WO2023134124A1 - 一种轻质合金与纤维增强复合材料异质接头及制备方法 - Google Patents

一种轻质合金与纤维增强复合材料异质接头及制备方法 Download PDF

Info

Publication number
WO2023134124A1
WO2023134124A1 PCT/CN2022/101021 CN2022101021W WO2023134124A1 WO 2023134124 A1 WO2023134124 A1 WO 2023134124A1 CN 2022101021 W CN2022101021 W CN 2022101021W WO 2023134124 A1 WO2023134124 A1 WO 2023134124A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
reinforced composite
light alloy
welding
heterogeneous
Prior art date
Application number
PCT/CN2022/101021
Other languages
English (en)
French (fr)
Inventor
徐良
李康宁
杨海锋
崔辉
谷世伟
郑红彬
Original Assignee
哈焊国创(青岛)焊接工程创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈焊国创(青岛)焊接工程创新中心有限公司 filed Critical 哈焊国创(青岛)焊接工程创新中心有限公司
Priority to AU2022433216A priority Critical patent/AU2022433216A1/en
Publication of WO2023134124A1 publication Critical patent/WO2023134124A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass

Definitions

  • the invention relates to the technical field of composite material processing, in particular to a heterogeneous joint of a light alloy and a fiber-reinforced composite material and a preparation method thereof.
  • Carbon fiber reinforced composite materials have the advantages of low density (1.1g/cm 3 -1.6g/cm 3 , high strength, no chemical reaction in the molding process, short molding cycle, and reusability).
  • connection technology of carbon fiber reinforced composites and aluminum alloys has been extensively studied.
  • Existing connection technologies can generally be divided into three categories: adhesive bonding, mechanical connections such as screw joints and riveting, and welding technologies; among them, welding technologies are usually only applicable to composite materials whose matrix materials are thermoplastic materials, and their applicability is poor.
  • the obtained aluminum alloy and carbon fiber reinforced composite material heterogeneous joints have low strength, early failure has occurred, and the welding effect is poor, which affects the normal use of heterogeneous joints.
  • the object of the present invention is to provide a heterogeneous joint of light alloy and fiber-reinforced composite material and its preparation method, so as to solve the existing technical problems in the above-mentioned background technology.
  • the technical solution provided by the invention is:
  • the present invention provides a method for preparing a heterogeneous joint between a light alloy and a fiber-reinforced composite material, comprising the following steps:
  • Step 1 surface cleaning: Surface treatment is carried out on the light alloy base metal and the composite material base material to be connected in the heterogeneous joint;
  • Step 2 laser etching: laser etching the light alloy base material to form a concave-convex structure on the surface;
  • Step 3 transitional structure spraying: a transitional structure is provided between the light alloy base material and the composite material base material, and one side of the transitional structure is sprayed to obtain a sprayed layer with the same material as the composite material base material;
  • Step 4 Welding: place the treated light alloy base metal, transition structure and composite material base material in sequence, put one side of the transition structure sprayed layer in contact with the composite material base metal, and the other side without spraying with the light alloy base material
  • the high-strength heterogeneous joints are obtained after welding with welding equipment.
  • the light alloy in the first step is set to be aluminum alloy, magnesium alloy or titanium alloy, and the composite material is set to be carbon fiber reinforced composite material; more preferably, the light alloy is made of aluminum alloy , the composite material is a carbon fiber reinforced thermoplastic composite material.
  • Step 1 surface treatment, use organic solvents to clean the surface of the aluminum alloy and carbon fiber reinforced composite materials that need to be connected in the heterogeneous joints, and remove the dust and oily impurities on the surface;
  • Step 2 laser etching: use a laser to laser etch the aluminum alloy in the form of pulsed laser, and form a uniform micron-scale concave-convex structure on the surface of the aluminum alloy after laser etching;
  • Step 3 metal mesh spraying: select a metal mesh with a suitable material as a transition structure, spray one side of the metal mesh to form a spray coating, and use the same powder material as the carbon fiber reinforced composite material as the raw material for spraying;
  • Step 4 Welding: place the processed aluminum alloy, metal mesh and carbon fiber reinforced composite material in order, one side of the metal mesh sprayed layer is in contact with the carbon fiber reinforced composite material, and the other side that is not sprayed is in contact with the aluminum alloy , using ultrasonic welding equipment to weld it, and after welding, a heterogeneous joint of high-strength aluminum alloy and carbon fiber reinforced composite material is obtained.
  • the organic solvent in the step 1 is selected from alcohol or acetone.
  • the laser power of the laser etching in the second step is 50W-100W
  • the scanning speed is 0.5m/min-2.0m/min
  • the scanning repetition frequency is 40Hz-100Hz.
  • the material of the metal mesh in the third step is one of copper, titanium, nickel, platinum and chromium.
  • the grid of the metal mesh in the third step is set to be circular or hexagonal.
  • the wire diameter of the metal mesh is set to 0.05mm-0.3mm
  • the aperture diameter of the circular grid or the diameter of the circumscribed circle of the hexagonal grid is set to 0.1mm-1.0mm.
  • step 4 first adjust the position of the ultrasonic welding device, and apply an initial pressure to the heterogeneous joint structures stacked in order; then set the welding parameters of the ultrasonic welding device; Finally, welding is performed to obtain heterogeneous welded joints.
  • the present invention also provides a heterogeneous joint of aluminum alloy and carbon fiber reinforced composite material prepared by the above preparation method.
  • the above technical solution includes aluminum alloy, metal mesh and carbon fiber reinforced composite material and is stacked in sequence.
  • One side of the metal mesh is provided with a sprayed layer and is in contact with the carbon fiber reinforced composite material, and the other side is in contact with the aluminum alloy.
  • the beneficial effect is illustrated by taking the base material of light alloy as aluminum alloy and the base material of composite material as carbon fiber reinforced composite material as an example. That is, by laser etching the surface of the aluminum alloy, a micron-scale concave-convex structure is formed on the surface, which can effectively improve the mechanical fit of the heterogeneous joint and improve the strength of the heterogeneous joint; at the same time, between the aluminum alloy and the carbon fiber reinforced composite material A metal mesh is set as a transition structure, and one side of the metal mesh is sprayed with the same material as the carbon fiber reinforced composite material to contact the carbon fiber reinforced composite material, and the other side is in contact with the aluminum alloy to improve the problem of low wettability of heterogeneous joints.
  • the actual contact area of the two base metals is reduced, the pressure required for welding can be obtained with a small downforce, the vibration at the interface of the heterogeneous joint is increased, and the heat required for welding can be met with a small welding power;
  • the combination of the above two methods can produce a coupling effect, which can effectively improve the strength of the heterogeneous joint between the aluminum alloy and the carbon fiber reinforced composite material, and effectively solve the problem that the heterogeneous joint between the aluminum alloy and the carbon fiber reinforced composite material is not easy to connect, the strength is low after connection, and it is easy to occur.
  • the problem of early failure can be effectively improve the strength of the heterogeneous joint between the aluminum alloy and the carbon fiber reinforced composite material, and effectively solve the problem that the heterogeneous joint between the aluminum alloy and the carbon fiber reinforced composite material is not easy to connect, the strength is low after connection, and it is easy to occur.
  • Fig. 1 is the topography figure after the laser etching process of aluminum alloy surface among the present invention
  • Fig. 2 is the schematic diagram of the three-dimensional structure of transition structure metal mesh in the present invention.
  • Fig. 3 is the front view of transition structure metal mesh in the present invention.
  • Fig. 4 is a schematic diagram of a heterogeneous joint welding structure in the present invention.
  • the present invention provides a method for preparing a heterogeneous joint between a light alloy and a fiber-reinforced composite material, comprising the following steps:
  • Step 1 surface cleaning: Surface treatment is performed on the light alloy base material 1 and the composite material base material 2 that need to be connected in the heterogeneous joint;
  • Step 2 laser etching: performing laser etching on the light alloy base material 1 to form a concave-convex structure on the surface;
  • Step 3 transitional structure spraying: a transitional structure 3 is provided between the light alloy base material 1 and the composite material base material 2, and one side of the transitional structure 3 is sprayed to obtain a sprayed layer with the same material as the composite material base material 2 ;
  • Step 4 welding: Place the processed light alloy base material 1, transition structure 3 and composite material base material 2 in order, and place the side of the transition structure 3 with the sprayed layer in contact with the composite material base material 2, without spraying The other side is in contact with the light alloy base material 1, and is welded by welding equipment 4, and a high-strength heterogeneous joint is obtained after welding.
  • the light alloy in the first step is set to be aluminum alloy, magnesium alloy or titanium alloy, and the composite material is set to be carbon fiber reinforced composite material; more preferably, the light alloy is made of aluminum alloy , the composite material is a carbon fiber reinforced thermoplastic composite material.
  • Step 1 surface treatment, use organic solvents to clean the surfaces of the aluminum alloys and carbon fiber reinforced composite materials to be connected in the heterogeneous joints, respectively, to remove surface dust and oily impurities; the organic solvents are selected from alcohol or acetone.
  • Step 2 laser etching: use a laser to perform laser etching on the aluminum alloy in the form of pulsed laser, and form a uniform micron-scale concave-convex structure on the surface of the aluminum alloy after laser etching; wherein the specific conditions of the laser etching are set as follows: laser power 50W -100W, scanning speed 0.5m/min-2.0m/min, scanning repetition frequency 40Hz-100Hz.
  • laser etching By laser etching the surface of the aluminum alloy, a micron-scale concave-convex structure is formed on the surface of the aluminum alloy lap joint, as shown in Figure 1, which improves the mechanical interlocking effect of the heterogeneous joint, thereby effectively improving the joint strength.
  • Step 3 metal mesh spraying: select a metal mesh with a suitable material as the transition structure, spray one side of the metal mesh to form a spray coating, and the raw material for spraying is the same powder material as the carbon fiber reinforced composite material; on the basis of the above technical solution , the material of the metal mesh in the step 3 is one of copper, titanium, nickel, platinum and chromium.
  • one side of the metal mesh is sprayed with the same carbon fiber reinforced composite material as the welding base material, and the sprayed layer and carbon fiber reinforced during welding The composite material is in contact, and the other side of the metal mesh is in contact with the aluminum alloy; the role of the metal mesh structure during welding is as follows:
  • One side of the metal mesh is made of metal, and the other side is sprayed with the same material as the carbon fiber reinforced composite material, which solves the problem of low wettability of aluminum alloy and carbon fiber reinforced composite materials and reduces the difficulty of welding; at the same time, the wire diameter is selected.
  • the metal mesh structure with small pore size has a good mechanical fit with the micron-scale concave-convex structure on the aluminum alloy after laser etching, and improves the strength of heterogeneous joints after welding;
  • the addition of the metal mesh can reduce the actual contact area between the aluminum alloy and the carbon fiber reinforced composite material, that is, the pressure required for welding can be achieved at a small welding pressure; or the welding pressure can be obtained under the same welding pressure. Greater pressure can achieve the purpose of welding while preventing defects such as fracturing and poor joint formation of composite wood caused by excessive pressure;
  • the grid of the metal mesh in the third step is set to be circular or hexagonal, as shown in Figure 3 and Figure 4 .
  • the wire diameter of the metal mesh is set to 0.05mm-0.3mm, and the aperture of the circular grid or the diameter of the circumscribed circle of the hexagonal grid is set to 0.1mm-1.0mm; If the size is too large, it is easy to cause unwelded defects, if the size is too small, the manufacturing process is difficult, and the welding effect is not ideal.
  • Step 4 Welding: place the processed aluminum alloy, metal mesh and carbon fiber reinforced composite material in order, one side of the metal mesh sprayed layer is in contact with the carbon fiber reinforced composite material, and the other side that is not sprayed is in contact with the aluminum alloy , using ultrasonic welding equipment to weld it, and after welding, a heterogeneous joint of high-strength aluminum alloy and carbon fiber reinforced composite material is obtained.
  • the fourth step during welding, firstly adjust the position of the ultrasonic welding device, and apply an initial pressure to the heterogeneous joint structures stacked in sequence.
  • the present invention also provides a heterogeneous joint of light alloy and fiber-reinforced composite material prepared by the above preparation method.
  • the above technical solution includes light alloy, transition structure and fiber-reinforced composite material, which are stacked in sequence.
  • One side of the transition structure is provided with a sprayed layer and is in contact with fiber-reinforced composite material, and the other side is coated with light alloy touch.
  • the beneficial effect is illustrated by taking the base material of light alloy as aluminum alloy and the base material of composite material as carbon fiber reinforced composite material as an example.
  • the base material of light alloy as aluminum alloy
  • the base material of composite material as carbon fiber reinforced composite material
  • laser etching the surface of the aluminum alloy a micron-scale concave-convex structure is formed on the surface.
  • the mechanical fitting effect of the heterogeneous joint can be effectively improved, and the mechanical fit of the heterogeneous joint can be improved.
  • a metal mesh is set between the aluminum alloy and the carbon fiber reinforced composite material as a transition structure, and one side of the metal mesh is sprayed with the same material as the carbon fiber reinforced composite material to contact the carbon fiber reinforced composite material, and the other side is in contact with the aluminum alloy Contact, improve the problem of low wettability of heterogeneous joints, reduce the actual contact area of the two base metals, and obtain the pressure required for welding with a small down force, increase the vibration at the interface of heterogeneous joints, and reduce The heat required for welding can be satisfied under the welding power; the combination of the above two methods can produce a coupling effect, which can effectively improve the strength of the heterogeneous joint between aluminum alloy and carbon fiber reinforced composite material, and effectively solve the problem of aluminum alloy and carbon fiber reinforced composite material. Heterogeneous joints are not easy to connect, have low strength after connection, and are prone to early failure problems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

一种轻质合金与纤维增强复合材料异质接头及制备方法,对轻质合金(1)表面进行激光蚀刻处理,在其表面形成微米级凹凸结构;在轻质合金(1)与纤维增强复合材料(2)之间设置有金属网作为过渡结构(3),并将金属网的一侧喷涂与纤维增强复合材料相同的材质,且喷涂层与纤维增强复合材料接触,金属网另一侧与轻质合金接触;使用焊接设备进行焊接,焊接完成后得到高强度异质接头。制备方法可以提高异质接头的强度,解决轻质合金与纤维增强复合材料异质接头不易连接,连接后强度低、易发生早期失效等问题。

Description

一种轻质合金与纤维增强复合材料异质接头及制备方法 技术领域
本发明涉及复合材料加工技术领域,具体涉及一种轻质合金与纤维增强复合材料异质接头及制备方法。
背景技术
碳纤维增强复合材料具有密度小即1.1g/cm 3-1.6g/cm 3、强度高、成型过程中无需化学反应、成型周期短、可重复利用等优点,已成为继铝、钢、钛之后迅速发展的第四大航空结构材料,同时在汽车、机械、医疗、体育等行业得到了大力发展及应用。
碳纤维增强复合材料在使用过程中,不可避免的要和其他材料进行连接,尤其是各种钢材及轻质合金,其中碳纤维增强复合材料与铝合金的连接既能满足强度要求也能满足轻量化设计要求,因此碳纤维复合材料与铝合金的连接技术得到了大量研究。现有的连接技术一般可以分为胶接、机械连接如螺接和铆接以及焊接技术三大类;其中焊接技术通常只适用于基体材料为热塑性材料的复合材料,适用性较差,另外焊接后得到的铝合金与碳纤维增强复合材料异质接头强度较低,已发生早期失效,焊接效果差,影响异质接头的正常使用。
发明内容
本发明的目的在于提供一种轻质合金与纤维增强复合材料异质接头及制备方法,以解决上述背景技术中存在的现有技术问题。
为解决上述的技术问题,本发明提供的技术方案为:
一方面,本发明提供了一种轻质合金与纤维增强复合材料异质接头的制备方法,包括以下步骤:
步骤一,表面清洁:对异质接头中需要连接的轻质合金母材和复合材料母材分别进行表面处理;
步骤二,激光蚀刻:对轻质合金母材进行激光蚀刻,使其表面形成凹凸结构;
步骤三,过渡结构喷涂:在轻质合金母材与复合材料母材之间设置有过渡结构,对过渡结构的一侧进行喷涂,得到与复合材料母材材质相同的喷涂层;
步骤四,焊接:将处理后的轻质合金母材、过渡结构以及复合材料母材按顺序依次放置,将过渡结构喷涂层的一侧与复合材料母材接触,未喷涂的另一侧与轻质合金母材接触,使用焊接设备进行焊接,焊接完成后得到高强度异质接头。
在上述技术方案基础上,所述步骤一中的轻质合金设置为铝合金、镁合金或钛合金,所述复合材料设置为碳纤维增强复合材料;更优选的,所述轻质合金采用铝合金,所述复合材料采用碳纤维增强热塑性复合材料。
在上述技术方案基础上,包括以下步骤:
步骤一,表面处理,对异质接头中需要连接的铝合金和碳纤维增强复合材料分别使用有机溶剂进行表面清洗,去除表面的灰尘以及油污杂质;
步骤二,激光蚀刻:使用激光器以脉冲激光的方式对铝合金进行激光蚀刻,经过激光蚀刻之后的铝合金表面形成均匀的微米级凹凸结构;
步骤三,金属网喷涂:选择材质合适的金属网作为过渡结构,将金属 网的一侧进行喷涂形成喷涂层,喷涂原材料采用与碳纤维增强复合材料的材质相同的粉末材料;
步骤四,焊接:将处理后的铝合金、金属网以及碳纤维增强复合材料按顺序依次放置,所述金属网上喷涂层的一侧与碳纤维增强复合材料接触,未喷涂的另一侧与铝合金接触,使用超声波焊接设备对其进行焊接,焊接完成后得到高强度的铝合金与碳纤维增强复合材料的异质接头。
在上述技术方案基础上,所述步骤一中的有机溶剂选用酒精或丙酮。
在上述技术方案基础上,所述步骤二中激光蚀刻的激光功率50W-100W,扫描速度0.5m/min-2.0m/min,扫描重复频率40Hz-100Hz。
在上述技术方案基础上,所述步骤三中的金属网的材质采用铜、钛、镍、铂、铬中的一种。
在上述技术方案基础上,所述步骤三中的金属网的网格设置为圆形或六边形。
在上述技术方案基础上,所述金属网的丝径设置为0.05mm-0.3mm,所述圆形网格的孔径或六边形网格外接圆的直径设置为0.1mm-1.0mm。
在上述技术方案基础上,所述步骤四中在焊接时,首先调整好超声波焊接装置的位置,对按顺序堆叠的异质接头结构施加一个初始压力;然后对超声波焊接装置的焊接参数进行设置;最后进行焊接得到异质焊接接头。
另一方面,本发明还提供了一种由上述制备方法制备得到的铝合金与碳纤维增强复合材料异质接头。
在上述技术方案基础上,包括铝合金、金属网以及碳纤维增强复合材料且依次堆叠而成,所述金属网一侧设置有喷涂层且与碳纤维增强复合材料接触,另一侧与铝合金接触。
本发明提供的技术方案产生的有益效果在于:
本发明中通过以轻质合金母材为铝合金,复合材料母材为碳纤维增强复合材料为例说明其有益效果。即通过对铝合金表面进行激光蚀刻处理,在其表面形成微米级凹凸结构,可以有效提高异质接头的机械嵌合作用,提高异质接头的强度;同时在铝合金与碳纤维增强复合材料之间设置有金属网作为过渡结构,并将金属网的一侧喷涂与碳纤维增强复合材料相同的材质与碳纤维增强复合材料接触,另一侧与铝合金接触,改善异质接头润湿性低的问题,减少两种母材的实际接触面积,较小的下压力即可得到焊接所需的压强,增大了异质接头界面处的振动,较小的焊接功率下即可满足焊接所需的热量;上述两种方式共同配合可以产生耦合作用,可以有效提高铝合金与碳纤维增强复合材料异质接头的强度,有效解决了铝合金与碳纤维增强复合材料异质接头不易连接,连接后强度低、易发生早期失效的问题。
附图说明
图1是本发明中铝合金表面激光蚀刻处理后的形貌图;
图2是本发明中过渡结构金属网的立体结构示意图;
图3是本发明中过渡结构金属网主视图;
图4是本发明中异质接头焊接结构示意图;
具体实施方式
下面结合附图和实施例对本发明作进一步说明:
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、 “连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明的描述中,需要理解的是,术语“左”、“右”、“前”、“后”、“顶”、“底”、等指示的方位或位置关系均为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
如图1至图4所示,一方面,本发明提供了一种轻质合金与纤维增强复合材料异质接头的制备方法,包括以下步骤:
步骤一,表面清洁:对异质接头中需要连接的轻质合金母材1和复合材料母材2分别进行表面处理;
步骤二,激光蚀刻:对轻质合金母材1进行激光蚀刻,使其表面形成凹凸结构;
步骤三,过渡结构喷涂:在轻质合金母材1与复合材料母材2之间设置有过渡结构3,对过渡结构3的一侧进行喷涂,得到与复合材料母材2材质相同的喷涂层;
步骤四,焊接:将处理后的轻质合金母材1、过渡结构3以及复合材料母材2按顺序依次放置,将过渡结构3具有喷涂层的一侧与复合材料母材2接触,未喷涂的另一侧与轻质合金母材1接触,使用焊接设备4进行焊接,焊接完成后得到高强度异质接头。
在上述技术方案基础上,所述步骤一中的轻质合金设置为铝合金、镁合金或钛合金,所述复合材料设置为碳纤维增强复合材料;更优选的,所述轻质合金采用铝合金,所述复合材料采用碳纤维增强热塑性复合材料。
下述以铝合金作为轻质合金母材,以碳纤维增强复合材料作为复合材料母材为例,对轻质合金与纤维增强复合材料异质接头及其制备方法进行详细说明:
在上述技术方案基础上,包括以下步骤:
步骤一,表面处理,对异质接头中需要连接的铝合金和碳纤维增强复合材料分别使用有机溶剂进行表面清洗,去除表面的灰尘以及油污杂质;其中有机溶剂选用酒精或丙酮。
步骤二,激光蚀刻:使用激光器以脉冲激光的方式对铝合金进行激光蚀刻,经过激光蚀刻之后的铝合金表面形成均匀的微米级凹凸结构;其中所述激光蚀刻的具体条件设置为:激光功率50W-100W,扫描速度0.5m/min-2.0m/min,扫描重复频率40Hz-100Hz。通过对铝合金表面进行激光蚀刻处理,在铝合金搭接接头表面生成微米级凹凸结构,如图1所示,提高了异质接头机械嵌合作用,从而可以有效提高接头强度。
步骤三,金属网喷涂:选择材质合适的金属网作为过渡结构,将金属网的一侧进行喷涂形成喷涂层,喷涂原材料采用与碳纤维增强复合材料的材质相同的粉末材料;在上述技术方案基础上,所述步骤三中的金属网的材质采用铜、钛、镍、铂、铬中的一种。
通过在铝合金与碳纤维增强复合材料异质接头的结合面增加微米级至亚毫米级金属网作为过渡结构,金属网一面喷涂与焊接母材相同的碳纤维增强复合材料,焊接时喷涂层与碳纤维增强复合材料接触,金属网另一面 与铝合金接触;焊接时金属网结构所起的作用如下:
(1)金属网一侧为金属材质,另一侧为与碳纤维增强复合材料材质相同的喷涂层,解决了铝合金和碳纤维增强复合材料润湿性低的问题,降低焊接难度;同时选择丝径与孔径均较小尺寸的金属网结构,与激光蚀刻之后的铝合金上微米级凹凸结构具有较好的机械嵌合作用,改善异质接头焊接后强度;
(2)金属网的增设可以减小铝合金和碳纤维增强复合材料的实际接触面积,即在很小的焊接下压力时就能达到焊接所需的压强;或者在同等的焊接下压力下能获得更大的压强,在达到焊接目的的同时又能防止压强过大导致复合材料木材出现压裂、接头成型不良等缺陷;
(3)金属网的增设加快了铝合金和碳纤维增强复合材料异质接头界面处的振动,即配合超声波焊接方法,在较小的超声波功率下就能满足异质接头焊接所需的热量。
在上述技术方案基础上,所述步骤三中的金属网的网格设置为圆形或六边形,如图3和图4所示。在上述技术方案基础上,所述金属网的丝径设置为0.05mm-0.3mm,所述圆形网格的孔径或六边形网格外接圆的直径设置为0.1mm-1.0mm;金刚网的尺寸过大容易产生未焊合缺陷,尺寸过小制作工艺难度较大,焊接效果也不理想。
步骤四,焊接:将处理后的铝合金、金属网以及碳纤维增强复合材料按顺序依次放置,所述金属网上喷涂层的一侧与碳纤维增强复合材料接触,未喷涂的另一侧与铝合金接触,使用超声波焊接设备对其进行焊接,焊接完成后得到高强度的铝合金与碳纤维增强复合材料的异质接头。在上述技术方案基础上,所述步骤四中在焊接时,首先调整好超声波焊接装置的位 置,对按顺序堆叠的异质接头结构施加一个初始压力,使用上述制备方法仅需要50N-200N的压力即可实现焊接效果好的异质接头;然后对超声波焊接装置的焊接参数进行设置;最后进行焊接得到异质焊接接头,焊接效果好,异质接头强度高。
另一方面,本发明还提供了一种由上述制备方法制备得到的轻质合金与纤维增强复合材料异质接头。
在上述技术方案基础上,包括轻质合金、过渡结构以及纤维增强复合材料且依次堆叠而成,所述过渡结构一侧设置有喷涂层且与纤维增强复合材料接触,另一侧与轻质合金接触。
本发明中通过以轻质合金母材为铝合金,复合材料母材为碳纤维增强复合材料为例说明其有益效果。通过对铝合金表面进行激光蚀刻处理,在其表面形成微米级凹凸结构,通过配合丝径与孔径均较小的金属网结构,可以有效提高异质接头的机械嵌合作用,提高异质接头的强度;同时在铝合金与碳纤维增强复合材料之间设置有金属网作为过渡结构,并将金属网的一侧喷涂与碳纤维增强复合材料相同的材质与碳纤维增强复合材料接触,另一侧与铝合金接触,改善异质接头润湿性低的问题,减少两种母材的实际接触面积,较小的下压力即可得到焊接所需的压强,增大了异质接头界面处的振动,较小的焊接功率下即可满足焊接所需的热量;上述两种方式共同配合可以产生耦合作用,可以有效提高铝合金与碳纤维增强复合材料异质接头的强度,有效解决了铝合金与碳纤维增强复合材料异质接头不易连接,连接后强度低、易发生早期失效的问题。
以上显示和描述了本发明的基本原理和主要特征,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,因此应将实施例看 作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

  1. 一种轻质合金与纤维增强复合材料异质接头的制备方法,其特征在于,包括以下步骤:
    步骤一,表面清洁:对异质接头中需要连接的轻质合金母材和复合材料母材分别进行表面处理;
    步骤二,激光蚀刻:对轻质合金母材进行激光蚀刻,使其表面形成凹凸结构;
    步骤三,过渡结构喷涂:在轻质合金母材与复合材料母材之间设置有过渡结构,对过渡结构的一侧进行喷涂,得到与复合材料母材材质相同的喷涂层;
    步骤四,焊接:将处理后的轻质合金母材、过渡结构以及复合材料母材按顺序依次放置,将过渡结构具有喷涂层的一侧与复合材料母材接触,未喷涂的另一侧与轻质合金母材接触,使用焊接设备进行焊接,焊接完成后得到高强度异质接头。
  2. 根据权利要求1所述的一种轻质合金与纤维增强复合材料异质接头的制备方法,其特征在于,所述步骤一中的轻质合金设置为铝合金、镁合金或钛合金,所述复合材料设置为碳纤维增强复合材料。
  3. 根据权利要求2所述的一种轻质合金与纤维增强复合材料异质接头的制备方法,其特征在于,包括以下步骤:
    步骤一,表面处理,对异质接头中需要连接的铝合金和碳纤维增强复合材料分别使用有机溶剂进行表面清洗,去除表面的灰尘以及油污杂质;
    步骤二,激光蚀刻:使用激光器以脉冲激光的方式对铝合金进行激光蚀刻,经过激光蚀刻之后的铝合金表面形成均匀的微米级凹凸结构;
    步骤三,金属网喷涂:选择材质合适的金属网作为过渡结构,将金属网 的一侧进行喷涂形成喷涂层,喷涂原材料采用与碳纤维增强复合材料的材质相同的粉末材料;
    步骤四,焊接:将处理后的铝合金、金属网以及碳纤维增强复合材料按顺序依次放置,所述金属网上喷涂层的一侧与碳纤维增强复合材料接触,未喷涂的另一侧与铝合金接触,使用超声波焊接设备对其进行焊接,焊接完成后得到高强度的铝合金与碳纤维增强复合材料的异质接头。
  4. 根据权利要求3所述的一种轻质合金与纤维增强复合材料异质接头的制备方法,其特征在于,所述步骤二中激光蚀刻的激光功率50W-100W,扫描速度0.5m/min-2.0m/min,扫描重复频率40Hz-100Hz。
  5. 根据权利要求3所述的一种轻质合金与纤维增强复合材料异质接头的制备方法,其特征在于,所述步骤三中的金属网的材质采用铜、钛、镍、铂、铬中的一种。
  6. 根据权利要求3所述的一种轻质合金与纤维增强复合材料异质接头的制备方法,其特征在于,所述步骤三中的金属网的网格设置为圆形或六边形。
  7. 根据权利要求6所述的一种轻质合金与纤维增强复合材料异质接头的制备方法,其特征在于,所述金属网的丝径设置为0.05mm-0.3mm,所述圆形网格的孔径或六边形网格外接圆的直径设置为0.1mm-1.0mm。
  8. 根据权利要求3所述的一种轻质合金与纤维增强复合材料异质接头的制备方法,其特征在于,所述步骤四中在焊接时,首先调整好超声波焊接装置的位置,对按顺序堆叠的异质接头结构施加一个初始压力;然后对超声波焊接装置的焊接参数进行设置;最后进行焊接得到异质焊接接头。
  9. 一种轻质合金与纤维增强复合材料异质接头,其特征在于,根据权利要求1至8任一项所述的制备方法制备得到。
  10. 根据权利要求9所述的一种轻质合金与纤维增强复合材料异质接头,其特征在于,包括轻质合金、过渡结构以及纤维增强复合材料且依次堆叠而成,所述过渡结构一侧设置有喷涂层且与纤维增强复合材料接触,另一侧与轻质合金接触。
PCT/CN2022/101021 2022-01-17 2022-06-24 一种轻质合金与纤维增强复合材料异质接头及制备方法 WO2023134124A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022433216A AU2022433216A1 (en) 2022-01-17 2022-06-24 Light alloy and fiber-reinforced composite material heterogeneous joint and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210047410.6 2022-01-17
CN202210047410.6A CN114346616B (zh) 2022-01-17 2022-01-17 一种轻质合金与纤维增强复合材料异质接头及制备方法

Publications (1)

Publication Number Publication Date
WO2023134124A1 true WO2023134124A1 (zh) 2023-07-20

Family

ID=81091782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101021 WO2023134124A1 (zh) 2022-01-17 2022-06-24 一种轻质合金与纤维增强复合材料异质接头及制备方法

Country Status (3)

Country Link
CN (1) CN114346616B (zh)
AU (1) AU2022433216A1 (zh)
WO (1) WO2023134124A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114346616B (zh) * 2022-01-17 2023-03-17 哈焊国创(青岛)焊接工程创新中心有限公司 一种轻质合金与纤维增强复合材料异质接头及制备方法
CN115319267A (zh) * 2022-08-19 2022-11-11 国家高速列车青岛技术创新中心 一种高强度合金异质搭接接头及其低热输入制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120045606A1 (en) * 2010-08-17 2012-02-23 The Boeing Company Composite structures having composite-to-metal joints and method for making the same
CN108297443A (zh) * 2018-01-24 2018-07-20 北京大学深圳研究院 一种提升热塑性复合材料与金属连接强度的方法
CN112622297A (zh) * 2020-11-30 2021-04-09 沈阳航空航天大学 一种树脂基复合材料与轻质合金的热气焊接方法
CN113561497A (zh) * 2021-06-28 2021-10-29 哈尔滨工业大学(威海) 一种表面编织的金属材料与frp复合材料一体化连接方法
CN114346616A (zh) * 2022-01-17 2022-04-15 哈焊国创(青岛)焊接工程创新中心有限公司 一种轻质合金与纤维增强复合材料异质接头及制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846059B2 (ja) * 1977-04-15 1983-10-14 株式会社日立製作所 半導体装置
US6875949B2 (en) * 2003-03-19 2005-04-05 Edison Welding Institute Method of welding titanium and titanium based alloys to ferrous metals
CN1285460C (zh) * 2004-02-11 2006-11-22 哈尔滨工业大学 热塑性树脂基复合材料超声波振动辅助电阻植入焊接方法
CN102658368B (zh) * 2012-06-07 2013-09-25 哈尔滨工业大学 一种连接碳纤维增强铝基复合材料与金属的方法
CN106735766B (zh) * 2017-01-03 2019-02-19 哈尔滨工业大学 一种钛基复合材料与镍基合金添加Cu中间层搭接的TIG焊接方法
CN110893690A (zh) * 2020-01-02 2020-03-20 沈阳航空航天大学 一种增强合金和复合材料电阻焊接混合接头强度的方法
CN112123789A (zh) * 2020-09-15 2020-12-25 哈尔滨工业大学(威海) 一种金属/碳纤维增强热塑复合材料激光连接方法
CN112936876A (zh) * 2021-02-02 2021-06-11 西安交通大学 一种界面夹杂增强的热塑性复合材料超声波焊接方法
CN113414496A (zh) * 2021-05-28 2021-09-21 北京工业大学 一种超快激光处理增强复合材料与金属连接强度的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120045606A1 (en) * 2010-08-17 2012-02-23 The Boeing Company Composite structures having composite-to-metal joints and method for making the same
CN103068565A (zh) * 2010-08-17 2013-04-24 波音公司 具有复合材料-金属接头的复合材料结构以及制造其的方法
CN108297443A (zh) * 2018-01-24 2018-07-20 北京大学深圳研究院 一种提升热塑性复合材料与金属连接强度的方法
CN112622297A (zh) * 2020-11-30 2021-04-09 沈阳航空航天大学 一种树脂基复合材料与轻质合金的热气焊接方法
CN113561497A (zh) * 2021-06-28 2021-10-29 哈尔滨工业大学(威海) 一种表面编织的金属材料与frp复合材料一体化连接方法
CN114346616A (zh) * 2022-01-17 2022-04-15 哈焊国创(青岛)焊接工程创新中心有限公司 一种轻质合金与纤维增强复合材料异质接头及制备方法

Also Published As

Publication number Publication date
AU2022433216A1 (en) 2024-05-16
CN114346616A (zh) 2022-04-15
CN114346616B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
WO2023134124A1 (zh) 一种轻质合金与纤维增强复合材料异质接头及制备方法
CN105880852B (zh) 超声辅助脉冲激光-mig复合热源焊接装置的焊接方法
JP6214716B2 (ja) 多次元構造化された接続部を少なくとも1つ備えた金属又はセラミック部品及びその作製方法
US8845910B2 (en) Aluminum alloy composite and method for joining thereof
Jiang et al. Advances in joining technology of carbon fiber-reinforced thermoplastic composite materials and aluminum alloys
CN112518121A (zh) 一种中厚度异种铝合金材料的激光焊接方法
US20210362275A1 (en) Method for Producing a Functional Structure and Component
CN110948886A (zh) 一种预埋金属片的热塑性复合材料与轻质合金激光焊接工艺
CN113664374B (zh) 一种热塑性复合材料与轻质合金超声辅助激光连接工艺
CN101913021B (zh) 铬青铜与双相钛合金异种材料电子束叠加焊接方法
CN115255597B (zh) 一种镁合金表面增塑扩散连接方法
CN101934432A (zh) 激光与电阻点焊的同轴复合焊接方法
CN109332872A (zh) 提高Ti2AlNb合金扩散焊效率的方法
CN101912969A (zh) 复合填充层的制备方法及其电子束焊接钛金属材料与不锈钢的方法
CN113319417A (zh) 一种hcm机台用靶材电子束焊接成型的方法
CN111730187A (zh) 一种铝锂合金板材局部扩散连接方法
CN103212914A (zh) 一种外加声场式钛合金手工焊接装置及焊接方法
CN103170722A (zh) 一种薄壁铌材料构件环缝的几净形电子束焊接方法
CN107570859A (zh) 一种镁合金搅拌摩擦焊工艺方法
CN110026672A (zh) 超声空化焊方法
CN115351514B (zh) 一种铝合金带筋壁板的制造方法
CN110560875A (zh) 一种带通道结构的双层板及其真空电子束加工方法
CN114643406B (zh) 一种轻质合金与纤维增强复合材料摩擦微铆焊接方法
CN109702428A (zh) 一种点焊和自冲铆复合提高铝钢异种材料连接强度的方法
CN109500223A (zh) 一种金属异型加强结构流动摩擦近净成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2022433216

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022433216

Country of ref document: AU

Date of ref document: 20220624

Kind code of ref document: A