WO2023133817A1 - 端盖组件、电池单体、电池以及使用电池的装置 - Google Patents

端盖组件、电池单体、电池以及使用电池的装置 Download PDF

Info

Publication number
WO2023133817A1
WO2023133817A1 PCT/CN2022/072079 CN2022072079W WO2023133817A1 WO 2023133817 A1 WO2023133817 A1 WO 2023133817A1 CN 2022072079 W CN2022072079 W CN 2022072079W WO 2023133817 A1 WO2023133817 A1 WO 2023133817A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
cover plate
battery
hole
battery cell
Prior art date
Application number
PCT/CN2022/072079
Other languages
English (en)
French (fr)
Inventor
熊清云
石胜云
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/072079 priority Critical patent/WO2023133817A1/zh
Priority to CN202280022151.XA priority patent/CN117157809A/zh
Publication of WO2023133817A1 publication Critical patent/WO2023133817A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, in particular to an end cover assembly, a battery cell, a battery and a device using the battery.
  • Secondary batteries have the advantages of high energy density and environmental friendliness, and are currently widely used in electronic devices such as mobile phones and notebook computers. With the vigorous development of new energy technologies, the application of secondary batteries has rapidly expanded to gasoline-electric hybrid vehicles, electric vehicles and energy storage systems.
  • electrolyte needs to be injected into the interior of the secondary battery along the liquid injection hole. During the injection of the electrolyte, the electrolyte may flow into the gap between the electrode terminal and the cover plate, causing a safety problem.
  • the present application provides an end cap assembly, a battery cell, a battery and a device using the battery, which are used to reduce the possibility of electronic conduction between the shell of the battery cell and the electrode terminals, and improve the safety performance of the battery cell.
  • An embodiment of the present application provides an end cover assembly for closing the casing of a battery cell, including: a cover plate, a first insulating member, an electrode terminal, an adsorption member, and a sealing member; the cover plate has a through hole for installation, and the installation The through hole runs through the cover plate in its own axial direction; a flow guide channel is provided between the first insulating member and the cover plate; the flow guide channel is in fluid communication with the installation through hole; the electrode terminal is installed on the installation The through hole; the absorbing part is placed in the guide channel; the sealing part is used to seal the installation through hole.
  • the electrolyte solution that enters the gap between the cover plate and the first insulating member is absorbed by the adsorption piece, thus reducing or even avoiding the electrolysis caused by electrolysis in the gap.
  • the liquid leads to electronic conduction between the electrode terminal and the cover plate and the shell of the battery cell, thereby causing the phenomenon of electrification of the shell.
  • the flow guide channel is disposed on a side of the cover plate facing the first insulating member.
  • the thickness of the cover plate is greater than the thickness of the first insulating member, and the flow guide channel is provided on the cover plate, which can more conveniently arrange the flow guide channel, and is more convenient for processing and manufacturing.
  • the guide channel includes:
  • the second groove is also arranged on the cover plate; the first groove is located between the installation through hole and the second groove, the first groove and the installation through hole, the The second grooves are all connected;
  • the depth of the first groove is smaller than the depth of the second groove; the adsorption piece is placed in the second groove.
  • first grooves and second grooves with different depths are arranged on the cover plate, and an adsorbent is placed in the second groove with a deeper depth, and the adsorbent is used for absorbing along the
  • the gap between the cover plate and the first insulating member enters the electrolyte in the second groove, preventing the electrolyte from entering the gap between the cover plate and the electrode terminal, which effectively reduces the electron conduction between the cover plate and the electrode terminal.
  • the occurrence of the communication phenomenon improves the performance of the battery cell.
  • the flow guide channel further includes a third groove communicating with the second groove, and the third groove Arranged on the side of the second groove away from the first groove, the third groove extends from the second groove along the surface of the cover plate to the side not covered by the first insulating member. covered area.
  • the dimension of the second groove along the radial direction of the cover plate is relatively short, and the second groove does not directly communicate with the outside, but communicates with the outside through the third groove.
  • the structures of the second groove and the third groove are relatively independent.
  • the third groove can be a bar-shaped groove extending along the radial direction of the cover plate. The length of the third groove can extend until the cover plate is not covered by the first groove.
  • the area covered by the insulating member can function to communicate the first groove and the second groove with the outside world.
  • the adsorption member is also configured in an annular shape.
  • both the first groove and the second groove adopt an annular structure, so that the communication area between the installation through hole and the first groove is large, and the communication area between the first groove and the second groove is large. High processing efficiency.
  • the adsorption piece also adopts an annular structure, so that no matter which area the electrolyte enters into the second groove, the adsorption piece can play an adsorption role.
  • the adsorption piece has no limit in the circumferential direction. When the battery cell is moved, turned upside down, or tilted, the adsorption piece may rotate in the circumferential direction.
  • the electrolyte may impact the adsorption part, so that the adsorption part rotates, so that the area of the adsorption part that does not absorb the electrolyte moves to the liquid spraying position through rotation, and the adsorption effect of the electrolyte is improved.
  • the first groove is configured as a ring
  • the second groove is configured as a bar
  • each of the first grooves is correspondingly provided with at least two of the second grooves. Grooves; each of the second grooves is placed with the adsorption piece.
  • the end cap assembly provided by the above-mentioned technical solution adopts a ring-shaped first groove and a bar-shaped second groove, and an adsorbent is placed in each second groove.
  • This structure can also effectively prevent the electrolyte from passing through The gap between the cover plate and the first insulating member enters the installation through hole, reducing or even eliminating the possibility of electronic conduction between the cover plate and the electrode terminal.
  • the first groove is configured as a strip
  • the second groove is configured as a ring
  • each of the second grooves is correspondingly provided with at least two of the first grooves. groove.
  • the above technical solution adopts the strip-shaped first groove, which reduces the processing area of the cover plate and has little influence on the structure of the cover plate.
  • the second ring-shaped groove is adopted, and the ring-shaped adsorption piece is placed in the second ring-shaped groove, so that the size of the adsorption piece is large and the adsorption capacity is strong.
  • both the first groove and the second groove are configured as strips.
  • the strip-shaped first groove and the second groove occupy a small area and have little influence on the structure of the cover plate.
  • the width dimension of the adsorbent is smaller than the width dimension of the second groove.
  • the width of the adsorbent is smaller than the width of the second groove, so that the adsorbent has a certain activity margin in the second groove.
  • the adsorbent moves along the width of the second groove.
  • There is a certain amount of activity in the width direction which can slow down the flow speed of the electrolyte, and the adsorbent is always at the bottom of the second groove, so even if the amount of electrolyte entering the second groove is relatively small,
  • the adsorption piece can also play an effective adsorption effect.
  • the material of the adsorbent is polymer resin.
  • Polymer water-absorbent resin is a functional polymer material, which can absorb hundreds or even thousands of times its own weight in water, and has a strong water retention capacity. Of course, other materials with adsorption effect can also be used.
  • Some embodiments of the present application provide a battery cell, including an electrode assembly, a casing, and an end cap assembly provided by any technical solution of the application; the casing is used to accommodate the electrode assembly, and the end of the casing is covered The structure is open; the end cover assembly is arranged at the end of the housing.
  • the battery cell provided by the above technical solution can make the electrolyte enter the gap between the electrode terminal and the cover plate as much as possible, thereby reducing or even eliminating the occurrence of electronic conduction between the electrode terminal, the cover plate and the casing, and improving the battery life. Body safety performance.
  • the battery cell includes a negative end cap assembly and a positive end cap assembly; the negative end cap assembly is located on one side of the electrode assembly, and the positive end cap assembly is located on the other side of the electrode assembly; Both ends of the casing are configured to be open, and the negative end cap assembly and the positive end cap assembly respectively cover the two ends of the casing; the negative end cap assembly Use the end cap assembly.
  • the embodiment of the present application further provides a battery, including the battery cell provided by any technical solution of the present application.
  • the battery provided by the above technical solution uses the above-mentioned battery cells to provide energy, which effectively prevents electronic conduction between the cover plate and the electrode terminals, and improves the performance of the battery.
  • the embodiment of the present application also provides a device using a battery, including the battery provided by any technical solution of the present application.
  • the electrical equipment provided by the above technical solution uses the above battery to provide energy, which effectively prevents electronic conduction between the cover plate and the electrode terminals, and improves the performance of the device.
  • Fig. 1 is a schematic structural diagram of a device using a battery disclosed in some embodiments of the present application.
  • FIG. 2 is a schematic perspective view of the three-dimensional structure of a battery cell disclosed in some embodiments of the present application.
  • Fig. 3 is a schematic diagram of an exploded structure of a battery cell disclosed in some embodiments of the present application.
  • Fig. 4 is a schematic front view of a battery cell disclosed in some embodiments of the present application.
  • FIG. 5 is a schematic cross-sectional view along line A-A of FIG. 4 .
  • FIG. 6 is an enlarged schematic diagram of B in FIG. 5 .
  • Fig. 7 is a schematic perspective view of the end cap assembly disclosed in some other embodiments of the present application.
  • Fig. 8 is a schematic diagram of an exploded structure of an end cap assembly disclosed in other embodiments of the present application.
  • Fig. 9 is a schematic top view of an end cap assembly disclosed in other embodiments of the present application.
  • FIG. 10 is a schematic cross-sectional view of C-C in FIG. 9 .
  • FIG. 11 is an enlarged schematic diagram of D in FIG. 10 .
  • End cap assembly 20. Electrode assembly; 30. Housing; 101. Negative end cap assembly; 102. Positive end cap assembly; 201. Negative pole lug; 202. Positive pole lug;
  • the battery cell 100 is roughly cylindrical, as shown in FIG. 2 , and the X-axis is the width direction of the battery cell 100 .
  • the Y axis is perpendicular to the X axis in the horizontal plane, and the Y axis represents the width direction of the battery cell 100 .
  • the Z axis is perpendicular to the plane formed by the X axis and the Y axis, and the Z axis represents the height direction of the battery cell 100 .
  • the terms "up” and “down” are all relative to the Z-axis direction.
  • the inside of the battery cell needs to be injected with electrolyte.
  • the inventors have found that after the electrolyte is injected into the battery cell, the electrolyte may flow along the gap between the cover plate and the first insulating member toward the mounting holes where the electrode terminals are located.
  • the positive pole is electrically connected to the shell, it will cause the shell to be positively charged, that is, the positive pole and the shell are at the same potential; if the negative pole is electrically connected to the shell, it will cause the shell to be negatively charged, that is Positive and negative electrodes are at the same potential.
  • the shell is at low potential or high potential, it will bring certain potential safety hazards.
  • the low potential of the casing may cause the casing to be corroded and cause liquid leakage.
  • the technical solution provided by the present disclosure can make the electrolyte enter the gap between the electrode terminal and the cover plate as much as possible, thereby reducing or even eliminating the occurrence of electronic conduction between the electrode terminal, the cover plate and the casing, and improving the battery life. safety performance.
  • An embodiment of the present application provides a device using a battery 1000 .
  • the device is, for example, a vehicle, a mobile phone, a portable device, a notebook computer, a ship, a spacecraft, an electric toy and an electric tool, and the like.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles. New energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles.
  • Spacecraft include airplanes, rockets, space shuttles and spaceships, etc.; electric toys include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, and the like.
  • Power tools include metal cutting power tools, grinding power tools, assembly power tools and railway power tools, such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators and electric planers, etc.
  • the embodiment of the present application does not impose special limitations on the above electric equipment.
  • a battery 1000 is disposed inside the vehicle, and the battery 1000 is disposed at the bottom or head or tail of the vehicle.
  • the battery 1000 supplies power to the vehicle, for example, the battery 1000 serves as an operating power source for the vehicle.
  • the battery 1000 can be used as a power source for new energy vehicles, ships, smart electrical cabinets and other devices.
  • the battery 1000 is used as a power supply component to provide required electric energy to various electrical components of the device.
  • the battery 1000 includes a box body and one or more battery cells 100 disposed in the box body.
  • the battery cells 100 are electrically connected, such as in series, in parallel or in parallel, so as to achieve the required electrical performance parameters of the battery 1000 .
  • a plurality of battery cells 100 are arranged in a row, and one or more rows of battery cells 100 can be arranged in the box as required.
  • each battery cell 100 of the battery 1000 will be described below.
  • the battery cells 100 of the battery 1000 are arranged along the length direction of the case.
  • Six rows of battery cell assemblies are arranged along the width direction of the battery 1000. In practical applications, other numbers of rows may also be set. According to needs, one or more layers of battery cells 100 may also be arranged in the height direction of the battery 1000 .
  • a plurality of battery cells 100 are connected in series, parallel or mixed to form a battery module, and then the battery modules are connected in series, parallel or mixed to form a whole and accommodated in the box. In other embodiments, all the battery cells 100 are directly connected in series, in parallel or mixed together, and then all the battery cells 100 are housed in the box as a whole.
  • the battery cell 100 includes an end cap assembly 10 , an electrode assembly 20 and a case 30 .
  • the case 30 serves to accommodate the electrode assembly 20, and the end of the case 30 is configured to be opened.
  • the case 30 has a cavity, and the electrode assembly 20 is installed in the cavity of the case 30 .
  • the end cover assembly 10 is disposed at the end of the housing 30 .
  • the number of end cap assemblies 10 can be one or two, depending on the number of end openings of the housing 30 .
  • both ends of the casing 30 are open, and there are two end cover assemblies 10 , one is located at one end of the battery cell 100 in the height direction, and the other is located at the other end of the battery cell 100 in the height direction.
  • the height direction here is parallel to the thickness direction of the end cap.
  • the two end cap assemblies of the battery cell 100 are a negative end cap assembly 101 and a positive end cap assembly 102 respectively; the negative end cap assembly 101 is located on the side where the negative pole lug 201 of the electrode assembly 20 The cover assembly 102 is located on the other side of the positive tab 202 of the electrode assembly 20 .
  • Both ends of the casing 30 are configured to be open, and the negative end cap assembly 101 and the positive end cap assembly 102 respectively cover the two ends of the casing 30; the negative end cap assembly 101 adopts the end cap described below Structure of assembly 10.
  • the negative end cap assembly 101 and the positive end cap assembly 102 can mostly adopt the above-mentioned structure with a sealing assembly to prevent the case 30 of the battery cell 100 from being charged.
  • the negative end cover assembly 101 adopts the above-mentioned end cover assembly 10 with a sealing assembly, which can effectively prevent the casing 30 from being negatively charged. Since the case 30 and the electrode terminal 3 are negatively charged, the battery cell 100 may be corroded and leaked. The housing 30 is not charged, which effectively reduces the possibility of corrosion of the housing 30 .
  • the electrode assembly 20 is installed inside the casing 30 .
  • the battery cell 100 includes an electrolyte solution in addition to the electrode assembly 20 .
  • the electrode assembly 20 includes a positive pole piece, a negative pole piece and a separator.
  • the manufacturing methods of the electrode assembly 20 include lamination and winding.
  • the laminated electrode assembly 20 is to cut the positive electrode sheet, the negative electrode sheet, and the separator into a predetermined size, and then stack the positive electrode sheet, the separator, and the negative electrode sheet to form the electrode assembly 20 .
  • the wound electrode assembly is formed by winding the positive pole piece, the negative pole piece, and the separator.
  • the battery cell 100 takes the wound electrode assembly 20 as an example, and the casing 30 is also cylindrical.
  • the end cap assembly 10 is generally circular to match the shape of the openings at both ends of the housing 30 .
  • the battery cell 100 mainly relies on the movement of metal ions between the positive pole piece and the negative pole piece to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode collector without the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer. Fluid, the positive electrode current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector may be aluminum, and the positive electrode active material may be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganese oxide.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode collector without the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer. Fluid, the negative electrode current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the material of the isolation film may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • some embodiments of the present application provide an end cap assembly 10 .
  • the end cap assembly 10 is used to close the casing 30 of the battery cell 100 .
  • the end cap assembly 10 includes a cap plate 1 , a first insulating member 2 , an electrode terminal 3 , an adsorption part 4 and a sealing part 5 .
  • the cover plate 1 has an installation through hole 11 , and the installation through hole 11 penetrates the cover plate 1 along its axial direction.
  • a flow guide channel 10 is disposed between the first insulating member 2 and the cover plate 1 .
  • the flow guide channel 10 is in fluid communication with the installation through hole 11 .
  • the electrode terminals 3 are mounted in the mounting through holes 11 .
  • the adsorbent 4 is placed in the guide channel 10 .
  • the seal 5 is used to seal the mounting through hole 11 .
  • the part of the cover plate 1 away from the electrode assembly 20 is the first insulating member 2 .
  • the cover plate 1 is roughly flat.
  • the first insulating member 2 adopts a rectangular thin plate-like structure.
  • the material of the first insulating member 2 can be selected: polypropylene (Polypropylene, referred to as PP), polycarbonate (Polycarbonate, referred to as PC), polytetrafluoroethylene (Polyfluoroalkoxy, referred to as PFA), polyvinyl chloride (Polyvinyl chloride, referred to as PVC) ), polyethylene (polyethylene, referred to as PE), polyester resin (polyethylene terephthalate, referred to as PET) and other insulating and electrolyte-resistant materials.
  • the end cap assembly 10 is used for the battery cell 100 .
  • the end cap assembly 10 includes a cap plate 1 , a first insulating member 2 , an electrode terminal 3 , an adsorption part 4 and a sealing part 5 .
  • the electrode terminal 3 is installed in the installation through hole 11 of the cover plate 1 , and both ends of the electrode terminal 3 extend out of the installation through hole 11 .
  • a sealing member 5 is provided between the outer wall of the electrode terminal 3 and the inner wall of the installation through hole 11 . Under normal circumstances, the sealing member 5 is installed correctly, and the battery cell 100 is in a sealed state, that is, the electrolyte inside the battery cell 100 will not leak. But sometimes the battery cell 100 may appear false sealing phenomenon.
  • the so-called false sealing phenomenon refers to the fact that the battery cell 100 should be in an unsealed state when the seal 5 is not installed or not properly installed; however, the first insulating member 2 of the end cap assembly 10 may be deformed, This makes the battery cell 100 appear to be in a sealed state during detection, which is also called a false sealing phenomenon.
  • the guide channel 10 is used for testing the sealing performance of the end cap assembly 10 .
  • the flow guide channel 10 makes the installation through hole 11 where the electrode terminal 3 of the battery cell 100 is located and the outside of the battery cell 100 always conduct.
  • the installation through hole 11 where the electrode terminal 3 is located is always in communication with the external environment of the battery cell 100; as long as the seal 5 is not installed or not installed in place, the battery cell 100 will appear unsatisfactory. Sealed state. Therefore, through its conduction function, the flow guiding channel 10 can detect whether the sealing member 5 is not installed or not properly installed and other abnormal phenomena.
  • the electrolyte may enter the gap between the cover plate 1 and the first insulating member 2 , and the adsorption member 4 is used to absorb the electrolyte in the gap.
  • the function of the adsorption member 4 does not affect the function of the flow guide channel 10 . That is to say, even if the adsorption member 4 is provided, the guide channel 10 can still perform a normal exhaust function.
  • the adsorbent 4 can be made of porous material, so that the gas can pass through, but the electrolyte can't pass through.
  • the size of the adsorption member 4 is relatively small, so that the flow guide channel 10 between the cover plate 1 and the first insulating member 2 will not be completely blocked.
  • the adsorption member 4 in the guide channel 10, the electrolyte that enters between the cover plate 1 and the first insulating member 2 is absorbed by the adsorption member 4, thus avoiding the electrolysis due to the presence of electrolysis in the above-mentioned gap.
  • the liquid causes the electrode terminal 3 to conduct electronically with the cover plate 1 and the case 30 of the battery cell 100 , thereby causing the case 30 to be electrified.
  • the flow guide channel 10 is disposed on a side of the cover plate 1 facing the first insulating member 2 .
  • guide channels 10 There is one or more guide channels 10 . There are various shapes of the guide channel 10, and some detailed embodiments will be given later.
  • the flow guide channel 10 is arranged on the cover plate 1, so that the flow guide channel 10 can be arranged more conveniently, and the processing and manufacturing are more convenient.
  • the flow guide channel 10 includes a first groove 12 and a second groove 13 .
  • the first groove 12 is disposed on the cover plate 1 and located between the installation through hole 11 and the second groove 13 .
  • the first groove 12 communicates with the installation through hole 11 and the second groove 13 .
  • the depth of the first groove 12 is smaller than that of the second groove 13 ; the adsorbent 4 is placed in the second groove 13 .
  • the first groove 12 of the cover plate 1 communicates with the installation through hole 11 , and the first groove 12 also communicates with the second groove 13 .
  • the installation through hole 11 communicates with the environment outside the battery cell 100 via the first groove 12 and the second groove 13 .
  • the first groove 12 and the second groove 13 are used to detect whether the sealing member 5 is not installed or not installed properly, and the sealing is not in place, and this phenomenon is also called false sealing phenomenon.
  • the first insulating member 2 in order to make the sealing member 5 more firmly located in the gap between the installation through hole 11 and the electrode terminal 3, includes a raised portion 21 facing the cover plate 1, and the raised portion 21 presses against the sealing piece 5 on.
  • the wall body of the installation through hole 11 of the cover plate 1 is set to be inclined, and the wall body of the inclined installation through hole 11, the outer wall of the electrode terminal 3 and the protrusion 21 of the first insulating member 2 cooperate together to realize the seal 5 positioning.
  • the electrolyte may enter the installation through hole 11 along the first groove 12 and the second groove 13, causing the cover plate 1 and the Electrode terminal 3 electronic conduction phenomenon.
  • the adsorbent 4 located in the second groove 13 can effectively absorb the electrolyte that enters the second groove 13, making it difficult for the electrolyte to flow from the second groove 13 to the first groove 12, so that the electrolyte will not enter To the installation through hole 11, thereby reducing or even avoiding the electronic conduction phenomenon between the cover plate 1 and the electrode terminal 3.
  • the thickness of the adsorbent 4 is smaller than the depth of the second groove 13, so that after the adsorbent 4 is installed in the second groove 13, no matter whether the battery elevator is placed upright or upside down, the adsorbent 4 will always sink under its own gravity.
  • the top of the second groove 13 is always empty, the second groove 13 and the first groove 12 can always maintain a communication state, and the second groove 13 is always connected with the outside world .
  • the adsorbent 4 plays a role in absorbing the electrolyte that may enter the second groove 13 during the manufacturing process of the battery cell 100; during the use of the battery cell 100, since the electrolyte cannot enter the second groove 13, so the adsorption part 4 no longer plays a role.
  • the thickness of the adsorption piece 4 is greater than the depth of the first groove 12 , so that the adsorption piece 4 will not enter into the first groove 12 , and thus will not block the first groove 12 . If the first groove 12 is blocked by the adsorption member 4, the space where the installation through hole 11 is located on the upper part of the sealing member 5 may no longer communicate with the outside world, so that false sealing cannot be detected.
  • first grooves 12 and second grooves 13 with different depths are arranged on the cover plate 1, and the adsorption piece 4 is placed in the deeper second groove 13, and the adsorption piece 4 is used to absorb the electrolyte solution that enters the second groove 13 along the gap between the cover plate 1 and the first insulating member 2, and prevent the electrolyte solution from entering the gap between the cover plate 1 and the electrode terminal 3, so that The electrolyte cannot continue to flow into the gap between the cover plate 1 and the electrode terminal 3, which effectively reduces the occurrence of electronic conduction between the cover plate 1 and the electrode terminal 3, reduces the probability of the shell 30 being corroded, and improves the Performance of the battery cell 100 .
  • the second groove 13 is covered by the first insulating member 2; the cover plate 1 further includes a third groove 14, and the third groove 14 is arranged on a side of the second groove 13 away from the first groove 12. On the side, the third groove 14 extends from the surface of the cover plate 1 to the outside of the first insulating member 2 .
  • the dimension of the second groove 13 along the radial direction of the cover plate 1 is relatively short, and the second groove 13 does not directly communicate with the outside world, but communicates with the outside world through the third groove 14 .
  • the structures of the second groove 13 and the third groove 14 are relatively independent.
  • the third groove 14 can be a strip-shaped groove extending along the radial direction of the cover plate 1, and the length of the third groove 14 can extend to the cover.
  • the area of the plate 1 not covered by the first insulating member 2 serves to communicate the first groove 12 and the second groove 13 with the outside world.
  • the third groove 14 is, for example, a bar-shaped groove. After the third groove 14 is provided, the size of the second groove 13 can be set relatively small, which can reduce the impact on the structural strength of the cover plate 1 and increase the reliability of the cover plate 1 .
  • both the first groove 12 and the second groove 13 are configured in an annular shape, and the adsorption member 4 is also configured in an annular shape.
  • the first groove 12 surrounds the electrode terminal 3 , and the size of the first groove 12 is larger than the radial size of the electrode terminal 3 and also larger than the diameter of the installation through hole 11 .
  • the inner edge of the first groove 12 extends to the outer edge of the installation through hole 11 , so that the first groove 12 communicates directly with the installation through hole 11 .
  • the second groove 13 surrounds the first groove 12 , and the diameter of the second groove 13 is larger than that of the first groove 12 .
  • the diameter size refers to the diameter size corresponding to the respective edge contours of the hole and the groove.
  • the total width dimension of the first groove 12 and the second groove 13 is W1.
  • the second groove 13 is used to accommodate the adsorbent 4, and the width dimension W2 of the second groove 13 is not less than the width dimension W of the adsorbent 4.
  • the size in the X direction is not less than the width dimension W of the adsorbent 4.
  • the first groove 12 and the second groove 13 all adopt an annular structure, so that the communication area between the installation through hole 11 and the first groove 12 is large, and the area of the first groove 12 and the second groove 13 is large. The connected area is large, and the processing efficiency is high.
  • the adsorption piece 4 also adopts an annular structure, so that no matter where the electrolyte enters into the second groove 13 , the adsorption piece 4 can play an adsorption role.
  • the adsorbent 4 has no limit in the circumferential direction. When the battery cell 100 is moved, inverted, or tilted, the adsorbent 4 may rotate in the circumferential direction.
  • the electrolyte may It will impact the adsorption part 4, so that the adsorption part 4 rotates, so that the area of the adsorption part 4 that does not absorb the electrolyte moves to the liquid spraying position through rotation, and the adsorption effect of the electrolyte is improved.
  • first groove 12 is configured as a ring
  • second groove 13 is configured as a strip
  • each first groove 12 is correspondingly provided with at least two second grooves 13;
  • Adsorbents 4 are placed in the two grooves 13 .
  • the first groove 12 adopts an annular structure, so that the communication area between the first groove 12 and the installation through hole 11 is large.
  • the second groove 13 can be a strip groove.
  • the size of the bar-shaped groove along the circumferential direction of the cover plate 1 is relatively small, and correspondingly, the radial size of the adsorbent 4 placed in the second groove 13 is also relatively small, which is also enough to absorb The electrolyte solution entering the second groove 13 through the gap between the cover plate 1 and the first insulating member 2 .
  • the number of second grooves 13 is, for example, one or more. According to the production process, the position where the electrolyte is most likely to enter is determined, and the relatively dense second grooves 13 are arranged at this position, and the relatively sparse second grooves are arranged in other areas. 13. In this way, the arrangement position of the second groove 13 is more targeted, and unnecessary processing or over-processing of the cover plate 1 is also reduced.
  • the end cover assembly 10 provided by the above technical solution adopts an annular first groove 12 and a bar-shaped second groove 13, and an adsorbent 4 is placed in each second groove 13.
  • This structure can also Effectively prevent the electrolyte from entering the installation through hole 11 through the gap between the cover plate 1 and the first insulating member 2 , reducing or even eliminating the possibility of electronic conduction between the cover plate 1 and the electrode terminal 3 .
  • the first groove 12 is configured as a strip
  • the second groove 13 is configured as a ring
  • each second groove 13 is correspondingly provided with at least two first grooves 12 .
  • the second groove 13 is arranged in an annular shape, so that no matter how many first grooves 12 there are, one second groove 13 can communicate with all the first grooves 12 .
  • the structure of the adsorbent 4 is adapted to the structure of the second groove 13 , and if the second groove 13 adopts an annular structure, the adsorbent 4 also adopts an annular structure.
  • the above technical solution adopts the strip-shaped first groove 12 , which has a small processing area on the cover plate 1 and has little influence on the structure of the cover plate 1 .
  • the second ring-shaped groove 13 is adopted, and the ring-shaped adsorption piece 4 is placed in the second ring-shaped groove 13, so that the size of the adsorption piece 4 is large and the adsorption capacity is strong.
  • both the first groove 12 and the second groove 13 are configured as strips.
  • the first groove 12 is a strip-shaped groove extending along the radial direction of the cover plate 1, or the first groove 12 is a strip-shaped groove extending along the circumferential direction of the cover plate 1, and the first groove 12 is Half ring, 1/3 ring, 1/4 ring and other structures.
  • the structure of the second groove 13 is similar to that of the first groove 12.
  • the second groove 13 is a strip groove extending radially along the cover plate 1, or the second groove 13 is a strip groove extending along the radial direction of the cover plate 1.
  • the circumferentially extending bar-shaped groove, the second groove 13 is a half-ring, 1/3 ring, 1/4 ring and other structures.
  • the second groove 13 is located on a side of the first groove 12 facing the edge of the cover plate 1 .
  • the central angles corresponding to the first groove 12 and the second groove 13 may have the same or different sizes.
  • the respective widths of the first groove 12 and the second groove 13 may be the same or different.
  • the depth dimension of the first groove 12 is smaller than the depth dimension of the second groove 13
  • the width dimension of the first groove 12 is smaller than the width dimension of the second groove 13 .
  • the strip-shaped first groove 12 and the second groove 13 occupy a small area and have little influence on the structure of the cover plate 1 . Both the depth dimension and the width dimension of the first groove 12 are smaller than the second groove 13, so that the area occupied by the first groove 12 is smaller.
  • the height dimension of the adsorption member 4 is smaller than the depth dimension of the second groove 13 and greater than the depth dimension of the first groove 12 .
  • the width of the adsorbent 4 refers to the dimension of the adsorbent 4 along the X direction
  • the width of the second groove 13 refers to the dimension of the second groove 13 along the X direction.
  • the width of the adsorbent 4 is smaller than the width of the second groove 13, so that the adsorbent 4 has a certain movable margin in the second groove 13.
  • the adsorbent 4 moves along the There is a certain amount of activity in the width direction of the second groove 13, which can slow down the flow speed of the electrolyte, and the adsorbent 4 is always at the bottom of the second groove 13, so even if it enters the second groove
  • the amount of electrolyte in 13 is relatively small, and the adsorption member 4 can also have an effective adsorption effect.
  • the bottom of the second groove 13 does not necessarily refer to the bottom surface of the second groove 13 away from the first insulating member 2 . If the battery cell 100 is in a normally placed state, as shown in FIGS. In an inverted state, the bottom of the second groove 13 refers to the part of the first insulating member 2 located in the second groove 13 .
  • the depth dimension H1 of the first groove 12 is smaller than the depth dimension H2 of the second groove 13 .
  • the height dimension H1 of the adsorbent 4 is smaller than the depth dimension of the second groove 13, so that the adsorbent 4 is not firmly fixed in the second groove 13. Under the action of its own gravity, the adsorbent 4 can sink to The electrolyte solution at the bottom of the second groove 13 is adsorbed by the member 4 .
  • the material of the adsorbent 4 is polymer water-absorbent resin (SAP for short).
  • SAP polymer water-absorbent resin
  • Polymer water-absorbent resin is a functional polymer material, which can absorb hundreds or even thousands of times its own weight in water, and has a strong water retention capacity.
  • other materials with adsorption effect can also be used.
  • the adsorbent 4 is prepared into a shape matching the shape of the second groove 13 and placed in the second groove 13 .
  • the adsorption member 4 adopting the above materials has a good adsorption effect.
  • the end cap assembly 10 further includes an electrode terminal 3 and a second insulating member 6 .
  • Electrode terminals 3 are installed through the cap plate 1 , the first insulating member 2 and the second insulating member 6 .
  • the second insulating member 6 is mounted on a side of the cover plate 1 away from the first insulating member 2 .
  • the electrode terminal 3 takes out electricity of the electrode assembly 20 of the battery cell 100 to the outside.
  • the number of electrode terminals 3 is, for example, one or two.
  • the installation through holes 11 of the cover plate 1 of the end cover assembly 10 are used for installing the electrode terminals 3 , so the number and size of the installation through holes 11 match the number and size of the electrode terminals 3 .
  • There is a gap between the installation through hole 11 and the electrode terminal 3 and a seal 5 is installed in the gap to prevent the electrolyte in the casing 30 of the battery cell 100 from leaking along the installation through hole 11 .
  • the sealing member 5 is specifically an O-ring, for example.
  • the second insulating member 6 adopts a rectangular thin plate-like structure.
  • the material of the second insulating member 6 can be selected: polypropylene (Polypropylene, referred to as PP), polycarbonate (Polycarbonate, referred to as PC), polytetrafluoroethylene (Polyfluoroalkoxy, referred to as PFA), polyvinyl chloride (Polyvinyl chloride, referred to as PVC) ), polyethylene (polyethylene, referred to as PE), polyester resin (polyethylene terephthalate, referred to as PET) and other insulating and electrolyte-resistant materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请实施例提供一种端盖组件、电池单体、电池以及装置,涉及电池领域,用以提高电池单体的性能。端盖组件包括盖板、第一绝缘构件、电极端子、吸附件以及密封件。盖板,具有安装通孔,安装通孔沿自身轴向贯穿盖板;第一绝缘构件与盖板之间设置有导流通道;导流通道与安装通孔流体连通;电极端子,安装于安装通孔;吸附件放置于导流通道中;密封件用于密封安装通孔。上述技术方案,采用吸附件吸附电池单体制造过程中沿着盖板和第一绝缘构件的缝隙进入的电解液,有效降低了盖板和电极端子出现电子导通现象的发生,提高了电池单体的性能。

Description

端盖组件、电池单体、电池以及使用电池的装置 技术领域
本申请涉及电池技术领域,特别是涉及一种端盖组件、电池单体、电池以及使用电池的装置。
背景技术
二次电池具有能量密度高,环境友好等优点,目前被广泛应用于移动电话、笔记本电脑等电子装置。随着新能源技术的大力发展,二次电池的应用已经快速扩展到油电混动汽车、电动汽车以及能量存储系统。
二次电池在制造过程中,需要沿着注液孔往二次电池内部注入电解液。在注入电解液的过程中,电解液可能会流到电极端子和盖板之间的缝隙中,从而引发安全问题。
发明内容
本申请提供一种端盖组件、电池单体、电池以及使用电池的装置,用以减少电池单体的壳体和电极端子之间电子导通的可能性,提高电池单体的安全性能。
本申请实施例提供一种端盖组件,用于封闭电池单体的壳体,包括:盖板、第一绝缘构件、电极端子、吸附件以及密封件;盖板具有安装通孔,所述安装通孔沿自身轴向贯穿所述盖板;第一绝缘构件与所述盖板之间设置有导流通道;所述导流通道与所述安装通孔流体连通;电极端子安装于所述安装通孔;吸附件放置于所述导流通道中;密封件用于密封所述安装通孔。
上述技术方案,通过在导流通道中设置吸附件,使得进入到盖板、第一绝缘构件之间缝隙中的电解液都被吸附件吸附,这样就降低、甚至避免了由于该缝隙中存在电解液导致电极端子与盖板、电池单体的壳体电子导通,从而引发壳体带电现象的出现。
在一些实施例中,其中,所述导流通道设置于所述盖板朝向所述第一绝缘构件的一侧。
一般而言,盖板的厚度大于第一绝缘构件的厚度,将导流通道设置于盖板,可以更加方便地设置导流通道,且更加便于加工制造。
在一些实施例中,其中,所述导流通道包括:
第一凹槽,设置于所述盖板;以及
第二凹槽,也设置于所述盖板;所述第一凹槽位于所述安装通孔和所述第二凹槽之间,所述第一凹槽和所述安装通孔、所述第二凹槽均连通;
其中,所述第一凹槽的深度小于所述第二凹槽的深度;所述吸附件放置于所述第二凹槽中。
上述技术方案提供的端盖组件,在盖板上设置了深浅不同的第一凹槽和第二凹槽,在深度较深的第二凹槽中放置了吸附件,吸附件用于吸附沿着盖板和第一绝缘构件之间的缝隙进入到第二凹槽中的电解液,防止电解液进入到盖板和电极端子之间的缝隙中,这有效降低了盖板和电极端子出现电子导通现象的发生,提高了电池单体的性能。
在一些实施例中,其中,所述第二凹槽被所述第一绝缘构件覆盖;所述导流通道还包括与所述第二凹槽连通的第三凹槽,所述第三凹槽布置于所述第二凹槽远离所述第一凹槽的一侧,所述第三凹槽从所述第二凹槽沿着所述盖板的表面延伸至未被所述第一绝缘构件覆盖的区域。
第二凹槽沿着盖板径向的尺寸比较短,第二凹槽并不直接和外界连通,而是通过第三凹槽与外界连通。第二凹槽和第三凹槽各自的结构相对独立,第三凹槽可以为沿着盖板的径向方向延伸的条形槽,第三凹槽的长度能够延伸至盖板未被第一绝缘构件覆盖的区域,就能起到使得第一凹槽、第二凹槽与外界连通的作用。
在一些实施例中,其中,所述第一凹槽和所述第二凹槽均被构造为环形的,所述吸附件也被构造为环形的。
上述技术方案,第一凹槽和第二凹槽均采用环形的结构,这样使得安装通孔和第一凹槽的连通面积大、第一凹槽和第二凹槽的连通面积 大,再则加工效率高。吸附件也采用环形的结构,使得在电解液不管进入到第二凹槽的哪个区域,吸附件都能够起到吸附作用。并且,吸附件在周向方向没有限位,在移动、倒放、倾斜电池单体时,吸附件都可能在周向方向上转动,在电解液喷液现象发生时,电解液可能会冲击吸附件,使得吸附件转动,这样就使得未吸附电解液的吸附件的区域经过转动移动到喷液位置,改善了电解液的吸附效果。
在一些实施例中,其中,所述第一凹槽被构造为环形的,所述第二凹槽被构造为条形的,每个所述第一凹槽对应设置至少两条所述第二凹槽;每个所述第二凹槽中都放置有所述吸附件。
上述技术方案提供的端盖组件,采用环形的第一凹槽,采用条形的第二凹槽,在每个第二凹槽中都放置有吸附件,这种结构也能有效防止电解液经由盖板和第一绝缘构件之间的缝隙进入到安装通孔,减少甚至杜绝了在盖板和电极端子形成电子导通的概率。
在一些实施例中,其中,所述第一凹槽被构造为条形的,所述第二凹槽被构造为环形的,每个所述第二凹槽对应设置至少两条所述第一凹槽。
上述技术方案,采用条形的第一凹槽,对盖板的加工面积小,对盖板的结构影响小。采用环形的第二凹槽,并在环形的第二凹槽中放置环形的吸附件,这样吸附件的尺寸大,吸附能力强。
在一些实施例中,其中,所述第一凹槽和所述第二凹槽都被构造为条形的。
采用条形的第一凹槽和第二凹槽,所占的面积小,对盖板的结构影响小。
在一些实施例中,其中,所述吸附件的宽度尺寸小于所述第二凹槽的宽度尺寸。
上述技术方案中,吸附件的宽度小于第二凹槽的宽度,使得吸附件在第二凹槽中具有一定的活动余量,在电解液冲击吸附件时,吸附件沿着第二凹槽的宽度方向具有一定的活动余量,能够起到减缓电解液流动速度的作用,并且,吸附件始终处于第二凹槽的底部,所以即便进入到第二 凹槽中的电解液的量比较少,吸附件也能起到有效的吸附效果。
在一些实施例中,其中,所述吸附件材质为高分子树脂。
高分子吸水树脂是一种功能高分子材料,它能吸收其自身重量数百倍、甚至上千倍的水,并且具有很强的保水能力。当然,也可以采用其他具有吸附效果的材料。
本申请一些实施例提供一种电池单体,包括电极组件、壳体以及本申请任一技术方案所提供的端盖组件;壳体用于容纳所述电极组件,所述壳体的端部被构造为敞口的;所述端盖组件设置于所述壳体的端部。
上述技术方案提供的电池单体,能够使得电解液尽可能进入电极端子和盖板之间的缝隙中,从而降低甚至杜绝电极端子与盖板、壳体电子导通现象的发生,提高了电池单体的安全性能。
在一些实施例中,电池单体包括负极端盖组件和正极端盖组件;所述负极端盖组件位于所述电极组件的一侧,所述正极端盖组件位于所述电极组件的另一侧;所述壳体的两个端部均被构造为敞口的,所述负极端盖组件和所述正极端盖组件分别盖合于所述壳体的两个端部;所述负极端盖组件采用所述端盖组件。本申请实施例又提供一种电池,包括本申请任一技术方案所提供的电池单体。上述技术方案提供的电池,采用上述的电池单体提供能源,有效防止了盖板和电极端子出现电子导通现象,提高了电池的性能。
本申请实施例还提供一种使用电池的装置,包括本申请任一技术方案所提供的电池。上述技术方案提供的用电设备,采用上述的电池提供能源,有效防止了盖板和电极端子出现电子导通现象,提高了装置的性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造 性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一些实施例公开的使用电池的装置结构示意图。
图2是本申请一些实施例公开的电池单体的立体结构示意图。
图3是本申请一些实施例公开的电池单体的分解结构示意图。
图4是本申请一些实施例公开的电池单体的主视结构示意图。
图5是图4的A-A剖视示意图。
图6是图5的B处放大示意图。
图7是本申请另一些实施例公开的端盖组件的立体结构示意图。
图8是本申请另一些实施例公开的端盖组件的分解结构示意图。
图9是本申请另一些实施例公开的端盖组件的俯视结构示意图。
图10是图9的C-C剖视示意图。
图11是图10的D处放大示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
1、盖板;2、第一绝缘构件;3、电极端子;4、吸附件;5、密封件;6、第二绝缘构件;7、固定块;
11、安装通孔;12、第一凹槽;13、第二凹槽;14、第三凹槽;
10、端盖组件;20、电极组件;30、壳体;101、负极端盖组件;102、正极端盖组件;201、负极极耳;202、正极极耳;21、凸起部;
100、电池单体;
1000、电池。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来 限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“顶”、“底”、“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
为了更加清楚地描述本公开各实施例的技术方案,在图2中建立了坐标系,后续关于电池单体100的各个方位的描述基于该坐标系进行。电池单体100大致为圆柱形的,参见图2,X轴为电池单体100的宽度方向。Y轴在水平面内与X轴垂直,Y轴表示电池单体100的宽度方向。Z轴垂直于X轴和Y轴形成的平面,Z轴表示电池单体100的高度方向。本公开的描述中,术语“上”、“下”、均是相对于Z轴方向而言。
相关技术中,电池单体内部需要注入有电解液。发明人发现,电池单体内部注入电解液之后,电解液可能会沿着盖板和第一绝缘构件之间的缝隙往电极端子所在的安装孔流动。盖板的安装孔内壁和电极端子的外壁之间原本具有一定的间隙;如果电解液进入该间隙,则由于电解液的存在使得电极端子与盖板、壳体电子导通;而电解液的存在会导致电池单体100内产生副产物,副产物附着于电极端子与盖板、壳体之间的绝缘构件上,使得电极端子与盖板、壳体电子导通。如果是正极极柱与壳体电子导通,则会导致壳体带正电,即正极和壳体处于相同电位;如果负极极柱与壳体电子导通,则会使得壳体带负电,即正极和负极处于相同电位。壳体无论处于低电位还是高电位,都会带来一定的安全隐患。并且,壳体处于低电位可能会引发壳体被腐蚀而漏液的现象。本公开提供的技术方案,能够使得电解液尽可能进入电极端子和盖板之间的缝隙中,从而降低甚至杜 绝电极端子与盖板、壳体电子导通现象的发生,提高了电池单体的安全性能。
发明人通过深一步的研究发现,目前无法通过改进电池单体的制造工艺来解决上述问题,所以本申请的发明人提出了以下解决方案。
本申请实施例提供一种使用电池1000的装置。
该装置比如为车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车。新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等。电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以装置为车辆为例进行说明。
请参照图2,车辆的内部设置有电池1000,电池1000设置于车辆的底部或头部或尾部。电池1000为车辆供电,例如,电池1000作为车辆的操作电源。
参见图2,该电池1000可以作为新能源汽车、船舶、智能电器柜等装置的电源。电池1000作为电源供给部件,给装置的各种电器元件提供所需要的电能。
在一些实施例中,电池1000包括箱体以及设置于箱体中的一个或者多个电池单体100。各个电池单体100之间电连接,比如串联、并联或者混联,以实现所需要的电池1000的电性能参数。多个电池单体100成排设置,根据需要可以在箱体内设置一排或者多排电池单体100。
下面介绍电池1000的各个电池单体100的排列方式。在一些实施例中,电池1000的各电池单体100沿着箱体的长度方向排列。沿电池 1000的宽度方向设置了六排电池单体组件。实际应用中,也可以设置其他的排数。根据需要,在电池1000的高度方向,也可以设置一层或者多层电池单体100。
在一些实施例中,多个电池单体100先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体内。在另一些实施例中,所有电池单体100之间直接串联或并联或混联在一起,再将所有电池单体100构成的整体容纳于箱体内。
参见图2至图6,下面介绍电池单体100的一些实现方式。
电池单体100包括端盖组件10、电极组件20以及壳体30。壳体30用于容纳电极组件20,壳体30的端部被构造为敞口的。壳体30具有空腔,电极组件20安装在壳体30的空腔中。端盖组件10设置于壳体30的端部。
端盖组件10的数量可以是一个也可以是两个,这取决于壳体30的端部敞口的数量。举例来说,壳体30的两端都是敞口的,端盖组件10的数量为两个,一个位于电池单体100高度方向的一端,另一个位于电池单体100高度方向的另一端,这里的高度方向平行于端盖的厚度方向。
在一些实施例中,电池单体100的两个端盖组件分别为负极端盖组件101和正极端盖组件102;负极端盖组件101位于电极组件20的负极极耳201所在的一侧,正极端盖组件102位于电极组件20的正极极耳202另一侧。壳体30的两个端部均被构造为敞口的,负极端盖组件101和正极端盖组件102分别盖合于壳体30的两个端部;负极端盖组件101采用下文介绍的端盖组件10的结构。
负极端盖组件101和正极端盖组件102可以多采用上文介绍的具有密封组件的结构,以防止电池单体100的壳体30带电。较佳地,负极端盖组件101采用上述带有密封组件的端盖组件10,这样可以有效防止壳体30带负电。由于壳体30与电极端子3带负电可能会导致电池单体100出现腐蚀漏液现象,上述技术方案,使得壳体30与电极端子3之间不通过电解液产生的副产物电子导通,所以壳体30不带电,有效降低了壳体30 腐蚀的可能性。
壳体30内部安装有电极组件20。电池单体100除了包括电极组件20,还包括电解液。电极组件20包括正极极片、负极极片和隔离膜。电极组件20的制作方式包括叠片式和卷绕式。叠片式电极组件20是将正极极片、负极极片、隔膜裁成规定尺寸的大小,随后将正极极片、隔膜、负极极片叠合成电极组件20。卷绕式电极组件是将正极极片、负极极片、隔膜卷绕成形。在后文一些实施例中,电池单体100以采用卷绕式的电极组件20为例,则壳体30也为圆柱形的。端盖组件10大致都为圆形的,以配合壳体30两端的敞口形状。电池单体100主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池1000为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
参见图7至图11,本申请一些实施例提供一种端盖组件10。该端盖组件10用于封闭电池单体100的壳体30。
端盖组件10包括盖板1、第一绝缘构件2、电极端子3、吸附件4以及密封件5。盖板1具有安装通孔11,安装通孔11沿自身轴向贯穿盖板1。第一绝缘构件2与盖板1之间设置有导流通道10。导流通道10与安装通孔11流体连通。电极端子3安装于安装通孔11。吸附件4放置于导流通道10中。密封件5用于密封安装通孔11。
盖板1远离电极组件20一侧的部件为第一绝缘构件2。盖板1大致为平板。第一绝缘构件2采用矩形的薄板状结构。第一绝缘构件2的材质均可以选用:聚丙烯(Polypropylene,简称PP)、聚碳酸酯(Polycarbonate,简称PC)、聚四氟乙烯(Polyfluoroalkoxy,简称PFA)、聚氯乙烯(Polyvinyl chloride,简称PVC)、聚乙烯(polyethylene,简称PE)、涤纶树脂(Polyethylene terephthalate,简称PET)等绝缘和耐电解液的材料。
端盖组件10被用于电池单体100。端盖组件10包括盖板1、第一绝缘构件2、电极端子3、吸附件4以及密封件5。电极端子3安装于盖板1的安装通孔11,并且电极端子3的两端伸出安装通孔11。电极端子3的外壁和安装通孔11的内壁之间设置有密封件5。正常情况下,密封件5被正确安装,电池单体100呈现密封状态,即电池单体100内部的电解液不会泄露。但是有时电池单体100可能会出现假密封现象。所谓假密封现象是指在密封件5未安装、安装不到位等异常情况下,本来电池单体100应该处于未密封状态;然而由于端盖组件10的第一绝缘构件2具有变形的可能性,这使得电池单体100在检测中表现出已被密封的状态,该状态也称之为假密封现象。导流通道10用于检测端盖组件10密封性能。导流通道10使得电池单体100的电极端子3所在的安装通孔11与电池单体100的外部始终导通。由于导流通道10的存在,电极端子3所在的安装通孔11始终与电池单体100外部环境连通;只要密封件5是否出现未安装、安装不到位的现象,电池单体100就呈现出未密封的状态。所以,导流通道10通过自身的导通功能,实现了检测密封件5是否出现未安装、安装不到位等异常现象。
电池单体100制造过程中,由于电解液喷液现象,可能导致电解液进入盖板1和第一绝缘构件2之间的缝隙,吸附件4用于吸附该缝隙内的电解液。吸附件4的功能不影响导流通道10的功能。也就是说,即便设置了吸附件4,导流通道10也还是能够起到正常的排气功能。吸附件4可以采用多孔材质,以使得气体通过、电解液无法通过。或者,吸附件4的尺寸比较小,这样不会使得盖板1和第一绝缘构件2之间的导流通道10 完全被堵住。
上述技术方案,通过在导流通道10中设置吸附件4,使得进入到盖板1、第一绝缘构件2之间的电解液都被吸附件4吸附,这样就避免了由于上述缝隙中存在电解液导致电极端子3与盖板1、电池单体100的壳体30电子导通,从而引发壳体30带电现象的出现。
在一些实施例中,导流通道10设置于盖板1朝向第一绝缘构件2的一侧。
导流通道10的数量为一条或者多条。导流通道10的形状有多种,后文将给出一些详细的实施方式。
将导流通道10设置于盖板1,可以更加方便地设置导流通道10,且更加便于加工制造。
继续参见图11,在一些实施例中,导流通道10包括第一凹槽12以及第二凹槽13。第一凹槽12设置于盖板1,且位于安装通孔11和第二凹槽13之间。第一凹槽12和安装通孔11、第二凹槽13均连通。第一凹槽12的深度小于第二凹槽13的深度;吸附件4放置于第二凹槽13。
盖板1的第一凹槽12与安装通孔11连通,第一凹槽12还与第二凹槽13连通。安装通孔11经由第一凹槽12、第二凹槽13与电池单体100外部的环境相互连通。第一凹槽12和第二凹槽13用于检测密封件5是否出现未安装、安装不到位等密封不到位的现象,该现象也称为假密封现象。
在一些实施例中,为了使得密封件5更稳固地位于安装通孔11和电极端子3的间隙中,第一绝缘构件2包括朝向盖板1的凸起部21,凸起部21压在密封件5上。盖板1的安装通孔11的壁体设置为倾斜的,倾斜的安装通孔11的壁体、电极端子3的外壁以及第一绝缘构件2的凸起部21三者共同配合,实现密封件5的定位。
如上文介绍的,考虑到电池单体100制造过程中,注入电解液时,电解液可能会沿着第一凹槽12、第二凹槽13进入到安装通孔11内,造成盖板1和电极端子3电子导通的现象。位于第二凹槽13中的吸附件4 可以有效吸附进入到第二凹槽13中的电解液,使得电解液难以从第二凹槽13流向第一凹槽12,那么电解液就不会进入到安装通孔11,从而降低、甚至避免了盖板1和电极端子3电子导通现象的发生。
吸附件4的厚度小于第二凹槽13的深度,这样使得吸附件4安装到第二凹槽13中之后,不管电芯电梯正放还是倒放,在自身重力作用下,吸附件4始终沉在第二凹槽13的底部,第二凹槽13的顶部始终是空的,第二凹槽13与第一凹槽12能够始终保持连通状态,并且第二凹槽13始终与外界也是连通的。吸附件4是在电池单体100制造过程中起到吸附可能进入到第二凹槽13中的电解液的作用;在电池单体100使用过程中,由于电解液不能再进入到第二凹槽13中,所以吸附件4不再起到作用。
吸附件4的厚度大于第一凹槽12的深度,这样使得吸附件4不会进入到第一凹槽12中,这样就不会阻挡第一凹槽12。如果第一凹槽12被吸附件4阻挡,可能导致安装通孔11位于密封件5上部的空间不再与外界导通,那样就无法检测假密封现象。
上述技术方案提供的端盖组件10,在盖板1上设置深浅不同的第一凹槽12和第二凹槽13,在深度较深的第二凹槽13中放置了吸附件4,吸附件4用于吸附沿着盖板1和第一绝缘构件2之间的缝隙进入到第二凹槽13中的电解液,防止电解液进入到盖板1和电极端子3之间的缝隙中,使得电解液无法继续流入到盖板1和电极端子3之间的缝隙中,这有效降低了盖板1和电极端子3出现电子导通现象的发生,降低了壳体30被腐蚀的几率,提高了电池单体100的性能。
在一些实施例中,第二凹槽13被第一绝缘构件2覆盖;盖板1还包括第三凹槽14,第三凹槽14布置于第二凹槽13远离第一凹槽12的一侧,第三凹槽14从盖板1的表面延伸至第一绝缘构件2的外侧。
第二凹槽13沿着盖板1径向的尺寸比较短,第二凹槽13并不直接和外界连通,而是通过第三凹槽14与外界连通。第二凹槽13和第三凹槽14各自的结构相对独立,第三凹槽14可以为沿着盖板1的径向方向延 伸的条形槽,第三凹槽14的长度能够延伸至盖板1未被第一绝缘构件2覆盖的区域,以起到使得第一凹槽12、第二凹槽13与外界连通的作用。
第三凹槽14比如采用条形槽。设置第三凹槽14后,第二凹槽13的尺寸可以设置的比较小,这样可以减小对盖板1结构强度的影响,增加盖板1的可靠性。
在一些实施例中,第一凹槽12和第二凹槽13均被构造为环形的,吸附件4也被构造为环形的。
第一凹槽12围绕着电极端子3,第一凹槽12的尺寸大于电极端子3的径向尺寸,也大于安装通孔11的直径尺寸。第一凹槽12的内侧边缘延伸至安装通孔11的外边缘,使得第一凹槽12和安装通孔11直接连通。第二凹槽13围绕着第一凹槽12,第二凹槽13的直径尺寸大于第一凹槽12的直径尺寸。
此处直径尺寸都是指孔、凹槽各自的边缘轮廓对应的直径尺寸。第一凹槽12和第二凹槽13的总宽度尺寸为W1。第二凹槽13用于容置吸附件4,第二凹槽13的宽度尺寸W2不小于吸附件4的宽度尺寸W ,宽度尺寸是指图6、图10、图11中各部件自身沿着X方向的尺寸。
上述技术方案,第一凹槽12和第二凹槽13均采用环形的结构,这样使得安装通孔11和第一凹槽12的连通面积大、第一凹槽12和第二凹槽13的连通面积大,再则加工效率高。吸附件4也采用环形的结构,使得在电解液不管进入到第二凹槽13的哪个区域,吸附件4都能够起到吸附作用。并且,吸附件4在周向方向没有限位,在移动、倒放、倾斜电池单体100时,吸附件4都可能在周向方向上转动,在电解液喷液现象发生时,电解液可能会冲击吸附件4,使得吸附件4转动,这样就使得未吸附电解液的吸附件4的区域经过转动移动到喷液位置,改善了电解液的吸附效果。
在一些实施例中,第一凹槽12被构造为环形的,第二凹槽13被构造为条形的,每个第一凹槽12对应设置至少两条第二凹槽13;每个第二凹槽13中都放置有吸附件4。
第一凹槽12采用环形的结构,使得第一凹槽12和安装通孔11的连通面积大。考虑到电池1000的单体制造过程中,电解液喷液现象发生的时间很短、电解液的量也不大,所以第二凹槽13可以采用条形槽。相较于环形槽,条形槽沿着盖板1周向方向的尺寸比较小,相应地,放置到第二凹槽13中的吸附件4的径向尺寸相应也较小,这也足以吸附经由盖板1和第一绝缘构件2之间缝隙进入到第二凹槽13中的电解液。
第二凹槽13的数量比如为一条或者多条,根据生产过程确定电解液最容易进入的位置,在该位置设置比较密集的第二凹槽13,在其他区域设置比较稀疏的第二凹槽13。这样,第二凹槽13的布置位置更有针对性,也减少了对盖板1进行不必要的加工或者过度加工。
上述技术方案提供的端盖组件10,采用环形的第一凹槽12,采用条形的第二凹槽13,在每个第二凹槽13中都放置有吸附件4,这种结构也能有效防止电解液经由盖板1和第一绝缘构件2之间的缝隙进入到安装通孔11,减少甚至杜绝了在盖板1和电极端子3形成电子导通的概率。
在另一些实施例中,第一凹槽12被构造为条形的,第二凹槽13被构造为环形的,每个第二凹槽13对应设置至少两条第一凹槽12。
第二凹槽13设置为环形的,这样不管第一凹槽12的数量为几条,通过一个第二凹槽13就可以与全部的第一凹槽12连通。
吸附件4的结构与第二凹槽13的结构相适配,如果第二凹槽13采用环形的结构,吸附件4也采用环形的结构。
上述技术方案,采用条形的第一凹槽12,对盖板1的加工面积小,对盖板1的结构影响小。采用环形的第二凹槽13,并在环形的第二凹槽13中放置环形的吸附件4,这样吸附件4的尺寸大,吸附能力强。
在另一些实施例中,第一凹槽12和第二凹槽13都被构造为条形的。
比如,第一凹槽12为沿着盖板1的径向延伸的条形槽,或者,第一凹槽12为沿着盖板1的周向延伸的条形槽,第一凹槽12为半环、1/3 环、1/4环等结构。第二凹槽13和第一凹槽12的结构类似,比如,第二凹槽13为沿着盖板1的径向延伸的条形槽,或者,第二凹槽13为沿着盖板1的周向延伸的条形槽,第二凹槽13为半环、1/3环、1/4环等结构。第二凹槽13位于第一凹槽12朝向盖板1的边缘的一侧。第一凹槽12和第二凹槽13对应的圆心角的大小相同或者不相同均可。第一凹槽12和第二凹槽13各自的宽度相同或者不相同均可。在一些实施例中,第一凹槽12的深度尺寸小于第二凹槽13的深度尺寸、第一凹槽12的宽度尺寸均小于第二凹槽13的宽度尺寸。
采用条形的第一凹槽12和第二凹槽13,所占的面积小,对盖板1的结构影响小。第一凹槽12的深度尺寸和宽度尺寸均小于第二凹槽13,这样可以使得第一凹槽12所占的面积更小。
在上述的各个实施例中,吸附件4的高度尺寸小于第二凹槽13的深度尺寸,且大于第一凹槽12的深度尺寸。
参见图11,吸附件4的宽度是指吸附件4沿着X方向的尺寸,第二凹槽13的宽度是指第二凹槽13沿着X方向的尺寸。
上述技术方案中,吸附件4的宽度小于第二凹槽13的宽度,使得吸附件4在第二凹槽13中具有一定的活动余量,在电解液冲击吸附件4时,吸附件4沿着第二凹槽13的宽度方向具有一定的活动余量,能够起到减缓电解液流动速度的作用,并且,吸附件4始终处于第二凹槽13的底部,所以即便进入到第二凹槽13中的电解液的量比较少,吸附件4也能起到有效的吸附效果。
在各个实施例中,第二凹槽13的底部并不一定是指第二凹槽13远离第一绝缘构件2的底面。如果电池单体100处于正常放置的状态,如图2至图11所示,那么第二凹槽13的底部是指第二凹槽13远离第一绝缘构件2的底面;如果电池单体100处于倒置状态,那么第二凹槽13的底部是指第一绝缘构件2位于第二凹槽13内的部分。
第一凹槽12的深度尺寸H1小于第二凹槽13的深度尺寸H2。吸附件4的高度尺寸H1小于第二凹槽13的深度尺寸,使得吸附件4在第二 凹槽13中呈现未被牢固固定的状态,在自身重力作用下,吸附件4能够下沉,以吸附件4位于第二凹槽13的底部的电解液。
在一些实施例中,吸附件4的材质为高分子吸水树脂(简称SAP)。高分子吸水树脂是一种功能高分子材料,它能吸收其自身重量数百倍、甚至上千倍的水,并且具有很强的保水能力。当然,也可以采用其他具有吸附效果的材料。
将吸附件4制备成与第二凹槽13的形状匹配的形状,并放置于第二凹槽13中。采用上述材料的吸附件4,吸附效果好。
在一些实施例中,端盖组件10还包括电极端子3以及第二绝缘构件6。电极端子3安装于穿过盖板1、第一绝缘构件2和第二绝缘构件6。第二绝缘构件6安装于盖板1远离第一绝缘构件2的一侧。
电极端子3将电池单体100的电极组件20的电引出到外部。电极端子3的数量比如为一个或者两个。端盖组件10的盖板1的安装通孔11用于安装电极端子3,所以安装通孔11的数量、尺寸于电极端子3的数量、尺寸相匹配。安装通孔11和电极端子3之间存在间隙,该间隙内安装有密封件5,以防止电池单体100的壳体30中的电解液沿着安装通孔11泄漏。密封件5具体比如为O型密封圈。
第二绝缘构件6采用矩形的薄板状结构。第二绝缘构件6的材质均可以选用:聚丙烯(Polypropylene,简称PP)、聚碳酸酯(Polycarbonate,简称PC)、聚四氟乙烯(Polyfluoroalkoxy,简称PFA)、聚氯乙烯(Polyvinyl chloride,简称PVC)、聚乙烯(polyethylene,简称PE)、涤纶树脂(Polyethylene terephthalate,简称PET)等绝缘和耐电解液的材料。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言, 可视具体情况理解上述术语在本申请中的具体含义。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (14)

  1. 一种端盖组件,用于封闭电池单体的壳体,包括:
    盖板(1),具有安装通孔(11),所述安装通孔(11)沿自身轴向贯穿所述盖板(1);
    第一绝缘构件(2),与所述盖板(1)之间设置有导流通道(10);所述导流通道(10)与所述安装通孔(11)流体连通;
    电极端子(3),安装于所述安装通孔(11);
    吸附件(4),放置于所述导流通道(10)中;以及
    密封件(5),用于密封所述安装通孔(11)。
  2. 根据权利要求1所述的端盖组件,其中,所述导流通道(10)设置于所述盖板(1)朝向所述第一绝缘构件(2)的一侧。
  3. 根据权利要求1或者2所述的端盖组件,其中,所述导流通道(10)包括:
    第一凹槽(12),设置于所述盖板(1);以及
    第二凹槽(13),也设置于所述盖板(1);所述第一凹槽(12)位于所述安装通孔(11)和所述第二凹槽(13)之间,所述第一凹槽(12)和所述安装通孔(11)、所述第二凹槽(13)均连通;
    其中,所述第一凹槽(12)的深度小于所述第二凹槽(13)的深度;所述吸附件(4)放置于所述第二凹槽(13)中。
  4. 根据权利要求3所述的端盖组件,其中,所述第二凹槽(13)被所述第一绝缘构件(2)覆盖;所述导流通道(10)还包括与所述第二凹槽(13)连通的第三凹槽(14),所述第三凹槽(14)布置于所述第二凹槽(13)远离所述第一凹槽(12)的一侧,所述第三凹槽(14)从所述第二凹槽(13)沿着所述盖板(1)的表面延伸至未被所述第一绝缘构件(2)覆盖的区域。
  5. 根据权利要求3或者4所述的端盖组件,其中,所述第一凹槽(12)和所述第二凹槽(13)均被构造为环形的,所述吸附件(4)也被 构造为环形的。
  6. 根据权利要求3或者4所述的端盖组件,其中,所述第一凹槽(12)被构造为环形的,所述第二凹槽(13)被构造为条形的,每个所述第一凹槽(12)对应设置至少两条所述第二凹槽(13);每个所述第二凹槽(13)中都放置有所述吸附件(4)。
  7. 根据权利要求3或者4所述的端盖组件,其中,所述第一凹槽(12)被构造为条形的,所述第二凹槽(13)被构造为环形的,每个所述第二凹槽(13)对应设置至少两条所述第一凹槽(12)。
  8. 根据权利要求3或者4所述的端盖组件,其中,所述第一凹槽(12)和所述第二凹槽(13)都被构造为条形的。
  9. 根据权利要求3-8任一所述的端盖组件,其中,所述吸附件(4)的宽度尺寸小于所述第二凹槽(13)的宽度尺寸。
  10. 根据权利要求1-9任一所述的端盖组件,其中,所述吸附件(4)的材质为高分子树脂。
  11. 一种电池单体,包括:
    电极组件(20);
    壳体(30),用于容纳所述电极组件(20),所述壳体(30)的端部被构造为敞口的;以及
    权利要求1-10任一所述的端盖组件(10),所述端盖组件(10)设置于所述壳体30的端部。
  12. 根据权利要求11所述的电池单体,其中,还包括负极端盖组件(101)和正极端盖组件(102);所述负极端盖组件(101)位于所述电极组件(20)的一侧,所述正极端盖组件(102)位于所述电极组件(20)的另一侧;
    所述壳体(30)的两个端部均被构造为敞口的,所述负极端盖组件(101)和所述正极端盖组件(102)分别盖合于所述壳体(30)的两个端部;
    所述负极端盖组件(101)采用所述端盖组件(10)。
  13. 一种电池,包括权利要求11或者12所述的电池单体(100)。
  14. 一种使用电池的装置,包括权利要求13所述的电池(1000)。
PCT/CN2022/072079 2022-01-14 2022-01-14 端盖组件、电池单体、电池以及使用电池的装置 WO2023133817A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/072079 WO2023133817A1 (zh) 2022-01-14 2022-01-14 端盖组件、电池单体、电池以及使用电池的装置
CN202280022151.XA CN117157809A (zh) 2022-01-14 2022-01-14 端盖组件、电池单体、电池以及使用电池的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/072079 WO2023133817A1 (zh) 2022-01-14 2022-01-14 端盖组件、电池单体、电池以及使用电池的装置

Publications (1)

Publication Number Publication Date
WO2023133817A1 true WO2023133817A1 (zh) 2023-07-20

Family

ID=87279823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072079 WO2023133817A1 (zh) 2022-01-14 2022-01-14 端盖组件、电池单体、电池以及使用电池的装置

Country Status (2)

Country Link
CN (1) CN117157809A (zh)
WO (1) WO2023133817A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201352569Y (zh) * 2009-01-23 2009-11-25 松下能源(无锡)有限公司 电池的绝缘盖帽、带有该绝缘盖帽的电池以及电池组
US20110064972A1 (en) * 2007-11-29 2011-03-17 Lg Chem, Ltd. Secondary battery pack of compact structure
CN207233790U (zh) * 2017-08-30 2018-04-13 宁德时代新能源科技股份有限公司 二次电池的顶盖组件以及二次电池
CN209658246U (zh) * 2019-05-14 2019-11-19 宁德时代新能源科技股份有限公司 顶盖组件及二次电池
CN211265535U (zh) * 2020-01-19 2020-08-14 武汉理工大学 一种电池漏液导流结构
CN112310496A (zh) * 2020-04-09 2021-02-02 宁德时代新能源科技股份有限公司 端盖组件、电池单体、电池组以及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110064972A1 (en) * 2007-11-29 2011-03-17 Lg Chem, Ltd. Secondary battery pack of compact structure
CN201352569Y (zh) * 2009-01-23 2009-11-25 松下能源(无锡)有限公司 电池的绝缘盖帽、带有该绝缘盖帽的电池以及电池组
CN207233790U (zh) * 2017-08-30 2018-04-13 宁德时代新能源科技股份有限公司 二次电池的顶盖组件以及二次电池
CN209658246U (zh) * 2019-05-14 2019-11-19 宁德时代新能源科技股份有限公司 顶盖组件及二次电池
CN211265535U (zh) * 2020-01-19 2020-08-14 武汉理工大学 一种电池漏液导流结构
CN112310496A (zh) * 2020-04-09 2021-02-02 宁德时代新能源科技股份有限公司 端盖组件、电池单体、电池组以及装置

Also Published As

Publication number Publication date
CN117157809A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
US20230207946A1 (en) Case, battery, power consuming device, and method for assembling case
CN217334332U (zh) 电极组件、电池单体、电池及用电装置
CN115693049A (zh) 电池单体、电池和用电装置
CN216488286U (zh) 电池单体、电池以及用电装置
WO2022205463A1 (zh) 端盖组件、电池单体、电池及电池单体的制造方法和设备
WO2023133817A1 (zh) 端盖组件、电池单体、电池以及使用电池的装置
CN219457972U (zh) 一种电芯盖板及电芯
CN115548538B (zh) 端盖组件、电池单体、电池模组及用电设备
WO2023050972A1 (zh) 电池单体、电池和用电装置
CN215989138U (zh) 箱体组件、电池及用电装置
JP2023547316A (ja) 圧力解放装置、電池セル、電池および電気設備
KR20150121912A (ko) 파우치형 이차전지의 가스 배출을 위한 파우치 관통 장치
WO2023133810A1 (zh) 端盖组件、电池单体、电池以及使用电池的装置
CN220233315U (zh) 一种顶盖组件、电池及用电设备
WO2024036554A1 (zh) 端盖组件、电池单体、电池以及用电装置
CN220628169U (zh) 盖板组件、二次电池和电子设备
CN220569787U (zh) 二次电池、电池组及电子设备
CN220628170U (zh) 电极引出件、端盖组件、二次电池和电子设备
WO2024077491A1 (zh) 壳组件、电池单体、电池及用电装置
CN218525650U (zh) 端盖组件、电池单体、电池以及用电装置
CN219457971U (zh) 一种电芯盖板组件及电芯
CN117219894B (zh) 一种极片、电池和用电设备
CN219658741U (zh) 集流体、电池单体、电池及用电装置
EP4318752A1 (en) End cap assembly, battery cell, battery, and apparatus using battery
CN219203417U (zh) 电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919469

Country of ref document: EP

Kind code of ref document: A1