WO2023133831A1 - Dc/dc转换电路、功率单元、充电桩及充放电加热方法 - Google Patents
Dc/dc转换电路、功率单元、充电桩及充放电加热方法 Download PDFInfo
- Publication number
- WO2023133831A1 WO2023133831A1 PCT/CN2022/072104 CN2022072104W WO2023133831A1 WO 2023133831 A1 WO2023133831 A1 WO 2023133831A1 CN 2022072104 W CN2022072104 W CN 2022072104W WO 2023133831 A1 WO2023133831 A1 WO 2023133831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- battery pack
- charging
- conversion circuit
- power
- Prior art date
Links
- 238000007599 discharging Methods 0.000 title claims abstract description 113
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 104
- 238000010438 heat treatment Methods 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000004146 energy storage Methods 0.000 claims abstract description 89
- 230000009466 transformation Effects 0.000 claims description 21
- 239000003990 capacitor Substances 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 11
- 230000008569 process Effects 0.000 description 18
- 230000000694 effects Effects 0.000 description 9
- 230000002457 bidirectional effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/63—Control systems
- H01M10/633—Control systems characterised by algorithms, flow charts, software details or the like
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/24—Using the vehicle's propulsion converter for charging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/27—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/615—Heating or keeping warm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0068—Battery or charger load switching, e.g. concurrent charging and load supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33584—Bidirectional converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/12—Buck converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/14—Boost converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/90—Vehicles comprising electric prime movers
- B60Y2200/91—Electric vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Definitions
- the present application relates to the technical field of batteries, in particular to a DC/DC conversion circuit, a power unit, a charging pile, and a charging and discharging heating method.
- a heating module is usually added inside the electric vehicle to rapidly heat the battery pack. And setting additional heating device on each electric vehicle will inevitably lead to an increase in the production cost of the electric vehicle.
- a heating device can be installed in the charging pile, and the battery pack can be heated by charging and discharging the battery pack through the heating device.
- the embodiment of the present application provides a DC/DC conversion circuit, a power unit, a charging pile and a charging and discharging heating method to solve the problems of slow charging and discharging switching speed of the charging pile and poor heating effect of the battery pack.
- the present application provides a DC/DC conversion circuit, which is applied to a charging pile, and the DC/DC conversion circuit includes:
- a first rectification module the input end of the first rectification module is connected to the power grid through an AC/DC conversion circuit;
- Transformer module the input terminal of the transformer module is connected to the output terminal of the first rectification module
- the second rectification module the input end of the second rectification module is used to connect with the output end of the transformer module or the energy storage module, and the output end of the second rectification module is used to connect with the electric vehicle when the charging pile is charging the electric vehicle battery pack connection;
- the second rectification module is used to communicate with the voltage transformation module, and performs charging and discharging within the first frequency range between the power grid and the battery pack to heat the battery pack; or, used to communicate with the energy storage module, between the energy storage module and the battery pack
- the battery packs are charged and discharged within the second frequency range to heat the battery packs; the first frequency range is smaller than the second frequency range.
- the second rectifier module and the transformer module are turned on, and the battery pack is cycled through the AC/DC conversion circuit and the DC/DC conversion circuit. Continuously charge and discharge to realize the heating of the battery pack. If the switching frequency of charging and discharging is required to be high, connect the second rectification module to the energy storage module, and the battery pack, the second rectification module and the energy storage module can realize higher frequency charging and discharging of the battery pack through oscillation discharge, thereby rapidly heating The battery pack improves the heating effect of the battery pack.
- the second rectifier module When the battery pack needs high-frequency pulse current, it can generate high-frequency pulse current through communication with the energy storage module, so that the battery pack can realize low-temperature and rapid heating through high-frequency charging and discharging.
- the DC/DC conversion circuit further includes:
- the first switch the input end of the second rectification module is connected to the output end of the transformation module through the first switch, and the first switch is used to communicate the second rectification module with the transformation module;
- the second switch, the input end of the second rectification module is connected to the energy storage module through the second switch, and the second switch is used to connect the second rectification module to the energy storage module.
- the charging pile can output high-frequency positive and negative pulse currents to the battery pack by adjusting the switch state of the first switch and the second switch, thereby performing high-frequency charging on the battery pack. Discharge to heat the battery pack.
- the second rectification module includes:
- the first MOS transistor the first end of the first MOS transistor is connected to the first pole of the output end of the transformer module through the first switch, and the second end of the first MOS transistor is used to connect to the first pole of the battery pack;
- the second MOS transistor the first end of the second MOS transistor is connected to the second pole of the output end of the transformer module, and the second end of the second MOS transistor is used to connect to the first pole of the battery pack;
- the third MOS transistor the first end of the third MOS transistor is connected to the first pole of the output end of the transformer module through the first switch, and the second end of the third MOS transistor is used to connect to the second pole of the battery pack;
- a fourth MOS transistor the first end of the fourth MOS transistor is connected to the second pole of the output end of the transformer module, and the second end of the fourth MOS transistor is used to connect to the second pole of the battery pack;
- the second rectification module is used to charge the battery pack when the first MOS transistor and the fourth MOS transistor are turned on; to discharge the battery pack when the second MOS transistor and the third MOS transistor are turned on.
- the charging and discharging of the battery pack can be realized. And the upper limit of the charge and discharge frequency is only affected by the switching frequency performance of the MOS tube. By adjusting the signal frequency of the conduction signal of the MOS tube, the charge and discharge frequency of the battery pack can also be adjusted accordingly.
- the first end of the first MOS transistor is connected to the first end of the energy storage module through the second switch, and the first end of the second MOS transistor is connected to the second end of the energy storage module.
- the energy storage module By setting the energy storage module to be directly connected to the second rectification module, the energy storage module can be connected to the battery pack only through the second rectification module, which reduces the number of components between the energy storage module and the battery pack, and avoids the impact of component performance on charging. Discharge switching speed is affected.
- the energy storage module is an energy storage inductor or an energy storage capacitor.
- the second rectification module is also used to communicate with the transformer module, and charge and discharge the battery packs whose remaining power is lower than the preset power threshold in the first frequency range to heat the battery packs .
- the battery pack When the remaining power of the battery pack is low, the battery pack can still be charged and discharged to heat the battery pack through the communication between the second rectification module and the transformer module.
- the present application provides a power unit, which is applied to a charging pile.
- the power unit includes the above DC/DC conversion circuit; the power unit also includes an AC/DC conversion circuit, and the input end of the AC/DC conversion circuit is connected to the power grid. The output end of the AC/DC conversion circuit is connected to the input end of the DC/DC conversion circuit.
- the present application provides a charging pile, the charging pile includes the above power unit; the charging pile also includes a main control module, and the main control module is respectively connected to each power unit;
- the main control module is used to connect the second rectification module of the DC/DC conversion circuit in the power unit with the transformer module or with the energy storage module, and periodically switch the current direction of the second rectification module to heat the battery pack.
- the charging pile includes at least two power units
- the main control module is also used to connect multiple power units in parallel according to the heating power of the battery pack, or connect the DC/DC conversion circuits of multiple power units in series according to the charging voltage of the battery pack.
- the present application provides a charging and discharging heating method, which is applied to charging piles.
- the charging and discharging heating method includes:
- the power-on request indicating that the battery device is connected to the charging pile, and the power-on request includes heating frequency information
- heating frequency information corresponds to the first frequency range
- the heating frequency information corresponds to the second frequency range
- the heating frequency of the battery pack can be obtained by the main control module of the charging pile, and the battery pack can be charged and discharged by using the corresponding charging and discharging method.
- the battery pack needs a higher heating frequency, the battery pack can be charged and discharged at a high frequency. In order to improve the switching speed of charging and discharging and the heating effect of the battery pack.
- the second rectifier module of the DC/DC conversion circuit is connected to the transformer module according to the power-on request, and the current direction of the second rectifier module is periodically switched to heat the battery pack.
- the battery pack When the remaining power of the battery pack is low, the battery pack can still be charged and discharged to heat the battery pack through the communication between the second rectification module and the transformer module.
- the DC/DC conversion circuit, power unit, charging pile, and charging and discharging heating method provided in the embodiments of the present application can be connected to the power grid through the AC/DC conversion circuit.
- the charging pile is charging the electric vehicle, if the frequency of charging and discharging switching is low, the second rectifier module and the transformer module are turned on, and the battery pack is cycled through the AC/DC conversion circuit and the DC/DC conversion circuit. Continuously charge and discharge to realize the heating of the battery pack.
- the switching frequency of charging and discharging is required to be high, connect the second rectification module to the energy storage module, and the battery pack, the second rectification module and the energy storage module can realize higher frequency charging and discharging of the battery pack through oscillation discharge, thereby rapidly heating
- the battery pack improves the heating effect of the battery pack.
- FIG. 1 is a schematic diagram of a module structure of a DC/DC conversion circuit provided by an embodiment of the present application
- FIG. 2 is a schematic diagram of a module structure of a DC/DC conversion circuit provided by another embodiment of the present application.
- FIG. 3 is a schematic diagram of a circuit structure of a DC/DC conversion circuit provided by an embodiment of the present application
- FIG. 4 is a schematic diagram of a module structure of a DC/DC conversion circuit provided in another embodiment of the present application.
- FIG. 5 is a schematic diagram of a module structure of a DC/DC conversion circuit provided in yet another embodiment of the present application.
- FIG. 6 is a schematic flowchart of a charge-discharge heating method provided by an embodiment of the present application.
- multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
- power batteries can be used as the main power source of electric devices (such as vehicles, ships or spacecraft, etc.), while energy storage batteries can be used as the source of charging for electric devices.
- energy storage batteries can be used as the source of charging for electric devices.
- Metaphor As an example but not a limitation, in some application scenarios, the power battery may be a battery in a power consumption device, and the energy storage battery may be a battery in a charging device.
- power batteries and energy storage batteries are collectively referred to as batteries hereinafter.
- lithium batteries such as lithium-ion batteries or lithium-ion polymer batteries.
- the battery When the battery is installed in the electric device, if the remaining power of the battery is insufficient, it needs to be connected with a charging device to charge the battery.
- a heating module is usually added inside the electric vehicle to rapidly heat the battery pack. And setting additional heating device on each electric vehicle will inevitably lead to an increase in the production cost of the electric vehicle.
- a heating device can be installed in the charging pile, and the battery pack can be heated by charging and discharging the battery pack through the heating device.
- it is necessary to continuously switch the current direction of the DC power inside the charging pile. It usually takes about one second for the existing charging pile to switch between charging and discharging once, and this speed of charging and discharging switching has a poor heating effect on the battery pack.
- the charging and discharging switching speed of the charging pile is affected by the performance of internal components, it is impossible to increase the charging and discharging switching speed by adjusting the charging and discharging control method.
- the embodiment of the present application provides a DC/DC (Direct current-Direct current, direct current to direct current) conversion circuit, a power unit, a charging pile, and a charging and discharging heating method.
- the DC/DC conversion circuit provided by the embodiment of the present application will be firstly introduced below.
- FIG. 1 shows a schematic diagram of a module structure of a DC/DC conversion circuit 10 provided by an embodiment of the present application.
- the DC/DC conversion circuit 10 includes a first rectification module 11 , a transformer module 12 , a second rectification module 13 and an energy storage module 14 .
- the input end of the first rectification module 11 is connected to the grid 2 through an AC/DC (Alternating Current-Direct current, alternating current to direct current) conversion circuit 20, and the input end of the transformer module 12 is connected to the output end of the first rectification module 11.
- the input end of the second rectification module 13 can be connected with the output end of the transformer module 12 or with the energy storage module 14, and the output end of the second rectification module 13 can be connected with the battery of the electric vehicle when the charging pile 100 is charging the electric vehicle.
- Package 3 makes electrical connections.
- the second rectifier module 13 can connect the input end to the transformer module 12 or connect the input end to the energy storage module 14 under the control of the charging pile 100 .
- the grid 2 , the AC/DC conversion circuit 20 , the DC/DC conversion circuit 10 and the battery pack 3 form a current loop.
- the battery pack 3 can be charged when outputting a positive pulse current, and the battery pack 3 can be discharged when outputting a negative pulse current.
- the second rectifier module 13 can output a negative pulse current by adjusting the direction of the output current.
- the battery pack 3 starts to discharge, and this part of the electric energy can pass through the DC/DC conversion circuit 10.
- the AC/DC conversion circuit 20 is fed back to the grid 2, and can also be output to the energy storage element provided in the charging pile 100 through the DC/DC conversion circuit 10 and the AC/DC conversion circuit 20, so as to temporarily store this part of the electric energy .
- the second rectifier module 13 can adjust the direction of the output current to output a positive pulse current, and at this time the grid 2 can charge the battery pack 3 through the AC/DC conversion circuit 20 and the DC/DC conversion circuit 10 .
- the battery pack 3 In the cycle of charge and discharge cycle, the battery pack 3 is continuously charged and discharged, and the temperature of the battery pack 3 is also continuously raised, so that the battery pack 3 is heated through the charge and discharge cycle of the battery pack 3 .
- a pulse current of a corresponding frequency can be generated, so as to charge and discharge the battery pack 3 of the electric vehicle at a corresponding frequency.
- the direction of the output current of the second rectifying module 13 is adjusted and maintained for a period of time, the charging process or discharging process of the battery pack 3 can be realized. That is, when the second rectifier module 13 communicates with the transformer module 12, it can output positive or negative direct current to charge and discharge the battery pack 3, and can also output periodic positive and negative pulse currents to The battery pack 3 is periodically charged and discharged to heat the battery pack 3 .
- the battery pack 3 can charge the energy storage module 14 through the second rectifying module 13 by adjusting the second rectifying module 13 .
- the direction of the output current of the second rectification module 13 can be adjusted to make the energy storage module 14 discharge, so as to charge the battery pack 3 .
- the temperature of the battery pack 3 can also be increased, thereby realizing heating of the battery pack 3 .
- the battery pack 3 When the second rectifier module 13 is in communication with the transformer module 12, the battery pack 3 is charged and discharged through the first charging and discharging circuit formed by the grid 2, the AC/DC conversion circuit 20, the DC/DC conversion circuit 10 and the battery pack 3 .
- the second rectification module 13 communicates with the energy storage module 14 , the battery pack 3 is charged and discharged through the second charging and discharging circuit formed by the energy storage module 14 , the second rectification module 13 and the battery pack 3 .
- the output current direction of the second rectification module 13 when the output current direction of the second rectification module 13 is adjusted to be forward direct current, the output current direction of the first rectification module 11 also needs to be adjusted accordingly, so that the direct current output by the AC/DC conversion circuit 20 can be sequentially Output to the battery pack 3 through the first rectification module 11 , the transformer module 12 and the second rectification module 13 .
- the output current direction of the second rectifier module 13 is adjusted to negative direct current
- the output current direction of the first rectifier module 11 also needs to be adjusted to negative direct current, so that the electric energy released by the battery pack 3 can pass through DC/DC
- the conversion circuit 10 and the AC/DC conversion circuit 20 are fed back to the grid 2 .
- the switching time for the battery pack 3 to switch between the charging state and the discharging state will be limited by the performance of the components of each module in the charging post 100 .
- the component performance of the AC/DC conversion circuit 20 in the charging pile 100 or the component performance of other modules other than the second finishing module in the DC/DC conversion circuit 10 will cause the switching time of the battery pack 3 to charge and discharge states. extend.
- the detected charging and discharging cycle is usually on the order of seconds. That is, the frequency of charging and discharging the battery pack 3 by the first charging and discharging circuit is relatively low.
- the battery pack 3 When the second rectification module 13 communicates with the energy storage module 14 , the battery pack 3 is charged and discharged through the second charging and discharging circuit formed between the energy storage module 14 , the second rectification module 13 and the battery pack 3 .
- the charge and discharge cycle of the second charge and discharge circuit is only limited by the performance of the components in the second rectifier module 13. Since the components that limit the charge and discharge switching time are greatly reduced, the charge and discharge switching time of the second charge and discharge circuit is greatly reduced.
- the current direction switching frequency of the second rectification module 13 can usually be reduced. Therefore, the second charging and discharging circuit can charge and discharge the battery pack 3 at a high frequency.
- the battery pack 3 can rapidly heat up, thereby improving the heating effect on the battery pack 3 .
- the battery pack 3 of some electric vehicles cannot support high-frequency charging and discharging, and if the high-frequency charging and discharging method is adopted, the battery pack 3 will be damaged. Therefore, for the battery pack 3 that does not support high-frequency charging and discharging, the battery pack 3 can continue to be heated by low-frequency charging and discharging.
- the first frequency range and the second frequency range can be set.
- the charging pile 100 can control the second rectifier module 13 to communicate with the transformer module 12 to pass through the grid 2, AC/DC conversion circuit 20, DC/DC
- the first charging and discharging circuit formed by the conversion circuit 10 and the battery pack 3 charges and discharges the battery pack 3 .
- the charging pile 100 can control the second rectification module 13 to communicate with the energy storage module 14, so that the energy storage module 14, the second rectification module 13 and the battery pack
- the second charging and discharging circuit formed between 3 performs high-frequency charging and discharging to the battery pack 3 .
- the above-mentioned first frequency range may be set to be smaller than the second frequency range.
- the first frequency range can be included by the second frequency range, that is, when the battery pack 3 requires low-frequency charge and discharge, the second rectifier module 13 can be connected to the transformer module 12 for charge and discharge, or the second rectifier module 13 can be connected to the second frequency range.
- the rectifier module 13 communicates with the energy storage module 14 for charging and discharging.
- the second rectifier module 13 is connected to the energy storage module 14 for charging and discharging.
- the charging pile 100 can control the input end of the second rectification module 13 to communicate with the transformer module 12 when the battery pack 3 of the electric vehicle requires low-frequency charging and discharging, so as to pass through the power grid.
- the current loop between 2 and battery pack 3 charges and discharges the battery pack 3 at a low frequency, thereby heating the battery pack 3 .
- the charging pile 100 can control the input end of the second rectifier module 13 to connect with the energy storage module 14 to perform high-frequency charging and discharging between the energy storage module 14 and the battery pack 3 .
- the temperature of the battery pack 3 can be rapidly increased, thereby achieving rapid heating of the battery pack 3 and improving the heating effect of the battery pack 3 .
- the battery pack 3 of different models of electric vehicles requires charging and discharging pulse currents at different frequencies, it can also perform low-frequency charging and discharging or high-frequency charging and discharging on the battery pack 3 according to the required frequency of the battery pack 3, thereby realizing different vehicle models. Pack of 3 compatible heating.
- the DC/DC conversion circuit 10 may include a first switch K1 and a second switch K2, and the input terminal of the second rectification module 13 is connected to the output terminal of the transformer module 12 through the first switch K1.
- the input end of the second rectification module 13 is also connected to the energy storage module 14 through the second switch K2.
- the first switch K1 can communicate with the second rectifier module 13 and the transformer module 12 when turned on, and the second switch K2 can communicate with the second rectifier module 13 and the energy storage module 14 when turned on.
- the charging pile 100 determines that the battery pack 3 of the electric vehicle requires low-frequency pulse current for charging and discharging, it can control the first switch K1 to be turned on and the second switch K2 to be turned off, so that the battery pack 3 can be charged and discharged at a low frequency.
- the charging pile 100 determines that the battery pack 3 of the electric vehicle requires high-frequency pulse current for charging and discharging, it can control the second switch K2 to be turned on and the first switch K1 to be turned off, so that the battery pack 3 can rapidly heat up under high-frequency charging and discharging. , realizing rapid heating of the battery pack 3 .
- the charging pile 100 can output high-frequency positive and negative pulse currents to the battery pack 3 by adjusting the switching states of the first switch K1 and the second switch K2, thereby The battery pack 3 is charged and discharged at high frequency to heat the battery pack 3 .
- the second rectification module 13 may include a first MOS transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, Metal-Oxide-Semiconductor Field-Effect Transistor) M1, a second MOS transistor M2, a first Three MOS transistors M3 and a fourth MOS transistor M4.
- MOS transistor Metal-Oxide-Semiconductor Field-Effect Transistor, Metal-Oxide-Semiconductor Field-Effect Transistor
- the first end of the first MOS transistor M1 is connected to the first pole of the output end of the transformer module 12 through the first switch K1, and the second end of the first MOS transistor M1 can be connected to the battery when the charging pile 100 is charging the battery pack 3. Package 3's first pole connection.
- the first end of the second MOS transistor M2 is connected to the second pole of the output end of the transformer module 12, and the second end of the second MOS transistor M2 can be connected to the first terminal of the battery pack 3 when the charging pile 100 is charging the battery pack 3. pole connection.
- the first end of the third MOS transistor M3 is connected to the first pole of the output end of the transformer module 12 through the first switch K1, and the second end of the third MOS transistor M3 can be connected to the battery when the charging pile 100 is charging the battery pack 3. Package 3's second pole connection.
- the first end of the fourth MOS transistor M4 is connected to the second pole of the output end of the transformer module 12, and the second end of the fourth MOS transistor M4 can be connected to the second pole of the battery pack 3 when the charging pile 100 is charging the battery pack 3. pole connection.
- the second rectifier module 13 can charge the battery pack 3 through the above-mentioned first charging and discharging circuit when the first MOS transistor M1 and the fourth MOS transistor M4 are turned on. Charging; when the second MOS transistor M2 and the third MOS transistor M3 are turned on, the battery pack 3 is discharged through the first charging and discharging circuit.
- the second rectifier module 13 When the second rectifier module 13 is connected to the transformer module 12, if the first MOS transistor M1 and the fourth MOS transistor M4 are turned on, the first pole of the output end of the transformer module 12 is connected to the first pole of the battery pack 3, and the The second pole of the output end of the voltage module 12 is connected to the second pole of the battery pack 3. At this time, the AC power output by the grid 2 can be converted from AC to DC, and then output to the battery pack 3 through the transformer module 12 for charging. If the second MOS transistor M2 and the third MOS transistor M3 are turned on, the first pole of the output end of the transformer module 12 is connected to the second pole of the battery pack 3, and the second pole of the output end of the transformer module 12 is connected to the second pole of the battery pack 3. The first pole is connected. At this time, the battery pack 3 can be discharged, and this part of electric energy can be fed back to the grid 2 through the DC/DC module and the AC/DC module, or temporarily stored in the energy storage element of the charging pile 100 .
- the charging and discharging of the battery pack 3 can be realized. And the upper limit of charging and discharging frequency is only affected by the switching frequency performance of the MOS transistor in the second rectifier module 13 , by adjusting the signal frequency of the MOS transistor conduction signal, the charging and discharging frequency of the battery pack 3 can also be adjusted accordingly.
- the charging and discharging frequency of the battery pack 3 can reach 2000 Hz, that is, by adjusting the conduction of the MOS tubes
- the switching time of the state can at least make the charging and discharging frequency of the battery pack 3 be adjusted between 0 and 2000 Hz.
- the voltage transformation module 12 may adopt various topologies, such as LLC topology, DAB topology, CLLC topology, CF-DAB topology, and Partial-Power Converter topology.
- FIG. 3 shows a circuit structure when the voltage transformation module 12 is a CLLC topology.
- the above-mentioned different topological structures can realize DC bidirectional voltage regulation, but for the gain of DC voltage regulation, conversion efficiency and the frequency of bidirectional switching The advantages and disadvantages are different, and when there are different requirements, corresponding topologies can be used to implement them.
- the transformer module 12 can also use a bipolar LLC bidirectional DC-DC converter.
- the first rectifier module 11 and the AC/DC conversion circuit 20 is provided with a Buck-Boost circuit, and the transformer module 12 uses a bidirectional LLC-SRC converter.
- the maximum switching frequency supported by the MOS transistors of the first rectification module 11 and the second rectification module 12 will decrease, and when the system load decreases, the maximum switching frequency supported by the MOS tube will increase accordingly.
- the voltage transformation module 12 can also be a dual active bridge converter.
- the first end of the first MOS transistor M1 can be connected to the first end of the energy storage module 14 through the second switch K2, and the first end of the second MOS transistor M2 can be connected to the second end of the energy storage module 14. end connection.
- the second rectifier module 13 can charge the battery pack 3 through the above-mentioned second charge and discharge circuit when the first MOS transistor M1 and the fourth MOS transistor M4 are turned on. Discharging: when the second MOS transistor M2 and the third MOS transistor M3 are turned on, the battery pack 3 is charged through the second charging and discharging circuit.
- the first MOS transistor M1 and the fourth MOS transistor M4 are turned on in the first stage, and the battery pack 3 can be used for the storage by discharging.
- the energy module 14 stores energy.
- the second MOS transistor M2 and the third MOS transistor M3 are turned on.
- the energy storage module 14 releases the stored electric energy to charge the battery pack 3 .
- the third stage the second MOS transistor M2 and the third MOS transistor M3 remain in the conduction state, and the battery pack 3 continues to charge the energy storage module 14 .
- the first MOS transistor M1 and the fourth MOS transistor M4 are turned on, and the energy storage module 14 releases the stored electric energy to charge the battery pack 3 .
- the first MOS transistor M1 and the fourth MOS transistor M4 may continue to be in the on state. That is, due to the multiple MOS tubes in the energy storage module 14, the second rectifier module 13, and the battery pack 3, an oscillation circuit can be formed, and when the conduction state of the MOS tubes is switched each time, the battery pack 3 can be switched once.
- the charging process and the primary discharging process further reduce the charging and discharging cycle of the battery pack 3 and increase the pulse frequency of the charging and discharging current.
- the second rectifier module 13 when the second rectifier module 13 is in communication with the transformer module 12 , every time the MOS transistor in the second rectifier module 13 switches the conduction state, a charge process or a discharge process of the battery pack 3 can be realized. Even if the impact of the performance of the components of the AC/DC conversion module 20 and other modules in the DC/DC conversion module 10 in the charging pile 100 on the charge and discharge cycle time is not considered, the charge and discharge frequency can be doubled.
- the above-mentioned energy storage module 14 may be an energy storage capacitor or an energy storage inductance L, and may also be other energy storage components.
- the second rectifier module 13 when the second rectifier module 13 is in communication with the transformer module 12, it can also charge and discharge the battery pack 3 whose remaining power is lower than the preset power threshold to heat the battery pack 3 within the first frequency range. .
- the current direction of the second rectification module 13 can be adjusted to first charge the battery pack in the charge and discharge cycle. 3 is charged, thereby starting the charge and discharge cycle of the battery pack 3 .
- the energy storage module 14 When the second sorting module communicates with the energy storage module 14, the energy storage module 14 does not store energy at the initial stage. Therefore, the battery pack 3 needs to be discharged first in the charging and discharging cycle, so as to store energy in the energy storage module 14 . If the remaining power of the battery pack 3 is too low to discharge, the corresponding charge-discharge cycle cannot be started. For example, when the SOC (State of Charge, state of charge) of the battery pack 3 is zero or close to zero, even if the battery pack 3 is connected to the energy storage module 14 through the second rectifier module 13, it cannot charge the energy storage module 14 discharge, so that the charge-discharge cycle process cannot be started.
- SOC State of Charge, state of charge
- the battery pack 3 can be charged and discharged at a low frequency to heat the battery pack 3 when the remaining power of the battery pack 3 is low.
- the embodiment of the present application also provides a power unit 1, which is applied to a charging pile 100.
- the power unit 1 includes the DC/DC conversion circuit 10 in the above embodiment, and the power unit 1 also includes an AC/DC conversion circuit 20.
- the input end of the AC/DC conversion circuit 20 is connected to the grid 2
- the output end of the AC/DC conversion circuit 20 is connected to the input end of the DC/DC conversion circuit 10 .
- the charging pile 100 may include a power unit 1 that provides charging power for the battery pack 3 , and the topology of the power unit 1 may be that the AC/DC conversion circuit 20 is connected in series with the DC/DC conversion circuit 10 .
- the above-mentioned power unit 1 can be set as a bidirectional power unit 1.
- the AC/DC conversion circuit 20 receives the alternating current output from the grid 2 and converts it into direct current.
- the DC/DC conversion circuit 10 receives the direct current output from the AC/DC conversion circuit 20 , and outputs the DC power to the battery pack 3 for charging after stepping down the voltage.
- the DC/DC conversion circuit 10 receives the direct current output from the battery pack 3, steps down the direct current and outputs it to the AC/DC conversion circuit 20, and the AC/DC conversion circuit 20 converts the direct current into Feed back to the grid 2 after alternating current.
- the power unit 1 can realize bidirectional current transmission, it is affected by the performance of each component in the power unit 1, resulting in a long time for switching the current direction, that is, when the power unit 1 charges and discharges the battery pack 3 , the frequency of charge and discharge is low.
- the embodiment of the present application also provides a charging pile 100, the charging pile 100 includes the power unit 1 in the above embodiment, the charging pile 100 also includes a main control module 30, the main control module 30 can be connected with the power unit 1, and controls each power
- the second rectification module 13 of the DC/DC conversion circuit 10 in the unit 1 communicates with the transformer module 12 or with the energy storage module 14 to heat the battery pack 3 by periodically switching the current direction of the second rectification module 13 .
- the main control module 30 can control one of the power units 1 to charge and discharge the battery pack 3 , or control multiple power units 1 to charge and discharge the battery pack 3 at the same time.
- the main control module 30 controls multiple power units 1 to charge and discharge the battery pack 3 at the same time, it needs to control the multiple power units 1 to keep charging and discharging synchronously.
- the second rectification modules 13 in the multiple power units 1 should be set to communicate with the transformer module 12 or communicate with the energy storage module 14 .
- the second rectifier module 13 in each power unit 1 should maintain the same charge and discharge frequency, and maintain the same current direction at the same time node.
- the charging pile 100 may include at least two power units 1 , and the main control module 30 may be electrically connected to each power unit 1 .
- the main control module 30 can obtain the heating power required by the battery pack 3 , and connect multiple power units 1 in parallel to increase the heating power for the battery pack 3 when the heating power required by the battery pack 3 is high.
- the main control module 30 can also obtain the DC voltage required for charging and discharging the battery pack 3, and when the DC voltage required for charging and discharging the battery pack 3 is relatively high, it can also convert the DC/DC conversion circuits 10 in the multiple power units 1 to The output side is sequentially connected in series to increase the output voltage.
- the main control module 30 can determine the number of power units 1 that need to be connected in series to provide the DC voltage, and convert the DC/DC voltage of the number of power units 1 to The output side of the conversion circuit 10 is connected in series.
- the main control module 30 can obtain the power-on request of the battery pack 3 of the electric vehicle, and the power-on request can include heating demand frequency, heating current limit and the like.
- the main control module 30 can determine whether to connect the second rectification module 13 to the transformer module 12 or to connect the second rectification module 13 to the energy storage module 14 according to the heating demand frequency.
- the main control module 30 When the main control module 30 determines that the battery pack 3 needs higher heating power, it can also connect multiple power units 1 in parallel, and charge and discharge the battery pack 3 at the same time through multiple power units 1, so as to improve the heating power of the battery pack 3.
- the heating power of the heating can realize the rapid heating of the battery pack 3 .
- the output sides of the DC/DC conversion circuits 10 in the multiple power units 1 can be connected in series, so that the DC voltage output to the battery pack 3 is at least The sum of the output voltages of each power unit 1.
- the embodiment of the present application also provides a charging and discharging heating method, which is applied to the charging pile in the above embodiment.
- the charging and discharging heating method includes:
- S610 Receive a power-on request, the power-on request instructs the battery device to be connected to the charging pile, and the power-on request includes heating frequency information;
- the charging pile may receive a power-on request sent by the electric vehicle.
- the power-on request may indicate to the charging pile that the battery device is electrically connected to the charging pile, and the power-on request may include heating frequency information.
- the charging pile can determine which connection method the battery pack adopts for charging and discharging cycle heating according to the heating frequency information, and connect the second rectification module of the DC/DC conversion circuit to the corresponding module, and control the current of the second rectification module
- the direction is switched according to the corresponding frequency, and the battery pack can be charged and discharged at the corresponding frequency, so that the battery pack can be heated during the charging and discharging process, so that the battery pack can quickly heat up and reach the rechargeable working condition.
- the battery pack can be charged and discharged at a high frequency to increase the switching speed of charging and discharging and the heating effect of the battery pack.
- the main control module of the charging pile can communicate with the electric vehicle and obtain the power-on request transmitted by the electric vehicle.
- the power-on request may indicate that the battery device is connected to the charging pile, and the power-on request may include heating frequency information. It can be understood that, in order to avoid damage to the battery pack due to excessive current of the charging pile when heating the battery pack, the power-on request may also include a heating current limit, so that the charging pile can avoid heating the battery pack. Overcurrent.
- the main control module may determine which charging and discharging method is used to heat the battery pack according to the heating frequency information.
- the heating frequency information may include the heating frequency required by the battery pack.
- the main control module may be preset with a first frequency range and a second frequency range. When the heating frequency required by the battery pack corresponds to the first frequency range, the main control module The module can control the second rectification module of the DC/DC conversion circuit to communicate with the transformer module, and periodically switch the current direction of the second rectification module to output a pulse current of a corresponding frequency to heat the battery pack.
- the main control module when the main control module determines that the heating frequency required by the battery pack corresponds to the second frequency range, it can control the second rectifier module of the DC/DC conversion circuit to communicate with the energy storage module, and periodically switch the second The current direction of the rectifier module heats the battery pack by outputting a pulse current of the corresponding frequency.
- the above-mentioned first frequency range and the second frequency range may also be set not to overlap with each other.
- the first frequency range may be a heating frequency range less than the preset frequency threshold f1
- the second frequency range may be a heating frequency range greater than the preset frequency threshold f1. According to whether the required heating frequency of the battery pack is greater than the preset frequency threshold f1, it can be determined that the battery pack is pulse-heated in a charging and discharging manner corresponding to a corresponding frequency range.
- Electric vehicles can also detect the temperature of the battery pack, and when the temperature of the battery pack reaches the rechargeable temperature, send a request to stop powering on to the charging pile.
- the main control module of the charging pile can stop heating after receiving the request to stop power supply.
- the electric vehicle can also send a charging instruction to the charging pile, and the charging pile can connect the second rectification module with the transformer module according to the charging instruction, and connect the first rectification module and the second rectification module.
- the current direction of the second rectification module is set accordingly, so that the AC voltage output by the grid is converted to a corresponding charging voltage to the battery pack to charge the battery pack.
- the charging instruction may include parameters such as DC charging voltage limit and current limit of the battery pack.
- the charging pile can also directly connect the second rectifier module with the transformer module after receiving the request to stop power supply sent by the electric vehicle, and make corresponding adjustments to the current directions of the first rectifier module and the second rectifier module. It is set to directly switch to charging the battery pack after the heating of the battery pack is completed, and the user does not need to wait for the heating to end and trigger the corresponding operation to start charging the battery pack, which improves the charging efficiency and the user's charging experience.
- the electric vehicle can also detect the real-time power of the battery pack. When the real-time power of the battery pack reaches the full charge range, it can send a stop charging command to the charging pile so that the charging pile ends the charging process.
- step S610 it may also include:
- the charging post can control the second rectifier module to communicate with the transformer module, and periodically switch the first 2.
- the current direction of the rectification module so that the battery pack can be charged and discharged through the current loop of the grid, AC/DC conversion module, DC/DC conversion module and battery pack, so that the remaining power of the battery pack is low and the charging cannot be started.
- the battery pack can still be heated up through the charge and discharge cycle.
- the charging pile can obtain the remaining power of the battery pack of the electric vehicle. After the electric vehicle obtains the remaining power of the battery pack, the data information of the remaining power can be added to the power-on request, so that the charging pile can determine the remaining power of the battery pack when receiving the power-on request.
- the charging pile can also communicate with the electric vehicle after receiving the power-on request, so as to send a request for obtaining the remaining power to the electric vehicle, and the electric vehicle can send the detected remaining power of the battery pack to the charging pile according to the request for obtaining the remaining power.
- the charging station determines that the remaining power of the battery pack is lower than the preset power threshold, it may be determined that the battery pack cannot perform a discharge operation due to low power. Since the charging and discharging cycle of the battery pack starts the corresponding cycle through the discharging of the battery pack, when the battery pack cannot be discharged due to low power, the charging and discharging cycle of the battery pack cannot be started normally.
- the charging pile can connect the second rectifier module of the DC/DC conversion circuit with the transformer module according to the power-on request, and periodically switch the first The current direction of the two rectification modules is used to start the charge and discharge cycle of the battery pack.
- the charging and discharging heating of the battery pack below the preset power threshold requires that the heating frequency required by the battery pack is within the first frequency range, so as to communicate with the transformer module through the second rectifier module Charge and discharge the battery pack.
- the functional blocks shown in the structural block diagrams described above may be implemented as hardware, software, firmware, or a combination thereof.
- hardware When implemented in hardware, it may be, for example, an electronic circuit, an application specific integrated circuit (ASIC), suitable firmware, a plug-in, a function card, or the like.
- ASIC application specific integrated circuit
- the elements of the present application are the programs or code segments employed to perform the required tasks.
- Programs or code segments can be stored in machine-readable media, or transmitted over transmission media or communication links by data signals carried in carrier waves.
- "Machine-readable medium" may include any medium that can store or transmit information.
- machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like.
- Code segments may be downloaded via a computer network such as the Internet, an Intranet, or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Transportation (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Automation & Control Theory (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
提供一种DC/DC转换电路(10)、功率单元(1)、充电桩(100)及充放电加热方法,电路包括第一整流模块(11),第一整流模块(11)的输入端通过AC/DC转换电路(20)与电网(2)连接;变压模块(12),变压模块(12)的输入端与第一整流模块(11)的输出端连接;储能模块(14);第二整流模块(13),第二整流模块(13)的输入端用于与变压模块(12)的输出端连接或者与储能模块(14)连接,第二整流模块(13)的输出端用于在充电桩(100)为电动汽车充电时,与电动汽车的电池包(3)连接;第二整流模块(13),用于与变压模块(12)连通,在电网(2)和电池包(3)之间进行第一频率范围内的充电和放电以加热电池包(3);或者,用于与储能模块(14)连通,在储能模块(14)和电池包(3)之间进行第二频率范围内的充电和放电以加热电池包(3);第一频率范围小于第二频率范围。
Description
本申请涉及电池技术领域,尤其涉及一种DC/DC转换电路、功率单元、充电桩及充放电加热方法。
随着新能源技术的发展,电池的应用也越来越广泛。由于电动汽车的电池包在低温条件下充电效率较低,需要对电池包进行加热,将电池包的温度加热至电池包的运行温度范围,才能够通过充电桩为电池包进行高效充电。
相关技术中,为了解决电池包在低温条件下充电低效的问题,通常会在电动汽车内部增设加热模块,以对电池包进行快速加热。而在每辆电动汽车上设置额外的加热装置,必然会导致电动汽车的整车生产成本增大。为了降低整车成本,相关技术中提出,可以在充电桩内设置加热装置,并通过加热装置对电池包进行循环充放电来实现电池包的加热。
然而,为了对电池包进行循环充放电,需要充电桩内部不断切换直流电的电流方向。现有的充电桩进行一次充放电切换的时间往往需要一秒左右,这种充放电切换的速度对电池包的加热效果不佳。并且,由于充电桩的充放电切换速度受到内部元件性能的影响,无法通过调整充放电的控制方式提升充放电切换速度。
发明内容
本申请实施例提供了一种DC/DC转换电路、功率单元、充电桩及充放电加热方法,以解决充电桩充放电切换速度较慢,电池包的加热效果不佳的问题。
第一方面,本申请提供一种DC/DC转换电路,应用于充电桩,DC/DC转换电路包括:
第一整流模块,第一整流模块的输入端通过AC/DC转换电路与电网连接;
变压模块,变压模块的输入端与第一整流模块的输出端连接;
储能模块;
第二整流模块,第二整流模块的输入端用于与变压模块的输出端连接或者与储能模块连接,第二整流模块的输出端用于在充电桩为电动汽车充电时,与电动汽车的 电池包连接;
第二整流模块,用于与变压模块连通,在电网和电池包之间进行第一频率范围内的充电和放电以加热电池包;或者,用于与储能模块连通,在储能模块和电池包之间进行第二频率范围内的充电和放电以加热电池包;第一频率范围小于第二频率范围。
在充电桩为电动汽车进行充电时,若充放电切换的频率要求较低,则将第二整流模块与变压模块导通,通过AC/DC转换电路和DC/DC转换电路对电池包进行周期性充电和放电,以实现电池包的加热。若充放电切换的频率要求较高,则将第二整流模块与储能模块连接,电池包、第二整流模块与储能模块可以通过振荡放电实现更高频率的电池包充放电,从而快速加热电池包,提升电池包的加热效果。通过第二整流模块与储能模块的连接,能够在电池包需求高频率脉冲电流时,通过与储能模块连通产生高频率脉冲电流,以使电池包通过高频充放电实现低温速热。
在一种可选的实施方式中,DC/DC转换电路还包括:
第一开关,第二整流模块的输入端通过第一开关与变压模块的输出端连接,第一开关用于将第二整流模块与变压模块连通;
第二开关,第二整流模块的输入端通过第二开关与储能模块连接,第二开关用于将第二整流模块与储能模块连通。
通过设置第一开关和第二开关,能够使得充电桩通过调整第一开关和第二开关的开关状态,即可向电池包输出高频率的正负向脉冲电流,从而对电池包进行高频充放电以加热电池包。
在一种可选的实施方式中,第二整流模块包括:
第一MOS管,第一MOS管的第一端通过第一开关与变压模块的输出端的第一极连接,第一MOS管的第二端用于与电池包的第一极连接;
第二MOS管,第二MOS管的第一端与变压模块的输出端的第二极连接,第二MOS管的第二端用于与电池包的第一极连接;
第三MOS管,第三MOS管的第一端通过第一开关与变压模块的输出端的第一极连接,第三MOS管的第二端用于与电池包的第二极连接;
第四MOS管,第四MOS管的第一端与变压模块的输出端的第二极连接,第四MOS管的第二端用于与电池包的第二极连接;
第二整流模块,用于在第一MOS管和第四MOS管导通时对电池包进行充电;在第二MOS管和第三MOS管导通时对电池包进行放电。
通过控制四个MOS管的交替闭合,能够实现电池包的充电和放电。并且充放电的频率上限仅受到MOS管的开关频率性能的影响,通过调整MOS管导通信号的信 号频率,还可以对电池包的充放电频率进行相应调整。
在一种可选的实施方式中,第一MOS管的第一端通过第二开关与储能模块的第一端连接,第二MOS管的第一端与储能模块的第二端连接。
通过设置储能模块直接与第二整流模块进行连接,能够使得储能模块仅通过第二整流模块与电池包连接,降低了储能模块与电池包之间的元件数量,避免了元件性能对充放电切换速度造成影响。
在一种可选的实施方式中,储能模块为储能电感或储能电容。
在一种可选的实施方式中,第二整流模块,还用于与变压模块连通,对剩余电量低于预设电量阈值的电池包进行第一频率范围内的充电和放电以加热电池包。
在电池包的剩余电量较低时,通过第二整流模块与变压模块连通,依然可以对电池包进行充放电循环,以加热电池包。
第二方面,本申请提供一种功率单元,应用于充电桩,功率单元包括如上的DC/DC转换电路;功率单元还包括AC/DC转换电路,AC/DC转换电路的输入端与电网连接,AC/DC转换电路的输出端与DC/DC转换电路的输入端连接。
第三方面,本申请提供一种充电桩,充电桩包括如上的功率单元;充电桩还包括主控模块,主控模块分别与每个功率单元连接;
主控模块,用于将功率单元中DC/DC转换电路的第二整流模块与变压模块连通或与储能模块连通,并周期性切换第二整流模块的电流方向以对电池包进行加热。
在一种可选的实施方式中,充电桩包括至少两个功率单元;
主控模块,还用于根据电池包的加热功率将多个功率单元进行并联,或者,根据电池包的充电电压将多个功率单元的DC/DC转换电路进行串联。
第四方面,本申请提供一种充放电加热方法,应用于充电桩,充放电加热方法包括:
接收通电请求,所述通电请求指示电池装置与所述充电桩连接,所述通电请求包括加热频率信息;
在所述加热频率信息与第一频率范围对应的情况下,根据所述通电请求将DC/DC转换电路的第二整流模块与变压模块连通,并周期性切换所述第二整流模块的电流方向以对所述电池装置进行加热;
在所述加热频率信息与第二频率范围对应的情况下,根据所述通电请求将DC/DC转换电路的第二整流模块与储能模块连通,并周期性切换所述第二整流模块的电流方向以对所述电池装置进行加热;所述第一频率范围小于所述第二频率范围。
通过充电桩的主控模块获取电池包的加热频率,可以采用相应的充放电方式对电池包进行充放电加热,在电池包需求较高加热频率时,可以对电池包进行高频率的 充放电,以提升充放电的切换速度以及电池包的加热效果。
在一种可选的实施方式中,接收通电请求之后,还包括:
获取电动汽车的电池包的剩余电量;
在剩余电量低于预设电量阈值时,根据通电请求将DC/DC转换电路的第二整流模块与变压模块连通,并周期性切换第二整流模块的电流方向以对电池包进行加热。
在电池包的剩余电量较低时,通过第二整流模块与变压模块连通,依然可以对电池包进行充放电循环,以加热电池包。
本申请实施例提供的DC/DC转换电路、功率单元、充电桩及充放电加热方法,可以通过AC/DC转换电路与电网连接。在充电桩为电动汽车进行充电时,若充放电切换的频率要求较低,则将第二整流模块与变压模块导通,通过AC/DC转换电路和DC/DC转换电路对电池包进行周期性充电和放电,以实现电池包的加热。若充放电切换的频率要求较高,则将第二整流模块与储能模块连接,电池包、第二整流模块与储能模块可以通过振荡放电实现更高频率的电池包充放电,从而快速加热电池包,提升电池包的加热效果。通过第二整流模块与储能模块的连接,能够在电池包需求高频率脉冲电流时,通过与储能模块连通产生高频率脉冲电流,以使电池包通过高频充放电实现低温速热。
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一实施例提供的DC/DC转换电路的模块结构示意图;
图2为本申请另一实施例提供的DC/DC转换电路的模块结构示意图;
图3为本申请一实施例提供的DC/DC转换电路的电路结构示意图;
图4为本申请又一实施例提供的DC/DC转换电路的模块结构示意图;
图5为本申请再一实施例提供的DC/DC转换电路的模块结构示意图;
图6为本申请一实施例提供的充放电加热方法的流程示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
100、充电桩;1、功率单元;2、电网;3、电池包;10、DC/DC转换电路; 20、AC/DC转换电路;30、主控模块;11、第一整流模块;12、变压模块;13、第二整流模块;14、储能模块;L、储能电感;K1、第一开关;K2、第二开关;M1-M4、第一MOS管-第四MOS管。
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过 中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在新能源领域中,动力电池可作为用电装置(例如车辆、船舶或航天器等)的主要动力源,而储能电池可作为用电装置的充电来源,二者的重要性均不言而喻。作为示例而非限定,在一些应用场景中,动力电池可为用电装置中的电池,储能电池可为充电装置中的电池。为了便于描述,在下文中,动力电池和储能电池均可统称为电池。
目前,市面上的电池多为可充电的蓄电池,最常见的是锂电池,例如锂离子电池或锂离子聚合物电池等等。在电池设置于用电装置时,若电池的剩余电量不足时,需要与充电装置连接,为电池充电。
由于电动汽车的电池包在低温条件下无法进行充电,因此需要对电池包进行加热,将电池包的温度加热至电池包的运行温度范围,才能够通过充电桩为电池包进行充电。
相关技术中,为了解决电池包在低温条件下无法充电的问题,通常会在电动汽车内部增设加热模块,以对电池包进行快速加热。而在每辆电动汽车上设置额外的加热装置,必然会导致电动汽车的整车生产成本增大。为了降低整车成本,相关技术中提出,可以在充电桩内设置加热装置,并通过加热装置对电池包进行循环充放电来实现电池包的加热。然而,为了对电池包进行循环充放电,需要充电桩内部不断切换直流电的电流方向。现有的充电桩进行一次充放电切换的时间往往需要一秒左右,这种充放电切换的速度对电池包的加热效果不佳。并且,由于充电桩的充放电切换速度受到内部元件性能的影响,无法通过调整充放电的控制方式提升充放电切换速度。
为了解决上述技术问题,本申请实施例提供了一种DC/DC(Direct current-Direct current,直流转直流)转换电路、功率单元、充电桩及充放电加热方法。下面首先对本申请实施例所提供的DC/DC转换电路进行介绍。
图1示出了本申请一个实施例提供的DC/DC转换电路10的模块结构示意图。DC/DC转换电路10包括第一整流模块11、变压模块12、第二整流模块13以及储能模块14。
第一整流模块11的输入端通过AC/DC(Alternating Current-Direct current,交流转直流)转换电路20与电网2连接,变压模块12的输入端与第一整流模块11的输出端连接,第二整流模块13的输入端可以与变压模块12的输出端连接或者与储能模块14连接,第二整流模块13的输出端则可以在充电桩100为电动汽车充电时,与电动汽车的电池包3进行电连接。
第二整流模块13可以在充电桩100的控制下,将输入端与变压模块12连通,或者将输入端与储能模块14连通。
在第二整流模块13的输入端与变压模块12连通时,电网2、AC/DC转换电路20、DC/DC转换电路10以及电池包3构成电流回路。通过循环调整第二整流模块13输出的直流电流的方向,可以在输出正向脉冲电流时为电池包3进行充电,在输出负向脉冲电流时对电池包3进行放电。
在第二整流模块13的输入端与变压模块12连通时,电池包3周期性充放电的过程如下:
在一个充放电周期中,在前半周期内,第二整流模块13可以通过调整输出电流的方向以输出负向脉冲电流,此时电池包3开始进行放电,该部分电能可以通过DC/DC转换电路10、AC/DC转换电路20回馈到电网2,也可以通过DC/DC转换电路10、AC/DC转换电路20输出到充电桩100内设置的储能元件中,以将该部分电能进行暂时存储。
在后半周期内,第二整流模块13可以调整输出电流的方向以输出正向脉冲电流,此时电网2可以通过AC/DC转换电路20和DC/DC转换电路10为电池包3进行充电。
在充放电周期的循环中,电池包3在不断进行循环充放电,电池包3的温度也在不断提升,从而通过电池包3的充放电循环实现了电池包3的加热。
通过快速切换第二整流模块13的输出电流方向,可以产生相应频率的脉冲电流,从而对电动汽车的电池包3进行相应频率的充放电。而在调整第二整流模块13的输出电流方向并保持一段时间时,即可实现电池包3的充电过程或放电过程。即,第二整流模块13在与变压模块12连通时,既可以输出正向或负向的直流电以对电池包3进行充电和放电,也可以输出周期性的正负向脉冲电流,以对电池包3进行周期性充放电从而加热电池包3。
在第二整流模块13的输入端与储能模块14连通时,电池包3周期性充放电的过程如下:
在一个充放电周期中,在前半周期内,可以通过调整第二整流模块13使得电池包3通过第二整流模块13为储能模块14进行充电。在后半周期内,可以调整第二整流模块13的输出电流方向以使得储能模块14进行放电,从而为电池包3进行充电。同样地,在通过储能模块14对电池包3进行充放电的过程中,同样可以提升电池包3的温度,从而实现了电池包3的加热。
在第二整流模块13与变压模块12连通时,是通过电网2、AC/DC转换电路20、DC/DC转换电路10和电池包3形成的第一充放电回路对电池包3进行充放电。在第二整流模块13与储能模块14连通时,则是通过储能模块14、第二整流模块13和电池包3形成的第二充放电回路对电池包3进行充放电。
需要说明的是,在第二整流模块13的输出电流方向调整为正向直流时,第一整流模块11的输出电流方向也需要进行相应调整,以使得AC/DC转换电路20输出的 直流电能够依次通过第一整流模块11、变压模块12和第二整流模块13输出至电池包3。同样地,在第二整流模块13的输出电流方向调整为负向直流时,第一整流模块11的输出电流方向也需要调整为负向直流,以使得电池包3释放的电能能够通过DC/DC转换电路10和AC/DC转换电路20回馈至电网2。
在第一充放电回路中,电池包3在充电状态和放电状态之间进行切换的切换时间将会受到充电桩100内各个模块的元件性能限制。例如充电桩100内的AC/DC转换电路20中的元件性能或者DC/DC转换电路10中第二整理模块以外的其他模块的元件性能,均会导致电池包3进行充放电状态的切换时间的延长。目前,采用上述第一充放电回路对电池包3进行充放电的测试过程中,所检测到的充放电周期通常为秒级左右。即,第一充放电回路对电池包3进行充放电的频率较低。
而在第二整流模块13与储能模块14连通时,是通过储能模块14、第二整流模块13和电池包3之间形成的第二充放电回路对电池包3进行充放电。第二充放电回路的充放电周期仅受到第二整流模块13内的元件性能限制,由于对充放电切换时间产生限制的元件大幅度降低,从而使得第二充放电回路的充放电切换时间大幅度降低,通常可以达到第二整流模块13的电流方向切换频率。因此,第二充放电回路可以对电池包3进行高频率的充放电。
可以理解的是,在高频率的充放电过程中,电池包3可以进行快速升温,从而提升对电池包3的加热效果。然而,部分电动汽车的电池包3还无法支持高频率充放电,若采用高频率充放电的方式,将会对电池包3造成损害。因此,对于不支持高频率充放电的电池包3,可以继续采用低频充放电的方式对电池包3进行加热。
基于不同电动汽车电池包3的充放电频率需求,可以设置第一频率范围和第二频率范围。在电池包3需求的充放电频率为第一频率范围内时,则充电桩100可以控制第二整流模块13与变压模块12连通,以通过电网2、AC/DC转换电路20、DC/DC转换电路10和电池包3形成的第一充放电回路对电池包3进行充放电。而在电池包3需求的充放电频率为第二频率范围内时,充电桩100可以控制第二整流模块13与储能模块14连通,以通过储能模块14、第二整流模块13和电池包3之间形成的第二充放电回路对电池包3进行高频率的充放电。
可以理解的是,上述第一频率范围可以设置为小于第二频率范围。例如,第一频率范围可以被第二频率范围包括在内,即电池包3需求低频率充放电时,既可以将第二整流模块13与变压模块12连通进行充放电,也可以将第二整流模块13与储能模块14连通进行充放电。而在电池包3需求第一频率范围以外,第二频率范围以内的充放电频率时,则将第二整流模块13与储能模块14连通进行充放电。
在本实施例中,通过设置储能模块14,充电桩100能够在电动汽车的电池包3需求低频率充放电时,控制第二整流模块13的输入端与变压模块12连通,以通过电网2和电池包3之间的电流回路对电池包3进行低频充放电,从而加热电池包3。在电池包3可以支持高频率充放电时,充电桩100能够控制第二整流模块13的输入端与储 能模块14连接,以在储能模块14和电池包3之间进行高频充放电。在电池包3充放电的脉冲电流频率较高时,能够快速提升电池包3的温度,从而实现电池包3的速热,提升电池包3的加热效果。在不同车型的电动汽车的电池包3需求不同频率下的充放电脉冲电流时,还能够根据电池包3的需求频率对电池包3进行低频充放电或高频充放电,从而实现了不同车型电池包3兼容加热。
请参照图2,在一些实施例中,DC/DC转换电路10可以包括第一开关K1和第二开关K2,第二整流模块13的输入端通过第一开关K1与变压模块12的输出端连接,第二整流模块13的输入端还通过第二开关K2与储能模块14连接。
第一开关K1可以在导通时将第二整流模块13与变压模块12连通,第二开关K2可以在导通时将第二整流模块13与储能模块14连通。
充电桩100在确定电动汽车的电池包3需求低频率脉冲电流进行充放电时,可以控制第一开关K1导通,第二开关K2断开,以使得电池包3进行低频率充放电。充电桩100在确定电动汽车的电池包3需求高频率脉冲电流进行充放电时,可以控制第二开关K2导通,第一开关K1断开,以使得电池包3在高频率充放电下快速升温,实现电池包3的速热。
通过设置第一开关K1和第二开关K2,能够使得充电桩100通过调整第一开关K1和第二开关K2的开关状态,即可向电池包3输出高频率的正负向脉冲电流,从而对电池包3进行高频充放电以加热电池包3。
请参照图3,在一些实施例中,第二整流模块13可以包括第一MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor,金属氧化物半导体场效应晶体管)M1、第二MOS管M2、第三MOS管M3和第四MOS管M4。
第一MOS管M1的第一端通过第一开关K1与变压模块12的输出端的第一极连接,第一MOS管M1的第二端可以在充电桩100为电池包3充电时,与电池包3的第一极连接。第二MOS管M2的第一端与变压模块12的输出端的第二极连接,第二MOS管M2的第二端可以在充电桩100为电池包3充电时,与电池包3的第一极连接。第三MOS管M3的第一端通过第一开关K1与变压模块12的输出端的第一极连接,第三MOS管M3的第二端可以在充电桩100为电池包3充电时,与电池包3的第二极连接。第四MOS管M4的第一端与变压模块12的输出端的第二极连接,第四MOS管M4的第二端可以在充电桩100为电池包3充电时,与电池包3的第二极连接。
在第一开关K1导通,第二开关K2断开时,第二整流模块13可以在第一MOS管M1和第四MOS管M4导通时,通过上述第一充放电回路对电池包3进行充电;在第二MOS管M2和第三MOS管M3导通时,通过第一充放电回路对电池包3进行放电。
在第二整流模块13与变压模块12连通时,若第一MOS管M1和第四MOS管 M4导通,变压模块12的输出端的第一极与电池包3的第一极连接,变压模块12的输出端的第二极与电池包3的第二极连接,此时电网2输出的交流电可以通过交直流转换后,经过变压模块12输出至电池包3进行充电。若第二MOS管M2和第三MOS管M3导通,变压模块12的输出端的第一极与电池包3的第二极连接,变压模块12的输出端的第二极与电池包3的第一极连接,此时电池包3可以进行放电,该部分电能能够通过DC/DC模块和AC/DC模块回馈至电网2,或者暂时存储在充电桩100的储能元件中。
通过控制四个MOS管的交替闭合,能够实现电池包3的充电和放电。并且充放电的频率上限仅受到第二整流模块13中的MOS管的开关频率性能的影响,通过调整MOS管导通信号的信号频率,还可以对电池包3充放电频率进行相应调整。
可以理解的是,在对上述由四个MOS管组成的第二整流模块13的MOS管状态切换的时间进行测试时,电池包3的充放电频率可以达到2000Hz,即,通过调整MOS管导通状态的切换时间,至少可以使得电池包3的充放电频率在0~2000Hz之间进行调整。
在上述实施例中,变压模块12可以采用多种不同的拓扑结构,例如LLC拓扑、DAB拓扑、CLLC拓扑、CF-DAB拓扑以及Partial-Power Converter拓扑等。图3示出了变压模块12为CLLC拓扑时的一种电路结构,上述不同的拓扑结构局能能够实现直流双向调压,但对于直流调压的增益、转换效率以及双向切换的频率上的优势和劣势各不相同,在具有不同需求时,可以采用相应的拓扑结构进行实现。
除上述拓扑结构以外,变压模块12也可以采用双极式LLC型双向DC-DC变换器,在双极式LLC型双向DC-DC变换器中,第一整流模块11与AC/DC转换电路20之间设置有Buck-Boost电路,变压模块12则采用双向LLC-SRC变换器,在系统负载增大时,第一整流模块11和第二整流模块12的MOS管所支持的最大开关频率将会减小,而系统负载减小时,MOS管所支持的最大开关频率则会相应增大。对于LLC拓扑结构,通过调整第一整流模块11的开关频率,可以改变变压模块12中原边线圈上的分压比,从而输出稳定电压。变压模块12还可以为双有源桥式变换器。
在一些实施例中,第一MOS管M1的第一端可以通过第二开关K2与储能模块14的第一端连接,第二MOS管M2的第一端可以与储能模块14的第二端连接。
在第二开关K2导通,第一开关K1断开时,第二整流模块13可以在第一MOS管M1和第四MOS管M4导通时,通过上述第二充放电回路对电池包3进行放电;在第二MOS管M2和第三MOS管M3导通时,通过第二充放电回路对电池包3进行充电。
在第二整流模块13与储能模块14导通时,在一个充放电周期内,第一阶段,第一MOS管M1和第四MOS管M4导通,此时电池包3可以通过放电为储能模块14进行储能。第二阶段,第二MOS管M2和第三MOS管M3导通,此时储能模块14释 放存储的电能以为电池包3进行充电。第三阶段,第二MOS管M2和第三MOS管M3保持导通状态不变,电池包3对储能模块14继续进行充电。第四阶段,第一MOS管M1和第四MOS管M4导通,储能模块14释放存储的电能为电池包3进行充电。
可以理解的是,在下一个充放电周期的第一阶段,第一MOS管M1和第四MOS管M4可以继续保持导通状态。即,由于上述储能模块14、第二整流模块13中的多个MOS管以及电池包3,能够形成一个振荡电路,在每次切换MOS管的导通状态时,能够实现电池包3的一次充电过程和一次放电过程,从而进一步降低了电池包3的充放电周期,提升了充放电电流的脉冲频率。
可以理解的是,在第二整流模块13与变压模块12连通时,第二整流模块13内的MOS管每切换一次导通状态,能够实现电池包3的一次充电过程或者一次放电过程。即使不考虑充电桩100内的AC/DC转换模块20以及DC/DC转换模块10中其他模块的元件性能对充放电周期时间的影响,也能够提升充放电频率至原有的两倍。
在一些实施例中,上述储能模块14可以为储能电容或储能电感L,还可以设置为其他储能元件。
在一些实施例中,第二整流模块13在与变压模块12连通时,还可以对剩余电量低于预设电量阈值的电池包3进行第一频率范围内的充电和放电以加热电池包3。
在第二整流模块13与变压模块12连通时,在电动汽车的电池包3的剩余电量较低时,可以通过调整第二整流模块13的电流方向,以在充放电周期内首先对电池包3进行充电,从而开启电池包3的充放电循环。
在第二整理模块与储能模块14连通时,由于储能模块14在开始阶段未进行能量存储。因此在充放电周期内需要电池包3首先进行放电,以对储能模块14进行储能。若电池包3的剩余电量较低,导致无法进行放电时,则无法开启相应的充放电循环。例如,在电池包3的SOC(State of Charge,荷电状态)为零或趋近于零时,电池包3即使通过第二整流模块13与储能模块14连接,也无法对储能模块14进行放电,从而无法开启充放电循环过程。
通过控制第二整流模块13与变压模块12连通,还可以在电池包3的剩余电量较低时,对电池包3进行低频率的充放电以加热电池包3。
请参照图4,本申请实施例还提供一种功率单元1,应用于充电桩100,功率单元1包括上述实施例中的DC/DC转换电路10,功率单元1还包括AC/DC转换电路20,AC/DC转换电路20的输入端与电网2连接,所述AC/DC转换电路20的输出端与所述DC/DC转换电路10的输入端连接。
充电桩100中可以包括为电池包3提供充电功率的功率单元1,功率单元1的拓扑结构可以为AC/DC转换电路20与DC/DC转换电路10串联。
为了实现电池包3的充放电,上述功率单元1可以设置为双向功率单元1,在 对电池包3进行充电时,AC/DC转换电路20接收电网2输出的交流电,并转换为直流电。DC/DC转换电路10接收AC/DC转换电路20输出的直流电,并对该直流电降压后输出至电池包3进行充电。在对电池包3进行放电时,DC/DC转换电路10接收电池包3输出的直流电,并对该直流电进行降压后输出至AC/DC转换电路20,AC/DC转换电路20将直流电转换为交流电后回馈至电网2。
可以理解的是,功率单元1虽然能够实现双向电流传输,但受到功率单元1中各个元件性能的影响,导致切换电流方向所需的时间较长,即功率单元1对电池包3进行充放电时,充放电的频率较低。
本申请实施例还提供一种充电桩100,充电桩100包括上述实施例中的功率单元1,充电桩100还包括主控模块30,主控模块30可以与功率单元1连接,并控制各个功率单元1中的DC/DC转换电路10的第二整流模块13与变压模块12连通或者与储能模块14连通,以通过周期性切换第二整流模块13的电流方向对电池包3进行加热。
主控模块30可以控制多个功率单元1中的一个功率单元1对电池包3进行充放电循环,也可以控制多个功率单元1同时对电池包3进行充放电循环。
可以理解的是,在主控模块30控制多个功率单元1同时对电池包3进行充放电循环时,需要控制多个功率单元1保持同步充放电。例如,多个功率单元1中的第二整流模块13应设置为均与变压模块12连通或均与储能模块14连通。每个功率单元1中的第二整流模块13应当保持相同的充放电频率,并在相同的时间节点保持相同的电流方向。
请参照图5,在一些实施例中,上述充电桩100可以包括至少两个功率单元1,主控模块30可以分别与每个功率单元1电连接。
主控模块30可以获取电池包3所需求的加热功率,并在电池包3需求的加热功率较高时,将多个功率单元1进行并联,以提高对电池包3进行加热的加热功率。主控模块30还可以获取电池包3充放电所需的直流电压,在电池包3充放电所需的直流电压较高时,还可以将多个功率单元1中的DC/DC转换电路10的输出侧进行依次串联,以提升输出电压。
可以理解的是,主控模块30根据电池包3充放电所需的直流电压,可以确定为提供该直流电压所需要串联的功率单元1的数量,并将该数量的功率单元1的DC/DC转换电路10输出侧进行串联。
在充电桩100为电动汽车充电时,主控模块30可以获取电动汽车的电池包3的通电请求,通电请求中可以包括加热需求频率,加热电流限制等。主控模块30根据加热需求频率可以确定将第二整流模块13与变压模块12连通还是将第二整流模块13与储能模块14连通。
在主控模块30确定电池包3需要较高的加热功率时,还可以将多个功率单元1 进行并联,通过多个功率单元1同时对电池包3进行充放电,来提升对电池包3进行加热的加热功率,从而实现电池包3的速热。
在主控模块30确定电池包3需要较高的充电电压时,则可以将多个功率单元1中的DC/DC转换电路10的输出侧进行串联,使得输出至电池包3的直流电压为多个功率单元1的输出电压之和。
本申请实施例还提供一种充放电加热方法,应用于上述实施例中的充电桩,如图6所示,充放电加热方法包括:
S610,接收通电请求,所述通电请求指示电池装置与所述充电桩连接,所述通电请求包括加热频率信息;
S620,在所述加热频率信息与第一频率范围对应的情况下,根据所述通电请求将DC/DC转换电路的第二整流模块与变压模块连通,并周期性切换所述第二整流模块的电流方向以对所述电池装置进行加热;
S630,在所述加热频率信息与第二频率范围对应的情况下,根据所述通电请求将DC/DC转换电路的第二整流模块与储能模块连通,并周期性切换所述第二整流模块的电流方向以对所述电池装置进行加热;所述第一频率范围小于所述第二频率范围。
在本实施例中,充电桩可以在与电动汽车连接后,接收电动汽车发送的通电请求,该通电请求可以向充电桩指示电池装置与充电桩电连接,通电请求中可以包括加热频率信息。充电桩可以根据加热频率信息判定该电池包采用哪一种连接方式进行充放电循环加热,并将DC/DC转换电路的第二整流模块与相应的模块进行连接,通过控制第二整流模块的电流方向按照相应频率进行切换,能够对电池包进行相应频率下的充电和放电循环,从而在充放电过程中对电池包进行加热,以使电池包能够快速升温,达到可充电工况。对于加热频率需求较高的电池包,能够对电池包进行高频率的充放电,以提升充放电的切换速度以及电池包的加热效果。
在S610中,在充电桩与电动汽车建立物理连接后,充电桩的主控模块可以与电动汽车之间进行通讯,并获取电动汽车所传输的通电请求。该通电请求中可以指示电池装置与充电桩连接,通电请求中可以包括加热频率信息。可以理解的是,为了避免充电桩在对电池包进行加热时的电流过大而导致电池包受损,通电请求中还可以包括加热电流限制,以使得充电桩能够避免对电池包进行加热时的电流过大。
在S620中,主控模块在接收到通电请求后,可以根据加热频率信息判断采用哪种充放电方式对电池包进行加热。加热频率信息中可以包括电池包所需求的加热频率,主控模块可以预先设置有第一频率范围和第二频率范围,在电池包所需的加热频率与第一频率范围相对应时,主控模块可以控制DC/DC转换电路的第二整流模块与变压模块连通,并通过周期性切换第二整流模块的电流方向以输出相应频率的脉冲电流对电池包进行加热。
在S630中,主控模块在确定电池包所需的加热频率与第二频率范围相对应 时,可以控制DC/DC转换电路的第二整流模块与储能模块连通,并通过周期性切换第二整流模块的电流方向以输出相应频率的脉冲电流对电池包进行加热。
可以理解的是,上述第一频率范围和第二频率范围还可以设置为互不重合。例如,第一频率范围可以为小于预设频率阈值f1的加热频率范围,第二频率范围则可以为大于预设频率阈值f1的加热频率范围。根据电池包所需的加热频率是否大于预设频率阈值f1,即可确定采用相应频率范围对应的充放电方式对电池包进行脉冲加热。
电动汽车还可以对电池包的温度进行检测,并在电池包的温度达到可充电温度时,向充电桩发送停止通电请求。充电桩的主控模块在接收到该停止通电请求后,即可停止加热。
在电动汽车的电池包温度达到可充电温度时,电动汽车还可以向充电桩发送充电指令,充电桩可以根据该充电指令将第二整流模块与变压模块连通,以及对第一整流模块和第二整流模块的电流方向进行相应设置,从而对电网输出的交流电压进行电压转换后向电池包输出相应的充电电压,以对电池包进行充电。其中,上述充电指令中可以包括电池包的直流充电电压限制、电流限制等参数。
在一些实施例中,充电桩还可以在接收到电动汽车发送的停止通电请求后,直接将第二整流模块与变压模块连通,并对第一整流模块和第二整流模块的电流方向进行相应设置,以在电池包的加热结束后直接转换为对电池包进行充电,不需要用户等待加热结束后通过触发相应的操作即可开始对电池包进行充电,提升了充电效率和用户的充电体验。
电动汽车在电池包的充电过程中,还可以检测电池包的实时电量,在电池包的实时电量达到满充电量范围内时,可以向充电桩发送停止充电指令,以使充电桩结束充电过程。
作为一个可选实施例,步骤S610之后,还可以包括:
S710,获取电动汽车的电池包的剩余电量;
S720,在所述剩余电量低于预设电量阈值时,根据所述通电请求将DC/DC转换电路的第二整流模块与变压模块连通,并周期性切换所述第二整流模块的电流方向以对所述电池包进行加热。
在本实施例中,充电柱在获取到电动汽车电池包的剩余电量后,若电池包剩余电量较低,则充电桩可以控制第二整流模块与变压模块连通,并周期性切换所述第二整流模块的电流方向,以通过电网、AC/DC转换模块、DC/DC转换模块以及电池包的电流回路对电池包进行进行充放电循环,从而在电池包的剩余电量较低而无法开启充放电循环中的放电过程时,仍能够通过充放电循环对电池包进行加热升温。
在S710中,充电桩可以获取电动汽车电池包的剩余电量。电动汽车可以在获取电池包的剩余电量后,将该剩余电量的数据信息加入通电请求中,以使充电桩在接 收到该通电请求时即可确定电池包的剩余电量。充电桩也可以在接收到通电请求后,与电动汽车进行通讯,以向电动汽车发送剩余电量获取请求,电动汽车根据该剩余电量获取请求可以将检测到的电池包的剩余电量发送给充电桩。
在S720中,在充电桩确定电池包的剩余电量低于预设电量阈值时,可以确定电池包由于电量较低而无法进行放电操作。由于电池包的充放电循环中,均是通过电池包的放电开启相应循环,在电池包因电量较低而无法放电时,则无法正常开启电池包的充放电循环。
为了对低于预设电量阈值的电池包进行充放电以加热电池包,充电桩可以根据所述通电请求将DC/DC转换电路的第二整流模块与变压模块连通,并通过周期性切换第二整流模块的电流方向来开启电池包的充放电循环。
可以理解的是,上述对低于预设电量阈值的电池包进行充放电加热,需要该电池包需求的加热频率位于第一频率范围内,以通过第二整流模块与变压模块连通的连接方式对电池包进行充放电。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实例的说明只是用于帮助理解本申请的方法及其核心思想。以上仅是本申请的优选实施方式,应当指出,由于文字表达的有限性,而客观上存在无限的具体结构,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进、润饰或变化,也可以将上述技术特征以适当的方式进行组合;这些改进润饰、变化或组合,或未经改进将本申请的构思和技术方案直接应用于其它场合的,均应视为本申请的保护范围。
Claims (11)
- 一种DC/DC转换电路,应用于充电桩,所述DC/DC转换电路包括:第一整流模块,所述第一整流模块的输入端通过AC/DC转换电路与电网连接;变压模块,所述变压模块的输入端与所述第一整流模块的输出端连接;储能模块;第二整流模块,所述第二整流模块的输入端用于与所述变压模块的输出端连接或者与所述储能模块连接,所述第二整流模块的输出端用于在充电桩为电动汽车充电时,与所述电动汽车的电池包连接;所述第二整流模块,用于与所述变压模块连通,在电网和所述电池包之间进行第一频率范围内的充电和放电以加热所述电池包;或者,用于与所述储能模块连通,在所述储能模块和所述电池包之间进行第二频率范围内的充电和放电以加热所述电池包;所述第一频率范围小于所述第二频率范围。
- 根据权利要求2所述的DC/DC转换电路,其中,所述DC/DC转换电路还包括:第一开关,所述第二整流模块的输入端通过所述第一开关与所述变压模块的输出端连接,所述第一开关用于将所述第二整流模块与所述变压模块连通;第二开关,所述第二整流模块的输入端通过所述第二开关与所述储能模块连接,所述第二开关用于将所述第二整流模块与所述储能模块连通。
- 根据权利要求2所述的DC/DC转换电路,其中,所述第二整流模块包括:第一MOS管,所述第一MOS管的第一端通过所述第一开关与所述变压模块的输出端的第一极连接,所述第一MOS管的第二端用于与所述电 池包的第一极连接;第二MOS管,所述第二MOS管的第一端与所述变压模块的输出端的第二极连接,所述第二MOS管的第二端用于与所述电池包的第一极连接;第三MOS管,所述第三MOS管的第一端通过所述第一开关与所述变压模块的输出端的第一极连接,所述第三MOS管的第二端用于与所述电池包的第二极连接;第四MOS管,所述第四MOS管的第一端与所述变压模块的输出端的第二极连接,所述第四MOS管的第二端用于与所述电池包的第二极连接;所述第二整流模块,用于在所述第一MOS管和所述第四MOS管导通时对所述电池包进行充电;在所述第二MOS管和所述第三MOS管导通时对所述电池包进行放电。
- 根据权利要求3所述的DC/DC转换电路,其中,所述第一MOS管的第一端通过所述第二开关与所述储能模块的第一端连接,所述第二MOS管的第一端与所述储能模块的第二端连接。
- 根据权利要求4所述的DC/DC转换电路,其中,所述储能模块为储能电感或储能电容。
- 根据权利要求1所述的DC/DC转换电路,其中,所述第二整流模块,还用于与所述变压模块连通,对剩余电量低于预设电量阈值的所述电池包进行第一频率范围内的充电和放电以加热所述电池包。
- 一种功率单元,应用于充电桩,所述功率单元包括如权利要求1-6中任一项所述的DC/DC转换电路;所述功率单元还包括AC/DC转换电路,所述AC/DC转换电路的输入端与电网连接,所述AC/DC转换电路的输出端与所述DC/DC转换电路的 输入端连接。
- 一种充电桩,所述充电桩包括如权利要求7所述的功率单元;所述充电桩还包括主控模块,所述主控模块分别与每个所述功率单元连接;所述主控模块,用于将所述功率单元中所述DC/DC转换电路的所述第二整流模块与所述变压模块连通或与所述储能模块连通,并周期性切换所述第二整流模块的电流方向以对所述电池包进行加热。
- 根据权利要求8所述的充电桩,其中,所述充电桩包括至少两个功率单元;所述主控模块,还用于根据所述电池包的加热功率将多个所述功率单元进行并联,或者,根据所述电池包的充电电压将多个所述功率单元的DC/DC转换电路进行串联。
- 一种充放电加热方法,应用于充电桩,所述充放电加热方法包括:接收通电请求,所述通电请求指示电池装置与所述充电桩连接,所述通电请求包括加热频率信息;在所述加热频率信息与第一频率范围对应的情况下,根据所述通电请求将DC/DC转换电路的第二整流模块与变压模块连通,并周期性切换所述第二整流模块的电流方向以对所述电池装置进行加热;在所述加热频率信息与第二频率范围对应的情况下,根据所述通电请求将DC/DC转换电路的第二整流模块与储能模块连通,并周期性切换所述第二整流模块的电流方向以对所述电池装置进行加热;所述第一频率范围小于所述第二频率范围。
- 根据权利要求10所述的充放电加热方法,其中,所述接收通电请求之后,还包括:获取电动汽车的电池包的剩余电量;在所述剩余电量低于预设电量阈值时,根据所述通电请求将DC/DC转换电路的第二整流模块与变压模块连通,并周期性切换所述第二整流模块的电流方向以对所述电池包进行加热。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/072104 WO2023133831A1 (zh) | 2022-01-14 | 2022-01-14 | Dc/dc转换电路、功率单元、充电桩及充放电加热方法 |
KR1020227019508A KR102713835B1 (ko) | 2022-01-14 | 2022-01-14 | Dc/dc 변환 회로, 파워 유닛, 충전 더미 및 충방전 가열 방법 |
CN202280004705.3A CN116761739A (zh) | 2022-01-14 | 2022-01-14 | Dc/dc转换电路、功率单元、充电桩及充放电加热方法 |
JP2022532609A JP7444985B2 (ja) | 2022-01-14 | 2022-01-14 | Dc/dc変換回路、パワーユニット、充電スタンド及び充放電加熱方法 |
EP22735760.5A EP4235914A4 (en) | 2022-01-14 | Dc/dc conversion circuit, power unit, charging pile, and charging and discharging heating method | |
US17/896,107 US20230231218A1 (en) | 2022-01-14 | 2022-08-26 | Dc/dc conversion circuit, power unit, charging pile, and charge-discharge heating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/072104 WO2023133831A1 (zh) | 2022-01-14 | 2022-01-14 | Dc/dc转换电路、功率单元、充电桩及充放电加热方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/896,107 Continuation US20230231218A1 (en) | 2022-01-14 | 2022-08-26 | Dc/dc conversion circuit, power unit, charging pile, and charge-discharge heating method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023133831A1 true WO2023133831A1 (zh) | 2023-07-20 |
Family
ID=87161321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/072104 WO2023133831A1 (zh) | 2022-01-14 | 2022-01-14 | Dc/dc转换电路、功率单元、充电桩及充放电加热方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230231218A1 (zh) |
JP (1) | JP7444985B2 (zh) |
KR (1) | KR102713835B1 (zh) |
CN (1) | CN116761739A (zh) |
WO (1) | WO2023133831A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7394888B2 (ja) * | 2021-01-28 | 2023-12-08 | 寧徳時代新能源科技股▲分▼有限公司 | 充電方法及び電力変換装置 |
EP4152553B1 (en) * | 2021-07-29 | 2024-04-24 | Contemporary Amperex Technology Co., Limited | Charging and discharging apparatus, battery charging method, and charging and discharging system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202423513U (zh) * | 2011-12-28 | 2012-09-05 | 比亚迪股份有限公司 | 电池加热装置 |
CN202435108U (zh) * | 2011-12-28 | 2012-09-12 | 比亚迪股份有限公司 | 一种充电柜 |
US20130181682A1 (en) * | 2010-11-05 | 2013-07-18 | Mitsubishi Electric Corporation | Charge/discharge device and charge/discharge controlling method |
CN112599889A (zh) * | 2020-12-14 | 2021-04-02 | 天津市捷威动力工业有限公司 | 一种锂离子电池自加热控制方法 |
CN213734672U (zh) * | 2020-11-27 | 2021-07-20 | 比亚迪股份有限公司 | 动力电池加热装置、直流充电桩以及电动车辆充电系统 |
CN113733986A (zh) * | 2020-05-29 | 2021-12-03 | 比亚迪股份有限公司 | 电池自加热装置及其控制方法和车辆 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8452490B2 (en) | 2009-12-14 | 2013-05-28 | Control Solutions LLC | Electronic circuit for charging and heating a battery |
JP5454701B2 (ja) | 2010-10-28 | 2014-03-26 | トヨタ自動車株式会社 | 電動車両の電源装置およびその制御方法ならびに電動車両 |
CN110133516B (zh) | 2019-02-27 | 2021-02-26 | 延边中谷领创电力科技有限公司 | 电池充放电装置 |
CN212579671U (zh) | 2020-05-29 | 2021-02-23 | 比亚迪股份有限公司 | 电池自加热电路、电池充电和自加热集成电路和车辆 |
CN113659244A (zh) | 2021-08-09 | 2021-11-16 | 恒大恒驰新能源汽车研究院(上海)有限公司 | 汽车电池包预热方法及装置 |
-
2022
- 2022-01-14 KR KR1020227019508A patent/KR102713835B1/ko active IP Right Grant
- 2022-01-14 JP JP2022532609A patent/JP7444985B2/ja active Active
- 2022-01-14 WO PCT/CN2022/072104 patent/WO2023133831A1/zh active Application Filing
- 2022-01-14 CN CN202280004705.3A patent/CN116761739A/zh active Pending
- 2022-08-26 US US17/896,107 patent/US20230231218A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130181682A1 (en) * | 2010-11-05 | 2013-07-18 | Mitsubishi Electric Corporation | Charge/discharge device and charge/discharge controlling method |
CN202423513U (zh) * | 2011-12-28 | 2012-09-05 | 比亚迪股份有限公司 | 电池加热装置 |
CN202435108U (zh) * | 2011-12-28 | 2012-09-12 | 比亚迪股份有限公司 | 一种充电柜 |
CN113733986A (zh) * | 2020-05-29 | 2021-12-03 | 比亚迪股份有限公司 | 电池自加热装置及其控制方法和车辆 |
CN213734672U (zh) * | 2020-11-27 | 2021-07-20 | 比亚迪股份有限公司 | 动力电池加热装置、直流充电桩以及电动车辆充电系统 |
CN112599889A (zh) * | 2020-12-14 | 2021-04-02 | 天津市捷威动力工业有限公司 | 一种锂离子电池自加热控制方法 |
Also Published As
Publication number | Publication date |
---|---|
KR102713835B1 (ko) | 2024-10-11 |
US20230231218A1 (en) | 2023-07-20 |
KR20230110441A (ko) | 2023-07-24 |
JP7444985B2 (ja) | 2024-03-06 |
EP4235914A1 (en) | 2023-08-30 |
CN116761739A (zh) | 2023-09-15 |
JP2024507419A (ja) | 2024-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11342799B2 (en) | Out-of-band communication during wireless battery charging | |
US20210194268A1 (en) | Wireless Charging Method, Electronic Device and Wireless Charging Apparatus | |
WO2023133831A1 (zh) | Dc/dc转换电路、功率单元、充电桩及充放电加热方法 | |
TWI657637B (zh) | 待充電裝置和充電方法 | |
JP6842566B2 (ja) | 被充電機器、無線充電装置及び無線充電方法 | |
KR102157342B1 (ko) | 충전 시스템, 충전 시의 보호 방법, 전원 어댑터 | |
EP3719956B1 (en) | Device to be charged and wireless charging method and system | |
KR102121543B1 (ko) | 균형 회로, 충전 대기 기기 및 충전 제어방법 | |
CN109728624A (zh) | 车载充放电系统 | |
US20230127099A1 (en) | Charging and discharging system | |
WO2014135082A2 (zh) | 无线电能收发方法和装置 | |
KR102308628B1 (ko) | 하이브리드 전력변환 시스템 및 이를 이용하는 최대 효율 결정 방법 | |
EP3937333A1 (en) | Apparatus to be charged, and charging and discharging control method | |
WO2023168678A1 (zh) | 电池加热的方法、充电装置和电池管理系统 | |
WO2023004716A1 (zh) | 充放电装置、电池充电和放电的方法、以及充放电系统 | |
US11984746B2 (en) | Power supply system | |
CN111697799A (zh) | 一种无线充电系统及其逆变器的零电压开关控制方法 | |
CN114899954B (zh) | 双线圈独立驱动型无线充电装置及其控制方法 | |
US20230127892A1 (en) | Magnetic resonance charging system | |
RU2778758C1 (ru) | Схемы питания аккумулятора, устройства, подлежащие зарядке, и способы управления зарядкой | |
CN118523450A (zh) | 充放电电路、均衡控制方法及装置、电子设备、存储介质 | |
CN117977973A (zh) | 串并联混合式变换器及其控制方法 | |
JP2019161916A (ja) | 電力伝送装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2022532609 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2022735760 Country of ref document: EP Effective date: 20220714 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280004705.3 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |