WO2023133700A1 - 信息处理方法及装置、通信设备及存储介质 - Google Patents
信息处理方法及装置、通信设备及存储介质 Download PDFInfo
- Publication number
- WO2023133700A1 WO2023133700A1 PCT/CN2022/071419 CN2022071419W WO2023133700A1 WO 2023133700 A1 WO2023133700 A1 WO 2023133700A1 CN 2022071419 W CN2022071419 W CN 2022071419W WO 2023133700 A1 WO2023133700 A1 WO 2023133700A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement
- same
- duration
- shared
- carrier
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 54
- 230000010365 information processing Effects 0.000 title claims abstract description 27
- 238000003672 processing method Methods 0.000 title claims abstract description 18
- 238000005259 measurement Methods 0.000 claims abstract description 618
- 239000000969 carrier Substances 0.000 claims abstract description 221
- 238000000034 method Methods 0.000 claims description 47
- 230000011664 signaling Effects 0.000 claims description 10
- 238000007726 management method Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000010295 mobile communication Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000005236 sound signal Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- MJSPPDCIDJQLRE-YUMQZZPRSA-N S-methionyl-L-thiocitrulline Chemical compound CSCC[C@@H](C(S/C(\N)=N/CCC[C@@H](C(O)=O)N)=O)N MJSPPDCIDJQLRE-YUMQZZPRSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
Definitions
- the present disclosure relates to the technical field of wireless communication but is not limited to the technical field of wireless communication, and in particular relates to an information processing method and device, a communication device, and a storage medium.
- the network will configure multiple measurement objects (Measurement Object, MO) to share a measurement interval (Gap).
- Measurement Object Measurement Object
- the measurement interval shared by multiple MOs may be called a shared measurement interval.
- UE User Equipment
- Embodiments of the present disclosure provide an information processing method and device, a communication device, and a storage medium.
- the first aspect of the embodiments of the present disclosure provides an information processing method, which is executed by a base station, and the method includes:
- the measurement configuration at least includes: first indication information
- the first indication information indicates the measurement duration ratio of multiple non-same-frequency carriers.
- the second aspect of the embodiments of the present disclosure provides an information processing method, which is executed by a user equipment UE, and the method includes:
- the measurement configuration at least includes: first indication information
- the first indication information indicates the measurement duration ratio of multiple non-same-frequency carriers.
- a third aspect of an embodiment of the present disclosure provides an information processing device, wherein the device includes:
- the sending module is configured to send a measurement configuration sharing a measurement interval, wherein the measurement configuration at least includes: first indication information; the first indication information indicates the measurement duration ratio of multiple non-same-frequency carriers.
- a fourth aspect of an embodiment of the present disclosure provides an information processing device, wherein the device includes:
- the receiving module is configured to receive the measurement configuration of the shared measurement interval, wherein the measurement configuration at least includes: first indication information; the first indication information indicates the measurement duration ratio of multiple non-same-frequency carriers.
- the fifth aspect of the embodiments of the present disclosure provides a communication device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable
- the program executes the information processing method provided in the aforementioned first or second aspect.
- the sixth aspect of the embodiments of the present disclosure provides a computer storage medium, the computer storage medium stores an executable program; after the executable program is executed by a processor, it can realize the information provided by the aforementioned first aspect or the second aspect Approach.
- the measurement configuration sent by the base station in the embodiments of the present disclosure includes the first indication information, which will indicate how to allocate the shared measurement interval among multiple non-same-frequency carriers, thereby reducing the Constraining the UE's measurement duration ratio before multiple non-same-frequency carriers for the shared measurement interval leads to UE measurement confusion and/or the UE does not measure the non-same-frequency carrier that the base station wants the UE to focus on measurement, resulting in poor load balancing effect Or communication quality problems such as poor service communication quality. Therefore, the technical solutions provided by the embodiments of the present disclosure improve the communication quality of wireless communication. It should be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not intended to limit the embodiments of the present disclosure.
- Fig. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
- Fig. 2 is a schematic flowchart of an information processing method according to an exemplary embodiment
- Fig. 3A is a schematic diagram showing a shared measurement interval according to an exemplary embodiment
- Fig. 3B is a schematic diagram showing a shared measurement interval according to an exemplary embodiment
- Fig. 4A is a schematic flowchart of an information processing method according to an exemplary embodiment
- Fig. 4B is a schematic flowchart of an information processing method according to an exemplary embodiment
- Fig. 5 is a schematic flowchart of an information processing method according to an exemplary embodiment
- Fig. 6 is a schematic flowchart of an information processing method according to an exemplary embodiment
- Fig. 7 is a schematic structural diagram of an information processing device according to an exemplary embodiment
- Fig. 8 is a schematic structural diagram of an information processing device according to an exemplary embodiment
- Fig. 9 is a schematic structural diagram of a UE according to an exemplary embodiment
- Fig. 10 is a schematic structural diagram of a communication device according to an exemplary embodiment.
- first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
- FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
- the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several UEs 11 and several access devices 12 .
- UE11 may be a device that provides voice and/or data connectivity to a user.
- UE11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN), and UE11 can be an Internet of Things UE, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
- RAN Radio Access Network
- UE11 can be an Internet of Things UE, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
- the UE's computer for example, may be a fixed, portable, pocket, hand-held, built-in or vehicle-mounted device.
- UE11 may also be a device of an unmanned aerial vehicle.
- UE11 may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected externally to the trip computer.
- the UE11 may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
- the access device 12 may be a network side device in a wireless communication system.
- the wireless communication system may be a fourth generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as a Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
- the wireless communication system may also be a next-generation system of the 5G system.
- the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, New Generation Radio Access Network).
- the MTC system the MTC system.
- the access device 12 may be an evolved access device (eNB) adopted in a 4G system.
- the access device 12 may also be an access device (gNB) adopting a centralized and distributed architecture in the 5G system.
- eNB evolved access device
- gNB access device
- the access device 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
- the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, radio link layer control protocol (Radio Link Control, RLC) layer, media access control (Media Access Control, MAC) layer protocol stack;
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC media access control
- a physical (Physical, PHY) layer protocol stack is set in the unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the access device 12 .
- a wireless connection may be established between the access device 12 and the UE 11 through a wireless air interface.
- the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as
- the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a technical standard of a next-generation mobile communication network based on 5G.
- an E2E (End to End, end-to-end) connection can also be established between UE11.
- V2V vehicle to vehicle, vehicle-to-vehicle
- V2I vehicle to Infrastructure, vehicle-to-roadside equipment
- V2P vehicle to pedestrian, vehicle-to-person communication in vehicle to everything (V2X) communication Wait for the scene.
- the above wireless communication system may further include a network management device 13 .
- the network management device 13 may be a core network device in the wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity, MME).
- MME Mobility Management Entity
- the network management device can also be other core network devices, such as Serving GateWay (SGW), Public Data Network Gateway (Public Data Network GateWay, PGW), policy and charging rule functional unit (Policy and Charging Rules Function, PCRF) or Home Subscriber Server (Home Subscriber Server, HSS), etc.
- SGW Serving GateWay
- PGW Public Data Network Gateway
- PCRF Policy and Charging Rules Function
- HSS Home Subscriber Server
- an embodiment of the present disclosure provides an information processing method, which is executed by a base station, and the method includes:
- S110 Send a measurement configuration of a shared measurement interval, wherein the measurement configuration at least includes: first indication information;
- the first indication information indicates the measurement duration ratio of multiple non-same-frequency carriers.
- the base station includes but not limited to an evolved base station (eNB) or a next generation base station (gNB).
- eNB evolved base station
- gNB next generation base station
- the measurement configuration may be a measurement configuration for a shared measurement interval.
- the shared measurement interval is a measurement interval shared by multiple measurement objects. Measurement objects include but are not limited to carriers.
- the non-intra-frequency carrier involved in the measurement configuration including the first indication information may be: any carrier other than the same-frequency carrier.
- the first indication information indicates: a measurement duration ratio between multiple non-same-frequency carriers.
- the UE can allocate the measurement durations of multiple non-same-frequency carriers according to the first indication information when performing measurement, so as to realize the difference between the shared measurement interval for the UE. Accurate control of measurement of non-co-frequency carriers.
- the measurement duration ratio may include: a ratio of numbers of shared measurement intervals occupied by carriers with different frequencies.
- the measurement configuration indicates measurement objects MO1 and MO2 in the same measurement interval (that is, a shared measurement interval); here, MO1 and MO2 can be any two carriers with different frequencies.
- the period of the measurement interval is 20 ms. If multiple non-same-frequency carriers share the measurement interval at this time, it is confusing or unknown which carrier to measure at each measurement interval opportunity corresponds to the UE. If there is no indication of the first indication information, as shown in FIG. 3A , the UE does not know whether to measure MO1 or MO2 within the shared measurement interval, which may cause measurement confusion.
- MO1 may be the carrier of the sync signal block.
- the measurement interval is a synchronization signal block based measurement timing configuration (synchronization signal block based Radio Resource Management measurement timing configuration, SMTC).
- MO2 may include: a carrier of a channel state information (Channel State Information) reference signal (Reference Signal, RS).
- the measurement gap repetition period (Measurement Gap Repetition Period, MGRP) of the shared measurement interval in FIG. 3A.
- the base station sends the first indication information to the UE, according to the first indication information containing the first index, as shown in FIG. 3B , determine when to measure MO_i and MO_j according to the measurement duration ratio of MO_i and MO_j in the shared measurement interval MO_j, and how long to measure respectively.
- the first index shown in FIG. 3B may be one of the aforementioned first indication information, but is not limited to the first index shown in FIG. 3B .
- the non-same frequency carriers include at least: different frequency carriers, different system carriers and/or different reference signal carriers.
- the non-intra-frequency carriers include, but are not limited to: inter-frequency carriers, multiple inter-system carriers, and/or carriers of other reference signals other than the reference signal currently measured by the UE.
- the current serving carrier of the UE is a new radio (New Radio, NR) carrier, a carrier with the center frequency of the current serving carrier of the UE, and/or the same as the center frequency of the current serving carrier but subcarrier space (Sub Carrier Space , SCS) different carriers are inter-frequency carriers of the UE.
- the long term evolution (Long Term Evolution, LTE) carrier is a different system carrier of the current serving carrier of the UE.
- the reference signal currently measured by the UE is the carrier of the Positioning Reference Signal (PRS), and the carrier of the Channel State Information (Reference Signal, RS) is the carrier of a different reference signal.
- PRS Positioning Reference Signal
- Reference Signal Reference Signal
- the first indication information includes: a first index, wherein one first index has a corresponding relationship with multiple ratios; the ratio occupied by a carrier group is: the measurement of the carrier group The ratio of the duration to the measurement duration of non-co-frequency carriers;
- the measurement duration of the non-same-frequency carrier is: the duration of the shared measurement interval, or the remaining duration after deducting the measurement duration of the same-frequency carrier from the duration of the shared measurement interval;
- One carrier group includes one or more carriers.
- one carrier group includes at least one carrier, and the carriers included in one carrier group include same-frequency carriers and/or non-same-frequency carriers.
- the ratio of a carrier group is: the ratio of the measurement duration of the carrier group to the measurement duration of non-same-frequency carriers, which may include:
- the proportion of a carrier group is: the ratio of the measurement duration of this carrier group to the measurement duration of all non-same-frequency carrier groups;
- the proportion of a carrier group is: the ratio of the measurement duration of this carrier group to the measurement duration of all carrier groups.
- Whether the proportion of a carrier group corresponds to the ratio of the measurement duration of non-same-frequency carriers or the ratio of the duration of the entire shared measurement interval is related to the type of the shared measurement interval.
- the shared measurement intervals can be divided into multiple categories according to the relationship between the shared objects that share the measurement intervals. Different types of shared measurement intervals may have different measurement durations allocated to non-co-frequency carriers.
- the measurement duration occupied by one carrier group is determined according to the proportion of the carrier group, the type of the shared measurement interval, and the duration of the shared measurement interval.
- the ratio indicated by the first index when determining the measurement duration of each carrier group, it refers to the type of shared measurement interval, that is, the ratio between the first index and the first index indication can be used for different types
- the time allocation of the shared measurement interval has the characteristics of many application scenarios.
- the type of the shared measurement interval includes:
- the first type of shared measurement interval is shared by multiple non-same-frequency carriers
- the second type of shared measurement interval is shared by at least one co-frequency carrier and at least one non-co-frequency carrier.
- the first type of shared measurement interval is equivalent to the measurement interval only used for non-co-frequency carrier measurement.
- the second type of shared measurement interval is a measurement interval that needs to measure the same-frequency carrier and the non-same-frequency carrier at the same time.
- the type of shared measurement interval can be indicated explicitly or implicitly by the measurement configuration. For example, if there is a type indication in the measurement configuration, the function indication may have one or more bits, indicating the type of the shared measurement interval.
- the measurement configuration may also include: second indication information indicating the measurement duration ratio between the same-frequency carrier and the non-same-frequency carrier.
- the measurement configuration Whether the second indication information is carried may implicitly indicate the type of the shared measurement interval. For example, if the measurement configuration carries the second indication information, it is considered that the shared measurement interval is the second type of shared measurement interval, otherwise it is the first type of shared measurement interval.
- the measurement duration occupied by one carrier group is equal to: the proportion of the carrier group and the duration of the shared measurement interval product.
- the measurement duration occupied by one carrier group is equal to: the product of the proportion of the carrier group and the measurement duration of non-same-frequency carriers ;
- the measurement duration of the non-same-frequency carrier is: the remaining duration after deducting the measurement duration of the same-frequency carrier from the duration of the shared measurement interval.
- the measurement objects are all non-same-frequency carriers.
- the measurement duration can be allocated on the total duration of the shared measurement interval according to the proportion of the carrier group described by the non-same-frequency carrier. .
- the measurement objects include co-frequency carriers and non-co-frequency carriers at the same time. At this time, the measurement of co-frequency carriers needs to be considered in advance. After the measurement duration of the same-frequency carrier, the measurement duration of the non-same-frequency carrier is obtained, and the measurement duration is determined in combination with the proportion of the carrier group where the non-same-frequency carrier to be measured belongs.
- the carrier group includes at least one of the following:
- Non-same-frequency carrier group including one or more non-same-frequency carriers
- Same-frequency carrier groups including same-frequency carriers
- the mixed carrier group includes at least one same-frequency carrier and at least one non-same-frequency carrier.
- the carriers included in the non-intra-frequency carrier group are all non-intra-frequency carriers of the carrier currently used by the UE, for example, a different-frequency carrier, a different system carrier, and/or a carrier of other reference signals of the carrier currently used by the UE.
- the same-frequency carrier group includes one carrier, which is the carrier currently used by the current UE.
- the mixed carrier group includes both co-frequency carriers and non-co-frequency carriers.
- the multiple carriers in the same carrier group share the measurement duration determined according to the proportion of the carrier group.
- multiple non-same-frequency carriers of the same non-same-frequency carrier group share The measurement duration determined by the percentage value.
- Multiple non-same-frequency carriers of the same carrier group can equally share the measurement duration determined according to the proportion of the carrier group, or allocate the measurement duration determined according to the proportion of the carrier group according to a preset ratio; or the UE can freely Decide.
- the first index includes one or more bits, and different bit values of the first index correspond to different ratios.
- the first index includes two bits, and the index values of the first index are different if the values of the two bits are different.
- the ratios corresponding to the first indexes of different index values are different. For example, if the value of the first index is '00', the indicated ratios are respectively: 50%, 30%, and 20%.
- the measurement duration of a group of non-same-frequency carriers corresponding to the ratio A is: all non-same-frequency carriers account for 50% of the measurement duration, and the measurement duration of a group of non-same-frequency carriers corresponding to the ratio B is: all non-same-frequency carriers It occupies 30% of the measurement duration; and the measurement duration of a group of non-same-frequency carriers corresponding to the ratio C is: all non-same-frequency carriers occupy 20% of the measurement duration.
- all non-intra-frequency carriers are the duration of the shared measurement interval. If the shared measurement interval is the second type of shared measurement interval, all non-same-frequency carriers are the measurement duration of the non-same-frequency carriers.
- all non-same-frequency carriers are divided into 3 carrier groups, where the ratio of the measurement duration of carrier group 3 to the measurement duration of all non-same-frequency carriers is A; the measurement duration of carrier group 2 accounts for all non-same-frequency carriers.
- the ratio of the carrier measurement duration is B; the ratio of the measurement duration of carrier group 1 to the measurement duration of all non-co-frequency carriers is C.
- the measurement duration of one or more non-same-frequency carriers to be measured from carrier group 1 It accounts for 10% of the measurement duration of all non-same-frequency carriers, and the measurement duration of one or more non-same-frequency carriers to be tested from carrier group 3 accounts for 80% of the measurement duration of all non-same-frequency carriers.
- the ratio A, the ratio B and the ratio C respectively correspond to the proportions of different carrier groups. If a carrier group contains multiple carriers, all carriers in the carrier group share this proportion; for example, carrier group A contains two carriers a and b, and carrier group A has a proportion of 50%, then carriers a and b share the 50%. %, the specific proportions of carriers a and b can be flexibly assigned by the UE.
- the shared measurement interval is: a shared measurement interval of a non-same-frequency carrier
- the product of the ratio indicated by the first index and the duration of the shared measurement interval is the duration occupied by the corresponding carrier group in the shared measurement interval .
- the shared measurement interval is simultaneously: the shared measurement interval of the same-frequency carrier and the non-same-frequency carrier, then the product of the ratio indicated by the first index and the measurement duration of the non-same-frequency carrier is the shared measurement interval of the corresponding carrier group.
- the measurement duration of the non-same-frequency carrier is: the remaining duration after subtracting the measurement duration occupied by the same-frequency carrier from the duration of the shared measurement interval.
- the carrier identifier of a carrier group is included in a list, that is, different lists correspond to different carrier groups.
- MO_j is included in List 2
- MO_i is included in List 1
- the carrier group formed by the carriers in List 1 corresponds to the value B
- the carrier group formed by the carriers in List 2 corresponds to the value A.
- the index value of the first index is: '01' (refer to the proportion allocation of the carrier group measurement interval duration in Table 1)
- the UE's measurement duration for MO_j accounts for 60 of the entire shared measurement interval %
- the measurement duration of MO_i accounts for 40% of the entire shared measurement interval. That is, within the 5 shared component intervals, MO_j occupies 3 shared measurement intervals, while MO_i only occupies 2 shared measurement intervals.
- the correspondence between the first index and the multiple ratios may be stipulated in an agreement.
- the correspondence between the first index and multiple ratios may be pre-configured by the network device.
- the base station pre-broadcasts through RRC signaling.
- the network equipment includes: base station and/or core network equipment or network management equipment of the base station.
- Configuring the corresponding relationship may include at least one of the following:
- the non-intra-frequency carrier with low load rate can have a higher proportion, so that the UE can measure more carriers with low load rate, so that the UE can switch the serving carrier to a non-intra-frequency carrier with low load rate Carriers to balance the load among different carriers.
- 5G carriers there are 4G carriers and 5G carriers in the mobile communication system.
- 4G carriers In order to enable UEs to have better communication quality, more UEs will be guided to use 5G carriers.
- a higher proportion can be configured for the 5G carrier.
- the traffic diversion strategy will guide the UE to use the 4G carrier more at this time, then the corresponding relationship between the first index and the ratio of the non-same-frequency carrier can be configured for the 4G carrier. proportion.
- the UE has a positioning service and needs to use the positioning reference signal, then the proportion of carriers of the positioning reference signal may be determined taking into account the measurement requirements of the positioning service.
- the corresponding relationship can be dynamically configured by the network device according to the current communication status.
- the shared measurement interval is a second type of shared measurement interval shared between co-frequency carriers and non-co-frequency carriers, and the measurement configuration further includes: second indication information.
- the second indication information may include:
- a second index indicating a first proportion of the measurement duration of the same-frequency carrier in the shared measurement interval
- the sum of the second proportion and the first proportion is 1, and the second proportion is: the proportion of the non-same-frequency carrier measurement duration in the shared measurement interval.
- the second index and the first index are carried by different fields.
- the second index may be indicated by one or more bits.
- the measurement order of multiple non-co-frequency carriers can be determined by the UE itself.
- the UE may randomly determine the measurement order of multiple non-intra-frequency carriers, or the UE may perform measurement ordering according to sequence numbers of non-intra-frequency carriers from large to small, or perform measurement order from small to small.
- the X% is the first proportion.
- the second proportion is the proportion of the measurement duration of all non-co-frequency carriers in the shared measurement interval. Since the sum of the first proportion and the second proportion is 100%, after the second index indicates the first proportion, the UE can determine the second proportion according to the first proportion.
- (1-X%)*T is the total measurement duration occupied by multiple non-co-frequency carriers in a shared measurement interval.
- T is the total duration of the shared measurement interval.
- the measurement duration ratio of multiple non-same-frequency carriers will be allocated to (1-X%)*T according to the first indication information.
- (1-X%)*T is an example of the above-mentioned non-same-frequency carrier measurement duration.
- the measurement configuration will carry two indication information, such as the first indication information and the second indication information.
- the configuration measurement will carry the indication information of the first indication information.
- the first indication information has two types, one is a single index, for example, the index shown in Table 1, which is only used to indicate the measurement duration ratio of multiple non-same-frequency carriers; the other
- the second type is a composite index, which simultaneously indicates: the measurement duration ratio of multiple non-same-frequency carriers, and is also used to indicate the time-length ratio between the same-frequency carriers and non-same-frequency carriers.
- the value of the composite index is 01. From Table 1 and Table 2, it can be seen that: in the shared measurement interval, the time length used for the same-frequency carrier is 25%*T, and the total time length used for non-same-frequency carrier measurement is 75%. *T, and when measuring multiple non-same-frequency carriers, the measurement duration of 75%*T will be further allocated according to 60%, 30%, and 10%. If a compound index is used, the bit overhead of measurement configuration can be saved.
- the first indication information when the UE performs carrier measurement, it does not distinguish the same-frequency carrier and the non-same-frequency carrier.
- the first indication information includes: a third index, where one third index has a corresponding relationship with multiple ratios;
- the ratio occupied by one carrier group is: the ratio of the measurement duration of the carrier group to the shared measurement interval.
- same-frequency carriers may separately form a carrier group and be called a same-frequency carrier group.
- a ratio is configured for the same-frequency carrier group, non-same-frequency carrier group and/or mixed carrier group, and the product of the ratio and the shared measurement interval is the measurement duration of the corresponding carrier group.
- all carriers are divided into M carrier groups, and carriers of the same frequency are included in one or more carrier groups.
- the measurement configuration indicates that the product of the proportions of the M carrier groups and the duration of the shared measurement interval may be the occupied measurement duration of the corresponding carrier group.
- the proportion of the M carrier groups is indicated by the third index.
- the third index may include one or more bits, and if the bit values corresponding to the third index are different, at least one of the ratios occupied by the M carrier groups changes.
- the M carrier groups may be any one or more of the same-frequency carrier groups, non-same-frequency carrier groups and/or mixed carrier groups.
- the indication of the measurement duration of all carriers can be completed through a piece of first indication information.
- M can be any positive integer greater than or equal to 2.
- the measurement configuration also includes at least one of the following:
- Measurement object configuration indicating the carrier to be measured.
- the spacing configuration may specifically include at least one of the following:
- the duration of the shared measurement interval for example, 10s, 20s, or 24s.
- the repetition period defines how often the shared measurement interval repeats in the time domain.
- the start-stop position offset is an offset relative to the start moment of the repetition period.
- the interval configuration includes the starting and ending position offsets, no additional configuration of the interval length may be required.
- the interval configuration does not have the repetition period.
- the interval configuration is used to determine the distribution position of the shared measurement configuration in the time domain.
- the measurement object configuration includes but not limited to: carrier index.
- the carrier index indicates the carrier to be measured.
- the carriers to be measured include but are not limited to: same-frequency carriers and/or non-same-frequency carriers.
- the carrier x is from the carrier group corresponding to the ratio A in Table 1
- the carrier y is from the carrier corresponding to the ratio C in Table 1. If the current shared measurement interval is the shared measurement interval of multiple non-same-frequency carriers, and if the index value of the first index is '11', the UE's measurement duration for carrier x accounts for 80% of the entire shared measurement interval, and for carrier y The measurement duration of is 5% of the entire shared measurement interval.
- carrier x and carrier z are from the carrier group corresponding to the ratio A in Table 1
- carrier y is from the carrier corresponding to the ratio C in Table 1. If the index value of the first index is '11', the measurement duration of the UE on carrier x and carrier z accounts for 80% of the entire shared measurement interval, and the measurement duration of carrier y accounts for 5% of the entire shared measurement interval.
- the UE may allocate the measurement time between the carrier x and the carrier z according to a predetermined policy, for example, average allocation or random allocation.
- multiple non-same-frequency carriers of a carrier group can be configured with priorities, and when the measurement object includes multiple non-same-frequency carriers from the same carrier group, the measurement duration can be further allocated according to the priorities.
- the priority is directly related to the allocated measurement time.
- the S110 may include:
- S110A Send RRC signaling including the measurement configuration
- the S110 may include:
- S110B Send a MAC control element (Control Element, CE) containing the measurement configuration.
- the base station when the UE is in the RRC connected state, the base station sends RRC signaling and/or MAC CE including the measurement configuration to it, so as to inform the UE how to perform measurements on different carriers within the shared measurement interval.
- an embodiment of the present disclosure provides an information processing method, which is performed by a UE, and the method includes:
- S210 Receive a measurement configuration of a shared measurement interval, wherein the measurement configuration at least includes: first indication information;
- the first indication information indicates the measurement duration ratio of multiple non-same-frequency carriers.
- the non-same frequency carriers include at least: different frequency carriers, different system carriers and/or different reference signal carriers.
- the UE may receive the measurement configuration in an RRC connected state.
- the measurement configuration it may be determined at what ratio to allocate the shared measurement interval among multiple non-same-frequency carriers different from the same-frequency carrier.
- the non-intra-frequency carrier may be a non-intra-frequency carrier of the UE's current serving carrier.
- the first indication information indicates how to allocate the measurement duration of the shared measurement interval among the multiple non-intra-frequency carriers.
- the UE can complete the measurement between multiple non-same-frequency carriers within a shared measurement interval according to the first indication information, thereby satisfying different scenarios, completing the handover of the serving carrier based on the measured value of the carrier, and ensuring communication quality.
- the first indication information includes:
- the ratio of a carrier group is: the ratio of the measurement duration of the carrier group to the measurement duration of non-same-frequency carriers;
- the measurement duration of the non-same-frequency carrier is: the duration of the shared measurement interval, or the remaining duration after deducting the measurement duration of the same-frequency carrier from the duration of the shared measurement interval;
- One carrier group includes one or more carriers.
- the measurement duration of the non-same-frequency carrier is different.
- the measurement duration occupied by one carrier group is determined according to the proportion of the carrier group, the type of the shared measurement interval, and the duration of the shared measurement interval.
- the type of the shared measurement interval includes: the first type of shared measurement interval, which is shared by multiple non-same-frequency carriers; and/or, the second type of shared measurement interval, which is shared by at least one same-frequency carrier and at least one non-same-frequency carrier. frequency carrier sharing.
- the measurement duration occupied by one carrier group is equal to: the product of the proportion of the carrier group and the duration of the shared measurement interval.
- the measurement duration occupied by one carrier group is equal to: the product of the proportion of the carrier group and the measurement duration of non-same-frequency carriers; wherein, The measurement duration of the non-same-frequency carrier is: the remaining duration after deducting the measurement duration of the same-frequency carrier from the duration of the shared measurement interval.
- the multiple carriers in the same carrier group share the measurement duration determined according to the proportion of the carrier group.
- the multiple non-same-frequency carriers of the same carrier group share the measurement duration determined according to the proportion of the carrier group.
- multiple frequency carriers of the same carrier group can equally share the measurement duration determined according to the proportion of the carrier group, or allocate the measurement duration determined according to the proportion of the carrier group according to a preset ratio; or by UE is free to decide.
- the carrier group includes at least one of the following:
- Non-same-frequency carrier group including one or more non-same-frequency carriers
- Same-frequency carrier groups including same-frequency carriers
- the mixed carrier group includes at least one same-frequency carrier and at least one non-same-frequency carrier.
- the carriers included in the non-intra-frequency carrier group are all non-intra-frequency carriers of the carrier currently used by the UE, for example, a different-frequency carrier, a different system carrier, and/or a carrier of other reference signals of the carrier currently used by the UE.
- the same-frequency carrier group includes one carrier, which is the carrier currently used by the current UE.
- the mixed carrier group includes both co-frequency carriers and non-co-frequency carriers.
- the shared measurement intervals can be divided into multiple categories according to the relationship between the shared objects that share the measurement intervals. Different types of shared measurement intervals may have different measurement durations allocated to non-co-frequency carriers.
- the shared measurement interval is a second type of shared measurement interval shared by co-frequency carriers and non-co-frequency carriers, and the measurement configuration further includes:
- the second indication information indicates the measurement duration ratio of the same-frequency carrier and the non-same-frequency carrier.
- the second indication information indicates the measurement duration ratio between the same-frequency carrier and the non-same-frequency carrier.
- the measurement duration of the same-frequency carrier indicated by the second indication information will be longer than the measurement duration of the non-same-frequency carrier.
- the second indication information can be used to indicate that the same-frequency carrier occupies a relatively small measurement duration, and the UE will have a longer measurement duration of different-frequency carriers, different system carriers or different reference signals carrier, so that according to the measured value of the carrier, it can be switched to a non-same-frequency carrier with a higher probability.
- the second indication information includes:
- the second index indicates the first proportion of the measurement duration of the same-frequency carrier in the shared measurement interval, where the sum of the second proportion and the first proportion is 1, and the second proportion
- the ratio is: the proportion of the measurement duration of non-same-frequency carriers in the shared measurement interval.
- the first indication information includes: a third index, wherein one third index has a corresponding relationship with multiple ratios; the ratio occupied by one carrier group is: the ratio of the carrier group The proportion of the measurement duration to the shared measurement interval.
- all carriers are divided into M carrier groups, and carriers of the same frequency are included in one or more carrier groups.
- the measurement configuration indicates that the product of the proportions of the M carrier groups and the duration of the shared measurement interval may be the occupied measurement duration of the corresponding carrier group.
- the indication of the measurement duration of all carriers can be completed through a piece of first indication information.
- M can be any positive integer greater than or equal to 2.
- the indication index of the proportion of the M carrier groups may be a third index.
- the third index is a type of the first indication information.
- the third index may comprise one or more bits. Different ratios of the one or more bits indicate different proportions of the M carrier groups.
- the method further includes:
- S200 Receive configuration information of correspondences between the first index and multiple ratios.
- the network side wants to update the corresponding relationship, it can send the configuration information in broadcast information such as a system message.
- broadcast information such as a system message.
- the network can configure a set of measurement intervals to measure multiple MOs.
- the UE may need to measure the reference signals of multiple MOs during a measurement interval, how should the UE select the measurement reference signal.
- the embodiment of the present disclosure provides a measurement scheduling method for sharing measurement intervals, which can effectively solve the problem: in a measurement interval opportunity, if reference signals of MOs in different lists appear at the same time, UE can follow the sharing scheduling method for sharing measurement intervals
- the mechanism measures MOs in different lists at different measurement intervals.
- Step 1 The network configures one or more sets of measurement intervals for mobility measurement to the UE through RRC signaling;
- Step 2 The network configures the measurement objects (Measurement objects) used for mobility measurement and the correspondence between these measurement objects and measurement intervals to the UE through RRC signaling.
- the measurement interval combination 1 corresponds to several measurement objects
- the measurement interval Combination 2 corresponds to other measurement objects; here, measurement interval combination 1 and measurement interval combination 2 are any of the aforementioned carrier groups.
- Step 3 The network divides the measurement objects belonging to the same measurement interval configured in the first step into X lists, and configures them to the UE through RRC;
- Step 5 In step 3, the measurement opportunity percentages A%, B%, and C% of gap measurement in step 3 are assigned to the UE by means of network instructions, such as shown in Table 1, if measGapSharingIndex indicates "00 ", then the ratios corresponding to the first index (measGapSharingIndex) with an index value of 00 are: 50%, 30% and 20% respectively. measGapSharingIndex may be the aforementioned first index.
- the embodiments of the present disclosure provide a scheduling method and system for sharing measurement intervals, which can effectively solve the problem: in a measurement interval opportunity, if reference signals of MOs in different lists appear at the same time, the UE can share the scheduling mechanism according to the measurement interval MOs in different lists are measured at different measurement intervals.
- an embodiment of the present disclosure provides an information processing device, wherein the device includes:
- the sending module 110 is configured to send a measurement configuration of a shared measurement interval, wherein the measurement configuration includes at least: first indication information;
- the first indication information indicates the measurement duration ratio of multiple non-same-frequency carriers.
- the information processing device may be included in the UE.
- the sending module 110 may be a program module; after the program module is executed by the processor, it can realize the sending of the measurement configuration including the first indication information.
- the sending module 110 may be a combination of hardware and software; the combination of hardware and software includes, but is not limited to: various hardware and software modules; the combination of hardware and software includes, but is not limited to: various Programmable array; said programmable array includes but not limited to: field programmable array and/or complex programmable array.
- the sending module 110 may be a pure hardware module; the pure hardware module includes but is not limited to an application specific integrated circuit.
- the non-co-frequency carriers include at least one of the following:
- the first indication information includes:
- the ratio of a carrier group is: the ratio of the measurement duration of the carrier group to the measurement duration of non-same-frequency carriers;
- the measurement duration of the non-same-frequency carrier is: the duration of the shared measurement interval, or the remaining duration after deducting the measurement duration of the same-frequency carrier from the duration of the shared measurement interval;
- One carrier group includes one or more carriers.
- the carrier group includes at least one of the following:
- Non-same-frequency carrier group including one or more non-same-frequency carriers
- Same-frequency carrier groups including same-frequency carriers
- the mixed carrier group includes at least one same-frequency carrier and at least one non-same-frequency carrier.
- the measurement duration of one carrier group is determined according to the ratio, the type of the shared measurement interval, and the duration of the shared measurement interval.
- the type of the shared measurement interval includes: the first type of shared measurement interval, which is shared by multiple non-same-frequency carriers; and/or, the second type of shared measurement interval, which is shared by at least one same-frequency carrier and at least one non-same-frequency carrier. frequency carrier sharing.
- the measurement duration occupied by one carrier group is equal to: the product of the proportion of the carrier group and the duration of the shared measurement interval.
- the measurement duration occupied by one carrier group is equal to: the product of the proportion of the carrier group and the measurement duration of non-same-frequency carriers; wherein, The measurement duration of the non-same-frequency carrier is: the remaining duration after deducting the measurement duration of the same-frequency carrier from the duration of the shared measurement interval.
- the measurement duration of one carrier group is: determined according to the ratio and the duration of the shared measurement interval. For example, when multiple non-same-frequency carriers of one carrier group need to be measured, the multiple non-same-frequency carriers of the same carrier group share the measurement duration determined according to the proportion of the carrier group.
- the shared measurement interval is a second type of shared measurement interval shared by co-frequency carriers and non-co-frequency carriers, and the measurement configuration further includes:
- the second indication information indicates the measurement duration ratio of the same-frequency carrier and the non-same-frequency carrier.
- the second indication information includes:
- a second index indicating a first proportion of the measurement duration of the same-frequency carrier in the shared measurement interval
- the sum of the second proportion and the first proportion is 1, and the second proportion is: the proportion of the non-same-frequency carrier measurement duration in the shared measurement interval.
- the type of a shared measurement interval may be determined according to whether the second indication information is carried in the measurement configuration. If the second indication information is carried, it may be determined that the shared measurement interval is the second type of shared measurement interval, otherwise it may be the first type of shared measurement interval.
- the first indication information includes: a third index, wherein one third index has a corresponding relationship with multiple ratios; the ratio occupied by a carrier group is: the measurement of the carrier group Duration as a fraction of the shared measurement interval.
- the multiple carriers in the same carrier group share the measurement duration determined according to the proportion of the carrier group. For example, when multiple non-same-frequency carriers of one non-same-frequency carrier group need to be measured, multiple non-same-frequency carriers of the same non-same-frequency carrier group share Length of measurement for ratio determination.
- the measurement configuration also includes at least one of the following:
- Measurement object configuration indicating the carrier to be measured.
- the sending module 110 is configured to send radio resource control RRC signaling including the measurement configuration; or, send a medium access control MAC control element CE including the measurement configuration.
- an embodiment of the present disclosure provides an information processing device, wherein the device includes:
- the receiving module 210 is configured to receive a measurement configuration of a shared measurement interval, wherein the measurement configuration includes at least: first indication information;
- the first indication information indicates the measurement duration ratio of multiple non-same-frequency carriers.
- the receiving module 210 may be a program module; after the program module is executed by the processor, it can receive the measurement configuration including the first indication information.
- the receiving module 210 may be a combination of hardware and software; the combination of hardware and software includes, but is not limited to: various hardware and software modules; Programmable array; said programmable array includes but not limited to: field programmable array and/or complex programmable array.
- the receiving module 210 may be a pure hardware module; the pure hardware module includes but is not limited to an application specific integrated circuit.
- the non-co-frequency carriers include at least one of the following:
- the first indication information includes:
- the ratio of a carrier group is: the ratio of the measurement duration of the carrier group to the measurement duration of non-same-frequency carriers;
- the measurement duration of the non-same-frequency carrier is: the duration of the shared measurement interval, or the remaining duration after deducting the measurement duration of the same-frequency carrier from the duration of the shared measurement interval;
- One carrier group includes one or more carriers.
- the measurement duration of one carrier group is determined according to the ratio and the type of the shared measurement interval.
- the types of shared measurement intervals include:
- the first type of shared measurement interval is shared by multiple non-co-frequency carriers; and/or,
- the second type of shared measurement interval is shared by at least one co-frequency carrier and at least one non-co-frequency carrier.
- the carrier group includes at least one of the following:
- Non-same-frequency carrier group including one or more non-same-frequency carriers
- Same-frequency carrier groups including same-frequency carriers
- the mixed carrier group includes at least one same-frequency carrier and at least one non-same-frequency carrier.
- the measurement duration of one carrier group is determined according to the ratio, the type of the shared measurement interval, and the duration of the shared measurement interval.
- the measurement duration occupied by one carrier group is equal to: the proportion of the carrier group and the duration of the shared measurement interval product.
- the measurement duration occupied by one carrier group is equal to: the product of the proportion of the carrier group and the measurement duration of non-same-frequency carriers ;
- the measurement duration of the non-same-frequency carrier is: the remaining duration after the measurement duration of the same-frequency carrier is removed from the duration of the shared measurement interval.
- multiple non-same-frequency carriers of the same carrier group share the measurement duration determined according to the proportion of the carrier group .
- the shared measurement interval is a shared measurement interval between co-frequency carriers and non-co-frequency carriers, and the measurement configuration further includes:
- the second indication information indicates the measurement duration ratio of the same-frequency carrier and the non-same-frequency carrier.
- the second indication information includes:
- the second index indicates the first proportion of the measurement duration of the same-frequency carrier in the shared measurement interval, where the sum of the second proportion and the first proportion is 1, and the second proportion
- the ratio is: the proportion of the measurement duration of non-same-frequency carriers in the shared measurement interval.
- the first indication information includes: a third index, wherein one third index has a corresponding relationship with multiple ratios; the ratio occupied by one carrier group is: the measurement of the carrier group Duration as a fraction of the shared measurement interval.
- multiple non-same-frequency carriers of the same carrier group share the measurement duration determined according to the proportion of the carrier group .
- An embodiment of the present disclosure provides a communication device, including:
- memory for storing processor-executable instructions
- the processor is configured to execute the terminal control method and/or the information processing method provided by any of the foregoing technical solutions.
- the processor may include various types of storage media, which are non-transitory computer storage media, and can continue to memorize and store information thereon after the communication device is powered off.
- the communication device includes: an access device or a UE or a core network device.
- the processor can be connected to the memory through a bus, etc., and is used to read the executable program stored on the memory, for example, at least one of the methods shown in Figure 2, Figures 4A to 4B, and/or Figures 5 to 6 one of them.
- Fig. 9 is a block diagram of a UE 800 according to an exemplary embodiment.
- UE 800 may be a mobile phone, computer, digital broadcast user equipment, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, etc.
- UE 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and communication component 816 .
- Processing component 802 generally controls the overall operations of UE 800, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
- the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above method.
- processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
- processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802 .
- the memory 804 is configured to store various types of data to support operations at the UE 800 . Examples of such data include instructions for any application or method operating on UE800, contact data, phonebook data, messages, pictures, videos, etc.
- the memory 804 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
- SRAM static random access memory
- EEPROM electrically erasable programmable read-only memory
- EPROM erasable Programmable Read Only Memory
- PROM Programmable Read Only Memory
- ROM Read Only Memory
- Magnetic Memory Flash Memory
- Magnetic or Optical Disk Magnetic Disk
- the power supply component 806 provides power to various components of the UE 800 .
- Power components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for UE 800 .
- the multimedia component 808 includes a screen providing an output interface between the UE 800 and the user.
- the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
- the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
- the multimedia component 808 includes a front camera and/or a rear camera. When the UE800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
- the audio component 810 is configured to output and/or input audio signals.
- the audio component 810 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 804 or sent via communication component 816 .
- the audio component 810 also includes a speaker for outputting audio signals.
- the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
- Sensor component 814 includes one or more sensors for providing various aspects of status assessment for UE 800 .
- the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and the keypad of the UE800, the sensor component 814 can also detect the position change of the UE800 or a component of the UE800, and the user and Presence or absence of UE800 contact, UE800 orientation or acceleration/deceleration and temperature change of UE800.
- Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
- the sensor assembly 814 may also include light sensors, such as CMOS or CCD image sensors, for use in imaging applications.
- the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
- Communication component 816 is configured to facilitate wired or wireless communications between UE 800 and other devices.
- UE800 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
- the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
- the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
- NFC near field communication
- the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
- RFID Radio Frequency Identification
- IrDA Infrared Data Association
- UWB Ultra Wideband
- Bluetooth Bluetooth
- UE 800 may be powered by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Gates Arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic implementations for performing the methods described above.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs Field Programmable Gates Arrays
- controllers microcontrollers, microprocessors or other electronic implementations for performing the methods described above.
- non-transitory computer-readable storage medium including instructions, such as the memory 804 including instructions, which can be executed by the processor 820 of the UE 800 to complete the above method.
- the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
- an embodiment of the present disclosure shows a structure of an access device.
- the communication device 900 may be provided as a network side device.
- the communication device may be the aforementioned access device and/or core network device.
- the communication device 900 includes a processing component 922 , which further includes one or more processors, and a memory resource represented by a memory 932 for storing instructions executable by the processing component 922 , such as application programs.
- the application program stored in memory 932 may include one or more modules each corresponding to a set of instructions.
- the processing component 922 is configured to execute instructions to perform any of the aforementioned methods applied to the access device, for example, the methods shown in FIG. 2 , FIG. 4A to FIG. 4B , and/or FIG. 5 to FIG. 6 .
- the communication device 900 may also include a power supply component 926 configured to perform power management of the communication device 900, a wired or wireless network interface 950 configured to connect the communication device 900 to a network, and an input output (I/O) interface 958 .
- the communication device 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开实施例提供一种信息处理方法及装置、通信设备及存储介质。所述由基站执行,所述方法包括:发送共享测量间隔的测量配置,其中,所述测量配置,至少包括:第一指示信息;所述第一指示信息,指示多个非同频载波的测量时长比。
Description
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种信息处理方法及装置、通信设备及存储介质。
在无线资源控制(Radio Resource Control,RRC)连接态下,网络会配置多个测量对象(Measurement Object,MO)共享一个测量间隔(Gap)。
针对多个MO共享的测量间隔,可以称之为共享测量间隔。
若一个用户设备(User Equipment,UE)在一个共享测量间隔需要测量多个MO时,UE如何执行具体的测量是需要一步研究的问题。
发明内容
本公开实施例提供一种信息处理方法及装置、通信设备及存储介质。
本公开实施例第一方面提供一种信息处理方法,由基站执行,所述方法包括:
发送共享测量间隔的测量配置,其中,所述测量配置,至少包括:第一指示信息;
所述第一指示信息,指示多个非同频载波的测量时长比。
本公开实施例第二方面提供一种信息处理方法,其中,由用户设备UE执行,所述方法包括:
接收共享测量间隔的测量配置,其中,所述测量配置,至少包括:第一指示信息;
所述第一指示信息,指示多个非同频载波的测量时长比。
本公开实施例第三方面提供一种信息处理装置,其中,所述装置包括:
发送模块,被配置为发送共享测量间隔的测量配置,其中,所述测量配置,至少包括:第一指示信息;所述第一指示信息,指示多个非同频载波的测量时长比。
本公开实施例第四方面提供一种信息处理装置,其中,所述装置包括:
接收模块,被配置为接收共享测量间隔的测量配置,其中,所述测量配置,至少包括:第一指示信息;所述第一指示信息,指示多个非同频载波的测量时长比。
本公开实施例第五方面提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如前述第一方面或第二方面提供的信息处理方法。
本公开实施例第六方面提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所 述可执行程序被处理器执行后,能够实现前述的第一方面或第二方面提供的信息处理方法。
本公开实施例提供的技术方案,本公开实施例中基站发送的测量配置包含第一指示信息,该第一指示信息将指示多个非同频载波之间如何分配共享测量间隔,从而减少因为没有约束UE针对共享测量间隔在多个非同频载波之前的测量时长比,导致UE的测量混乱和/或UE没有测量到基站想要UE重点测量的非同频载波,进而导致的负载均衡效果差或者业务通信质量差等通信质量问题。因而本公开实施例提供的技术方案提升了无线通信的通信质量。应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图3A是根据一示例性实施例示出的一种共享测量间隔的示意图;
图3B是根据一示例性实施例示出的一种共享测量间隔的示意图;
图4A是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图4B是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图5是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图6是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图7是根据一示例性实施例示出的一种信息处理装置的结构示意图;
图8是根据一示例性实施例示出的一种信息处理装置的结构示意图;
图9是根据一示例性实施例示出的一种UE的结构示意图;
图10是根据一示例性实施例示出的一种通信设备的结构示意图。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个UE11以及若干个接入设备12。
其中,UE11可以是指向用户提供语音和/或数据连通性的设备。UE11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,UE11可以是物联网UE,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网UE的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程UE(remote terminal)、接入UE(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户UE(user equipment,UE)。或者,UE11也可以是无人飞行器的设备。或者,UE11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,UE11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
接入设备12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,接入设备12可以是4G系统中采用的演进型接入设备(eNB)。或者,接入设备12也可以是5G系统中采用集中分布式架构的接入设备(gNB)。当接入设备12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对接入设备12的具体实现方式不加以限定。
接入设备12和UE11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,UE11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个接入设备12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
如图2所示,本公开实施例提供一种信息处理方法,由基站执行,所述方法包括:
S110:发送共享测量间隔的测量配置,其中,所述测量配置,至少包括:第一指示信息;
所述第一指示信息,指示多个非同频载波的测量时长比。
所述基站包括但不限于演进型基站(eNB)或者下一代基站(gNB)。
该测量配置可为对共享测量间隔的测量配置。该共享测量间隔为多个测量对象共享的一个测量间隔。测量对象包括但不限于载波。
在所述测量配置包含第一指示信息涉及的非同频载波可为:同频载波以外的任意载波。
所述第一指示信息指示的是:多个非同频载波之间的测量时长比。如此,若该共享测量配置包括多个非同频载波时,则UE在执行测量时,可根据第一指示信息分配多个非同频载波的测量时长,从而实现对UE对共享测量间隔时不同非同频载波的测量精确控制。
若所述共享测量间隔在时域内周期性分布,则所述测量时长比可包括:非同频载波占用的共享测量间隔的个数比。
参考图3A所示,测量配置指示在同一个测量间隔(即共享测量间隔)的测量对象MO1和MO2;此处的MO1和MO2可为任意两个非同频载波。如图3A所示,在测量间隔的周期为20ms,若此时多个非同频载波共享该测量间隔,则每一个测量间隔时机具体测量哪个载波对应于UE而言是混乱的或者未知的。若没有第一指示信息的指示,则如图3A所示的,UE在共享测量间隔内就不知道是要测量MO1还是MO2,可能会导致测量混乱。在图3A中MO1可为同步信号块的载波。故该测量间隔为基于同步信号快的测量时间配置(synchronization signal block based Radio Resource Management measurement timing configuration,SMTC)。MO2可包括:信道状态信息(Channel State Information)参考信号(Reference Signal,RS)的载波。图3A的共享测量间隔的测量间隔重复周期(Measurement Gap Repetition Period,MGRP)。
若基站向UE发送了所述第一指示信息,则根据第一指示信息包含第一索引,则参考图3B所示,在共享测量间隔根据MO_i和MO_j的测量时长比确定出何时测量MO_i和MO_j,以及分别测量多长时长。图3B所述的第一索引可为前述第一指示信息的一种,但不限于图3B所示的第一索引。
在一个实施例中,所述非同频载波至少包括:异频载波、异系统载波和/或不同参考信号的载波。
示例性地,所述非同频载波包括但不限于:异频载波、多个异系统载波和/或UE当前所测量参考信号以外的其他参考信号的载波。
例如,UE当前的服务载波为新无线(New Radio,NR)载波上,与UE的当前服务载波的中心频率的载波,和/或与当前服务载波的中心频率相同但是子载波间隔(Sub Carrier Space,SCS)不同的载波都是UE的异频载波。此时,长期演进(Long Term Evolution,LTE)载波,则为UE当前服务载波的异系统载波。例如,当前UE测量的参考信号是定位参考信号(Positioning Reference Signal,PRS)的载波,则信道状态信息(Channel State Information)参考信号(Reference Signal,RS)的载波,即为不同参考信号的载波。
在一个实施例中,所述第一指示信息包括:第一索引,其中,一个所述第一索引与多个比值具有对应关系;一个载波组所占所述比值为:所述载波组的测量时长占非同频载波测量时长的比例;
所述非同频载波测量时长为:所述共享测量间隔的时长,或者,所述共享测量间隔的时长扣除同频载波的测量时长之后的剩余时长;
一个所述载波组包括一个或多个载波。
示例性地,一个载波组包含至少一个载波,且一个载波组包含载波包括同频载波和/或非同频载波。
此处,一个载波组所占所述比值为:所述载波组的测量时长占非同频载波测量时长的比例,可包括:
一个载波组所占比值为:该载波组测量时长占所有非同频载波组测量时长的比值;
或,
一个载波组所占比值为:该载波组测量时长占所有载波组测量时长的比值。
而一个载波组所占比例对应的是非同频载波测量时长的比值,还是整个共享测量间隔的时长的比值,这与共享测量间隔的类型相关。
按照共享测量间隔的共享对象之间的关系划分,所述共享测量间隔可以分为多类。不同类型的共享测量间隔则分配给非同频载波的测量时长可能是不同的。
故在一个实施例中,一个所述载波组占用的测量时长是:根据所述载波组所占比值、所述共享测量间隔的类型以及所述共享测量间隔的时长确定的。
如此,在本公开实施例中根据第一索引指示的比值,确定各个载波组的测量时长时是参考共享测量间隔的类型,即第一索引和第一索引指示的比值,是可以用于不同类型的共享测量间隔的时长分配的,具有应用场景多的特点。
示例性地,所述共享测量间隔的类型包括:
第一类共享测量间隔,被多个非同频载波共享;
和/或,
第二类共享测量间隔,被至少一个同频载波和至少一个非同频载波共享。
即第一类共享测量间隔相当于仅仅用于非同频载波测量的测量间隔。
第二类共享测量间隔是同时需要测量同频载波和非同频载波的测量间隔。
共享测量间隔的类型可以由测量配置显性或者隐性指示。例如,在测量配置具有类型指示,该功能指示可具有一个或多个比特,指示所述共享测量间隔的类型。
在另一些实施例中,若共享测量间隔时第二类共享测量间隔,则测量配置还可能包括:指示同频载波和非同频载波的测量时长比的第二指示信息,此时,测量配置是否有携带第二指示信息,就可以隐含指示共享测量间隔的类型。例如,测量配置携带有第二指示信息则认为该共享测量间隔为第二类共享测量间隔,否则为第一类共享测量间隔。
在一个实施例中,当所述共享测量间隔为所述第一类共享测量间隔时,一个所述载波组占用的测量时长等于:所述载波组所占比值与所述共享测量间隔的时长的乘积。
在另一个实施例中,当所述共享测量间隔为所述第二类共享测量间隔,一个所述载波组占用的测量时长等于:所述载波组所占比值与非同频载波测量时长的乘积;其中,所述非同频载波测量时长为:所述共享测量间隔的时长扣除同频载波的测量时长之后的剩余时长。
当共享测量间隔为第一类共享测量间隔时,测量对象均是非同频载波,此时,可以根据非同频载波所述的载波组所占比值,在共享测量间隔的总时长上分配测量时长。
当共享测量间隔为第二类共享测量间隔时,测量对象同时包含同频载波和非同频载波,此时,需要预先考虑同频载波的测量,因此,需要从共享测量间隔中优先预留出同频载波的测量时长之后,得到非同频载波测量时长,在结合需要测量的非同频载波所在载波组所占比值确定测量时长。
在一个实施例中,所述载波组包括以下至少之一:
非同频载波组,包括一个或多个非同频载波;
同频载波组,包括同频载波;
混合载波组,包括至少一个同频载波和至少一个非同频载波。
非同频载波组包含的载波都是UE当前使用载波的非同频载波,例如,UE当前使用的载波的异频载波、异系统载波和/或其他参考信号的载波。
同频载波组包括一个载波,该载波即为当前UE当前使用载波。
混合载波组既包含同频载波包含非同频载波。
在一个实施例中,当一个所述载波组的多个载波需要测量时,同一个所述载波组的多个载波,共享根据所述载波组所占比值确定的测量时长。
示例性地,当一个所述非同频载波组的多个非同频载波需要测量时,同一个所述非同频载波组的多个非同频载波,共享根据所述非同频载波组所占比值确定的测量时长。
同一个载波组的多个非同频载波可以均分根据所述载波组所占比值确定的测量时长,或者按照预设比例分配根据所述载波组所占比值确定的测量时长;或者由UE自由决定。
所述第一索引包括一个或多个比特,第一索引的不同比特值,与不同的比值具有对应关系。
表1
在表1中第一索引包括两个比特,两个比特的取值不同则第一索引的索引值不同。不同索引值的第一索引对应的比值不同。例如,第一索引的取值为‘00’,则指示的比值分别为:50%、30%、20%。比值A对应的一组非同频载波的测量时长为:所有非同频载波所占测量时长中的50%,而比值B对应的一组非同频载波的测量时长为:所有非同频载波所占测量时长中的30%;而比值C对应的一组非同频载波的测量时长为:所有非同频载波所占测量时长中的20%。
此处,若共享测量间隔为第一类共享测量间隔时,所有非同频载波为所述共享测量间隔的时长。若共享测量间隔为第二类共享测量间隔时,所有非同频载波为所述非同频载波测量时长。
示例性地,假设所有的非同频载波划分为3个载波组,其中,载波组3的测量时长占所有非同频载波测量时长的比值为A;载波组2的测量时长占所有非同频载波测量时长的比值为B;载波组1的测量时长占所有非同频载波测量时长的比值为C。
若当前UE需要测量的非同频载波分别来自载波组1和载波组3,且第一索引的索引值为10,则来自载波组1的一个或多个待测的非同频载波的测量时长占所有非同频载波所占测量时长的10%,而来自载波组3的一个或多个待测的非同频载波的测量时长占所有非同频载波所占测量时长的80%。
比值A和比值B以及比值C分别对应不同的载波组所占比值。若一个载波组包含多个载波,则该载波组中的所有载波共享该比例;例如载波组A包含两个载波a、b,载波组A所在比例为50%,则载波a和b共享该50%的比例,至于载波a和b的具体占比则可由UE灵活分配。
示例性地,若所述共享测量间隔为:非同频载波的共享测量间隔,则第一索引指示的比值与共享测量间隔的时长的乘积,则为对应载波组在共享测量间隔内占用的时长。
又示例性地,若该共享测量间隔同时为:同频载波和非同频载波的共享测量间隔,则第一索引指示的比值与非同频载波测量时长的乘积,为对应载波组在共享测量间隔内占用的时长。此处非同频载波测量时长为:共享测量间隔的时长去除同频载波占用的测量时长以后的剩余时长。
参考图3B所示,一个载波组的载波标识包含在一个列表中,即不同的列表对应了不同的载波组。例如,MO_j包含在列表2;MO_i包含在列表1;且列表1内的载波构成的载波组对应于取值B,列表2内的载波构成载波组对应于取值A。假设第一索引的索引值为:‘01’(参照表1中的载波组测量间隔时长的比例分配),则在分配共享测量间隔时,UE对MO_j的测量时长占到整个共享测量间隔 的60%,且MO_i的测量时长占到整个共享测量间隔的40%。即在5个共享分量间隔内,MO_j占用了3个共享测量间隔,而MO_i仅仅占用了2个共享测量间隔。
在一些实施例中,所述第一索引与多个比值之前的对应关系,可以由协议约定。
在另一些实施例中,所述第一索引与多个比值之间的对应关系,可以由网络设备预先配置。例如,基站通过RRC信令预先广播。该网络设备包括:基站和/或核心网设备或者基站的网管设备等。
配置所述对应关系可包括以下至少之一:
根据各非同频载波的负载率及负载均衡策略,配置所述对应关系;
根据引流策略,配置所述对应关系;
根据业务需求,配置所述对应关系。
根据负载均衡策略时,可以使得负载率低的非同频载波具有更高的占比,从而使得UE更多的测量负载率低的载波,使得UE将服务载波切换到负载率低的非同频载波上,以不同的载波之间的负载均衡。
例如,在移动通信系统中存在4G载波、5G载波,为了使得UE具有更好的通信质量,将引导更多的UE使用5G载波。此时,根据引流策略,可以给5G载波配置更高的占比。
再例如,若某一个区域的5G基站出现异常,则此时引流策略更多的引导UE使用4G载波,则第一索引与非同频载波的比值的对应关系,则可以给4G载波配置更大的占比。
在一些实施例中,UE具有定位业务,需要使用到定位参考信号,则可以考虑到定位业务的测量需求,确定定位参考信号的载波的占比。
总之,所述对应关系可以由网络设备根据当前通信状况动态配置。
在一些实施例中,所述共享测量间隔为同频载波和非同频载波共享的第二类共享测量间隔,所述测量配置,还包括:第二指示信息。所述第二指示信息可包括:
第二索引,指示所述同频载波的测量时长在所述共享测量间隔中的第一占比;
其中,第二占比和所述第一占比的和为1,且所述第二占比为:非同频载波测量时长在所述共享测量间隔中的占比。
此处的第二索引和所述第一索引是由不同字段来携带。例如,所述第二索引可由一个或多个比特来指示。
多个非同频载波的测量顺序可以由UE自行决定。示例性地,UE可以随机决定多个非同频载波的测量顺序,或者,UE可以根据非同频载波的序号从大到小进行测量排序,或者从小到达进行测量排序。
UE决定多个非同频载波的测量顺序的方式还可以参见相关技术,此处就不在一一展开叙述了。
表2
其中,所述X%即为所述第一占比。
第二占比为所有非同频载波在共享测量间隔的测量时长占比。由于第一占比和第二占比之和为100%,则在第二索引指示完所述第一占比之后,UE就可以根据第一占比确定出所述第二占比。
在这种情况下,(1-X%)*T,即为多个非同频载波在一个共享测量间隔中占用总测量时长。T为共享测量间隔的总时长。而多个非同频载波的测量时长比,会根据第一指示信息对(1-X%)*T进行分配。此处的(1-X%)*T即为前述的非同频载波测量时长的一种举例。
故在一些实施例中,若共享测量间隔是同频载波和非同频载波的测量间隔,则所述测量配置会携带有第一指示信息和第二指示信息等2个指示信息。而若共享测量间隔为多个非同频载波的测量间隔,则配置测量会携带第一指示信息这一个指示信息。
在另一个实施例中,所述第一指示信息具有两种,一种是单一索引,例如,如表1所示的索引,仅仅用于指示多个非同频载波的测量时长比;另一种是复合索引,该索引同时指示:多个非同频载波的测量时长比,同时还用于指示同频载波和非同频载波之间的时长比。例如,复合索引的取值为01,集合表1和表2可知:该共享测量间隔内,用于同频载波的时长为25%*T,用于非同频载波测量的总时长为75%*T,且对多个非同频载波测量时会按照60%、30%、10%的进一步分配75%*T的测量时长。若采用复合索引,可以节省测量配置的比特开销。
在一些实施例中,UE在进行载波测量时,不区分同频载波和非同频载波。此时,所述第一指示信息包括:第三索引,其中,一个所述第三索引与多个比值具有对应关系;
一个载波组所占所述比值为:所述载波组的测量时长占所述共享测量间隔的比例。
示例性地,同频载波可以单独构成一个载波组并称为同频载波组。针对同频载波组、非同频载波组和/或混合载波组都配置有比值,该比值与共享测量间隔之间的乘积即为对应载波组的测量时长。
示例性地,将所有载波划分为M个载波组,而同频载波包含在其中一个或多个载波组内。测量配置指示了M个载波组所占比值,与共享测量间隔的时长之间的乘积,可为对应载波组的所占用测量时长。而这M个载波组的所占比值的大小,由第三索引指示。
第三索引可包括一个或多个比特,所述第三索引对应的比特值不同,则M个载波组所占的比值中的至少一个发生变化。这M个载波组可为同频载波组、非同频载波组和/或混合载波组中的任意一个或多个。
在这种情况下,可以通过一个第一指示信息就完成对所有载波的测量时长的指示。M可为任意大于或等于2的正整数。
在一些实施例中,所述测量配置还包括以下至少之一:
间隔配置,至少指示所述共享测量间隔的时域位置
测量对象配置,指示待测量的载波。
例如,所述间隔配置具体可包括以下至少之一:
间隔长度;
重复周期;
起止位置偏移量。
例如,共享测量间隔的时长,例如,10s、20s或者24s等。
重复周期限定了共享测量间隔在时域的重复频率。
所述起止位置偏移量为相对于所述重复周期的起始时刻的偏移量。
在一些实施例中,若间隔配置包含了起止位置偏移量,则可以不用额外配置间隔长度。
当然,所述共享测量间隔并不是周期性的,则所述间隔配置则没有所述重复周期。
总之,所述间隔配置用于确定所述共享测量配置在时域上的分布位置。
测量对象配置包括但不限于:载波索引。该载波索引指示了待测量的载波。该待测量的载波包括但不限于:同频载波和/或非同频载波。
示例性地,非同频载波为2个,载波x来自于表1中比值A对应的载波组,载波y来自于表1中比值C对应的载波。若当前共享测量间隔为多个非同频载波的共享测量间隔,若第一索引的索引值为‘11’,则UE对载波x的测量时长占整个共享测量间隔的80%,而对载波y的测量时长占整个共享测量间隔的5%。
又示例性地,非同频载波为3个,载波x和载波z来与表1中比值A对应的载波组,载波y来自与表1中比值C对应的载波。若第一索引的索引值为‘11’,则UE对载波x和载波z的测量时长占整个共享测量间隔的80%,而对载波y的测量时长占整个共享测量间隔的5%。
载波x和载波z共享80%的共享测量间隔时,UE可以按照预定策略在载波x和载波z之间进行测量时间分配,例如,平均分配或者随机分配。
示例性地,一个载波组的多个非同频载波可配置有优先级,在测量对象包括来自同一个载波组的多个非同频载波时,可以根据优先级进行测量时长的进一步分配。优先级的高低与分配的测量时长正相关。
在一个实施例中,如图4A所示,所述S110可包括:
S110A:发送包含所述测量配置的RRC信令;
在另一个实施例中,如图4B所示,所述S110可包括:
S110B:发送包含所述测量配置的MAC控制单元(Control Element,CE)。
例如,UE在RRC连接态下,基站向其发送包含所述测量配置的RRC信令和/或MAC CE,从而告知UE在共享测量间隔内如何进行不同载波的测量。
如图5所示,本公开实施例提供一种信息处理方法,其中,由UE执行,所述方法包括:
S210:接收共享测量间隔的测量配置,其中,所述测量配置,至少包括:第一指示信息;
所述第一指示信息,指示多个非同频载波的测量时长比。
在一个实施例中,所述非同频载波至少包括:异频载波、异系统载波和/或不同参考信号的载波。
该UE可以在RRC连接态下接收到所述测量配置。
根据测量配置,可以确定针对不同于同频载波的多个非同频载波之间,以何种占比分配共享测量间隔。非同频载波可为UE当前的服务载波的非同频载波。第一指示信息指示了多个非同频载波之间的如何分配共享测量间隔的测量时长。
如此,UE可以根据第一指示信息在一个共享测量间隔内完成多个非同频载波之间的测量,从而,满足不同场景下,基于载波的测量值完成服务载波的切换,并确保通信质量。
在一个实施例中,所述第一指示信息包括:
第一索引,其中,一个所述第一索引与多个比值具有对应关系;
一个载波组所占所述比值为:所述载波组的测量时长占非同频载波测量时长的比例;
所述非同频载波测量时长为:所述共享测量间隔的时长,或者,所述共享测量间隔的时长扣除同频载波的测量时长之后的剩余时长;
一个所述载波组包括一个或多个载波。
不同类型的所述共享测量间隔,所述非同频载波测量时长不同。
示例性地,其中,一个所述载波组占用的测量时长是:根据所述载波组所占比值、所述共享测量间隔的类型以及所述共享测量间隔的时长确定的。
进一步地,所述共享测量间隔的类型包括:第一类共享测量间隔,被多个非同频载波共享;和/或,第二类共享测量间隔,被至少一个同频载波和至少一个非同频载波共享。
当所述共享测量间隔为所述第一类共享测量间隔时,一个所述载波组占用的测量时长等于:所述载波组所占比值与所述共享测量间隔的时长的乘积。
示例性地,当所述共享测量间隔为所述第二类共享测量间隔,一个所述载波组占用的测量时长等于:所述载波组所占比值与非同频载波测量时长的乘积;其中,所述非同频载波测量时长为:所述共享测量间隔的时长扣除同频载波的测量时长之后的剩余时长。
当一个所述载波组的多个载波需要测量时,同一个所述载波组的多个载波,共享根据所述载波组所占比值确定的测量时长。
例如,当一个所述载波组的多个非同频载波需要测量时,同一个所述载波组的多个非同频载波,共享根据所述载波组所占比值确定的测量时长。
示例性地,同一个载波组的多个频载波可以均分根据所述载波组所占比值确定的测量时长,或者按照预设比例分配根据所述载波组所占比值确定的测量时长;或者由UE自由决定。
在一个实施例中,所述载波组包括以下至少之一:
非同频载波组,包括一个或多个非同频载波;
同频载波组,包括同频载波;
混合载波组,包括至少一个同频载波和至少一个非同频载波。
非同频载波组包含的载波都是UE当前使用载波的非同频载波,例如,UE当前使用的载波的异频载波、异系统载波和/或其他参考信号的载波。
同频载波组包括一个载波,该载波即为当前UE当前使用载波。
混合载波组既包含同频载波包含非同频载波。
按照共享测量间隔的共享对象之间的关系划分,所述共享测量间隔可以分为多类。不同类型的共享测量间隔则分配给非同频载波的测量时长可能是不同的。
在一个实施例中,所述共享测量间隔为同频载波和非同频载波共享的第二类共享测量间隔,所述测量配置,还包括:
第二指示信息,指示同频载波和非同频载波的测量时长比。
第二指示信息指示的是同频载波和非同频载波之间的测量时长比。
若网络侧希望UE更多的驻留在同频载波上,则第二指示信息指示的同频载波的测量时长会比非同频载波的测量时长长。
若网络侧希望UE切换到非同频载波上,可以通过第二指示信息指示同频载波占用比较小的测量时长,则UE会有更大的时长测量异频载波、异系统载波或者不同参考信号的载波,从而根据载波的测量值,以更高的概率切换到非同频载波上。
在一些实施例中,所述第二指示信息包括:
第二索引,指示所述同频载波的测量时长在所述共享测量间隔中的第一占比,其中,第二占比和所述第一占比的和为1,且所述第二占比为:非同频载波测量时长在所述共享测量间隔中的占比。
在另一个实施例中,所述第一指示信息包括:第三索引,其中,一个所述第三索引与多个比值具有对应关系;一个载波组所占所述比值为:所述载波组的测量时长占所述共享测量间隔的比例。
示例性地,将所有载波划分为M个载波组,而同频载波包含在其中一个或多个载波组内。测量配置指示了M个载波组所占比值,与共享测量间隔的时长之间的乘积,可为对应载波组的所占用测量时长。在这种情况下,可以通过一个第一指示信息就完成对所有载波的测量时长的指示。M可为任意大于或等于2的正整数。这M个载波组所占比值的指示索引可为第三索引。该第三索引为所述第一指示信息的一种。同样地,所述第三索引可包括一个或多个比特。该一个或多个比特的不同比值指示M个载波组的不同占比。
在一些实施例中,如图6所示,所述方法还包括:
S200:接收所述第一索引与多个比值之间的对应关系的配置信息。
如此,若网络侧想要更新所述对应关系时,则会可以在系统消息等广播信息中发送所述配置信息。当然此处仅仅是对应关系的配置信息的举例,具体实现时不局限于该举例。
UE在RRC连接态(RRC_CONNECTED)下,网络可以配置一套测量间隔测量多个MO,当在一次测量间隔时机里,UE可能需要测量多个MO的参考信号,UE该如何选择测量参考信号。
本公开实施例给出了一种共享测量间隔的测量调度方法,可以有效解决:在一次测量间隔时机中,如果同时出现不同列表中的MO的参考信号时,UE可以按照共享测量间隔的共享调度机制在不 同测量间隔时机下对不同列表中的MO进行测量。
本公开实施例提供的针对共享测量间隔下多个载波的测量方法可包括:
第1步:网络通过RRC信令方式向UE配置用于移动性测量的一组或多组测量间隔;
第2步:网络通过RRC信令方式向UE配置用于移动性测量的和测量对象(Measurement objects)以及这些测量对象与测量间隔的对应关系,例如,测量间隔组合1对应若干测量对象,测量间隔组合2对应其他测量对象;此处的测量间隔组合1和测量间隔组合2都是前述任意一个载波组。
第3步:网络将第一步中配置的属于同一测量间隔的测量对象分为X个列表,并通过RRC的方式配置给UE;
第4步:网络通过RRC信令方式向UE配置测量间隔共享百分比,即在所有测量间隔时机中,用于各列表中测量对象的gap百分比为A%,B%,C%.......,其中A%+B%+C%+……=100%;
第5步:第3步中的测量gap的测量时机百分比A%,B%,C%.......通过网络指示的方式配给UE,例如表1所示,如果measGapSharingIndex指示为“00”,则索引值为00的第一索引(measGapSharingIndex)对应的比值分别是:50%、30%以及20%。measGapSharingIndex可为前述第一索引。
本公开实施例给出了一种测量间隔共享的调度方法和系统,可以有效解决:在一次测量间隔时机中,如果同时出现不同列表中的MO的参考信号时,UE可以按照测量间隔共享调度机制在不同测量间隔时机下对不同列表中的MO进行测量。
如图7所示,本公开实施例提供一种信息处理装置,其中,所述装置包括:
发送模块110,被配置为发送共享测量间隔的测量配置,其中,所述测量配置,至少包括:第一指示信息;
所述第一指示信息,指示多个非同频载波的测量时长比。
该信息处理装置可包含在UE中。
在一些实施例中,所述发送模块110可为程序模块;该程序模块被处理器执行之后,能够实现包含第一指示信息的测量配置的发送。
在另一个实施例中,所述发送模块110可为软硬结合模块;所述软硬结合模块包括但不限于:各种软硬结合模块;所述软硬结合模块包括但不限于:各种可编程阵列;所述可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有一些实施例中,所述发送模块110可为纯硬件模块;所述纯硬件模块包括但不限于专用集成电路。
在一些实施例中,所述非同频载波至少包括以下之一:
异频载波;
异系统载波;
不同参考信号的载波。
在一些实施例中,所述第一指示信息包括:
第一索引,其中,一个所述第一索引与多个比值具有对应关系;
一个载波组所占所述比值为:所述载波组的测量时长占非同频载波测量时长的比例;
所述非同频载波测量时长为:所述共享测量间隔的时长,或者,所述共享测量间隔的时长扣除同频载波的测量时长之后的剩余时长;
一个所述载波组包括一个或多个载波。
在一个实施例中,所述载波组包括以下至少之一:
非同频载波组,包括一个或多个非同频载波;
同频载波组,包括同频载波;
混合载波组,包括至少一个同频载波和至少一个非同频载波。
在一个实施例中,一个所述载波组的测量时长为:根据所述比值、所述共享测量间隔的类型、所述共享测量间隔的时长确定的。
进一步地,所述共享测量间隔的类型包括:第一类共享测量间隔,被多个非同频载波共享;和/或,第二类共享测量间隔,被至少一个同频载波和至少一个非同频载波共享。
示例性地,当所述共享测量间隔为所述第一类共享测量间隔时,一个所述载波组占用的测量时长等于:所述载波组所占比值与所述共享测量间隔的时长的乘积。
示例性地,当所述共享测量间隔为所述第二类共享测量间隔,一个所述载波组占用的测量时长等于:所述载波组所占比值与非同频载波测量时长的乘积;其中,所述非同频载波测量时长为:所述共享测量间隔的时长扣除同频载波的测量时长之后的剩余时长。
在一个实施例中,一个所述载波组的测量时长为:根据所述比值和所述共享测量间隔的时长确定的。例如,当一个所述载波组的多个非同频载波需要测量时,同一个所述载波组的多个非同频载波,共享根据所述载波组所占比值确定的测量时长。
在一些实施例中,所述共享测量间隔为同频载波和非同频载波共享的第二类共享测量间隔,所述测量配置,还包括:
第二指示信息,指示同频载波和非同频载波的测量时长比。
在一些实施例中,所述第二指示信息包括:
第二索引,指示所述同频载波的测量时长在所述共享测量间隔中的第一占比;
其中,第二占比和所述第一占比的和为1,且所述第二占比为:非同频载波测量时长在所述共享测量间隔中的占比。
一个共享测量间隔的类型,可以根据测量配置中是否携带有第二指示信息来确定。若携带有第二指示信息,可确定该共享测量间隔为第二类共享测量间隔,否则可为第一类共享测量间隔。
在一些实施例中,所述第一指示信息包括:第三索引,其中,一个所述第三索引与多个比值具有对应关系;一个载波组所占所述比值为:所述载波组的测量时长占所述共享测量间隔的比例。
在另一些实施例中,当一个所述载波组的多个载波需要测量时,同一个所述载波组的多个载波, 共享根据所述载波组所占比值确定的测量时长。例如,当一个所述非同频载波组的多个非同频载波需要测量时,同一个所述非同频载波组的多个非同频载波,共享根据所述非同频载波组所占比值确定的测量时长。
在一些实施例中,所述测量配置还包括以下至少之一:
间隔配置,至少指示所述共享测量间隔的时域位置;
测量对象配置,指示待测量的载波。
在一些实施例中,所述发送模块110,被配置为发送包含所述测量配置的无线资源控制RRC信令;或者,发送包含所述测量配置的媒体访问控制MAC控制单元CE。
如图8所示,本公开实施例提供一种信息处理装置,其中,所述装置包括:
接收模块210,被配置为接收共享测量间隔的测量配置,其中,所述测量配置,至少包括:第一指示信息;
所述第一指示信息,指示多个非同频载波的测量时长比。
在一些实施例中,所述接收模块210可为程序模块;该程序模块被处理器执行之后,能够实现包含第一指示信息的测量配置的接收。
在另一个实施例中,所述接收模块210可为软硬结合模块;所述软硬结合模块包括但不限于:各种软硬结合模块;所述软硬结合模块包括但不限于:各种可编程阵列;所述可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有一些实施例中,所述接收模块210可为纯硬件模块;所述纯硬件模块包括但不限于专用集成电路。
在一些实施例中,所述非同频载波至少包括以下之一:
异频载波;
异系统载波;
不同参考信号的载波。
在一些实施例中,所述第一指示信息包括:
第一索引,其中,一个所述第一索引与多个比值具有对应关系;
一个载波组所占所述比值为:所述载波组的测量时长占非同频载波测量时长的比例;
所述非同频载波测量时长为:所述共享测量间隔的时长,或者,所述共享测量间隔的时长扣除同频载波的测量时长之后的剩余时长;
一个所述载波组包括一个或多个载波。其中,一个所述载波组的测量时长为:根据所述比值和所述共享测量间隔的类型确定的。
所述共享测量间隔的类型包括:
第一类共享测量间隔,被多个非同频载波共享;和/或,
第二类共享测量间隔,被至少一个同频载波和至少一个非同频载波共享。
在一个实施例中,所述载波组包括以下至少之一:
非同频载波组,包括一个或多个非同频载波;
同频载波组,包括同频载波;
混合载波组,包括至少一个同频载波和至少一个非同频载波。
在一个实施例中,一个所述载波组的测量时长为:根据所述比值、所述共享测量间隔的类型、所述共享测量间隔的时长确定的。
在一些实施例中,当所述共享测量间隔为所述第一类共享测量间隔时,一个所述载波组占用的测量时长等于:所述载波组所占比值与所述共享测量间隔的时长的乘积。
在另一个实施例中,当所述共享测量间隔为所述第二类共享测量间隔,一个所述载波组占用的测量时长等于:所述载波组所占比值与非同频载波测量时长的乘积;其中,所述非同频载波测量时长为:从所述共享测量间隔的时长中去除所述同频载波的测量时长之后的剩余时长。
在一些实施例中,当一个所述载波组的多个非同频载波需要测量时,同一个所述载波组的多个非同频载波,共享根据所述载波组所占比值确定的测量时长。
在一些实施例中,所述共享测量间隔为同频载波和非同频载波的共享测量间隔,所述测量配置,还包括:
第二指示信息,指示同频载波和非同频载波的测量时长比。
在一些实施例中,所述第二指示信息包括:
第二索引,指示所述同频载波的测量时长在所述共享测量间隔中的第一占比,其中,第二占比和所述第一占比的和为1,且所述第二占比为:非同频载波测量时长在所述共享测量间隔中的占比。
在一个实施例中,所述第一指示信息包括:第三索引,其中,一个所述第三索引与多个比值具有对应关系;一个载波组所占所述比值为:所述载波组的测量时长占所述共享测量间隔的比例。
在一个实施例中,当一个所述载波组的多个非同频载波需要测量时,同一个所述载波组的多个非同频载波,共享根据所述载波组所占比值确定的测量时长。
本公开实施例提供一种通信设备,包括:
用于存储处理器可执行指令的存储器;
处理器,分别存储器连接;
其中,处理器被配置为执行前述任意技术方案提供的终端的控制方法和/或信息处理方法。
处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
这里,所述通信设备包括:接入设备或UE或者核心网设备。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图2、图4A至图4B、和/或图5至图6所示的方法的至少其中之一。
图9是根据一示例性实施例示出的一种UE800的框图。例如,UE 800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理 等。
参照图9,UE800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制UE800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在UE800的操作。这些数据的示例包括用于在UE800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为UE800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为UE800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述UE800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当UE800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当UE800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为UE800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为UE800的显示器和小键盘,传感器组件814还可以检测UE800或UE800一个组件的位置改变,用户与UE800接触的存在或不存在,UE800方位或加速/减速和UE800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传 感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于UE800和其他设备之间有线或无线方式的通信。UE800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由UE800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图10所示,本公开一实施例示出一种接入设备的结构。例如,通信设备900可以被提供为一网络侧设备。该通信设备可为前述的接入设备和/或核心网设备。
参照图10,通信设备900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述接入设备的任意方法,例如,如图2、图4A至图4B、和/或图5至图6所示方法。
通信设备900还可以包括一个电源组件926被配置为执行通信设备900的电源管理,一个有线或无线网络接口950被配置为将通信设备900连接到网络,和一个输入输出(I/O)接口958。通信设备900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。
Claims (54)
- 一种信息处理方法,其中,由基站执行,所述方法包括:发送共享测量间隔的测量配置,其中,所述测量配置,至少包括:第一指示信息;所述第一指示信息,指示多个非同频载波的测量时长比。
- 根据权利要求1所述的方法啊,其中,所述非同频载波至少包括以下之一:异频载波;异系统载波;不同参考信号的载波。
- 根据权利要求1或2所述的方法,其中,所述第一指示信息包括:第一索引,其中,一个所述第一索引与多个比值具有对应关系;一个载波组所占所述比值为:所述载波组的测量时长占非同频载波测量时长的比例;所述非同频载波测量时长为:所述共享测量间隔的时长,或者,所述共享测量间隔的时长扣除同频载波的测量时长之后的剩余时长;一个所述载波组包括一个或多个载波。
- 根据权利要求3所述的方法,其中,所述载波组包括以下至少之一:非同频载波组,包括一个或多个非同频载波;同频载波组,包括同频载波;混合载波组,包括至少一个同频载波和至少一个非同频载波。
- 根据权利要求3所述的方法,其特征在于,一个所述载波组的测量时长为:根据所述比值、所述共享测量间隔的类型、所述共享测量间隔的时长确定的。
- 根据权利要求4所述的方法,其中,所述共享测量间隔的类型包括:第一类共享测量间隔,被多个非同频载波共享;和/或第二类共享测量间隔,被至少一个同频载波和至少一个非同频载波共享。
- 根据权利要求6所述的方法,其中,当所述共享测量间隔为所述第一类共享测量间隔时,一个所述载波组占用的测量时长等于:所述载波组所占比值与所述共享测量间隔的时长的乘积。
- 根据权利要求6所述的方法,其中,当所述共享测量间隔为所述第二类共享测量间隔,一个所述载波组占用的测量时长等于:所述载波组所占比值与非同频载波测量时长的乘积;其中,所述非同频载波测量时长为:从所述共享测量间隔的测量时长中去除所述同频载波的测量时长之后的剩余时长。
- 根据权利要求6至8任一项所述的方法,其中,所述共享测量间隔为所述第二类共享测量间隔,所述测量配置,还包括:第二指示信息,指示同频载波和非同频载波的测量时长比。
- 根据权利要求9所述的方法,其中,所述第二指示信息包括:第二索引,指示所述同频载波的测量时长在所述共享测量间隔中的第一占比;其中,第二占比和所述第一占比的和为1,且所述第二占比为:非同频载波测量时长在所述共享测量间隔中的占比。
- 根据权利要求1或2所述的方法,其中,所述第一指示信息包括:第三索引,其中,一个所述第三索引与多个比值具有对应关系;一个载波组所占所述比值为:所述载波组的测量时长占所述共享测量间隔的比例。
- 根据权利要求3、4或11所述的方法,其中,当一个所述载波组的多个载波需要测量时,同一个所述载波组的多个载波,共享所述载波组所占比值确定的测量时长。
- 根据权利要求1至12任一项所述的方法,其中,所述测量配置还包括以下至少之一:间隔配置,至少指示所述共享测量间隔的时域位置;测量对象配置,指示待测量的载波。
- 根据权利要求1至13任一项所述的方法,其中,所述发送共享测量间隔的测量配置,包括:发送包含所述测量配置的无线资源控制RRC信令;或者,发送包含所述测量配置的媒体访问控制MAC控制单元CE。
- 一种信息处理方法,其中,由用户设备UE执行,所述方法包括:接收共享测量间隔的测量配置,其中,所述测量配置,至少包括:第一指示信息;所述第一指示信息,指示多个非同频载波的测量时长比。
- 根据权利要求15所述的方法,其中,所述非同频载波至少包括以下之一:异频载波;异系统载波;不同参考信号的载波。
- 根据权利要求15或16所述的方法,其中,所述第一指示信息包括:第一索引,其中,一个所述第一索引与多个比值具有对应关系;所述比值,用于确定与所述比值具有对应关系的载波组的测量时长;一个载波组所占所述比值为:所述载波组的测量时长占非同频载波测量时长的比例;所述非同频载波测量时长为:所述共享测量间隔的时长,或者,所述共享测量间隔的时长扣除同频载波的测量时长之后的剩余时长;一个所述载波组包括一个或多个载波。
- 根据权利要求17所述的方法,其中,所述载波组包括以下至少之一:非同频载波组,包括一个或多个非同频载波;同频载波组,包括同频载波;混合载波组,包括至少一个同频载波和至少一个非同频载波。
- 根据权利要求18所述的方法,其特征在于,一个所述载波组的测量时长为:根据所述比值、所述共享测量间隔的类型、所述共享测量间隔的时长确定的。
- 根据权利要求19所述的方法,其中,所述共享测量间隔的类型包括:第一类共享测量间隔,被多个非同频载波共享;和/或,第二类共享测量间隔,被至少一个同频载波和至少一个非同频载波共享。
- 根据权利要求20所述的方法,其中,当所述共享测量间隔为所述第一类共享测量间隔时,一个所述载波组占用的测量时长等于:所述载波组所占比值与所述共享测量间隔的时长的乘积。
- 根据权利要求20所述的方法,其中,当所述共享测量间隔为所述第二类共享测量间隔,一个所述载波组占用的测量时长等于:所述载波组所占比值与非同频载波测量时长的乘积;其中,所述非同频载波测量时长为:所述共享测量间隔的时长扣除同频载波的测量时长之后的剩余时长。
- 根据权利要求20至22任一项所述的方法,其中,所述共享测量间隔为所述第二类共享测量间隔,所述测量配置,还包括:第二指示信息,指示同频载波和非同频载波的测量时长比。
- 根据权利要求23所述的方法,其中,所述第二指示信息包括:第二索引,指示所述同频载波的测量时长在所述共享测量间隔中的第一占比,其中,第二占比和所述第一占比的和为1,且所述第二占比为:非同频载波测量时长在所述共享测量间隔中的占比。
- 根据权利要求15或16所述的方法,其中,所述第一指示信息包括:第三索引,其中,一个所述第三索引与多个比值具有对应关系;一个载波组所占所述比值为:所述载波组的测量时长占所述共享测量间隔的比例。
- 根据权利要求17、18或25所述的方法,其中,当一个所述载波组的多个载波需要测量时,同一个所述载波组的多个载波,共享根据所述载波组所占比值确定的测量时长。
- 一种信息处理装置,其中,所述装置包括:发送模块,被配置为发送共享测量间隔的测量配置,其中,所述测量配置,至少包括:第一指示信息;所述第一指示信息,指示多个非同频载波的测量时长比。
- 根据权利要求27所述的装置,其中,所述非同频载波至少包括以下之一:异频载波;异系统载波;不同参考信号的载波。
- 根据权利要求27或28所述的装置,其中,所述第一指示信息包括:第一索引,其中,一个所述第一索引与多个比值具有对应关系;一个载波组所占所述比值为:所述载波组的测量时长占非同频载波测量时长的比例;所述非同频载波测量时长为:所述共享测量间隔的时长,或者,所述共享测量间隔的时长扣除同频载波的测量时长之后的剩余时长;一个所述载波组包括一个或多个载波。
- 根据权利要求29所述的方法,其中,所述载波组包括以下至少之一:非同频载波组,包括一个或多个非同频载波;同频载波组,包括同频载波;混合载波组,包括至少一个同频载波和至少一个非同频载波。
- 根据权利要求30所述的装置,其特征在于,一个所述载波组的测量时长为:根据所述比值、所述共享测量间隔的类型、所述共享测量间隔的时长确定的。
- 根据权利要求30所述的装置,其中,所述共享测量间隔的类型包括:第一类共享测量间隔,被多个非同频载波共享;和/或,第二类共享测量间隔,被至少一个同频载波和至少一个非同频载波共享。
- 根据权利要求32所述的装置,其中,当所述共享测量间隔为所述第一类共享测量间隔时,一个所述载波组占用的测量时长等于:所述载波组所占比值与所述共享测量间隔的时长的乘积。
- 根据权利要求33所述的装置,其中,当所述共享测量间隔为所述第二类共享测量间隔,一个所述载波组占用的测量时长等于:所述载波组所占比值与非同频载波测量时长的乘积;其中,所述非同频载波测量时长为:所述共享测量间隔的时长扣除同频载波的测量时长之后的剩余时长。
- 根据权利要求32至34任一项所述的装置,其中,所述共享测量间隔为所述第二类共享测量间隔,所述测量配置,还包括:第二指示信息,指示同频载波和非同频载波的测量时长比。
- 根据权利要求35所述的装置,其中,所述第二指示信息包括:第二索引,指示所述同频载波的测量时长在所述共享测量间隔中的第一占比;其中,第二占比和所述第一占比的和为1,且所述第二占比为:非同频载波测量时长在所述共享测量间隔中的占比。
- 根据权利要求27或28所述的装置,其中,所述第一指示信息包括:第三索引,其中,一个所述第三索引与多个比值具有对应关系;一个载波组所占所述比值为:所述载波组的测量时长占所述共享测量间隔的比例。
- 根据权利要求29、30或者37任一项所述的装置,其中,当一个所述载波组的多个非同频载波需要测量时,同一个所述载波组的多个非同频载波,共享根据所述载波组所占比值确定的测量时长。
- 根据权利要求27至38任一项所述的装置,其中,所述测量配置还包括以下至少之一:间隔配置,至少指示所述共享测量间隔的时域位置;测量对象配置,指示待测量的载波。
- 根据权利要求27至39任一项所述的装置,其中,所述发送模块,被配置为发送包含所述测量配置的无线资源控制RRC信令;或者,发送包含所述测量配置的媒体访问控制MAC控制单元CE。
- 一种信息处理装置,其中,所述装置包括:接收模块,被配置为接收共享测量间隔的测量配置,其中,所述测量配置,至少包括:第一指示信息;所述第一指示信息,指示多个非同频载波的测量时长比。
- 根据权利要求41所述的装置,其中,所述非同频载波至少包括以下之一:异频载波;异系统载波;不同参考信号的载波。
- 根据权利要求41或42所述的装置,其中,所述第一指示信息包括:第一索引,其中,一个所述第一索引与多个比值具有对应关系;所述比值,用于确定与所述比值具有对应关系的载波组的测量时长;一个载波组所占所述比值为:所述载波组的测量时长占非同频载波测量时长的比例;所述非同频载波测量时长为:所述共享测量间隔的时长,或者,所述共享测量间隔的时长扣除同频载波的测量时长之后的剩余时长;一个所述载波组包括一个或多个载波
- 根据权利要求43所述的装置,其中,所述载波组包括以下至少之一:非同频载波组,包括一个或多个非同频载波;同频载波组,包括同频载波;混合载波组,包括至少一个同频载波和至少一个非同频载波。
- 根据权利要求44所述的装置,其特征在于,一个所述载波组的测量时长为:根据所述比值、所述共享测量间隔的类型、所述共享测量间隔的时长确定的。
- 根据权利要求45所述的装置,其中,所述共享测量间隔的类型包括:第一类共享测量间隔,被多个非同频载波共享;和/或,第二类共享测量间隔,被至少一个同频载波和至少一个非同频载波共享。
- 根据权利要求46所述的装置,其中,当所述共享测量间隔为所述第一类共享测量间隔时,一个所述载波组占用的测量时长等于:所述载波组所占比值与所述共享测量间隔的时长的乘积。
- 根据权利要求46所述的装置,其中,当所述共享测量间隔为所述第二类共享测量间隔,一个所述载波组占用的测量时长等于:所述载波组所占比值与非同频载波测量时长的乘积;其中,所述非同频载波测量时长为:所述共享测量间隔的时长扣除同频载波的测量时长之后的剩余时长。
- 根据权利要求46至48任一项所述的装置,其中,所述共享测量间隔所述第二类共享测量间隔,所述测量配置,还包括:第二指示信息,指示同频载波和非同频载波的测量时长比。
- 根据权利要求49所述的装置,其中,所述第二指示信息包括:第二索引,指示所述同频载波的测量时长在所述共享测量间隔中的第一占比,其中,第二占比和所述第一占比的和为1,且所述第二占比为:非同频载波测量时长在所述共享测量间隔中的占比。
- 根据权利要求41或42所述的装置,其中,所述第一指示信息包括:第三索引,其中,一个所述第三索引与多个比值具有对应关系;一个载波组所占所述比值为:所述载波组的测量时长占所述共享测量间隔的比例。
- 根据权利要求43、44或51所述的装置,其中,当一个所述载波组的多个载波需要测量时,同一个所述载波组的多个载波,共享根据所述载波组所占比值确定的测量时长。
- 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至14、或者15至26任一项提供的方法。
- 一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如权利要求1至14或者15至26任一项提供的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/071419 WO2023133700A1 (zh) | 2022-01-11 | 2022-01-11 | 信息处理方法及装置、通信设备及存储介质 |
CN202280000161.3A CN116746205A (zh) | 2022-01-11 | 2022-01-11 | 信息处理方法及装置、通信设备及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/071419 WO2023133700A1 (zh) | 2022-01-11 | 2022-01-11 | 信息处理方法及装置、通信设备及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023133700A1 true WO2023133700A1 (zh) | 2023-07-20 |
Family
ID=87279962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/071419 WO2023133700A1 (zh) | 2022-01-11 | 2022-01-11 | 信息处理方法及装置、通信设备及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116746205A (zh) |
WO (1) | WO2023133700A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130051355A1 (en) * | 2010-05-03 | 2013-02-28 | Pantech Co., Ltd. | Apparatus and method for transmitting control information in a multi-component carrier system |
US20160337993A1 (en) * | 2013-12-26 | 2016-11-17 | Ntt Docomo, Inc. | User terminal, radio base station and radio communication method |
CN107925900A (zh) * | 2015-08-14 | 2018-04-17 | 高通股份有限公司 | 用于报告针对共享射频谱带的无线资源管理(rrm)测量的技术 |
CN111630918A (zh) * | 2018-01-19 | 2020-09-04 | 上海诺基亚贝尔股份有限公司 | 用于新无线电管理测量的方法、设备和计算机可读介质 |
CN111726817A (zh) * | 2019-03-18 | 2020-09-29 | 中国移动通信有限公司研究院 | 一种信息处理方法、装置、设备及计算机可读存储介质 |
CN111866925A (zh) * | 2019-04-25 | 2020-10-30 | 华为技术有限公司 | 频点测量方法、装置以及存储介质 |
-
2022
- 2022-01-11 WO PCT/CN2022/071419 patent/WO2023133700A1/zh active Application Filing
- 2022-01-11 CN CN202280000161.3A patent/CN116746205A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130051355A1 (en) * | 2010-05-03 | 2013-02-28 | Pantech Co., Ltd. | Apparatus and method for transmitting control information in a multi-component carrier system |
US20160337993A1 (en) * | 2013-12-26 | 2016-11-17 | Ntt Docomo, Inc. | User terminal, radio base station and radio communication method |
CN107925900A (zh) * | 2015-08-14 | 2018-04-17 | 高通股份有限公司 | 用于报告针对共享射频谱带的无线资源管理(rrm)测量的技术 |
CN111630918A (zh) * | 2018-01-19 | 2020-09-04 | 上海诺基亚贝尔股份有限公司 | 用于新无线电管理测量的方法、设备和计算机可读介质 |
CN111726817A (zh) * | 2019-03-18 | 2020-09-29 | 中国移动通信有限公司研究院 | 一种信息处理方法、装置、设备及计算机可读存储介质 |
CN111866925A (zh) * | 2019-04-25 | 2020-10-30 | 华为技术有限公司 | 频点测量方法、装置以及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN116746205A (zh) | 2023-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4096292A1 (en) | Cell reselection method and apparatus, information transmission method and apparatus, communication device and storage medium | |
CN111656813B (zh) | 配置测量信息传输方法及装置、通信设备及存储介质 | |
CN111279741B (zh) | 小区重选、信息传输方法及装置、通信设备及存储介质 | |
WO2021007789A1 (zh) | 信息处理方法、装置及计算机存储介质 | |
WO2022021326A1 (zh) | 带宽资源复用方法及装置、通信设备及存储介质 | |
WO2023272697A1 (zh) | Rrm测量配置确定方法及装置、通信设备及存储介质 | |
WO2022178723A1 (zh) | 测量间隔的配置方法、装置、通信设备及存储介质 | |
WO2023065255A1 (zh) | 小区重选方法、装置、通信设备及存储介质 | |
CN115735377A (zh) | 测量配置确定方法及装置、通信设备及存储介质 | |
CN115443675A (zh) | 测量间隔处理方法、装置、通信设备及存储介质 | |
WO2021003675A1 (zh) | 信息处理方法、装置及计算机存储介质 | |
WO2021016771A1 (zh) | 信道检测方式切换方法、装置及存储介质 | |
US20230075773A1 (en) | Information transmission method and apparatus, and communication device and storage medium | |
WO2022147662A1 (zh) | 测量间隙调度方法及装置、通信设备及存储介质 | |
WO2023133700A1 (zh) | 信息处理方法及装置、通信设备及存储介质 | |
WO2022198409A1 (zh) | Coreset#0的配置方法及装置、通信设备及存储介质 | |
WO2023279244A1 (zh) | 小区重选配置方法、装置、通信设备和存储介质 | |
WO2023178488A1 (zh) | 测量方法、装置、通信设备及存储介质 | |
US20220386157A1 (en) | Channel measurement method and apparatus, and communication device | |
RU2809833C1 (ru) | Способ и устройство беспроводной связи, терминал и носитель данных | |
RU2803646C1 (ru) | Способ и устройство управления линией прямой связи, а также пользовательское оборудование | |
WO2022267039A1 (zh) | Bwp指示方法、装置、通信设备及存储介质 | |
WO2023082104A1 (zh) | 一种触发ue测量的方法、装置、通信设备及存储介质 | |
WO2023010348A1 (zh) | 寻呼方法、装置、通信设备及存储介质 | |
WO2023130442A1 (zh) | 测量方法、装置、通信设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202280000161.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22919366 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |