WO2023133923A1 - 风力发电机直接冷却器 - Google Patents

风力发电机直接冷却器 Download PDF

Info

Publication number
WO2023133923A1
WO2023133923A1 PCT/CN2022/073152 CN2022073152W WO2023133923A1 WO 2023133923 A1 WO2023133923 A1 WO 2023133923A1 CN 2022073152 W CN2022073152 W CN 2022073152W WO 2023133923 A1 WO2023133923 A1 WO 2023133923A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air outlet
air inlet
cooler
wind
Prior art date
Application number
PCT/CN2022/073152
Other languages
English (en)
French (fr)
Inventor
杨照
黄维
李立超
王丽婷
林贝贝
朱灵灿
Original Assignee
浙江尔格科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江尔格科技股份有限公司 filed Critical 浙江尔格科技股份有限公司
Publication of WO2023133923A1 publication Critical patent/WO2023133923A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/24Protection against failure of cooling arrangements, e.g. due to loss of cooling medium or due to interruption of the circulation of cooling medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to the cooling technology of wind power generators, in particular to direct coolers of wind power generators.
  • Wind turbines often use fully enclosed air-to-air cooling or air-to-water coolers to dissipate heat and cool them. At present, some manufacturers have begun to abandon this solution and use air to directly cool the generator.
  • Air is used to directly cool the generator. Since the air is in direct contact with the generator, there is no solid heat transfer resistance, so the heat transfer efficiency is high.
  • direct coolers faces problems at the same time, that is, when the ventilation ducts of the cooler are blocked, there will be no air circulation, and the cooling effect will be lost. In severe cases, the fan driven by the cooler will be damaged, blocked for a long time, and may even cause damage to the generator. or shutdown.
  • the present invention provides a direct cooler for a wind-driven generator.
  • the direct cooler for a wind-driven generator When the direct cooler for a wind-driven generator is working, the generator is directly cooled by air, and the heat transfer efficiency is high; at the same time, When the direct cooler of the wind power generator of the present invention is working, the blockage degree of the cooler can be judged by monitoring the sound from the front and rear sides of the fan, and the controllability of the cooler is improved.
  • the wind turbine direct cooler includes a base on which an air inlet hood, a chassis and an air outlet hood are arranged in sequence; the air inlet hood is provided with a filter assembly; the inside of the base is hollow, and the top of the base is provided with The cold air inlet connected with the air inlet hood has a cold air outlet corresponding to the bottom, and the air inlet hood is provided with an air inlet, so that the outside air can enter the air inlet hood from the air inlet and enter the wind force from the cold air outlet after being filtered during work.
  • the casing is provided with an impeller, and the connection between the impeller and the motor provided on the casing can be driven by the motor.
  • the base is provided with a hot air passage through the base, and the hot air passage communicates with the inside of the casing.
  • the side of the chassis is provided with a hot air outlet, and the hot air outlet communicates with the air outlet hood, and the air outlet hood is provided with an air outlet, so that the hot air inside the wind generator can enter the chassis from the hot air channel and finally be exhausted from the air outlet during operation.
  • the air inlet hood is provided with an air inlet side noise sensor, and correspondingly, the air outlet hood is provided with an air outlet noise sensor; during operation, by monitoring the sound signals of the air inlet side and the air outlet side of the fan , calculate the difference between the A sound level of the air outlet side and the air inlet side, and compare it with the threshold value to determine whether the cooler should perform cleaning measures.
  • the wind generator direct cooler of the present invention utilizes air to directly and efficiently cool the wind generator while working, and the air inlet hood and the wind outlet hood are respectively equipped with an air inlet side noise sensor and an air outlet
  • the side noise sensor when working, can monitor the front and rear status of the fan through the sound signal, and judge whether the cooler should perform cleaning measures after processing the signal, with good controllability.
  • louvers are provided on the air inlet of the air inlet hood.
  • louvers By setting louvers at the air inlet, on the one hand, it can prevent large obstacles from entering the cooler, and at the same time, it can also prevent rain, and on the other hand, it can be used to set the initial value.
  • the shutters are preferably electric shutters.
  • the filter assembly includes a filter cotton support set on the base, and filter cotton wrapped on the filter cotton support.
  • This structure has the advantage of being easy to implement.
  • the outlet of the hot air passage can be connected with the impeller through the wind collecting ring, and the wind collecting ring is formed by a multi-section circular arc transition. Still further, the wind collecting ring is inserted into the air inlet of the impeller by 5-8 mm. Thus, the fan efficiency can be improved.
  • the air outlet of the air outlet hood is provided with a square-to-circle connecting piece.
  • the hot air can be led to a designated place for discharge by setting external pipes.
  • sound-absorbing cotton is provided inside the circular outlet of the square-to-circle connector. Setting up sound-absorbing cotton is to reduce the noise at the exit, which is beneficial to the environment, and to avoid excessive noise at the exit, which will interfere with the noise at the entrance.
  • the cold air outlet may be rectangular.
  • the noise sensors on the air intake side are arranged in groups along the width direction of the air intake hood to form an array.
  • the noise sensors on the air outlet side are arranged in groups along the width direction of the air outlet hood to form an array.
  • the noise sensors are arranged in groups to form an array, which can reduce measurement errors caused by the use of a single sensor.
  • a hoisting ring is provided on the top of the chassis.
  • Fig. 1 is the structural representation of the direct cooler of the wind power generator of the present invention (embodiment);
  • Fig. 2 is a structural schematic view of the cooler in Fig. 1 viewed from above;
  • Fig. 3 is the top view of cooler among Fig. 1;
  • Fig. 4 is a sectional view along the direction A of the view in Fig. 3;
  • Fig. 5 is a working state diagram of the wind power generator direct cooler of the present invention.
  • Fig. 6 is a schematic diagram of the air flow direction when the direct cooler of the wind power generator of the present invention is in operation.
  • the direct cooler for wind power generators of the present invention includes a base 1 (during operation, the base 2 is fixedly connected to the generator frame 13), and the base 1 is provided with an air inlet cover 2, a chassis 3 and The air outlet cover 4; the air inlet cover 2 is provided with a filter assembly; the inside of the base 1 is hollow, and its top is provided with a cold air inlet 102 connected with the air inlet cover 2, and its bottom is correspondingly provided with a cold air outlet 103 , the air inlet hood 2 is provided with an air inlet, so that outside air can enter the air inlet hood 2 from the air inlet and enter the wind power generator from the cold air outlet 103 after being filtered during work; the casing 3 is provided with an impeller 5 The connection between the impeller 5 and the motor provided on the chassis 3 can be driven by the motor.
  • the base 1 is provided with a hot air passage 101 that runs through the base 1.
  • the hot air passage 101 communicates with the inside of the chassis 3.
  • the side of the chassis 3 A hot air outlet is provided at the top, and the hot air outlet communicates with the air outlet cover 4, and the air outlet cover 4 is provided with an air outlet, so that the hot air inside the wind generator can enter the chassis 3 from the hot air passage 101 and finally pass through the air outlet during operation.
  • the air inlet hood 2 is provided with an air inlet side noise sensor 6, and correspondingly, the air outlet hood 4 is provided with an air outlet side noise sensor 7 (during operation, the air inlet side noise sensor 6 and the outlet side noise sensor 6
  • the wind side noise sensor 7 transmits the collected sound signal to the controller, and the controller performs data analysis); when working, by monitoring the sound signals of the fan inlet side and the wind outlet side, the air outlet side and the air inlet side are calculated.
  • the difference of the A sound level (the sensor can be set in multiple arrays, at this time, the A sound level is the weighted A sound level average value), and compare it with the threshold value to judge whether the cooler should perform cleaning measures.
  • the air inlet of the air inlet hood 2 is provided with shutters 8, and the shutters 8 are electric shutters.
  • the louvers 8 can prevent rainwater and foreign matter from entering the cooler and play a protective role.
  • the louvers are also used to set a threshold. When the cooler is not blocked, the louvers 8 are opened by X%.
  • the sound signal (the difference between the A sound level on the air outlet side and the air inlet side) is used as the threshold value when the cooler is clogged (100-X)%.
  • the filter assembly includes a filter cotton support 9 arranged on the base 1 , and filter cotton wrapped on the filter cotton support 9 .
  • the outlet of the hot air channel 101 is connected to the impeller 5 through the wind collecting ring 10, which is formed by a multi-section arc transition; the wind collecting ring 10 is inserted into the air inlet of the impeller by 5 mm.
  • the air outlet of the air outlet cover 4 is provided with a square-to-circle connecting piece 11 .
  • Sound-absorbing cotton is provided inside the circular outlet of the square-to-circle connector 11 .
  • the cold air outlet 103 is rectangular.
  • the noise sensors 6 on the air inlet side are arranged in groups along the width direction of the air inlet hood 2 to form an array.
  • the noise sensors 7 on the air outlet side are arranged in groups along the width direction of the air outlet hood 4 to form an array.
  • a hoisting ring 13 is provided on the top of the cabinet 3 .
  • the user can define the degree of blockage according to the sound signals detected when the shutters 8 are in different states, and set a threshold as a basis for judging the degree of blockage during the working process of the post-cooler.
  • the difference between the weighted average A sound level of the noise sensor on the air inlet side and the average A sound level weighted by the noise sensor on the air outlet side is used as the physical quantity for quantifying the blockage degree.
  • three thresholds are set, which are as follows:
  • the cooler works under the condition that the louvers 8 are completely closed, and repeat steps A, B, and C;
  • Z is set as the threshold value of the warning signal.
  • the louver is completely
  • the difference between the weighted A sound level average value of the noise sensor on the air inlet side and the A sound level average value of the noise sensor on the air outlet side is When the value reaches the warning signal threshold, an alarm is triggered to remind the staff to clean the cooler in time.
  • the user can call/view the monitored sound signal (the difference between the weighted A sound level average value of the noise sensor on the air inlet side and the A sound level average value of the noise sensor on the air outlet side), and compare it with the preset Compared with the set threshold, judge the blockage degree of the cooler.
  • the state of the cooler under different clogging degrees is simulated.
  • Setting the threshold in this way fully takes into account the situation of the use environment and site, and has high reliability. It should be pointed out that the user can preset the threshold and the warning signal threshold according to the actual situation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

风力发电机直接冷却器,包括底座,底座上依序设有进风罩、机箱和出风罩;进风罩内设有过滤组件;底座的内部呈中空状,其顶部设有与进风罩连通的冷风进口,其底部对应设有冷风出口,进风罩上设有进风口;机箱内设有叶轮,叶轮与设于机箱上的电机连接可由电机驱动,对应的,底座上设有贯穿底座的热风通道,热风通道与机箱的内部连通,机箱的侧部设有热风出口,热风出口与出风罩连通,出风罩上设有出风口;进风罩上设有进风侧噪音传感器,对应的,出风罩上设有出风侧噪音传感器;工作时,通过声音信号监测风机前后状态,对信号处理后判断冷却器是否应该执行清理措施。本发明可以通过监测风机前后侧声音,判断冷却器阻塞,提高了冷却器的可控性。

Description

风力发电机直接冷却器 技术领域
本发明涉及风力发电机冷却技术,具体的说是涉及风力发电机直接冷却器。
背景技术
风力发电机常采用全封闭式空空冷或空水冷冷却器对其进行散热冷却,目前已有部分厂家开始放弃这种方案,而采用空气对发电机进行直接冷却的方式。
采用空气对发电机直接冷却,由于空气与发电机直接接触,没有固体传热热阻,因此传热效率高。然而,采用直接冷却器同时面临问题,那就是,当冷却器通风管道阻塞后,没有空气流通,将丧失冷却效果,严重的还会损坏冷却器驱动风机,长时间堵塞,甚至可能造成发电机损坏或停机。
技术问题
为了克服现有技术中存在的上述问题,本发明提供了一种风力发电机直接冷却器,该风力发电机直接冷却器工作时,由空气直接对发电机进行冷却,传热效率高;同时,本发明的风力发电机直接冷却器工作时可以通过监测风机前后侧声音,判断冷却器阻塞程度,提高了冷却器的可控性。
技术解决方案
风力发电机直接冷却器,包括底座,底座上依序设有进风罩、机箱和出风罩;所述进风罩内设有过滤组件;所述底座的内部呈中空状,其顶部设有与进风罩连通的冷风进口,其底部对应设有冷风出口,所述进风罩上设有进风口,使得工作时外界空气可以从进风口进入进风罩中经过滤后从冷风出口进入风力发电机中;所述机箱内设有叶轮,叶轮与设于机箱上的电机连接可由电机驱动,对应的,所述底座上设有贯穿底座的热风通道,热风通道与机箱的内部连通,所述机箱的侧部设有热风出口,热风出口与出风罩连通,所述出风罩上设有出风口,使得工作时风力发电机内部的热空气可以从热风通道进入机箱中最终从出风口排至外界;所述进风罩上设有进风侧噪音传感器,对应的,所述出风罩上设有出风侧噪音传感器;工作时,通过监测风机进风侧和出风侧的声音信号,计算出出风侧和进风侧A声级的差值,并与阈值比较,判断冷却器是否应该执行清理措施。
有益效果
与现有技术相比,本发明的风力发电机直接冷却器工作时利用空气直接对风力发电机进行高效冷却的同时,进风罩和出风罩上分别设有进风侧噪音传感器和出风侧噪音传感器,工作时,可以通过声音信号监测风机前后状态,对信号处理后判断冷却器是否应该执行清理措施,可控性好。
进一步,前述的风力发电机直接冷却器中,所述进风罩的进风口上设有百叶窗。通过在进风口设置百叶窗,一方面可以防止大的障碍物进入冷却器,同时还能防雨水,另一方面可以用于设置初始值。进一步,所述百叶窗优选为电动百叶窗。
进一步,前述的风力发电机直接冷却器中,所述过滤组件包括设于底座上过滤棉支架,以及包覆在过滤棉支架上的过滤棉。该结构具有易于实施的优点。
进一步,前述的风力发电机直接冷却器中,所述热风通道的出口可以通过集风圈与叶轮衔接,所述集风圈由多段圆弧过渡形成。再进一步,所述集风圈插入叶轮进风口5-8mm。由此,可以使得风机效率得到提高。
进一步,前述的风力发电机直接冷却器中,所述出风罩的出风口上设有方接圆连接件。由此,可以通过设置外接管道将热风引至指定地方排放。再进一步,所述方接圆连接件的圆形出口内侧设有吸音棉。设置吸音棉一是减少出口噪声,对环境有利,二是避免出口噪声太大,对进口噪声造成干扰。
进一步,前述的风力发电机直接冷却器中,所述冷风出口具有两个,分别位于热风通道的两侧。由此,冷风可以从发电机的两端分别进入到发电机中,对其进行冷却,冷却效果好。再进一步,所述冷风出口可以呈矩形。
进一步,前述的风力发电机直接冷却器中,所述进风侧噪音传感器沿进风罩的宽度方向成组设置形成阵列。
进一步,前述的风力发电机直接冷却器中,所述出风侧噪音传感器沿出风罩的宽度方向成组设置形成阵列。
噪音传感器成组设置形成阵列,可以减少采用单个传感器带来测量误差。
进一步,为方便吊装,前述的风力发电机直接冷却器中,所述机箱的顶部设有吊装环。
附图说明
图1是本发明(实施例)的风力发电机直接冷却器的结构示意图;
图2是图1中冷却器仰视视角下的结构示意图;
图3是图1中冷却器的俯视图;
图4是图 3中视图的A向剖视图;
图5是本发明的风力发电机直接冷却器工作状态图;
图6是本发明的风力发电机直接冷却器工作时的空气流向示意图。
附图中的标记为:
1-底座;101-热风通道;102-冷风进口;103-冷风出口;2-进风罩;3-机箱;4-出风罩;5-叶轮;6-进风侧噪音传感器;7-出风侧噪音传感器;8-百叶窗;9-过滤棉支架;10-集风圈;11-方接圆连接件;13-吊环;14-发电机机座。
本发明的实施方式
下面结合附图和实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。以下实施例中,未详细说明的均为本领域常规技术手段或技术常识。
参见图1-6,本发明的风力发电机直接冷却器,包括底座1(工作时,底座2与发电机机座13固联),底座1上依序设有进风罩2、机箱3和出风罩4;所述进风罩2内设有过滤组件;所述底座1的内部呈中空状,其顶部设有与进风罩2连通的冷风进口102,其底部对应设有冷风出口103,所述进风罩2上设有进风口,使得工作时外界空气可以从进风口进入进风罩2中经过滤后从冷风出口103进入风力发电机中;所述机箱3内设有叶轮5,叶轮5与设于机箱3上的电机连接可由电机驱动,对应的,所述底座1上设有贯穿底座1的热风通道101,热风通道101与机箱3的内部连通,所述机箱3的侧部设有热风出口,热风出口与出风罩4连通,所述出风罩4上设有出风口,使得工作时风力发电机内部的热空气可以从热风通道101进入机箱3中最终从出风口排至外界;所述进风罩2上设有进风侧噪音传感器6,对应的,所述出风罩4上设有出风侧噪音传感器7(工作时,进风侧噪音传感器6和出风侧噪音传感器7将采集到的声音信号传送给控制器,由控制器进行数据分析);工作时,通过监测风机进风侧和出风侧的声音信号,计算出出风侧和进风侧A声级的差值(传感器可以是多个阵列形式设置,此时A声级为加权A声级平均值),并与阈值比较,判断冷却器是否应该执行清理措施。
实施例(参见图1-6):
本实施例中,所述进风罩2的进风口上设有百叶窗8,百叶窗8为电动百叶窗。百叶窗8可以防止雨水和异物进入到冷却器中,起到保护作用,在本实施例中,百叶窗还用于设置阈值,冷却器无堵塞状态下,百叶窗8打开X%,以此时监测到的声音信号(出风侧和进风侧A声级的差值)作为冷却器堵塞(100-X)%时的阈值。
本实施例中,所述过滤组件包括设于底座1上过滤棉支架9,以及包覆在过滤棉支架9上的过滤棉。
本实施例中,所述热风通道101的出口通过集风圈10与叶轮5衔接,集风圈10由多段圆弧过渡形成;所述集风圈10插入叶轮进风口5mm。
本实施例中,所述出风罩4的出风口上设有方接圆连接件11。所述方接圆连接件11的圆形出口内侧设有吸音棉。
本实施例中,所述冷风出口103具有两个,分别位于热风通道101的两侧。所述冷风出口103呈矩形。
本实施例中,所述进风侧噪音传感器6沿进风罩2的宽度方向成组设置形成阵列。所述出风侧噪音传感器7沿出风罩4的宽度方向成组设置形成阵列。
本实施例中,所述机箱3的顶部设有吊装环13。
冷却器刚出厂时,处于最优工作状态,无任何堵塞。用户可以根据百叶窗8处于不同状态下监测到的声音信号定义堵塞程度,设置阈值,作为判断后期冷却器工作过程中阻塞程度的依据。
本实施例中,以进风侧噪声传感器加权A声级平均值与出风侧噪声传感器加权A声级平均值的差值作为量化堵塞程度的物理量。
本实施例中,设置了三个阈值,分别如下:
1、冷却器初始开启状态下,百叶窗8完全打开;
A.读取进风侧噪声传感器加权A声级平均值,记为X1;
B.读取出风侧噪声传感器加权A声级平均值,记为X2;
C.定义阈值X=X2-X1,作为冷却器无任何堵塞的参考依据。
2、冷却器在百叶窗8完全关闭的状态下工作,重复步骤A、B、C;
A.读取进风侧噪声传感器加权A声级平均值,记为Y1;
B.读取出风侧噪声传感器加权A声级平均值,记为Y2;
C.定义阈值Y=Y2-Y1,作为冷却器完全堵塞的参考依据。
3、冷却器在百叶窗8打开20%的状态下,重复步骤A、B、C;
A.读取进风侧噪声传感器加权A声级平均值,记为Z1;
B.读取出风侧噪声传感器加权A声级平均值,记为Z2;
C.定义阈值Z=Z2-Z1,作为冷却器堵塞80%的参考依据。
本实施例中,将Z设为警告信号阀值,冷却器工作过程中(百叶窗完全),当进风侧噪声传感器加权A声级平均值与出风侧噪声传感器加权A声级平均值的差值达到警告信号阀值时,触发报警,提醒工作人员及时清理冷却器。未触发报警状态下,用户可以调取/查看监测到的声音信号(进风侧噪声传感器加权A声级平均值与出风侧噪声传感器加权A声级平均值的差值),将其与预设的阈值比较,判断冷却器的堵塞程度。
上述实施例中,通过控制百叶窗8的打开面积,模拟冷却器不同堵塞程度下的状态,用这种方式设置阈值充分考虑了使用环境现场的情况,可靠性高。需要指出的是,用户可以根据自身实际情况预设阈值和警告信号阈值。
 上述对本申请中涉及的发明的一般性描述和对其具体实施方式的描述不应理解为是对该实用新型技术方案构成的限制。本领域所属技术人员根据本申请的公开,可以在不违背所涉及的实用新型构成要素的前提下,对上述一般性描述或/和具体实施方式(包括实施例)中的公开技术特征进行增加、减少或组合,形成属于本申请保护范围之内的其它的技术方案。

Claims (12)

  1. 风力发电机直接冷却器,其特征在于:
    包括底座(1),底座(1)上依序设有进风罩(2)、机箱(3)和出风罩(4);所述进风罩(2)内设有过滤组件;
    所述底座(1)的内部呈中空状,其顶部设有与进风罩(2)连通的冷风进口(102),其底部对应设有冷风出口(103),所述进风罩(2)上设有进风口,使得工作时外界空气可以从进风口进入进风罩(2)中经过滤后从冷风出口(103)进入风力发电机中;
    所述机箱(3)内设有叶轮(5),叶轮(5)与设于机箱(3)上的电机连接可由电机驱动,对应的,所述底座(1)上设有贯穿底座(1)的热风通道(101),热风通道(101)与机箱(3)的内部连通,所述机箱(3)的侧部设有热风出口,热风出口与出风罩(4)连通,所述出风罩(4)上设有出风口,使得工作时风力发电机内部的热空气可以从热风通道(101)进入机箱(3)中最终从出风口排至外界;
    所述进风罩(2)上设有进风侧噪音传感器(6),对应的,所述出风罩(4)上设有出风侧噪音传感器(7);工作时,通过监测风机进风侧和出风侧的声音信号,计算出出风侧和进风侧A声级的差值,并与阈值比较,判断冷却器是否应该执行清理措施。
  2. 根据权利要求1所述的风力发电机直接冷却器,其特征在于:所述进风罩(2)的进风口上设有百叶窗(8)。
  3. 根据权利要求2所述的风力发电机直接冷却器,其特征在于:所述百叶窗(8)为电动百叶窗。
  4. 根据权利要求1所述的风力发电机直接冷却器,其特征在于:所述过滤组件包括设于底座(1)上过滤棉支架(9),以及包覆在过滤棉支架(9)上的过滤棉。
  5. 根据权利要求1所述的风力发电机直接冷却器,其特征在于:所述热风通道(101)的出口通过集风圈(10)与叶轮(5)衔接,所述集风圈(10)由多段圆弧过渡形成。
  6. 根据权利要求5所述的风力发电机直接冷却器,其特征在于:所述集风圈(10)插入叶轮进风口5-8mm。
  7. 根据权利要求1所述的风力发电机直接冷却器,其特征在于:所述出风罩(4)的出风口上设有方接圆连接件(11)。
  8. 根据权利要求7所述的风力发电机直接冷却器,其特征在于:所述方接圆连接件(11)的圆形出口内侧设有吸音棉。
  9. 根据权利要求1-8任一权利要求所述的风力发电机直接冷却器,其特征在于:所述冷风出口(103)具有两个,分别位于热风通道(101)的两侧。
  10. 根据权利要求9所述的风力发电机直接冷却器,其特征在于:所述冷风出口(103)呈矩形。
  11. 根据权利要求1-10任一权利要求所述的风力发电机直接冷却器,其特征在于:所述进风侧噪音传感器(6)沿进风罩(2)的宽度方向成组设置形成阵列。
  12. 根据权利要求1-10任一权利要求所述的风力发电机直接冷却器,其特征在于:所述出风侧噪音传感器(7)沿出风罩(4)的宽度方向成组设置形成阵列。
PCT/CN2022/073152 2022-01-13 2022-01-21 风力发电机直接冷却器 WO2023133923A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210037281.2 2022-01-13
CN202210037281.2A CN114362443A (zh) 2022-01-13 2022-01-13 风力发电机直接冷却器

Publications (1)

Publication Number Publication Date
WO2023133923A1 true WO2023133923A1 (zh) 2023-07-20

Family

ID=81109587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073152 WO2023133923A1 (zh) 2022-01-13 2022-01-21 风力发电机直接冷却器

Country Status (2)

Country Link
CN (1) CN114362443A (zh)
WO (1) WO2023133923A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117595563B (zh) * 2024-01-18 2024-04-02 湖南创一智能科技有限公司 一种电机空空冷却器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110272949A1 (en) * 2010-03-17 2011-11-10 Mitsubishi Heavy Industries, Ltd. Wind turbine generator
CN207123035U (zh) * 2017-09-07 2018-03-20 天津健智者行空调技术有限公司 空调过滤网堵塞报警装置
CN209310574U (zh) * 2018-10-08 2019-08-27 江苏兆胜科技股份有限公司 一种直驱永磁风力发电机空空冷却器
CN111181315A (zh) * 2020-03-12 2020-05-19 江苏兆胜科技股份有限公司 4.8mw大功率开启式空冷器
CN211557075U (zh) * 2020-03-12 2020-09-22 江苏兆胜科技股份有限公司 4.8mw大功率开启式空冷器
CN113708567A (zh) * 2021-09-03 2021-11-26 浙江尔格科技股份有限公司 风力发电机用冷却器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994431B2 (ja) * 2009-08-24 2012-08-08 三菱電機株式会社 誘導加熱調理器
CN204652142U (zh) * 2015-06-08 2015-09-16 付志军 一种节能型高压电机冷却器
CN105115119B (zh) * 2015-09-18 2019-05-03 珠海格力电器股份有限公司 用于空调机组的故障检测方法、装置和设备
CN206060429U (zh) * 2016-08-30 2017-03-29 浙江尔格科技股份有限公司 一种冷却器
CN108683285A (zh) * 2018-06-25 2018-10-19 浙江运达风电股份有限公司 一种新型冷却方式的风力发电机
CN109347254A (zh) * 2018-10-31 2019-02-15 中车永济电机有限公司 空气直接冷却的双馈风力发电机
CN210371291U (zh) * 2019-07-29 2020-04-21 山西省安瑞风机电气股份有限公司 一种纳米自清洁通风机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110272949A1 (en) * 2010-03-17 2011-11-10 Mitsubishi Heavy Industries, Ltd. Wind turbine generator
CN207123035U (zh) * 2017-09-07 2018-03-20 天津健智者行空调技术有限公司 空调过滤网堵塞报警装置
CN209310574U (zh) * 2018-10-08 2019-08-27 江苏兆胜科技股份有限公司 一种直驱永磁风力发电机空空冷却器
CN111181315A (zh) * 2020-03-12 2020-05-19 江苏兆胜科技股份有限公司 4.8mw大功率开启式空冷器
CN211557075U (zh) * 2020-03-12 2020-09-22 江苏兆胜科技股份有限公司 4.8mw大功率开启式空冷器
CN113708567A (zh) * 2021-09-03 2021-11-26 浙江尔格科技股份有限公司 风力发电机用冷却器

Also Published As

Publication number Publication date
CN114362443A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2023133923A1 (zh) 风力发电机直接冷却器
CN101678263A (zh) 空气过滤器
CN108006829A (zh) 空调器室内机、空调器及其控制方法
CN116231473B (zh) 一种具有自动报警功能的配电柜
CN109586175A (zh) 一种可快速拆装的配电柜
CN110410915B (zh) 一种智能型防沙尘通风装置
CN207719668U (zh) 一种变电柜
CN205744314U (zh) 一种风电塔筒的高效进风过滤系统
CN212786475U (zh) 一种plc电气自动化控制装置
CN105180341A (zh) 送风装置
CN207069377U (zh) 一种继电保护装置
CN116294044A (zh) 一种新风中央空调设备及其控制方法
CN206609090U (zh) 一种感温空调
CN210569064U (zh) 一种热回收机组
CN211720166U (zh) 一种具有提醒功能的电缆桥架
CN109871101A (zh) 一种具有智能控制的计算机柜内部扇热装置
CN210868595U (zh) 一种自防护型的电气柜
CN213300450U (zh) 一种高层建筑防烟排烟设备
CN210201286U (zh) 一种发电厂智能电气端子箱
CN209828529U (zh) 一种引风机除尘装置
CN207350621U (zh) 一种工业用冷气机
CN212033438U (zh) 一种带温度检测机构的监控装置
CN211781746U (zh) 一种厨房用高效率排气扇
CN216283592U (zh) 一种房屋建筑用的管理监测装置
CN218768336U (zh) 一种房屋建设施工安全报警装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919569

Country of ref document: EP

Kind code of ref document: A1