WO2023134652A1 - 一种无线充电方法、装置和电子设备 - Google Patents

一种无线充电方法、装置和电子设备 Download PDF

Info

Publication number
WO2023134652A1
WO2023134652A1 PCT/CN2023/071477 CN2023071477W WO2023134652A1 WO 2023134652 A1 WO2023134652 A1 WO 2023134652A1 CN 2023071477 W CN2023071477 W CN 2023071477W WO 2023134652 A1 WO2023134652 A1 WO 2023134652A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged
antenna array
monopulse antenna
wireless charging
preset tracking
Prior art date
Application number
PCT/CN2023/071477
Other languages
English (en)
French (fr)
Inventor
赵允
韩勇
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023134652A1 publication Critical patent/WO2023134652A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters

Definitions

  • the present application belongs to the technical field of wireless charging, and in particular relates to a wireless charging method, device and electronic equipment.
  • mobile phones, earphones and other devices that support wireless charging basically use electromagnetic induction for wireless charging.
  • Both the charger and the device to be charged are equipped with coils.
  • the coils of the two When charging, the coils of the two must be aligned and can be charged normally at a very close distance.
  • the position of the device to be charged needs to remain unchanged.
  • the constraints of wireless charging Many, users usually can't wirelessly charge while holding and using the mobile phone.
  • the purpose of the embodiment of the present application is to provide a wireless charging method, device and electronic equipment, which can solve the problem that the charger and the device to be charged have many constraints such as location and distance when performing wireless charging in the prior art, and cannot meet the requirements of long-distance, mobile and wireless charging.
  • the embodiment of the present application provides a wireless charging method, which is applied to a wireless charging device, and the wireless charging device includes a monopulse antenna array, and the method includes:
  • Controlling the monopulse antenna array to transmit a sum beam and a difference beam to the device to be charged with a preset tracking period, and receiving the echo signal reflected back by the device to be charged, the preset tracking period is the monopulse antenna array
  • the monopulse antenna array is controlled to wirelessly charge the device to be charged.
  • the embodiment of the present application provides a wireless charging device, the wireless charging device includes a monopulse antenna array, and the wireless charging device further includes:
  • the transceiver module is used to control the monopulse antenna array to transmit a sum beam and a difference beam to the device to be charged with a preset tracking cycle, and receive the echo signal reflected by the device to be charged, the preset tracking cycle is the The period of the monopulse antenna array transmitting the sum beam and the difference beam;
  • a tracking module configured to track the position of the device to be charged according to the echo signal
  • a charging module configured to control the monopulse antenna array to wirelessly charge the device to be charged according to the location information of the device to be charged.
  • the embodiment of the present application provides an electronic device, the electronic device includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are processed by the The steps of the method described in the first aspect are realized when the controller is executed.
  • an embodiment of the present application provides a readable storage medium, on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented .
  • the embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions, so as to implement the first aspect the method described.
  • an embodiment of the present application provides a computer program product, the program product is stored in a storage medium, and the program product is executed by at least one processor to implement the method described in the first aspect.
  • the position of the device to be charged is tracked by using the monopulse antenna array with a preset tracking period, so that the power and/or phase of the monopulse antenna array can be controlled according to the position information of the device to be charged to conduct wireless wireless monitoring of the device to be charged.
  • Charging removes various restrictions on the location and distance of the charging device in the existing wireless charging technology, and can effectively meet the wireless charging needs of the charging device in long-distance and mobile scenarios.
  • FIG. 1 is a schematic flowchart of a wireless charging method provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of the sum pattern and the difference pattern provided by the embodiment of the present application.
  • Fig. 3 is a schematic diagram of changes in the sum pattern and the difference pattern when the device to be charged is moved according to the embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of a wireless charging device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an antenna array provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the beam steering of the antenna array provided by the embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of another wireless charging device provided by the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a hardware structure of an electronic device implementing an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a wireless charging method provided by an embodiment of the present application.
  • an embodiment of the present application provides a wireless charging method, which is applied to a wireless charging device, and the wireless charging device includes a monopulse antenna array, and the method includes the following steps:
  • Step 101 Control the monopulse antenna array to transmit a sum beam and a difference beam to the device to be charged with a preset tracking period, and receive the echo signal reflected back by the device to be charged, the preset tracking period is the monopulse The period at which the pulsed antenna array transmits sum and difference beams.
  • the monopulse array antenna when it is detected that the device to be charged enters the wireless charging range of the wireless charging device, the monopulse array antenna can be controlled to emit a sum beam and a difference beam to the device to be charged with a preset tracking period, and the monopulse antenna array sends out The sum beam and the difference beam will be reflected after encountering the device to be charged, and then receive the echo signal reflected by the device to be charged.
  • the wireless charging range may be a spherical range with the wireless charging device as the center and a radius of a certain value, and the size of the radius depends on the transmission power of the wireless charging device. Since the distance between the wireless charging device and the device to be charged in this embodiment is not strict, that is, the device to be charged only needs to be within the wireless charging range to perform wireless charging, so when performing wireless charging, the user can hold the device to be charged After use, the device to be charged can move freely within the wireless charging range, which meets the wireless charging needs in long-distance and mobile scenarios.
  • the preset tracking period is also the period during which the monopulse antenna array transmits the sum beam and the difference beam.
  • Step 102 Track the position of the device to be charged according to the echo signal
  • the sum beam has one main lobe
  • the difference beam has two (or four) main lobes.
  • the role of the device is to detect the azimuth and elevation angle information of the device to be charged to achieve angular tracking.
  • the position of the device to be charged in the preset tracking period can be determined according to the echo signal received in each preset tracking period, so that continuous detection can Realize the tracking of the location of the equipment to be charged.
  • Step 103 Control the monopulse antenna array to wirelessly charge the device to be charged according to the location information of the device to be charged.
  • the location information of the device to be charged includes the azimuth angle, the elevation angle (relative to the monopulse antenna array) of the device to be charged, and the distance between the device to be charged and the monopulse antenna array, etc.
  • the power and phase of the charging beam of the monopulse antenna array can be dynamically controlled according to the location information of the device to be charged, so as to wirelessly charge the device to be charged, so that the The best charging status can be guaranteed when you are in any position within the wireless charging range.
  • the position of the device to be charged is tracked by using the monopulse antenna array with a preset tracking cycle, so that the power and/or phase of the monopulse antenna array can be controlled according to the position information of the device to be charged to control the power and/or phase of the device to be charged.
  • the wireless charging of the device removes various restrictions on the location and distance of the device to be charged in the existing wireless charging technology, and can effectively meet the wireless charging needs of the device to be charged in long-distance and mobile scenarios.
  • the echo signal includes a difference signal and a sum signal
  • tracking the position of the device to be charged according to the echo signal includes:
  • the echo signal reflected back by the device to be charged includes a difference signal, where the difference signal corresponds to a difference beam.
  • FIG. 2 is a schematic diagram of a sum pattern and a difference pattern provided by an embodiment of the present application. If the device to be charged is just in the direction of the maximum value of the sum beam, the received difference signal is the smallest (that is, corresponds to the zero value of the difference pattern), and if the device to be charged remains stationary, the received difference signal remains unchanged; When the charging device moves, the received difference signal changes from weak to strong. For example, if the device to be charged moves to the left, the beam signal on the left side of the difference pattern becomes larger; if the device to be charged moves to the right, the difference signal becomes larger. The beam signal on the right side of the pattern becomes larger.
  • the moving direction and moving distance of the device to be charged can be judged, and then the phase of the monopulse antenna array can be adjusted so that the zero value direction of the difference beam is aligned with the device to be charged, or in other words, the sum beam
  • the maximum direction is aligned with the device to be charged, and when the sum beam is used as the charging beam, the device to be charged can always be located in the maximum radiation direction of the sum beam.
  • FIG. 3 is a schematic diagram of changes in the sum pattern and the difference pattern when the device to be charged is moving according to an embodiment of the present application.
  • the maximum radiation direction of the original sum pattern 31 is aligned with the device to be charged, that is, the zero value direction of the difference pattern is aligned with the device to be charged.
  • the device to be charged When the device to be charged is in a moving state, for example, the device to be charged moves to the left by a distance of x, then a distance of P is generated between the maximum radiation direction of the sum pattern and the device to be charged, and the beam signal on the left side of the difference pattern 32 will increase Conversely, if the device to be charged moves to the right, the beam signal on the right side of the difference pattern 32 will increase.
  • the difference signal the moving direction and moving distance of the device to be charged can be judged.
  • the preset tracking period may be adjusted according to the moving speed of the device to be charged. Exemplarily, if the moving speed of the device to be charged is less than a certain threshold within a certain period of time, it is considered that the moving speed of the device to be charged is relatively slow at this time, and the preset tracking period can be extended appropriately. If the moving speed is greater than a certain threshold, it is considered that the moving speed of the device to be charged is relatively fast at this time, and the preset tracking period can be appropriately shortened to ensure the real-time and accuracy of tracking.
  • the phase of the monopulse antenna array may not be adjusted, thereby avoiding Frequent adjustment of the phase of the monopulse antenna array.
  • FIG. 4 is a schematic structural diagram of a wireless charging device provided by an embodiment of the present application.
  • the wireless charging device includes a power supply 41, a signal source 42, a feed network 43, a servo control system 44 and a monopulse antenna array 45, wherein the power supply 41 provides power for the wireless charging device, and the signal source 42 is used for The signal is generated, and the signal source 42 is connected to the monopulse antenna array 45 via the feed network 43 and the servo control system 44. After adjusting the phase of the feed signal through the feed network, the sum beam and the difference beam can be transmitted simultaneously.
  • the signal received by the difference beam changes from weak to strong, and the difference signal is used to drive the servo control system to make the monopulse antenna array 45 rotate in elevation or azimuth, so that the zero value direction of the difference beam is always Align the device 46 to be charged, so as to track the orientation of the device 46 to be charged.
  • the wireless charging device has a servo control system for phase control.
  • the servo control system includes an electronically controlled beam controller and a phase shifter.
  • the phase of each radiating unit is used to realize the change of the maximum radiation direction of the monopulse antenna array.
  • each radiating unit is followed by a phase shifter to change the corresponding phase of each radiating unit, thereby changing the electromagnetic wave of the monopulse antenna array, etc. Phase plane, and then realize beam directional radiation.
  • FIG. 5 is a schematic diagram of an antenna array provided by an embodiment of the present application.
  • a linear receiving antenna array composed of N antenna elements, and the isotropic antenna elements are arranged in a line with equal distance d, then in the ⁇ direction , the phase difference of signals received by adjacent antenna elements
  • the excitation current of each antenna element is i, and the electric field intensity radiated by each antenna element is proportional to its excitation current.
  • FIG. 6 is a schematic diagram of beam control of an antenna array provided by an embodiment of the present application.
  • the maximum beam direction of the antenna array at this time ⁇ B can be expressed as:
  • ⁇ B is the phase difference between adjacent antenna elements
  • is the wavelength of radiation waves of antenna elements
  • d is the distance between adjacent antenna elements.
  • the maximum radiation direction ⁇ B of the antenna array can be adjusted by changing the phase difference ⁇ B between the antenna elements through the servo system.
  • the controlling the monopulse antenna array to wirelessly charge the device to be charged according to the location information of the device to be charged includes:
  • the monopulse antenna array is controlled to emit electromagnetic waves with an adjusted phase, so as to wirelessly charge the device to be charged.
  • the monopulse antenna array can be controlled to emit electromagnetic waves with the adjusted phase for charging.
  • the device performs wireless charging. Since the phase of the monopulse antenna array has been adjusted according to the received difference signal, that is, the phase of the adjusted monopulse antenna array can ensure that the maximum radiation direction of the charging beam is aligned with the device to be charged.
  • the antenna array emits electromagnetic waves with an adjusted phase, which can ensure that the efficiency of wireless charging can always be kept at a high level even if the device to be charged is in a moving state.
  • the phase of the monopulse antenna array may change, that is, the position of the device to be charged changes. Therefore, optionally, when the device to be charged is charged in any preset tracking period, Wireless charging should be performed with the adjusted phase within this preset tracking period.
  • the echo signal further includes a sum signal
  • the tracking the position of the device to be charged according to the echo signal further includes:
  • the echo signal reflected by the device to be charged also includes a sum signal, where the sum signal corresponds to a sum beam.
  • the distance between the device to be charged and the monopulse antenna array can be detected according to the sum signal at this time, and then the distance between the device to be charged and the monopulse antenna array can be determined to determine the distance of the device to be charged. Spatial location.
  • the difference signal can be used to continuously track the device to be charged.
  • controlling the monopulse antenna array to wirelessly charge the device to be charged according to the location information of the device to be charged further includes:
  • the charging power can be adjusted according to the distance from the device to be charged, so as to ensure wireless charging efficiency and electromagnetic radiation safety.
  • the corresponding target charging power can be determined, and then the monopulse antenna array can be controlled to correspond to The target charging power of the wireless charging device to be charged.
  • the charging power can be charged at The target charging power determined by the preset tracking period earlier in the two is charged. That is to say, if the difference between the target charging power determined in two adjacent preset tracking periods is smaller than the first power threshold, that is, it is considered that the distance between the device to be charged and the monopulse antenna array changes very little, then between the two There is no need to adjust the charging power within a preset tracking period, thereby avoiding frequent adjustment of the charging power.
  • the monopulse antenna array when controlling the monopulse antenna array to wirelessly charge the device to be charged according to the location information of the device to be charged, it can be tracked according to each preset tracking period According to the distance between the device to be charged and the monopulse antenna array, the target charging power of the monopulse antenna array in each preset tracking period can be determined, and the charging power of the monopulse antenna array can also be controlled within the preset tracking period.
  • the monopulse antenna array emits electromagnetic waves with the adjusted phase, and finally realizes the simultaneous adjustment of the phase and power of the charging electromagnetic wave.
  • the target of the monopulse antenna array in each preset tracking period is determined according to the distance between the device to be charged and the monopulse antenna array tracked each time.
  • Before charging power also include:
  • determining the target charging power of the monopulse antenna array in each preset tracking period includes:
  • the first target charging power is smaller than the second target charging power.
  • the built-in sensor of the device to be charged before determining the target charging power of the monopulse antenna array in each preset tracking period, can be used to detect whether the device to be charged is in the held state within the preset tracking period, And report the information of whether it is held to the wireless charging device, so that the wireless charging device adjusts the charging power according to whether the device to be charged is in the held state, so as to reduce the adverse effects on the user caused by excessive electromagnetic wave radiation during wireless charging. Influence.
  • the charging power is set to For the second target charging power, if it is detected that the device to be charged is held, the charging power is set to the first target charging power which is smaller than the second target charging power, so as to reduce the influence of electromagnetic radiation.
  • the charging power in the corresponding preset tracking period when the device to be charged is held should be appropriately adjusted down, that is, The charging power is smaller than the corresponding preset tracking period when the device to be charged is not held, so as to reduce the influence of electromagnetic radiation.
  • the wireless charging device when the wireless charging device detects that the device to be charged enters the wireless charging range, it can send a message that wireless charging can be performed to the device to be charged. At this time, the device to be charged can respond to the information, The charging selection button pops up on the page, and the user can click the charging selection button to manually set whether to perform wireless charging, set the charging mode and charging time, and so on.
  • the position of the device to be charged is tracked by using the monopulse antenna array with a preset tracking period, so that the power and/or phase of the monopulse antenna array can be controlled according to the position information of the device to be charged to control the position of the device to be charged.
  • Wireless charging removes various restrictions on the location and distance of the device to be charged in the existing wireless charging technology, and can effectively meet the wireless charging needs of the device to be charged in long-distance and mobile scenarios. Whether it is in the held state, on the premise of ensuring the safety of charging, make the device to be charged be in the best charging state.
  • the wireless charging method provided in the embodiment of the present application may be executed by a wireless charging device.
  • the wireless charging device provided in the embodiment of the present application is described by taking the wireless charging device executing the wireless charging method as an example.
  • FIG. 7 is a schematic structural diagram of another wireless charging device provided by an embodiment of the present application.
  • the wireless charging device 500 includes a monopulse antenna array, and the wireless charging device 500 also includes:
  • the transceiver module 501 is configured to control the monopulse antenna array to transmit a sum beam and a difference beam to the device to be charged with a preset tracking period, and receive echo signals reflected back by the device to be charged.
  • the preset tracking period is The period of the monopulse antenna array transmitting sum beams and difference beams;
  • a tracking module 502 configured to track the position of the device to be charged according to the echo signal
  • the charging module 503 is configured to control the monopulse antenna array to wirelessly charge the device to be charged according to the location information of the device to be charged.
  • the echo signal includes a difference signal
  • the tracking module 502 includes:
  • a phase adjustment unit configured to adjust the phase of the monopulse antenna array according to the difference signal, so that the null direction of the difference beam is aligned with the device to be charged.
  • the charging module 503 includes:
  • the first charging unit is configured to control the monopulse antenna array to emit electromagnetic waves with an adjusted phase within the preset tracking period, so as to wirelessly charge the device to be charged.
  • the echo signal further includes a sum signal
  • the tracking module 502 further includes:
  • a distance determining unit configured to determine the distance between the device to be charged and the monopulse antenna array according to the sum signal.
  • the charging module 503 includes:
  • a determining unit configured to determine the distance between the monopulse antenna array in each preset tracking period according to the distance between the device to be charged and the monopulse antenna array tracked in each preset tracking period; Target charging power;
  • the second charging unit is configured to control the monopulse antenna array to wirelessly charge the device to be charged with the target charging power within the preset tracking period.
  • the wireless charging device 500 further includes:
  • a judging module configured to judge whether the device to be charged is held in each preset tracking period
  • the determination unit includes:
  • a first determining subunit configured to determine that the charging power of the monopulse antenna array within the preset tracking period is a first target charging power when the device to be charged is in a held state
  • a second determining subunit configured to determine that the charging power of the monopulse antenna array within the preset tracking period is a second target charging power when the device to be charged is not in a held state
  • the first target charging power is smaller than the second target charging power.
  • the position of the device to be charged is tracked by using the monopulse antenna array with a preset tracking period, so that the power and/or phase of the monopulse antenna array can be controlled according to the position information of the device to be charged to conduct wireless wireless monitoring of the device to be charged.
  • Charging removes various restrictions on the location and distance of the charging device in the existing wireless charging technology, and can effectively meet the wireless charging needs of the charging device in long-distance and mobile scenarios.
  • the wireless charging device in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android operating system, an iOS operating system, or other possible operating systems, which are not specifically limited in this embodiment of the present application.
  • the wireless charging device provided in the embodiment of the present application can realize various processes realized by the method embodiments in FIG. 1 to FIG. 6 , and details are not repeated here to avoid repetition.
  • the embodiment of the present application also provides an electronic device 600, including a processor 601 and a memory 602, and the memory 602 stores programs or instructions that can run on the processor 601.
  • the programs or instructions are executed by the processor 601, the various steps of the wireless charging method embodiments described above can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • FIG. 9 is a schematic diagram of a hardware structure of an electronic device implementing an embodiment of the present application.
  • the electronic device 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, and a processor 7010, etc. part.
  • the electronic device 700 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 7010 through the power management system, so that the management of charging, discharging, and function can be realized through the power management system. Consumption management and other functions.
  • a power supply such as a battery
  • the structure of the electronic device shown in FIG. 9 does not constitute a limitation to the electronic device.
  • the electronic device may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here. .
  • the radio frequency unit 701 includes a monopulse antenna array, and the radio frequency unit 701 is used to control the monopulse antenna array to transmit a sum beam and a difference beam to the device to be charged with a preset tracking cycle, and receive the feedback reflected by the device to be charged.
  • Wave signal, the preset tracking cycle is the cycle of the monopulse antenna array transmitting sum beam and difference beam;
  • a processor 7010 configured to track the position of the device to be charged according to the echo signal
  • the processor 7010 is further configured to control the monopulse antenna array to wirelessly charge the device to be charged according to the location information of the device to be charged.
  • the position of the device to be charged is tracked by using the monopulse antenna array with a preset tracking period, so that the power and/or phase of the monopulse antenna array can be controlled according to the position information of the device to be charged to conduct wireless wireless monitoring of the device to be charged.
  • Charging removes various restrictions on the location and distance of the charging device in the existing wireless charging technology, and can effectively meet the wireless charging needs of the charging device in long-distance and mobile scenarios.
  • the echo signal includes a difference signal
  • the processor 7010 is further configured to adjust the phase of the monopulse antenna array according to the difference signal, so that the null direction of the difference beam is aligned with the device to be charged .
  • the processor 7010 is further configured to control the monopulse antenna array to emit electromagnetic waves with an adjusted phase within the preset tracking period, so as to wirelessly charge the device to be charged.
  • the echo signal further includes a sum signal
  • the processor 7010 is further configured to determine the distance between the device to be charged and the monopulse antenna array according to the sum signal.
  • the processor 7010 is further configured to determine the distance between the device to be charged and the monopulse antenna array in each preset tracking period according to the distance tracked in each preset tracking period.
  • the target charging power of the monopulse antenna array within the preset tracking period, control the emission of the monopulse antenna array to wirelessly charge the device to be charged with the target charging power.
  • the processor 7010 is further configured to determine whether the device to be charged is held in each preset tracking period;
  • the processor 7010 is further configured to determine that the charging power of the monopulse antenna array within the preset tracking period is the first target charging power when the device to be charged is held;
  • the first target charging power is smaller than the second target charging power.
  • the input unit 704 may include a graphics processor (Graphics Processing Unit, GPU) 7041 and a microphone 7042, and the graphics processor 7041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes at least one of a touch panel 7071 and other input devices 7072 .
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be described in detail here.
  • the memory 709 can be used to store software programs and various data, and the memory 709 can mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area can store an operating system, at least one function required applications or instructions (such as sound playback function, image playback function, etc.) and so on. Furthermore, memory 709 may include volatile memory or nonvolatile memory, or, memory 709 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM erasable programmable read-only memory
  • Electrical EPROM Electrical EPROM
  • EEPROM electronically programmable Erase Programmable Read-Only Memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 7010 may include one or more processing units; optionally, the processor 7010 integrates an application processor and a modem processor, wherein the application processor mainly handles operations related to the operating system, user interface, and application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 7010 .
  • the embodiment of the present application also provides a readable storage medium.
  • the readable storage medium stores programs or instructions.
  • the program or instructions are executed by the processor, the various processes of the above wireless charging method embodiments can be achieved, and the same To avoid repetition, the technical effects will not be repeated here.
  • the processor is the processor in the electronic device described in the above embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory, random access memory, magnetic disk or optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above wireless charging method embodiment
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above wireless charging method embodiment
  • chips mentioned in the embodiments of the present application may also be called system-on-chip, system-on-chip, system-on-a-chip, or system-on-a-chip.
  • An embodiment of the present application provides a computer program product, the program product is stored in a storage medium, and the program product is executed by at least one processor to implement the various processes in the above wireless charging method embodiment, and can achieve the same technical effect , to avoid repetition, it will not be repeated here.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种无线充电方法、装置和电子设备,属于无线充电技术领域。所述无线充电方法应用于无线充电装置,所述无线充电装置包括单脉冲天线阵列,所述方法包括:以预设跟踪周期控制所述单脉冲天线阵列向待充电设备发射和波束以及差波束,并接收所述待充电设备反射回的回波信号,所述预设跟踪周期为所述单脉冲天线阵列发射和波束以及差波束的周期;根据所述回波信号跟踪所述待充电设备的位置;根据所述待充电设备的位置信息,控制所述单脉冲天线阵列对所述待充电设备进行无线充电。

Description

一种无线充电方法、装置和电子设备
相关申请的交叉引用
本申请主张在2022年01月17日在中国提交的中国专利申请No.202210050144.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于无线充电技术领域,具体涉及一种无线充电方法、装置和电子设备。
背景技术
目前,支持无线充电功能的手机、耳机等设备基本都是采用电磁感应的方式进行无线充电。充电器和被充电设备都要设置有线圈,充电时,两者的线圈必须对齐,并在极近的距离下才能正常充电,此外,被充电设备的位置需要保持不变,无线充电的限制条件多,用户通常无法一边持握使用手机一边进行无线充电。
发明内容
本申请实施例的目的是提供一种无线充电方法、装置和电子设备,能够解决现有技术中充电器和被充电设备进行无线充电时的位置、距离等限制条件多,无法满足远距离、移动场景下的无线充电需求的问题。
第一方面,本申请实施例提供了一种无线充电方法,应用于无线充电装置,所述无线充电装置包括单脉冲天线阵列,该方法包括:
以预设跟踪周期控制所述单脉冲天线阵列向待充电设备发射和波束以及差波束,并接收所述待充电设备反射回的回波信号,所述预设跟踪周期为所述单脉冲天线阵列发射和波束以及差波束的周期;
根据所述回波信号跟踪所述待充电设备的位置;
根据所述待充电设备的位置信息,控制所述单脉冲天线阵列对所述待充电设备进行无线充电。
第二方面,本申请实施例提供了一种无线充电装置,该无线充电装置包括单脉冲天线阵列,所述无线充电装置还包括:
收发模块,用于以预设跟踪周期控制所述单脉冲天线阵列向待充电设备发射和波束以及差波束,并接收所述待充电设备反射回的回波信号,所述预设跟踪周期为所述单脉冲天线阵列发射和波束以及差波束的周期;
跟踪模块,用于根据所述回波信号跟踪所述待充电设备的位置;
充电模块,用于根据所述待充电设备的位置信息,控制所述单脉冲天线阵列对所述待充电设备进行无线充电。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第六方面,本申请实施例提供一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如第一方面所述的方法。
在本申请实施例中,以预设跟踪周期利用单脉冲天线阵列跟踪待充电设备的位置,从而可以根据待充电设备的位置信息控制单脉冲天线阵列的功率和/或相位以对待充电设备进行无线充电,解除了现有无线充电技术中对待充电设备的位置、距离等的多种限制条件,可以有效满足待充电设备在远距离、移动场景下的无线充电需求。
附图说明
图1为本申请实施例提供的一种无线充电方法的流程示意图;
图2为本申请实施例提供的和方向图和差方向图的示意图;
图3为本申请实施例提供的待充电设备移动时和方向图与差方向图的变化示意图;
图4为本申请实施例提供的一种无线充电装置的结构示意图;
图5为本申请实施例提供的天线阵列的示意图;
图6为本申请实施例提供的天线阵列的波束控制原理图;
图7为本申请实施例提供的另一种无线充电装置的结构示意图;
图8为本申请实施例提供的一种电子设备的结构示意图;
图9为实现本申请实施例的一种电子设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的无线充电方法、装置和电子设备进行详细地说明。
请参考图1,图1为本申请实施例提供的一种无线充电方法的流程示意图。如图1所示,本申请一方面实施例提供了一种无线充电方法,该方法应用于无线充电装置,该无线充电装置包括单脉冲天线阵列,该方法包括以下步骤:
步骤101:以预设跟踪周期控制所述单脉冲天线阵列向待充电设备发射 和波束以及差波束,并接收所述待充电设备反射回的回波信号,所述预设跟踪周期为所述单脉冲天线阵列发射和波束以及差波束的周期。
本申请实施例中,可以在检测到待充电设备进入无线充电装置的无线充电范围内时,以预设跟踪周期控制单脉冲阵列天线向待充电设备发射和波束以及差波束,单脉冲天线阵列发出的和波束以及差波束遇到待充电设备后将被反射,然后接收由待充电设备反射回的回波信号。
本申请实施例中,无线充电范围可以是以无线充电装置为中心,半径为某一值的球形范围,半径的大小取决于无线充电装置的发射功率。由于本实施例中的无线充电装置与待充电设备之间的距离要求不严格,即待充电设备只需位于无线充电范围即可进行无线充电,因此在进行无线充电时,用户可以手持待充电设备进行使用,待充电设备可以在无线充电范围内进行随意移动,即满足了远距离、移动场景下的无线充电需求。
本申请实施例中,考虑到待充电设备在无线充电装置的无线充电范围内移动,因此需要以预设跟踪周期检测待充电设备的位置,以便动态调整无线充电装置的发射功率和相位,使待充电设备始终处于最佳的充电状态。其中,预设跟踪周期也即单脉冲天线阵列发射和波束以及差波束的周期。
步骤102:根据所述回波信号跟踪所述待充电设备的位置;
本申请实施例中,可选地,和波束具有一个主瓣,差波束具有两个(或四个)主瓣,和波束的作用是探测待充电设备的距离,以实现距离跟踪,而差波束的作用是探测待充电设备的方位角和俯仰角信息,以实现角跟踪。
通过以预设跟踪周期发射和波束以及差波束,即可根据每一预设跟踪周期内接收到的回波信号来确定在该预设跟踪周期内待充电设备的位置,如此连续检测,即可实现对待充电设备位置的跟踪。
步骤103:根据所述待充电设备的位置信息,控制所述单脉冲天线阵列对所述待充电设备进行无线充电。
本申请实施例中,可选地,待充电设备的位置信息包括待充电设备的方位角、俯仰角(相对于单脉冲天线阵列而言)以及待充电设备与单脉冲天线 阵列之间的距离等,在获取到待充电设备的位置信息后,即可根据待充电设备的位置信息,动态控制单脉冲天线阵列的充电波束的功率、相位等,以对待充电设备进行无线充电,使得待充电设备无论出于无线充电范围内的任意位置时,都可以保证最佳的充电状态。
由此,在本申请实施例中,以预设跟踪周期利用单脉冲天线阵列跟踪待充电设备的位置,从而可以根据待充电设备的位置信息控制单脉冲天线阵列的功率和/或相位以对待充电设备进行无线充电,解除了现有无线充电技术中对待充电设备的位置、距离等的多种限制条件,可以有效满足待充电设备在远距离、移动场景下的无线充电需求。
本申请的一些实施例中,所述回波信号包括差信号以及和信号,所述根据所述回波信号跟踪所述待充电设备的位置包括:
根据所述差信号调整所述单脉冲天线阵列的相位,使所述差波束的零值方向对准所述待充电设备。
也就是说,待充电设备反射回的回波信号包括差信号,其中,差信号对应于差波束。
请参考图2,图2为本申请实施例提供的和方向图和差方向图的示意图。如果待充电设备正好位于和波束的最大值方向,则接收到的差信号最小(即对应于差方向图的零值),若待充电设备保持静止,则接收到的差信号不变;当待充电设备移动时,则接收到的差信号由弱变强,示例性的,若待充电设备向左移动,则差方向图左侧的波束信号变大,若待充电设备向右移动,则差方向图右侧的波束信号变大。由此,根据差信号,可以判断待充电设备的移动方向以及移动的距离,继而可以调整单脉冲天线阵列的相位,使差波束的零值方向对准待充电设备,或者说,使和波束的最大值方向对准待充电设备,在利用和波束作为充电波束时,即可使得待充电设备始终位于和波束的最大辐射方向上。
请参考图3,图3为本申请实施例提供的待充电设备移动时和方向图与差方向图的变化示意图。如图3所示,原本和方向图31的最大辐射方向与待 充电设备对准,即差方向图的零值方向与待充电设备对准。在待充电设备处于移动状态时,例如待充电设备向左移动x的距离,则和方向图的最大辐射方向与待充电设备之间产生P的间距,差方向图32左侧的波束信号将增大;反之,若待充电设备向右移动,则差方向图32右侧的波束信号将增大。由此,根据差信号,可以判断待充电设备的移动方向以及移动的距离。
本申请的一些实施例中,可以根据待充电设备的移动速度来调整预设跟踪周期。示例性的,若待充电设备在一定时长内的移动速度小于某一阈值,则认为此时待充电设备的移动速度较慢,可以适当延长预设跟踪周期,而若待充电设备在一定时长内的移动速度大于某一阈值,则认为此时待充电设备的移动速度较快,可以适当缩短预设跟踪周期,以确保跟踪的实时性和准确性。
在一些实施例中,若相邻两次预设跟踪周期内检测到的待充电设备的位置变化较小,例如距离变化小于某一阈值,则可以不调整单脉冲天线阵列的相位,从而避免了单脉冲天线阵列相位的频繁调整。
请参考图4,图4为本申请实施例提供的一种无线充电装置的结构示意图。如图4所示,该无线充电装置包括电源41、信号源42、馈电网络43、伺服控制系统44和单脉冲天线阵列45,其中,电源41为无线充电装置提供电源,信号源42用于产生信号,信号源42经由馈电网络43和伺服控制系统44与单脉冲天线阵列45连接,通过馈电网络调整馈电信号的相位后,可同时发射和波束以及差波束。当待充电设备46移动时,则差波束接收到的信号由弱变强,利用差信号来驱动伺服控制系统,使单脉冲天线阵列45在俯仰或方位上转动,始终使差波束的零值方向对准待充电设备46,从而实现待充电设备46方位的跟踪。
本申请的一些实施例中,无线充电装置具有用于相位控制的伺服控制系统,该伺服控制系统包括电控波束控制器和移相器,利用相控阵的工作原理,通过改变单脉冲天线阵列中各辐射单元的相位来实现单脉冲天线阵列最大辐射方向的变化,具体的,每一个辐射单元后接一移相器,以改变各辐射单元 对应的相位,从而改变单脉冲天线阵列的电磁波等相位面,进而实现波束定向辐射。
下面介绍天线阵列的最大辐射方向的调整原理。
请参考图5,图5为本申请实施例提供的天线阵列的示意图。如图5所示,在x轴、y轴、z轴构成的坐标系中,一个由N个天线单元组成的线性接收天线阵列,各向同性天线单元等间距d排成一线,则在θ方向上,相邻天线单元接收信号的相位差
Figure PCTCN2023071477-appb-000001
每一个天线单元的激励电流为i,每一个天线单元辐射的电场强度与其激励电流呈正比,假设观察点距离天线阵列足够远,则可以认为各天线单元到该观察点的射线互相平行,则在观察点处的总场强可以认为是天线阵列中N个天线单元在该处辐射的场强之和,其辐射方向图的阵列因子可以简化表示为:
Figure PCTCN2023071477-appb-000002
请参考图6,图6为本申请实施例提供的天线阵列的波束控制原理图。如图6所示,此时天线阵列最大波束指向θ B可表示为:
Figure PCTCN2023071477-appb-000003
其中,Δφ B为相邻天线单元之间的相位差,λ为天线单元辐射波的波长,d为相邻天线单元的间距。
通过上面公式可以看到,通过伺服系统改变各个天线单元之间的相位差Δφ B,即可调整天线阵列的最大辐射方向θ B
本申请的一些实施例中,所述根据所述待充电设备的位置信息,控制所述单脉冲天线阵列对所述待充电设备进行无线充电包括:
在所述预设跟踪周期内控制所述单脉冲天线阵列以调整后的相位发射电磁波,以对所述待充电设备进行无线充电。
本实施例中,在某一预设跟踪周期内获取了待充电设备的位置信息之后,在下一预设跟踪周期到来之前,即可以控制单脉冲天线阵列以调整后的相位发射电磁波,以对待充电设备进行无线充电,由于已根据接收到的差信号调整了单脉冲天线阵列的相位,即调整后的单脉冲天线阵列的相位可以保证充 电波束的最大辐射方向对准待充电设备,则通过单脉冲天线阵列以调整后的相位发射电磁波,可以保证即使待充电设备处于移动状态,其无线充电的效率始终能保持在较高效率。可以知道,对于每一预设跟踪周期,单脉冲天线阵列的相位可能发生变化,即待充电设备的位置发生变化,因此,可选地,在任一预设跟踪周期内对待充电设备进行充电时,应该以该预设跟踪周期内的调整后的相位进行无线充电。
本申请的另一些实施例中,所述回波信号还包括和信号,所述根据所述回波信号跟踪所述待充电设备的位置还包括:
根据所述和信号,确定所述待充电设备与所述单脉冲天线阵列之间的距离。
也就是说,待充电设备反射回的回波信号还包括和信号,其中,和信号对应于和波束。
如图2、3所示,如果待充电设备正好位于和波束的最大值方向,则此时即可以根据和信号检测出待充电设备与单脉冲天线阵列之间的距离,进而确定待充电设备的空间位置。在待充电设备发生移动时,可以利用差信号持续跟踪待充电设备。
本申请的一些实施例中,所述根据所述待充电设备的位置信息,控制所述单脉冲天线阵列对所述待充电设备进行无线充电还包括:
根据每一所述预设跟踪周期内跟踪到的所述待充电设备与所述单脉冲天线阵列的距离,确定各所述预设跟踪周期内的所述单脉冲天线阵列的目标充电功率;
在所述预设跟踪周期内控制所述单脉冲天线阵列以所述目标充电功率对所述待充电设备进行无线充电。
本实施例中,在获取了待充电设备与单脉冲天线阵列的距离之后,即可根据与待充电设备的距离来调整充电功率,从而保证无线充电效率和电磁辐射安全性。示例性的,对于每一个预设跟踪周期内跟踪到的待充电设备与单脉冲天线阵列的距离,可以确定出对应的目标充电功率,然后控制单脉冲天 线阵列在相应预设跟踪周期内以对应的目标充电功率对待充电设备进行无线充电。
在一些实施例中,可选地,若相邻两个预设跟踪周期确定出的目标充电功率的差值小于第一功率阈值,则可以以在这两个相邻预设跟踪周期内均以两者中时间靠前的预设跟踪周期确定的目标充电功率进行充电。也就是说,若相邻两个预设跟踪周期确定出的目标充电功率的差值小于第一功率阈值,即认为待充电设备与单脉冲天线阵列之间的距离变化很小,则在这两个预设跟踪周期内无需调整充电功率,从而避免频繁调整充电功率。
本申请的一些实施例中,在根据所述待充电设备的位置信息,控制所述单脉冲天线阵列对所述待充电设备进行无线充电时,既可以根据每一所述预设跟踪周期内跟踪到的所述待充电设备与所述单脉冲天线阵列的距离,确定各所述预设跟踪周期内的所述单脉冲天线阵列的目标充电功率,还可以在所述预设跟踪周期内控制所述单脉冲天线阵列以调整后的相位发射电磁波,最终实现充电电磁波的相位和功率的同时调节。
本申请的另一些实施例中,所述根据每次跟踪到的所述待充电设备与所述单脉冲天线阵列的距离,确定各所述预设跟踪周期内的所述单脉冲天线阵列的目标充电功率之前,还包括:
判断在各所述预设跟踪周期内所述待充电设备是否处于被持握状态;
根据每一所述预设跟踪周期内跟踪到的所述待充电设备与所述单脉冲天线阵列的距离,确定各所述预设跟踪周期内的所述单脉冲天线阵列的目标充电功率包括:
在所述待充电设备处于被持握状态的情况下,确定所述预设跟踪周期内的所述单脉冲天线阵列的充电功率为第一目标充电功率;
在所述待充电设备未处于被持握状态的情况下,确定所述预设跟踪周期内的所述单脉冲天线阵列的充电功率为第二目标充电功率;
其中,所述第一目标充电功率小于所述第二目标充电功率。
本实施例中,在确定各预设跟踪周期内的单脉冲天线阵列的目标充电功 率之前,可以利用待充电设备内置的传感器检测在该预设跟踪周期内待充电设备是否处于被持握状态,并将是否被持握的信息报告给无线充电装置,从而,无线充电装置根据待充电设备是否处于被持握状态而调整充电功率,以降低无线充电时的电磁波辐射过大而对用户造成的不良影响。
示例性的,在确定各预设跟踪周期内的单脉冲天线阵列的目标充电功率时,对于同一预设跟踪周期而言,若检测到待充电设备未处于被持握状态,则将充电功率设置为第二目标充电功率,若检测到待充电设备处于被持握状态,则将充电功率设置为比第二目标充电功率小的第一目标充电功率,以减少电磁辐射的影响。或者,对于待充电设备与脉冲天线阵列之间的距离相同的两个预设跟踪周期而言,应将待充电设备被持握时对应的预设跟踪周期内的充电功率适当调小,也即比待充电设备未被持握时对应的预设跟踪周期内的充电功率小,以减少电磁辐射的影响。
本申请的另一些实施例中,在无线充电装置检测到待充电设备进入无线充电范围内时,可以向待充电设备发送一个可进行无线充电的信息,此时待充电设备可以响应于该信息,在页面中弹出充电选择键,用户可以点击该充电选择键来手动设定是否进行无线充电、设置充电模式以及充电时间等等。
总之,在本申请实施例中,以预设跟踪周期利用单脉冲天线阵列跟踪待充电设备的位置,从而可以根据待充电设备的位置信息控制单脉冲天线阵列的功率和/或相位以对待充电设备进行无线充电,解除了现有无线充电技术中对待充电设备的位置、距离等的多种限制条件,可以有效满足待充电设备在远距离、移动场景下的无线充电需求,同时通过判断待充电设备是否处于被持握状态,在保证充电安全的前提下,使得待充电设备处于最佳充电状态。
本申请实施例提供的无线充电方法,执行主体可以为无线充电装置。本申请实施例中以无线充电装置执行无线充电方法为例,说明本申请实施例提供的无线充电装置。
请参考图7,图7为本申请实施例提供的另一种无线充电装置的结构示意图。如图7所示,本申请另一方面实施例提供了一种无线充电装置,该无 线充电装置500包括单脉冲天线阵列,无线充电装置500还包括:
收发模块501,用于以预设跟踪周期控制所述单脉冲天线阵列向待充电设备发射和波束以及差波束,并接收所述待充电设备反射回的回波信号,所述预设跟踪周期为所述单脉冲天线阵列发射和波束以及差波束的周期;
跟踪模块502,用于根据所述回波信号跟踪所述待充电设备的位置;
充电模块503,用于根据所述待充电设备的位置信息,控制所述单脉冲天线阵列对所述待充电设备进行无线充电。
可选地,所述回波信号包括差信号,所述跟踪模块502包括:
相位调整单元,用于根据所述差信号调整所述单脉冲天线阵列的相位,使所述差波束的零值方向对准所述待充电设备。
可选地,所述充电模块503包括:
第一充电单元,用于在所述预设跟踪周期内控制所述单脉冲天线阵列以调整后的相位发射电磁波,以对所述待充电设备进行无线充电。
可选地,所述回波信号还包括和信号,所述跟踪模块502还包括:
距离确定单元,用于根据所述和信号,确定所述待充电设备与所述单脉冲天线阵列之间的距离。
可选地,所述充电模块503包括:
确定单元,用于根据每一所述预设跟踪周期内跟踪到的所述待充电设备与所述单脉冲天线阵列的距离,确定各所述预设跟踪周期内的所述单脉冲天线阵列的目标充电功率;
第二充电单元,用于在所述预设跟踪周期内控制所述单脉冲天线阵列以所述目标充电功率对所述待充电设备进行无线充电。
可选地,所述无线充电装置500还包括:
判断模块,用于判断在各所述预设跟踪周期内所述待充电设备是否处于被持握状态;
所述确定单元包括:
第一确定子单元,用于在所述待充电设备处于被持握状态的情况下,确 定所述预设跟踪周期内的所述单脉冲天线阵列的充电功率为第一目标充电功率;
第二确定子单元,用于在所述待充电设备未处于被持握状态的情况下,确定所述预设跟踪周期内的所述单脉冲天线阵列的充电功率为第二目标充电功率;
其中,所述第一目标充电功率小于所述第二目标充电功率。
在本申请实施例中,以预设跟踪周期利用单脉冲天线阵列跟踪待充电设备的位置,从而可以根据待充电设备的位置信息控制单脉冲天线阵列的功率和/或相位以对待充电设备进行无线充电,解除了现有无线充电技术中对待充电设备的位置、距离等的多种限制条件,可以有效满足待充电设备在远距离、移动场景下的无线充电需求。
本申请实施例中的无线充电装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为iOS操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的无线充电装置能够实现图1至图6的方法实施例实现的各个过程,为避免重复,这里不再赘述。
可选地,如图8所示,本申请实施例还提供一种电子设备600,包括处理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指令,该程序或指令被处理器601执行时实现上述无线充电方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
图9为实现本申请实施例的一种电子设备的硬件结构示意图。
该电子设备700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、以及处理器7010等部件。
本领域技术人员可以理解,电子设备700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器7010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图9中示 出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,射频单元701包括单脉冲天线阵列,射频单元701用于以预设跟踪周期控制所述单脉冲天线阵列向待充电设备发射和波束以及差波束,并接收所述待充电设备反射回的回波信号,所述预设跟踪周期为所述单脉冲天线阵列发射和波束以及差波束的周期;
处理器7010,用于根据所述回波信号跟踪所述待充电设备的位置;
处理器7010,还用于根据所述待充电设备的位置信息,控制所述单脉冲天线阵列对所述待充电设备进行无线充电。
在本申请实施例中,以预设跟踪周期利用单脉冲天线阵列跟踪待充电设备的位置,从而可以根据待充电设备的位置信息控制单脉冲天线阵列的功率和/或相位以对待充电设备进行无线充电,解除了现有无线充电技术中对待充电设备的位置、距离等的多种限制条件,可以有效满足待充电设备在远距离、移动场景下的无线充电需求。
可选地,所述回波信号包括差信号,处理器7010还用于根据所述差信号调整所述单脉冲天线阵列的相位,使所述差波束的零值方向对准所述待充电设备。
可选地,处理器7010,还用于在所述预设跟踪周期内控制所述单脉冲天线阵列以调整后的相位发射电磁波,以对所述待充电设备进行无线充电。
可选地,所述回波信号还包括和信号,处理器7010,还用于根据所述和信号,确定所述待充电设备与所述单脉冲天线阵列之间的距离。
可选地,处理器7010,还用于根据每一所述预设跟踪周期内跟踪到的所述待充电设备与所述单脉冲天线阵列的距离,确定各所述预设跟踪周期内的所述单脉冲天线阵列的目标充电功率;在所述预设跟踪周期内控制射所述单脉冲天线阵列以所述目标充电功率对所述待充电设备进行无线充电。
可选地,处理器7010,还用于判断在各所述预设跟踪周期内所述待充电设备是否处于被持握状态;
处理器7010,还用于在所述待充电设备处于被持握状态的情况下,确定所述预设跟踪周期内的所述单脉冲天线阵列的充电功率为第一目标充电功率;
在所述待充电设备未处于被持握状态的情况下,确定所述预设跟踪周期内的射频单元701的充电功率为第二目标充电功率;
其中,所述第一目标充电功率小于所述第二目标充电功率。
应理解的是,本申请实施例中,输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
存储器709可用于存储软件程序以及各种数据,存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM, ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器7010可包括一个或多个处理单元;可选地,处理器7010集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器7010中。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述无线充电方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器、随机存取存储器、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述无线充电方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例提供一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如上述无线充电方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情 况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (16)

  1. 一种无线充电方法,应用于无线充电装置,所述无线充电装置包括单脉冲天线阵列,所述方法包括:
    以预设跟踪周期控制所述单脉冲天线阵列向待充电设备发射和波束以及差波束,并接收所述待充电设备反射回的回波信号,所述预设跟踪周期为所述单脉冲天线阵列发射和波束以及差波束的周期;
    根据所述回波信号跟踪所述待充电设备的位置;
    根据所述待充电设备的位置信息,控制所述单脉冲天线阵列对所述待充电设备进行无线充电。
  2. 根据权利要求1所述的无线充电方法,其中,所述回波信号包括差信号,所述根据所述回波信号跟踪所述待充电设备的位置包括:
    根据所述差信号调整所述单脉冲天线阵列的相位,使所述差波束的零值方向对准所述待充电设备。
  3. 根据权利要求2所述的无线充电方法,其中,所述根据所述待充电设备的位置信息,控制所述单脉冲天线阵列对所述待充电设备进行无线充电包括:
    在所述预设跟踪周期内控制所述单脉冲天线阵列以调整后的相位发射电磁波,以对所述待充电设备进行无线充电。
  4. 根据权利要求2所述的无线充电方法,其中,所述回波信号还包括和信号,所述根据所述回波信号跟踪所述待充电设备的位置还包括:
    根据所述和信号,确定所述待充电设备与所述单脉冲天线阵列之间的距离。
  5. 根据权利要求4所述的无线充电方法,其中,所述根据所述待充电设备的位置信息,控制所述单脉冲天线阵列对所述待充电设备进行无线充电还包括:
    根据每一所述预设跟踪周期内跟踪到的所述待充电设备与所述单脉冲天线阵列的距离,确定各所述预设跟踪周期内的所述单脉冲天线阵列的目标充电功率;
    在所述预设跟踪周期内控制所述单脉冲天线阵列以所述目标充电功率对所述待充电设备进行无线充电。
  6. 根据权利要求5所述的无线充电方法,其中,所述根据每次跟踪到的所述待充电设备与所述单脉冲天线阵列的距离,确定各所述预设跟踪周期内的所述单脉冲天线阵列的目标充电功率之前,还包括:
    判断在各所述预设跟踪周期内所述待充电设备是否处于被持握状态;
    所述根据每一所述预设跟踪周期内跟踪到的所述待充电设备与所述单脉冲天线阵列的距离,确定各所述预设跟踪周期内的所述单脉冲天线阵列的目标充电功率包括:
    在所述待充电设备处于被持握状态的情况下,确定所述预设跟踪周期内的所述单脉冲天线阵列的充电功率为第一目标充电功率;
    在所述待充电设备未处于被持握状态的情况下,确定所述预设跟踪周期内的所述单脉冲天线阵列的充电功率为第二目标充电功率;
    其中,所述第一目标充电功率小于所述第二目标充电功率。
  7. 一种无线充电装置,所述无线充电装置包括单脉冲天线阵列,所述无线充电装置还包括:
    收发模块,用于以预设跟踪周期控制所述单脉冲天线阵列向待充电设备发射和波束以及差波束,并接收所述待充电设备反射回的回波信号,所述预设跟踪周期为所述单脉冲天线阵列发射和波束以及差波束的周期;
    跟踪模块,用于根据所述回波信号跟踪所述待充电设备的位置;
    充电模块,用于根据所述待充电设备的位置信息,控制所述单脉冲天线阵列对所述待充电设备进行无线充电。
  8. 根据权利要求7所述的无线充电装置,其中,所述回波信号包括差信号,所述跟踪模块包括:
    相位调整单元,用于根据所述差信号调整所述单脉冲天线阵列的相位,使所述差波束的零值方向对准所述待充电设备。
  9. 根据权利要求8所述的无线充电装置,其中,所述充电模块包括:
    第一充电单元,用于在所述预设跟踪周期内控制所述单脉冲天线阵列以调整后的相位发射电磁波,以对所述待充电设备进行无线充电。
  10. 根据权利要求8所述的无线充电装置,其中,所述回波信号还包括和信号,所述跟踪模块还包括:
    距离确定单元,用于根据所述和信号,确定所述待充电设备与所述单脉冲天线阵列之间的距离。
  11. 根据权利要求10所述的无线充电装置,其中,所述充电模块包括:
    确定单元,用于根据每一所述预设跟踪周期内跟踪到的所述待充电设备与所述单脉冲天线阵列的距离,确定各所述预设跟踪周期内的所述单脉冲天线阵列的目标充电功率;
    第二充电单元,用于在所述预设跟踪周期内控制所述单脉冲天线阵列以所述目标充电功率对所述待充电设备进行无线充电。
  12. 根据权利要求11所述的无线充电装置,其中,所述无线充电装置还包括:
    判断模块,用于判断在各所述预设跟踪周期内所述待充电设备是否处于被持握状态;
    所述确定单元包括:
    第一确定子单元,用于在所述待充电设备处于被持握状态的情况下,确定所述预设跟踪周期内的所述单脉冲天线阵列的充电功率为第一目标充电功率;
    第二确定子单元,用于在所述待充电设备未处于被持握状态的情况下,确定所述预设跟踪周期内的所述单脉冲天线阵列的充电功率为第二目标充电功率;
    其中,所述第一目标充电功率小于所述第二目标充电功率。
  13. 一种电子设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-6中任一项所述的无线充电方法的步骤。
  14. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-6中任一项所述的无线充电方法的步骤。
  15. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处 理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-6中任一项所述的无线充电方法的步骤。
  16. 一种计算机程序产品,其中,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1-6中任一项所述的无线充电方法的步骤。
PCT/CN2023/071477 2022-01-17 2023-01-10 一种无线充电方法、装置和电子设备 WO2023134652A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210050144.2A CN114374279A (zh) 2022-01-17 2022-01-17 一种无线充电方法、装置和电子设备
CN202210050144.2 2022-01-17

Publications (1)

Publication Number Publication Date
WO2023134652A1 true WO2023134652A1 (zh) 2023-07-20

Family

ID=81143309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071477 WO2023134652A1 (zh) 2022-01-17 2023-01-10 一种无线充电方法、装置和电子设备

Country Status (2)

Country Link
CN (1) CN114374279A (zh)
WO (1) WO2023134652A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115706456A (zh) * 2021-08-16 2023-02-17 Oppo广东移动通信有限公司 充电发射器、充电接收终端、无线充电系统及方法
CN114374279A (zh) * 2022-01-17 2022-04-19 维沃移动通信有限公司 一种无线充电方法、装置和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615721A (zh) * 2009-07-31 2009-12-30 北京华大智宝电子系统有限公司 相控阵移动卫星接收天线
US20120326660A1 (en) * 2011-06-27 2012-12-27 Board Of Regents, The University Of Texas System Wireless Power Transmission
CN103616679A (zh) * 2013-11-19 2014-03-05 北京航空航天大学 基于差波束调制和波形分析的pd雷达测距测角方法
CN109782268A (zh) * 2018-12-12 2019-05-21 武汉船舶通信研究所(中国船舶重工集团公司第七二二研究所) 基于相控阵和差波束测角的目标跟踪捕获方法及装置
CN110429723A (zh) * 2019-07-27 2019-11-08 西南电子技术研究所(中国电子科技集团公司第十研究所) 无线充电微波电力传输系统
CN112448489A (zh) * 2019-08-30 2021-03-05 Oppo广东移动通信有限公司 无线充电接收装置、发射装置、系统和移动终端
CN114374279A (zh) * 2022-01-17 2022-04-19 维沃移动通信有限公司 一种无线充电方法、装置和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615721A (zh) * 2009-07-31 2009-12-30 北京华大智宝电子系统有限公司 相控阵移动卫星接收天线
US20120326660A1 (en) * 2011-06-27 2012-12-27 Board Of Regents, The University Of Texas System Wireless Power Transmission
CN103616679A (zh) * 2013-11-19 2014-03-05 北京航空航天大学 基于差波束调制和波形分析的pd雷达测距测角方法
CN109782268A (zh) * 2018-12-12 2019-05-21 武汉船舶通信研究所(中国船舶重工集团公司第七二二研究所) 基于相控阵和差波束测角的目标跟踪捕获方法及装置
CN110429723A (zh) * 2019-07-27 2019-11-08 西南电子技术研究所(中国电子科技集团公司第十研究所) 无线充电微波电力传输系统
CN112448489A (zh) * 2019-08-30 2021-03-05 Oppo广东移动通信有限公司 无线充电接收装置、发射装置、系统和移动终端
CN114374279A (zh) * 2022-01-17 2022-04-19 维沃移动通信有限公司 一种无线充电方法、装置和电子设备

Also Published As

Publication number Publication date
CN114374279A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2023134652A1 (zh) 一种无线充电方法、装置和电子设备
KR102604991B1 (ko) 카메라가 수집한 데이터에 기반하여 빔을 제어하는 전자 장치 및 전자 장치의 동작 방법
US20220252689A1 (en) Electronic Devices with Motion Sensing and Angle of Arrival Detection Circuitry
KR102155560B1 (ko) 근거리 장애물 감지를 통한 빔 추적 방법 및 장치
EP3817189A1 (en) Wireless energy transmitting apparatus, wireless energy receiving apparatus, wireless energy supply method and system
US11264714B2 (en) Method and apparatus for beamforming in wireless communication system
CN108594171B (zh) 定位通信设备、定位方法及计算机存储介质
US11032859B2 (en) Electronic device for controlling data communication of external electronic device and communication system
US20130300670A1 (en) Computer input stylus with multiple antennas
WO2020228242A1 (zh) 目标物体的追踪方法、装置及存储介质
US11510047B2 (en) Learning based wireless performance adjustment for mobile information handling system
CN108627799B (zh) 定位通信设备、定位方法及计算机存储介质
WO2023155582A1 (zh) 一种终端天线和控制天线波束方向的方法
US20220132021A1 (en) Electronic device and method for supporting zoom functionality
CN113206550A (zh) 无线充电设备及充电方法
CN112787418B (zh) 无线充电发射器、无线充电方法
KR102211836B1 (ko) 무선 전력 송신장치 및 그 제어방법
KR20220086496A (ko) Nfc 센서를 타겟팅하기 위한 방법 및 시스템
US20190165599A1 (en) Tone Power Scheduler For Wireless Environmental Applications
CN113687300A (zh) 定位方法、装置和电子设备
CN114521015B (zh) 定位方法、装置、存储介质及电子设备
KR102544082B1 (ko) 5g 안테나 제어 방법 및 이를 위한 전자 장치
KR20210056128A (ko) 송신 안테나 선택 방법 및 전자 장치
CN112379363A (zh) 测量方法、装置和电子设备
WO2022155998A1 (zh) 成像系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23739994

Country of ref document: EP

Kind code of ref document: A1