WO2023134211A1 - 一种错位电极生物电芬顿循环井系统及电芬顿组件 - Google Patents

一种错位电极生物电芬顿循环井系统及电芬顿组件 Download PDF

Info

Publication number
WO2023134211A1
WO2023134211A1 PCT/CN2022/120157 CN2022120157W WO2023134211A1 WO 2023134211 A1 WO2023134211 A1 WO 2023134211A1 CN 2022120157 W CN2022120157 W CN 2022120157W WO 2023134211 A1 WO2023134211 A1 WO 2023134211A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
cathode
fenton
electrode
anolyte
Prior art date
Application number
PCT/CN2022/120157
Other languages
English (en)
French (fr)
Inventor
蒲生彦
张涛
余东
刘世宾
王朋
陈劲松
李博文
王鑫
陈艺
马慧
唐强
Original Assignee
成都理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都理工大学 filed Critical 成都理工大学
Publication of WO2023134211A1 publication Critical patent/WO2023134211A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2866Particular arrangements for anaerobic reactors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of in-situ restoration of groundwater pollution, in particular to a dislocation electrode bioelectric Fenton circulation well system and an electric Fenton component.
  • the groundwater circulation well technology is an in-situ repair technology. Through the special design of the main well pipe and the driving effect of aeration/pumping and injection, the groundwater in the aquifer is driven to flow, so that the groundwater forms a vertical well within a certain space range of the aquifer around the circulation well.
  • Three-dimensional water circulation is widely used in the remediation of organic matter-contaminated groundwater.
  • Circulating well technology has the advantages of simple principle, low cost of pollution remediation, easy operation and maintenance of equipment, and little disturbance to aquifers. At the same time, it can also couple multiple pollution remediation such as multiphase extraction, in-situ aeration, microbial remediation and chemical oxidation. It has great development potential and broad application prospects in the field of groundwater organic pollution remediation.
  • the early circulating well technology mainly realizes the in-situ remediation of organically polluted groundwater by means of steam stripping in the well and enhanced biodegradation: first, the three-dimensional water circulation continuously scours and disturbs the organic matter in the aquifer to enter the well, and the well is aerated and blown off Volatile and semi-volatile organic pollutants in groundwater enter the gas phase from the water phase; second, aeration increases the dissolved oxygen content in groundwater, and diffuses into the area affected by the circulation well with the flow of groundwater, thereby enhancing in-situ aerobic biodegradation effect. Therefore, the circulating well technology has a good remediation effect on groundwater pollution dominated by volatile organic compounds.
  • the degradation of refractory volatile organic compounds depends on the existence of indigenous microorganisms and their pollutant degradation performance. Groundwater organic pollutants need to be removed by coupling with other pollution remediation technologies, and it is difficult for a single circulating well technology to achieve the ideal remediation effect.
  • Bioelectric Fenton technology is a new type of wastewater treatment technology developed on the basis of bioelectrochemical technology. It couples bioelectrochemical technology and electro-Fenton technology, and generates H 2 O 2 in situ at the cathode, combined with Fe 2 + Fenton reaction occurs to generate free radicals with strong oxidative properties, which efficiently oxidize and degrade organic pollutants. Due to the extracellular electron transfer of anode electroactive microorganisms, the bioelectric Fenton technology has the characteristics of low energy consumption, low cost, high pollutant degradation efficiency, and low selectivity, and is very suitable for the application of multiple types of compound pollution in actual sites. Groundwater restoration.
  • patent document CN 102515343 B discloses an inflatable gas barrier device and its injection repair method for groundwater pollution.
  • the device includes a main gas injection pipe, and the middle part of the main gas injection pipe is covered with a rubber cartridge assembly of elastic material;
  • the main air injection pipe has a group of rubber cartridge joints, protective sleeves, intermediate joints, and connecting sleeves symmetrically sleeved on the upper and lower sides of the rubber cartridge assembly.
  • the connecting sleeve I is connected between the intermediate joint I and the upper joint; the upper joint is provided with an upper interface for connecting the main gas injection pipe to the external gas injection pipe, and an inflation interface is provided next to the upper interface, and the upper end of the inflation interface is connected to the external inflation pipe. Connected, the lower end of the inflation interface extends downwards to communicate with the gas injection cavity.
  • the patent document CN 210598814U discloses a soil and groundwater sampling repair integrated drilling rig, including a power head part, the power head part includes an impact rotary power head and a rotary spray power head, and the impact rotary power head and the The rotary spray power heads are installed side by side in the sliding track of the top carriage of the carriage part, the top carriage is connected to the bottom carriage through an oil cylinder, and one end of the oil cylinder is fixed to the bottom carriage by a pin shaft and a cotter pin, The other end locks the top carriage with a nut through the protruding piston head, and the carriage part also includes a first wear plate and a second wear plate, and the first wear plate and the second wear plate The upper and lower ends of the bottom carriage are fixed by bolts and have a certain interval to form the sliding track of the top carriage, and the carriage parts are installed on the detection frame.
  • this patent can only restore groundwater, and cannot simultaneously purify organic pollutants that coexist in different phases.
  • Patent document CN 206955867 U also discloses a circulation well device for in-situ repair of organically polluted groundwater, including a circulation well, an aeration system, a biological treatment system and a medicament dosing system;
  • the circulation well is divided into an inner well and an outer well;
  • the inner well and the outer well are divided into upper and lower sections, separated by a partition in the middle;
  • the aeration system includes air pumps, air pipes, and aeration heads;
  • the biological treatment system includes microbial filling areas, submersible pumps, suction pipes, and sprinklers;
  • the dosing system includes repairing chemical storage container, chemical dosing pump, chemical delivery pipe, chemical dosing pipe and chemical adding pipe.
  • the load space of microorganisms in this invention is small, and the selectivity to pollutants is high, which is greatly affected by the biological toxicity of pollutants, and the remediation efficiency is low.
  • Patent document CN 112551681 A also discloses a single-chamber microbial electro-Fenton assembly and its application, including: anode, cathode, electrolyte; the anode and cathode are located in the same single chamber; the anode includes: multi-layer carbon cloth and plastic mesh Rolled anode substrate, plastic mesh is set between carbon cloths to separate carbon cloths; mixed bacteria are loaded on the anode substrate; Pacific alkanovorous bacteria; the cathode includes: a bracket made of titanium mesh, and the inside of the bracket is filled with activated carbon powder loaded with graphene and cobalt; the electrolyte includes sewage to be treated and added nutrients; the mixed bacteria decompose the to-be-treated The organic matter in the sewage produces electrons for use by the cathode.
  • the anode and the cathode are both arranged in the sewage in this patent, the O2 near the cathode has a great influence on the reactivity of the microorganisms carried
  • the circulating wells used for in-situ remediation of groundwater in the prior art mainly realize the purification of polluted groundwater by means of aeration in the well and enhanced in-situ biodegradation.
  • the types of remedial pollution are relatively limited. Only by coupling with other technologies can it strengthen its ability to remediate polluted groundwater.
  • the bioelectric Fenton technology produces H 2 O 2 on the surface of the cathode, and undergoes a Fenton reaction with Fe 2+ , which can efficiently degrade organic pollutants in water with low selectivity and low energy consumption. Coupling the two may allow in-situ efficient and continuous remediation of organically polluted groundwater.
  • the unique electrode structure in the circulation well is set so that the cathode and the anode are dislocated in space, for example, the cathode and the anode are dislocated in the vertical direction, and the cathode and the anode are dislocated inside and outside the anode chamber to reduce the anaerobic effect of oxygen on the anode. environmental impact.
  • the present invention also reduces the impact of oxygen on the anaerobic environment of the anode by changing the position of the aeration head of the aeration system, setting the aeration head at the junction of the cathode and the anode with the direction of the aeration head facing the cathode.
  • the invention also injects the anolyte composed of organic waste water into the anode chamber, so that the electroactive microorganisms in the anode can degrade the organic waste water at the same time, so as to realize the synchronous purification of the organic waste water and the organic pollutants in the groundwater.
  • the present invention provides a bioelectric Fenton circulation well system with misplaced electrodes, which at least includes a circulation well, a pumping water injection assembly and a bioelectric Fenton assembly, and the pumping water injection assembly is used to realize different functions of the circulation well.
  • the bioelectric Fenton assembly arranged in the first sieve section of the circulation well includes at least several electrodes arranged in dislocation, wherein, several cathodes and several anodes of the electrodes are distributed in different ways Space dislocation is formed, and/or the cathode of the electrode is arranged outside the chamber coated with the proton exchange membrane, the anode is arranged inside the chamber covered with the proton exchange membrane, and the cathode and the The anodes are arranged offset in the axial direction of the electrodes.
  • the cathode and the anode are dislocated in space so that the distribution area of the cathode is separated from the distribution area of the anode, thereby facilitating targeted aeration in different areas and reducing the impact of aeration on the anaerobic environment of the anode.
  • the electrodes in the prior art are distributed in the groundwater. Since the distribution of the cathode and oxygen is not divided into regions, when the cathode is aerated, the anode is also affected by the aerated oxygen, which reduces the degradation efficiency of the anode to the organic matter in the groundwater.
  • the electrode of the present invention is provided with at least one chamber covered by a proton exchange membrane to constitute an anode chamber for injecting anolyte, the first part of which belongs to the anode section is filled with electroactive microorganisms Conductive carrier particles of the anode to constitute the anode, the outer surface of the anode chamber belonging to the second part of the cathode section is coated with an iron-modified carbon felt electrode to constitute the cathode, so that the anode and the cathode are in the interior of the anode chamber and External misalignment settings.
  • the present invention displaces the cathode and the anode inside and outside the anode chamber so that the anode is far away from the cathode.
  • the electroactive microorganisms in the anode are in an oxygen-free environment in the anode chamber and do not directly contact oxygen.
  • the electroactive microorganisms can
  • the organic pollutants in the anolyte are decomposed to realize the technical effect of simultaneous purification of the anolyte and catholyte.
  • the conductive carrier particle anode of the present invention has a large surface area, which endows more loading space for electroactive microorganisms, and the cathode formed by the iron-modified carbon felt electrode greatly reduces the secondary pollution of groundwater that may be caused by the Fenton-like reaction plus Fe 2+ risks of.
  • the anode and cathode of the counter electrode in the present invention are arranged and distributed in misplaced areas, that is, the cathode distribution area and the anode distribution area only have a border, and there is no intersection of distribution areas, so the present invention can aerate the cathode distribution area, thereby reducing the impact of aeration on the cathode distribution area. Effects of electroactive microorganisms on the anode.
  • the circulation well system also includes an aeration system, the aeration head of the aeration system is arranged at the junction of the anode and the cathode, and the aeration head is aerated toward the position of the cathode Set to reduce the effect of oxygen on the anaerobic environment of the anode chamber.
  • the present invention deoxidizes the anolyte and then degrades it at the anode.
  • the anolyte is the organic wastewater deoxidized by the deoxygenation system, so that the electroactive microorganisms carried on the surface of the conductive carrier particles filled in the anode section in the anode chamber grow in an anaerobic environment.
  • the electroactive microorganisms loaded on the surface of the conductive carrier particles have a stronger degradation ability, so that the organic wastewater discharged from the multiphase extraction unit or other production processes, that is, the anolyte, can also be degraded, thereby realizing the surface organic waste.
  • the electroactive microorganisms loaded on the surface of the conductive carrier particles in the anode degrade the organic carbon source in the anolyte to generate protons and electrons
  • the cathode uses oxygen as the electron acceptor and combines
  • the protons transferred from the anode generate H 2 O 2
  • Fe 3+ is used as the electron acceptor to generate Fe 2+
  • a Fenton-like reaction occurs on the surface of the cathode and the organic pollutants in the catholyte are degraded, so that the chamber in the electrode is injected into
  • the anolyte and the catholyte in the circulation well are purified at the same time; the anolyte is organic wastewater, and the catholyte is organically polluted groundwater.
  • Electrodes are arranged in parallel, and the horizontal position of the center of the cathode is higher than the horizontal position of the center of the anode.
  • Parallel arrangement of electrodes facilitates the distribution of cathodes and anodes in different areas.
  • the cathode is set at a higher position, and the anode is set at a lower position.
  • the anolyte is injected into the position of the anode at the bottom of the chamber through the injection pump, flows upward in the chamber, and is drawn out at the position of the cathode at the top of the chamber.
  • the extraction difficulty of the extraction pump is reduced, thereby reducing the energy consumption of the extraction pump.
  • the bottom-up flow of the anolyte facilitates the transfer of protons generated by the anode reaction to the cathode through the proton exchange membrane, reducing the mass transfer resistance.
  • the cathode is located at the top of the anode.
  • the electrodes are arranged vertically, and the cathode is higher than the anode, which is beneficial to shorten the path for the anolyte to flow into the anode chamber.
  • the air bubbles move upward during aeration, and the high position of the cathode is conducive to the rapid reception of oxygen by the cathode, and also helps to reduce the possibility of the anode being in contact with oxygen.
  • the anolyte is injected into the anode chamber from the cathode end of the electrode, and the reacted anolyte is drawn from the anode end of the electrode.
  • the injection and extraction of the anolyte enables the purified anolyte to be discharged quickly, and new anolyte is injected so that the anolyte can continue to react and degrade.
  • the anode chamber in the electrode is composed of a tube whose outer surface is coated with a proton exchange membrane, wherein the tube wall is provided with several holes through the tube wall, so that the protons in the anode compartment pass through the proton exchange membrane to the cathode. Diversion provides efficient channels, reducing mass transfer resistance.
  • the present invention also provides a bioelectric Fenton circulation well system with misplaced electrodes, which at least includes a circulation well, a pumping water injection assembly and a bioelectric Fenton assembly in the well, and the pumping water injection system is used to realize pumping water injection between different screen sections of the circulation well,
  • the bioelectric Fenton assembly arranged in the first screen section of the circulation well includes at least one electrode, wherein the cathode and the anode of the electrode form a spatial dislocation according to different distribution areas.
  • the electrode is provided with at least one chamber covered by a proton exchange membrane to form an anode chamber for injecting the anolyte, and the cathode of the electrode is arranged outside the chamber covered by the proton exchange membrane,
  • the anode is arranged inside the chamber covered with the proton exchange membrane, and the cathode and the anode are arranged in an offset direction in the axial direction of the electrodes.
  • the anode section of the anode chamber is filled with conductive carrier particles to constitute an anode, and the cathode section of the anode chamber is not filled with conductive carrier particles.
  • the outer surface of the cathode segment is coated with an iron-modified carbon felt electrode to form a cathode, and the anode and the cathode are arranged in dislocation inside and outside the anode chamber.
  • the surface of the conductive carrier particles is loaded with electroactive microorganisms, and the anolyte is deoxidized organic wastewater.
  • the electroactive microorganisms grow on the anolyte produced by the anode. in an anaerobic environment composed of liquid.
  • the electroactive microorganism degrades the organic carbon source in the anolyte to generate protons and electrons; the cathode uses oxygen as the electron acceptor and combines the protons transferred from the anode to generate H 2 O 2 , using Fe 3+ as the electron acceptor to generate Fe 2+ , Fenton-like reaction occurs on the surface of the cathode and degrades the organic pollutants in the catholyte, so that the anolyte injected into the chamber in the electrode and the cathode in the circulation well The liquid is purified at the same time.
  • At least two of the electrodes are arranged in parallel.
  • the electrode when the horizontal position of the center of the cathode is higher than the horizontal position of the center of the anode, the electrode can be arranged in the catholyte in any posture.
  • the anolyte is deoxygenated by a deoxygenation system before the anolyte is injected into the anode compartment.
  • an aeration system is also included, the aeration head of the aeration system is arranged at the junction of the anode and the cathode, and the aeration head is arranged in a manner of aeration toward the position of the cathode, so as to Reduce the impact of oxygen on the anaerobic environment of the anode compartment.
  • the proton exchange membrane is coated on the outer surface of the tube, and the tube wall of the tube is provided with several holes passing through the tube wall to allow protons to pass through the proton exchange membrane.
  • the present invention also provides a bioelectric Fenton assembly for purifying anolyte and catholyte at the same time, comprising at least one electrode, and at least one chamber covered by a proton exchange membrane is arranged in the electrode to form a chamber for injecting anolyte
  • a bioelectric Fenton assembly for purifying anolyte and catholyte at the same time, comprising at least one electrode, and at least one chamber covered by a proton exchange membrane is arranged in the electrode to form a chamber for injecting anolyte
  • An anode chamber the first part of which belongs to the anode section is filled with conductive carrier particles to form an anode, the outer surface of which is covered by an iron-modified carbon felt electrode in the second part which belongs to the cathode section
  • the plurality of cathodes and the plurality of anodes of the electrode form a spatial dislocation according to different distribution areas.
  • the proton exchange membrane is coated on the outer surface of the tube, and the tube wall of the tube is provided with several holes passing through the tube wall to allow protons to pass through the proton exchange membrane.
  • the surface of the conductive carrier particles is loaded with electroactive microorganisms, and the anolyte is deoxidized organic wastewater.
  • the electroactive microorganisms grow on the anolyte produced by the anode. in an anaerobic environment composed of liquid.
  • the bioelectric Fenton assembly also includes an aeration system, the aeration head of the aeration system is arranged at the junction of the anode and the cathode, and the aeration head is arranged according to the position toward the cathode
  • the way of aeration is set to reduce the impact of oxygen on the anaerobic environment of the anode chamber.
  • the bioelectric Fenton component of the present invention can separate the cathode distribution area from the anode distribution area in a spatially dislocated manner between the cathode and the anode, and set the aeration system to blow only towards the cathode, thereby reducing the impact of oxygen on the anaerobic environment of the anode , improve the degradation ability of electroactive microorganisms in the anode.
  • Fig. 1 is a schematic diagram of a simplified structure of a circulating well system in a working state according to a preferred embodiment of the present invention
  • Fig. 2 is a simplified structural schematic diagram of a circulating well system of a preferred embodiment provided by the present invention
  • Fig. 3 is a simplified structural schematic diagram of the bioelectric Fenton assembly of the present invention.
  • Fig. 4 is the simplified structural representation of the anode chamber of the electrode of the present invention.
  • Fig. 5 is a schematic cross-sectional structure diagram of the electrode of the present invention.
  • 100 circulation well; 1: well body; 2: first screen hole; 3: second screen hole; 4: packer; 5: pumping and injection components; 6: anode chamber; 7: cathode chamber; 8: proton exchange membrane; 9: aeration system; 10: power supply; 11: anode; 12: cathode; 13: tube; 14: aeration head; 15: liquid storage tank; 16: first pump; 17: second pump; 18: Deoxygenation system; 19: vacuum pump; 20: gas treatment device; 21: first sieve section; 22: second sieve section; 23: electroactive microorganisms.
  • the present invention provides a bioelectric Fenton circulation well system with misplaced electrodes, and also provides a bioelectric Fenton assembly for the circulation well.
  • conductive carrier particles refer to particles capable of conducting electricity and carrying microorganisms, such as three-dimensional graphite particles and the like.
  • the electroactive microorganisms in the present invention are strains capable of degrading organic carbon sources in organic wastewater and producing protons and electrons, such as cultivated and domesticated Shewanella, Geobacter and the like.
  • the well body 1 of the circulation well is at least divided into two parts, the first sieve section 21 and the second sieve section 22 by the packer 4 .
  • the position of the first screen section 21 is higher than that of the second screen section 22 .
  • the well wall of the first sieve section 21 is provided with first sieve holes 2 .
  • the well wall of the second sieve section 22 is provided with a second sieve hole 3 .
  • the groundwater in the aquifer enters the second sieve section 22 through the second sieve holes 3 under the action of gravity.
  • the water injection assembly 5 is used to realize the water injection between different screen sections of the circulation well, for example, it includes a pumping main pump, a second pipeline that runs through the packer 4 and the pipeline extends to the second screen section 22, and the pipeline extends to the second screen section 22.
  • the pumping and injecting assembly 5 pumps out the groundwater in the second sieve section 22 and injects it into the first sieve section 21 .
  • the groundwater in the first sieve section 21 flows out to the groundwater aquifer outside the well through the first sieve hole 2, forming a vertical three-dimensional water flow circulation of groundwater.
  • the bioelectric Fenton assembly of the present invention is disposed in the first screen section 21 of the circulation well 100 .
  • Bioelectric Fenton components can be one set or multiple sets.
  • the bioelectric Fenton assembly can be set based on the size of the circulation well. Several bioelectric Fenton assemblies can be set up in parallel.
  • the bioelectrical Fenton assembly at least includes several electrodes arranged in dislocation.
  • the anode 11 and the cathode 12 are respectively connected to the positive and negative poles of the external DC power supply 10 through wires.
  • the spatial distribution areas of the cathode 12 and the anode 11 of the electrodes are misaligned.
  • the anode 11 and the cathode 12 are arranged in a spatially dislocated manner.
  • the electrodes include an anode 11 and a cathode 12 .
  • the cathodes 12 of several electrodes are arranged in the same direction, and the anodes 11 of several electrodes are arranged in the same direction, so that the anodes 11 and cathodes 12 are distributed in two regions, and the anodes 11 and cathodes 12 are arranged in dislocation, forming a dislocation distribution.
  • the cathode 12 of the electrode is arranged outside the chamber coated with the proton exchange membrane 8
  • the anode 11 is arranged inside the chamber covered with the proton exchange membrane
  • the cathode 12 and the anode 11 are arranged in the axial direction of the electrode.
  • the upper dislocation is arranged, so that the cathode 12 and the anode 11 form a spatial dislocation.
  • the anode 11 is arranged inside the chamber, and the cathode 12 is arranged on the surface of the proton exchange membrane outside the chamber.
  • the anode 11 and the cathode 12 form a spatial misalignment due to misalignment of the distribution area and dislocation of the disposition of the anode 11 and the cathode 12 .
  • the reaction environment required by the cathode 12 and the anode 11 is different, the cathode 12 needs oxygen, and the anode 11 needs an anaerobic environment to degrade organic matter.
  • the anode 11 and the cathode 12 are spatially dislocated, the different distribution areas make the reaction of the anode 11 less affected by the oxygen in the environment where the cathode 12 is located. It is beneficial for the cathode and anode to carry out different degradation reactions respectively.
  • the electrode of the present invention includes at least one chamber therein.
  • the chamber is formed by covering the surface of the tube 13 with the proton exchange membrane 8 .
  • the number of chambers is not limited, and may be one, or two or more.
  • the shape of the chamber is not limited, and it can be spherical, cylindrical, prismatic, polygonal column, special-shaped chamber or irregular shape and so on.
  • the chamber is configured as a cylinder.
  • the tube 13 may be a stainless steel tube, or a resin tube, or a tube formed of other materials.
  • the pipe wall of the pipe 13 is provided with several holes passing through the pipe wall.
  • the pores may be distributed in a regular arrangement or in an irregular arrangement. Pores are provided for the passage of protons through the proton exchange membrane.
  • the shape of the hole is not limited, and may be square, circular, triangular, polygonal or irregular.
  • the proton exchange membrane 8 seals the holes and ends of the tube 13 , that is, the whole of the tube 13 is sealed.
  • the chamber constituted by the tube 13 externally coated with the proton exchange membrane 8 is called the anode chamber 6 .
  • the environment within the first sieve section 21 where the chamber is located is called the cathode chamber 7 .
  • the continuously flowing organic polluted groundwater in the cathode chamber 7 is catholyte.
  • one end of the anode chamber 6 is filled with conductive carrier particles loaded with electroactive microorganisms 23 to form the anode 11 .
  • the anode 11 composed of conductive carrier particles has a large surface area, which endows the electroactive microorganisms 23 with more loading space, and the cathode composed of iron-modified carbon felt greatly reduces the possibility of secondary Fenton-like reaction and Fe 2+ in the groundwater. risk of contamination.
  • the first part of the anode chamber 6 filled with conductive carrier particles constitutes the anode segment, the second part not filled with conductive carrier particles constitutes the cathode segment.
  • the pole section of the anode chamber filled with electrically conductive carrier particles is used for filling the anolyte.
  • the anolyte is composed of organic wastewater. Organic wastewater can be multiphase extraction separation liquid, or it can be discharged from other processes in the factory.
  • the anolyte penetrates the conductive carrier particles and contacts the electroactive microorganisms. The anolyte is injected into the anode chamber from the anode end of the electrode, and the reacted anolyte is drawn out from the cathode end of the electrode.
  • the outer surface of the proton exchange membrane 8 of the cathode section is coated with an iron-modified carbon felt electrode to constitute the cathode 12 .
  • the iron-modified carbon felt electrode is a carbon felt electrode loaded with Fe 3+ .
  • Fe 3+ fixed on the surface of carbon felt gets electrons to generate Fe 2+ , participates in Fenton reaction to form Fe 3+ , and so on.
  • Such arrangement makes the anode 11 and the cathode 12 dislocated inside and outside the anode chamber 6 .
  • both the anode of the conductive carrier particles and the cathode of the iron-modified carbon felt are closely attached to the tube 13 covering the proton exchange membrane 8, which greatly reduces the distance between the electrodes and reduces the mass transfer resistance.
  • the aeration head 14 of the aeration system 9 is arranged at the junction of the anode 11 and the cathode 12 .
  • the aeration head 14 is arranged in a way of aeration toward the position of the cathode 12, so as to reduce the influence of oxygen on the anaerobic environment of the anode chamber.
  • the electroactive microorganisms 23 supported on the surface of the conductive carrier particles in the anode 11 degrade the organic carbon source in the anolyte and generate protons and electrons.
  • the protons are transferred to the cathode chamber 7 through the proton exchange membrane 8 through the small holes in the tube 13, and the electrons are transferred to the cathode 12 through the external circuit.
  • the cathode 12 needs to use O 2 as an electron acceptor to combine with the protons transferred from the anode to generate H 2 O 2 .
  • the H 2 O 2 generated by the cathode and the Fe 2+ generated by the electrons of Fe 3+ loaded on the electrode surface undergo a Fenton reaction, which efficiently and continuously degrades organic pollutants in groundwater.
  • the aeration head blows air towards the cathode, which greatly reduces the impact of oxygen on the anaerobic environment in the anode chamber while ensuring that the cathode uses oxygen as the electron acceptor.
  • the aeration process can also blow off volatile and semi-volatile organic pollutants in organically polluted groundwater.
  • the cathode end of the anode chamber 6 is connected to a liquid storage tank 15 storing organic wastewater.
  • the pipeline between the anode chamber 6 and the liquid storage tank 15 is provided with at least one second pump 17 for transporting the anolyte from the liquid storage tank 15 to the deoxidation system 18 .
  • the first pump 16 transports the deoxidized organic wastewater to the anode chamber 6 .
  • Both the first pump 16 and the second pump 17 in the present invention can be pumps capable of pumping fluid, such as water pumps.
  • the anolyte is organic wastewater deoxidized by the deoxygenation system 18, so that the electroactive microorganisms 23 carried on the surface of the conductive carrier particles filled in the anode section in the anode chamber 6 grow in an anaerobic environment.
  • the bio-Fenton system of the present invention After the bio-Fenton system of the present invention is in operation, based on the unique structure of the electrode, it can degrade and purify the anolyte and catholyte at the same time, that is, organic wastewater and polluted groundwater can be degraded and purified at the same time to realize synchronous purification.
  • the invention combines the circulation well technology with the bioelectric Fenton technology, and realizes the in-situ, continuous and high-efficiency restoration of organically polluted groundwater.
  • the horizontal position of the center of the cathode 12 is higher than the horizontal position of the center of the anode 11 .
  • the height of the cathode 12 is higher than that of the anode 11 in case the electrodes are inclined relative to the axis of the circulation well. Since the oxygen in the aeration head moves upward in the catholyte, the cathode 12 can fully receive oxygen at a higher position and reduce the influence of oxygen on the anode.
  • Electrodes are arranged vertically in parallel, and the cathode 12 is located on the top of the anode 11 in the vertical direction.
  • the electrodes are arranged vertically so that the contact area between the oxygen in the aeration head and the cathode 12 increases, thereby improving the degradation efficiency of the cathode.
  • the electrode structure of the present invention is not limited to the exemplary structure proposed by the present invention.
  • the cavity in the electrode of the present invention may also contain other structures, for example, the cathode and the anode may not be directly adjacent, and other structures that do not affect the electrification operation of the cathode and the anode can be arranged between the cathode and the anode.
  • the chamber within the electrode could not extend to either the cathode end or the anode end, and could be shorter than the current example.
  • the electrodes can be arranged horizontally or obliquely to carry out organic wastewater and Enhanced purification of groundwater.
  • the structure in the chamber is not limited to a columnar chamber, and can also be isolated into a plurality of sub-chambers allowing anolyte to flow through.
  • the chamber can isolate multiple sub-chambers along the radial direction of the tube, or isolate multiple sub-chambers along the axial direction of the tube, or isolate multiple sub-chambers in other regular or irregular ways.
  • Conductive carrier particles are filled in several subchambers. The conductive carrier particles can fill all the sub-chambers, and can also select some of the sub-chambers to fill.
  • it is more conducive to increasing the contact area between the anolyte and the electroactive microorganisms 23 on the surface of the conductive carrier particles, and it is also conducive to reducing the withdrawal resistance of the anolyte, so that the anolyte is more stable. Easy to be drawn out.
  • the chamber can also exist only inside the anode of the electrode.
  • Anolyte is injected from one end of the anode and drawn from the other end of the anode.
  • the holes on the tube wall of the tube 13 may also be distributed only in the anode section.
  • the present invention also includes a vacuum pump 19 and a gas treatment device 20 .
  • the vacuum pump 19 is connected with the gas treatment device 20 through pipelines.
  • the pipeline connected with the vacuum pump 19 extends into the first screen section 21 .
  • the pipeline connected with the vacuum pump 19 extends to the wellhead in the first sieve section 21, and is used to extract the volatile and semi-volatile organic pollutants and the carbon dioxide after the oxidative decomposition of the organic matter in the groundwater and sent to the gas treatment unit 20.
  • the gas treatment device 20 discharges the treated gas up to the standard into the atmosphere.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明涉及一种错位电极生物电芬顿循环井系统,至少包括循环井、抽注水组件和井内生物电芬顿组件,所述抽注水系统用于实现循环井的不同筛段间的抽注水,设置于循环井的第一筛段(21)中的所述生物电芬顿组件包括至少一个电极,其中,所述电极的阴极(12)与阳极(11)按照分布区域不同的方式形成空间错位。本发明通过阴极与阳极在空间的错位设置,在保证阴极以氧气为电子受体的同时,极大降低氧气对电极内的阳极室厌氧环境的影响,构建的生物电芬顿体系可以加速循环井中有机污染物的降解。

Description

一种错位电极生物电芬顿循环井系统及电芬顿组件 技术领域
本发明涉及地下水污染原位修复技术领域,尤其涉及一种错位电极生物电芬顿循环井系统及电芬顿组件。
背景技术
地下水循环井技术是一种原位修复技术,通过主体井管的特殊设计配合曝气/抽注水驱动作用带动含水层中地下水流动,使得地下水在循环井的周围含水层一定空间范围内形成垂向三维水流循环,在有机物污染地下水修复中有着较广泛的应用。循环井技术具有原理简单、污染修复成本低、设备操作维护容易、对含水层扰动小等优点,同时,还可以耦合多相抽提、原位曝气、微生物修复和化学氧化等多种污染修复技术,在地下水有机污染修复领域具有巨大的发展潜力与广阔的应用前景。
早期循环井技术主要通过井中汽提和强化生物降解两种方式实现有机污染地下水的原位修复:一是通过三维水流循环不断地冲刷扰动作用,带动含水层中有机物进入井内,井内曝气吹脱地下水中的挥发性和半挥发性有机污染物由水相进入气相;二是曝气提高地下水中的溶解氧含量,并随地下水流动扩散到循环井影响区域内,进而强化原位好氧生物降解作用。因此循环井技术对于以挥发性有机物为主的地下水污染具有很好的修复效果,对于难挥发性有机物的降解则取决于土著微生物的存在及其污染物降解性能等因素,而对于难生物降解的地下水有机污染物则需要通过耦合其他污染修复技术才能实现污染物的去除,单一的循环井技术难以达到理想的修复效果。
生物电芬顿技术是在生物电化学技术的基础上发展而来的一种新型废水处理技术,耦合了生物电化学技术与电芬顿技术,在阴极原位产生H 2O 2,结合Fe 2+发生芬顿反应产生具有强氧化性的自由基,高效氧化降解有机污染物。由于阳极电活性微生物的胞外电子转移作用,使得生物电芬顿技术具有能耗低、成本低、污染物降解效率高、选择性低等特点,非常适合应用于实 际场地中多类型复合污染的地下水修复。
目前尚未见到将生物电芬顿技术与循环井技术结合应用的报道,基于二者自身特点,将其结合可实现有机污染地下水的原位连续高效修复,但仍存在许多挑战,例如:质子交换膜的耦合形式、电活性微生物生长需要的厌氧环境、铁源的投加方式等。本发明致力于解决上述技术难题,提供一种应用于原位修复有机污染地下水的循环井系统。
当前,利用生物电芬顿技术进行地下水原位修复的技术方案较少,普遍采用注射修复的方式修复地下水。例如,专利文献CN 102515343 B公开了一种膨胀型气体阻隔装置及其用于地下水污染的注射修复方法,该装置包括主注气管,所述主注气管中部套有弹性材质的胶筒总成;主注气管分别在胶筒总成的上下对称套有一组胶筒接头、保护套、中间接头、连接套。连接套I连接于中间接头I与上接头之间;上接头上设有用于使主注气管与外部注气管连接的上接口,并在上接口旁设有充气接口,充气接口上端与外部充气管连接,充气接口下端向下延伸与注气腔体相连通。该发明虽然能够保证在空气注射井内实现快速、单向注气,能够满足对挥发性有机物污染场地的地下水采用大规模原位空气注射技术修复的需要,但是其不能够形成水的垂向三维循环,对非均质地层适用性差,更不能够将不同相态共存的有机污染物实现同步净化。不同相态指:溶解相、自由相、气相、残余相有机污染物。
例如,专利文献CN 210598814U公开了一种土壤和地下水取样修复一体式钻机,包括动力头部件,所述动力头部件包括冲击回转动力头与旋喷动力头,所述冲击回转动力头与所述旋喷动力头并排安装在拖板部件的顶部拖板的滑动轨道中,所述顶部拖板通过油缸连接底部拖板,所述油缸一端由销轴与开口销与所述底部拖板固定,另一端通过伸出的活塞头使用螺母锁住所述顶部拖板,所述拖板部件还包括第一耐磨板与第二耐磨板,所述第一耐磨板与第二耐磨板由螺栓固定在所述底部拖板上下两端,并具有一定间隔组成所述顶部拖板的滑动轨道,所述拖板部件安装在探测架上。但是,该专利仅能够对地下水进行修复,无法将不同相态共存的有机污染物实现同步净化。
专利文献CN 206955867 U还公开了一种用于有机污染地下水原位修复的循环井装置,包括循环井、曝气系统、生物处理系统和药剂投加系统;循环井分为内井和外井;内井和外井分上、下两段,中间有隔板隔开;曝气 系统包括气泵、输气管以及曝气头;生物处理系统包括微生物填料区、潜水泵、抽水管以及喷洒头;药剂投加系统包括修复药剂储存容器、加药泵、药剂输送管、药剂投加管以及药剂添加管。但是,该发明微生物的负载空间小,并且对污染物的选择性较高,受污染物生物毒性的影响较大,修复效率较低。
专利文献CN 112551681 A还公开了一种单室型微生物电芬顿组件及其应用,包括:阳极、阴极、电解液;阳极和阴极设于同一单室内;阳极包括:多层碳布和塑料网卷制而成的阳极基材,塑料网设于碳布之间,用于分隔碳布;阳极基材上负载有混合菌;混合菌由沼泽红假单胞菌、普通变形杆菌、Bacillus toyonensis、太平洋食烷菌组成;阴极包括:钛网制成的支架,支架内部填充有负载石墨烯和钴的活性炭粉末;电解液包括待处理污水及添加的营养物质;所述混合菌分解所述待处理污水中的有机物产生电子供所述阴极利用。但是,由于该专利中阳极与阴极均设置在污水内,使得阴极附近的O 2对阳极表面负载的微生物的反应活性影响较大。
此外,一方面由于对本领域技术人员的理解存在差异;另一方面由于申请人做出本发明时研究了大量文献和专利,但篇幅所限并未详细罗列所有的细节与内容,然而这绝非本发明不具备这些现有技术的特征,相反本发明已经具备现有技术的所有特征,而且申请人保留在背景技术中增加相关现有技术之权利。
发明内容
现有技术中用于地下水原位修复的循环井,主要通过井中曝气与强化原位生物降解两种方式实现污染地下水的净化。对于污染物选择性较高,可修复的污染类型较局限,只有通过与其他技术的耦合,才能强化其对于污染地下水的修复能力。生物电芬顿技术在阴极表面产生H 2O 2,与Fe 2+发生芬顿反应,可高效降解水中有机污染物,选择性低,能耗低。将二者耦合或许可实现有机污染地下水的原位高效连续修复。本发明通过设置循环井中独特的电极结构,使得阴极与阳极在空间上错位设置,例如阴极与阳极在竖直方向错位,阴极与阳极在阳极室的内部和外部错位来降低氧气对阳极的厌氧环境的影响。本发明还通过改变曝气系统的曝气头的位置,将曝气头设置在阴极与阳极的交界处并且曝气头的方向朝向阴极来减少氧气对阳极的厌氧环境的影响。本发明还通过向阳极室注入有机废水构成的阳极液,使得阳极的电 活性微生物能够同时降解有机废水,实现有机废水与地下水中有机污染物的同步净化。
针对现有技术之不足,本发明提供了一种错位电极生物电芬顿循环井系统,至少包括循环井、抽注水组件和生物电芬顿组件,所述抽注水组件用于实现循环井的不同筛段间的抽注水,设置于循环井的第一筛段中的所述生物电芬顿组件至少包括错位设置的若干电极,其中,所述电极的若干阴极与若干阳极按照分布区域不同的方式形成空间错位,和/或所述电极的阴极设置在包覆有质子交换膜的腔室的外部,所述阳极设置在包覆有质子交换膜的腔室的内部,并且所述阴极与所述阳极在电极的轴向方向上错位设置。
本发明通过将阴极和阳极进行空间错位设置,使得阴极分布区域与阳极分布区域分开,从而有利于分区域有目的地进行曝气,减少曝气对阳极的厌氧环境的影响。
现有技术中的电极分布在地下水中,由于阴极与氧气的分布没有划分区域,使得对阴极曝气时,阳极也会受到曝气的氧气的影响,降低了阳极对地下水中有机物的降解效率。针对该缺陷,本发明的电极内设置有由质子交换膜包覆的至少一个腔室以构成用于注入阳极液的阳极室,所述阳极室的属于阳极区段的第一部分填充有电活性微生物的导电载体颗粒以构成阳极,所述阳极室的属于阴极区段的第二部分的外部表面包覆有铁改性的碳毡电极以构成阴极,从而阳极与阴极在所述阳极室的内部和外部错位设置。本发明通过将阴极与阳极在阳极室内外错位设置,使得阳极远离阴极,当阴极接受氧气时,阳极内的电活性微生物在阳极室内处于无氧环境并且不直接与氧气接触,同时电活性微生物能够对阳极液中的有机污染物进行分解,实现阳极液与阴极液同时净化的技术效果。本发明的导电载体颗粒阳极具有极大表面积,赋予了电活性微生物更多的负载空间,铁改性碳毡电极形成的阴极极大地降低了类芬顿反应外加Fe 2+可能造成地下水二次污染的风险。
由于本发明对电极的阳极和阴极设置分布在错位的区域,即阴极分布区域与阳极分布区域只有交界,不存在分布区域交集,因此本发明能够针对阴极分布区域进行曝气,从而减少曝气对阳极的电活性微生物的影响。优选地,循环井系统还包括曝气系统,所述曝气系统的曝气头设置在所述阳极与所述阴极交界处,并且所述曝气头按照朝向所述阴极所在位置曝气的方式设置, 以降低氧气对阳极室的厌氧环境的影响。
针对现有技术只能对地下水进行修复的缺陷,本发明将阳极液脱氧后在阳极进行降解。具体地,阳极液为由脱氧系统脱氧后的有机废水,从而使得阳极室内的由填充在阳极区段的导电载体颗粒表面所负载的电活性微生物生长于厌氧环境中。对阳极液进行脱氧处理后,导电载体颗粒表面所负载的电活性微生物的降解能力更强,使得多相抽提单元或其他生产工艺排放的有机废水即阳极液也能够得到降解,从而实现地表有机废水与地下水的同时净化。优选地,在通电的情况下,所述阳极中的导电载体颗粒的表面负载的电活性微生物降解所述阳极液中的有机碳源产生质子与电子,所述阴极以氧气为电子受体并结合阳极转移过来的质子生成H 2O 2,以Fe 3+为电子受体生成Fe 2+,阴极表面发生类芬顿反应并降解阴极液中的有机污染物,使得所述电极内的腔室注入的阳极液与循环井内的阴极液同时净化;其中,阳极液为有机废水,阴极液为被有机污染的地下水。
优选地,若干个所述电极并行设置,并且阴极的中心所在水平位置高于所述阳极的中心所在的水平位置。电极并行设置有利于阴极和阳极分布在不同的区域。阴极设置在较高的位置,阳极设置在较低的位置,阳极液通过注入泵注入到腔室底部阳极所在的位置,在腔室内由下向上流,在腔室顶部阴极所在位置被抽出,减小了抽出泵的抽取难度,从而降低了抽出泵的能耗。同时,阳极液自下向上流动有利于阳极反应产生的质子通过质子交换膜向阴极转移,降低了传质阻力。
优选地,若干个所述电极以并行的方式竖直设置,并且所述阴极位于所述阳极的顶端。电极竖直设置,并且阴极高于阳极,有利于缩短阳极液流入阳极室的路径。曝气时气泡向上移动,阴极在高处有利于阴极快速接收氧气,也有利于降低阳极与氧气接触的可能性。
优选地,阳极液由电极的阴极端注入阳极室,并且反应后的阳极液从电极的阳极端抽出。阳极液的注入和抽出,使得被净化后的阳极液能够快速排出,注入新的阳极液从而使得阳极液能够持续反应和降解。
优选地,所述电极内的阳极室由外表面包覆有质子交换膜的管构成,其中,管的管壁设置有贯通管壁的若干个孔,为阳极室的质子通过质子交换膜向阴极转移提供了有效的通道,从而减小了传质阻力。
本发明还提供一种错位电极生物电芬顿循环井系统,至少包括循环井、抽注水组件和井内生物电芬顿组件,所述抽注水系统用于实现循环井的不同筛段间的抽注水,设置于循环井的第一筛段中的所述生物电芬顿组件包括至少一个电极,其中,所述电极的阴极与阳极按照分布区域不同的方式形成空间错位。
优选地,所述电极内设置有由质子交换膜包覆的至少一个腔室以构成用于注入阳极液的阳极室,所述电极的阴极设置在包覆有质子交换膜的腔室的外部,所述阳极设置在包覆有质子交换膜的腔室的内部,并且所述阴极与所述阳极在电极的轴向方向上错位设置。
优选地,所述阳极室的阳极区段填充有导电载体颗粒以构成阳极,所述阳极室的阴极区段未填充有导电载体颗粒。
优选地,所述阴极区段的外部表面包覆有铁改性的碳毡电极以构成阴极,所述阳极与所述阴极在所述阳极室的内部和外部错位设置。
优选地,所述导电载体颗粒的表面负载有电活性微生物,所述阳极液为脱氧后的有机废水,在所述阳极室注入阳极液的情况下,所述电活性微生物生长于由所述阳极液构成的厌氧环境中。
优选地,在通电的情况下,所述电活性微生物降解所述阳极液中的有机碳源产生质子与电子;所述阴极以氧气为电子受体并结合阳极转移过来的质子生成H 2O 2,以Fe 3+为电子受体生成Fe 2+,所述阴极表面发生类芬顿反应并降解阴极液中的有机污染物,使得所述电极内的腔室注入的阳极液与循环井内的阴极液同时净化。
优选地,至少两个所述电极并行设置。
优选地,在所述阴极的中心的水平位置高于所述阳极的中心的水平位置的情况下,所述电极能够以任意姿态设置于阴极液中。
优选地,在阳极液注入阳极室之前,所述阳极液由脱氧系统脱氧。
优选地,还包括曝气系统,所述曝气系统的曝气头设置在所述阳极与所述阴极交界处,并且所述曝气头按照朝向所述阴极所在位置曝气的方式设置,以降低氧气对阳极室的厌氧环境的影响。
优选地,所述质子交换膜包覆在管的外表面,所述管的管壁设置有贯通管壁的若干个孔以允许质子通过质子交换膜。
本发明还提供一种同时净化阳极液与阴极液的生物电芬顿组件,包括至少一个电极,所述电极内设置有由质子交换膜包覆的至少一个腔室以构成用于注入阳极液的阳极室,所述阳极室的属于阳极区段的第一部分填充有导电载体颗粒以构成阳极,所述阳极室的属于阴极区段的第二部分的外部表面包覆有铁改性的碳毡电极以构成阴极,所述电极的若干阴极与若干阳极按照分布区域不同的方式形成空间错位。
优选地,所述质子交换膜包覆在管的外表面,所述管的管壁设置有贯通管壁的若干个孔以允许质子通过质子交换膜。
优选地,所述导电载体颗粒的表面负载有电活性微生物,所述阳极液为脱氧后的有机废水,在所述阳极室注入阳极液的情况下,所述电活性微生物生长于由所述阳极液构成的厌氧环境中。
优选地,所述生物电芬顿组件还包括曝气系统,所述曝气系统的曝气头设置在所述阳极与所述阴极交界处,并且所述曝气头按照朝向所述阴极所在位置曝气的方式设置,以降低氧气对阳极室的厌氧环境的影响。
本发明的生物电芬顿组件,能够阴极与阳极在空间错位的方式将阴极分布区域与阳极分布区域区分开,并且设置曝气系统仅朝向阴极吹,从而减少氧气对阳极的厌氧环境的影响,提高阳极内的电活性微生物的降解能力。
附图说明
图1是本发明提供的一种优选实施方式的循环井系统处于工作状态的简化结构示意图;
图2是本发明提供的一种优选实施方式的循环井系统的简化结构示意图;
图3是本发明的生物电芬顿组件的简化结构示意图;
图4是本发明的电极的阳极室的简化结构示意图;
图5是本发明的电极的剖面结构示意图。
附图标记列表
100:循环井;1:井体;2:第一筛孔;3:第二筛孔;4:封隔器;5:抽注水组件;6:阳极室;7:阴极室;8:质子交换膜;9:曝气系统;10:电源;11:阳极;12:阴极;13:管;14:曝气头;15:储液罐;16:第一泵;17:第二泵;18:脱氧系统;19:真空泵;20:气体处理装置;21: 第一筛段;22:第二筛段;23:电活性微生物。
具体实施方式
下面结合附图进行详细说明。
针对现有技术的不足,本发明提供一种错位电极生物电芬顿循环井系统,还提供一种用于循环井的生物电芬顿组件。
本发明中,导电载体颗粒是指能够进行导电且能够载有微生物的颗粒,例如三维石墨粒等等。
本发明中的电活性微生物为能够降解有机废水中的有机碳源并产生质子与电子的菌种,例如经过培养驯化的希瓦氏菌、地杆菌等等。
循环井的井体1由封隔器4至少分为第一筛段21和第二筛段22两个部分。第一筛段21的位置高于第二筛段22的位置。第一筛段21的井壁设置有第一筛孔2。第二筛段22的井壁设置有第二筛孔3。含水层地下水在重力作用下通过第二筛孔3进入第二筛段22。抽注水组件5用于实现循环井的不同筛段间的抽注水,例如包括抽主泵、贯穿封隔器4且管路延伸至第二筛段22的第二管路和管路延伸至第一筛段21内的第一管路。抽注水组件5将第二筛段22内的地下水抽出并注入至第一筛段21内。第一筛段21内的地下水再通过第一筛孔2流出至井外地下水含水层中,形成垂向地下水三维水流循环。
如图1和图2所示,本发明的生物电芬顿组件设置在循环井100的第一筛段21内。生物电芬顿组件可以是一套,也可以是多套。生物电芬顿组件能够基于循环井的尺寸设置。若干生物电芬顿组件可以并行设置。
生物电芬顿组件至少包括错位设置的若干电极。阳极11与阴极12分别通过导线与外加直流电源10正负极相连。
所述电极的阴极12与阳极11的空间分布区域错位设置。使得阳极11与阴极12以空间错位的方式设置。如图1至图3所示,电极包括阳极11和阴极12。阳极11和阴极12存在交界处。若干个电极的阴极12同方向设置,若干个电极的阳极11同方向设置,使得阳极11和阴极12按照两个区域分布,阳极11和阴极12是错位设置的,形成错位分布。
优选地,电极的阴极12设置在包覆有质子交换膜8的腔室的外部,阳 极11设置在包覆有质子交换膜的腔室的内部,并且阴极12与阳极11在电极的轴向方向上错位设置,从而阴极12与阳极11形成空间错位。例如,阳极11设置在腔室的内部,阴极12设置在腔室的外部的质子交换膜的表面。由于阳极11和阴极12的分布区域错位和设置位置错位,使得阳极11与阴极12形成空间错位。
阴极12与阳极11需要的反应环境不同,阴极12需要氧气,阳极11需要在厌氧环境来降解有机物。当阳极11与阴极12形成空间错位时,不同的分布区域使得阳极11的反应受到阴极12所在环境中氧气的影响较少。有利于阴极和阳极分别进行不同的降解反应。
本发明的电极内包括至少一个腔室。腔室由质子交换膜8包覆管13的表面的方式形成。腔室的数量不限,可以是一个,也可以是两个或者更多个。腔室的形状不限,可以是球形、圆柱形、棱柱形、多边形柱、异形腔室或者不规则形状等等。优选地,腔室设置为圆柱形。优选地,管13可以是不锈钢管,也可以是树脂管,或者是其他材料形成的管。
如图4和图5所示,管13的管壁设置有贯通管壁的若干个孔。孔可以是按照规则排列方式分布的,也可以是按照不规则排列方式分布的。设置孔用于质子通过质子交换膜。孔的形状不限,可以是方形、圆形、三角形、多边形或者不规则形状。质子交换膜8是将管13上的孔和端部密封的,即将管13的整体密封。
由外表面包覆有质子交换膜8的管13构成的腔室称为阳极室6。腔室所在的第一筛段21内的环境称为阴极室7。阴极室7内的连续流动的有机污染地下水为阴极液。
如图4和图5所示,阳极室6的一端填充负载有电活性微生物23的导电载体颗粒并形成阳极11。导电载体颗粒构成的阳极11具有极大表面积,赋予了电活性微生物23更多的负载空间,铁改性碳毡构成的阴极则极大地降低了类芬顿反应外加Fe 2+可能造成地下水二次污染的风险。
阳极室6的填充有导电载体颗粒的第一部分构成阳极区段,未填充有导电载体颗粒的第二部分构成阴极区段。阳极室的填充有导电载体颗粒的极区段用于注入阳极液。阳极液为由有机废水。有机废水可以是多相抽提分离液,也可以是由工厂其他工艺产生排出的。阳极液渗入导电载体颗粒与电活性微 生物接触。阳极液由电极的阳极端注入阳极室,并且反应后的阳极液从电极的阴极端抽出。
阴极区段的质子交换膜8的外部表面包覆有铁改性碳毡电极以构成阴极12。铁改性碳毡电极为负载Fe 3+的碳毡电极。固定在碳毡表面的Fe 3+得电子生成Fe 2+,参与芬顿反应又形成Fe 3+,如此循环。这样设置使得阳极11与阴极12在所述阳极室6的内部和外部错位设置。
优选地,导电载体颗粒的阳极与铁改性碳毡的阴极均紧贴包覆质子交换膜8的管13,极大减小了电极间距,降低了传质阻力。
如图3所示,优选地,本发明中,曝气系统9的曝气头14设置在所述阳极11与所述阴极12交界处。曝气头14按照朝向所述阴极12所在位置曝气的方式设置,以降低氧气对阳极室的厌氧环境的影响。
在通电后,降解地下水中的有机污染物时,所述阳极11中的导电载体颗粒的表面负载的电活性微生物23降解所述阳极液中的有机碳源并产生质子与电子。质子通过管13上的小孔穿过质子交换膜8转移至阴极室7,电子则通过外电路转移至阴极12。
阴极12需要以O 2为电子受体,结合阳极转移过来的质子生成H 2O 2。阴极产生的H 2O 2与电极表面负载的Fe 3+的电子产生的Fe 2+发生芬顿反应,高效连续降解地下水有机污染物。
因此,在阴极和阳极空间错位的情况下,曝气头朝向阴极吹气,在保证阴极以氧气为电子受体的同时,极大降低氧气对阳极室内的厌氧环境的影响。曝气过程还可将有机污染地下水中的挥发性和半挥发性有机污染物吹脱出来。
优选地,阳极室6的阴极端与存储有有机废水的储液罐15连接。阳极室6与储液罐15之间的管路设置有至少一个第二泵17,用于将阳极液从储液罐15输送至脱氧系统18。第一泵16将脱氧后的有机废水输送至阳极室6中。本发明中的第一泵16和第二泵17均可以是能够抽取流体的泵,例如水泵。
所述阳极液为由脱氧系统18脱氧后的有机废水,从而使得阳极室6内的由填充在阳极区段的导电载体颗粒表面所负载的电活性微生物23生长于厌氧环境中。
本发明的生物芬顿系统在运行后,基于电极的独特结构,能够将阳极液与阴极液同时进行降解净化,即将有机废水与被污染的地下水同时进行降解净化,实现同步净化。本发明将循环井技术与生物电芬顿技术结合,实现了有机污染地下水的原位、连续、高效修复。
优选地,若干个所述电极并行设置,并且阴极12的中心所在的水平位置高于所述阳极11的中心所在的水平位置。例如,在电极相对于循环井的轴线倾斜的情况下,阴极12的高度高于阳极11的高度。由于曝气头的氧气在阴极液中是向上移动的,因此阴极12在较高位置能够充分接受氧气,并且减少氧气对阳极的影响。
优选地,如图3中所示,若干个所述电极以并行的方式竖直设置,并且在竖直方向上,所述阴极12位于所述阳极11的顶端。电极竖直设置,使得曝气头的氧气与阴极12接触的面积增大,从而提高阴极的降解效率。
优选地,本发明的电极结构不限于本发明提出的示例性结构。本发明的电极内的腔室也可以包含其他结构,例如,阴极与阳极可以不直接相邻,阴极与阳极之间能够设置不影响阴极与阳极通电运行的其他结构。例如,电极内的腔室能够不延伸至阴极端或阳极端,可以比当前示例的长度小。
例如,当曝气头的气体能够被某些结构引导移动向阴极时,同时阳极的导电载体颗粒能够被网状结构限制填充位置时,电极能够在水平方向横向设置或者倾斜设置来进行有机废水与地下水的强化净化。
优选的,在腔室的阳极区段,腔室内的结构不限于柱状腔室,还能够被隔离为多个允许阳极液流过的子腔室。腔室能够沿管的径向进行多个子腔室的隔离,也能够沿管的轴向进行多个子腔室的隔离,或者进行其他规则或不规则的多个子腔室的隔离。导电载体颗粒填充在若干子腔室内。导电载体颗粒能够填充所有的子腔室,也能够选择部分子腔室进行填充。
子腔室之间可以存在间隔,也可以不存在间隔。优选的,在子腔室之间存在间隔的情况下,更有利于增大阳极液与导电载体颗粒表面的电活性微生物23的接触面积,也有利于降低阳极液的抽出阻力,使得阳极液更容易被抽出。
优选地,腔室也能够仅存在电极的阳极内部。阳极液从阳极的一端注入,从阳极的另一端抽出。
优选地,管13的管壁上的孔也可以仅分布在阳极区段。
优选地,本发明还包括真空泵19和气体处理装置20。真空泵19与气体处理装置20通过管路连接。与真空泵19连接的管路延伸至第一筛段21内。优选地,与真空泵19连接的管路延伸至第一筛段21内的井口,用于将地下水中经曝气吹脱的挥发性和半挥发性有机污染物以及有机物氧化分解后的二氧化碳抽出并送入气体处理装置20。气体处理装置20将处理达标后的气体排放到大气中。
需要注意的是,上述具体实施例是示例性的,本领域技术人员可以在本发明公开内容的启发下想出各种解决方案,而这些解决方案也都属于本发明的公开范围并落入本发明的保护范围之内。本领域技术人员应该明白,本发明说明书及其附图均为说明性而并非构成对权利要求的限制。本发明的保护范围由权利要求及其等同物限定。本发明说明书包含多项发明构思,诸如“优选地”、“根据一个优选实施方式”或“可选地”均表示相应段落公开了一个独立的构思,申请人保留根据每项发明构思提出分案申请的权利。

Claims (15)

  1. 一种错位电极生物电芬顿循环井系统,至少包括循环井、抽注水组件和井内生物电芬顿组件,所述抽注水系统用于实现循环井的不同筛段间的抽注水,其特征在于,
    设置于循环井的第一筛段(21)中的所述生物电芬顿组件包括至少一个电极,其中,
    所述电极的阴极(12)与阳极(11)按照分布区域不同的方式形成空间错位。
  2. 根据权利要求1所述的错位电极生物电芬顿循环井系统,其特征在于,
    所述电极内设置有由质子交换膜(8)包覆的至少一个腔室以构成用于注入阳极液的阳极室(6),
    所述电极的阴极(12)设置在包覆有质子交换膜(8)的腔室的外部,所述阳极(11)设置在包覆有质子交换膜(8)的腔室的内部,并且所述阴极(12)与所述阳极(11)在电极的轴向方向上错位设置。
  3. 根据权利要求2所述的错位电极生物电芬顿循环井系统,其特征在于,所述阳极室(6)的阳极区段填充有导电载体颗粒以构成阳极,
    所述阳极室(6)的阴极区段未填充有导电载体颗粒。
  4. 根据权利要求3所述的错位电极生物电芬顿循环井系统,其特征在于,所述阴极区段的外部表面包覆有铁改性的碳毡电极以构成阴极(12),
    所述阳极与所述阴极在所述阳极室(6)的内部和外部错位设置。
  5. 根据权利要求3所述的错位电极生物电芬顿循环井系统,其特征在于,所述导电载体颗粒的表面负载有电活性微生物(23),
    所述阳极液为脱氧后的有机废水,
    在所述阳极室注入阳极液的情况下,所述电活性微生物(23)生长于由 所述阳极液构成的厌氧环境中。
  6. 根据权利要求4或5所述的错位电极生物电芬顿循环井系统,其特征在于,在通电的情况下,所述电活性微生物(23)降解所述阳极液中的有机碳源产生质子与电子;
    所述阴极(12)以氧气为电子受体并结合阳极转移过来的质子生成H 2O 2,以Fe 3+为电子受体生成Fe 2+,所述阴极表面发生类芬顿反应并降解阴极液中的有机污染物,使得所述电极内的腔室注入的阳极液与循环井内的阴极液同时净化。
  7. 根据权利要求6所述的错位电极生物电芬顿循环井系统,其特征在于,至少两个所述电极并行设置。
  8. 根据权利要求7所述的错位电极生物电芬顿循环井系统,其特征在于,在所述阴极(12)的中心的水平位置高于所述阳极(11)的中心的水平位置的情况下,所述电极能够以任意姿态设置于阴极液中。
  9. 根据权利要求2所述的错位电极生物电芬顿循环井系统,其特征在于,在阳极液注入阳极室之前,所述阳极液由脱氧系统(18)脱氧。
  10. 根据权利要求1~9任一项所述的错位电极生物电芬顿循环井系统,其特征在于,还包括曝气系统,
    所述曝气系统的曝气头(14)设置在所述阳极(11)与所述阴极(12)交界处,并且所述曝气头(14)按照朝向所述阴极(12)所在位置曝气的方式设置,以降低氧气对阳极室的厌氧环境的影响。
  11. 根据权利要求10所述的错位电极生物电芬顿循环井系统,其特征在于,所述质子交换膜(8)包覆在管(13)的外表面,
    所述管(13)的管壁设置有贯通管壁的若干个孔以允许质子通过质子交换膜。
  12. 一种同时净化阳极液与阴极液的生物电芬顿组件,其特征在于,包括至少一个电极,
    所述电极内设置有由质子交换膜(8)包覆的至少一个腔室以构成用于注入阳极液的阳极室(6),
    所述阳极室(6)的属于阳极区段的第一部分填充有导电载体颗粒以构成阳极(11),
    所述阳极室(6)的属于阴极区段的第二部分的外部表面包覆有铁改性的碳毡电极以构成阴极(12),
    所述电极的若干阴极(12)与若干阳极(11)按照分布区域不同的方式形成空间错位。
  13. 根据权利要求12所述的同时净化阳极液与阴极液的生物电芬顿组件,其特征在于,所述质子交换膜(8)包覆在管(13)的外表面,
    所述管(13)的管壁设置有贯通管壁的若干个孔以允许质子通过质子交换膜。
  14. 根据权利要求13所述的同时净化阳极液与阴极液的生物电芬顿组件,其特征在于,所述导电载体颗粒的表面负载有电活性微生物(23),
    所述阳极液为脱氧后的有机废水,
    在所述阳极室注入阳极液的情况下,所述电活性微生物(23)生长于由所述阳极液构成的厌氧环境中。
  15. 根据权利要求14所述的同时净化阳极液与阴极液的生物电芬顿组件,其特征在于,所述生物电芬顿组件还包括曝气系统,
    所述曝气系统的曝气头(14)设置在所述阳极(11)与所述阴极(12)交界处,并且所述曝气头(14)按照朝向所述阴极(12)所在位置曝气的方式设置,以降低氧气对阳极室的厌氧环境的影响。
PCT/CN2022/120157 2022-01-11 2022-09-21 一种错位电极生物电芬顿循环井系统及电芬顿组件 WO2023134211A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210030249.1 2022-01-11
CN202210030249.1A CN114262046B (zh) 2022-01-11 2022-01-11 一种错位电极生物电芬顿循环井系统

Publications (1)

Publication Number Publication Date
WO2023134211A1 true WO2023134211A1 (zh) 2023-07-20

Family

ID=80832917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120157 WO2023134211A1 (zh) 2022-01-11 2022-09-21 一种错位电极生物电芬顿循环井系统及电芬顿组件

Country Status (2)

Country Link
CN (2) CN116462312A (zh)
WO (1) WO2023134211A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117623488A (zh) * 2023-11-30 2024-03-01 江苏省环境科学研究院 一种氯代烃污染地下水的原位修复系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116462312A (zh) * 2022-01-11 2023-07-21 成都理工大学 一种生物电芬顿组件、循环井装置及系统
CN114560562A (zh) * 2022-04-18 2022-05-31 成都理工大学 一种地下水循环井井内生物反应器功能组件及其使用方法
CN114988556B (zh) * 2022-05-24 2023-09-22 成都理工大学 基于循环井强化修复剂在低渗透区域迁移的方法及装置
CN115140913B (zh) * 2022-08-01 2024-05-07 江苏省农业科学院 一种淤泥堆场原位脱水系统
CN115321644B (zh) * 2022-08-29 2023-08-15 上海环境保护有限公司 一种电强化循环井系统及电强化循环井系统处理地下水中卤代烃的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009304584A1 (en) * 2008-10-15 2010-04-22 The University Of Queensland Production of hydrogen peroxide
CN102976472A (zh) * 2012-11-28 2013-03-20 中国地质大学(武汉) 一种铁阴极电芬顿地下水修复方法
CN108640255A (zh) * 2018-05-09 2018-10-12 南开大学 一种炭黑羟基氧化铁阴极生物电芬顿处理典型芳烃类废水并同步产电的方法
CN112250164A (zh) * 2020-10-13 2021-01-22 中建一局集团安装工程有限公司 基于微生物燃料电池-芬顿系统对垃圾渗滤液的降解装置及方法
CN113149150A (zh) * 2021-04-25 2021-07-23 中国地质大学(武汉) 活性炭阴极电芬顿系统及其去除地下水卤代烃的方法
CN114262046A (zh) * 2022-01-11 2022-04-01 成都理工大学 一种错位电极生物电芬顿循环井系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE32077E (en) * 1977-06-30 1986-02-04 Oronzio Denora Impianti Elettrochimici S.P.A. Electrolytic cell with membrane and method of operation
CN101615685B (zh) * 2009-07-17 2011-10-19 广东省生态环境与土壤研究所 一种底泥原位削减同时微生物产电的方法及装置
CN105850864A (zh) * 2016-04-18 2016-08-17 中国矿业大学 一种具有产电功能的自净化水族箱
CN206751603U (zh) * 2017-03-21 2017-12-15 广西师范大学 一种深度处理工业废水的装置
CN208265922U (zh) * 2018-02-13 2018-12-21 鸿灌环境技术有限公司 一种原位电化学修复重金属污染地下水装置
CN109179860B (zh) * 2018-08-28 2022-06-03 哈尔滨工业大学 一种同步催化氧化二级出水中难降解污染物与降解剩余污泥的方法
EP3865459A1 (en) * 2020-02-13 2021-08-18 Universitat de Barcelona Water-processing electrochemical reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009304584A1 (en) * 2008-10-15 2010-04-22 The University Of Queensland Production of hydrogen peroxide
CN102976472A (zh) * 2012-11-28 2013-03-20 中国地质大学(武汉) 一种铁阴极电芬顿地下水修复方法
CN108640255A (zh) * 2018-05-09 2018-10-12 南开大学 一种炭黑羟基氧化铁阴极生物电芬顿处理典型芳烃类废水并同步产电的方法
CN112250164A (zh) * 2020-10-13 2021-01-22 中建一局集团安装工程有限公司 基于微生物燃料电池-芬顿系统对垃圾渗滤液的降解装置及方法
CN113149150A (zh) * 2021-04-25 2021-07-23 中国地质大学(武汉) 活性炭阴极电芬顿系统及其去除地下水卤代烃的方法
CN114262046A (zh) * 2022-01-11 2022-04-01 成都理工大学 一种错位电极生物电芬顿循环井系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117623488A (zh) * 2023-11-30 2024-03-01 江苏省环境科学研究院 一种氯代烃污染地下水的原位修复系统
CN117623488B (zh) * 2023-11-30 2024-04-26 江苏省环境科学研究院 一种氯代烃污染地下水的原位修复系统

Also Published As

Publication number Publication date
CN116462312A (zh) 2023-07-21
CN114262046B (zh) 2023-06-02
CN114262046A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2023134211A1 (zh) 一种错位电极生物电芬顿循环井系统及电芬顿组件
Ren et al. Simultaneous sulfadiazines degradation and disinfection from municipal secondary effluent by a flow-through electro-Fenton process with graphene-modified cathode
Huang et al. Electrokinetic remediation and its combined technologies for removal of organic pollutants from contaminated soils
CN103316908B (zh) 一种修复受多氯联苯污染土壤的装置及方法
CN110357348B (zh) 一种氯代烃污染地下水原位电化学循环井修复方法
CN107777830B (zh) 一种高浓度难降解制药废水处理方法及系统
CN106630177B (zh) 一种利用微生物电解池处理焦化废水并产氢的方法及装置
CN109368746A (zh) 一种高cod、难生化废水的预处理装置的预处理系统及方法
CN109502932A (zh) 一种基于微生物降解耦合电化学法的氯代烃污染地下水处理装置和修复方法
CN102659237A (zh) 利用微生物燃料电池技术原位修复受污染地下水的方法
CN101979330A (zh) 滚筒式微电解反应装置及其水处理方法
CN105417769A (zh) 一种实验室四氯化碳分离处理系统及其处理工艺
CN115259304B (zh) 一种电化学芬顿循环井系统
CN111484122A (zh) 地下水修复系统及修复方法
CN211411617U (zh) 一种电化学改进的生物过滤塔净化装置
CN105858878A (zh) 一种用于处理含有高浓度难降解有机污染物污水的装置
CN106745675B (zh) 一种处理抗生素废水的生物电化学装置及工作方法
CN108675436A (zh) 高级氧化处理废水的一体化方法及装置
CN206188547U (zh) 四相催化氧化装置
CN205328686U (zh) 复合型多维催化氧化组合装置
CN112250163A (zh) 一种异位电子补偿的氢自养反硝化脱氮装置
CN108996810B (zh) 一种高浓度难降解有机废水零排放系统及处理方法
CN116216912A (zh) 一种地下水有机污染物净化系统及方法
CN106311729B (zh) 电催化水设备在治理土壤污染上的应用和土壤污染治理方法
CN103102046A (zh) 生化强化处理器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919846

Country of ref document: EP

Kind code of ref document: A1