WO2023132458A1 - Offshore wind power generation farm management system using unmanned autonomous navigation vehicle - Google Patents

Offshore wind power generation farm management system using unmanned autonomous navigation vehicle Download PDF

Info

Publication number
WO2023132458A1
WO2023132458A1 PCT/KR2022/017685 KR2022017685W WO2023132458A1 WO 2023132458 A1 WO2023132458 A1 WO 2023132458A1 KR 2022017685 W KR2022017685 W KR 2022017685W WO 2023132458 A1 WO2023132458 A1 WO 2023132458A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
submersible
management system
blade
farm management
Prior art date
Application number
PCT/KR2022/017685
Other languages
French (fr)
Korean (ko)
Inventor
신수용
김은비
강호현
Original Assignee
금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단 filed Critical 금오공과대학교 산학협력단
Publication of WO2023132458A1 publication Critical patent/WO2023132458A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B2035/006Unmanned surface vessels, e.g. remotely controlled
    • B63B2035/007Unmanned surface vessels, e.g. remotely controlled autonomously operating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/80Diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present invention relates to an offshore wind farm management system using an autonomous unmanned mobile vehicle, and more particularly, an autonomous unmanned mobile vehicle capable of regularly and automatically inspecting damage or operating conditions of wind turbines installed on the sea without a worker directly inspecting them. It relates to an offshore wind farm management system using
  • Wind power generation is relatively efficient among new and renewable energies and has market competitiveness, so technology development and utilization are gradually increasing.
  • Korea has very favorable conditions for offshore wind power generation due to its topographical characteristics of being sea on three sides, so it can be seen that the prospect is very bright.
  • offshore wind power generators can be largely divided into two parts: a power generation component called a Rotor-nacelle assembly and a supporting structure, which is fixed to the seabed and a tower that positions the power generation component at a set height. It is divided into a foundation containing concrete and wire to support the tower.
  • the boundary between the structure and the seabed is particularly vulnerable as external loads such as waves, wind, and ocean currents act on the structure, resulting in problems such as subsidence of the ground on which the structure is installed, scouring, or tilting of the structure. easy.
  • the blades of the wind turbine rotated by the wind are formed large to widen the area in contact with the wind.
  • wind turbines installed on the sea have a problem in that it is difficult to determine the risk of damage before an accident occurs, and structures installed on the seabed are difficult to inspect because it remotely determines whether an inspection is necessary using the operation status of the power generation state or sensor.
  • An object of the present invention to solve the above problems is to generate offshore wind power using an autonomous unmanned vehicle that can visually check the operating state, aging state, damage and crack state of a wind power generator remotely based on a plurality of unmanned mobile vehicles. It just provides a management system.
  • another object of the present invention is to provide an offshore wind farm management system using an autonomous unmanned vehicle capable of precisely analyzing the corrosion or damage state of a structure installed on the seabed and providing information on a location requiring inspection in detail. is to provide
  • Another object of the present invention is to provide an offshore wind farm management system using an autonomous unmanned vehicle capable of performing its duties for a long time through self-generation and charging even at a remote location where a wind turbine is formed.
  • the offshore wind farm management system using an autonomous unmanned mobile vehicle of the present invention flies along a route set through autonomous navigation and inspects the blades and towers of wind turbines exposed to the sea, and autonomous navigation Formed to be able to move by submerging to the seabed through the submersible to check the structure of the wind turbine located on the seabed, formed to store the drone and the submersible, respectively, the wind turbine through autonomous navigation along the sea surface It is characterized in that it includes a ship carrying the drone and the submersible to the formed position.
  • the ship of the offshore wind farm management system using an autonomous unmanned vehicle of the present invention has a storage unit formed so that the drone can take off and land at the top and store or sort out the submersible at the bottom, and at the top It consists of a power generation module formed to generate self-generation through sunlight to charge power, and a docking module formed to be in contact with a charging terminal formed on the wind turbine to receive power generated by the wind turbine. characterized by
  • the ship of the offshore wind farm management system using the autonomous unmanned mobile vehicle of the present invention controls the drone to photograph the blade by adjusting the angle and rotational speed of the blade when the drone inspects the wind turbine. It is characterized in that it further comprises a control module to.
  • the drone and the submersible of the offshore wind farm management system using an autonomous unmanned mobile vehicle of the present invention compare cracks, deformations, and damage states in the inspection image obtained by photographing the wind turbine with the original image to determine whether or not inspection is required.
  • the inspection image is stored through machine learning and used together with the original image when determining cracks, deformations, and damage states during the next inspection.
  • the drone of the offshore wind farm management system using an autonomous unmanned mobile vehicle of the present invention is configured to fly along the blade in synchronization with the rotational speed of the blade, and the state of the blade while moving along the longitudinal direction of the blade. It is characterized by checking.
  • the submersible of the offshore wind farm management system using an autonomous unmanned mobile vehicle of the present invention further includes a washing unit to remove foreign substances or marine organisms attached to the structure, and the structure inspection is performed through the washing unit. It is characterized by checking the state of cracks, deformation, and damage by generating an image after washing the necessary area.
  • the operating state, aging state, damage and crack state of the wind power generator can be visually checked remotely based on a plurality of unmanned mobile vehicles. There are possible effects.
  • the corrosion or damage state of a structure installed on the seabed can be precisely analyzed, and information can be provided to the location requiring inspection in detail It works.
  • FIG. 1 is a block diagram showing the overall configuration of an offshore wind farm management system using an autonomous unmanned vehicle according to the present invention.
  • Figure 2 is an exemplary view showing how the offshore wind farm management system using an autonomous unmanned vehicle according to the present invention is spread at a location where a wind turbine is formed.
  • FIG 3 is an exemplary view showing a state in which the offshore wind farm management system using an autonomous unmanned vehicle according to the present invention inspects a wind power generator.
  • the present invention relates to an offshore wind farm management system using an autonomous unmanned mobile vehicle, and more particularly, an autonomous unmanned mobile vehicle capable of regularly and automatically inspecting damage or operating conditions of wind turbines installed on the sea without a worker directly inspecting them. It relates to an offshore wind farm management system using
  • FIG. 1 is a block diagram showing the overall configuration of an offshore wind farm management system using an autonomous unmanned mobile vehicle according to the present invention
  • FIG. 2 is a configuration diagram showing the offshore wind farm management system using an autonomous unmanned mobile vehicle according to the present invention (10) is an exemplary view showing a state of being spread out at the formed position
  • FIG. 3 is an exemplary view showing a state in which the offshore wind farm management system using an autonomous unmanned vehicle according to the present invention inspects the wind turbine 10. .
  • the offshore wind farm management system using an autonomous unmanned vehicle flies along a path set through autonomous navigation and the blades of the wind turbine 10 exposed to the sea ( 12) and a drone 200 inspecting the tower 11, and a submersible 300 inspecting the structure 13 of the wind turbine 10 located on the seabed and formed to be able to move by submerging to the seabed through autonomous navigation And, it is formed to store the drone 200 and the submersible 300, respectively, and carries the drone 200 and the submersible 300 to the location where the wind power generator 10 is formed through autonomous navigation along the sea level.
  • Ship 100 ).
  • the drone 200 is formed to be able to fly using a plurality of propellers, and a first camera 210 is formed at the bottom to photograph the blades 12 or the tower 11 of the wind power generator 10, cracks, It is formed to detect deformed or damaged parts.
  • the drone 200 is capable of autonomous navigation and forms an inspection route so that the plurality of wind turbines 10 can be inspected while moving sequentially. After determining the number of and, it is possible to check each wind turbine 10 through autonomous navigation by forming a path.
  • the route can be set by automatically calculating the number of checkable wind turbines 10 compared to the capacity of the battery, and the unchecked wind turbines 10 are based on the image and GPS location information. As a result, it is possible to form a path to the unchecked wind power generator 10 at the time of the next inspection.
  • the submersible 300 is formed to be movable through a propeller while submerged on the seabed, and a second camera 310, an ultrasonic sensor, and a LIDAR sensor are provided on the front side, so that it is a structure that exists on the seabed when autonomously navigating on the seabed. (13) or it can be prevented from coming into contact with obstacles.
  • the submersible 300 is formed to receive location information based on a GPS signal and operate, but considering that the reception rate is reduced at the sea floor, it is moved to the wind power generator 10 in a state exposed at the sea level and then submerged to generate a wind power generator ( It is desirable to inspect the structure 13 of 10).
  • the submersible 300 is photographed from the seabed, it is difficult to determine the quantity or location of the wind turbines 10 subject to inspection existing at sea, so wireless communication with the drone 200 transmits the path formed by the drone 200. It is preferable to have the drone 200 and the submersible 300 inspect the same wind power generator 10.
  • the drone 200 and the submersible 300 sequentially perform inspections along the path received from the drone 200, but when one of the drone 200 or the submersible 300 is inspected first, the next wind power generator ( It is desirable to configure to move to 10) and check.
  • the ship 100 can move along the sea level and is used to transport the drone 200 and the submersible 300 to the location where the wind power generator 10 is formed at a location spaced apart from the inland, and the ship 100 is a drone. As the drone 200 and the submersible 300 are transported, the drone 200 and the submersible 300 can be moved to the location where the wind power generator 10 is formed without battery consumption, so the inspection time can be greatly increased.
  • the drone 200 and the submersible 300 are transported by the ship 100, when the battery is consumed, they return to the ship 100 and can be safely recovered by the ship 100, so the drone ( 200) or the problem of losing the submersible 300 can be solved.
  • the ship 100 has a storage unit 110 formed at the top so that the drone 200 can take off and land and at the bottom so that the submersible 300 can be stored or sorted out, and formed at the top, self-propelled through sunlight.
  • Docking formed to receive power generated from the wind power generator 10 in contact with the power generation module 120 formed to generate power and charge the power and the charging terminal 13 formed on the wind power generator 10 Characterized in that it consists of a module (130).
  • the storage unit 110 is formed on the upper and lower parts of the ship 100, respectively, to accommodate and store the drone 200 or submersible 300 therein, and to supply power to the stored drone 200 or submersible 300. It is configured to supply and charge the battery.
  • the upper storage unit 110 for storing the drone 200 is formed so that the upper surface can be opened and closed with a slide, so that when the drone 200 lands, the upper surface is opened and then entered into the interior. there is.
  • a separate lifting pad is provided in the upper storage unit 110 so that the lifting pad protrudes to the top of the ship 100 and then the drone When the drone 200 lands or takes off, it is preferable that the drone 200 be stored by the storage unit 110 while the drone 200 is stopped.
  • the lower storage unit 110 for storing the submersible 300 is formed in the lower part of the ship 100, and more specifically, it is located on the front or rear side of the lower part of the ship 100 so that one side can be opened and closed by rotation. It is preferable to be configured so that
  • the submersible 300 stored inside the lower storage unit 110 is formed so that it can be sorted out by ejection and enter the sea, and when returning, one side of the lower storage unit 110 is rotated to generate propulsion along the inclined surface. allows access to the inside.
  • the lower storage unit 110 has a guide so that the submersible 300 can enter only in one direction, and a pickup module for fixing the submersible 300 is formed inside and the submersible 300 is discharged on the bottom surface. It is preferable that a rotating body for converting is provided.
  • the submersible 300 when the submersible 300 is sorted out by the lower storage unit 110 and then returned, it can enter the interior along the guide, and is maintained in a fixed state by the pickup unit when the ship 100 moves. It is possible to prevent the submersible 300 from being damaged in contact with the inside of the ship 100, and when ejected from the ship 100 again, the direction can be changed by the rotating body so that the front is ejected first.
  • the power generation module 120 is formed on the upper part of the ship 100 and is composed of a plurality of photovoltaic modules, so that self-powered power by sunlight is possible, enabling long-term operation in the ocean.
  • the power generation module 120 can charge the battery inside the ship 100 and at the same time charge the battery in the drone 200 or submersible 300 stored inside the ship 100.
  • the docking module 130 is used when the required amount of power is not supplied by the power generation module 120, and is connected to the charging terminal 14 formed on the outer surface of the wind turbine 10 to produce the wind turbine 10 Used to receive power.
  • the docking module 130 may be configured as an articulated robot that is formed in multiple axes and can be varied in three-dimensional coordinates, and is contacted with the charging terminal 14 formed in the wind turbine 10 to charge the internal battery. do.
  • the charging terminal 14 formed in the wind turbine 10 be activated only in the state where the ship 100 is in close proximity, and may be charged through a wireless charging method other than the charging terminal 14 if necessary.
  • the ship 100 is a control module for controlling the drone 200 to photograph the blade 12 by adjusting the angle and rotational speed of the blade 12 when the drone 200 checks the wind turbine 10 ( 140) is characterized in that it further comprises.
  • the ship 100 is formed to be remotely controlled through wireless communication with the wind power generator 10, and when the drone 200 inspects the wind power generator 10, the drone 200 adjusts the wind power generator according to the inspection route. (10) can be controlled to reduce the rotational speed by sequentially changing the angle of the blade 12.
  • the blade 12 of the wind power generator 10 When the angle of the blade 12 of the wind power generator 10 is changed by the control signal of the ship 100, the blade 12 can be prevented from being rotated by the wind, and in this state, the drone 200 rotates the blade 12 ), it is possible to check the state of cracks, deformations, and damages generated in the blade 12.
  • the blade 12 rotated by the wind can be gradually decelerated. It takes time for the wind turbine 10 to completely stop or restore to the rotational speed to generate power again. Since this takes a long time, the drone 200 may photograph the blade 12 in a low-speed rotation state so that it can be inspected.
  • the drone 200 photographs the blade 12, it can be controlled to decelerate only to a speed at which the image is not distorted, and the drone 200 photographs the blade 12 to perform inspection. do.
  • the drone 200 is formed to fly along the blade 12 in synchronization with the rotational speed of the blade 12, and checks the state of the blade 12 while moving along the longitudinal direction of the blade 12. do.
  • the drone 200 is formed to closely analyze the outer surface of each blade 12 after photographing the entire state of the blade 12. In this case, the drone 200 moves in the longitudinal direction of the blade 12 While partially enlarging and photographing the outer surface of the blade 12, it is possible to check the detailed state.
  • the drone 200 can easily take pictures while moving along the blade 12 when the blade 12 is stopped, but needs to move along the rotational direction of the blade 12 when the blade 12 rotates at a low speed.
  • the drone 200 further includes a synchronization unit 220 configured to sense the rotational speed of the blades 12 and fly at the same speed as the blades 12, and the drone 200 moves through the synchronization unit. It flies in the same direction as the blade 12 according to the rotational speed of (12).
  • the blade 12 and the rotational speed synchronized With the blade 12 and the rotational speed synchronized, it moves in one direction from one end or the other end of the blade 12, and the outer surface of the blade 12 can be photographed, and cracks, deformations, and damage existing in the blade 12 You can review it to determine if it is in a condition that requires inspection.
  • the drone 200 and the submersible 300 compare cracks, deformations, and damage states in the inspection image obtained by photographing the wind turbine 10 with the original image to determine whether or not to inspect the inspection image through machine learning. It is characterized in that it is stored and used together with the original image when determining the state of cracks, deformation, or damage during the next inspection.
  • the drone 200 and the submersible 300 judge cracks, deformations, and damage states based on the information of the respective captured images. image is saved.
  • inspection images images of the drone 200 and the submersible 300 are referred to as inspection images.
  • the determined state information is provided to induce the operator to check.
  • the inspection image determined to require inspection can be selected by the operator as one of crack, deformation, damage, and normal state after inspection, and the drone 200 and the submersible 300 perform machine learning based on the information selected by the operator.
  • the normal state and the abnormal state can be supplemented by using the original image and the machine learning-performed inspection image by the operator as an auxiliary means.
  • the operator can perform inspection only at the moment when it is absolutely necessary, and if necessary, the drone 200 and the submersible 300 predict the expected life or time of damage to calculate the period for the operator to inspect or replace may be able to guide you.
  • the submersible 300 further includes a washing unit 320 to remove foreign substances or marine organisms attached to the structure 13, and through the washing unit 320, parts of the structure 13 requiring inspection are washed. It is characterized by checking the state of cracks, deformation, and damage by generating an image after the inspection.
  • the submersible 300 checks the structure 13 of the wind power generator 10 on the sea floor, and the structure 13 includes a concrete foundation, wires, and a frame.
  • the submersible 300 has a washing unit 320 for washing foreign substances, and the washing unit 320 sprays seawater at high pressure to remove foreign substances or marine life present on the surface of the structure 13. be able to
  • hooks are provided to scrape the surface, so that marine organisms on the surface can be physically removed by propulsion.
  • the operating state, aging state, damage and crack state of the wind power generator can be visually checked remotely based on a plurality of unmanned mobile vehicles. It can precisely analyze the corrosion or damage state of structures installed on the seabed, provide detailed information on the location where inspection is required, and perform missions for a long time through self-generation and charging even at a distance where a wind turbine is formed. There are effects that can be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Wind Motors (AREA)

Abstract

The present invention relates to an offshore wind power generation farm management system using an unmanned autonomous navigation vehicle, the system including: a drone configured to fly along a set route through autonomous navigation to inspect a blade and a tower of a wind power generator, which are exposed on the sea; a submersible configured to submerge into and move in the sea through autonomous navigation and inspect a structure of the wind power generator, which is positioned on the seabed; and a ship configured to house each of the drone and the submersible and carry the drone and the submersible to a position at which the wind power generator is formed, through autonomous navigation along the sea surface.

Description

자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템Offshore wind farm management system using autonomous unmanned vehicle
본 발명은 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템에 관한 것으로서, 더욱 상세하게는 해상에 설치된 풍력발전기의 파손이나 작동상태를 작업자가 직접 점검하지 않아도 정기적으로 자동 점검이 가능한 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템에 관한 것이다.The present invention relates to an offshore wind farm management system using an autonomous unmanned mobile vehicle, and more particularly, an autonomous unmanned mobile vehicle capable of regularly and automatically inspecting damage or operating conditions of wind turbines installed on the sea without a worker directly inspecting them. It relates to an offshore wind farm management system using
풍력 발전은 신재생에너지 가운데 비교적 효율이 높으며 시장경쟁력을 갖추고 있어, 기술 개발 및 활용이 점차 늘어나고 있는 추세이다. Wind power generation is relatively efficient among new and renewable energies and has market competitiveness, so technology development and utilization are gradually increasing.
초기 풍력 발전은 육상 풍력 발전을 위주로 발달했으나, 터빈의 대형과, 소음 및 진동, 장소의 제한 등의 문제로 최근 해상 풍력 발전이 각광받고 있다.Early wind power generation developed mainly onshore wind power generation, but recently, offshore wind power generation has been in the limelight due to problems such as the large size of the turbine, noise and vibration, and location limitations.
특히, 우리나라는 삼면이 바다인 지형적 특성으로 인해 해상 풍력 발전에 매우 유리한 조건을 가지고 있어, 전망이 매우 밝다고 볼 수 있다.In particular, Korea has very favorable conditions for offshore wind power generation due to its topographical characteristics of being sea on three sides, so it can be seen that the prospect is very bright.
일반적으로 해상 풍력 발전기는 크게 Rotor-nacelle assembly라 불리는 발전 구성물과 지지구조물(Supporting structure) 2개 부분으로 나뉠 수 있으며, 이 지지구조물은 발전 구성물을 설정된 높이로 위치시키는 타워(Tower)와 해저에 고정되어 타워를 지지하도록 콘크리트 및 와이어를 포함하는 구조체(Foundation)로 구분된다.In general, offshore wind power generators can be largely divided into two parts: a power generation component called a Rotor-nacelle assembly and a supporting structure, which is fixed to the seabed and a tower that positions the power generation component at a set height. It is divided into a foundation containing concrete and wire to support the tower.
해상 풍력 발전기와 같은 대형 구조물은 최초 준공 후 시간이 경과됨에 따라 결함 부분이 발생하며, 따라서 구조물의 건전성 여부를 파악하기 위한 상태 점검이 필요로 된다. Large structures such as offshore wind power generators have defects as time elapses after the initial completion, and therefore, a state check is required to determine the soundness of the structure.
특히, 구조물에 파도나 바람, 해류 등의 외부 하중이 작용함에 따라 구조물과 해저면의 경계 부분이 특히 취약하므로, 이에 따라 구조물이 설치된 지반의 침하, 세굴 또는 구조물의 기울어짐 등의 문제가 발생하기 쉽다.In particular, the boundary between the structure and the seabed is particularly vulnerable as external loads such as waves, wind, and ocean currents act on the structure, resulting in problems such as subsidence of the ground on which the structure is installed, scouring, or tilting of the structure. easy.
또한 바람에 의해 회전되는 풍력발전기의 블레이드는 바람과 접촉되는 면적을 넓히기 위해 크게 형성되어 있는데, 파손되어 이탈되는 경우 주변의 다른 풍력발전기를 타격하여 파손시키거나 해상에 낙하되어 사고를 유발할 수 있는 문제점이 있었다.In addition, the blades of the wind turbine rotated by the wind are formed large to widen the area in contact with the wind. there was
그러나 해상에 설치된 풍력발전기는 발전 상태나 센서에 의해 동작상태를 이용하여 점검이 필요한지 원격으로 판단하기 때문에 사고 발생 전에 파손 위험을 파악하기 어렵고, 해저에 설치된 구조체는 점검이 어렵다는 문제점이 있었다.However, wind turbines installed on the sea have a problem in that it is difficult to determine the risk of damage before an accident occurs, and structures installed on the seabed are difficult to inspect because it remotely determines whether an inspection is necessary using the operation status of the power generation state or sensor.
또한 점검을 위해서는 작업자가 직접 풍력발전기로 이동한 후 점검해야 하므로 시간이 오래걸리고, 점검 중에는 풍력발전기를 정지시켜야 하므로 발전량이 감소되는 문제점이 있었다.In addition, since the operator must directly move to the wind turbine for inspection, it takes a long time, and the wind turbine must be stopped during the inspection, resulting in a decrease in power generation.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 다수 개의 무인 이동체를 기반으로 원격에서 풍력발전기의 작동상태, 노후화상태, 파손 및 균열상태를 시각적으로 확인할 수 있는 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템을 제공하는 것이다.An object of the present invention to solve the above problems is to generate offshore wind power using an autonomous unmanned vehicle that can visually check the operating state, aging state, damage and crack state of a wind power generator remotely based on a plurality of unmanned mobile vehicles. It just provides a management system.
또한 본 발명의 다른 목적은 해저에 설치된 구조체의 부식이나 파손 상태를 정밀하게 분석할 수 있고, 점검이 필요한 위치를 정보를 세부적으로 안내할 수 있는 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템을 제공하는 것이다.In addition, another object of the present invention is to provide an offshore wind farm management system using an autonomous unmanned vehicle capable of precisely analyzing the corrosion or damage state of a structure installed on the seabed and providing information on a location requiring inspection in detail. is to provide
또한 본 발명의 다른 목적은 풍력발전기가 형성된 원거리에서도 자가발전 및 충전을 통해 장시간동안 임무를 수행할 수 있는 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템을 제공하는 것이다.Another object of the present invention is to provide an offshore wind farm management system using an autonomous unmanned vehicle capable of performing its duties for a long time through self-generation and charging even at a remote location where a wind turbine is formed.
상기 과제를 해결하기 위한 본 발명의 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템은 자율운항을 통해 설정된 경로를 따라 비행하여 해상에 노출된 풍력발전기의 블레이드 및 타워를 점검하는 드론과, 자율운항을 통해 해저로 잠수하여 이동할 수 있도록 형성되며 해저에 위치된 상기 풍력발전기의 구조체를 점검하는 잠수정과, 상기 드론 및 상기 잠수정을 각각 격납할 수 있도록 형성되며 해수면을 따라 자율운항을 통해 상기 풍력발전기가 형성된 위치까지 상기 드론 및 상기 잠수정을 운반하는 선박을 포함하는 것을 특징으로 한다.In order to solve the above problems, the offshore wind farm management system using an autonomous unmanned mobile vehicle of the present invention flies along a route set through autonomous navigation and inspects the blades and towers of wind turbines exposed to the sea, and autonomous navigation Formed to be able to move by submerging to the seabed through the submersible to check the structure of the wind turbine located on the seabed, formed to store the drone and the submersible, respectively, the wind turbine through autonomous navigation along the sea surface It is characterized in that it includes a ship carrying the drone and the submersible to the formed position.
또한 본 발명의 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템의 상기 선박은 상부에는 상기 드론이 이착륙할 수 있도록 형성되고 하부에는 상기 잠수정을 보관하거나 출격할 수 있도록 형성되는 격납유닛과, 상부에 형성되며 태양광을 통해 자가발전을 하여 전력을 충전할 수 있도록 형성되는 발전모듈과, 상기 풍력발전기에 형성된 충전단자와 접촉되어 상기 풍력발전기에서 생산되는 전력을 공급받을 수 있도록 형성되는 도킹모듈로 이루어지는 것을 특징으로 한다.In addition, the ship of the offshore wind farm management system using an autonomous unmanned vehicle of the present invention has a storage unit formed so that the drone can take off and land at the top and store or sort out the submersible at the bottom, and at the top It consists of a power generation module formed to generate self-generation through sunlight to charge power, and a docking module formed to be in contact with a charging terminal formed on the wind turbine to receive power generated by the wind turbine. characterized by
또한 본 발명의 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템의 상기 선박은 상기 드론이 상기 풍력발전기를 점검하는 경우 상기 블레이드의 각도 및 회전속도를 조절하여 상기 드론이 상기 블레이드를 촬영할 수 있도록 제어하는 제어모듈을 더 포함하는 것을 특징으로 한다.In addition, the ship of the offshore wind farm management system using the autonomous unmanned mobile vehicle of the present invention controls the drone to photograph the blade by adjusting the angle and rotational speed of the blade when the drone inspects the wind turbine. It is characterized in that it further comprises a control module to.
또한 본 발명의 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템의 상기 드론 및 상기 잠수정은 상기 풍력발전기를 촬영하여 취득된 점검 이미지에서 균열, 변형, 파손 상태를 원본 이미지와 비교하여 점검유무를 결정하게 되고, 상기 점검 이미지는 머신러닝을 통해 저장되어 다음 점검 시 균열, 변형, 파손 상태를 판단할 때 상기 원본 이미지와 함께 사용되는 것을 특징으로 한다.In addition, the drone and the submersible of the offshore wind farm management system using an autonomous unmanned mobile vehicle of the present invention compare cracks, deformations, and damage states in the inspection image obtained by photographing the wind turbine with the original image to determine whether or not inspection is required. The inspection image is stored through machine learning and used together with the original image when determining cracks, deformations, and damage states during the next inspection.
또한 본 발명의 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템의 상기 드론은 상기 블레이드의 회전속도와 동기화되어 상기 블레이드를 따라 비행하도록 형성되며, 상기 블레이드의 길이방향을 따라 이동되면서 상기 블레이드의 상태를 점검하는 것을 특징으로 한다.In addition, the drone of the offshore wind farm management system using an autonomous unmanned mobile vehicle of the present invention is configured to fly along the blade in synchronization with the rotational speed of the blade, and the state of the blade while moving along the longitudinal direction of the blade. It is characterized by checking.
또한 본 발명의 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템의 상기 잠수정은 상기 구조체에 부착된 이물질 또는 해양생물을 제거할 수 있도록 세척유닛을 더 포함하며, 상기 세척유닛을 통해 상기 구조체 점검이 필요한 부위를 세척한 후 이미지를 생성하여 균열, 변형, 파손 상태를 점검하는 것을 특징으로 한다.In addition, the submersible of the offshore wind farm management system using an autonomous unmanned mobile vehicle of the present invention further includes a washing unit to remove foreign substances or marine organisms attached to the structure, and the structure inspection is performed through the washing unit. It is characterized by checking the state of cracks, deformation, and damage by generating an image after washing the necessary area.
상술한 바와 같이, 본 발명에 따른 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템에 의하면, 다수 개의 무인 이동체를 기반으로 원격에서 풍력발전기의 작동상태, 노후화상태, 파손 및 균열상태를 시각적으로 확인할 수 있는 효과가 있다.As described above, according to the offshore wind farm management system using an autonomous unmanned mobile vehicle according to the present invention, the operating state, aging state, damage and crack state of the wind power generator can be visually checked remotely based on a plurality of unmanned mobile vehicles. There are possible effects.
또한 본 발명에 따른 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템에 의하면, 해저에 설치된 구조체의 부식이나 파손 상태를 정밀하게 분석할 수 있고, 점검이 필요한 위치를 정보를 세부적으로 안내할 수 있는 효과가 있다.In addition, according to the offshore wind farm management system using an autonomous unmanned vehicle according to the present invention, the corrosion or damage state of a structure installed on the seabed can be precisely analyzed, and information can be provided to the location requiring inspection in detail It works.
또한 본 발명에 따른 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템에 의하면, 풍력발전기가 형성된 원거리에서도 자가발전 및 충전을 통해 장시간동안 임무를 수행할 수 있는 효과가 있다.In addition, according to the offshore wind farm management system using an autonomous unmanned vehicle according to the present invention, there is an effect of performing a mission for a long time through self-generation and charging even at a long distance where a wind turbine is formed.
도 1은 본 발명에 따른 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템의 전체적인 구성을 나타낸 구성도.1 is a block diagram showing the overall configuration of an offshore wind farm management system using an autonomous unmanned vehicle according to the present invention.
도 2는 본 발명에 따른 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템이 풍력발전기가 형성된 위치에서 산개되는 모습을 나타낸 예시도.Figure 2 is an exemplary view showing how the offshore wind farm management system using an autonomous unmanned vehicle according to the present invention is spread at a location where a wind turbine is formed.
도 3은 본 발명에 따른 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템이 풍력발전기를 점검하는 모습을 나타낸 예시도.3 is an exemplary view showing a state in which the offshore wind farm management system using an autonomous unmanned vehicle according to the present invention inspects a wind power generator.
10 : 풍력발전기10: wind generator
11 : 타워11 : Tower
12 : 블레이드12 : Blade
13 : 구조체13: structure
14 : 충전단자14: charging terminal
100 : 선박100: ship
110 : 격납유닛110: storage unit
120 : 발전모듈120: power generation module
130 : 도킹모듈130: docking module
140 : 제어모듈140: control module
200 : 드론200: drone
210 : 제1카메라210: first camera
220 : 동기화유닛220: synchronization unit
300 : 잠수정300: submersible
310 : 제2카메라310: second camera
320 : 세척유닛320: washing unit
본 발명의 구체적 특징 및 이점들은 이하에서 첨부도면을 참조하여 상세히 설명한다. 이에 앞서 본 발명에 관련된 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 구체적인 설명을 생략하기로 한다.Specific features and advantages of the present invention will be described in detail below with reference to the accompanying drawings. Prior to this, if it is determined that the detailed description of functions and configurations related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description will be omitted.
본 발명은 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템에 관한 것으로서, 더욱 상세하게는 해상에 설치된 풍력발전기의 파손이나 작동상태를 작업자가 직접 점검하지 않아도 정기적으로 자동 점검이 가능한 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템에 관한 것이다.The present invention relates to an offshore wind farm management system using an autonomous unmanned mobile vehicle, and more particularly, an autonomous unmanned mobile vehicle capable of regularly and automatically inspecting damage or operating conditions of wind turbines installed on the sea without a worker directly inspecting them. It relates to an offshore wind farm management system using
이하, 본 발명의 바람직한 실시 예를 첨부한 도면을 참고로 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템의 전체적인 구성을 나타낸 구성도이고, 도 2는 본 발명에 따른 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템이 풍력발전기(10)가 형성된 위치에서 산개되는 모습을 나타낸 예시도이며, 도 3은 본 발명에 따른 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템이 풍력발전기(10)를 점검하는 모습을 나타낸 예시도이다.1 is a block diagram showing the overall configuration of an offshore wind farm management system using an autonomous unmanned mobile vehicle according to the present invention, and FIG. 2 is a configuration diagram showing the offshore wind farm management system using an autonomous unmanned mobile vehicle according to the present invention (10) is an exemplary view showing a state of being spread out at the formed position, and FIG. 3 is an exemplary view showing a state in which the offshore wind farm management system using an autonomous unmanned vehicle according to the present invention inspects the wind turbine 10. .
도 1 내지 도 3에 도시된 바와 같이, 본 발명에 따른 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템은 자율운항을 통해 설정된 경로를 따라 비행하여 해상에 노출된 풍력발전기(10)의 블레이드(12) 및 타워(11)를 점검하는 드론(200)과, 자율운항을 통해 해저로 잠수하여 이동할 수 있도록 형성되며 해저에 위치된 풍력발전기(10)의 구조체(13)를 점검하는 잠수정(300)과, 드론(200) 및 잠수정(300)을 각각 격납할 수 있도록 형성되며 해수면을 따라 자율운항을 통해 풍력발전기(10)가 형성된 위치까지 드론(200) 및 잠수정(300)을 운반하는 선박(100)을 포함하는 것을 특징으로 한다.As shown in FIGS. 1 to 3, the offshore wind farm management system using an autonomous unmanned vehicle according to the present invention flies along a path set through autonomous navigation and the blades of the wind turbine 10 exposed to the sea ( 12) and a drone 200 inspecting the tower 11, and a submersible 300 inspecting the structure 13 of the wind turbine 10 located on the seabed and formed to be able to move by submerging to the seabed through autonomous navigation And, it is formed to store the drone 200 and the submersible 300, respectively, and carries the drone 200 and the submersible 300 to the location where the wind power generator 10 is formed through autonomous navigation along the sea level. Ship 100 ).
드론(200)은 다수 개의 프로펠러를 이용하여 비행할 수 있도록 형성되며, 하부에는 제1카메라(210)가 형성되어 있어 풍력발전기(10)의 블레이드(12)나 타워(11)를 촬영하여 균열, 변형, 파손된 부위를 검출할 수 있도록 형성되어 있다.The drone 200 is formed to be able to fly using a plurality of propellers, and a first camera 210 is formed at the bottom to photograph the blades 12 or the tower 11 of the wind power generator 10, cracks, It is formed to detect deformed or damaged parts.
드론(200)은 자율운항이 가능하여 다수 개의 풍력발전기(10)를 순차적으로 이동하면서 점검할 수 있도록 점검 경로를 형성하게 되는데, 선박(100)에서 이륙되면 고도를 높여 풍력발전기(10)의 위치와 개수를 파악한 후 경로를 형성하여 자율운항을 통해 각각의 풍력발전기(10)를 점검할 수 있게 된다.The drone 200 is capable of autonomous navigation and forms an inspection route so that the plurality of wind turbines 10 can be inspected while moving sequentially. After determining the number of and, it is possible to check each wind turbine 10 through autonomous navigation by forming a path.
여기서 드론(200)의 배터리가 한정적이기 때문에 배터리의 용량 대비 점검가능 풍력발전기(10) 개수를 자동으로 연산하여 경로를 설정할 수 있으며, 미점검된 풍력발전기(10)는 이미지 및 GPS 위치정보를 기반으로 다음 점검시 미점검된 풍력발전기(10)로 경로를 형성할 수 있게 된다.Here, since the battery of the drone 200 is limited, the route can be set by automatically calculating the number of checkable wind turbines 10 compared to the capacity of the battery, and the unchecked wind turbines 10 are based on the image and GPS location information. As a result, it is possible to form a path to the unchecked wind power generator 10 at the time of the next inspection.
잠수정(300)은 해저에 잠수된 상태에서 프로펠러를 통해 이동이 가능하도록 형성되며, 전면에는 제2카메라(310), 초음파센서, 라이다센서가 마련되어 있어 해저에서 자율운항할 때 해저에 존재하는 구조체(13)나 장애물과 접촉되지 않도록 방지될 수 있게 된다.The submersible 300 is formed to be movable through a propeller while submerged on the seabed, and a second camera 310, an ultrasonic sensor, and a LIDAR sensor are provided on the front side, so that it is a structure that exists on the seabed when autonomously navigating on the seabed. (13) or it can be prevented from coming into contact with obstacles.
잠수정(300)은 GPS 신호를 기반으로 위치정보를 수신받아 동작되도록 형성되어 있으나, 해저에서 수신율이 감소되는 것을 감안하여 해수면에서 노출된 상태로 풍력발전기(10)까지 이동된 후 잠수하여 풍력발전기(10)의 구조체(13)를 점검하는 것이 바람직하다.The submersible 300 is formed to receive location information based on a GPS signal and operate, but considering that the reception rate is reduced at the sea floor, it is moved to the wind power generator 10 in a state exposed at the sea level and then submerged to generate a wind power generator ( It is desirable to inspect the structure 13 of 10).
또한 잠수정(300)은 해저에서 촬영하기 때문에 해상에 존재하는 점검대상 풍력발전기(10)에 대한 수량이나 위치를 파악하기 어렵기 때문에 드론(200)과 무선통신하여 드론(200)에서 형성된 경로를 전송받아 드론(200)과 잠수정(300)이 동일한 풍력발전기(10)를 점검하도록 하는 것이 바람직하다.In addition, since the submersible 300 is photographed from the seabed, it is difficult to determine the quantity or location of the wind turbines 10 subject to inspection existing at sea, so wireless communication with the drone 200 transmits the path formed by the drone 200. It is preferable to have the drone 200 and the submersible 300 inspect the same wind power generator 10.
이때 드론(200)과 잠수정(300)의 배터리 용량에 의한 차이가 존재하고, 잠수정(300)이 해저에서 기동하기 위해 발생되는 물의 밀도가 공기보다 높으므로 드론(200)보다 배터리 소모가 빠르게 진행될 수 있다.At this time, there is a difference due to the battery capacity of the drone 200 and the submersible 300, and since the density of water generated for the submersible 300 to start on the sea floor is higher than air, battery consumption may proceed faster than that of the drone 200. there is.
이를 위해 드론(200)에서 전송받은 경로를 따라 순차적으로 드론(200)과 잠수정(300)이 점검을 수행하되, 드론(200)이나 잠수정(300) 중 어느 하나가 먼저 점검이 끝나면 다음 풍력발전기(10)로 이동하여 점검하도록 구성하는 것이 바람직하다.To this end, the drone 200 and the submersible 300 sequentially perform inspections along the path received from the drone 200, but when one of the drone 200 or the submersible 300 is inspected first, the next wind power generator ( It is desirable to configure to move to 10) and check.
즉, 점검하는 풍력발전기(10)의 순서는 동일하게 진행하고 점검 속도는 달리함으로써 보다 효율적으로 풍력발전기(10)를 점검할 수 있게 된다.That is, it is possible to inspect the wind turbine 10 more efficiently by proceeding in the same order of the wind turbine 10 to be inspected and changing the inspection speed.
선박(100)은 해수면을 따라 이동할 수 있는 것으로 내륙에서 이격된 위치에 형성된 풍력발전기(10)가 형성된 위치로 드론(200)과 잠수정(300)을 운반하기 위해 사용되며, 선박(100)이 드론(200)과 잠수정(300)을 운반함에 따라 드론(200)과 잠수정(300)이 풍력발전기(10)가 형성된 위치까지 배터리 소모없이 이동될 수 있으므로 점검시간을 대폭 늘릴 수 있게 된다.The ship 100 can move along the sea level and is used to transport the drone 200 and the submersible 300 to the location where the wind power generator 10 is formed at a location spaced apart from the inland, and the ship 100 is a drone. As the drone 200 and the submersible 300 are transported, the drone 200 and the submersible 300 can be moved to the location where the wind power generator 10 is formed without battery consumption, so the inspection time can be greatly increased.
또한 선박(100)에 의해 드론(200)과 잠수정(300)이 운반되기 때문에 배터리가 소모되면 선박(100)으로 복귀하여 선박(100)에 의해 안전하게 회수될 수 있게 되므로, 배터리 소모에 의해 드론(200)이나 잠수정(300)을 잃어버리는 문제점을 해결할 수 있게 된다.In addition, since the drone 200 and the submersible 300 are transported by the ship 100, when the battery is consumed, they return to the ship 100 and can be safely recovered by the ship 100, so the drone ( 200) or the problem of losing the submersible 300 can be solved.
또한 선박(100)은 상부에는 드론(200)이 이착륙할 수 있도록 형성되고 하부에는 잠수정(300)을 보관하거나 출격할 수 있도록 형성되는 격납유닛(110)과, 상부에 형성되며 태양광을 통해 자가발전을 하여 전력을 충전할 수 있도록 형성되는 발전모듈(120)과, 풍력발전기(10)에 형성된 충전단자(13)와 접촉되어 풍력발전기(10)에서 생산되는 전력을 공급받을 수 있도록 형성되는 도킹모듈(130)로 이루어지는 것을 특징으로 한다.In addition, the ship 100 has a storage unit 110 formed at the top so that the drone 200 can take off and land and at the bottom so that the submersible 300 can be stored or sorted out, and formed at the top, self-propelled through sunlight. Docking formed to receive power generated from the wind power generator 10 in contact with the power generation module 120 formed to generate power and charge the power and the charging terminal 13 formed on the wind power generator 10 Characterized in that it consists of a module (130).
격납유닛(110)은 선박(100)의 상부와 하부에 각각 형성되어 있어 내부에 드론(200)이나 잠수정(300)을 수용하여 격납하고, 격납된 드론(200)이나 잠수정(300)에 전력을 공급하여 배터리를 충전할 수 있도록 구성되어 있다.The storage unit 110 is formed on the upper and lower parts of the ship 100, respectively, to accommodate and store the drone 200 or submersible 300 therein, and to supply power to the stored drone 200 or submersible 300. It is configured to supply and charge the battery.
이때 드론(200)을 격납하기 위한 상부 격납유닛(110)은 상부면이 슬라이드로 개폐될 수 있도록 형성되어 있어 드론(200)이 착륙할 때 상부면이 개방된 후 내부로 진입할 수 있도록 구성되어 있다.At this time, the upper storage unit 110 for storing the drone 200 is formed so that the upper surface can be opened and closed with a slide, so that when the drone 200 lands, the upper surface is opened and then entered into the interior. there is.
또한 드론(200)이 이착륙할 때 선박(100)의 내부 구조물과 접촉되는 것을 방지하기 위해 상부 격납유닛(110)에는 별도의 승강패드가 마련되어 있어 승강패드가 선박(100) 상부로 돌출된 후 드론(200)이 착륙하거나 이륙하면 내부로 하강되도록 하여 드론(200)이 정지된 상태에서 격납유닛(110)에 의해 격납되도록 하는 것이 바람직하다.In addition, in order to prevent the drone 200 from contacting the internal structure of the ship 100 when taking off and landing, a separate lifting pad is provided in the upper storage unit 110 so that the lifting pad protrudes to the top of the ship 100 and then the drone When the drone 200 lands or takes off, it is preferable that the drone 200 be stored by the storage unit 110 while the drone 200 is stopped.
잠수정(300)을 격납하기 위한 하부 격납유닛(110)은 선박(100)의 하부에 형성되어 있는데, 보다 상세하게는 선박(100)의 하부 전면 또는 후면에 위치되어 일면이 회동에 의해 개폐될 수 있도록 구성되는 것이 바람직하다.The lower storage unit 110 for storing the submersible 300 is formed in the lower part of the ship 100, and more specifically, it is located on the front or rear side of the lower part of the ship 100 so that one side can be opened and closed by rotation. It is preferable to be configured so that
하부 격납유닛(110) 내부에 격납된 잠수정(300)은 사출방식으로 출격되어 바다로 진입할 수 있도록 형성되어 있으며, 복귀할 때는 하부 격납유닛(110)의 일면이 회동되어 형성된 경사면을 따라 추진력에 의해 내부로 진입할 수 있게 된다.The submersible 300 stored inside the lower storage unit 110 is formed so that it can be sorted out by ejection and enter the sea, and when returning, one side of the lower storage unit 110 is rotated to generate propulsion along the inclined surface. allows access to the inside.
이때 하부 격납유닛(110)은 잠수정(300)이 일방향으로만 진입할 수 있도록 가이드가 마련되어 있으며, 내부에는 잠수정(300)을 고정하기 위한 픽업모듈이 형성되고 바닥면에는 잠수정(300)의 배출 방향을 전환시키는 회전체가 마련되어 있는 것이 바람직하다.At this time, the lower storage unit 110 has a guide so that the submersible 300 can enter only in one direction, and a pickup module for fixing the submersible 300 is formed inside and the submersible 300 is discharged on the bottom surface. It is preferable that a rotating body for converting is provided.
즉, 잠수정(300)은 하부 격납유닛(110)에 의해 출격된 후 다시 복귀될 때 가이드를 따라 내부로 진입할 수 있게 되고, 픽업유닛에 의해 고정된 상태로 유지되어 선박(100)이 이동할 때 잠수정(300)이 선박(100)내부와 접촉되어 파손되는 것을 방지할 수 있고, 선박(100)에서 다시 사출될 때는 전면 먼저 사출되도록 회전체에 의해 방향을 전환시킬 수 있게 도니다.That is, when the submersible 300 is sorted out by the lower storage unit 110 and then returned, it can enter the interior along the guide, and is maintained in a fixed state by the pickup unit when the ship 100 moves. It is possible to prevent the submersible 300 from being damaged in contact with the inside of the ship 100, and when ejected from the ship 100 again, the direction can be changed by the rotating body so that the front is ejected first.
발전모듈(120)은 선박(100)의 상부에 형성되어 있으며 다수 개의 태양광모듈로 이루어져 있어 태양광에 의한 자가발전이 가능하여 해양에서도 장기간 운영이 가능해진다.The power generation module 120 is formed on the upper part of the ship 100 and is composed of a plurality of photovoltaic modules, so that self-powered power by sunlight is possible, enabling long-term operation in the ocean.
이때 발전모듈(120)은 선박(100)의 내부 배터리를 충전함과 동시에 선박(100) 내부에 격납되어 있는 드론(200)이나 잠수정(300)에 배터리를 충전시킬 수 있게 된다.At this time, the power generation module 120 can charge the battery inside the ship 100 and at the same time charge the battery in the drone 200 or submersible 300 stored inside the ship 100.
또한 도킹모듈(130)은 발전모듈(120)에 의해 필요한 전력량을 공급받지 못한 경우 사용되는 것으로, 풍력발전기(10)의 외면에 형성된 충전단자(14)와 연결되어 풍력발전기(10)에서 생산된 전력을 공급받기 위해 사용된다.In addition, the docking module 130 is used when the required amount of power is not supplied by the power generation module 120, and is connected to the charging terminal 14 formed on the outer surface of the wind turbine 10 to produce the wind turbine 10 Used to receive power.
이때 도킹모듈(130)은 다축으로 형성되어 3차원 좌표로 가변될 수 있는 다관절로봇으로 구성될 수 있으며, 풍력발전기(10)에 형성된 충전단자(14)와 접촉됨으로써 내부 배터리를 충전시킬 수 있게 된다.At this time, the docking module 130 may be configured as an articulated robot that is formed in multiple axes and can be varied in three-dimensional coordinates, and is contacted with the charging terminal 14 formed in the wind turbine 10 to charge the internal battery. do.
또한 풍력발전기(10)에 형성된 충전단자(14)는 선박(100)이 근접한 상태에서만 활성화되도록 하는 것이 바람직하며, 필요에 따라 충전단자(14)가 아닌 무선충전방식을 통해 충전될 수도 있다.In addition, it is preferable that the charging terminal 14 formed in the wind turbine 10 be activated only in the state where the ship 100 is in close proximity, and may be charged through a wireless charging method other than the charging terminal 14 if necessary.
또한 선박(100)은 드론(200)이 풍력발전기(10)를 점검하는 경우 블레이드(12)의 각도 및 회전속도를 조절하여 드론(200)이 블레이드(12)를 촬영할 수 있도록 제어하는 제어모듈(140)을 더 포함하는 것을 특징으로 한다.In addition, the ship 100 is a control module for controlling the drone 200 to photograph the blade 12 by adjusting the angle and rotational speed of the blade 12 when the drone 200 checks the wind turbine 10 ( 140) is characterized in that it further comprises.
선박(100)은 풍력발전기(10)와 무선통신을 통해 원격으로 제어할 수 있도록 형성되어 있으며, 드론(200)이 풍력발전기(10)를 점검할 때 드론(200)이 점검 경로에 맞춰 풍력발전기(10)가 순차적으로 블레이드(12)의 각도를 변화시켜 회전속도를 감속시키도록 제어할 수 있게 된다.The ship 100 is formed to be remotely controlled through wireless communication with the wind power generator 10, and when the drone 200 inspects the wind power generator 10, the drone 200 adjusts the wind power generator according to the inspection route. (10) can be controlled to reduce the rotational speed by sequentially changing the angle of the blade 12.
선박(100)의 제어신호에 의해 풍력발전기(10)의 블레이드(12) 각도가 변화되면 블레이드(12)는 바람에 의해 회전되지 않도록 방지될 수 있으며, 이 상태에서 드론(200)은 블레이드(12)를 촬영하여 블레이드(12)에서 발생된 균열, 변형, 파손상태를 확인할 수 있게 된다.When the angle of the blade 12 of the wind power generator 10 is changed by the control signal of the ship 100, the blade 12 can be prevented from being rotated by the wind, and in this state, the drone 200 rotates the blade 12 ), it is possible to check the state of cracks, deformations, and damages generated in the blade 12.
또한 블레이드(12)의 각도를 변화시킴에 따라 바람에 의해 회전되는 블레이드(12)는 서서히 감속될 수 있게 되는데, 풍력발전기(10)가 완전히 정지되거나 다시 발전하기 위해 회전되는 속도까지 복원되기 위한 시간이 오래 걸리므로 저속회전 상태에서 드론(200)이 블레이드(12)를 촬영하여 점검할 수 있도록 할 수도 있다.In addition, as the angle of the blade 12 is changed, the blade 12 rotated by the wind can be gradually decelerated. It takes time for the wind turbine 10 to completely stop or restore to the rotational speed to generate power again. Since this takes a long time, the drone 200 may photograph the blade 12 in a low-speed rotation state so that it can be inspected.
즉, 드론(200)이 블레이드(12)를 촬영하여도 이미지가 왜곡되지 않는 정도의 속도로만 감속되도록 제어될 수 있게 되며, 드론(200)은 블레이드(12)를 촬영하여 점검을 수행할 수 있게 된다.That is, even if the drone 200 photographs the blade 12, it can be controlled to decelerate only to a speed at which the image is not distorted, and the drone 200 photographs the blade 12 to perform inspection. do.
또한 드론(200)은 블레이드(12)의 회전속도와 동기화되어 블레이드(12)를 따라 비행하도록 형성되며, 블레이드(12)의 길이방향을 따라 이동되면서 블레이드(12)의 상태를 점검하는 것을 특징으로 한다.In addition, the drone 200 is formed to fly along the blade 12 in synchronization with the rotational speed of the blade 12, and checks the state of the blade 12 while moving along the longitudinal direction of the blade 12. do.
드론(200)은 블레이드(12)의 전체 상태를 촬영한 후 각각의 블레이드(12)의 외면을 면밀히 분석할 수 있도록 형성되어 있는데, 이 경우 드론(200)은 블레이드(12)의 길이 방향으로 이동하면서 블레이드(12)의 외면을 부분적으로 확대하여 촬영하여 세부 상태를 점검할 수 있게 된다.The drone 200 is formed to closely analyze the outer surface of each blade 12 after photographing the entire state of the blade 12. In this case, the drone 200 moves in the longitudinal direction of the blade 12 While partially enlarging and photographing the outer surface of the blade 12, it is possible to check the detailed state.
이때 드론(200)은 블레이드(12)가 정지된 상태에서는 블레이드(12)를 따라 이동하면서 쉽게 촬영할 수 있으나, 저속으로 회전되는 상태인 경우에는 블레이드(12)의 회전 방향을 따라 이동할 필요성이 있다.At this time, the drone 200 can easily take pictures while moving along the blade 12 when the blade 12 is stopped, but needs to move along the rotational direction of the blade 12 when the blade 12 rotates at a low speed.
이를 위해 드론(200)에는 블레이드(12)의 회전 속도를 감지하고 블레이드(12)와 동일한 속도로 비행하도록 형성되는 동기화유닛(220)을 더 포함하고 있으며, 동기화 유닛을 통해 드론(200)은 블레이드(12)의 회전속도에 맞춰 블레이드(12)와 동일한 방향으로 비행하게 된다.To this end, the drone 200 further includes a synchronization unit 220 configured to sense the rotational speed of the blades 12 and fly at the same speed as the blades 12, and the drone 200 moves through the synchronization unit. It flies in the same direction as the blade 12 according to the rotational speed of (12).
블레이드(12)와 회전속도가 동기화 된 상태에서 블레이드(12)의 일단 또는 타단에서부터 일 방향으로 이동하며 블레이드(12)의 외면을 촬영할 수 있게 되며 블레이드(12)에 존재하는 균열, 변형, 파손 상태를 검토하여 점검이 필요한 상태인지 판단할 수 있게 된다.With the blade 12 and the rotational speed synchronized, it moves in one direction from one end or the other end of the blade 12, and the outer surface of the blade 12 can be photographed, and cracks, deformations, and damage existing in the blade 12 You can review it to determine if it is in a condition that requires inspection.
또한 드론(200) 및 잠수정(300)은 풍력발전기(10)를 촬영하여 취득된 점검 이미지에서 균열, 변형, 파손 상태를 원본 이미지와 비교하여 점검유무를 결정하게 되고, 점검 이미지는 머신러닝을 통해 저장되어 다음 점검 시 균열, 변형, 파손 상태를 판단할 때 원본 이미지와 함께 사용되는 것을 특징으로 한다.In addition, the drone 200 and the submersible 300 compare cracks, deformations, and damage states in the inspection image obtained by photographing the wind turbine 10 with the original image to determine whether or not to inspect the inspection image through machine learning. It is characterized in that it is stored and used together with the original image when determining the state of cracks, deformation, or damage during the next inspection.
드론(200)과 잠수정(300)은 각각 촬영된 이미지 정보를 기반으로 균열, 변형, 파손 상태를 판단하게 되는데, 이를 비교판단하기 위해 드론(200)과 잠수정(300)에는 정상상태에서 촬영된 원본 이미지가 저장되어 있다.The drone 200 and the submersible 300 judge cracks, deformations, and damage states based on the information of the respective captured images. image is saved.
여기서 드론(200)과 잠수정(300)이 촬영된 이미지는 점검 이미지라 칭한다.Here, images of the drone 200 and the submersible 300 are referred to as inspection images.
점검 이미지와 기 저장된 원본 이미지를 서로 비교하여 균열, 변형, 파손에 의한 비정상상태를 비교할 수 있게 되고, 점검이 필요하다고 판단되는 부위의 점검 이미지는 별도로 저장되어 보관되고 작업자에게 해당 위치, 사진 및 비교 판단된 상태정보를 제공하여 작업자가 점검할 수 있도록 유도하게 된다.It is possible to compare abnormal conditions due to cracks, deformations, and damages by comparing the inspection image with the original image stored in advance. The determined state information is provided to induce the operator to check.
이때 점검이 필요하다고 판단된 점검 이미지는 작업자가 점검 후 균열, 변형, 파손, 정상 상태 중 어느 하나로 선택할 수 있게 되며, 드론(200)과 잠수정(300)은 작업자가 선택한 정보를 기반으로 머신러닝을 수행하여 다음 점검을 수행할 때 원본 이미지와 함께 작업자에 의해 머신러닝이 수행된 점검 이미지를 보조 수단으로 사용하여 정상상태와 비정상상태를 보완할 수 있게 된다.At this time, the inspection image determined to require inspection can be selected by the operator as one of crack, deformation, damage, and normal state after inspection, and the drone 200 and the submersible 300 perform machine learning based on the information selected by the operator. When performing the next inspection, the normal state and the abnormal state can be supplemented by using the original image and the machine learning-performed inspection image by the operator as an auxiliary means.
즉, 점검 이미지에 대한 정보가 쌓일수록 머신러닝에 필요한 데이터도 점진적으로 증가될 수 있고, 드론(200)과 잠수정(300)이 촬영된 이미지를 비교 판단할 때 정상상태와 비정상상태를 정밀하게 비교할 수 있게 된다.That is, as information on inspection images accumulates, data required for machine learning can gradually increase, and when the images taken by the drone 200 and the submersible 300 are compared and judged, the normal state and the abnormal state are accurately compared. be able to
또한 머신러닝을 통해 작업자가 반드시 필요한 순간에만 점검을 수행할 수 있게 되며, 필요에 따라 드론(200)과 잠수정(300)은 예상 수명이나 파손시기를 예측하여 작업자가 점검 또는 교체해야하는 기간을 산정하여 안내해줄 수도 있다.In addition, through machine learning, the operator can perform inspection only at the moment when it is absolutely necessary, and if necessary, the drone 200 and the submersible 300 predict the expected life or time of damage to calculate the period for the operator to inspect or replace may be able to guide you.
또한 잠수정(300)은 구조체(13)에 부착된 이물질 또는 해양생물을 제거할 수 있도록 세척유닛(320)을 더 포함하며, 세척유닛(320)을 통해 구조체(13) 점검이 필요한 부위를 세척한 후 이미지를 생성하여 균열, 변형, 파손 상태를 점검하는 것을 특징으로 한다.In addition, the submersible 300 further includes a washing unit 320 to remove foreign substances or marine organisms attached to the structure 13, and through the washing unit 320, parts of the structure 13 requiring inspection are washed. It is characterized by checking the state of cracks, deformation, and damage by generating an image after the inspection.
잠수정(300)은 해저에서 풍력발전기(10)의 구조체(13)를 점검하게 되는데, 구조체(13)는 콘크리트 기초, 와이어, 프레임을 포함하고 있다.The submersible 300 checks the structure 13 of the wind power generator 10 on the sea floor, and the structure 13 includes a concrete foundation, wires, and a frame.
해저에 존재하는 만큼 해저에 잔류하는 이물질이 표면에 묻어 있거나 따개비와 같은 해양생물이 표면을 덮고 있을 수 있으므로 이를 제거해야 표면상의 균열, 변형, 파손 상태를 파악할 수 있게 된다.As much as they exist on the seabed, foreign substances remaining on the seabed may be buried on the surface or marine organisms such as barnacles may cover the surface, so it is necessary to remove them to determine the state of cracks, deformation, or damage on the surface.
이를 위해 잠수정(300)은 이물질을 세척하기 위한 세척유닛(320)이 형성되어 있으며, 세척유닛(320)은 바닷물을 고압으로 분사하여 구조체(13)의 표면에 존재하는 이물질이나 해양생물을 제거할 수 있게 된다.To this end, the submersible 300 has a washing unit 320 for washing foreign substances, and the washing unit 320 sprays seawater at high pressure to remove foreign substances or marine life present on the surface of the structure 13. be able to
필요에 따라 따개비와 같은 해양생물을 효과적으로 제거하기 위해 표면을 긁어내는 갈고리가 마련되어 있어 추진력에 의해 표면의 해양생물을 물리적으로 제거할 수도 있게 된다.If necessary, in order to effectively remove marine organisms such as barnacles, hooks are provided to scrape the surface, so that marine organisms on the surface can be physically removed by propulsion.
세척유닛(320)을 통해 표면이 깨끗해진 구조체(13)를 촬영할 수 있게 되고, 표면에 발생된 균열, 변형, 파손 상태를 분석하여 풍력발전기(10)의 구조체(13)가 무너지지 않도록 사전에 점검할 수 있게 된다.It is possible to photograph the structure 13 whose surface has been cleaned through the cleaning unit 320, and analyze cracks, deformations, and damages occurring on the surface to check in advance so that the structure 13 of the wind power generator 10 does not collapse. You will be able to do it.
상술한 바와 같이, 본 발명에 따른 자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템에 의하면, 다수 개의 무인 이동체를 기반으로 원격에서 풍력발전기의 작동상태, 노후화상태, 파손 및 균열상태를 시각적으로 확인할 수 있고, 해저에 설치된 구조체의 부식이나 파손 상태를 정밀하게 분석할 수 있고, 점검이 필요한 위치를 정보를 세부적으로 안내할 수 있으며, 풍력발전기가 형성된 원거리에서도 자가발전 및 충전을 통해 장시간동안 임무를 수행할 수 있는 효과가 있다.As described above, according to the offshore wind farm management system using an autonomous unmanned mobile vehicle according to the present invention, the operating state, aging state, damage and crack state of the wind power generator can be visually checked remotely based on a plurality of unmanned mobile vehicles. It can precisely analyze the corrosion or damage state of structures installed on the seabed, provide detailed information on the location where inspection is required, and perform missions for a long time through self-generation and charging even at a distance where a wind turbine is formed. There are effects that can be done.
이상과 같이 본 발명은, 바람직한 실시 예를 중심으로 설명하였지만 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 특허청구범위에 기재된 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다. 따라서 본 발명의 범주는 이러한 많은 변형의 예들을 포함하도록 기술된 청구범위에 의해서 해석되어야 한다.As described above, the present invention has been described with a focus on preferred embodiments, but those skilled in the art can make the present invention various within the range that does not deviate from the technical spirit and scope described in the claims of the present invention. It can be implemented by modifying or transforming accordingly. Accordingly, the scope of the present invention should be construed by the claims which are written to include examples of these many variations.

Claims (6)

  1. 자율운항을 통해 설정된 경로를 따라 비행하여 해상에 노출된 풍력발전기의 블레이드 및 타워를 점검하는 드론과;A drone that flies along a route set through autonomous navigation and inspects wind turbine blades and towers exposed to the sea;
    자율운항을 통해 해저로 잠수하여 이동할 수 있도록 형성되며 해저에 위치된 상기 풍력발전기의 구조체를 점검하는 잠수정과;A submersible that is formed to move by submerging into the seabed through autonomous navigation and checks the structure of the wind turbine located on the seabed;
    상기 드론 및 상기 잠수정을 각각 격납할 수 있도록 형성되며 해수면을 따라 자율운항을 통해 상기 풍력발전기가 형성된 위치까지 상기 드론 및 상기 잠수정을 운반하는 선박;을 포함하는 것을 특징으로 하는A ship formed to store the drone and the submersible, respectively, and carrying the drone and the submersible to the location where the wind power generator is formed through autonomous navigation along the sea surface;
    자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템.Offshore wind farm management system using an autonomous unmanned vehicle.
  2. 제 1항에 있어서,According to claim 1,
    상기 선박은Said vessel
    상부에는 상기 드론이 이착륙할 수 있도록 형성되고 하부에는 상기 잠수정을 보관하거나 출격할 수 있도록 형성되는 격납유닛과;a storage unit formed on the upper part to allow the drone to take off and land and to store or take off the submersible on the lower part;
    상부에 형성되며 태양광을 통해 자가발전을 하여 전력을 충전할 수 있도록 형성되는 발전모듈과;A power generation module formed on the upper part and formed to charge power by generating self-generation through sunlight;
    상기 풍력발전기에 형성된 충전단자와 접촉되어 상기 풍력발전기에서 생산되는 전력을 공급받을 수 있도록 형성되는 도킹모듈;로 이루어지는 것을 특징으로 하는A docking module formed to be in contact with a charging terminal formed in the wind turbine to receive power generated by the wind turbine; characterized in that it consists of
    자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템.Offshore wind farm management system using an autonomous unmanned vehicle.
  3. 제 1항에 있어서,According to claim 1,
    상기 선박은Said vessel
    상기 드론이 상기 풍력발전기를 점검하는 경우 상기 블레이드의 각도 및 회전속도를 조절하여 상기 드론이 상기 블레이드를 촬영할 수 있도록 제어하는 제어모듈;을 더 포함하는 것을 특징으로 하는And a control module for controlling the drone to photograph the blade by adjusting the angle and rotational speed of the blade when the drone inspects the wind turbine.
    자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템.Offshore wind farm management system using an autonomous unmanned vehicle.
  4. 제 1항에 있어서,According to claim 1,
    상기 드론 및 상기 잠수정은The drone and the submersible
    상기 풍력발전기를 촬영하여 취득된 점검 이미지에서 균열, 변형, 파손 상태를 원본 이미지와 비교하여 점검유무를 결정하게 되고,In the inspection image obtained by photographing the wind turbine, cracks, deformations, and damages are compared with the original image to determine whether or not to inspect,
    상기 점검 이미지는 머신러닝을 통해 저장되어 다음 점검 시 균열, 변형, 파손 상태를 판단할 때 상기 원본 이미지와 함께 사용되는 것을 특징으로 하는Characterized in that the inspection image is stored through machine learning and used together with the original image when determining the crack, deformation, or damage state at the next inspection
    자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템.Offshore wind farm management system using an autonomous unmanned vehicle.
  5. 제 1항에 있어서,According to claim 1,
    상기 드론은the drone
    상기 블레이드의 회전속도와 동기화되어 상기 블레이드를 따라 비행하도록 형성되며, 상기 블레이드의 길이방향을 따라 이동되면서 상기 블레이드의 상태를 점검하는 것을 특징으로 하는It is formed to fly along the blade in synchronization with the rotational speed of the blade, and checking the state of the blade while moving along the longitudinal direction of the blade
    자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템.Offshore wind farm management system using an autonomous unmanned vehicle.
  6. 제 1항에 있어서,According to claim 1,
    상기 잠수정은The submersible
    상기 구조체에 부착된 이물질 또는 해양생물을 제거할 수 있도록 세척유닛;을 더 포함하며,It further includes a; washing unit to remove foreign substances or marine organisms attached to the structure,
    상기 세척유닛을 통해 상기 구조체 점검이 필요한 부위를 세척한 후 이미지를 생성하여 균열, 변형, 파손 상태를 점검하는 것을 특징으로 하는Characterized in that after washing the area requiring inspection of the structure through the washing unit, an image is generated to check the state of cracks, deformation, and damage
    자율운항 무인 이동체를 이용한 해상 풍력발전 단지 관리시스템.Offshore wind farm management system using an autonomous unmanned vehicle.
PCT/KR2022/017685 2022-01-07 2022-11-11 Offshore wind power generation farm management system using unmanned autonomous navigation vehicle WO2023132458A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220002617A KR102586641B1 (en) 2022-01-07 2022-01-07 Offshore wind farm management system using autonomously operated unmanned moving vehicle
KR10-2022-0002617 2022-01-07

Publications (1)

Publication Number Publication Date
WO2023132458A1 true WO2023132458A1 (en) 2023-07-13

Family

ID=87073946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017685 WO2023132458A1 (en) 2022-01-07 2022-11-11 Offshore wind power generation farm management system using unmanned autonomous navigation vehicle

Country Status (2)

Country Link
KR (1) KR102586641B1 (en)
WO (1) WO2023132458A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117236936A (en) * 2023-11-11 2023-12-15 中节能(新泰)太阳能科技有限公司 Unmanned aerial vehicle-based photovoltaic power station obstacle positioning method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644797Y2 (en) * 1989-02-03 1994-11-16 三菱重工業株式会社 Underwater plate thickness measurement robot
KR101324035B1 (en) * 2012-07-25 2013-11-01 삼성중공업 주식회사 Windmill and method of removing foreign substance from windmill blade
KR20170043035A (en) * 2015-10-12 2017-04-20 대우조선해양 주식회사 Water/underwater complex inspection system
US20180003161A1 (en) * 2016-06-30 2018-01-04 Unmanned Innovation, Inc. Unmanned aerial vehicle wind turbine inspection systems and methods
KR102229294B1 (en) * 2020-08-10 2021-03-17 한국해양과학기술원 Smart station system for unmanned moving objects for ocean observation
JP2021528593A (en) * 2018-06-25 2021-10-21 ヴェスタス ウィンド システムズ エー/エス Improvements in wind turbine maintenance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140134382A (en) 2013-05-14 2014-11-24 주식회사 나루이엠에스 Offshore wind power electricity generating system management system and method
KR102166654B1 (en) * 2018-09-17 2020-10-19 윈디텍 주식회사 System and method for managing safety of blade for wind power generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644797Y2 (en) * 1989-02-03 1994-11-16 三菱重工業株式会社 Underwater plate thickness measurement robot
KR101324035B1 (en) * 2012-07-25 2013-11-01 삼성중공업 주식회사 Windmill and method of removing foreign substance from windmill blade
KR20170043035A (en) * 2015-10-12 2017-04-20 대우조선해양 주식회사 Water/underwater complex inspection system
US20180003161A1 (en) * 2016-06-30 2018-01-04 Unmanned Innovation, Inc. Unmanned aerial vehicle wind turbine inspection systems and methods
JP2021528593A (en) * 2018-06-25 2021-10-21 ヴェスタス ウィンド システムズ エー/エス Improvements in wind turbine maintenance
KR102229294B1 (en) * 2020-08-10 2021-03-17 한국해양과학기술원 Smart station system for unmanned moving objects for ocean observation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117236936A (en) * 2023-11-11 2023-12-15 中节能(新泰)太阳能科技有限公司 Unmanned aerial vehicle-based photovoltaic power station obstacle positioning method

Also Published As

Publication number Publication date
KR102586641B1 (en) 2023-10-06
KR20230106901A (en) 2023-07-14

Similar Documents

Publication Publication Date Title
WO2023132458A1 (en) Offshore wind power generation farm management system using unmanned autonomous navigation vehicle
KR101967638B1 (en) Photovoltaic power generation module management system using drones
KR101911756B1 (en) The system for real-time remote monitoring buoys on the sea
WO2014204116A1 (en) Flying object operating system
US20070125190A1 (en) Method of inspecting or utilizing tools in a nuclear reactor environment
WO2020213955A1 (en) Method and system for initialization diagnosis of mobile robot
KR102199685B1 (en) unmanned aerial vehicle (UAV) AND METHOD FOR CONTROLLING THE SAME
CN114037918A (en) Photovoltaic hot spot detection method based on unmanned aerial vehicle inspection and image processing
WO2020216596A1 (en) Blade inspection device and a blade condition monitoring system
CN116457269A (en) System and method for robot movement
Shimono et al. Development of underwater inspection system for dam inspection: Results of field tests
CN113359815A (en) Fan blade unmanned aerial vehicle autonomous obstacle avoidance inspection method and system based on RTK positioning
RU2468960C1 (en) All-purpose self-propelled submersible system for inspection and repair of waterworks
CN114866744A (en) Automatic tracking, scanning and detecting system and method for wind power blade
KR102162342B1 (en) Drone for obtaining high quality image to inspect solar panel and flight control method thereof
WO2023101242A1 (en) Exchange-type ocean energy storage system and control method therefor
WO2015163641A1 (en) Sliding-type wave power generator
CN108933407A (en) The embedded robot device of more Split type high-tension bus-bar inspection unmanned planes and method
CN112581648A (en) Dynamic inspection system and method for wind driven generator blade
CN106143834A (en) A kind of new energy marine unmanned intelligence pick-up boat
WO2021261695A1 (en) Method and system for removing foreign matter from solar panel surface by using drone swarm flight
CN112198845B (en) Offshore service prevention system
CN217496505U (en) Offshore wind farm operation and maintenance detection system
Ueda et al. Inspection system for underwater structure of bridge pier
CN103763524A (en) Image monitoring system for floating support mounting practical measuring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918995

Country of ref document: EP

Kind code of ref document: A1