIG. 4 may be repeated. Therefore, it is preferable to manufacture a plurality of core members 110 in S1010.
 図15、図19及び図21に示す第1の突起部1110及び第2の突起部1120は、芯部材110の外周に沿って間隔を空けて配置されている。一般的に、第1の突起部1110及び第2の突起部1120は、芯部材110の外周に沿って一部または全部が互いに重なるように配置されてもよい。その場合に上述の調整は、第1の突起部1110及び第2の突起部1120の外周に沿った位置をそれぞれ変更することによって実施する。 The first protrusion 1110 and the second protrusion 1120 shown in FIGS. 15, 19 and 21 are arranged along the outer circumference of the core member 110 with a gap therebetween. In general, the first protrusions 1110 and the second protrusions 1120 may be arranged along the outer circumference of the core member 110 such that they partially or wholly overlap each other. In that case, the adjustment described above is performed by changing the positions of the first protrusion 1110 and the second protrusion 1120 along the outer periphery, respectively.
 つぎに、芯部材110の実施例について説明する。実施例の芯部材110及び外層の材料はポリメチルメタクリレートである。本発明は芯部材110の材料と外層の材料とが異なる場合にも適用できる。 Next, an embodiment of the core member 110 will be described. The material of the core member 110 and outer layers in the example is polymethyl methacrylate. The present invention can also be applied when the material of the core member 110 and the material of the outer layer are different.
 図23は、外層成型用金型500の第2の部分と芯部材110とを組み合わせたものの側面図である。 23 is a side view of a combination of the second portion of the outer layer molding die 500 and the core member 110. FIG.
実施例1
 図24は、外層成型用金型500の第2の部分と実施例1の芯部材110とを組み合わせたものの、図23のA1-A1断面を示す図である。図24-図26において、両矢印の近くに示した数字は長さを示す。長さの単位はミリメータである。また、図24-図26において、ゲートの入れ子型は調整可能範囲の最も左側に位置している。実施例1の芯部材110は図2に示したものである。実施例1の第2の突起部1120の芯部材110外周に沿った長さは4ミリメータであり、芯部材110の全外周の長さは220ミリメータである。したがって、実施例1の第2の突起部1120の芯部材110外周に沿った長さの芯部材110の全外周の長さに対する比率は1.8パーセントである。実施例1において、図24に図示しない第1の突起部1110と第2の突起部1120との間の芯部材110外周に沿った距離は4ミリメータであり、上記の距離の芯部材110の全外周の長さに対する比率は1.8パーセントである。実施例1において、保持フランジ部1130は芯部材110の左右の側面のみに備わる。
Example 1
FIG. 24 is a cross-sectional view taken along line A1-A1 in FIG. 23 of a combination of the second portion of the outer layer molding die 500 and the core member 110 of Example 1. As shown in FIG. In FIGS. 24-26, numbers shown near double arrows indicate lengths. The unit of length is millimeters. Also, in FIGS. 24-26, the gate nesting is positioned at the leftmost of the adjustable range. The core member 110 of Example 1 is shown in FIG. The length of the second protrusion 1120 of Example 1 along the outer periphery of the core member 110 is 4 millimeters, and the length of the entire outer periphery of the core member 110 is 220 millimeters. Therefore, the ratio of the length of the second protrusion 1120 along the outer periphery of the core member 110 in Example 1 to the length of the entire outer periphery of the core member 110 is 1.8%. In Example 1, the distance along the outer circumference of the core member 110 between the first protrusion 1110 and the second protrusion 1120 (not shown in FIG. 24) is 4 millimeters, and the entire length of the core member 110 with the above distance. The ratio to the perimeter length is 1.8 percent. In Example 1, the holding flange portions 1130 are provided only on the left and right side surfaces of the core member 110 .
実施例2
 図25は、外層成型用金型500の第2の部分と実施例2の芯部材110とを組み合わせたものの、図23のA1-A1断面を示す図である。実施例2の第2の突起部1120の芯部材110外周に沿った長さは4ミリメータであり、芯部材110の全外周の長さは220ミリメータである。したがって、実施例2の第2の突起部1120の芯部材110外周に沿った長さの芯部材110の全外周の長さに対する比率は1.8パーセントである。実施例2において、図25に図示しない第1の突起部1110と第2の突起部1120との間の芯部材110外周に沿った距離は4ミリメータであり、上記の距離の芯部材110の全外周の長さに対する比率は1.8パーセントである。実施例2において、保持フランジ部1130は芯部材110の外周の、外周に沿った長さが4ミリメータである第2の突起部1120及び外周に沿った長さが8ミリメータであるゲート以外の部分に備わる。換言すれば、第2の突起部1120と保持フランジ部1130とが連続して形成されている。
Example 2
FIG. 25 is a cross-sectional view taken along line A1-A1 in FIG. 23 of a combination of the second portion of the outer layer molding die 500 and the core member 110 of Example 2. As shown in FIG. The length of the second protrusion 1120 of Example 2 along the outer periphery of the core member 110 is 4 millimeters, and the length of the entire outer periphery of the core member 110 is 220 millimeters. Therefore, the ratio of the length of the second protrusion 1120 along the outer periphery of the core member 110 in Example 2 to the length of the entire outer periphery of the core member 110 is 1.8%. In Example 2, the distance along the outer periphery of the core member 110 between the first protrusion 1110 and the second protrusion 1120 (not shown in FIG. 25) is 4 millimeters, and the entire length of the core member 110 at the above distance. The ratio to the perimeter length is 1.8 percent. In Example 2, the retaining flange portion 1130 is the portion of the outer circumference of the core member 110 other than the second protrusion 1120 which is 4 millimeters in length along the circumference and the gate which is 8 millimeters in length along the circumference. Prepared for. In other words, the second projecting portion 1120 and the holding flange portion 1130 are formed continuously.
実施例3
 図26は、外層成型用金型500の第2の部分と実施例3の芯部材110とを組み合わせたものの、図23のA1-A1断面を示す図である。実施例3の第2の突起部1120の芯部材110外周に沿った長さは4ミリメータであり、芯部材110の全外周の長さは220ミリメータである。したがって、実施例3の第2の突起部1120の芯部材110外周に沿った長さの芯部材110の全外周の長さに対する比率は1.8パーセントである。実施例3において、図26に図示しない第1の突起部1110と第2の突起部1120との間の芯部材110外周に沿った距離は4ミリメータであり、上記の距離の芯部材110の全外周の長さに対する比率は1.8パーセントである。実施例3の保持フランジ部1130は芯部材110の外周において一定の間隔で形成されている。実施例3において上記の一定の間隔は6ミリメータである。
Example 3
FIG. 26 is a cross-sectional view taken along line A1-A1 in FIG. 23 of a combination of the second portion of the outer layer molding die 500 and the core member 110 of Example 3. As shown in FIG. The length along the outer periphery of the core member 110 of the second protrusion 1120 of Example 3 is 4 millimeters, and the length of the entire outer periphery of the core member 110 is 220 millimeters. Therefore, the ratio of the length of the second protrusion 1120 along the outer periphery of the core member 110 in Example 3 to the length of the entire outer periphery of the core member 110 is 1.8%. In Example 3, the distance along the outer periphery of the core member 110 between the first projection 1110 and the second projection 1120 (not shown in FIG. 26) is 4 millimeters, and the entire length of the core member 110 at the above distance. The ratio to the perimeter length is 1.8 percent. The holding flange portions 1130 of Example 3 are formed at regular intervals on the outer periphery of the core member 110 . In Example 3 the above constant spacing is 6 millimeters.
 つぎに、本発明の効果をシミュレーションによって説明する。図15他で説明した金型500の第1の部分及び第2の部分のゲートの有効長を変化させた場合に溶融材料がゲートからキャビティ120にどのように流れ込むかをシミュレーションによって求めた。シミュレーションプログラムは、Moldflow(登録商標)を使用した。シミュレーションに使用した芯部材110は、保持フランジ部1130がゲートの周辺以外の全周に備わるものである。種々の形態の保持部材を備えた芯部材のシミュレーションを実施すると、シミュレーションの結果はほとんど変わらない。したがって、保持部材の形態は溶融材料がゲートからキャビティ120にどのように流れ込むかに大きな影響を与えない。 Next, the effects of the present invention will be explained by simulation. A simulation was performed to determine how the molten material flows from the gates into the cavity 120 when the effective lengths of the gates of the first and second portions of the mold 500 described in FIG. 15 and others are changed. Moldflow (registered trademark) was used as a simulation program. The core member 110 used in the simulation has a holding flange portion 1130 around the entire periphery other than the periphery of the gate. When performing simulations of core members with various forms of retaining members, the results of the simulations vary little. Therefore, the configuration of the retaining member does not significantly affect how the molten material flows from the gate into cavity 120 .
 表1は、調整前及び調整後の金型500の第1の部分及び第2の部分のゲートの有効長及び有効断面積を示す表である。
Figure JPOXMLDOC01-appb-T000001
Table 1 is a table showing the effective length and effective cross-sectional area of the gates of the first portion and the second portion of the mold 500 before and after adjustment.
Figure JPOXMLDOC01-appb-T000001
 表1において、調整前の第1の部分のゲートの有効長は図15のW1に相当し、調整前の第2の部分のゲートの有効長は図15のW2に相当する。また、調整後の第1の部分のゲートの有効長は図19のW1’に相当し、調整後の第2の部分のゲートの有効長は図19のW2’に相当する。ここではW1に相当する調整前の第1の部分のゲートの有効長とW1’に相当する調整後の第1の部分のゲートの有効長とは等しい。調整前の第1の部分及び第2の部分のゲートの有効断面積は7平方ミリメータである。調整後の第1の部分のゲートの有効断面積は7平方ミリメータであり、調整後の第2の部分のゲートの有効断面積は4平方ミリメータである。 In Table 1, the effective length of the gate in the first portion before adjustment corresponds to W1 in FIG. 15, and the effective length of the gate in the second portion before adjustment corresponds to W2 in FIG. The effective length of the gate in the first portion after adjustment corresponds to W1' in FIG. 19, and the effective length of the gate in the second portion after adjustment corresponds to W2' in FIG. Here, the effective length of the gate of the first portion before adjustment corresponding to W1 is equal to the effective length of the gate of the first portion after adjustment corresponding to W1'. The effective cross-sectional area of the gates of the first and second portions before adjustment is 7 square millimeters. The effective cross-sectional area of the gate in the first portion after adjustment is 7 square millimeters, and the effective cross-sectional area of the gate in the second portion after adjustment is 4 square millimeters.
 図27は、調整前のゲートの状態で射出成形を実施した場合に、溶融材料の射出を開始してからキャビティ120の各位置に溶融材料が到達するまでの時間を示す。時間の単位は秒である。 FIG. 27 shows the time from the start of injection of the molten material to the arrival of the molten material at each position in the cavity 120 when injection molding is performed in the state of the gate before adjustment. The unit of time is seconds.
 図28は、調整後のゲートの状態で射出成形を実施した場合に、溶融材料の射出を開始してからキャビティ120の各位置に溶融材料が到達するまでの時間を示す。時間の単位は秒である。 FIG. 28 shows the time from the start of injection of the molten material to the arrival of the molten material at each position in the cavity 120 when injection molding is performed in the adjusted gate state. The unit of time is seconds.
 図29は、調整前のゲートの状態で射出成形を実施した場合のウエルドラインの発生位置を示す。ウエルドラインとは、射出成形において金型内で溶融樹脂の合流部分に生じる線状の成形不良である。 FIG. 29 shows the positions of weld lines generated when injection molding is performed in the state of the gate before adjustment. A weld line is a linear molding defect that occurs at the junction of molten resin in a mold during injection molding.
 図30は、調整後のゲートの状態で射出成形を実施した場合のウエルドラインの発生位置を示す。 FIG. 30 shows the positions of weld lines generated when injection molding is performed in the gate state after adjustment.
 図31は、調整前のゲートの状態で射出成形を実施した場合のエアトラップの発生位置を示す。エアトラップとは、複数の方向から流れ込む樹脂によって気泡が取り込まれ成形品内に気泡が生成される現象である。 Fig. 31 shows the positions where air traps are generated when injection molding is performed in the state of the gate before adjustment. An air trap is a phenomenon in which air bubbles are taken in by resin flowing from multiple directions and air bubbles are generated in a molded product.
 図32は、調整後のゲートの状態で射出成形を実施した場合のエアトラップの発生位置を示す。 FIG. 32 shows the positions where air traps are generated when injection molding is performed in the state of the gate after adjustment.
 図33は、調整前のゲートの状態で射出成形を実施した場合の芯部材110の断面の応力分布を示す。応力の単位はメガパスカルである。 FIG. 33 shows the cross-sectional stress distribution of the core member 110 when injection molding is performed in the state of the gate before adjustment. The unit of stress is megapascal.
 図34は、調整後のゲートの状態で射出成形を実施した場合の芯部材110の断面の応力分布を示す。応力の単位はメガパスカルである。 FIG. 34 shows the cross-sectional stress distribution of the core member 110 when injection molding is performed in the gate state after adjustment. The unit of stress is megapascal.
 図27を参照すると、調整前のゲートの状態で射出成形を実施した場合に下側のゲートから金型500の下側の第2の部分のキャビティ120に流入した溶融材料の到達する高さは芯部材110の高さの約1/2である。このため、調整前のゲートの状態で射出成形を実施した場合に、図29に示すようにウエルドラインが金型500の第1の部分のキャビティ120の広い範囲に形成される。また、調整前のゲートの状態で射出成形を実施した場合に、図31に示すようにエアトラップが金型500の第1の部分のキャビティ120に生じる。また、調整前のゲートの状態で射出成形を実施した場合に、図33に示すように芯部材110の保持フランジ1130付近に比較的大きな応力が生じる。その理由は以下のように推察される。調整前のゲートの状態で射出成形を実施した場合に、溶融材料が、金型500の上側の第1の部分のキャビティ120よりも金型500の下側の第2の部分のキャビティ120に早く充填される。このため、金型500の下側の第2の部分の圧力が上側の第1の部分の圧力よりも高くなり下から上に圧力が生じ、その結果、芯部材110の保持フランジ1130付近に比較的大きな応力が生じる。 Referring to FIG. 27, when injection molding is performed in the state of the gate before adjustment, the height reached by the molten material flowing from the lower gate into the cavity 120 of the lower second part of the mold 500 is It is approximately one-half the height of core member 110 . Therefore, when injection molding is performed in the state of the gate before adjustment, a weld line is formed in a wide range of the cavity 120 of the first portion of the mold 500 as shown in FIG. Also, when injection molding is performed in the state of the gate before adjustment, an air trap occurs in the cavity 120 of the first portion of the mold 500 as shown in FIG. Also, when injection molding is performed in the state of the gate before adjustment, a relatively large stress is generated near the holding flange 1130 of the core member 110 as shown in FIG. The reason is presumed as follows. When injection molding is performed in the unadjusted gate state, the molten material enters the cavity 120 in the lower second portion of the mold 500 earlier than the cavity 120 in the upper first portion of the mold 500. be filled. For this reason, the pressure in the lower second portion of the mold 500 is higher than the pressure in the upper first portion, and pressure is generated from the bottom to the top. significant stress is generated.
 調整によって金型500の下側のゲートの有効断面積は7平方ミリメータから4平方ミリメータに減少する。したがって、金型500の下側のゲートから金型500の下側の第2の部分のキャビティ120に流入する溶融材料の流量は減少する。 
 図28を参照すると、調整後のゲートの状態で射出成形を実施した場合に下側のゲートから金型500の下側の第2の部分のキャビティ120に流入した溶融材料の到達する高さは芯部材110の高さの約1/5である。このため、調整後のゲートの状態で射出成形を実施した場合に、図30に示すようにウエルドラインは金型500の第1の部分と第2の部分との境界付近にのみ形成される。このためウエルドラインの光学部材の100の光学面への影響はほとんどない。また、調整後のゲートの状態で射出成形を実施した場合に、図32に示すようにエアトラップの発生数は図31に示す調整前の場合よりも少なくなり、発生位置は光学部材の100のフランジ部分に限定される。したがって、エアトラップの光学部材の100の光学面への影響はない。また、調整後のゲートの状態で射出成形を実施した場合に、金型500の上側の第1の部分のキャビティ120及び金型500の下側の第2の部分のキャビティ120にはほぼ同時に溶融材料が充填される。したがって、金型500の下側の第2の部分の圧力が上側の第1の部分の圧力よりも高くなり下から上に圧力が生じることはなく、図34に示すように芯部材110の保持フランジ1130付近に生じる圧力は、図33の場合よりも小さくなる。
The adjustment reduces the effective cross-sectional area of the bottom gate of mold 500 from 7 square millimeters to 4 square millimeters. Accordingly, the flow rate of molten material flowing from the lower gate of mold 500 into cavity 120 of the lower second portion of mold 500 is reduced.
Referring to FIG. 28, when injection molding is performed in the state of the adjusted gate, the height reached by the molten material flowing from the lower gate into the cavity 120 of the lower second part of the mold 500 is It is approximately one-fifth the height of core member 110 . Therefore, when injection molding is performed in the state of the adjusted gate, the weld line is formed only near the boundary between the first portion and the second portion of the mold 500 as shown in FIG. Therefore, the weld line hardly affects the optical surface of the optical member 100 . Also, when injection molding is carried out in the state of the gate after adjustment, the number of air traps generated is smaller than that before the adjustment shown in FIG. 31, as shown in FIG. Limited to the flange part. Therefore, there is no effect on the optical surface 100 of the optical member of the air trap. In addition, when injection molding is performed in the state of the gate after adjustment, molten metal is melted almost simultaneously in the cavity 120 of the upper first portion of the mold 500 and the cavity 120 of the lower second portion of the mold 500 . material is filled. Therefore, the pressure in the lower second portion of the mold 500 is higher than the pressure in the upper first portion, and no pressure is generated from the bottom to the top, and as shown in FIG. The pressure developed near flange 1130 is less than in FIG.
 このように本発明の芯部材を使用してレンズを製造することにより光学性能の高いレンズが得られる。 By manufacturing a lens using the core member of the present invention in this way, a lens with high optical performance can be obtained.
 本発明は芯部材110の材料と外層の材料とが異なる場合にも適用できる。 The present invention can also be applied when the material of the core member 110 and the material of the outer layer are different.

Claims (10)

  1.  芯部材及び該芯部材を覆う外層からなるレンズであって、該芯部材は、該レンズの光軸にほぼ垂直な方向に突出し第1及び第2の面を備えるフランジ部を有し、該フランジ部は、該第1の面に、該第1の面にほぼ垂直に突出し該芯部材の外周に沿って該外周の0.5パーセント以上の領域に備わる第1の突起部と、該第2の面に、該第2の面にほぼ垂直に突出し該芯部材の外周に沿って該外周の0.5パーセント以上の領域に備わる第2の突起部と、を有するレンズ。 A lens comprising a core member and an outer layer covering the core member, the core member having a flange portion protruding in a direction substantially perpendicular to the optical axis of the lens and having first and second surfaces, the flange The portion comprises: a first projection projecting from the first surface substantially perpendicular to the first surface and provided along the outer circumference of the core member in an area of 0.5% or more of the outer circumference; and the second surface. (2) a second protrusion projecting substantially perpendicular to the second surface and provided along the outer periphery of the core member over an area of 0.5% or more of the outer periphery;
  2.  該第1の突起部と該レンズのゲートに相当する部分とが部分的に重なるように構成され、該第2の突起部と該レンズのゲートに相当する部分とが部分的に重なるように構成された請求項1に記載のレンズ。 The first protrusion and the portion corresponding to the gate of the lens are configured to partially overlap, and the second protrusion and the portion corresponding to the gate of the lens are configured to partially overlap. 2. The lens of claim 1.
  3.  該外周に沿って該第1の突起部及び該第2の突起部が間隔を空けて配置された請求項1に記載のレンズ。 The lens according to claim 1, wherein the first protrusion and the second protrusion are spaced apart along the outer periphery.
  4.  該外周に沿った該第1の突起部及び該第2の突起部の間の距離が該外周の40パーセント以下である請求項3に記載のレンズ。 4. The lens of claim 3, wherein the distance between said first projection and said second projection along said circumference is 40 percent or less of said circumference.
  5.  該芯部材の材料と該外層の材料とが同じである請求項1に記載のレンズ。 The lens according to claim 1, wherein the material of the core member and the material of the outer layer are the same.
  6.  該芯部材の材料と該外層の材料とが異なる請求項1に記載のレンズ。 The lens according to claim 1, wherein the material of the core member and the material of the outer layer are different.
  7.  該フランジ部の他に該レンズの光軸にほぼ垂直な方向に突出する保持フランジ部を備える請求項1に記載のレンズ。  The lens according to claim 1, further comprising a holding flange part protruding in a direction substantially perpendicular to the optical axis of the lens.
  8.  該第1の突起部または該第2の突起部と該保持フランジ部とが連続して形成されている請求項1に記載のレンズ。 The lens according to claim 1, wherein the first protrusion or the second protrusion and the holding flange are formed continuously.
  9.  芯部材及び該芯部材を覆う外層からなるレンズの製造方法であって、
     芯部材であって、該レンズの光軸にほぼ垂直な方向に突出し第1及び第2の面を備えるフランジ部を有し、該フランジ部は、該第1の面に、該第1の面にほぼ垂直に突出し該芯部材の外周に沿って該外周の0.5パーセント以上の領域に備わる第1の突起部と、該第2の面に、該第2の面にほぼ垂直に突出し該芯部材の外周に沿って該外周の0.5パーセント以上の領域に備わる第2の突起部と、を有する該芯部材を製造するステップと、
     金型内に該芯部材を保持して該金型と該芯部材との間に射出成形によって該外層を成形する前に、ゲートから該フランジ部の該第1の突起部の側及び該第2の突起部の側へ適切に材料が流入するように、該第1の突起部及び該第2の突起部と該ゲートとの相対的な位置関係または該ゲートの形状を調整するステップと、
     該金型内に該芯部材を保持して該金型と該芯部材との間に射出成形によって該外層を成形するステップと、を含むレンズの製造方法。
    A method for manufacturing a lens comprising a core member and an outer layer covering the core member,
    a core member having a flange portion projecting in a direction substantially perpendicular to the optical axis of the lens and having first and second surfaces; a first protrusion projecting substantially perpendicularly to the core member and provided along the outer periphery of the core member in an area of 0.5% or more of the outer periphery; a second protrusion provided along the outer circumference of the outer circumference in an area of 0.5 percent or more of the outer circumference;
    Prior to holding the core member in a mold and molding the outer layer by injection molding between the mold and the core member, from the gate to the first projection side of the flange and the first projection. Adjusting the relative positional relationship between the first protrusion and the second protrusion and the gate or the shape of the gate so that the material flows appropriately to the side of the second protrusion;
    holding the core member in the mold and molding the outer layer between the mold and the core member by injection molding.
  10.  該第1の突起部及び該第2の突起部と該ゲートとの相対的な位置関係または該ゲートの形状を調整するステップにおいて、入れ子型を使用する請求項9に記載の製造方法。 The manufacturing method according to claim 9, wherein a nested mold is used in the step of adjusting the relative positional relationship between the first projection and the second projection and the gate or the shape of the gate.
PCT/JP2022/031841 2022-01-14 2022-08-24 Lens and method for manufacturing same WO2023135850A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022578841A JP7366469B1 (en) 2022-01-14 2022-08-24 Lens and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263299551P 2022-01-14 2022-01-14
US63/299,551 2022-01-14

Publications (1)

Publication Number Publication Date
WO2023135850A1 true WO2023135850A1 (en) 2023-07-20

Family

ID=87278823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031841 WO2023135850A1 (en) 2022-01-14 2022-08-24 Lens and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP7366469B1 (en)
WO (1) WO2023135850A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217301A (en) * 1987-03-06 1988-09-09 Hitachi Ltd Compound lens
JPH08190004A (en) * 1995-01-10 1996-07-23 Nisshin Koki Kk Composite optical lens
US20210154957A1 (en) * 2019-11-26 2021-05-27 Alcon Inc. Method for producing contact lenses
JP2021151719A (en) * 2020-03-24 2021-09-30 スタンレー電気株式会社 Lens manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217301A (en) * 1987-03-06 1988-09-09 Hitachi Ltd Compound lens
JPH08190004A (en) * 1995-01-10 1996-07-23 Nisshin Koki Kk Composite optical lens
US20210154957A1 (en) * 2019-11-26 2021-05-27 Alcon Inc. Method for producing contact lenses
JP2021151719A (en) * 2020-03-24 2021-09-30 スタンレー電気株式会社 Lens manufacturing method

Also Published As

Publication number Publication date
JPWO2023135850A1 (en) 2023-07-20
JP7366469B1 (en) 2023-10-23

Similar Documents

Publication Publication Date Title
US8184386B2 (en) Fresnel lens and injection mold
JP2001191365A (en) Resin thick-walled lens and its molding method
JP6108916B2 (en) Molded product manufacturing method and molding die
JP2006281765A (en) Method and apparatus for improving surface accuracy of optical element
JP5326276B2 (en) Mold for molding plastic lens, plastic lens, optical scanning device including the same, and image forming apparatus
WO2023135850A1 (en) Lens and method for manufacturing same
CN104647704A (en) Mold device for forming lens
JP5715492B2 (en) Injection mold
JPH07223242A (en) Plural piece molding die
CN118318186A (en) Lens and method for manufacturing the same
KR20050004050A (en) Resin erecting lens array and method for fabricating the same
JP4874560B2 (en) Mold
JP2000329908A (en) Plastic molded goods
JP2004042469A (en) Plastic molded article and its manufacturing method, and die used for the same, and optical scanning unit using the plastic molded article
JP2020019227A (en) Multilayer molded lens
JP2008229963A (en) Injection mold
JP4054658B2 (en) Lens connecting member and lens array mold
CA3017296C (en) Injection mold, injection molding method, and molded article
JP2006051822A (en) Plastic part and its shaping method
JP6587392B2 (en) Light shielding member manufacturing apparatus, light shielding member manufacturing method, and image forming apparatus manufacturing method
JPWO2023135850A5 (en)
JP2012196807A (en) Manufacturing apparatus and manufacturing method of injection-molded product
JP4168705B2 (en) Optical element and mold for molding the same
TWI711524B (en) Cladding type plastic injection molding method for thick lens
JPH07227882A (en) Injection mold and injection molding method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022578841

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920374

Country of ref document: EP

Kind code of ref document: A1