WO2023134408A9 - 一种信息传输方法和装置 - Google Patents

一种信息传输方法和装置 Download PDF

Info

Publication number
WO2023134408A9
WO2023134408A9 PCT/CN2022/140474 CN2022140474W WO2023134408A9 WO 2023134408 A9 WO2023134408 A9 WO 2023134408A9 CN 2022140474 W CN2022140474 W CN 2022140474W WO 2023134408 A9 WO2023134408 A9 WO 2023134408A9
Authority
WO
WIPO (PCT)
Prior art keywords
value
electronic device
stylus
pressure sensitivity
signal
Prior art date
Application number
PCT/CN2022/140474
Other languages
English (en)
French (fr)
Other versions
WO2023134408A1 (zh
Inventor
张北航
李航
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2023134408A1 publication Critical patent/WO2023134408A1/zh
Publication of WO2023134408A9 publication Critical patent/WO2023134408A9/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04162Control or interface arrangements specially adapted for digitisers for exchanging data with external devices, e.g. smart pens, via the digitiser sensing hardware
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0441Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using active external devices, e.g. active pens, for receiving changes in electrical potential transmitted by the digitiser, e.g. tablet driving signals

Definitions

  • the present application relates to the field of terminals, and in particular, to an information transmission method and device.
  • Stylus pens are common accessories for electronic devices such as tablets, mobile phones, and portable computers. With a stylus, users can input on electronic devices more easily. For scenes such as painting and drawing, the stylus can provide an experience similar to a real pen. Styluses generally have a pressure-sensitive device. Through the contact between the tip of the pen and the screen, the force of the pen is transmitted through the tip to the pressure-sensitive device inside the pen body. The pressure-sensitive device senses the force and calculates the pressure sensitivity value. The electronic device can draw lines of varying thickness that are coordinated with the pressure sensitivity value based on different pressure sensitivity values.
  • the stylus could transmit pressure sensitivity levels to the electronic device via a Bluetooth channel.
  • some styli may not have a Bluetooth module and cannot transmit pressure sensitivity values.
  • the pressure value can be transferred by frequency modulating the pen tip electrode.
  • the pen tip emitting electrode frequency is fa; for a pressure sensitivity level of b, the pen tip emitting electrode frequency is fb.
  • the frequency modulation device on the electronic device detects the frequency, and then the pressure sensitivity level to be transmitted by the pen can be obtained through the mapping table.
  • this requires adding an additional frequency modulation circuit on the pen end of the stylus, and adding a multi-frequency detection circuit on the electronic device end, which increases the circuit design complexity of the pen end and electronic device end.
  • the present application provides an information transmission method and device that can transmit information (for example, pressure sensitivity value) to an electronic device when the stylus does not have a Bluetooth module and does not increase the complexity of the device.
  • information for example, pressure sensitivity value
  • an information transmission method is provided, which is applied to a system composed of a stylus and an electronic device.
  • the stylus includes a first electrode and a second electrode.
  • the method includes: the first electrode sends N first electrodes based on the refresh rate. signal, N first signals correspond to N sending moments, N is an integer greater than or equal to 1; the second electrode sends M second signals based on the pressure sensitivity value detected by the stylus or the type of user's operation on the stylus.
  • M second signals correspond to M sending moments, the M sending moments overlap with part or all of the N sending moments, M is an integer less than or equal to N; the electronic device receives the first signal and the second signal; if At the first moment, the electronic device determines that the first signal exists and the second signal does not exist, and records the first value; if at the second moment, the electronic device determines that the first signal exists and the second signal also exists, records the second value; where , the first moment or the second moment is any moment among the N moments; the electronic device obtains the target encoding data based on the first value and/or the second value recorded at the N moments, and the target encoding data is used to represent the size of the pressure sensitivity value. or the type of user action with the stylus.
  • the first electrode sends N first signals based on the refresh rate
  • the second electrode sends M second signals based on the pressure sensitivity value detected by the stylus or the type of user's operation on the stylus.
  • N first signals correspond to N sending moments
  • M second signals correspond to M sending moments
  • the M sending moments overlap with part or all of the N sending moments. That is, the timing of the electrode signal sent by TX1 of the stylus can be used as a reference, the timing of the electrode signal of TX2 of the stylus can be changed, and the pressure sensitivity value or the user's response to the stylus can be transmitted through the presence or absence of the electrode signal sent by TX2.
  • the type of operation is, the timing of the electrode signal sent by TX1 of the stylus can be used as a reference, the timing of the electrode signal of TX2 of the stylus can be changed, and the pressure sensitivity value or the user's response to the stylus can be transmitted through the presence or absence of the electrode signal sent by TX2. The type of operation.
  • the electronic device determines that the first signal exists and the second signal does not exist, record the first value; if at the second moment, the electronic device determines that the first signal exists and the second signal also exists, record the second value; Wherein, the first moment or the second moment is any moment among the N moments; the electronic device obtains the target encoding data according to the first value and/or the second value recorded at the N moments, and determines the size of the pressure sensitivity value according to the target encoding data. or the type of user action with the stylus. In this way, the pressure-sensitive value can be transferred to the electronic device without increasing the complexity of the device without a Bluetooth module on the stylus, making the transfer of pressure-sensitive value more convenient and simple.
  • the target coded data includes the first value and/or the second value recorded at all N times; or the target coded data includes the first value and/or the second value recorded at part of the N times. binary value.
  • the first value is 0 and the second value is 1; or the first value is 1 and the second value is 0.
  • the electrode signal (first signal) of TX1 first electrode
  • the electrode signal (second signal) of TX2 second electrode
  • the electrode corresponding to the first time TX2 is The signal is marked as 0; if the electrode signal of TX1 exists at the second time and the electrode signal of TX2 also exists, then the electrode signal corresponding to the second time TX2 is marked as 1.
  • the electrode signal corresponding to the first time TX2 is marked as 1; if the electrode signal of TX1 exists and the electrode signal of TX2 exists at the second time Also exists, then the electrode signal corresponding to the second time TX2 is marked as 0.
  • the target encoding data is binary data
  • the binary data includes N bits or N-Q bits
  • Q is an integer less than N and greater than 0.
  • N 10 bits or less.
  • the pressure sensitivity value ranges from 0 to 2 N or 0 to 2 NQ .
  • the last N-P bits of the binary data are used to indicate the pressure sensitivity value
  • P is an integer greater than or equal to 1
  • the last N-P bits of the binary data are used to indicate the type of user operation.
  • P is preset, for example, it can be 1, 2 or 3, etc. For example, if P is 2, when the current P bit value is 01, the last N-P bits of the binary data are used to indicate the pressure sensitivity value; when the current P bit value is 10, the last N-P bits of the binary data are used to indicate the user The type of operation.
  • the first N-P bits of the binary data when the value of the last P bits of the binary data is the first preset value, the first N-P bits of the binary data are used to indicate the pressure sensitivity value, and P is an integer greater than or equal to 1; when When the value of the last P bits of the binary data is the second preset value, the first N-P bits of the binary data are used to indicate the type of the user's operation. For example, if P is 2, when the value of the last P bit is 01, the first N-P bits of the binary data are used to indicate the pressure sensitivity value; when the value of the current P bit is 10, the first N-P bits of the binary data are used to indicate the user The type of operation.
  • the types of user operations on the stylus include operations on buttons or touch areas of the stylus, and operations on buttons or touch areas of the stylus include single clicks, double clicks, and long clicks. Press or swipe.
  • the method when the target encoding data is used to represent the size of the pressure sensitivity value, the method also includes: the electronic device determines the thickness of the lines drawn by the stylus according to the pressure sensitivity value; the greater the pressure sensitivity value, the smaller the line thickness. The thicker it is; the smaller the pressure sensitivity value, the thinner the line.
  • the method when the target encoding data is used to characterize the type of user's operation on the stylus, the method also includes: when the type of operation is a button click, the electronic device takes a screenshot; when the type of operation is a long press When the button is pressed, the electronic device opens the notebook application; when the type of operation is sliding on the touch area, the electronic device switches interfaces.
  • the method also includes: in response to the user selecting the auxiliary function option on the setting interface of the electronic device, the electronic device displays the auxiliary function interface, and the auxiliary function interface includes the stylus option; in response to the user selecting the stylus option During the operation, the electronic device displays a function setting interface of the stylus, and the function setting interface of the stylus includes a pressure sensitivity level option; in response to the user's operation of the pressure sensitivity level option, the electronic device displays a pop-up box, and the pop-up box includes multiple pressure sensitivity levels. The value of the level; in response to the user's operation of selecting a first value from multiple values of the pressure sensitivity level, the electronic device sets the pressure sensitivity level of the stylus according to the first value. This way, users can manually set the stylus’ pressure sensitivity level.
  • the electronic device in response to the user selecting the auxiliary function option on the setting interface of the electronic device, displays the auxiliary function interface, and the auxiliary function interface includes the stylus option; in response to the user selecting the stylus option, the electronic device The device displays the function setting interface of the stylus.
  • the function setting interface of the stylus includes a numerical adjustment box corresponding to the pressure sensitivity level and a numerical adjustment button; in response to the user's operation of adjusting the numerical adjustment box to the first value through the numerical adjustment button, The electronic device sets the pressure sensitivity level of the stylus according to the first value. This way, users can manually set the stylus’ pressure sensitivity level.
  • an information transmission method is provided, applied to a stylus.
  • the stylus includes a first electrode and a second electrode.
  • the method includes: the first electrode sends N first signals to the electronic device based on the refresh rate, N The first signals correspond to N sending moments; N is an integer greater than or equal to 1; the second electrode sends M second signals based on the pressure sensitivity value detected by the stylus or the type of user's operation on the stylus, M The second signal corresponds to M sending moments, and the M sending moments overlap with some or all of the N sending moments, where M is an integer less than or equal to N; where the first moment among the N moments corresponds to the first value, At the first moment, the first signal exists and the second signal does not exist; the second moment among the N moments corresponds to the second value, and at the second moment, the first signal exists and the second signal exists; the N moments correspond to the second value.
  • the first value and/or the second value are used to construct target encoding data, and the target encoding data is used to characterize the
  • the first electrode sends N first signals based on the refresh rate
  • the second electrode sends M second signals based on the pressure sensitivity value detected by the stylus or the type of user's operation on the stylus.
  • N first signals correspond to N sending moments
  • M second signals correspond to M sending moments
  • the M sending moments overlap with part or all of the N sending moments. That is, the timing of the electrode signal sent by TX1 of the stylus can be used as a reference, the timing of the electrode signal of TX2 of the stylus can be changed, and the pressure sensitivity value or the user's response to the stylus can be transmitted through the presence or absence of the electrode signal sent by TX2.
  • the type of operation In this way, the pressure-sensitive value can be transferred to the electronic device without increasing the complexity of the device without a Bluetooth module on the stylus, making the transfer of pressure-sensitive value more convenient and simple.
  • the target coded data includes the first value and/or the second value corresponding to all N moments; or the target coded data includes the first value and/or the second value corresponding to part of the N moments. binary value.
  • the first value is 0 and the second value is 1; or the first value is 1 and the second value is 0.
  • the target encoding data is binary data
  • the binary data includes N bits or N-Q bits
  • Q is an integer less than N and greater than 0.
  • the pressure sensitivity value ranges from 0 to 2 N or 0 to 2 NQ .
  • the last N-P bits of the binary data are used to indicate the pressure sensitivity value, and P is an integer greater than or equal to 1; when the value of the first P bits of the binary data is the second preset value, the last N-P bits of the binary data are used to indicate the type of user operation.
  • the first N-P bits of the binary data are used to indicate the pressure sensitivity value, and P is an integer greater than or equal to 1; when the value of the last P bits of the binary data is the second preset value, the first N-P bits of the binary data are used to indicate the type of the user's operation.
  • the types of user operations on the stylus include operations on buttons or touch areas of the stylus, and operations on buttons or touch areas of the stylus include single clicks, double clicks, and long clicks. Press or swipe.
  • an information transmission method is provided, which is applied to an electronic device.
  • the method includes: the electronic device receives N first signals from the first electrode of the stylus and M first signals from the second electrode of the stylus. Two signals; N is an integer greater than or equal to 1, M is an integer less than or equal to N; if at the first moment, the electronic device determines that the first signal exists but the second signal does not exist, record the first value; if at the second At the moment, the electronic device determines that the first signal exists and the second signal also exists, and records the second value; where the first moment or the second moment is any moment among N moments; the electronic device records the first value according to the N moments and/or the second value obtains target encoding data, and the target encoding data is used to characterize the size of the pressure sensitivity value or the type of the user's operation on the stylus pen.
  • the electronic device receives N first signals from the first electrode of the stylus and M second signals from the second electrode of the stylus. If at the first moment, the electronic device determines that the first signal exists and the second signal does not exist, record the first value; if at the second moment, the electronic device determines that the first signal exists and the second signal also exists, record the second value; Wherein, the first moment or the second moment is any moment among the N moments; the electronic device obtains the target encoding data according to the first value and/or the second value recorded at the N moments, and determines the size of the pressure sensitivity value according to the target encoding data. or the type of user action with the stylus. In this way, the pressure-sensitive value can be transferred to the electronic device without increasing the complexity of the device without a Bluetooth module on the stylus, making the transfer of pressure-sensitive value more convenient and simple.
  • the target coded data includes the first value and/or the second value recorded at all N times; or the target coded data includes the first value and/or the second value recorded at part of the N times. binary value.
  • the first value is 0 and the second value is 1; or the first value is 1 and the second value is 0.
  • the target encoding data is binary data
  • the binary data includes N bits or N-Q bits
  • Q is an integer less than N and greater than 0.
  • the pressure sensitivity value ranges from 0 to 2 N or 0 to 2 NQ .
  • the last N-P bits of the binary data are used to indicate the pressure sensitivity value, and P is an integer greater than or equal to 1; when the value of the first P bits of the binary data is the second preset value, the last N-P bits of the binary data are used to indicate the type of user operation.
  • the first N-P bits of the binary data are used to indicate the pressure sensitivity value, and P is an integer greater than or equal to 1; when the value of the last P bits of the binary data is the second preset value, the first N-P bits of the binary data are used to indicate the type of the user's operation.
  • the types of user operations on the stylus include operations on buttons or touch areas of the stylus, and operations on buttons or touch areas of the stylus include single clicks, double clicks, and long clicks. Press or swipe.
  • the method when the target encoding data is used to represent the size of the pressure sensitivity value, the method also includes: the electronic device determines the thickness of the lines drawn by the stylus according to the pressure sensitivity value; the greater the pressure sensitivity value, the smaller the line thickness. The thicker it is; the smaller the pressure sensitivity value, the thinner the line.
  • the method when the target encoding data is used to characterize the type of user's operation on the stylus, the method also includes: when the type of operation is a button click, the electronic device takes a screenshot; when the type of operation is a long press When the button is pressed, the electronic device opens the notebook application; when the type of operation is sliding on the touch area, the electronic device switches interfaces.
  • the method also includes: in response to the user selecting the auxiliary function option on the setting interface of the electronic device, the electronic device displays the auxiliary function interface, and the auxiliary function interface includes the stylus option; in response to the user selecting the stylus option During the operation, the electronic device displays a function setting interface of the stylus, and the function setting interface of the stylus includes a pressure sensitivity level option; in response to the user's operation of the pressure sensitivity level option, the electronic device displays a pop-up box, and the pop-up box includes multiple pressure sensitivity levels. The value of the level; in response to the user's operation of selecting a first value from multiple values of the pressure sensitivity level, the electronic device sets the pressure sensitivity level of the stylus according to the first value.
  • the electronic device in response to the user selecting the auxiliary function option on the setting interface of the electronic device, displays the auxiliary function interface, and the auxiliary function interface includes the stylus option; in response to the user selecting the stylus option, the electronic device The device displays the function setting interface of the stylus.
  • the function setting interface of the stylus includes a numerical adjustment box corresponding to the pressure sensitivity level and a numerical adjustment button; in response to the user's operation of adjusting the numerical adjustment box to the first value through the numerical adjustment button, The electronic device sets the pressure sensitivity level of the stylus according to the first value.
  • embodiments of the present application provide a stylus, including: a processor and a memory; the memory stores computer execution instructions; the processor executes the computer execution instructions stored in the memory, causing the processor to execute Method as described in the second aspect.
  • embodiments of the present application provide an electronic device, including: a processor and a memory; the memory stores computer execution instructions; the processor executes the computer execution instructions stored in the memory, so that the processor executes: The method described in the third aspect.
  • embodiments of the present application provide a signal synchronization system, including the stylus as described in the fourth aspect, and the electronic device as described in the fifth aspect.
  • embodiments of the present application provide a computer program product containing instructions that, when run on a computer, cause the computer to execute the method of the second aspect or the third aspect.
  • embodiments of the present application provide a computer-readable storage medium that stores instructions that, when run on a computer, cause the computer to execute the method of the second aspect or the third aspect. .
  • the first electrode sends N first signals based on the refresh rate
  • the second electrode sends M second signals based on the pressure sensitivity value detected by the stylus or the type of user's operation on the stylus.
  • N first signals correspond to N sending moments
  • M second signals correspond to M sending moments
  • the M sending moments overlap with part or all of the N sending moments. That is, the timing of the electrode signal sent by TX1 of the stylus can be used as a reference, the timing of the electrode signal of TX2 of the stylus can be changed, and the pressure sensitivity value or the user's response to the stylus can be transmitted through the presence or absence of the electrode signal sent by TX2.
  • the type of operation is, the timing of the electrode signal sent by TX1 of the stylus can be used as a reference, the timing of the electrode signal of TX2 of the stylus can be changed, and the pressure sensitivity value or the user's response to the stylus can be transmitted through the presence or absence of the electrode signal sent by TX2. The type of operation.
  • the electronic device determines that the first signal exists and the second signal does not exist, record the first value; if at the second moment, the electronic device determines that the first signal exists and the second signal also exists, record the second value; Wherein, the first moment or the second moment is any moment among the N moments; the electronic device obtains the target encoding data according to the first value and/or the second value recorded at the N moments, and determines the size of the pressure sensitivity value according to the target encoding data. or the type of user action with the stylus. In this way, the pressure-sensitive value can be transferred to the electronic device without increasing the complexity of the device without a Bluetooth module on the stylus, making the transfer of pressure-sensitive value more convenient and simple.
  • Figure 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2A is a schematic structural diagram of a stylus provided by an embodiment of the present application.
  • Figure 2B is a schematic structural diagram of another stylus provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of another stylus provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a functional module of a stylus provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram showing changes in the capacitance value of a touch screen provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram showing changes in the capacitance value of another touch screen provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of signal synchronization provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of signal interaction provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of signal transmission timing provided by an embodiment of the present application.
  • Figure 11 is a schematic display diagram provided by an embodiment of the present application.
  • Figure 12 is another display schematic diagram provided by an embodiment of the present application.
  • Figure 13 is another display schematic diagram provided by an embodiment of the present application.
  • Figure 14 is another display schematic diagram provided by an embodiment of the present application.
  • Figure 15 is another display schematic diagram provided by an embodiment of the present application.
  • Figure 16 is another schematic diagram of signal interaction provided by an embodiment of the present application.
  • Figure 17 is another signal transmission timing diagram provided by an embodiment of the present application.
  • Figure 18 is another schematic diagram of signal interaction provided by an embodiment of the present application.
  • Figure 19 is a schematic diagram of signal transmission timing provided by an embodiment of the present application.
  • Figure 20 is a schematic diagram of signal transmission timing provided by an embodiment of the present application.
  • Figure 21 is a schematic structural diagram of a chip system provided by an embodiment of the present application.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to distinguish identical or similar items with basically the same functions and effects.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the embodiments of the present application is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner that is easier to understand.
  • Figure 1 is a schematic diagram of a scenario applicable to the embodiment of the present application.
  • the scene includes a stylus 100 and an electronic device 200 .
  • the electronic device 200 is a tablet computer (tablet) as an example for illustration.
  • the stylus pen 100 may provide input to the electronic device 200 , and the electronic device 200 performs operations in response to the input based on the input from the stylus pen 100 .
  • the stylus 100 and the electronic device 200 can be interconnected through a communication network to achieve wireless signal interaction.
  • the communication network includes but is not limited to: WI-FI hotspot network, WI-FI peer-to-peer (P2P) network, Bluetooth network, zigbee network or near field communication (near field communication, NFC) network, etc. Communications network.
  • the stylus pen 100 may be a capacitive pen, and the capacitive pen may include a passive capacitive pen and an active capacitive pen. Passive capacitive pens can be called passive capacitive pens, and active capacitive pens can be called active capacitive pens.
  • One or more electrodes can be provided in the active capacitive pen (for example, inside the pen tip), and the active capacitive pen can emit signals through the electrodes.
  • the electronic device 200 has a touch screen 201 .
  • An electrode array is integrated on the touch screen 201 .
  • the electrode array may be a capacitive electrode array.
  • the electronic device 200 can receive a signal from the active capacitive pen through the electrode array, and then when receiving the signal, identify the active capacitor based on the change in the capacitance value on the touch screen 201 The position of the pen on the touch screen, and the tilt angle of the active capacitive pen.
  • FIG. 2A is a schematic structural diagram of a stylus provided by an embodiment of the present application.
  • the stylus pen 100 may include a pen tip 10 , a pen barrel 20 and a back cover 30 .
  • the interior of the pen holder 20 is a hollow structure.
  • the pen tip 10 and the back cover 30 are located at both ends of the pen holder 20 respectively.
  • the back cover 30 and the pen holder 20 can be connected by plugging or snapping.
  • the cooperation relationship between the pen tip 10 and the pen holder 20 is detailed. See description of Figure 2B.
  • FIG. 2B is a schematic diagram of a partially disassembled structure of the stylus provided by an embodiment of the present application.
  • the stylus pen 100 further includes a main shaft assembly 50 .
  • the main shaft assembly 50 is located in the pen shaft 20 , and the main shaft assembly 50 is slidably disposed in the pen shaft 20 .
  • the main shaft assembly 50 has an external thread 51
  • the pen tip 10 includes a writing end 11 and a connecting end 12 , wherein the connecting end 12 of the pen tip 10 has an internal thread (not shown) that matches the external thread 51 .
  • the connecting end 12 of the pen tip 10 When the main shaft assembly 50 is assembled into the pen holder 20 , the connecting end 12 of the pen tip 10 extends into the pen holder 20 and is threadedly connected with the external thread 51 of the main shaft assembly 50 .
  • the connection between the connecting end 12 of the pen tip 10 and the main shaft assembly 50 can also be achieved by detachable means such as snapping.
  • the pen tip 10 can be replaced by detachably connecting the connecting end 12 of the pen tip 10 with the spindle assembly 50 .
  • a pressure-sensitive assembly 60 is provided on the main shaft assembly 50 .
  • the pressure-sensitive assembly 60 is fixedly connected to the fixed structure in the pen barrel 20 .
  • the pressure-sensitive assembly 60 is fixedly connected to the main shaft assembly 50 . Fixed connection.
  • the circuit board 70 (for example, the pressure-sensitive component 60 and the circuit board 70 can be electrically connected through a wire or a flexible circuit board), the circuit board 70 detects the pressure of the writing end 11 of the pen tip 10 according to the deformation of the pressure-sensitive component 60 .
  • the pressure detection of the pen tip 10 includes but is not limited to the above method.
  • a pressure sensor can also be provided in the writing end 11 of the pen tip 10 so that the pressure sensor detects the pressure of the pen tip 10 .
  • the stylus 100 further includes a plurality of electrodes.
  • the plurality of electrodes may be, for example, a first emitter electrode 41 , a ground electrode 43 and a second emitter electrode 42 .
  • the first emitter electrode 41 , the ground electrode 43 and the second emitter electrode 42 are all electrically connected to the circuit board 70 .
  • the first emitter electrode 41 may be located in the pen tip 10 and close to the writing end 11
  • the circuit board 70 may be configured as a control board that can provide signals to the first emitter electrode 41 and the second emitter electrode 42 respectively.
  • the first emitter electrode 41 is used for Transmitting electrode signal (first signal), when the first transmitting electrode 41 is close to the touch screen 201 of the electronic device 200, a coupling capacitance can be formed between the first transmitting electrode 41 and the touch screen 201 of the electronic device 200, so that the electronic device 200 can receive the first signal.
  • the second transmitting electrode 42 is used to transmit an electrode signal (second signal), and the electronic device 200 can determine the tilt angle of the stylus 100 based on the received second signal.
  • the second emitter electrode 42 may be located on the inner wall of the pen holder 20 . In one example, the second emitter electrode 42 may also be located on the spindle assembly 50 .
  • the ground electrode 43 may be located between the first emission electrode 41 and the second emission electrode 42, or the ground electrode 43 may be located around the first emission electrode 41 and the second emission electrode 42, and the ground electrode 43 is used to reduce the first emission.
  • the electrode 41 and the second emitter electrode 42 are coupled to each other.
  • the electronic device 200 When the electronic device 200 receives the first signal from the stylus 100, the capacitance value at the corresponding position of the touch screen 201 will change. Accordingly, the electronic device 200 can determine the position of the stylus 100 (or the tip of the stylus 100) on the touch screen 201 based on changes in the capacitance value on the touch screen 201. In addition, the electronic device 200 can obtain the tilt angle of the stylus pen 100 by using the dual-tip projection method in the tilt angle detection algorithm. The first emitter electrode 41 and the second emitter electrode 42 have different positions in the stylus 100. Therefore, when the electronic device 200 receives the first signal and the second signal from the stylus 100, the two emitter electrodes on the touch screen 201 The capacitance value at each location will change.
  • the electronic device 200 can obtain the tilt angle of the stylus 100 based on the distance between the first emission electrode 41 and the second emission electrode 42 and the distance between the two positions on the touch screen 201 where the capacitance value changes,
  • the tilt angle of the stylus pen 100 please refer to the related description of the dual-tip projection method in the prior art.
  • the stylus 100 further includes a battery component 80 , and the battery component 80 is used to provide power to the circuit board 70 .
  • the battery component 80 may include a lithium-ion battery, or the battery component 80 may include a nickel-chromium battery, an alkaline battery, a nickel-metal hydride battery, or the like.
  • the battery included in the battery assembly 80 may be a rechargeable battery or a disposable battery.
  • the stylus 100 may wirelessly charge the battery assembly. The battery in 80 is charged.
  • the electronic device 200 can send electrode signals (uplink signals) to the stylus 100 through the electrode array integrated on the touch screen 201 ).
  • the stylus 100 can receive the uplink signal through the receiving electrode, and the stylus 100 can transmit the downlink signal through the transmitting electrode (such as the first transmitting electrode 41 and the second transmitting electrode 42).
  • the downlink signal includes the above-mentioned first signal and second signal.
  • the tip 10 of the stylus pen 100 contacts the touch screen 201, the capacitance value at the corresponding position of the touch screen 201 will change.
  • the electronic device 200 can determine the tip of the stylus pen 100 based on the capacitance value on the touch screen 201. 10 position on the touch screen 201.
  • the uplink signal and the downlink signal may be square wave signals.
  • FIG. 3 is a schematic diagram of the hardware structure of a stylus provided by an embodiment of the present application.
  • the stylus 100 may have a processor 110 .
  • Processor 110 may include storage and processing circuitry for supporting operation of stylus 100 .
  • Storage and processing circuitry may include storage devices such as non-volatile memory (eg, flash memory or other electrically programmable read-only memory configured as a solid-state drive), volatile memory (eg, static or dynamic random access memory) wait.
  • the processing circuitry in the processor 110 may be used to control the operation of the stylus 100 .
  • the processing circuit may be based on one or more microprocessors, microcontrollers, digital signal processors, baseband processors, power management units, audio chips, application specific integrated circuits, etc.
  • the sensor may include pressure sensor 120 .
  • the pressure sensor 120 may be disposed on the writing end 11 of the stylus 100 (as shown in FIG. 2B ).
  • the pressure sensor 120 can also be provided in the pen barrel 20 of the stylus pen 100 . In this way, after one end of the pen tip 10 of the stylus pen 100 receives force, the other end of the pen tip 10 moves to apply force to the pressure sensor 120 .
  • the processor 110 can adjust the line thickness of the tip 10 of the stylus pen 100 when writing according to the pressure detected by the pressure sensor 120 .
  • Sensors may also include inertial sensors 130 .
  • Inertial sensor 130 may include a three-axis accelerometer and a three-axis gyroscope, and/or other components for measuring the motion of stylus 100 , for example, a three-axis magnetometer may be included in a nine-axis inertial sensor configuration. in the sensor.
  • Sensors may also include additional sensors such as temperature sensors, ambient light sensors, light-based proximity sensors, contact sensors, magnetic sensors, pressure sensors, and/or other sensors.
  • a status indicator 140 such as a light emitting diode and a button 150 may be included in the stylus 100 .
  • the status indicator 140 is used to prompt the user of the status of the stylus pen 100 .
  • Buttons 150 may include mechanical buttons and non-mechanical buttons, and buttons 150 may be used to collect button press information from users.
  • the stylus 100 may include one or more electrodes 160 (for details, please refer to the description in FIG. 2B ), one of the electrodes 160 may be located at the writing end of the stylus 100 , and one of the electrodes 160 may Located in the pen tip 10, please refer to the above related description.
  • Sensing circuit 170 may be included in stylus 100 . Sensing circuitry 170 may sense capacitive coupling between electrodes 160 and drive lines of the capacitive touch sensor panel that interact with stylus 100 . Sensing circuitry 170 may include an amplifier to receive capacitance readings from the capacitive touch sensor panel, a clock to generate a demodulation signal, a phase shifter to generate a phase-shifted demodulation signal, and to use an in-phase demodulation frequency. mixers to demodulate capacitance readings using quadrature demodulation frequency components, etc. The results of the mixer demodulation can be used to determine an amplitude proportional to the capacitance so that the stylus 100 can sense contact with the capacitive touch sensor panel.
  • the stylus 100 may include a microphone, a speaker, an audio generator, a vibrator, a camera, a data port, and other devices.
  • the user can control the operation of the stylus 100 and the electronic device 200 that interacts with the stylus 100 by providing commands using these devices, and receive status information and other output.
  • the processor 110 may be used to run software on the stylus 100 that controls the operation of the stylus 100 .
  • software running on processor 110 may process sensor input, button input, and input from other devices to monitor movement of stylus 100 and other user input.
  • Software running on processor 110 can detect user commands and can communicate with electronic device 200.
  • the stylus 100 may include a wireless module.
  • the wireless module is a Bluetooth module 180 as an example for illustration.
  • the wireless module can also be a WI-FI hotspot module, WI-FI point-to-point module, etc.
  • Bluetooth module 180 may include a radio frequency transceiver, such as a transceiver.
  • Bluetooth module 180 may also include one or more antennas.
  • the transceiver may utilize an antenna to transmit and/or receive wireless signals, which, based on the type of wireless module, may be Bluetooth signals, wireless LAN signals, long-range signals such as cellular phone signals, near field communication signals, or other wireless signals.
  • the stylus 100 may also include a charging module 190 , and the charging module 190 may support charging of the stylus 100 and provide power for the stylus 100 .
  • the electronic device 200 in the embodiment of the present application may be called a user equipment (UE), a terminal, etc.
  • the electronic device 200 may be a tablet computer (portable android device, PAD), a personal digital assistant (personal digital assistant, PDA), handheld devices, computing devices, vehicle-mounted devices or wearable devices with wireless communication functions, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety Wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, and other mobile terminals or fixed terminals with touch screens.
  • the terminal device there is no specific limitation on the form of the terminal device.
  • FIG. 4 is a schematic diagram of the hardware structure of an electronic device provided by an embodiment of the present application.
  • electronic device 200 may include multiple subsystems that cooperate to perform, coordinate, or monitor one or more operations or functions of electronic device 202 .
  • Electronic device 200 includes processor 210, input surface 220, coordination engine 230, power subsystem 240, power connector 250, wireless interface 260, and display 270.
  • the coordination engine 230 may be used to communicate and/or process data with other subsystems of the electronic device 200; communicate and/or transact data with the stylus 100; measure and/or obtain one or more analog or digital Output of a sensor, such as a touch sensor; measuring and/or obtaining output of one or more sensor nodes of an array of sensor nodes, such as an array of capacitive sensing nodes; receiving and locating tip signals and ring signals from the stylus 100 ; Positioning the stylus 100 etc. based on the positions of the tip signal intersection area and the ring signal intersection area.
  • Coordination engine 230 of electronic device 200 includes or is otherwise communicatively coupled to a sensor layer underlying or integrated with input surface 220 .
  • Coordination engine 230 utilizes the sensor layer to position stylus 100 on input surface 220 and estimates the angular position of stylus 100 relative to the plane of input surface 220 using techniques described herein.
  • input surface 220 may be referred to as touch screen 201.
  • the sensor layer of coordination engine 230 of electronic device 200 is a grid of capacitive sensing nodes arranged in columns and rows. More specifically, the column trace array is disposed perpendicular to the row trace array.
  • the sensor layer may be separate from other layers of the electronic device, or the sensor layer may be disposed directly on another layer such as, but not limited to: display stack layer, force sensor layer, digitizer layer, polarizer layer, battery layer , structural or decorative shell layer, etc.
  • the sensor layer can operate in multiple modes. If operating in mutual capacitance mode, the column and row traces form a single capacitive sensing node at each point of overlap (eg, "vertical" mutual capacitance). If operating in self-capacitive mode, the column and row traces form two (vertically aligned) capacitive sensing nodes at each overlap point. In another embodiment, if operating in a mutual capacitance mode, adjacent column traces and/or adjacent row traces may each form a single capacitive sensing node (eg, "horizontal" mutual capacitance).
  • the sensor layer may detect the presence of the tip 10 of the stylus 100 and/or the touch of the user's finger by monitoring changes in capacitance (eg, mutual or self-capacitance) present at each capacitive sensing node.
  • coordination engine 230 may be configured to detect tip and ring signals received from stylus 100 through the sensor layer via capacitive coupling.
  • the tip signal and/or the ring signal may include specific information and/or data that may be configured to cause the electronic device 200 to identify the stylus 100 .
  • Such information is generally referred to herein as "stylus identity" information.
  • This information and/or data may be received by the sensor layer and interpreted, decoded and/or demodulated by the coordination engine 230.
  • Processor 210 may use stylus identity information to receive input from more than one stylus simultaneously.
  • coordination engine 230 may be configured to transmit the position and/or angular position of each of the plurality of styluses detected by coordination engine 230 to processor 210 .
  • the coordination engine 230 may also transmit to the processor 210 information related to the relative positions and/or relative angular positions of the plurality of styluses detected by the coordination engine 230 .
  • the coordination engine 220 may notify the processor 210 that the detected first stylus is located at a distance from the detected second stylus.
  • the end signal and/or ring signal may also include specific information and/or data that enables electronic device 200 to identify a specific user. This type of information is generally referred to herein as "user-identifying" information.
  • Reconciliation engine 230 may forward user identity information (if detected and/or recoverable) to processor 210. If the user identity information cannot be recovered from the tip signal and/or the ring signal, the coordination engine 230 may optionally indicate to the processor 210 that the user identity information is unavailable. Processor 210 can utilize user identity information (or the absence of such information) in any suitable manner, including but not limited to: accepting or rejecting input from a particular user, allowing or denying access to specific functions of the electronic device, etc. Processor 210 may use user identity information to receive input from more than one user simultaneously.
  • the tip signal and/or ring signal may include specific information and/or data that may be configured to cause the electronic device 200 to identify settings or preferences of the user or stylus 100 .
  • This type of information is generally referred to herein as "stylus settings" information.
  • Reconciliation engine 230 may forward stylus setting information (if detected and/or recoverable) to processor 210 . If the stylus settings information cannot be recovered from the tip signal and/or the ring signal, the coordination engine 230 may optionally indicate to the processor 210 that the stylus settings information is not available.
  • the electronic device 200 can utilize the stylus setting information (or the absence of the information) in any suitable manner, including but not limited to: applying the settings to the electronic device, applying the settings to a program running on the electronic device, changing the settings by Line thickness, color, pattern presented by the graphics program of the electronic device, changing the settings of the video game operated on the electronic device, etc.
  • processor 210 may be configured to perform, coordinate, and/or manage the functions of electronic device 200 .
  • Such functionality may include, but is not limited to: communicating and/or transacting data with other subsystems of the electronic device 200 , communicating and/or transacting data with the stylus 100 , communicating data and/or transacting data via a wireless interface, via a wired
  • the interface communicates and/or transacts data, facilitates the exchange of power via a wireless (eg, inductive, resonant, etc.) or wired interface, receives position and angular position of one or more stylus, etc.
  • Processor 210 may be implemented as any electronic device capable of processing, receiving, or sending data or instructions.
  • a processor may be a microprocessor, a central processing unit, an application specific integrated circuit, a field programmable gate array, a digital signal processor, an analog circuit, a digital circuit, or a combination of these devices.
  • a processor can be a single-threaded or multi-threaded processor.
  • the processor can be a single-core or multi-core processor.
  • processor 210 may be configured to access memory in which instructions are stored.
  • the instructions may be configured to cause the processor to perform, coordinate, or monitor one or more operations or functions of electronic device 200 .
  • the instructions stored in memory may be configured to control or coordinate the operation of other components of electronic device 200, such as, but not limited to: another processor, analog or digital circuitry, volatile or non-volatile memory modules, Displays, speakers, microphones, rotary input devices, buttons or other physical input devices, biometric sensors and/or systems, force or touch input/output components, communication modules (such as wireless interfaces and/or power connectors), and/or Tactile feedback device.
  • another processor analog or digital circuitry
  • volatile or non-volatile memory modules such as, but not limited to: another processor, analog or digital circuitry, volatile or non-volatile memory modules, Displays, speakers, microphones, rotary input devices, buttons or other physical input devices, biometric sensors and/or systems, force or touch input/output components, communication modules (such as wireless interfaces and/or power connectors), and/or Tactile feedback device.
  • the memory may also store electronic data that can be used by the stylus or processor.
  • memory may store electronic data or content (such as media files, documents, and applications), device settings and preferences, timing signals and control signals, or data, data structures, or databases for various modules related to detecting tip signals and/or Or ring signal related files or configurations, etc.
  • the memory can be configured as any type of memory.
  • the memory may be implemented as random access memory, read-only memory, flash memory, removable memory, other types of storage elements, or combinations of such devices.
  • Electronic device 200 also includes power subsystem 240.
  • Power subsystem 240 may include a battery or other power source. Power subsystem 240 may be configured to provide power to electronic device 200 .
  • Power subsystem 240 may also be coupled to power connector 250 .
  • Power connector 250 may be any suitable connector or port that may be configured to receive power from an external power source and/or to provide power to an external load. For example, in some embodiments, power connector 250 may be used to recharge batteries within power subsystem 240 . In another embodiment, power connector 250 may be used to transfer power stored (or available) within power subsystem 240 to stylus 100 .
  • Electronic device 200 also includes a wireless interface 260 to facilitate electronic communication between electronic device 200 and stylus 100 .
  • electronic device 200 may be configured to communicate with stylus 100 via a low energy Bluetooth communication interface or a near field communication interface.
  • the communication interface facilitates electronic communication between electronic device 200 and external communication networks, devices, or platforms.
  • the wireless interface 260 may be implemented as one or more wireless interfaces, a Bluetooth interface, a near field communication interface, a magnetic interface, a universal serial interface Bus interface, inductive interface, resonant interface, capacitive coupling interface, Wi-Fi interface, TCP/IP interface, network communication interface, optical interface, acoustic interface or any traditional communication interface.
  • Electronic device 200 also includes display 270 .
  • Display 270 may be located behind input surface 220 or may be integrated therewith.
  • Display 270 may be communicatively coupled to processor 210 .
  • Processor 210 may use display 270 to present information to the user. In many cases, processor 210 uses display 270 to present an interface with which the user can interact. In many cases, the user manipulates the stylus 100 to interact with the interface.
  • FIG. 5 is a schematic diagram of the interaction between a stylus and an electronic device according to an embodiment of the present application.
  • the stylus includes: a microprocessing unit (micro controller unit, MCU), a first communication module, a charging module, a pressure sensor module, a transmitting module (transport, TX), and a receiving module (receive, RX).
  • the electronic device includes: a touch sensor, a touch processing module and a second communication module.
  • the following embodiments take the first communication module and the second communication module as Bluetooth modules as an example.
  • the first communication module and the second communication module can also be wireless LAN modules, WI-FI modules, etc., this application The embodiment does not limit this.
  • the stylus and the electronic device can establish a wireless channel through the first communication module and the second communication module to exchange wireless signals.
  • the touch processing module is connected to the touch sensor and the second communication module respectively.
  • An electrode array may be included in the touch sensor.
  • the touch sensor is used to collect touch data.
  • the touch data may include: data of the stylus touching the touch screen.
  • the touch processing module is used to determine the position of the tip of the stylus pen and the angle between the stylus pen and the touch screen (hereinafter referred to as the angle) based on the touch data collected by the touch sensor.
  • the touch processing module can send an uplink signal through the electrode array, and the uplink signal is used to instruct the stylus to feedback a downlink signal.
  • the touch processing module can determine the position and included angle of the tip of the stylus based on the downlink signal from the stylus.
  • the uplink signal may be a square wave signal
  • the touch processing module may be a touch IC chip (integrated circuit chip).
  • the MCU is connected to the first communication module, charging module, pressure sensor module, sending module, and receiving module respectively.
  • the MCU can be understood as the processor shown in Figure 3.
  • Charging module used to charge the stylus.
  • the pressure sensor module includes: pressure sensor and pressure data processing module.
  • the pressure sensor is connected to the pressure data processing module, and the pressure data processing module is connected to the MCU.
  • the pressure sensor can be set on the tip of the stylus, and the pressure sensor is used to detect the pressure of the tip.
  • the data processing module is used to collect pressure data from the pressure sensor and send the pressure data to the MCU.
  • the sending module includes: a first electrode, a second electrode and a sending driving circuit.
  • the first electrode and the second electrode are both connected to the sending driving circuit, and the sending driving circuit is connected to the MCU.
  • the MCU is used to generate a first pulse width modulation (PWM) signal and a second PWM signal, and send the first PWM signal and the second PWM signal to the transmitting driving circuit.
  • the sending driving circuit may drive the first electrode to send the first signal based on the first PWM signal, and drive the second electrode to send the second signal based on the second PWM signal. Both the first electrode and the second electrode can send signals, the first electrode can be called TX1 and the second electrode can be called TX2.
  • the first signal and the second signal may be called downlink signals or coding signals.
  • the downlink signal may be a square wave signal.
  • the uplink signals and downlink signals in the embodiments of this application are based on the stylus. It is conceivable that based on the electronic device, the electronic device can send downlink signals to the stylus, and the stylus can be based on Downlink signals send uplink signals to electronic devices. In the following embodiments, the stylus pen sends a downlink signal and the electronic device sends an uplink signal as an example.
  • the sending driving circuit may include: a high-voltage driving signal module and a switch tube.
  • the MCU is connected to the high-voltage drive signal module and the switch tube respectively.
  • the switch tube is connected to the second electrode, and the high-voltage driving signal is connected to the first electrode and the second electrode respectively.
  • the high-voltage drive signal module is used to provide a high-voltage drive signal, drive the first electrode to send the first signal based on the first PWM signal from the MCU, and drive the second electrode to send the second signal based on the second PWM signal from the MCU.
  • the MCU is also used to control the switch tube to realize the switching of the second electrode between sending signals and receiving signals, that is, to realize the switching of the second electrode between TX2 and RX.
  • the specific circuit of the switch tube and the control method of the MCU will not be described in detail. That is to say, the MCU can control the switch tube so that the second electrode can be used as TX2, and the second electrode used as TX2 is connected to the transmitting driving circuit, so that the second electrode can transmit the second signal.
  • the MCU can also control the switch tube so that the second electrode serves as RX, and the second electrode as RX is connected to the receiving module, so that the second electrode can receive the uplink signal from the electronic device. In other words, the second electrode can be switched between TX2 and RX under the control of the MCU.
  • the receiving module includes a decoding circuit.
  • the decoding circuit can be connected to the switch tube, and the decoding circuit is also connected to the MCU.
  • the second electrode is used to receive the uplink signal from the electronic device and send the uplink signal to the decoding circuit.
  • the decoding circuit is used to decode the uplink signal and send the decoded uplink signal to the MCU.
  • the touch sensor in the electronic device includes an electrode array.
  • an insulating material such as air, glass on the touch screen
  • the tip of the stylus The electrical connection to touch sensors in electronic devices can be established through capacitance.
  • the peak of the capacitance value in FIG. 6 represents a change in the capacitance value at the corresponding position of the touch screen 201 .
  • the electronic device 200 can determine the position of the tip of the stylus pen 100 based on the change in the capacitance value on the touch screen.
  • electronic equipment can use the dual-tip projection method in the tilt angle detection algorithm to obtain the included angle.
  • Figure 6 uses a black dot to represent the position where the stylus touches the touch screen.
  • the first electrode (TX1) and the second electrode (TX2) in the stylus pen can be disposed on the tip of the stylus pen 100.
  • the first electrode is disposed close to the tip of the pen tip, and the second electrode is far away from the first electrode.
  • the tip of the nib When the touch sensor receives the first signal from the first electrode of the stylus and the second signal from the second electrode, the capacitance values at two positions of the touch screen 201 (such as position B and position C) will change, and the electronic device 200 can obtain the included angle based on the distance between the first electrode and the second electrode and the distance between two positions on the touch screen.
  • position B and position C are represented by black dots.
  • Refresh rate of electronic equipment The number of times the screen displayed by the electronic equipment is refreshed per second.
  • the refresh rate of an electronic device may also be called the display frequency or display frame rate.
  • the refresh rate of electronic equipment can be, but is not limited to: 60Hz, 90Hz and 120HZ.
  • the refresh rate of the electronic device is 60Hz, which means that the electronic device refreshes the image displayed on the touch screen every 16.6ms (1000ms/60).
  • the electronic device sends an uplink signal at a refresh rate of 60Hz: This means that the electronic device sends an uplink signal to the stylus every 16.6ms.
  • the period of the uplink signal represents the length of time between the electronic device sending two uplink signals. If the refresh rate of the electronic device is 60Hz, the period for the electronic device to send uplink signals is 16.6ms.
  • the electronic device can sample the downlink signal from the stylus (including the TX1 transmitting electrode signal and the TX2 transmitting electrode signal), and obtain the position and angle of the stylus based on the downlink signal.
  • FIG. 8 a timing diagram of signal synchronization between an electronic device and a stylus provided by an embodiment of the present application.
  • Figure 8 shows the timing of the electronic device sending electrode signals and receiving (sampling) the electrode signals (TX1 and TX2) from the stylus. It also shows the timing of the TX1 sending electrode signal (first signal) in the stylus. Timing and timing of TX2 sending electrode signal (second signal).
  • the refresh rate of the electronic device is 60Hz, and the electronic device refreshes the screen based on 60Hz, that is, one display frame is displayed every 1/60s.
  • the electronics can send electrode signals every 1/60s.
  • the stylus When the stylus receives an uplink signal from an electronic device, it can send N electrode signals within 1/60s. Among them, TX1 can send N electrode signals in 1/60s, and TX2 can send N electrode signals in 1/60s. Correspondingly, after sending the uplink signal, the electronic device can sample the electrode signal from the stylus N times within 1/60s. The electronic device can obtain the position and angle of the tip of the stylus based on the electrode signals sampled each time.
  • a configuration file may be stored in the stylus and the electronic device, and the configuration file includes the values of a, b, c, and N.
  • a represents: the time between the stylus receiving the electrode signal from the electronic device and sending the first electrode signal.
  • b represents: the duration between two adjacent electrode signals sent by the stylus.
  • c represents: the length of time occupied by an electrode signal.
  • N represents: the number of electrode signals sent by the stylus between two adjacent electrode signals.
  • a, b, c and N can be pre-agreed, that is to say, the electronic device can determine the sampling strategy after sending the electrode signal based on the pre-configured a, b, c and N, such as within the period of an electrode signal. , according to a, b, c, sample the electrode signal N times.
  • the stylus can determine the strategy of sending electrode signals based on the preconfigured a, b, c and N. For example, after receiving the electrode signal from the electronic device, based on the refresh rate of the electronic device, according to a, b , c, send N electrode signals.
  • the electronic device samples the electrode signal from the stylus N times within the Ams of sending the electrode signal
  • the electronic device After ams after the electrode signal is sent, the electrode signal from the stylus is sampled for the first time, and then the electrode signal from the stylus is sampled every bms. A total of N electrode signals are sampled, and the duration of each sampling is cms.
  • the stylus sends N electrode signals within the period Ams of an electrode signal means: the stylus sends the first electrode signal ams after receiving the electrode signal from the electronic device. Afterwards, the electrode signal is sent every bms, and a total of N electrode signals are sent. The duration occupied by each electrode signal is cms. In this way, the electronic device can maintain signal synchronization with the stylus.
  • a, b, c are different, which can be understood as: a when the refresh rate is 60Hz is different from a when the refresh rate is 90Hz, and b when the refresh rate is 60Hz is different from a when the refresh rate is 90Hz. b is different when the refresh rate is 60Hz, and c is different when the refresh rate is 60Hz and c is when the refresh rate is 90Hz. In other words, the refresh rate is different, and the a, b, and c in the configuration file are different.
  • a stylus generally has a pressure-sensitive device. Through the contact between the tip of the front end and the screen, the force of the pen is transmitted through the tip to the pressure-sensitive device inside the pen body. The pressure-sensitive device senses the force and calculates the pressure-sensitive value. . The electronic device can draw lines of varying thickness that are coordinated with the pressure sensitivity value based on different pressure sensitivity values.
  • the stylus can transmit the pressure sensitivity level to electronic devices through the Bluetooth channel.
  • some styli may not have a Bluetooth module and cannot transmit pressure sensitivity values.
  • the pressure value can be transferred by frequency modulating the pen tip electrode.
  • the pen tip emitting electrode frequency is fa; for a pressure sensitivity level of b, the pen tip emitting electrode frequency is fb.
  • the frequency modulation device on the electronic device detects the frequency, and then the pressure sensitivity level to be transmitted by the pen can be obtained through the mapping table.
  • this requires adding an additional frequency modulation circuit on the pen end of the stylus, and adding a multi-frequency detection circuit on the electronic device end, which increases the circuit design complexity of the pen end and electronic device end.
  • the present application provides an information transmission method and device that can transmit information (for example, pressure sensitivity value) to an electronic device when the stylus does not have a Bluetooth module and does not increase the complexity of the device.
  • the electronic device can draw lines of varying thickness that are coordinated with the pressure sensitivity value based on different pressure sensitivity values.
  • FIG. 9 is a schematic flowchart of an embodiment of the information transmission method provided by the embodiment of the present application. As shown in Figure 9, the information transmission method may include:
  • the stylus obtains the pressure sensitivity value.
  • the stylus can obtain the pressure sensitivity value through the pressure-sensitive component.
  • a pressure-sensitive assembly 60 is provided on the main shaft assembly 50 . Parts of the pressure-sensitive assembly 60 are fixedly connected to the fixed structure in the pen barrel 20 . Parts of the pressure-sensitive assembly 60 are fixedly connected to the main shaft assembly 50 . .
  • the circuit board 70 detects the pressure of the writing end 11 of the pen tip 10 according to the deformation of the pressure-sensitive component 60, thereby Calculate the pressure sensitivity value.
  • the pressure detection of the pen tip 10 includes but is not limited to the above method.
  • a pressure sensor can also be provided in the writing end 11 of the pen tip 10, and the pressure sensor detects the pressure of the pen tip 10, thereby calculating the pressure sensitivity value, which is not limited in this application.
  • TX1 sends the first signal based on the refresh rate
  • TX2 sends the second signal based on the pressure sensitivity value.
  • TX1 can send N downlink signals within the cycle of an uplink signal based on the refresh rate of the electronic device.
  • the refresh rate of the electronic device is 60 Hz
  • TX1 sends the first signal based on 60 Hz. This indicates: TX1 sends N first signals to the electronic device within 16.6 ms after receiving the uplink signal from the electronic device.
  • TX2 can send M second signals within a period of an uplink signal based on the refresh rate of the electronic device, where M is related to the pressure sensitivity value.
  • the timing of the electrode signal sent by TX1 of the stylus can be used as a reference, the timing of the electrode signal of TX2 of the stylus can be changed, and the pressure sensitivity value is transmitted based on the presence or absence of the electrode signal sent by TX2.
  • the MCU in the stylus can trigger TX1 and TX2 to send electrode signals.
  • the MCU in the stylus can send the first PWM signal to the sending driving circuit according to the preset configuration file (preconfigured a, b, c and N) (that is, it can send the first PWM signal according to the preconfigured a, b, c and N determine the number and timing of the first PWM signal), and at the same time send the second PWM signal to the sending drive circuit according to the pressure sensitivity value (that is, the number and timing of the second PWM signal can be determined according to the pressure sensitivity value timing).
  • the preset configuration file preconfigured a, b, c and N
  • the sending driving circuit may drive the first electrode to send the first signal based on the first PWM signal, and drive the second electrode to send the second signal based on the second PWM signal.
  • TX1 may send N electrode signals in each period of the uplink signal based on the first PWM signal.
  • TX2 may send M electrode signals in each period of the uplink signal based on the second PWM signal.
  • the electronic device samples the electrode signals sent by TX1 and TX2 based on the refresh rate, and determines the pressure sensitivity value based on the electrode signal sent by TX2.
  • the electronic device can sample the electrode signals sent by TX1 and TX2 within a period of the uplink signal based on the refresh rate of the electronic device.
  • the refresh rate of the electronic device is 60Hz
  • the electronic device is based on 60Hz sampling of the electrode signals sent by TX1 and TX2: the electronic device samples the electrode signals sent by TX1 and TX2 within 16.6ms after sending the uplink signal to the stylus.
  • the electrode signal of TX1 exists at the first time and the electrode signal of TX2 does not exist, mark the electrode signal corresponding to the first time TX2 as 0; if the electrode signal of TX1 exists and the electrode signal of TX2 exists at the second time If the signal also exists, then the electrode signal corresponding to the second time TX2 is marked as 1. Or, if the electrode signal of TX1 exists at the first time and the electrode signal of TX2 does not exist, then the electrode signal corresponding to the first time TX2 is marked as 1; if the electrode signal of TX1 exists and the electrode signal of TX2 exists at the second time Also exists, then the electrode signal corresponding to the second time TX2 is marked as 0.
  • the electronic device can obtain a set of binary data (target encoding data) based on the identification of the electrode signal of TX2 within a period of the uplink signal.
  • the N bits or N-Q bits of the binary data can be used to characterize the pressure sensitivity value of the stylus.
  • TX1 sends the electrode signal (first signal) at time 1-time 10 respectively; TX2 only sends the electrode signal (first signal) at time 2, time 3, time 4 and time 9.
  • the electrode signal (second signal) is sent.
  • the electronic device scans based on the timing of the electrode signal sent by TX1 and determines that the pulse of TX2 at time 1 does not exist, then the flag is 0; the pulse at time 2 exists, then the flag is 1; the pulse at time 3 exists, then the flag is 1; if the pulse at time 4 exists, it will be marked as 1; if the pulse at time 5 does not exist, it will be marked as 0; if the pulse at time 6 does not exist, it will be marked as 0; if the pulse at time 7 does not exist, it will be marked as 0. It is 0; if the pulse at time 8 does not exist, it is marked as 0; when the pulse at time 9 exists, it is marked as 1; when the pulse at time 10 does not exist, it is marked as 1.
  • the electronic device can determine a set of N-bit (i.e. 10-bit) binary data 01 1100 0010 based on the presence or absence of the TX2 electrode signal at 10 times. Based on 01 1100 0010, the pressure sensitivity value can be determined to be 450.
  • N-bit i.e. 10-bit
  • the electronic device can also determine the pressure sensitivity value based on the determined partial data of the N-bit binary data.
  • the pressure sensitivity value is determined based on N-Q bit (for example, 9-bit) data.
  • the N-Q bit data can be the first N-Q bits, the last N-Q bits, or the middle N-Q bits of the N-bit binary data, which is not limited in this application.
  • the pressure sensitivity value is determined to be 194 based on the last 8 bits of binary data 01 1100 0010.
  • Q is an integer less than N and greater than 0.
  • the size of N is related to the pressure sensitivity value.
  • the pressure sensitivity value can range from 0 to 2 NQ .
  • N the number of electrode signals sent by TX1 in one cycle
  • the NQ bits of the secondary data corresponding to the electrode signals sent by TX2 in one cycle are used to indicate the pressure sensitivity value
  • up to 2 NQ pressure sensors can be represented value.
  • users can set the pressure sensitivity level of the stylus.
  • the electronic device may display the auxiliary function interface 212 .
  • a stylus option 213 may be included.
  • the auxiliary function interface 212 may also include other auxiliary functions, such as one-handed mode, quick startup and gestures, smart split screen, leather case mode, accidental touch prevention mode, etc., which are not limited in this application.
  • the electronic device may display the function setting interface 214 of the stylus.
  • the function setting interface 214 of the stylus includes a pressure sensitivity level option 215 .
  • the function setting interface 214 of the stylus may also include options such as quick settings and accidental touch prevention settings, which are not limited in this application.
  • the pressure sensitivity level can be set to 512 by default, that is, the pressure sensitivity value range includes 0-512.
  • the electronic device may display a pop-up box 216.
  • the pop-up box 216 may include values for multiple pressure sensitivity levels.
  • the electronic device may include 512, 1024 and 2048 etc.
  • the electronic device may set the pressure sensitivity level of the stylus to 1024, at which time the pressure sensitivity value range includes 0-1024.
  • the electronic device may display the function setting interface 220 of the stylus.
  • the function setting interface 220 of the stylus includes a numerical adjustment box 221 and a numerical adjustment button 222 corresponding to the pressure sensitivity level.
  • the numerical adjustment button 222 can be moved to the right to the value of 1024.
  • the electronic device can set the pressure sensitivity level of the stylus to 1024, and at this time, the pressure sensitivity value range includes 0-1024.
  • the UI interface for adjusting the pressure sensitivity value can also be in other forms (for example, in the form of a numerical selection box), which is not limited in this application.
  • the electronic device determines the line thickness based on the pressure sensitivity value.
  • the electronic device determines the thickness of the lines drawn by the user with the stylus (ie, the handwriting of the stylus) based on the pressure sensitivity value.
  • the drawn line 230 is thinner (thinner than the line 231).
  • the drawn line 230 is thinner (thinner than the line 231).
  • the drawn line 231 is thicker (thicker than the line 230), where A is smaller than B.
  • the timing of the electrode signal sent by TX1 of the stylus can be used as a reference, the timing of the electrode signal of TX2 of the stylus can be changed, and the pressure sense can be transmitted through the presence or absence of the electrode signal sent by TX2 value.
  • the pressure-sensitive value can be transferred to the electronic device without increasing the complexity of the device without a Bluetooth module on the stylus, making the transfer of pressure-sensitive value more convenient and simple.
  • FIG 16 is a schematic flowchart of another embodiment of the information transmission method provided by the embodiment of the present application. As shown in Figure 16, the information transmission method may include:
  • the stylus pen receives the user's first operation.
  • the first operation (that is, the user's operation) may include multiple types.
  • the type of the first operation may include operations on the pen body buttons (eg, single click, double click, long press, etc.), or operations on the pen body touch area (eg, tapping, sliding, etc.).
  • the first operation type may also include more types, which are not listed here.
  • the stylus may include buttons, which may include mechanical buttons and non-mechanical buttons, and the buttons may be used to collect button press information from the user (eg, single click, double click, long press, etc.).
  • the stylus may also include a touch sensor, which may be used to collect touch information (eg, taps, swipes, etc.) from the user.
  • software running on the processor can process touch sensor input, button input, and monitor user input from the stylus.
  • TX1 sends the first signal based on the refresh rate
  • TX2 sends the second signal based on the type of the first operation.
  • TX1 can send N downlink signals within the cycle of an uplink signal based on the refresh rate of the electronic device.
  • the refresh rate of the electronic device is 60 Hz
  • TX1 sends the first signal based on 60 Hz. This indicates: TX1 sends N first signals to the electronic device within 16.6 ms after receiving the uplink signal from the electronic device.
  • TX2 may send M second signals within a period of an uplink signal based on the refresh rate of the electronic device, where M is related to the type of the first operation.
  • the timing of the electrode signal sent by TX1 of the stylus can be used as a reference, the timing of the electrode signal of TX2 of the stylus can be changed, and the type of the first operation can be conveyed by the presence or absence of the electrode signal sent by TX2 .
  • the MCU in the stylus can trigger TX1 and TX2 to send electrode signals.
  • the MCU in the stylus can send the first PWM signal to the sending driving circuit according to the preset configuration file (preconfigured a, b, c and N) (that is, it can send the first PWM signal according to the preconfigured a, b, c and N determine the number and timing of the first PWM signal), and at the same time send the second PWM signal to the sending drive circuit according to the type of the first operation (that is, the second PWM signal can be determined according to the type of the first operation) number and timing).
  • the preset configuration file preconfigured a, b, c and N
  • the sending driving circuit may drive the first electrode to send the first signal based on the first PWM signal, and drive the second electrode to send the second signal based on the second PWM signal.
  • TX1 may send N electrode signals in each period of the uplink signal based on the first PWM signal.
  • TX2 may send M electrode signals in each period of the uplink signal based on the second PWM signal.
  • the electronic device samples the electrode signals sent by TX1 and TX2 based on the refresh rate, and determines the type of the first operation based on the electrode signal sent by TX2.
  • the electronic device can sample the electrode signals sent by TX1 and TX2 within a period of the uplink signal based on the refresh rate of the electronic device.
  • the refresh rate of the electronic device is 60Hz
  • the electronic device is based on 60Hz sampling of the electrode signals sent by TX1 and TX2: the electronic device samples the electrode signals sent by TX1 and TX2 within 16.6ms after sending the uplink signal to the stylus.
  • the electrode signal of TX1 exists at the first time and the electrode signal of TX2 does not exist, mark the electrode signal corresponding to the first time TX2 as 0; if the electrode signal of TX1 exists and the electrode signal of TX2 exists at the second time If the signal also exists, then the electrode signal corresponding to the second time TX2 is marked as 1. Or, if the electrode signal of TX1 exists at the first time and the electrode signal of TX2 does not exist, then the electrode signal corresponding to the first time TX2 is marked as 1; if the electrode signal of TX1 exists and the electrode signal of TX2 exists at the second time Also exists, then the electrode signal corresponding to the second time TX2 is marked as 0.
  • the electronic device can obtain a set of binary data (target encoding data) based on the identification of the electrode signal of TX2 within a period of the uplink signal.
  • the N bits or N-Q bits of the binary data can be used to characterize the type of the first operation of the stylus.
  • decimal data and binary data corresponding to the first operation type can be as shown in Table 1:
  • the stylus can include multiple buttons.
  • the stylus can include button 1 and button 2. Clicking/double-clicking/long pressing different buttons belong to different operation types and correspond to different binary/decimal data, as shown in the table 2 shown:
  • TX2 only sends electrode signals (second signals) at time 5, time 7, time 8 and time 10.
  • the electronic device scans based on the timing of the electrode signal sent by TX1 and determines that the pulse of TX2 at time 1 does not exist, then the flag is 0; the pulse at time 2 does not exist, then the flag is 0; the pulse at time 3 does not exist, then The mark is 0; if the pulse at time 4 does not exist, the mark is 0; if the pulse at time 5 exists, the mark is 1; if the pulse at time 6 does not exist, the mark is 0; if the pulse at time 7 exists, then The flag is 1; if the pulse at time 8 exists, the flag is 1; if the pulse at time 9 does not exist, the flag is 0; if the pulse at time 10 exists, the flag is 1.
  • the electronic device can determine a set of N-bit (i.e. 10-bit) binary data 0000101101 based on the presence or absence of the electrode signal of TX2 at 10 times.
  • the electronic device can store the mapping relationship as shown in Table 1 or Table 2. Then according to 0000101101 and comparing the mapping relationship shown in Table 1 or Table 2, it can be determined that the type of the first operation is sliding in the touch area.
  • the electronic device may also determine the type of the first operation based on the determined partial data of the N-bit binary data.
  • the type of the first operation is determined according to N-Q bit data.
  • the N-Q bit data can be the first N-Q bits, the last N-Q bits, or the middle N-Q bits of the N-bit binary data, which is not limited in this application.
  • the type of the first operation is determined to be click button 1 based on the last three bits of binary data 0000101101.
  • Q is an integer less than N and greater than 0.
  • the electronic device responds accordingly according to the type of the first operation.
  • the electronic device responds accordingly according to the type of the first operation. For example, when the first operation type is clicking a button, the electronic device can take a screenshot; when the first operation type is long pressing the button, the electronic device can open a notebook application; when the first operation type is sliding on the touch area, the electronic device can take a screenshot.
  • the device can switch interfaces.
  • the electronic device can perform various other responses according to the type of the first operation, which are not listed here.
  • the timing of the electrode signal sent by TX1 of the stylus can be used as a reference, the timing of the electrode signal of TX2 of the stylus can be changed, and the first signal is conveyed by the presence or absence of the electrode signal sent by TX2.
  • the type of operation In this way, the type of the first operation received by the stylus can be transferred to the electronic device without increasing the complexity of the device, so that the electronic device can respond according to the type of the first operation. This saves costs and makes information transfer between the stylus and the electronic device more convenient and simple.
  • FIG 18 is a schematic flowchart of another embodiment of the information transmission method provided by the embodiment of the present application. As shown in Figure 18, the information transmission method may include:
  • the stylus obtains the pressure sensitivity value or receives the user's first operation.
  • the process of the stylus obtaining the pressure sensitivity value may refer to the description of step 901.
  • the process of the stylus receiving the user's first operation may refer to the description of step 1601, which will not be described again here.
  • TX1 sends a first signal based on the refresh rate
  • TX2 sends a second signal based on the pressure sensitivity value or the type of the user's first operation.
  • TX1 can send N downlink signals within the cycle of an uplink signal based on the refresh rate of the electronic device.
  • the refresh rate of the electronic device is 60 Hz
  • TX1 sends the first signal based on 60 Hz. This indicates: TX1 sends N first signals to the electronic device within 16.6 ms after receiving the uplink signal from the electronic device.
  • TX2 may send M second signals within a period of an uplink signal based on the refresh rate of the electronic device, where M is related to the pressure sensitivity value or the type of the user's first operation.
  • the prefix of the binary data corresponding to the electrode signal sent by TX2 within a period of the uplink signal can be used.
  • the value of the P bit indicates the type of information indicated by the second signal. That is, it can be judged based on the value of the first P bits of the binary data corresponding to the second signal sent by TX2 in one uplink signal period whether the second signal is used to indicate the pressure sensitivity value or the user's first operation. According to the first P bits of the binary data The data after the bit determines the specific value of the pressure sensitivity value or the type of the first operation.
  • P is preset, for example, it can be 1, 2 or 3, etc. For example, if P is 2, when the current P bit value is 01, the last N-P bits of the binary data can be used to indicate the pressure sensitivity value; when the current P bit value is 10, the last N-P bits of the binary data can be used to indicate the pressure sensitivity value. Indicates the type of user's first action.
  • the electronic device samples the electrode signals sent by TX1 and TX2 based on the refresh rate, and determines the pressure sensitivity value or the type of the first operation based on the electrode signal sent by TX2.
  • the electronic device can sample the electrode signals sent by TX1 and TX2 within a period of the uplink signal based on the refresh rate of the electronic device.
  • the refresh rate of the electronic device is 60Hz
  • the electronic device is based on 60Hz sampling of the electrode signals sent by TX1 and TX2: the electronic device samples the electrode signals sent by TX1 and TX2 within 16.6ms after sending the uplink signal to the stylus.
  • the electronic device can obtain a set of binary data based on the identification of the electrode signal of TX2 within a period of the uplink signal.
  • the binary data can be used to characterize the pressure sensitivity value of the stylus or the type of the first operation.
  • the second signal sent by TX2 is used to indicate the pressure sensitivity value; when the current value of the P bit is 10, the second signal sent by TX2 is used to indicate Indicates the user's first action.
  • TX1 sent the first signal at time 1 to time 10 respectively; TX2 only sent the second signal at time 1, time 5, time 7, time 8 and time 10.
  • the electronic device scans based on the timing of the electrode signal sent by TX1, and determines that the pulse of TX2 at time 1 exists, then the flag is 1; the pulse at time 2 does not exist, then the flag is 0; the pulse at time 3 does not exist, then the flag is 0; if the pulse at time 4 does not exist, it is marked as 0; if the pulse at time 5 exists, it is marked as 1; if the pulse at time 6 does not exist, it is marked as 0; if the pulse at time 7 exists, it is marked as 0 is 1; if the pulse at time 8 exists, it is marked as 1; if the pulse at time 9 does not exist, it is marked as 0; if the pulse at time 10 exists, it is marked as 1.
  • the electronic device can determine a set of binary data 1000101101 based on the presence or absence of the electrode signal of TX2, and determine based on the first P bits (for example, the first 2 bits) of 1000101101 that the second signal sent by TX2 is used to indicate the user's first Operation, according to the value after the first 2 digits (00101101), determine the type of the first operation as sliding in the touch area.
  • the first P bits for example, the first 2 bits
  • TX1 sent the first signal at time 1 to time 10 respectively; TX2 only sent the second signal at time 2, time 3, time 4 and time 9.
  • the electronic device scans based on the timing of the electrode signal sent by TX1 and determines that the pulse of TX2 at time 1 does not exist, then the flag is 0; the pulse at time 2 exists, then the flag is 1; the pulse at time 3 exists, then the flag is 1; if the pulse at time 4 exists, it will be marked as 1; if the pulse at time 5 does not exist, it will be marked as 0; if the pulse at time 6 does not exist, it will be marked as 0; if the pulse at time 7 does not exist, it will be marked as 0.
  • the electronic device can determine a set of binary data 01 1100 0010 based on the presence or absence of the electrode signal of TX2. Based on the first P bits (for example, the first 2 bits) of 01 1100 0010, the second signal sent by TX2 can be determined for indication.
  • the pressure sensitivity value is 97 based on the value after the first 2 digits (1100 0010).
  • the electronic device determines the thickness of the line based on the pressure sensitivity value, or responds accordingly based on the type of the first operation.
  • step 1604 For the process of the electronic device responding accordingly according to the type of the first operation, please refer to the relevant description of step 1604, which will not be described again here.
  • the timing of the electrode signal sent by TX1 of the stylus can be used as a reference, the timing of the electrode signal of TX2 of the stylus can be changed, and the pressure sense can be transmitted through the presence or absence of the electrode signal sent by TX2 The value or type of the first operation.
  • the pressure sensitivity value of the stylus or the type of the first operation received by the stylus can be transferred to the electronic device without increasing the complexity of the device, so that the electronic device can Pressure value or type of first operation to respond to. In this way, the cost is more saved and the information transfer between the stylus and the electronic device is more convenient and simple.
  • the chip system includes at least one processor 2101 and at least one interface circuit 2102.
  • the processor 2101 and the interface circuit 2102 may be interconnected via wires.
  • interface circuitry 2102 may be used to receive signals from other devices (eg, memory of an electronic device).
  • interface circuit 2102 may be used to send signals to other devices (eg, processor 2101).
  • the interface circuit 2102 may read instructions stored in a memory in the electronic device and send the instructions to the processor 2101.
  • the electronic device the electronic device 200 shown in Figure 4
  • the stylus the stylus 100 shown in Figure 3
  • chip system may also include other discrete devices, which are not specifically limited in the embodiments of this application.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium includes computer instructions.
  • the computer instructions are used in an electronic device (electronic device 200 as shown in Figure 4) or a stylus (as shown in Figure 4)
  • the electronic device 200 is caused to perform each function or step performed by the electronic device in the above method embodiment
  • the stylus 100 is caused to perform each function performed by the stylus in the above method embodiment. Or steps.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product When the computer program product is run on a computer, it causes the computer to perform each function or step performed by the electronic device in the above method embodiment.
  • the embodiment of the present application also provides a processing device.
  • the processing device can be divided into different logical units or modules according to functions. Each unit or module performs different functions, so that the processing device performs the electronic processing in the above method embodiment. The individual functions or steps performed by the device or stylus.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be The combination can either be integrated into another device, or some features can be omitted, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or contribute to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the software product is stored in a storage medium , including several instructions to cause a device (which can be a microcontroller, a chip, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Near-Field Transmission Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

本申请实施例提供一种信息传输方法和装置,涉及终端领域,能够在触控笔没有蓝牙模块且不增加设备复杂度的情况下,将信息(例如,压感值)传递给电子设备。其方法包括:第一电极基于刷新率发送N个第一信号,N个第一信号对应N个发送时刻,N为大于或等于1的整数;第二电极基于触控笔检测的压感值或用户对触控笔的操作的类型发送M个第二信号,M个第二信号对应M个发送时刻,M个发送时刻与N个发送时刻中的部分或全部时刻重叠,M为小于或等于N的整数;电子设备接收第一信号和第二信号;电子设备根据N个时刻记录的第一值和/或第二值得到目标编码数据,目标编码数据用于表征压感值的大小或用户对触控笔的操作的类型。

Description

一种信息传输方法和装置
本申请要求于2022年01月11日提交国家知识产权局、申请号为202210028942.5、发明名称为“一种信息传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端领域,尤其涉及一种信息传输方法和装置。
背景技术
触控笔(手写笔)是平板、手机、便携电脑等电子设备的常用配件。配合触控笔,用户可以更加简便地在电子设备输入。针对绘画、制图等场景,触控笔可以提供类似真笔的体验。触控笔一般都有压感器件,通过前端的笔尖和屏幕的接触,笔的受力通过笔尖传到笔身内部的压感器件,压感器件感应受力计算出压感值。电子设备可以根据不同的压感值绘制出与压感值协调的粗细变化的线条。
在一种可能的设计中,触控笔可以通过蓝牙通道将压感等级传输到电子设备。但是,一些触控笔可能没有蓝牙模块,则无法传递压感值。在另一种可能的设计中,可以通过对笔尖电极进行调频进行压感值传递。例如,对为a的压感等级,笔尖发射电极频率为fa,对为b的压感等级,笔尖发射电极频率为fb。在电子设备端的调频器件对频率进行检测,然后通过映射表就能获取到笔端要传递的压感等级。但是,这样需要在触控笔的笔端增加额外的调频电路,且在电子设备端需要增加多频检测电路,增加了笔端和电子设备端的电路设计复杂度。
发明内容
本申请提供一种信息传输方法和装置,能够在触控笔没有蓝牙模块且不增加设备复杂度的情况下,将信息(例如,压感值)传递给电子设备。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种信息传输方法,应用于触控笔和电子设备组成的系统,触控笔包括第一电极和第二电极,方法包括:第一电极基于刷新率发送N个第一信号,N个第一信号对应N个发送时刻,N为大于或等于1的整数;第二电极基于触控笔检测的压感值或用户对触控笔的操作的类型发送M个第二信号,M个第二信号对应M个发送时刻,M个发送时刻与N个发送时刻中的部分或全部时刻重叠,M为小于或等于N的整数;电子设备接收第一信号和第二信号;若在第一时刻,电子设备确定第一信号存在而第二信号不存在,记录第一值;若在第二时刻,电子设备确定第一信号存在且第二信号也存在,记录第二值;其中,第一时刻或第二时刻是N个时刻中的任意时刻;电子设备根据N个时刻记录的第一值和/或第二值得到目标编码数据,目标编码数据用于表征压感值的大小或用户对触控笔的操作的类型。
基于本申请实施例提供的方法,第一电极基于刷新率发送N个第一信号,第二电极基于触控笔检测的压感值或用户对触控笔的操作的类型发送M个第二信号,N个第一信号对应N个发送时刻,M个第二信号对应M个发送时刻,且M个发送时刻与N 个发送时刻中的部分或全部时刻重叠。即可以将触控笔的TX1发送的电极信号的时序作为基准,改变触控笔的TX2的电极信号的时序,通过TX2发送的电极信号的有无来传递压感值或用户对触控笔的操作的类型。若在第一时刻,电子设备确定第一信号存在而第二信号不存在,记录第一值;若在第二时刻,电子设备确定第一信号存在且第二信号也存在,记录第二值;其中,第一时刻或第二时刻是N个时刻中的任意时刻;电子设备根据N个时刻记录的第一值和/或第二值得到目标编码数据,根据目标编码数据确定压感值的大小或用户对触控笔的操作的类型。这样,可以在触控笔没有蓝牙模块且不增加设备复杂度的情况下,将压感值传递给电子设备,使得压感值的传递更加方便和简单。
在一种可能的设计中,目标编码数据包括N个时刻的全部时刻记录的第一值和/或第二值;或者目标编码数据包括N个时刻的部分时刻记录的第一值和/或第二值。
在一种可能的设计中,第一值为0,第二值为1;或者第一值为1,第二值为0。例如,若在第一时刻TX1(第一电极)的电极信号(第一信号)存在而TX2(第二电极)的电极信号(第二信号)不存在,则将该第一时刻TX2对应的电极信号标识为0;若在第二时刻TX1的电极信号存在且TX2的电极信号也存在,则将该第二时刻TX2对应的电极信号标识为1。或者,若在第一时刻TX1的电极信号存在而TX2的电极信号不存在,则将该第一时刻TX2对应的电极信号标识为1;若在第二时刻TX1的电极信号存在且TX2的电极信号也存在,则将该第二时刻TX2对应的电极信号标识为0。
在一种可能的设计中,目标编码数据为二进制数据,二进制数据包括N位或N-Q位,Q为小于N且大于0的整数。例如,若N为10,二进制数据可以为10位或小于10位。
在一种可能的设计中,压感值的取值范围为0~2 N或者0~2 N-Q。例如,若N=10,压感值的取值范围最大可以为0~2 10=1024。若N=11,压感值的取值范围最大可以为0~2 11=2048。
在一种可能的设计中,当二进制数据的前P位的取值是第一预设取值时,二进制数据的后N-P位用于指示压感值,P为大于或等于1的整数;当二进制数据的前P位的取值是第二预设取值时,二进制数据的后N-P位用于指示用户的操作的类型。其中,P是预设的,例如可以为1、2或3等。例如,若P为2,当前P位的取值是01时,二进制数据的后N-P位用于指示压感值;当前P位的取值是10时,二进制数据的后N-P位用于指示用户的操作的类型。
在一种可能的设计中,当二进制数据的后P位的取值是第一预设取值时,二进制数据的前N-P位用于指示压感值,P为大于或等于1的整数;当二进制数据的后P位的取值是第二预设取值时,二进制数据的前N-P位用于指示用户的操作的类型。例如,若P为2,当后P位的取值是01时,二进制数据的前N-P位用于指示压感值;当前P位的取值是10时,二进制数据的前N-P用于指示用户的操作的类型。
在一种可能的设计中,用户对触控笔的操作的类型包括对触控笔的按钮或触控区域的操作,对触控笔的按钮或触控区域的操作包括单击、双击、长按或滑动。
在一种可能的设计中,目标编码数据用于表征压感值的大小时,方法还包括:电子设备根据压感值确定触控笔的绘制的线条的粗细程度;压感值越大,线条越粗;压 感值越小,线条越细。
在一种可能的设计中,目标编码数据用于表征用户对触控笔的操作的类型时,方法还包括:当操作的类型为单击按钮时,电子设备截图;当操作的类型为长按按钮时,电子设备打开笔记本应用;当操作的类型为在触控区域滑动时,电子设备切换界面。
在一种可能的设计中,方法还包括:响应于用户在电子设备的设置界面选中辅助功能选项的操作,电子设备显示辅助功能界面,辅助功能界面包括手写笔选项;响应于用户选中手写笔选项的操作,电子设备显示手写笔的功能设置界面,手写笔的功能设置界面中包括压感等级选项;响应于用户对压感等级选项的操作,电子设备显示弹框,弹框包括多个压感等级的取值;响应于用户从多个压感等级的取值中选中第一取值的操作,电子设备根据第一取值设置触控笔的压感等级。这样,用户可以手动设置触控笔的压感等级。
在一种可能的设计中,响应于用户在电子设备的设置界面选中辅助功能选项的操作,电子设备显示辅助功能界面,辅助功能界面包括手写笔选项;响应于用户选中手写笔选项的操作,电子设备显示手写笔的功能设置界面,手写笔的功能设置界面中包括压感等级对应的数值调节框以及数值调节钮;响应于用户通过数值调节钮将数值调节框调整为第一取值的操作,电子设备根据第一取值设置触控笔的压感等级。这样,用户可以手动设置触控笔的压感等级。
第二方面,提供了一种信息传输方法,应用于触控笔,触控笔包括第一电极和第二电极,方法包括:第一电极基于刷新率向电子设备发送N个第一信号,N个第一信号对应N个发送时刻;N为大于或等于1的整数;第二电极基于触控笔检测的压感值或用户对触控笔的操作的类型发送M个第二信号,M个第二信号对应M个发送时刻,M个发送时刻与N个发送时刻中的部分或全部时刻重叠,M为小于或等于N的整数;其中,N个时刻中的第一时刻对应第一值,在第一时刻,第一信号存在而第二信号不存在;N个时刻中的第二时刻对应第二值,在第二时刻,第一信号存在且第二信号存在;N个时刻对应的第一值和/或第二值用于构建目标编码数据,目标编码数据用于表征压感值的大小或用户对触控笔的操作的类型。
基于本申请实施例提供的方法,第一电极基于刷新率发送N个第一信号,第二电极基于触控笔检测的压感值或用户对触控笔的操作的类型发送M个第二信号,N个第一信号对应N个发送时刻,M个第二信号对应M个发送时刻,且M个发送时刻与N个发送时刻中的部分或全部时刻重叠。即可以将触控笔的TX1发送的电极信号的时序作为基准,改变触控笔的TX2的电极信号的时序,通过TX2发送的电极信号的有无来传递压感值或用户对触控笔的操作的类型。这样,可以在触控笔没有蓝牙模块且不增加设备复杂度的情况下,将压感值传递给电子设备,使得压感值的传递更加方便和简单。
在一种可能的设计中,目标编码数据包括N个时刻的全部时刻对应的第一值和/或第二值;或者目标编码数据包括N个时刻的部分时刻对应的第一值和/或第二值。
在一种可能的设计中,第一值为0,第二值为1;或者第一值为1,第二值为0。
在一种可能的设计中,目标编码数据为二进制数据,二进制数据包括N位或N-Q位,Q为小于N且大于0的整数。
在一种可能的设计中,压感值的取值范围为0~2 N或者0~2 N-Q
在一种可能的设计中,当二进制数据的前P位的取值是第一预设取值时,二进制数据的后N-P位用于指示压感值,P为大于或等于1的整数;当二进制数据的前P位的取值是第二预设取值时,二进制数据的后N-P位用于指示用户的操作的类型。
在一种可能的设计中,当二进制数据的后P位的取值是第一预设取值时,二进制数据的前N-P位用于指示压感值,P为大于或等于1的整数;当二进制数据的后P位的取值是第二预设取值时,二进制数据的前N-P位用于指示用户的操作的类型。
在一种可能的设计中,用户对触控笔的操作的类型包括对触控笔的按钮或触控区域的操作,对触控笔的按钮或触控区域的操作包括单击、双击、长按或滑动。
第三方面,提供了一种信息传输方法,应用于电子设备,方法包括:电子设备接收来自触控笔的第一电极的N个第一信号和来自触控笔的第二电极的M个第二信号;N为大于或等于1的整数,M为小于或等于N的整数;若在第一时刻,电子设备确定第一信号存在而第二信号不存在,记录第一值;若在第二时刻,电子设备确定第一信号存在且第二信号也存在,记录第二值;其中,第一时刻或第二时刻是N个时刻中的任意时刻;电子设备根据N个时刻记录的第一值和/或第二值得到目标编码数据,目标编码数据用于表征压感值的大小或用户对触控笔的操作的类型。
基于本申请实施例提供的方法,电子设备接收来自触控笔的第一电极的N个第一信号和来自触控笔的第二电极的M个第二信号。若在第一时刻,电子设备确定第一信号存在而第二信号不存在,记录第一值;若在第二时刻,电子设备确定第一信号存在且第二信号也存在,记录第二值;其中,第一时刻或第二时刻是N个时刻中的任意时刻;电子设备根据N个时刻记录的第一值和/或第二值得到目标编码数据,根据目标编码数据确定压感值的大小或用户对触控笔的操作的类型。这样,可以在触控笔没有蓝牙模块且不增加设备复杂度的情况下,将压感值传递给电子设备,使得压感值的传递更加方便和简单。
在一种可能的设计中,目标编码数据包括N个时刻的全部时刻记录的第一值和/或第二值;或者目标编码数据包括N个时刻的部分时刻记录的第一值和/或第二值。
在一种可能的设计中,第一值为0,第二值为1;或者第一值为1,第二值为0。
在一种可能的设计中,目标编码数据为二进制数据,二进制数据包括N位或N-Q位,Q为小于N且大于0的整数。
在一种可能的设计中,压感值的取值范围为0~2 N或者0~2 N-Q
在一种可能的设计中,当二进制数据的前P位的取值是第一预设取值时,二进制数据的后N-P位用于指示压感值,P为大于或等于1的整数;当二进制数据的前P位的取值是第二预设取值时,二进制数据的后N-P位用于指示用户的操作的类型。
在一种可能的设计中,当二进制数据的后P位的取值是第一预设取值时,二进制数据的前N-P位用于指示压感值,P为大于或等于1的整数;当二进制数据的后P位的取值是第二预设取值时,二进制数据的前N-P位用于指示用户的操作的类型。
在一种可能的设计中,用户对触控笔的操作的类型包括对触控笔的按钮或触控区域的操作,对触控笔的按钮或触控区域的操作包括单击、双击、长按或滑动。
在一种可能的设计中,目标编码数据用于表征压感值的大小时,方法还包括:电 子设备根据压感值确定触控笔的绘制的线条的粗细程度;压感值越大,线条越粗;压感值越小,线条越细。
在一种可能的设计中,目标编码数据用于表征用户对触控笔的操作的类型时,方法还包括:当操作的类型为单击按钮时,电子设备截图;当操作的类型为长按按钮时,电子设备打开笔记本应用;当操作的类型为在触控区域滑动时,电子设备切换界面。
在一种可能的设计中,方法还包括:响应于用户在电子设备的设置界面选中辅助功能选项的操作,电子设备显示辅助功能界面,辅助功能界面包括手写笔选项;响应于用户选中手写笔选项的操作,电子设备显示手写笔的功能设置界面,手写笔的功能设置界面中包括压感等级选项;响应于用户对压感等级选项的操作,电子设备显示弹框,弹框包括多个压感等级的取值;响应于用户从多个压感等级的取值中选中第一取值的操作,电子设备根据第一取值设置触控笔的压感等级。
在一种可能的设计中,响应于用户在电子设备的设置界面选中辅助功能选项的操作,电子设备显示辅助功能界面,辅助功能界面包括手写笔选项;响应于用户选中手写笔选项的操作,电子设备显示手写笔的功能设置界面,手写笔的功能设置界面中包括压感等级对应的数值调节框以及数值调节钮;响应于用户通过数值调节钮将数值调节框调整为第一取值的操作,电子设备根据第一取值设置触控笔的压感等级。
第四方面,本申请实施例提供一种触控笔,包括:处理器和存储器;所述存储器存储计算机执行指令;所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第二方面所述的方法。
第五方面,本申请实施例提供一种电子设备,包括:处理器和存储器;所述存储器存储计算机执行指令;所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第三方面所述的方法。
第六方面,本申请实施例提供一种信号同步系统,包括如上第四方面所述的触控笔,以及如上第五方面所述的电子设备。
第七方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面或第三方面的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第三方面的方法。
上述第二方面至第八方面的各可能的实现方式,其有益效果可以参见上述第一方面和第一方面的各可能的实现方式所带来的有益效果,在此不加赘述。
基于本申请实施例提供的方法,第一电极基于刷新率发送N个第一信号,第二电极基于触控笔检测的压感值或用户对触控笔的操作的类型发送M个第二信号,N个第一信号对应N个发送时刻,M个第二信号对应M个发送时刻,且M个发送时刻与N个发送时刻中的部分或全部时刻重叠。即可以将触控笔的TX1发送的电极信号的时序作为基准,改变触控笔的TX2的电极信号的时序,通过TX2发送的电极信号的有无来传递压感值或用户对触控笔的操作的类型。若在第一时刻,电子设备确定第一信号存在而第二信号不存在,记录第一值;若在第二时刻,电子设备确定第一信号存在且第二信号也存在,记录第二值;其中,第一时刻或第二时刻是N个时刻中的任意时刻; 电子设备根据N个时刻记录的第一值和/或第二值得到目标编码数据,根据目标编码数据确定压感值的大小或用户对触控笔的操作的类型。这样,可以在触控笔没有蓝牙模块且不增加设备复杂度的情况下,将压感值传递给电子设备,使得压感值的传递更加方便和简单。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2A为本申请实施例提供的一种触控笔的结构示意图;
图2B为本申请实施例提供的又一种触控笔的结构示意图;
图3为本申请实施例提供的又一种触控笔的结构示意图;
图4为本申请实施例提供的一种电子设备的结构示意图;
图5为本申请实施例提供的一种触控笔的功能模块示意图;
图6为本申请实施例提供的一种触摸屏的电容值发生变化的示意图;
图7为本申请实施例提供的又一种触摸屏的电容值发生变化的示意图;
图8为本申请实施例提供的一种信号同步示意图;
图9为本申请实施例提供的一种信号交互示意图;
图10为本申请实施例提供的一种信号发射时序示意图;
图11为本申请实施例提供的一种显示示意图;
图12为本申请实施例提供的又一种显示示意图;
图13为本申请实施例提供的又一种显示示意图;
图14为本申请实施例提供的又一种显示示意图;
图15为本申请实施例提供的又一种显示示意图;
图16为本申请实施例提供的又一种信号交互示意图;
图17为本申请实施例提供的又一种信号发射时序示意图;
图18为本申请实施例提供的又一种信号交互示意图;
图19为本申请实施例提供的一种信号发射时序示意图;
图20为本申请实施例提供的一种信号发射时序示意图;
图21为本申请实施例提供的一种芯片系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执 行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
图1为本申请实施例适用的一种场景示意图。参照图1,该场景中包括触控笔(stylus)100和电子设备200。图1中以电子设备200为平板电脑(tablet)为例进行说明。触控笔100可以向电子设备200提供输入,电子设备200基于触控笔100的输入,执行响应于该输入的操作。在一种实施例中,触控笔100和电子设备200之间,可以通过通信网络进行互联,以实现无线信号的交互。该通信网络包括但不限于为:WI-FI热点网络、WI-FI点对点(peer-to-peer,P2P)网络、蓝牙网络、zigbee网络或近场通信(near field communication,NFC)网络等近距离通信网络。
其中,触控笔100可以为电容笔,电容笔可以包括:无源电容笔和有源电容笔。无源电容笔可以称为被动式电容笔,有源电容笔可以称为主动式电容笔。主动式电容笔中(例如笔尖内)可以设置一个或多个电极,主动式电容笔可以通过电极发射信号。如图1所示,电子设备200具有触控屏201。触控屏201上集成电极阵列。在一种实施例中,电极阵列可以为电容式电极阵列。触控笔100为主动式电容笔时,电子设备200通过电极阵列可以接收来自主动式电容笔的信号,进而在接收到该信号时,基于触控屏201上的电容值的变化识别主动式电容笔在触控屏上的位置,以及主动式电容笔的倾角。
图2A为本申请实施例提供的触控笔的结构示意图。参照图2A所示,触控笔100可以包括笔尖10、笔杆20和后盖30。笔杆20的内部为中空结构,笔尖10和后盖30分别位于笔杆20的两端,后盖30与笔杆20之间可以通过插接或者卡合方式,笔尖10与笔杆20之间的配合关系详见图2B的描述。
图2B为本申请实施例提供的触控笔的部分拆分结构示意图。参照图2B所示,触控笔100还包括主轴组件50,主轴组件50位于笔杆20内,且主轴组件50在笔杆20内可滑动设置。主轴组件50上具有外螺纹51,笔尖10包括书写端11和连接端12,其中,笔尖10的连接端12具有与外螺纹51配合的内螺纹(未示出)。
当主轴组件50装配到笔杆20内时,笔尖10的连接端12伸入笔杆20内且与主轴组件50的外螺纹51螺纹连接。在一些其他示例中,笔尖10的连接端12与主轴组件50之间还可以通过卡合等可拆卸方式实现连接。通过笔尖10的连接端12与主轴组件50之间可拆卸相连,这样实现了对笔尖10的更换。
其中,为了对笔尖10的书写端11受到的压力进行检测,参照图2A所示,笔尖10与笔杆20之间具有间隙10a,这样可以确保笔尖10的书写端11受到外力时,笔尖10可以朝向笔杆20移动,笔尖10的移动会带动主轴组件50在笔杆20内移动。而对外力的检测,参照图2B所示,在主轴组件50上设有压感组件60,压感组件60的部分与笔杆20内的固定结构固定相连,压感组件60的部分与主轴组件50固定相连。这样,主轴组件50随着笔尖10移动时,由于压感组件60的部分与笔杆20内的固定结构固定相连,所以主轴组件50的移动会驱动压感组件60形变,压感组件60的形变传 递给电路板70(例如,压感组件60与电路板70之间可以通过导线或者柔性电路板实现电连接),电路板70根据压感组件60形变检测出笔尖10的书写端11的压力。
需要说明的是,笔尖10的压力检测包括但不限于上述方法。例如,还可以通过在笔尖10的书写端11内设置压力传感器,由压力传感器检测笔尖10的压力。
本实施例中,参照图2B所示,触控笔100还包括多个电极,多个电极例如可以为第一发射电极41、接地电极43和第二发射电极42。第一发射电极41、接地电极43和第二发射电极42均与电路板70电连接。第一发射电极41可以位于笔尖10内且靠近书写端11,电路板70可以被配置为可以分别向第一发射电极41和第二发射电极42提供信号的控制板,第一发射电极41用于发射电极信号(第一信号),当第一发射电极41靠近电子设备200的触控屏201时,第一发射电极41与电子设备200的触控屏201之间可以形成耦合电容,这样电子设备200可以接收到第一信号。其中,第二发射电极42用于发射电极信号(第二信号),电子设备200根据接收到的第二信号可以判断触控笔100的倾斜角度。本申请实施例中,第二发射电极42可以位于笔杆20的内壁上。在一种示例中,第二发射电极42也可以位于主轴组件50上。
接地电极43可以位于第一发射电极41和第二发射电极42之间,或者,接地电极43可以位于第一发射电极41和第二发射电极42的外周围,接地电极43用于降低第一发射电极41和第二发射电极42相互之间的耦合。
当电子设备200接收来自触控笔100的第一信号时,触控屏201对应位置处的电容值会发生变化。据此,电子设备200可以基于触控屏201上的电容值的变化,确定触控笔100(或触控笔100的笔尖)在触控屏201上的位置。另外,电子设备200可以采用倾角检测算法中的双笔尖投影方法获取触控笔100的倾斜角度。其中,第一发射电极41和第二发射电极42在触控笔100中的位置不同,因此当电子设备200接收来自触控笔100的第一信号和第二信号时,触控屏201上两个位置处的电容值会发生变化。电子设备200可以根据第一发射电极41和第二发射电极42之间的距离,以及触控屏201上电容值发生变化的两个位置处之间的距离,获取触控笔100的倾斜角度,更为详细的获取触控笔100的倾斜角度可以参照现有技术中双笔尖投影方法的相关描述。
本申请实施例中,参照图2B所示,触控笔100还包括:电池组件80,电池组件80用于向电路板70提供电源。其中,电池组件80可以包括锂离子电池,或者,电池组件80可以包括镍铬电池、碱性电池或镍氢电池等。在一种实施例中,电池组件80包括的电池可以为可充电电池或一次性电池,其中,当电池组件80包括的电池为可充电电池时,触控笔100可以通过无线充电方式对电池组件80中的电池进行充电。
其中,触控笔100为主动式电容笔时,电子设备200和触控笔100无线连接后,电子设备200可以通过触控屏201上集成的电极阵列向触控笔100发送电极信号(上行信号)。触控笔100可以通过接收电极接收该上行信号,且触控笔100通过发射电极(例如第一发射电极41和第二发射电极42)发射下行信号。下行信号包括上述的第一信号和第二信号。当触控笔100的笔尖10接触触控屏201时,触控屏201对应位置处的电容值会发生变化,电子设备200可以基于触控屏201上的电容值,确定触控笔100的笔尖10在触控屏201上的位置。在一种实施例中,上行信号和下行信号可以 为方波信号。
图3为本申请实施例提供的一种触控笔的硬件结构示意图。参照图3所示,触控笔100可以具有处理器110。处理器110可以包括用于支持触控笔100的操作的存储和处理电路。存储和处理电路可以包括诸如非易失性存储器的存储装置(例如,闪存存储器或构造为固态驱动器的其它电可编程只读存储器)、易失性存储器(例如,静态或动态随机存取存储器)等。处理器110中的处理电路可以用来控制触控笔100的操作。处理电路可以基于一个或多个微处理器、微控制器、数字信号处理器、基带处理器、电源管理单元、音频芯片、专用集成电路等。
触控笔100中可以包括一个或多个传感器。例如,传感器可以包括压力传感器120。压力传感器120可以设置在触控笔100的书写端11(如图2B所示)。当然,压力传感器120还可以设在触控笔100的笔杆20内,这样,触控笔100的笔尖10一端受力后,笔尖10的另一端移动将力作用到压力传感器120。在一种实施例中,处理器110根据压力传感器120检测到的压力大小可以调整触控笔100的笔尖10书写时的线条粗细。
传感器也可以包括惯性传感器130。惯性传感器130可以包括三轴加速计和三轴陀螺仪,和/或,用于测量触控笔100的运动的其它部件,例如,三-轴磁力计可以以九-轴惯性传感器的构造被包括在传感器中。传感器也可以包括附加的传感器,诸如温度传感器、环境光传感器、基于光的接近传感器、接触传感器、磁传感器、压力传感器和/或其它传感器。
触控笔100中可以包括如发光二极管的状态指示器140和按钮150。状态指示器140用于向用户提示触控笔100的状态。按钮150可以包括机械按钮和非机械按钮,按钮150可以用于从用户收集按钮按压信息。
本申请实施例中,触控笔100中可以包括一个或多个电极160(具体可以参照图2B中的描述),其中一个电极160可以位于触控笔100的书写端处,其中一个电极160可以位于笔尖10内,可以参照上述的相关描述。
触控笔100中可以包括感测电路170。感测电路170可感测位于电极160和与触控笔100交互的电容触摸传感器面板的驱动线之间的电容耦合。感测电路170可以包括用以接收来自电容触摸传感器面板的电容读数的放大器、用以生成解调信号的时钟、用以生成相移的解调信号的相移器、用以使用同相解调频率分量来解调电容读数的混频器、以及用以使用正交解调频率分量来解调电容读数的混频器等。混频器解调的结果可用于确定与电容成比例的振幅,使得触控笔100可以感测到与电容触摸传感器面板的接触。
可以理解的是,根据实际需求,在触控笔100可以包括麦克风、扬声器、音频发生器、振动器、相机、数据端口以及其它设备。用户可以通过利用这些设备提供命令来控制触控笔100和与触控笔100交互的电子设备200的操作,并且接收状态信息和其它输出。
处理器110可以用于运行触控笔100上的控制触控笔100的操作的软件。触控笔100的操作过程中,运行在处理器110上的软件可以处理传感器输入、按钮输入和来自其它装置的输入以监视触控笔100的移动和其它用户输入。在处理器110上运行的 软件可以检测用户命令并且可以与电子设备200通信。
为了支持触控笔100与电子设备200的无线通信,触控笔100可以包括无线模块。图3中以无线模块为蓝牙模块180为例进行说明。无线模块还可以为WI-FI热点模块、WI-FI点对点模块等。蓝牙模块180可以包括射频收发器,例如收发器。蓝牙模块180也可以包括一个或多个天线。收发器可以利用天线发射和/或接收无线信号,无线信号基于无线模块的类型,可以是蓝牙信号、无线局域网信号、诸如蜂窝电话信号的远程信号、近场通信信号或其它无线信号。
触控笔100还可以包括充电模块190,充电模块190可以支持触控笔100的充电,为触控笔100提供电力。
应理解,本申请实施例中的电子设备200可以称为用户设备(user equipment,UE)、终端(terminal)等,例如,电子设备200可以为平板电脑(portable android device,PAD)、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等具有触控屏的移动终端或固定终端。本申请实施例中对终端设备的形态不做具体限定。
图4为本申请实施例提供的一种电子设备的硬件结构示意图。参照图4,电子设备200可以包括多个子系统,这些子系统协作以执行、协调或监控电子设备202的一个或多个操作或功能。电子设备200包括处理器210、输入表面220、协调引擎230、电源子系统240、电源连接器250、无线接口260和显示器270。
示例性的,协调引擎230可以用于与电子设备200的其他子系统进行通信和/或处理数据;与触控笔100通信和/或交易数据;测量和/或获得一个或多个模拟或数字传感器(诸如触摸传感器)的输出;测量和/或获得传感器节点阵列(诸如电容感测节点的阵列)的一个或多个传感器节点的输出;接收和定位来自触控笔100的尖端信号和环信号;基于尖端信号交叉区域和环形信号交叉区域的位置来定位触控笔100等。
电子设备200的协调引擎230包括或以其他方式可通信地耦接至位于输入表面220下方或与该输入表面集成一体的传感器层。协调引擎230利用传感器层对输入表面220上的触控笔100进行定位,并使用本文所述的技术来估计触控笔100相对于输入表面220的平面的角位置。在一种实施例中,输入表面220可以称为触控屏201。
例如,电子设备200的协调引擎230的传感器层是布置为列和行的电容感测节点网格。更具体地说,列迹线阵列被设置成垂直于行迹线阵列。传感器层可以与电子设备的其他层分开,或者传感器层可以直接设置在另一个层上,其他层诸如但不限于:显示器叠堆层、力传感器层、数字转换器层、偏光器层、电池层、结构性或装饰性外壳层等。
传感器层能够以多种模式操作。如果以互电容模式操作,则列迹线和行迹线在每个重叠点(例如,“垂直”互电容)处形成单个电容感测节点。如果以自电容模式操作,则 列迹线和行迹线在每个重叠点处形成两个(垂直对齐的)电容感测节点。在另一个实施方案中,如果以互电容模式操作,则相邻的列迹线和/或相邻的行迹线可各自形成单个电容感测节点(例如,“水平”互电容)。如上所述,传感器层可以通过监测在每个电容感测节点处呈现的电容(例如,互电容或自电容)变化来检测触控笔100的笔尖10的存在和/或用户手指的触摸。在许多情况下,协调引擎230可被配置为经由电容耦合来检测通过传感器层从触控笔100接收的尖端信号及环信号。
其中,尖端信号和/或环信号可以包括可被配置为令电子设备200识别触控笔100的特定信息和/或数据。此类信息在本文通常被称为“触笔身份”信息。该信息和/或数据可以由传感器层接收,并由协调引擎230解译、解码和/或解调。
处理器210可以使用触笔身份信息来同时接收来自一支以上的触笔的输入。具体地,协调引擎230可被配置为将由协调引擎230检测到的若干触笔中的每个触笔的位置和/或角位置传输给处理器210。在其他情况下,协调引擎230还可以向处理器210传输与由协调引擎230检测到的多个触笔的相对位置和/或相对角位置有关的信息。例如,协调引擎220可以通知处理器210所检测的第一触控笔位于距离所检测的第二触控笔的位置。
在其他情况下,端信号和/或环信号还可以包括用于令电子设备200识别特定用户的特定信息和/或数据。此类信息在本文通常被称为“用户身份”信息。
协调引擎230可以将用户身份信息(如果检测到和/或可复原的话)转发到处理器210。如果用户身份信息不能从尖端信号和/或环信号中复原,则协调引擎230可以可选地向处理器210指示用户身份信息不可用。处理器210能够以任何合适的方式利用用户身份信息(或不存在该信息的情况),包括但不限于:接受或拒绝来自特定用户的输入,允许或拒绝访问电子设备的特定功能等。处理器210可以使用用户身份信息来同时接收来自一个以上的用户的输入。
在另外的其他情况下,尖端信号和/或环信号可以包括可被配置为令电子设备200识别用户或触控笔100的设置或偏好的特定信息和/或数据。此类信息在本文通常被称为“触笔设置”信息。
协调引擎230可以将触笔设置信息(如果检测到和/或可复原的话)转发到处理器210。如果触笔设置信息不能从尖端信号和/或环信号中复原,则协调引擎230可以可选地向处理器210指示触笔设置信息不可用。电子设备200能够以任何合适的方式利用触笔设置信息(或不存在该信息的情况),包括但不限于:将设置应用于电子设备,将设置应用于在电子设备上运行的程序,改变由电子设备的图形程序所呈现的线条粗细、颜色、图案,改变在电子设备上操作的视频游戏的设置等。
一般而言,处理器210可被配置为执行、协调和/或管理电子设备200的功能。此类功能可以包括但不限于:与电子设备200的其他子系统通信和/或交易数据,与触控笔100通信和/或交易数据,通过无线接口进行数据通信和/或交易数据,通过有线接口进行数据通信和/或交易数据,促进通过无线(例如,电感式、谐振式等)或有线接口进行电力交换,接收一个或多个触笔的位置和角位置等。
处理器210可被实现为能够处理、接收或发送数据或指令的任何电子设备。例如,处理器可以是微处理器、中央处理单元、专用集成电路、现场可编程门阵列、数字信 号处理器、模拟电路、数字电路或这些设备的组合。处理器可以是单线程或多线程处理器。处理器可以是单核或多核处理器。
在使用期间,处理器210可被配置为访问存储有指令的存储器。该指令可被配置为使处理器执行、协调或监视电子设备200的一个或多个操作或功能。
存储在存储器中的指令可被配置为控制或协调电子设备200的其他部件的操作,该部件诸如但不限于:另一处理器、模拟或数字电路、易失性或非易失性存储器模块、显示器、扬声器、麦克风、旋转输入设备、按钮或其他物理输入设备、生物认证传感器和/或系统、力或触摸输入/输出部件、通信模块(诸如无线接口和/或电源连接器),和/或触觉反馈设备。
存储器还可存储可由触笔或处理器使用的电子数据。例如,存储器可以存储电子数据或内容(诸如媒体文件、文档和应用程序)、设备设置和偏好、定时信号和控制信号或者用于各种模块的数据、数据结构或者数据库,与检测尖端信号和/或环信号相关的文件或者配置等等。存储器可被配置为任何类型的存储器。例如,存储器可被实现作为随机存取存储器、只读存储器、闪存存储器、可移动存储器、其他类型的存储元件或此类设备的组合。
电子设备200还包括电源子系统240。电源子系统240可包括电池或其它电源。电源子系统240可被配置为向电子设备200提供电力。电源子系统240还可耦接到电源连接器250。电源连接器250可以是任何合适的连接器或端口,其可被配置为从外部电源接收电力并且/或者被配置为向外部负载提供电力。例如,在一些实施方案中,电源连接器250可以用于对电源子系统240内的电池进行再充电。在另一个实施方案中,电源连接器250可以用于将存储在(或可用于)电源子系统240内的电力传输到触控笔100。
电子设备200还包括无线接口260,以促进电子设备200与触控笔100之间的电子通信。在一个实施方案中,电子设备200可被配置为经由低能量蓝牙通信接口或近场通信接口与触控笔100通信。在其他示例中,通信接口有利于电子设备200与外部通信网络、设备或平台之间的电子通信。
无线接口260(无论是电子设备200与触控笔100之间的通信接口还是另外的通信接口)可被实现为一个或多个无线接口、蓝牙接口、近场通信接口、磁性接口、通用串行总线接口、电感接口、谐振接口,电容耦合接口、Wi-Fi接口、TCP/IP接口、网络通信接口、光学接口、声学接口或任何传统的通信接口。
电子设备200还包括显示器270。显示器270可以位于输入表面220后方,或者可以与其集成一体。显示器270可以通信地耦接至处理器210。处理器210可以使用显示器270向用户呈现信息。在很多情况下,处理器210使用显示器270来呈现用户可以与之交互的界面。在许多情况下,用户操纵触控笔100与界面进行交互。
对于本领域的技术人员而言将显而易见的是,上文关于电子设备200所呈现的具体细节中的一些细节可为实践特定的所述实施方案或其等同物所不需要的。类似地,其他电子设备可以包括更多数量的子系统、模块、部件等。在适当的情况下,一些子模块可以被实现为软件或硬件。因此,应当理解,上述描述并非旨在穷举或将本公开限制于本文所述的精确形式。相反,对于本领域的普通技术人员而言将显而易见的是, 根据上述教导内容,许多修改和变型是可能的。
图5为本申请实施例提供的触控笔和电子设备交互的一种示意图。参照图5,触控笔中包括:微处理单元(micro controller unit,MCU)、第一通信模块、充电模块、压力传感器模块、发送模块(transport,TX)和接收模块(receive,RX)。电子设备中包括:触摸传感器、触摸处理模块和第二通信模块。应理解,下述实施例以第一通信模块和第二通信模块均为蓝牙模块为例进行说明,第一通信模块和第二通信模块还可以为无线局域网模块、WI-FI模块等,本申请实施例对此不作限制。应理解,触控笔和电子设备,可以通过第一通信模块和第二通信模块建立无线通路,交互无线信号。
电子设备中,触摸处理模块分别与触摸传感器、第二通信模块连接。触摸传感器中可以包括电极阵列。触摸传感器,用于采集触摸数据,触摸数据可以包括:触控笔触摸触摸屏的数据。触摸处理模块,用于基于触摸传感器采集的触摸数据,确定触控笔的笔尖的位置,以及触控笔与触摸屏的夹角(下述简称为夹角)。其中,当电子设备和触控笔建立无线通路,即无线连接后,触摸处理模块可以通过电极阵列发送上行信号,上行信号用于指示触控笔反馈下行信号。触摸处理模块可以基于来自触控笔的下行信号,确定触控笔的笔尖的位置,以及夹角。在一种实施例中,上行信号可以为方波信号,触摸处理模块可以为触摸IC芯片(integrated circuit chip)。
触控笔中,MCU分别与第一通信模块、充电模块、压力传感器模块、发送模块,以及接收模块连接。应理解,MCU可以理解为图3所示的处理器。充电模块,用于为触控笔进行充电。压力传感器模块中包括:压力传感器和压力数据处理模块。压力传感器与压力数据处理模块连接,压力数据处理模块与MCU连接。压力传感器可以设置在触控笔的笔尖,压力传感器,用于检测笔尖的压力。数据处理模块,用于采集来自压力传感器的压力数据,且将压力数据发送给MCU。
发送模块中包括:第一电极、第二电极和发送驱动电路。第一电极、第二电极均与发送驱动电路连接,发送驱动电路与MCU连接。MCU,用于生成第一脉冲宽度调制(pulse width modulation,PWM)信号和第二PWM信号,且向发送驱动电路发送第一PWM信号和第二PWM信号。发送驱动电路可以基于第一PWM信号,驱动第一电极发送第一信号,以及,基于第二PWM信号,驱动第二电极发送第二信号。第一电极和第二电极均可以发送信号,第一电极可以称为TX1,第二电极可以称为TX2。
在一种实施例中,第一信号和第二信号可以称为下行信号或者打码信号。在一种实施例中,下行信号可以为方波信号。应理解,本申请实施例中的上行信号和下行信号是基于触控笔来说的,可以想到的是,基于电子设备来说,电子设备可以向触控笔发送下行信号,触控笔可以基于下行信号向电子设备发送上行信号。下述实施例中,以触控笔发送下行信号,以及电子设备发送上行信号为例进行说明。
参照图5,在一种实施例中,发送驱动电路中可以包括:高压驱动信号模块和开关管。MCU分别与高压驱动信号模块,以及开关管连接。开关管与第二电极连接,高压驱动信号分别与第一电极,以及第二电极连接。高压驱动信号模块,用于提供高压驱动信号,并基于来自MCU的第一PWM信号驱动第一电极发送第一信号,基于来自MCU的第二PWM信号驱动第二电极发送第二信号。
在一种实施例中,MCU,还用于控制开关管,实现第二电极在发送信号和接收信 号之间的切换,即实现第二电极在TX2和RX之间的切换。本申请实施例中对开关管的具体电路,以及MCU的控制方式不做赘述。也就是说,MCU可以控制开关管,使得第二电极可以作为TX2,作为TX2的第二电极与发送驱动电路连接,进而使得第二电极可以发送第二信号。MCU也可以控制开关管,使得第二电极作为RX,作为RX的第二电极与接收模块连接,进而使得第二电极可以接收来自电子设备的上行信号。换句话说,第二电极可以在MCU的控制下,在TX2和RX之间进行切换。
接收模块中包括解码电路。解码电路可以与开关管连接,解码电路还与MCU连接。第二电极,用于接收来自电子设备的上行信号,且向解码电路发送上行信号。解码电路,用于解码上行信号,并向MCU发送解码后的上行信号。
基于图5中所示的结构,下面对电子设备和触控笔交互的过程进行说明。因为触控笔的笔尖设置有电极,电子设备中的触摸传感器中包括电极阵列。触控笔的笔尖和触摸传感器的电极之间,存在绝缘物质(如空气、触摸屏上的玻璃),因此触控笔的笔尖和触摸传感器的电极之间相当于存在一个电容,触控笔的笔尖与电子设备中的触摸传感器可以通过电容建立电路连接。当触摸传感器接收来自触控笔的第一电极的第一信号时,触摸屏对应位置处的电容值会发生变化。
参照图6,图6中以电容值产生波峰表征触摸屏201对应位置处的电容值发生变化,电子设备200可以基于触摸屏上的电容值的变化,确定触控笔100的笔尖的位置。另外,电子设备可以采用倾角检测算法中的双笔尖投影方法获取夹角。图6以黑色圆点表征触控笔接触触摸屏的位置。
参照图7,触控笔中的第一电极(TX1)和第二电极(TX2)可以设置在触控笔100的笔尖,第一电极设置靠近笔尖的尖端,第二电极相对于第一电极远离笔尖的尖端。当触摸传感器接收来自触控笔的第一电极的第一信号,以及第二电极的第二信号时,触摸屏201两个位置处(如位置B和位置C)的电容值会发生变化,电子设备200可以基于第一电极和第二电极之间的距离,以及触摸屏两个位置处之间的距离,获取夹角,更为具体的双笔尖投影方法可以参照现有技术的相关描述。图7中以黑色圆点表征位置B和位置C。
为了便于说明本申请提供的信息传输方法,先对本申请实施例涉及到的术语进行解释:
电子设备的刷新率:每秒内电子设备显示的画面的刷新次数。电子设备的刷新率也可以称为显示频率或显示帧率。电子设备的刷新率可以但不限于为:60Hz、90Hz和120HZ。示例性的,电子设备的刷新率为60Hz,表征电子设备每隔16.6ms(1000ms/60)刷新一次触摸屏显示的画面。
电子设备以60Hz的刷新率发送上行信号:表征电子设备每隔16.6ms,向触控笔发送一次上行信号。
上行信号的周期:表征电子设备发送两个上行信号之间的时长。如电子设备的刷新率为60Hz,则电子设备发送上行信号的周期为16.6ms。
电子设备和触控笔信号同步:电子设备能够采样来自触控笔的下行信号(包括TX1发送电极信号和TX2发送电极信号),基于下行信号获取触控笔的位置和夹角。
示例性的,如图8所示,为本申请实施例提供的一种电子设备和触控笔的信号同 步的时序图。图8中示出了电子设备发送电极信号,以及接收(采样)来自触控笔的(TX1和TX2)电极信号的时序,也示出了触控笔中TX1发送电极信号(第一信号)的时序和TX2发送电极信号(第二信号)的时序。参照图8,示例性的,电子设备的刷新率为60Hz,电子设备基于60Hz刷新屏幕,即每1/60s显示一帧显示画面。电子设备(的电极阵列)可以在每1/60s内发送一次电极信号。触控笔接收来自电子设备的上行信号时,可以在1/60s内发送N个电极信号。其中,TX1可以在1/60s内发送N个电极信号,TX2可以在1/60s内发送N个电极信号。相应的,电子设备在发送上行信号后,可以在1/60s内采样N次来自触控笔的电极信号。电子设备可以基于每次采样的电极信号获取触控笔的笔尖的位置以及夹角。
在一种实施例中,参照图8,触控笔和电子设备中可以存储配置文件,配置文件中包括a、b、c和N的取值。其中,a表示:触控笔接收来自电子设备的电极信号与发送第一个电极信号之间的时长。b表示:触控笔发送的相邻两个电极信号之间的时长。c表示:一个电极信号占用的时长。N表示:相邻两个电极信号之间,触控笔发送的电极信号的个数。a、b、c和N可以为预先约定的,也就是说,电子设备能够基于预先配置的a、b、c和N,确定在发送电极信号后的采样策略,如在一个电极信号的周期内,按照a、b、c,采样N次电极信号。同理的,触控笔能够基于预先配置的a、b、c和N,确定发送电极信号的策略,如在接收到来自电子设备的电极信号后,基于电子设备的刷新率,按照a、b、c,发送N个电极信号。
应理解,本申请实施例中所述的“电子设备在发送电极信号的Ams内,采样N次来自触控笔的电极信号”,可以理解为:在一个电极信号的周期Ams内,电子设备在发送电极信号后的ams后,采样第一次来自触控笔的电极信号,之后每隔bms采样一次来自触控笔的电极信号,总共采样N次电极信号,每次采样时长为cms。同理的,“触控笔在一个电极信号的周期Ams内,发送N次电极信号”,表征:触控笔在接收到来自电子设备的电极信号后的ams后,发送第一个电极信号,之后每隔bms发送一次电极信号,总共发送N次电极信号,每个电极信号占用的时长为cms。如此,电子设备可以与触控笔保持信号同步。
其中,当刷新率为60Hz时,A为16.6ms(1/60s),当刷新率为90Hz时,A为11.1ms(1/90s),当刷新率为120Hz时,A为8.3ms(1/120s)。应理解,当刷新率不同时,a、b、c不同,可以理解为:刷新率为60Hz时的a与刷新率为90Hz时的a不同,且刷新率为60Hz时的b与刷新率为90Hz时的b不同,且刷新率为60Hz时的c与刷新率为90Hz时的c不同。也就是说,刷新率不同,配置文件中的a、b、c不同。
压感值:触控笔一般都有压感器件,通过前端的笔尖和屏幕的接触,笔的受力通过笔尖传到笔身内部的压感器件,压感器件感应受力计算出压感值。电子设备可以根据不同的压感值绘制出与压感值协调的粗细变化的线条。
压感值传输:目前,触控笔可以通过蓝牙通道将压感等级传输到电子设备。但是,一些触控笔可能没有蓝牙模块,则无法传递压感值。在另一种可能的设计中,可以通过对笔尖电极进行调频进行压感值传递。例如,对为a的压感等级,笔尖发射电极频率为fa,对为b的压感等级,笔尖发射电极频率为fb。在电子设备端的调频器件对频率进行检测,然后通过映射表就能获取到笔端要传递的压感等级。但是,这样需要在 触控笔的笔端增加额外的调频电路,且在电子设备端需要增加多频检测电路,增加了笔端和电子设备端的电路设计复杂度。
本申请提供一种信息传输方法和装置,能够在触控笔没有蓝牙模块且不增加设备复杂度的情况下,将信息(例如,压感值)传递给电子设备。电子设备可以根据不同的压感值绘制出与压感值协调的粗细变化的线条。
下面结合具体的实施例对本申请实施例提供的信息传输方法进行说明。下面这几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图9为本申请实施例提供的信息传输方法的一实施例的流程示意图。如图9所示,该信息传输方法可以包括:
901、触控笔获取压感值。
触控笔可以通过压感组件获取压感值。示例性的,参照图2B所示,在主轴组件50上设有压感组件60,压感组件60的部分与笔杆20内的固定结构固定相连,压感组件60的部分与主轴组件50固定相连。这样,主轴组件50随着笔尖10移动时,由于压感组件60的部分与笔杆20内的固定结构固定相连,所以主轴组件50的移动会驱动压感组件60形变,压感组件60的形变传递给电路板70(例如,压感组件60与电路板70之间可以通过导线或者柔性电路板实现电连接),电路板70根据压感组件60形变检测出笔尖10的书写端11的压力,从而计算出压感值。
需要说明的是,笔尖10的压力检测包括但不限于上述方法。例如,还可以通过在笔尖10的书写端11内设置压力传感器,由压力传感器检测笔尖10的压力,从而计算出压感值,本申请不做限定。
902、TX1基于刷新率发送第一信号,同时TX2基于压感值发送第二信号。
TX1可以基于电子设备的刷新率,在一个上行信号的周期内,发送N个下行信号。示例性的,电子设备的刷新率为60Hz,TX1基于60Hz发送第一信号表征:TX1在接收到来自电子设备的上行信号后的16.6ms内,向电子设备发送N个第一信号。
TX2可以基于电子设备的刷新率,在一个上行信号的周期内,发送M个第二信号,M与压感值相关。
本申请实施例中,可以将触控笔的TX1发送的电极信号的时序作为基准,改变触控笔的TX2的电极信号的时序,通过TX2发送的电极信号的有无来传递压感值。
在一种可能的设计中,触控笔中的MCU可以触发TX1和TX2发送电极信号。示例性的,参考图5所示,触控笔中的MCU可以根据预设的配置文件(预先配置的a、b、c和N)向发送驱动电路发送第一PWM信号(即可以根据预先配置的a、b、c和N确定第一PWM信号的数目和时序),同时根据压感值向发送驱动电路发送第二PWM信号(即可以根据压感值的大小确定第二PWM信号的数目和时序)。发送驱动电路可以基于第一PWM信号,驱动第一电极发送第一信号,以及,基于第二PWM信号,驱动第二电极发送第二信号。示例性的,TX1可以基于第一PWM信号在每个上行信号的周期内发送N个电极信号。TX2可以基于第二PWM信号在每个上行信号的周期内发送M个电极信号。
903、电子设备基于刷新率采样TX1和TX2发送的电极信号,根据TX2发送的电极信号确定压感值。
电子设备可以基于电子设备的刷新率,在一个上行信号的周期内,采样TX1和TX2发送的电极信号。示例性的,电子设备的刷新率为60Hz,电子设备基于60Hz采样TX1和TX2发送的电极信号表征:电子设备在向触控笔发送上行信号后的16.6ms内,对TX1和TX2发送的电极信号进行扫描,若在第一时刻TX1的电极信号存在而TX2的电极信号不存在,则将该第一时刻TX2对应的电极信号标识为0;若在第二时刻TX1的电极信号存在且TX2的电极信号也存在,则将该第二时刻TX2对应的电极信号标识为1。或者,若在第一时刻TX1的电极信号存在而TX2的电极信号不存在,则将该第一时刻TX2对应的电极信号标识为1;若在第二时刻TX1的电极信号存在且TX2的电极信号也存在,则将该第二时刻TX2对应的电极信号标识为0。电子设备根据一个上行信号的周期内对TX2的电极信号的标识可以得到一组二进制数据(目标编码数据)该二进制数据的N位或N-Q位可以用于表征触控笔的压感值。
示例性的,如图10所示,TX1和TX2的发射时序为:TX1分别在时刻1-时刻10发送了电极信号(第一信号);TX2仅在时刻2、3时刻、时刻4和时刻9发送了电极信号(第二信号)。电子设备基于TX1发送的电极信号的时序进行扫描,确定TX2在时刻1的脉冲不存在,则标识为0;在时刻2的脉冲存在,则标识为1;在时刻3的脉冲存在,则标识为1;在时刻4的脉冲存在,则标识为1;在时刻5的脉冲不存在,则标识为0;在时刻6的脉冲不存在,则标识为0;在时刻7的脉冲不存在,则标识为0;在时刻8的脉冲不存在,则标识为0;在时刻9的脉冲存在,则标识为1;在时刻10的脉冲不存在,则标识为1。电子设备可以根据10个时刻TX2的电极信号的有无确定出一组包括N位(即10位)的二进制数据01 1100 0010,根据01 1100 0010可以确定出压感值为450。
另外,电子设备也可以根据确定出的N位二进制数据的部分数据确定压感值。例如,根据N-Q位(例如,9位)数据确定出压感值。该N-Q位数据可以取N位二进制数据的前N-Q位,后N-Q位,或者中间N-Q位,本申请不做限定。例如,根据二进制数据01 1100 0010的后8位确定压感值为194。其中,Q为小于N且大于0的整数。
在一种可能的设计中,N的大小与压感值相关。压感值的取值范围可以为0~2 N。假设TX1在一个周期内发送的电极信号的数目为N,且TX2在一个周期内发送的电极信号对应的二级制数据的N位用于指示压感值,则最多可以表征2 N个压感值。即N越大,可以表征的压感值的取值范围越大,颗粒度越细。例如,若N=10,则可以表征2 10=1024个压感值。若N=11,则可以表征2 11=2048个压感值。
或者,压感值的取值范围可以为0~2 N-Q。假设TX1在一个周期内发送的电极信号的数目为N,且TX2在一个周期内发送的电极信号对应的二级制数据的N-Q位用于指示压感值,则最多可以表征2 N-Q个压感值。N越大,Q越小时,可以表征的压感值的取值范围越大,颗粒度越细。
可选的,用户可以自行设置触控笔的压感等级。示例性的,如图11所示,响应于用户在电子设备200的设置界面210选中辅助功能选项211的操作,如图12所示,电子设备可以显示辅助功能界面212。在辅助功能界面212中,可以包括手写笔选项213。当然,辅助功能界面212还可以包括其他辅助功能,例如单手模式、快捷启动及手势、智慧分屏、皮套模式、防误触模式等,本申请不做限定。
在一种可能的设计中,响应于用户选中手写笔选项213的操作,如图13中的(a)所示,电子设备可以显示手写笔的功能设置界面214。手写笔的功能设置界面214中包括压感等级选项215。当然,手写笔的功能设置界面214中还可以包括快捷设置、防误触设置等选项,本申请不做限定。压感等级可以默认为512,即压感值的范围包括0-512。响应于用户点击压感等级选项215的操作,如图13中的(b)所示,电子设备可以显示弹框216,弹框216中可以包括多个压感等级的取值,例如,可以包括512、1024和2048等。响应于用户选中1024取值的操作,电子设备可以将触控笔的压感等级设置为1024,此时压感值的范围包括0-1024。
在另一种可能的设计中,响应于用户选中手写笔选项213的操作,如图14中的(a)所示,电子设备可以显示手写笔的功能设置界面220。手写笔的功能设置界面220中包括压感等级对应的数值调节框221以及数值调节钮222。响应于用户对数值调节钮222的操作(例如,向右滑动数值调节钮222到1024取值处),如图14中的(b)所示,数值调节钮222可以向右移动到1024取值处,电子设备可以将触控笔的压感等级设置为1024,此时压感值的范围包括0-1024。
当然,用于调整压感值的UI界面还可以是其他形式(例如,数值选择框的形式),本申请不做限定。
904、电子设备根据压感值确定线条粗细。
电子设备根据压感值确定用户采用触控笔绘制的线条(即触控笔的笔迹)的粗细程度。压感值越大,线条越粗;压感值越小,线条越细。
例如,如图15中的(a)所示,当压感值为A时,绘制出的线条230较细(较线条231更细),如图15中的(b)所示,当压感值为B时,绘制出的线条231的较粗(较线条230更粗),其中,A小于B。
基于本申请实施例提供的方法,可以将触控笔的TX1发送的电极信号的时序作为基准,改变触控笔的TX2的电极信号的时序,通过TX2发送的电极信号的有无来传递压感值。这样,可以在触控笔没有蓝牙模块且不增加设备复杂度的情况下,将压感值传递给电子设备,使得压感值的传递更加方便和简单。
图16为本申请实施例提供的信息传输方法的又一实施例的流程示意图。如图16所示,该信息传输方法可以包括:
1601、触控笔接收用户的第一操作。
第一操作(即用户的操作)可以包括多种类型。例如,第一操作的类型可以包括对笔身按钮的操作(例如,单击、双击、长按等),或者对笔身触控区域的操作(例如,敲击、滑动等)。当然,第一操作的类型还可以包括更多,在此不一一列举。
触控笔可以包括按钮,按钮可以包括机械按钮和非机械按钮,按钮可以用于从用户收集按钮按压信息(例如,单击、双击、长按等)。触控笔还可以包括触摸传感器,触摸传感器可以用于从用户收集触控信息(例如,敲击、滑动等)。
触控笔的操作过程中,运行在处理器上的软件可以处理触控传感器输入、按钮输入以监视触控笔的用户输入。
1602、TX1基于刷新率发送第一信号,同时TX2基于第一操作的类型发送第二信号。
TX1可以基于电子设备的刷新率,在一个上行信号的周期内,发送N个下行信号。示例性的,电子设备的刷新率为60Hz,TX1基于60Hz发送第一信号表征:TX1在接收到来自电子设备的上行信号后的16.6ms内,向电子设备发送N个第一信号。
TX2可以基于电子设备的刷新率,在一个上行信号的周期内,发送M个第二信号,M与第一操作的类型相关。
本申请实施例中,可以将触控笔的TX1发送的电极信号的时序作为基准,改变触控笔的TX2的电极信号的时序,通过TX2发送的电极信号的有无来传递第一操作的类型。
在一种可能的设计中,触控笔中的MCU可以触发TX1和TX2发送电极信号。示例性的,参考图5所示,触控笔中的MCU可以根据预设的配置文件(预先配置的a、b、c和N)向发送驱动电路发送第一PWM信号(即可以根据预先配置的a、b、c和N确定第一PWM信号的数目和时序),同时根据第一操作的类型向发送驱动电路发送第二PWM信号(即可以根据第一操作的类型确定第二PWM信号的数目和时序)。发送驱动电路可以基于第一PWM信号,驱动第一电极发送第一信号,以及,基于第二PWM信号,驱动第二电极发送第二信号。示例性的,TX1可以基于第一PWM信号在每个上行信号的周期内发送N个电极信号。TX2可以基于第二PWM信号在每个上行信号的周期内发送M个电极信号。
1603、电子设备基于刷新率采样TX1和TX2发送的电极信号,根据TX2发送的电极信号确定第一操作的类型。
电子设备可以基于电子设备的刷新率,在一个上行信号的周期内,采样TX1和TX2发送的电极信号。示例性的,电子设备的刷新率为60Hz,电子设备基于60Hz采样TX1和TX2发送的电极信号表征:电子设备在向触控笔发送上行信号后的16.6ms内,对TX1和TX2发送的电极信号进行扫描,若在第一时刻TX1的电极信号存在而TX2的电极信号不存在,则将该第一时刻TX2对应的电极信号标识为0;若在第二时刻TX1的电极信号存在且TX2的电极信号也存在,则将该第二时刻TX2对应的电极信号标识为1。或者,若在第一时刻TX1的电极信号存在而TX2的电极信号不存在,则将该第一时刻TX2对应的电极信号标识为1;若在第二时刻TX1的电极信号存在且TX2的电极信号也存在,则将该第二时刻TX2对应的电极信号标识为0。电子设备根据一个上行信号的周期内对TX2的电极信号的标识可以得到一组二进制数据(目标编码数据)该二进制数据的N位或N-Q位可以用于表征触控笔的第一操作的类型。
示例性的,第一操作的类型分别对应的十进制数据和二进制数据可以如表1所示:
表1
Figure PCTCN2022140474-appb-000001
当然,触控笔可以包括多个按钮,例如,触控笔可以包括按钮1和按钮2,单击/双击/长按不同的按钮属于不同的操作类型,对应不同的二进制/十进制数据,如表2所示:
表2
Figure PCTCN2022140474-appb-000002
示例性的,如图17所示,TX2仅在时刻5、时刻7、时刻8和时刻10发送了电极信号(第二信号)。电子设备基于TX1发送的电极信号的时序进行扫描,确定TX2在时刻1的脉冲不存在,则标识为0;在时刻2的脉冲不存在,则标识为0;在时刻3的脉冲不存在,则标识为0;在时刻4的脉冲不存在,则标识为0;在时刻5的脉冲存在,则标识为1;在时刻6的脉冲不存在,则标识为0;在时刻7的脉冲存在,则标识为1;在时刻8的脉冲存在,则标识为1;在时刻9的脉冲不存在,则标识为0;在时刻10的脉冲存在,则标识为1。最终,电子设备可以根据10个时刻TX2的电极信号的有无确定出一组包括N位(即10位)的二进制数据0000101101,电子设备上可以存储如表1或表2所示的映射关系,再根据0000101101对照如表1或表2所示的映射关系,可以确定出第一操作的类型为在触控区域滑动。
另外,电子设备也可以根据确定出的N位二进制数据的部分数据确定第一操作的类型。例如,根据N-Q位数据确定出第一操作的类型。该N-Q位数据可以取N位二进制数据的前N-Q位,后N-Q位,或者中间N-Q位,本申请不做限定。例如,根据二进制数据0000101101的后3位确定第一操作的类型为单击按钮1。其中,Q为小于N且大于0的整数。
1604、电子设备根据第一操作的类型进行相应的响应。
电子设备根据第一操作的类型进行相应的响应。例如,第一操作的类型为单击按钮时,电子设备可以截图;第一操作的类型为长按按钮时,电子设备可以打开笔记本应用;第一操作的类型为在触控区域滑动时,电子设备可以切换界面。当然,电子设备可以根据第一操作的类型进行其他多种响应,在此不一一列举。
基于本申请实施例提供的方法,可以将触控笔的TX1发送的电极信号的时序作为基准,改变触控笔的TX2的电极信号的时序,通过TX2发送的电极信号的有无来传递第一操作的类型。这样,可以在触控笔没有蓝牙模块且不增加设备复杂度的情况下,将触控笔接收到的第一操作的类型传递给电子设备,使得电子设备可以根据第一操作的类型进行响应。这样,更加节省成本且使得触控笔和电子设备间的信息传递更加方 便和简单。
图18为本申请实施例提供的信息传输方法的又一实施例的流程示意图。如图18所示,该信息传输方法可以包括:
1801、触控笔获取压感值或接收用户的第一操作。
触控笔获取压感值的过程可以参考步骤901的描述,触控笔接收用户的第一操作的过程可以参考步骤1601的描述,在此不做赘述。
1802、TX1基于刷新率发送第一信号,同时TX2基于压感值或用户的第一操作的类型发送第二信号。
TX1可以基于电子设备的刷新率,在一个上行信号的周期内,发送N个下行信号。示例性的,电子设备的刷新率为60Hz,TX1基于60Hz发送第一信号表征:TX1在接收到来自电子设备的上行信号后的16.6ms内,向电子设备发送N个第一信号。
TX2可以基于电子设备的刷新率,在一个上行信号的周期内,发送M个第二信号,M与压感值或用户的第一操作的类型相关。
需要说明的是,为了区分TX2发送的第二信号是用于指示压感值还是用于指示用户的第一操作,可以通过TX2在一个上行信号的周期内发送的电极信号对应的二进制数据的前P位的取值指示第二信号所指示的信息的类型。即可以根据TX2在一个上行信号的周期发送的第二信号对应的二进制数据的前P位的取值判断第二信号是用于指示压感值还是用户的第一操作,根据二进制数据的前P位之后的数据判断压感值的具体取值或第一操作的类型。其中,P是预设的,例如可以为1、2或3等。例如,若P为2,当前P位的取值是01时,二进制数据的后N-P位可以用于指示压感值;当前P位的取值是10时,二进制数据的后N-P位可以用于指示用户的第一操作的类型。
1803、电子设备基于刷新率采样TX1和TX2发送的电极信号,根据TX2发送的电极信号确定压感值或第一操作的类型。
电子设备可以基于电子设备的刷新率,在一个上行信号的周期内,采样TX1和TX2发送的电极信号。示例性的,电子设备的刷新率为60Hz,电子设备基于60Hz采样TX1和TX2发送的电极信号表征:电子设备在向触控笔发送上行信号后的16.6ms内,对TX1和TX2发送的电极信号进行扫描,若在第一时刻TX1的电极信号存在而TX2的电极信号不存在,则将该第一时刻TX2对应的电极信号标识为0;若在第二时刻TX1的电极信号存在且TX2的电极信号也存在,则将该第二时刻TX2对应的电极信号标识为1。电子设备根据一个上行信号的周期内对TX2的电极信号的标识可以得到一组二进制数据,该二进制数据可以用于表征触控笔的压感值或第一操作的类型。
示例性的,假设P为2,当前P位的取值是01时,TX2发送的第二信号用于指示压感值;当前P位的取值是10时,TX2发送的第二信号用于指示用户的第一操作。
如图19所示,TX1分别在时刻1-时刻10发送了第一信号;TX2仅在时刻1、时刻5、时刻7、时刻8和时刻10发送了第二信号。电子设备基于TX1发送的电极信号的时序进行扫描,确定TX2在时刻1的脉冲存在,则标识为1;在时刻2的脉冲不存在,则标识为0;在时刻3的脉冲不存在,则标识为0;在时刻4的脉冲不存在,则标识为0;在时刻5的脉冲存在,则标识为1;在时刻6的脉冲不存在,则标识为0;在时刻7的脉冲存在,则标识为1;在时刻8的脉冲存在,则标识为1;在时刻9的脉冲 不存在,则标识为0;在时刻10的脉冲存在,则标识为1。最终,电子设备可以根据TX2的电极信号的有无确定出一组二进制数据1000101101,根据1000101101的前P位(例如,前2位)可以确定出TX2发送的第二信号用于指示用户的第一操作,根据前2位之后的数值(00101101)确定第一操作的类型为在触控区域滑动。
如图20所示,TX1分别在时刻1-时刻10发送了第一信号;TX2仅在时刻2、时刻3、时刻4和时刻9发送了第二信号。电子设备基于TX1发送的电极信号的时序进行扫描,确定TX2在时刻1的脉冲不存在,则标识为0;在时刻2的脉冲存在,则标识为1;在时刻3的脉冲存在,则标识为1;在时刻4的脉冲存在,则标识为1;在时刻5的脉冲不存在,则标识为0;在时刻6的脉冲不存在,则标识为0;在时刻7的脉冲不存在,则标识为0;在时刻8的脉冲不存在,则标识为0;在时刻9的脉冲存在,则标识为1;在时刻10的脉冲不存在,则标识为0。最终,电子设备可以根据TX2的电极信号的有无确定出一组二进制数据01 1100 0010,根据01 1100 0010的前P位(例如,前2位)可以确定出TX2发送的第二信号用于指示压感值,根据前2位之后的数值(1100 0010)确定压感值为97。
1804、电子设备根据压感值确定线条粗细,或者根据第一操作的类型进行相应的响应。
电子设备根据压感值确定线条粗细的过程可以参考步骤904的相关描述,电子设备根据第一操作的类型进行相应的响应的过程可以参考步骤1604的相关描述,在此不做赘述。
基于本申请实施例提供的方法,可以将触控笔的TX1发送的电极信号的时序作为基准,改变触控笔的TX2的电极信号的时序,通过TX2发送的电极信号的有无来传递压感值或第一操作的类型。这样,可以在触控笔没有蓝牙模块且不增加设备复杂度的情况下,将触控笔的压感值或触控笔接收到的第一操作的类型传递给电子设备,使得电子设备可以根据压感值或第一操作的类型进行响应。这样,更加节省成本且使得触控笔和电子设备间的信息传递更加方便和简单。
本申请实施例还提供一种芯片系统,如图21所示,该芯片系统包括至少一个处理器2101和至少一个接口电路2102。处理器2101和接口电路2102可通过线路互联。例如,接口电路2102可用于从其它装置(例如,电子设备的存储器)接收信号。又例如,接口电路2102可用于向其它装置(例如处理器2101)发送信号。
例如,接口电路2102可读取电子设备中存储器中存储的指令,并将该指令发送给处理器2101。当所述指令被处理器2101执行时,可使得电子设备(如图4所示的电子设备200)或触控笔(如图3所示的触控笔100)执行上述实施例中的各个步骤。
当然,该芯片系统还可以包含其他分立器件,本申请实施例对此不作具体限定。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质包括计算机指令,当所述计算机指令在电子设备(如图4所示的电子设备200)或触控笔(如图3所示的触控笔100)上运行时,使得电子设备200执行上述方法实施例中电子设备执行的各个功能或者步骤,使得触控笔100执行上述方法实施例中触控笔执行的各个功能或者步骤。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在计算机上运 行时,使得所述计算机执行上述方法实施例中电子设备执行的各个功能或者步骤。
本申请实施例还提供了一种处理装置,所述处理装置可以按照功能划分为不同的逻辑单元或模块,各单元或模块执行不同的功能,以使得所述处理装置执行上述方法实施例中电子设备或触控笔执行的各个功能或者步骤。
通过以上实施方式的描述,所属领域的技术人员可以清楚地了解到,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (37)

  1. 一种信息传输方法,其特征在于,应用于触控笔和电子设备组成的系统,所述触控笔包括第一电极和第二电极,所述方法包括:
    所述第一电极基于刷新率发送N个第一信号,所述N个第一信号对应N个发送时刻,所述N为大于或等于1的整数;
    所述第二电极基于所述触控笔检测的压感值或用户对所述触控笔的操作的类型发送M个第二信号,所述M个第二信号对应M个发送时刻,所述M个发送时刻与所述N个发送时刻中的部分或全部时刻重叠,所述M为小于或等于N的整数;
    所述电子设备接收所述第一信号和所述第二信号;
    若在第一时刻,所述电子设备确定所述第一信号存在而所述第二信号不存在,记录第一值;若在第二时刻,所述电子设备确定所述第一信号存在且所述第二信号也存在,记录第二值;其中,所述第一时刻或所述第二时刻是所述N个时刻中的任意时刻;
    所述电子设备根据所述N个时刻记录的所述第一值和/或所述第二值得到目标编码数据,所述目标编码数据用于表征所述压感值的大小或用户对所述触控笔的操作的类型。
  2. 根据权利要求1所述的方法,其特征在于,
    所述目标编码数据包括所述N个时刻的全部时刻记录的所述第一值和/或所述第二值;或者
    所述目标编码数据包括所述N个时刻的部分时刻记录的所述第一值和/或所述第二值。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一值为0,所述第二值为1;或者
    所述第一值为1,所述第二值为0。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,
    所述目标编码数据为二进制数据,所述二进制数据包括N位或N-Q位,Q为小于N且大于0的整数。
  5. 根据权利要求4所述的方法,其特征在于,
    所述压感值的取值范围为0~2 N或者0~2 N-Q
  6. 根据权利要求4所述的方法,其特征在于,
    当所述二进制数据的前P位的取值是第一预设取值时,所述二进制数据的后N-P位用于指示压感值,所述P为大于或等于1的整数;
    当所述二进制数据的前P位的取值是第二预设取值时,所述二进制数据的后N-P位用于指示用户的操作的类型。
  7. 根据权利要求4所述的方法,其特征在于,
    当所述二进制数据的后P位的取值是第一预设取值时,所述二进制数据的前N-P位用于指示压感值,所述P为大于或等于1的整数;
    当所述二进制数据的后P位的取值是第二预设取值时,所述二进制数据的前N-P位用于指示用户的操作的类型。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,
    用户对所述触控笔的操作的类型包括对所述触控笔的按钮或触控区域的操作,所述对所述触控笔的按钮或触控区域的操作包括单击、双击、长按或滑动。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述目标编码数据用于表征压感值的大小时,所述方法还包括:
    所述电子设备根据所述压感值确定所述触控笔的绘制的线条的粗细程度;
    所述压感值越大,所述线条越粗;所述压感值越小,所述线条越细。
  10. 根据权利要求1-8任一项所述的方法,其特征在于,所述目标编码数据用于表征用户对所述触控笔的操作的类型时,所述方法还包括:
    当所述操作的类型为单击按钮时,所述电子设备截图;
    当所述操作的类型为长按按钮时,所述电子设备打开笔记本应用;
    当所述操作的类型为在触控区域滑动时,所述电子设备切换界面。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    响应于用户在所述电子设备的设置界面选中辅助功能选项的操作,所述电子设备显示辅助功能界面,所述辅助功能界面包括手写笔选项;
    响应于用户选中所述手写笔选项的操作,所述电子设备显示所述手写笔的功能设置界面,所述手写笔的功能设置界面中包括压感等级选项;
    响应于用户对所述压感等级选项的操作,所述电子设备显示弹框,所述弹框包括多个压感等级的取值;
    响应于用户从所述多个压感等级的取值中选中第一取值的操作,所述电子设备根据所述第一取值设置所述触控笔的压感等级。
  12. 根据权利要求1-10任一项所述的方法,其特征在于,
    响应于用户在所述电子设备的设置界面选中辅助功能选项的操作,所述电子设备显示辅助功能界面,所述辅助功能界面包括手写笔选项;
    响应于用户选中所述手写笔选项的操作,所述电子设备显示所述手写笔的功能设置界面,所述手写笔的功能设置界面中包括压感等级对应的数值调节框以及数值调节钮;
    响应于用户通过所述数值调节钮将所述数值调节框调整为第一取值的操作,所述电子设备根据所述第一取值设置所述触控笔的压感等级。
  13. 一种信息传输方法,其特征在于,应用于触控笔,所述触控笔包括第一电极和第二电极,所述方法包括:
    所述第一电极基于刷新率向电子设备发送N个第一信号,所述N个第一信号对应N个发送时刻;N为大于或等于1的整数;
    所述第二电极基于所述触控笔检测的压感值或用户对所述触控笔的操作的类型向所述电子设备发送M个第二信号,所述M个第二信号对应M个发送时刻,所述M个发送时刻与所述N个发送时刻中的部分或全部时刻重叠,所述M为小于或等于N的整数;
    其中,所述N个时刻中的第一时刻对应第一值,在所述第一时刻,所述第一信号存在而所述第二信号不存在;所述N个时刻中的第二时刻对应第二值,在所述第二时 刻,所述第一信号存在且所述第二信号存在;所述N个时刻对应的所述第一值和/或所述第二值用于构建目标编码数据,所述目标编码数据用于表征所述压感值的大小或用户对所述触控笔的操作的类型。
  14. 根据权利要求13所述的方法,其特征在于,
    所述目标编码数据包括所述N个时刻的全部时刻对应的所述第一值和/或所述第二值;或者
    所述目标编码数据包括所述N个时刻的部分时刻对应的所述第一值和/或所述第二值。
  15. 根据权利要求13或14所述的方法,其特征在于,
    所述第一值为0,所述第二值为1;或者
    所述第一值为1,所述第二值为0。
  16. 根据权利要求13-15任一项所述的方法,其特征在于,
    所述目标编码数据为二进制数据,所述二进制数据包括N位或N-Q位,Q为小于N且大于0的整数。
  17. 根据权利要求16所述的方法,其特征在于,
    所述压感值的取值范围为0~2 N或者0~2 N-Q
  18. 根据权利要求16所述的方法,其特征在于,
    当所述二进制数据的前P位的取值是第一预设取值时,所述二进制数据的后N-P位用于指示压感值,所述P为大于或等于1的整数;
    当所述二进制数据的前P位的取值是第二预设取值时,所述二进制数据的后N-P位用于指示用户的操作的类型。
  19. 根据权利要求16所述的方法,其特征在于,
    当所述二进制数据的后P位的取值是第一预设取值时,所述二进制数据的前N-P位用于指示压感值,所述P为大于或等于1的整数;
    当所述二进制数据的后P位的取值是第二预设取值时,所述二进制数据的前N-P位用于指示用户的操作的类型。
  20. 根据权利要求13-19任一项所述的方法,其特征在于,
    用户对所述触控笔的操作的类型包括对所述触控笔的按钮或触控区域的操作,所述对所述触控笔的按钮或触控区域的操作包括单击、双击、长按或滑动。
  21. 一种信息传输方法,其特征在于,应用于电子设备,所述方法包括:
    所述电子设备接收来自触控笔的第一电极的N个第一信号和来自所述触控笔的第二电极的M个第二信号;N为大于或等于1的整数,M为小于或等于N的整数;
    若在第一时刻,所述电子设备确定所述第一信号存在而所述第二信号不存在,记录第一值;若在第二时刻,所述电子设备确定所述第一信号存在且所述第二信号也存在,记录第二值;其中,所述第一时刻或所述第二时刻是所述N个时刻中的任意时刻;
    所述电子设备根据所述N个时刻记录的所述第一值和/或所述第二值得到目标编码数据,所述目标编码数据用于表征所述压感值的大小或用户对所述触控笔的操作的类型。
  22. 根据权利要求21所述的方法,其特征在于,
    所述目标编码数据包括所述N个时刻的全部时刻记录的所述第一值和/或所述第二值;或者
    所述目标编码数据包括所述N个时刻的部分时刻记录的所述第一值和/或所述第二值。
  23. 根据权利要求21或22所述的方法,其特征在于,
    所述第一值为0,所述第二值为1;或者
    所述第一值为1,所述第二值为0。
  24. 根据权利要求21-23任一项所述的方法,其特征在于,
    所述目标编码数据为二进制数据,所述二进制数据包括N位或N-Q位,Q为小于N且大于0的整数。
  25. 根据权利要求24所述的方法,其特征在于,
    所述压感值的取值范围为0~2 N或者0~2 N-Q
  26. 根据权利要求24所述的方法,其特征在于,
    当所述二进制数据的前P位的取值是第一预设取值时,所述二进制数据的后N-P位用于指示压感值,所述P为大于或等于1的整数;
    当所述二进制数据的前P位的取值是第二预设取值时,所述二进制数据的后N-P位用于指示用户的操作的类型。
  27. 根据权利要求24所述的方法,其特征在于,
    当所述二进制数据的后P位的取值是第一预设取值时,所述二进制数据的前N-P位用于指示压感值,所述P为大于或等于1的整数;
    当所述二进制数据的后P位的取值是第二预设取值时,所述二进制数据的前N-P位用于指示用户的操作的类型。
  28. 根据权利要求21-27任一项所述的方法,其特征在于,
    用户对所述触控笔的操作的类型包括对所述触控笔的按钮或触控区域的操作,所述对所述触控笔的按钮或触控区域的操作包括单击、双击、长按或滑动。
  29. 根据权利要求21-28任一项所述的方法,其特征在于,所述目标编码数据用于表征压感值的大小时,所述方法还包括:
    所述电子设备根据所述压感值确定所述触控笔的绘制的线条的粗细程度;
    所述压感值越大,所述线条越粗;所述压感值越小,所述线条越细。
  30. 根据权利要求21-28任一项所述的方法,其特征在于,所述目标编码数据用于表征用户对所述触控笔的操作的类型时,所述方法还包括:
    当所述操作的类型为单击按钮时,所述电子设备截图;
    当所述操作的类型为长按按钮时,所述电子设备打开笔记本应用;
    当所述操作的类型为在触控区域滑动时,所述电子设备切换界面。
  31. 根据权利要求21-30任一项所述的方法,其特征在于,所述方法还包括:
    响应于用户在所述电子设备的设置界面选中辅助功能选项的操作,所述电子设备显示辅助功能界面,所述辅助功能界面包括手写笔选项;
    响应于用户选中所述手写笔选项的操作,所述电子设备显示所述手写笔的功能设置界面,所述手写笔的功能设置界面中包括压感等级选项;
    响应于用户对所述压感等级选项的操作,所述电子设备显示弹框,所述弹框包括多个压感等级的取值;
    响应于用户从所述多个压感等级的取值中选中第一取值的操作,所述电子设备根据所述第一取值设置所述触控笔的压感等级。
  32. 根据权利要求21-30任一项所述的方法,其特征在于,
    响应于用户在所述电子设备的设置界面选中辅助功能选项的操作,所述电子设备显示辅助功能界面,所述辅助功能界面包括手写笔选项;
    响应于用户选中所述手写笔选项的操作,所述电子设备显示所述手写笔的功能设置界面,所述手写笔的功能设置界面中包括压感等级对应的数值调节框以及数值调节钮;
    响应于用户通过所述数值调节钮将所述数值调节框调整为第一取值的操作,所述电子设备根据所述第一取值设置所述触控笔的压感等级。
  33. 一种触控笔,其特征在于,包括:处理器和存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求13-20中任一项所述的方法。
  34. 一种电子设备,其特征在于,包括:处理器和存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求21-32中任一项所述的方法。
  35. 一种信息传输系统,其特征在于,包括:权利要求33所述的触控笔,以及权利要求34所述的电子设备。
  36. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被运行时,实现如权利要求1-32中任一项所述的方法。
  37. 一种计算机程序产品,包括计算机程序或指令,其特征在于,所述计算机程序或指令被处理器执行时,实现权利要求1-32中任一项所述的方法。
PCT/CN2022/140474 2022-01-11 2022-12-20 一种信息传输方法和装置 WO2023134408A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210028942.5 2022-01-11
CN202210028942.5A CN115543105B (zh) 2022-01-11 2022-01-11 一种信息传输方法和装置

Publications (2)

Publication Number Publication Date
WO2023134408A1 WO2023134408A1 (zh) 2023-07-20
WO2023134408A9 true WO2023134408A9 (zh) 2024-01-11

Family

ID=84723934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140474 WO2023134408A1 (zh) 2022-01-11 2022-12-20 一种信息传输方法和装置

Country Status (2)

Country Link
CN (1) CN115543105B (zh)
WO (1) WO2023134408A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10042439B2 (en) * 2014-12-11 2018-08-07 Microsft Technology Licensing, LLC Interactive stylus and display device
CN107357472A (zh) * 2016-05-10 2017-11-17 义隆电子股份有限公司 触控系统、触控笔及其检测方法
US10572063B2 (en) * 2017-01-09 2020-02-25 Microsoft Technology Licensing, Llc Position, tilt, and twist detection for stylus
CN109683733B (zh) * 2019-01-02 2021-01-26 京东方科技集团股份有限公司 触控笔、触控面板、显示装置及触控感测方法
CN110968208B (zh) * 2019-11-28 2023-06-23 京东方科技集团股份有限公司 触控笔、触控笔检测方法和触控系统
CN112558798A (zh) * 2021-02-19 2021-03-26 深圳市千分一智能技术有限公司 主动笔的通信方法、装置、终端和存储介质
CN113178900B (zh) * 2021-03-15 2023-02-17 荣耀终端有限公司 无线充电系统、芯片和无线充电电路
CN113821113B (zh) * 2021-11-22 2022-04-22 荣耀终端有限公司 电子设备和触控笔的交互方法、系统和电子设备

Also Published As

Publication number Publication date
CN115543105B (zh) 2023-10-20
CN115543105A (zh) 2022-12-30
WO2023134408A1 (zh) 2023-07-20

Similar Documents

Publication Publication Date Title
CN113220154B (zh) 刷新率的控制方法、系统和电子设备
CN116466867B (zh) 笔迹绘制方法、装置、电子设备和可读存储介质
WO2023185210A1 (zh) 控制方法、触控笔及触控系统
WO2023040602A1 (zh) 一种电子设备连接方法及电子设备
CN114217700A (zh) 一种触控笔的切换方法和输入设备
US11009910B2 (en) Display method and electronic device
CN112654955B (zh) 检测笔相对于电子设备的定位
WO2023134408A9 (zh) 一种信息传输方法和装置
US20240053880A1 (en) Handwriting drawing method and apparatus, electronic device, and readable storage medium
WO2023020022A1 (zh) 一种触控笔的连接方法及电子设备
CN115599229B (zh) 一种触控笔的控制方法和触控笔设备
EP4206885A1 (en) Functional mode switching method, electronic device, and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920039

Country of ref document: EP

Kind code of ref document: A1