WO2023132351A1 - Hot-rolled steel sheet and method for producing same - Google Patents

Hot-rolled steel sheet and method for producing same Download PDF

Info

Publication number
WO2023132351A1
WO2023132351A1 PCT/JP2023/000119 JP2023000119W WO2023132351A1 WO 2023132351 A1 WO2023132351 A1 WO 2023132351A1 JP 2023000119 W JP2023000119 W JP 2023000119W WO 2023132351 A1 WO2023132351 A1 WO 2023132351A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
rolling
rolled steel
steel sheet
Prior art date
Application number
PCT/JP2023/000119
Other languages
French (fr)
Japanese (ja)
Inventor
栄作 桜田
隆 安富
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2023572486A priority Critical patent/JPWO2023132351A1/ja
Publication of WO2023132351A1 publication Critical patent/WO2023132351A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a hot-rolled steel sheet and a method for manufacturing the same. More specifically, the present invention relates to a hot-rolled steel sheet and a method for manufacturing the same, which reduces the difference in uniform elongation in the in-plane direction and enables the manufacture of complicated parts.
  • This application claims priority based on Japanese Patent Application No. 2022-001420 filed in Japan on January 7, 2022, the content of which is incorporated herein.
  • Hot-rolled steel sheets having a tensile strength of 780 MPa class are used for automobile chassis parts in order to reduce the weight of automobile bodies.
  • various technological developments related to high-strength hot-rolled steel sheets are underway.
  • Patent Document 1 discloses a steel sheet of 590 to 980 MPa in which the hole expandability is improved by classifying the metal structure of the steel sheet and optimizing the area ratio and arrangement.
  • a method of improving ductility with bainite as the main phase there is a method of using retained austenite.
  • the present inventors have studied a method of applying a hot-rolled steel sheet containing bainite as a main phase to a part having a complicated cross-sectional shape.
  • bainite As shown in Fig. 1, the present inventors found that when a hot-rolled steel sheet containing bainite as a main phase is applied, for example, to a lower arm of automobile chassis parts, cracks occur at the curved overhang near the link. was found to occur. This crack was generated in a portion that underwent tensile deformation perpendicular to the crack after being subjected to stretch deformation.
  • Patent Document 2 discloses a technique for reducing the ratio of absorbed energies in the L direction and the C direction.
  • An object of the present invention is to provide a hot-rolled steel sheet having high strength, excellent ductility and hole expansibility, and isotropically enhanced uniform elongation, and a method for producing the same.
  • the present inventors particularly found that the first It is important to control the composition ratio of the two phases, that is, to control the ratio of the line lengths in contact with retained austenite among the line lengths of high-angle grain boundaries of bainite with a crystal orientation difference of 15° or more. I found out.
  • the present inventors have found that, in order to obtain the hot-rolled steel sheet, it is particularly important to control the finish rolling conditions and the heating conditions during reheating after coiling. .
  • the hot-rolled steel sheet according to one aspect of the present invention has a chemical composition, in mass%, C: 0.13 to 0.21%, Si: 0.70 to 1.45%, Mn: 1.95-2.55%, P: 0.060% or less, S: 0.005% or less, N: 0.0070% or less, Al: 0.020 to 0.430%, Ti: 0.006-0.055%, Nb: 0.006 to 0.040%, Cr: 0.05 to 0.47%, Mo: 0.020-0.120%, B: 0.0008 to 0.0030%, Cu: 0-0.40%, Ni: 0 to 0.30%, V: 0-0.30%, and Sn: 0-0.04% and the balance consists of Fe and impurities,
  • the metal structure, in area %, Bainite is 25.0 to 96.0%, 4.0 to 12.0% retained austenite, Ferrite content is 5.0% or less, martensite is 70.0% or less, Perlite is 3.0% or less,
  • the metal structure, in area %, Bainite is 25.0 to
  • the chemical composition is, in mass%, Cu: 0.01 to 0.40%, Ni: 0.01 to 0.30%, V: 0.01-0.30%, and Sn: 0.01-0.04% It may contain one or more selected from the group consisting of (3)
  • a method for manufacturing a hot-rolled steel sheet according to another aspect of the present invention is the method for manufacturing a hot-rolled steel sheet according to (1) or (2) above, A heating step of heating a slab having the chemical composition described in (1) or (2) above in a temperature range of 1220 to 1300° C. for 40 minutes or more; A rough rolling step in which rough rolling is performed at a rough rolling temperature of 1070 to 1200 ° C.
  • CT in the above formula (1) is the cooling stop temperature.
  • FIG. 4 is a diagram showing a cracked portion of a lower arm manufactured from a hot-rolled steel sheet containing bainite as a main phase; Among the wire lengths of the high-angle grain boundaries of bainite having a crystal orientation difference of 15° or more, the ratio of wire lengths in contact with retained austenite, uniform elongation in the rolling direction, and uniform elongation in the direction perpendicular to the rolling direction in the examples It is a figure which shows the relationship with the difference with.
  • the chemical composition of the hot-rolled steel sheet according to the present embodiment is, in mass%, C: 0.13 to 0.21%, Si: 0.70 to 1.45%, Mn: 1.95 to 2.55%, P: 0.060% or less, S: 0.005% or less, N: 0.0070% or less, Al: 0.020 to 0.430%, Ti: 0.006 to 0.055%, Nb: 0. 006-0.040%, Cr: 0.05-0.47%, Mo: 0.020-0.120%, B: 0.0008-0.0030%, and the balance: Fe and impurities. Each element will be described below.
  • C 0.13-0.21%
  • C is an element necessary for increasing the strength. If the C content is less than 0.13%, the amount of ferrite may increase and the strength may deteriorate. Therefore, the C content is made 0.13% or more. Preferably, it is 0.15% or more and 0.16% or more. On the other hand, when the C content exceeds 0.21%, the amount of martensite increases, and the hole expansibility may deteriorate. Therefore, the C content is made 0.21% or less. Preferably, it is 0.20% or less and 0.19% or less.
  • Si 0.70-1.45% Si is an element necessary for increasing the amount of retained austenite and enhancing uniform elongation. If the Si content is less than 0.70%, the amount of retained austenite decreases and the ductility deteriorates. Therefore, the Si content is set to 0.70% or more. Preferably, it is 0.80% or more and 0.90% or more. On the other hand, when the Si content exceeds 1.45%, the amount of retained austenite increases, and the hole expansibility may deteriorate. Therefore, the Si content is set to 1.45% or less. Preferably, it is 1.30% or less and 1.20% or less.
  • Mn 1.95-2.55%
  • Mn is an element necessary to obtain desired strength. If the Mn content is less than 1.95%, the amount of ferrite increases and the strength deteriorates. Therefore, the Mn content is set to 1.95% or more. It is preferably 2.00% or more and 2.10% or more. On the other hand, if the Mn content exceeds 2.55%, the structure may become uneven due to Mn segregation, and the hole expansibility may deteriorate. Therefore, the Mn content is set to 2.55% or less. Preferably, it is 2.40% or less and 2.30% or less.
  • P 0.060% or less
  • P is an impurity element that is unavoidably mixed in the manufacturing process. If the P content is too high, slab cracking occurs during production due to embrittlement of grain boundaries. In order to stably suppress slab cracking during production, the P content is made 0.060% or less. Preferably, it is 0.050% or less and 0.040% or less. In order to reduce the incidence of slab cracking as much as possible, the P content is preferably 0.012% or less. It should be noted that the lower the P content is, the more preferable it is, but since an extremely high cost is required to make the P content less than 0.002%, the P content may be 0.002% or more.
  • S is an impurity element that is unavoidably mixed in the manufacturing process. If the S content is too high, MnS will form. When MnS is formed, martensite is generated around MnS, and as a result of an increase in the amount of martensite, the hole expansibility deteriorates. In order to prevent deterioration of the hole expansibility, the S content is made 0.005% or less. Preferably, it is 0.004% or less. In order to reduce the influence of MnS as much as possible, the S content is preferably 0.003% or less. If the S content is less than 0.0005%, the desulfurization cost becomes extremely high, impairing economic efficiency. Therefore, the S content may be 0.0005% or more.
  • N 0.0070% or less If the N content is too high, it may form nitrides during the manufacturing process and cause embrittlement cracking of the slab. Therefore, the smaller the N content, the better. In order to suppress embrittlement cracking of the slab, the N content is made 0.0070% or less. Preferably, it is 0.0050% or less. If the N content is less than 0.0003%, the N removal cost will increase significantly. Therefore, the N content may be 0.0003% or more.
  • Al 0.020-0.430%
  • Al is an impurity element that is inevitably mixed, but it is also an element that has a deoxidizing effect. Al is also an element that suppresses the formation of pearlite. If the Al content is less than 0.020%, the amount of pearlite increases and the hole expansibility may deteriorate. Therefore, the Al content is set to 0.020% or more. Preferably, it is 0.100% or more and 0.150% or more. On the other hand, when the Al content exceeds 0.430%, AlN is formed during casting and slab cracking occurs. In addition, the formation of oxides in the casting nozzle during continuous casting may impair the manufacturability. Therefore, the Al content is set to 0.430% or less. Preferably, it is 0.350% or less.
  • Ti 0.006-0.055%
  • Ti is an element necessary for maximizing the effect of B, which will be described later, by forming TiN. If the Ti content is less than 0.006%, B becomes BN, so the amount of ferrite increases and the strength deteriorates. Therefore, the Ti content is set to 0.006% or more. Preferably, it is 0.010% or more. On the other hand, when the Ti content exceeds 0.055%, TiN causes slab cracking during continuous casting. Therefore, the Ti content is set to 0.055% or less. Preferably, it is 0.040% or less, 0.030% or less, or 0.025% or less.
  • Nb is an element necessary for refining the rolling structure and preferably controlling the average grain size of prior austenite grains. If the Nb content is less than 0.006%, the average grain size of the prior austenite grains cannot be preferably controlled, and the hole expansibility deteriorates. Therefore, the Nb content is made 0.006% or more. Preferably, it is 0.010% or more and 0.015% or more. On the other hand, when the Nb content is more than 0.040%, the ratio of the line lengths in contact with the retained austenite among the line lengths of the large-angle grain boundaries of the bainite having a crystal orientation difference of 15° or more decreases. Uniform elongation cannot be increased isotropically. Therefore, the Nb content is set to 0.040% or less. Preferably, it is 0.030% or less and 0.022% or less.
  • Cr 0.05-0.47% Cr is an element necessary to reduce the amount of ferrite and obtain desired strength. If the Cr content is less than 0.05%, the amount of ferrite increases and the strength deteriorates. Therefore, the Cr content is set to 0.05% or more. Preferably, it is 0.10% or more and 0.20% or more. On the other hand, when the Cr content exceeds 0.47%, the amount of martensite increases and the ductility deteriorates. Therefore, the Cr content is set to 0.47% or less. Preferably, it is 0.40% or less and 0.35% or less.
  • Mo 0.020-0.120%
  • Mo is an element necessary to reduce the amount of ferrite and obtain desired strength. If the Mo content is less than 0.020%, the amount of ferrite increases and the strength deteriorates. Therefore, Mo content shall be 0.020% or more. Preferably, it is 0.040% or more and 0.060% or more. On the other hand, if the Mo content exceeds 0.120%, the amount of martensite increases and the ductility deteriorates. Therefore, Mo content shall be 0.120% or less. Preferably, it is 0.100% or less and 0.080% or less.
  • B 0.0008 to 0.0030%
  • B is an element that suppresses the formation of ferrite. If the B content is less than 0.0008%, the amount of ferrite may increase and the strength may deteriorate. Therefore, the B content is made 0.0008% or more. Preferably, it is 0.0009% or more and 0.0010% or more. On the other hand, if the B content exceeds 0.0030%, the hot deformation resistance becomes high, making it difficult to thread the sheet. Therefore, the B content is set to 0.0030% or less. Preferably, it is 0.0020% or less and 0.0015% or less.
  • the balance of the chemical composition of the hot-rolled steel sheet may be Fe and impurities.
  • impurities include elements that are inevitably mixed from steel raw materials or scraps and/or during the steelmaking process and that are permissible within a range that does not impair the properties of the hot-rolled steel sheet according to the present embodiment.
  • the chemical composition of the hot-rolled steel sheet according to the present embodiment may contain the following elements as optional elements instead of part of Fe.
  • the content is 0% when the following optional elements are not contained.
  • Cu 0.01-0.40%
  • Cu is an element that is incorporated as a tramp element.
  • Cu increases the strength by forming a solid solution, improves uniform elongation and hole expansibility, and isotropically enhances uniform elongation.
  • the Cu content may be 0.01% or more.
  • the Cu content exceeds 0.40%, Cu embrittlement cracking occurs during hot working, making production difficult. Therefore, the Cu content is set to 0.40% or less.
  • Ni 0.01-0.30% Ni increases the strength by forming a solid solution, improves uniform elongation and hole expansibility, and isotropically enhances uniform elongation. In order to ensure this effect, the Ni content may be 0.01% or more. On the other hand, when the Ni content exceeds 0.30%, cracks occur during continuous casting. Therefore, the Ni content is set to 0.30% or less.
  • V 0.01-0.30% V increases the strength by forming a solid solution, improves uniform elongation and hole expansibility, and isotropically enhances uniform elongation.
  • the V content may be 0.01% or more.
  • the V content exceeds 0.30%, cracks occur during continuous casting. Therefore, the V content is set to 0.30% or less.
  • Sn 0.01-0.04% Sn increases the strength by forming a solid solution, improves uniform elongation and hole expansibility, and isotropically enhances uniform elongation. In order to ensure this effect, the Sn content may be 0.01% or more. On the other hand, when the Sn content exceeds 0.04%, intergranular embrittlement cracking occurs during hot working. Therefore, the Sn content is set to 0.04% or less.
  • the chemical composition of the hot-rolled steel sheet described above can be analyzed using a spark discharge emission spectrometer or the like.
  • C and S values identified by burning in an oxygen stream and measuring by an infrared absorption method using a gas component analyzer or the like are adopted.
  • N a value identified by melting a test piece taken from a hot-rolled steel sheet in a helium stream and measuring it by a thermal conductivity method is adopted.
  • the hot-rolled steel sheet according to the present embodiment has a metal structure in terms of area %, 25.0 to 96.0% bainite, 4.0 to 12.0% retained austenite, 5.0% or less ferrite, marten A bainite high-angle grain boundary line having a site content of 70.0% or less, a pearlite content of 3.0% or less, an average grain size of prior austenite grains of 25.0 ⁇ m or less, and a crystal orientation difference of 15° or more.
  • the ratio of wire lengths in contact with retained austenite is 3.0% or more and less than 12.0%.
  • metallographic structure in a cross section perpendicular to the plate surface, at a depth position of 1/4 of the plate thickness from the surface (a region from 1/8 of the plate thickness to 3/8 of the plate thickness from the surface) Define metallographic structure. The reason is that the metallographic structure at this position shows the typical metallographic structure of the hot-rolled steel sheet. Each rule will be explained below.
  • Bainite area ratio 25.0 to 96.0% Bainite increases the strength, uniform elongation, and hole expansion ratio of hot-rolled steel sheets.
  • the area ratio of bainite is set to 25.0% or more. Preferably, it is 30.0% or more, 40.0% or more, 50.0% or more, or 60.0% or more.
  • the area ratio of bainite is set to 96.0% or less. Preferably, it is 94.0% or less and 92.0% or less.
  • Area ratio of retained austenite 4.0 to 12.0% Retained austenite enhances the uniform elongation of the hot rolled steel sheet.
  • the area ratio of retained austenite is set to 4.0% or more. Preferably, it is 6.0% or more and 8.0% or more.
  • the area ratio of retained austenite is set to 12.0% or less. Preferably, it is 10.0% or less and 8.0% or less.
  • the area ratio of ferrite is set to 5.0% or less. It is preferably 3.0% or less, and may be 0.0%.
  • Area ratio of martensite 70.0% or less Martensite is a metal structure effective for increasing the strength of a hot-rolled steel sheet, but ductility deteriorates as the area ratio increases. If the area ratio of martensite exceeds 70.0%, the ductility of the hot-rolled steel sheet significantly deteriorates. Therefore, the area ratio of martensite is set to 70.0% or less. Preferably, it is 60.0% or less, 50.0% or less, or 40.0% or less. Since the hot-rolled steel sheet according to the present embodiment can ensure strength by including a desired amount of bainite, the area ratio of martensite may be 0.0%.
  • Area ratio of pearlite 3.0% or less
  • the area ratio of pearlite is set to 3.0% or less.
  • the area ratio of pearlite is preferably 1.0% or less, more preferably 0.0%.
  • EBSD analyzer composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used.
  • the degree of vacuum in the apparatus is 1.0 ⁇ 10 ⁇ 4 Pa or less
  • the acceleration voltage is 15 kV
  • the irradiation current level is 13 to 15
  • the electron beam irradiation level is 62
  • the WD is 15 mm.
  • the sample to be observed is positioned at a depth of 1/4 of the plate thickness from the surface (1/4 of the plate thickness from the surface) from each of the 1/4 position, 1/2 position, and 3/4 position in the width direction of the hot-rolled steel sheet. 8 depth to 3/8 depth of the plate thickness) is sampled so as to have a width direction size of 10 mm in the direction perpendicular to the rolling direction so that the region can be observed.
  • the cross section perpendicular to the rolling direction was roughly polished with #1000, mirror-polished with a polishing liquid in which diamond powder with a particle size of 1 to 3 ⁇ m was dispersed, and then electrolytically polished to remove polishing strain on the surface.
  • the thickness is preferably 30 ⁇ m or less.
  • the crystal orientation information obtained by EBSD is data recording the crystal orientation measured at intervals of 0.05 to 0.5 ⁇ m and the measurement coordinates.
  • the area ratio of the region determined to be bcc is calculated by the software "OIM Analysis (registered trademark)" attached to the EBSD analysis device.
  • the grain boundary where the orientation difference between the adjacent measurement points is 15° or more is defined as the grain boundary, and the GAM value is calculated for each grain.
  • Crystal grains with a GAM value of 0.5 or less are regarded as ferrite and pearlite.
  • the sum of the area ratios of ferrite and pearlite is obtained by calculating the average value of the area ratios of ferrite and pearlite crystal grains at each position in the width direction.
  • the area ratio of ferrite is obtained by subtracting the area ratio of pearlite, which will be described later, from the total area ratio of ferrite and pearlite obtained.
  • an IQ (Image Quality) value is obtained by the software "OIM Analysis (registered trademark)" attached to the EBSD analysis device.
  • a measurement point where the value of is 8000 or more is a martensite measurement point.
  • the area ratio of martensite is obtained by calculating the ratio of martensite measurement points to the total number of measurement points.
  • the average value of the area ratio of martensite at each position in the width direction is calculated to obtain the area ratio of martensite.
  • the IQ value may change depending on the state of the surface of the observation sample and the accuracy of measurement.
  • a CI (Confidence Index) value of 0.8 or more which indicates the reliability of the crystal orientation information. If the CI value is less than 0.8, electropolishing is performed again by the above method, and the working distance between the sample and the EBSD pattern detector is adjusted, and the acceleration voltage and irradiation current level are adjusted. Alternatively, adjust the gain or exposure of the detector and acquire data so that the CI value is 0.8 or more.
  • Pearlite is a structure in which lamellar carbides are arranged in ferrite. Pearlite is determined to have the same bcc as ferrite even when the crystal orientation information obtained by EBSD analysis is measured using the software "OIM Analysis (registered trademark)" attached to the EBSD analysis device. This is because the ferrite in the pearlite is included in the spot diameter of the electron beam. Therefore, only the area ratio of pearlite is measured not by the EBSD analysis but by observing the corroded sample with an optical microscope.
  • a metallographic photograph is obtained by photographing the structure revealed by the nital etchant. It is assumed that the metal structure photograph is taken in a range of 100 ⁇ m in the plate thickness direction and 200 ⁇ m in the orthogonal direction. Using this metallographic photograph, the area ratio of pearlite is measured. Crystal grains containing lamellar carbides are regarded as pearlite. The area ratio of pearlite is obtained by calculating the average value of the area ratio of pearlite at each position in the width direction.
  • the bainite measurement points are the measurement points except for the points marked with .
  • the area ratio of bainite is obtained by calculating the ratio of the bainite measurement points shown in all the measurement points.
  • Average grain size of prior austenite grains 25.0 ⁇ m or less
  • the average grain size of prior austenite grains is set to 25.0 ⁇ m or less. It is preferably 20.0 ⁇ m or less and 15.0 ⁇ m or less. The smaller the average grain size of the prior austenite grains, the better the hole expansibility. Therefore, the average grain size of the prior austenite grains may be 7.0 ⁇ m or more.
  • the samples to be observed were obtained from 1/4, 1/2, and 3/4 positions in the width direction of the hot-rolled steel sheet. It is a thick section, and a sample is taken so that a position 1/4 of the plate thickness from the surface (a region from 1/8 of the plate thickness to 3/8 of the plate thickness from the surface) can be observed.
  • the texture of the thickness cross-section is revealed by an etchant in which a sodium dodecylbenzenesulfonate etchant is added to a picric acid saturated aqueous solution.
  • the grain size of the prior austenite grains is measured from metallographic photographs taken at three locations in a 200 ⁇ m region in a direction perpendicular to the rolling direction. An equivalent circle diameter is calculated for one of the prior austenite grains included in each observation field.
  • the old austenite grains where the entire old austenite grains are not included in the imaging field such as the edge of the imaging field, perform the above operation for all the old austenite grains contained in each observation field, and all the old austenite grains in each imaging field Obtain the circle-equivalent diameter of the austenite grains.
  • the average grain size of the prior austenite grains is obtained.
  • the ratio of line lengths in contact with retained austenite 3.0% or more and less than 12.0%
  • the austenitic morphology is characterized by being subjected to strain during inter-rolling, and even after cooling and coiling, the morphology is inherited to form a predetermined metal structure. Therefore, any metallographic structure retains not a little features of the rolling direction-derived texture and extended structure morphology produced by hot rolling.
  • retained austenite when retained austenite is in contact with the grain boundaries of bainite, which is the main phase, the retained austenite undergoes stress-induced transformation and behaves as a hard structure at locations where deformation is strong, suppressing local deformation.
  • retained austenite plays a role of supporting deformation as a soft structure at locations where deformation is weak. As a result, uniform elongation can be enhanced isotropically.
  • the proportion of line lengths in contact with retained austenite is 3.0% or more. It has been found that the difference in uniform elongation in the rolling direction and in the direction perpendicular thereto can be reduced, and the uniform elongation can be isotropically enhanced. As a result, the present inventors have found that it is possible to suppress breakage of the pressed part caused by deformation in the direction perpendicular to the bending strain.
  • the proportion of line lengths in contact with retained austenite among the line lengths of large-angle grain boundaries of bainite having a crystal orientation difference of 15° or more is set to 3.0% or more. Preferably, it is 5.0% or more and 8.0% or more.
  • the proportion of line lengths in contact with retained austenite among the line lengths of large-angle grain boundaries of bainite having a crystal orientation difference of 15° or more is less than 12.0%. It is preferably 11.0% or less and 10.0% or less.
  • the group of points determined to be fcc is drawn on the bainite grain boundary map, and the proportion of line lengths in which the bainite grain boundary and fcc are in contact with each other among all the line lengths of the bainite grain boundaries is determined. This operation is performed for all the samples collected, and the average value is obtained to obtain the ratio of the line length in contact with the retained austenite among the line lengths of the large angle grain boundaries of bainite with a crystal orientation difference of 15 ° or more. .
  • the hot-rolled steel sheet according to this embodiment may have a tensile strength of 1100 MPa or more. By setting the tensile strength to 1100 MPa or more, it is possible to contribute to the weight reduction of the vehicle body. Although the upper limit of the tensile strength is not particularly defined, it may be 1400 MPa or less.
  • the hot-rolled steel sheet according to the present embodiment has a uniform elongation of 5.0% or more, and a difference between the uniform elongation in the rolling direction and the uniform elongation in the direction perpendicular to the rolling direction of 2.0% or less. good too.
  • Tensile strength and uniform elongation are determined according to the test method described in JIS Z 2241:2011 by preparing No. 5 test pieces described in JIS Z 2241:2011 from hot-rolled steel sheets.
  • the uniform elongation is obtained for each of the rolling direction and the direction perpendicular to the rolling direction.
  • the longitudinal direction of the coil is the rolling direction.
  • the surface of the hot-rolled steel sheet has fine unevenness caused by Si scale along the rolling direction, so the rolling direction is judged from the scale pattern.
  • a direction parallel to the long side of the scale pattern may be regarded as the rolling direction.
  • the hot-rolled steel sheet according to this embodiment may have a hole expansion ratio of 30% or more.
  • the hole expansion ratio is measured by conducting a hole expansion test in accordance with JIS Z 2256:2010.
  • a preferable method for manufacturing a hot-rolled steel sheet according to the present embodiment sequentially performs the following steps.
  • a rough rolling step in which rough rolling is performed at a rough rolling temperature of 1070 to 1200° C. at a total rolling reduction of 75 to 85%.
  • a finish rolling step in which finish rolling is performed so that the final rolling temperature is 940 to 1020° C. and the final rolling reduction is 26 to 43%.
  • a reheating step of heating such that the heating amount ⁇ T satisfies the following formula (1) within 30 minutes after the winding;
  • CT in the above formula (1) is the cooling stop temperature.
  • Heating Step A slab having the chemical composition described above is heated in a temperature range of 1220 to 1300° C. for 40 minutes or longer. If the heating temperature is lower than 1220° C., the solutionization does not progress, the amount of ferrite increases, and the strength deteriorates. Therefore, the heating temperature is set to 1220° C. or higher. It is preferably 1240° C. or higher. On the other hand, if the heating temperature is higher than 1300° C., the austenite grains become coarse during heating, resulting in deterioration of the hole expansibility. Therefore, the heating temperature is set to 1300° C. or less. From the viewpoint of energy cost, the heating temperature is preferably 1280° C. or less.
  • the holding time in the temperature range of 1220 to 1300° C. is set to 40 minutes or longer. It is preferably 60 minutes or more and 80 minutes or more.
  • the heating conditions in the heating process affect the phase composition of the final structure. Therefore, a holding time of about 30 minutes is generally not preferable for productivity, and a holding time of 40 minutes or longer is necessary so that the temperature at any point of the slab satisfies the above.
  • the upper limit of the retention time is not particularly limited, it may be 200 minutes or less.
  • Rough rolling step Rough rolling is performed at a total rolling reduction of 75 to 85%.
  • the total rolling reduction in the rough rolling step is expressed by (1 ⁇ t r /t s ) ⁇ 100(%) using the slab thickness: t s and the strip thickness t r at the end of rough rolling. If the total rolling reduction is less than 75%, the rolling strain is insufficient, and hot austenite recrystallization does not proceed. Therefore, the average grain size of the austenite grains is coarsened to exceed 25.0 ⁇ m, and as a result, the hole expansibility is deteriorated. Therefore, rough rolling is performed at a total rolling reduction of 75% or more. Preferably it is 77% or more.
  • the total rolling reduction is more than 85%, the rolling strain is too high, and although austenite recrystallization progresses, grain growth is large, and the average grain size of the austenite grains is coarsened to exceed 25.0 ⁇ m. deteriorates. Therefore, rough rolling is performed with a total reduction of 85% or less. Preferably it is 83% or less.
  • the rough rolling temperature in the rough rolling step is not particularly limited, but is preferably 1070° C. or higher from the viewpoint of hot deformation resistance. Further, from the viewpoint of obtaining a desired ferrite fraction, the rough rolling temperature is preferably 1070° C. or higher. From the viewpoint of reducing flaws due to scale entrapment, the rough rolling temperature is preferably 1200° C. or less. Also from the viewpoint of obtaining the desired average grain size of the prior austenite grains, the rough rolling temperature is preferably 1200° C. or less.
  • the term "rough rolling temperature" as used herein means the temperature at the delivery side of the last stage of rough rolling.
  • Finish rolling is performed at a final rolling temperature of 940 to 1020° C. and a final rolling reduction of 26 to 43%. If the final rolling temperature is less than 940° C., recrystallization of austenite does not proceed and grain refinement does not occur, and as a result, the average grain size of prior austenite grains exceeds 25.0 ⁇ m. Therefore, the final rolling temperature should be 940° C. or higher. Preferably, it is 960°C or higher.
  • the final rolling temperature means the surface temperature of the steel sheet on the exit side of the final pass of finish rolling.
  • the final rolling temperature is set to 1020° C. or lower. It is preferably 1000° C. or less.
  • the final reduction in finish rolling affects the recrystallization of austenite.
  • the final rolling reduction is set to 26% or more. Preferably it is 30% or more.
  • the final rolling reduction is expressed by (1 ⁇ t 1 /t 0 ) ⁇ 100 (%) using the plate thickness on the entry side of the final pass of finish rolling: t 0 and the plate thickness on the exit side of the final pass of finish rolling t 1 . be.
  • the final rolling reduction is set to 43% or less. Preferably it is 40% or less.
  • the rolling start temperature of finish rolling (steel plate surface temperature at the first pass entry side of finish rolling) is preferably 1040°C or higher in order to reduce deformation resistance.
  • the temperature is preferably 1100° C. or less in order to reduce flaws due to entrapment of scale.
  • Cooling Step If the time from the completion of finish rolling to the start of cooling exceeds 2.0 seconds, the grain growth of recrystallized austenite grains proceeds and the hole expandability deteriorates. Therefore, cooling is started within 2.0 seconds after completion of finish rolling.
  • the time until the start of cooling means the time until the start of water cooling after rolling in the final pass of finish rolling.
  • cooling may be started immediately after finish rolling is completed, it is necessary to inject cooling water directly below the finish rolling mill, and excessive cooling of the rolls increases the driving force for transformation nucleation.
  • the proportion of line lengths in contact with the retained austenite among the line lengths of the high-angle grain boundaries of the bainite having a crystal orientation difference of 15° or more increases. Therefore, it is preferable to set the time until the start of cooling to 1.0 second or longer.
  • the cooling time from the completion of finish rolling to the temperature range of 300 to 480°C exceeds 17.0 seconds, the area ratio of ferrite increases and the strength deteriorates. Therefore, after the start of cooling, the steel sheet is cooled to a temperature range of 300 to 480° C. within 17.0 seconds after completion of finish rolling.
  • a shorter cooling time is more preferable, but in order to cool to a desired temperature range in a short time, it is necessary to increase the mass density, which increases the load on the cooling nozzle and impairs economic efficiency. Therefore, the cooling time to the temperature range of 300 to 480° C. is preferably set to 7.0 seconds or more after completion of finish rolling.
  • the cooling stop temperature is set to 300° C. or higher. Preferably, it is 320°C or higher.
  • the cooling stop temperature is set to 480° C. or lower. It is preferably 460° C. or less.
  • Winding process Immediately after cooling is stopped, the material is wound into a coil. That is, the winding temperature and the cooling stop temperature are the same temperature.
  • the reheating step is a particularly important step for preferably controlling the proportion of wire lengths in contact with retained austenite among wire lengths of high-angle grain boundaries of bainite having a crystal misorientation of 15° or more.
  • the reheating process after winding promotes C diffusion at the large-angle grain boundaries of bainite with a crystal orientation difference of 15° or more corresponding to the prior austenite grain boundary, and bainite with a crystal orientation difference of 15° or more. Increase the proportion of wire lengths in contact with retained austenite in the wire lengths of high-angle grain boundaries.
  • CT in the above formula (1) is the cooling stop temperature (°C).
  • the unit of ⁇ T is degrees Celsius.
  • the amount of heating ⁇ T is equal to or less than the left side of the above formula (1), the amount of retained austenite can be preferably controlled, but the residual The proportion of wire length in contact with austenite is reduced.
  • the amount of heating ⁇ T is equal to or greater than the right side, the proportion of line lengths in contact with retained austenite among the line lengths of the high-angle grain boundaries of bainite having a crystal orientation difference of 15° or more increases.
  • the coil should be heated so that the amount of heating ⁇ T satisfies the above formula (1), and it is not necessary to hold the coil at that temperature for a long time.
  • the retention time may be, for example, 1 to 3000 seconds.
  • Air-cooling process After heating so that the heating amount ⁇ T satisfies the above formula (1), air-cooling is performed to a temperature range of 200°C or less. Air cooling is preferably carried out to a temperature range of 100° C. or less in consideration of safety during coil transportation.
  • coils made of hot-rolled steel sheets were manufactured under the conditions shown in Tables 2A to 2C.
  • the rolling start temperature of the finish rolling is 1040 to 1100 ° C.
  • the holding time at the ⁇ T heating temperature is 1 to 3000 seconds, and after holding at the ⁇ T heating temperature, it is air-cooled to a temperature range of 100 ° C. or less.
  • test No. No. 53 had high deformation resistance in hot working, so production after finish rolling was discontinued.
  • Specimens for metallographic observation, tensile test and hole-expanding test were cut out from the outermost periphery of the obtained coil. Two test pieces were taken from each of the 1/4 position, 1/2 position, and 3/4 position in the width direction of the hot-rolled steel sheet, and the tensile strength, uniform elongation, hole expansion ratio, uniform elongation in the rolling direction and rolling direction The difference from the uniform elongation in the direction perpendicular to the The test method was the same as the method described above. Moreover, metal structure observation was performed from the obtained test piece by the above-mentioned method. The results obtained are shown in Tables 3A-3C.
  • the "percentage of wire lengths in contact with retained austenite” refers to "the ratio of wire lengths in contact with retained austenite among the line lengths of high-angle grain boundaries of bainite with a crystal misorientation of 15° or more.
  • the "uniform elongation difference” indicates the "difference between the uniform elongation in the rolling direction and the uniform elongation in the direction perpendicular to the rolling direction”.
  • the hot-rolled steel sheets according to the examples of the present invention had high strength, excellent ductility and hole expansibility, and isotropically increased uniform elongation.
  • the hot-rolled steel sheets according to the comparative examples are inferior in at least one of the above properties.
  • the difference between the uniform elongation in the rolling direction and the uniform elongation in the direction perpendicular to the rolling direction should be 2.0. % or less.
  • the proportion of line lengths in contact with retained austenite is 3.0% or more and less than 12.0%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A hot-rolled steel sheet according to the present invention has a specific chemical composition, while having a metal structure that contains, in area%, 25.0% to 96.0% of bainite, 70.0% or less of martensite, 4.0% to 12.0% of residual austenite, 5.0% or less of ferrite and 3.0% or less of pearlite, with the average prior austenite grain size being 25.0 µm or less. With respect to the metal structure, the proportion of the line length that is in contact with residual austenite in the line length of large tilt angle grain boundaries of bainite having a crystal misorientation of 15° or more is not less than 3.0% but less than 12.0%.

Description

熱延鋼板およびその製造方法Hot-rolled steel sheet and manufacturing method thereof
 本発明は、熱延鋼板およびその製造方法に関する。
 具体的には、本発明は、面内方向の均一伸びの差を低減させ、複雑部品の製造を可能とする熱延鋼板およびその製造方法に関する。
 本願は、2022年1月7日に、日本に出願された特願2022-001420号に基づき優先権を主張し、その内容をここに援用する。
TECHNICAL FIELD The present invention relates to a hot-rolled steel sheet and a method for manufacturing the same.
More specifically, the present invention relates to a hot-rolled steel sheet and a method for manufacturing the same, which reduces the difference in uniform elongation in the in-plane direction and enables the manufacture of complicated parts.
This application claims priority based on Japanese Patent Application No. 2022-001420 filed in Japan on January 7, 2022, the content of which is incorporated herein.
 近年、CO排出量低減のため、自動車車体の軽量化がなされている。自動車足回り部品には、自動車車体の軽量化を実現するため、780MPa級の引張強さを有する熱延鋼板が採用されている。自動車車体の更なる軽量化を実現するために、高強度の熱延鋼板に関する様々な技術開発が進められている。 In recent years, the weight of automobile bodies has been reduced in order to reduce CO 2 emissions. Hot-rolled steel sheets having a tensile strength of 780 MPa class are used for automobile chassis parts in order to reduce the weight of automobile bodies. In order to further reduce the weight of automobile bodies, various technological developments related to high-strength hot-rolled steel sheets are underway.
 例えば、特許文献1には、鋼板の金属組織を分類し、その面積率および配置を最適化することで穴広げ性を向上させた590~980MPaの鋼板が開示されている。 For example, Patent Document 1 discloses a steel sheet of 590 to 980 MPa in which the hole expandability is improved by classifying the metal structure of the steel sheet and optimizing the area ratio and arrangement.
国際公開第2018/138887号WO2018/138887 国際公開第2018/151273号WO2018/151273
 高強度の熱延鋼板を利用して軽量な部品を製造する場合、部品を薄肉化することによる剛性の低下を断面形状で補うことが必要となる。複雑な断面形状を有する部品へ適用される熱延鋼板には、高い延性が要求される。例えば、1100MPa以上の引張強さを得るためには、ベイナイトを主相とする必要があるが、ベイナイトを主相とすると、強度および延性を共に高めることが困難となる。 When manufacturing lightweight parts using high-strength hot-rolled steel, it is necessary to compensate for the decrease in rigidity caused by thinning the parts with cross-sectional shapes. High ductility is required for hot-rolled steel sheets that are applied to parts having complicated cross-sectional shapes. For example, in order to obtain a tensile strength of 1100 MPa or more, it is necessary to use bainite as the main phase.
 ベイナイトを主相としたうえで延性を向上する方法として、残留オーステナイトを利用する方法がある。本発明者らは、ベイナイトを主相とした熱延鋼板を複雑な断面形状を有する部品へ適用する方法について検討した。ベイナイトを主相とすることで、延性および穴広げ性を向上させれば伸びフランジ変形に起因する端面割れは解消される。しかし、本発明者らは、図1に示すように、ベイナイトを主相とした熱延鋼板を、例えば自動車足回り部品のロアアームに適用した場合に、リンク部近傍の湾曲形状張出部で割れが生じてしまうことを知見した。この割れは、張出し変形を受けた後に、割れに直交するように引張変形を受ける部分で生じるものであった。 As a method of improving ductility with bainite as the main phase, there is a method of using retained austenite. The present inventors have studied a method of applying a hot-rolled steel sheet containing bainite as a main phase to a part having a complicated cross-sectional shape. By using bainite as the main phase, ductility and hole expandability can be improved, and end face cracks caused by stretch flange deformation can be eliminated. However, as shown in Fig. 1, the present inventors found that when a hot-rolled steel sheet containing bainite as a main phase is applied, for example, to a lower arm of automobile chassis parts, cracks occur at the curved overhang near the link. was found to occur. This crack was generated in a portion that underwent tensile deformation perpendicular to the crack after being subjected to stretch deformation.
 上記例のように、高い剛性を確保するための複雑な断面形状を有する部品に、ベイナイトを主相とする熱延鋼板を適用する場合には、割れが生じてしまうことを本発明者らは知見した。本発明者らは、この割れが発生する箇所は、従来課題とされていたフランジ部、バーリング端面以外の箇所であることも知見した。 As in the above example, when a hot-rolled steel sheet containing bainite as the main phase is applied to a part having a complicated cross-sectional shape for ensuring high rigidity, the present inventors have found that cracks occur. I found out. The inventors of the present invention have also found that the locations where the cracks occur are locations other than the flange portion and the burring end face, which have been conventionally considered problems.
 この割れた箇所を本発明者らが分析した結果、曲げ変形を受けた後に、曲げひずみと直交する方向の変形によって局所的に収縮し、破断したことを本発明者らは知見した。この破断を抑制するためには、曲げ変形の予ひずみを受けた後の直交した方向での変形に対して、加工硬化能を維持できることが必要であること、すなわち、均一伸びを等方的に高めることが重要であることを本発明者らは知見した。 As a result of the analysis of this cracked part, the inventors found that after receiving bending deformation, it locally contracted due to deformation in the direction perpendicular to the bending strain and broke. In order to suppress this fracture, it is necessary to maintain the work hardening ability against deformation in the orthogonal direction after receiving the prestrain of bending deformation, that is, uniform elongation is isotropically The inventors have found that it is important to increase
 均一伸びを等方的に高める方法として、例えば特許文献2には、L方向とC方向との吸収エネルギーの比を低減するための技術が開示されている。
 しかしながら、近年では均一伸びをより等方的に高めることが望まれている。
As a method for isotropically increasing the uniform elongation, for example, Patent Document 2 discloses a technique for reducing the ratio of absorbed energies in the L direction and the C direction.
However, in recent years, it is desired to increase the uniform elongation more isotropically.
 本発明は、高い強度、並びに、優れた延性および穴広げ性を有し、且つ均一伸びが等方的に高められた熱延鋼板およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a hot-rolled steel sheet having high strength, excellent ductility and hole expansibility, and isotropically enhanced uniform elongation, and a method for producing the same.
 本発明者らは、高強度、優れた延性および穴広げ性を有し、均一伸びを等方的に高めた熱延鋼板を得るためには、特に、圧延組織に沿った界面と接触する第二相の構成比率を制御すること、すなわち結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合を制御することが重要であることを知見した。 In order to obtain a hot-rolled steel sheet having high strength, excellent ductility and hole expansibility, and isotropically enhanced uniform elongation, the present inventors particularly found that the first It is important to control the composition ratio of the two phases, that is, to control the ratio of the line lengths in contact with retained austenite among the line lengths of high-angle grain boundaries of bainite with a crystal orientation difference of 15° or more. I found out.
 また、本発明者らは、上記熱延鋼板を得るためには、特に、仕上げ圧延条件を制御し、且つ巻取り後の再加熱時の加熱条件を制御することが重要であることを知見した。 In addition, the present inventors have found that, in order to obtain the hot-rolled steel sheet, it is particularly important to control the finish rolling conditions and the heating conditions during reheating after coiling. .
 上記知見に基づいてなされた本発明の要旨は以下の通りである。
(1)本発明の一態様に係る熱延鋼板は、化学組成が、質量%で、
C :0.13~0.21%、
Si:0.70~1.45%、
Mn:1.95~2.55%、
P :0.060%以下、
S :0.005%以下、
N :0.0070%以下、
Al:0.020~0.430%、
Ti:0.006~0.055%、
Nb:0.006~0.040%、
Cr:0.05~0.47%、
Mo:0.020~0.120%、
B :0.0008~0.0030%、
Cu:0~0.40%、
Ni:0~0.30%、
V :0~0.30%、および
Sn:0~0.04%
を含有し、残部がFeおよび不純物からなり、
 金属組織が、面積%で、
 ベイナイトが25.0~96.0%、
 残留オーステナイトが4.0~12.0%、
 フェライトが5.0%以下、
 マルテンサイトが70.0%以下、
 パーライトが3.0%以下であり、
 旧オーステナイト粒の平均粒径が25.0μm以下であり、
 結晶方位差が15゜以上である前記ベイナイトの大傾角粒界の線長のうち、前記残留オーステナイトと接する線長の割合が3.0%以上、12.0%未満である。
(2)上記(1)に記載の熱延鋼板は、前記化学組成が、質量%で、
Cu:0.01~0.40%、
Ni:0.01~0.30%、
V :0.01~0.30%、および
Sn:0.01~0.04%
からなる群から選択される1種または2種以上含有してもよい。
(3)本発明の別の態様に係る熱延鋼板の製造方法は、上記(1)または(2)に記載の熱延鋼板の製造方法であって、
 上記(1)または(2)に記載の化学組成を有するスラブを1220~1300℃の温度域で40分以上加熱する加熱工程と、
 75~85%の総圧下率で、且つ1070~1200℃の粗圧延温度で粗圧延を行う粗圧延工程と、
 最終圧延温度が940~1020℃であり、最終圧下率が26~43%となるように仕上げ圧延を行う仕上げ圧延工程と、
 前記仕上げ圧延の完了後2.0秒以内に冷却を開始し、前記仕上げ圧延の完了後17.0秒以内に300~480℃の温度域まで冷却する冷却工程と、
 巻取りを行う巻取り工程と、
 前記巻取り後、30分以内に、加熱量ΔTが下記式(1)を満たすように加熱する再加熱工程と、
 200℃以下の温度域まで空冷する空冷工程と、を順次行う。
 245-0.942×CT+0.00092×CT<ΔT<686-2.38×CT+0.0022×CT …(1)
 ただし、上記式(1)中のCTは冷却停止温度である。
The gist of the present invention made based on the above knowledge is as follows.
(1) The hot-rolled steel sheet according to one aspect of the present invention has a chemical composition, in mass%,
C: 0.13 to 0.21%,
Si: 0.70 to 1.45%,
Mn: 1.95-2.55%,
P: 0.060% or less,
S: 0.005% or less,
N: 0.0070% or less,
Al: 0.020 to 0.430%,
Ti: 0.006-0.055%,
Nb: 0.006 to 0.040%,
Cr: 0.05 to 0.47%,
Mo: 0.020-0.120%,
B: 0.0008 to 0.0030%,
Cu: 0-0.40%,
Ni: 0 to 0.30%,
V: 0-0.30%, and Sn: 0-0.04%
and the balance consists of Fe and impurities,
The metal structure, in area %,
Bainite is 25.0 to 96.0%,
4.0 to 12.0% retained austenite,
Ferrite content is 5.0% or less,
martensite is 70.0% or less,
Perlite is 3.0% or less,
The average grain size of the prior austenite grains is 25.0 μm or less,
Among the line lengths of the high-angle grain boundaries of the bainite having a crystal orientation difference of 15° or more, the line lengths in contact with the retained austenite account for 3.0% or more and less than 12.0%.
(2) In the hot-rolled steel sheet according to (1) above, the chemical composition is, in mass%,
Cu: 0.01 to 0.40%,
Ni: 0.01 to 0.30%,
V: 0.01-0.30%, and Sn: 0.01-0.04%
It may contain one or more selected from the group consisting of
(3) A method for manufacturing a hot-rolled steel sheet according to another aspect of the present invention is the method for manufacturing a hot-rolled steel sheet according to (1) or (2) above,
A heating step of heating a slab having the chemical composition described in (1) or (2) above in a temperature range of 1220 to 1300° C. for 40 minutes or more;
A rough rolling step in which rough rolling is performed at a rough rolling temperature of 1070 to 1200 ° C. with a total rolling reduction of 75 to 85%;
A finish rolling step in which finish rolling is performed so that the final rolling temperature is 940 to 1020 ° C. and the final rolling reduction is 26 to 43%;
A cooling step of starting cooling within 2.0 seconds after the completion of the finish rolling and cooling to a temperature range of 300 to 480 ° C. within 17.0 seconds after the completion of the finish rolling;
A winding process for winding,
A reheating step of heating such that the heating amount ΔT satisfies the following formula (1) within 30 minutes after the winding;
and an air-cooling step of air-cooling to a temperature range of 200° C. or less.
245−0.942×CT+0.00092×CT 2 <ΔT<686−2.38×CT+0.0022×CT 2 (1)
However, CT in the above formula (1) is the cooling stop temperature.
 本発明に係る上記態様によれば、高い強度、並びに、優れた延性および穴広げ性を有し、且つ均一伸びが等方的に高められた熱延鋼板およびその製造方法を提供することができる。 According to the above aspect of the present invention, it is possible to provide a hot-rolled steel sheet having high strength, excellent ductility and hole expansibility, and isotropically enhanced uniform elongation, and a method for producing the same. .
ベイナイトを主相とした熱延鋼板から製造したロアアームの割れ部分を示す図である。FIG. 4 is a diagram showing a cracked portion of a lower arm manufactured from a hot-rolled steel sheet containing bainite as a main phase; 実施例における、結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合と、圧延方向の均一伸びと圧延方向に直角な方向の均一伸びとの差、との関係を示す図である。Among the wire lengths of the high-angle grain boundaries of bainite having a crystal orientation difference of 15° or more, the ratio of wire lengths in contact with retained austenite, uniform elongation in the rolling direction, and uniform elongation in the direction perpendicular to the rolling direction in the examples It is a figure which shows the relationship with the difference with.
 以下、本実施形態の熱延鋼板およびその製造方法について、詳細に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。なお、以下に記載する「~」を挟んで記載される数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」、「超」と示す数値には、その値が数値範囲に含まれない。 The hot-rolled steel sheet of the present embodiment and the method for manufacturing the same will be described in detail below. However, the present invention is not limited to the configuration disclosed in this embodiment, and various modifications can be made without departing from the gist of the present invention. In addition, the lower limit value and the upper limit value are included in the numerical limitation range described below between "-". Numerical values indicated as "less than" and "greater than" do not include the value within the numerical range.
 まず、本実施形態に係る熱延鋼板の化学組成の限定理由について説明する。なお、化学組成についての「%」は全て「質量%」のことを指す。 First, the reasons for limiting the chemical composition of the hot-rolled steel sheet according to this embodiment will be described. In addition, all "%" about a chemical composition point out the thing of "mass %."
 本実施形態に係る熱延鋼板の化学組成は、質量%で、C:0.13~0.21%、Si:0.70~1.45%、Mn:1.95~2.55%、P:0.060%以下、S:0.005%以下、N:0.0070%以下、Al:0.020~0.430%、Ti:0.006~0.055%、Nb:0.006~0.040%、Cr:0.05~0.47%、Mo:0.020~0.120%、B:0.0008~0.0030%、並びに、残部:Feおよび不純物を含む。
 以下、各元素について説明する。
The chemical composition of the hot-rolled steel sheet according to the present embodiment is, in mass%, C: 0.13 to 0.21%, Si: 0.70 to 1.45%, Mn: 1.95 to 2.55%, P: 0.060% or less, S: 0.005% or less, N: 0.0070% or less, Al: 0.020 to 0.430%, Ti: 0.006 to 0.055%, Nb: 0. 006-0.040%, Cr: 0.05-0.47%, Mo: 0.020-0.120%, B: 0.0008-0.0030%, and the balance: Fe and impurities.
Each element will be described below.
 C:0.13~0.21%
 Cは、強度を高めるために必要な元素である。C含有量が0.13%未満であると、フェライト量が増え、強度が劣化する場合がある。そのため、C含有量は0.13%以上とする。好ましくは、0.15%以上、0.16%以上である。
 一方、C含有量が0.21%超であると、マルテンサイト量が増え、穴広げ性が劣化する場合がある。そのため、C含有量は0.21%以下とする。好ましくは、0.20%以下、0.19%以下である。
C: 0.13-0.21%
C is an element necessary for increasing the strength. If the C content is less than 0.13%, the amount of ferrite may increase and the strength may deteriorate. Therefore, the C content is made 0.13% or more. Preferably, it is 0.15% or more and 0.16% or more.
On the other hand, when the C content exceeds 0.21%, the amount of martensite increases, and the hole expansibility may deteriorate. Therefore, the C content is made 0.21% or less. Preferably, it is 0.20% or less and 0.19% or less.
 Si:0.70~1.45%
 Siは、残留オーステナイト量を増加させて均一伸びを高めるために必要な元素である。Si含有量が0.70%未満であると、残留オーステナイト量が減り、延性が劣化する。そのため、Si含有量は0.70%以上とする。好ましくは、0.80%以上、0.90%以上である。
 一方、Si含有量が1.45%超であると、残留オーステナイト量が増え、穴広げ性が劣化する場合がある。そのため、Si含有量は1.45%以下とする。好ましくは、1.30%以下、1.20%以下である。
Si: 0.70-1.45%
Si is an element necessary for increasing the amount of retained austenite and enhancing uniform elongation. If the Si content is less than 0.70%, the amount of retained austenite decreases and the ductility deteriorates. Therefore, the Si content is set to 0.70% or more. Preferably, it is 0.80% or more and 0.90% or more.
On the other hand, when the Si content exceeds 1.45%, the amount of retained austenite increases, and the hole expansibility may deteriorate. Therefore, the Si content is set to 1.45% or less. Preferably, it is 1.30% or less and 1.20% or less.
 Mn:1.95~2.55%
 Mnは、所望の強度を得るために必要な元素である。Mn含有量が1.95%未満であると、フェライト量が増え、強度が劣化する。そのため、Mn含有量は1.95%以上とする。好ましくは2.00%以上、2.10%以上である。
 一方、Mn含有量が2.55%超であると、Mn偏析によって組織が不均一となり、穴広げ性が劣化する場合がある。そのため、Mn含有量は2.55%以下とする。好ましくは、2.40%以下、2.30%以下である。
Mn: 1.95-2.55%
Mn is an element necessary to obtain desired strength. If the Mn content is less than 1.95%, the amount of ferrite increases and the strength deteriorates. Therefore, the Mn content is set to 1.95% or more. It is preferably 2.00% or more and 2.10% or more.
On the other hand, if the Mn content exceeds 2.55%, the structure may become uneven due to Mn segregation, and the hole expansibility may deteriorate. Therefore, the Mn content is set to 2.55% or less. Preferably, it is 2.40% or less and 2.30% or less.
 P:0.060%以下
 Pは、製造工程で不可避的に混入する不純物元素である。P含有量が多すぎると、粒界が脆化することで製造時にスラブ割れが発生する。安定的に製造時のスラブ割れを抑制するために、P含有量は0.060%以下とする。好ましくは、0.050%以下、0.040%以下である。スラブ割れの発生率を可能な限り低減するためには、P含有量を0.012%以下とすることが好ましい。
 なお、P含有量は低い程好ましいが、P含有量を0.002%未満とするには極めて高いコストを要するため、0.002%以上としてもよい。
P: 0.060% or less P is an impurity element that is unavoidably mixed in the manufacturing process. If the P content is too high, slab cracking occurs during production due to embrittlement of grain boundaries. In order to stably suppress slab cracking during production, the P content is made 0.060% or less. Preferably, it is 0.050% or less and 0.040% or less. In order to reduce the incidence of slab cracking as much as possible, the P content is preferably 0.012% or less.
It should be noted that the lower the P content is, the more preferable it is, but since an extremely high cost is required to make the P content less than 0.002%, the P content may be 0.002% or more.
 S:0.005%以下
 Sは、製造工程で不可避的に混入する不純物元素である。S含有量が多すぎると、MnSが形成される。MnSが形成されると、MnSの周りにマルテンサイトが生成し、マルテンサイト量が多くなる結果、穴広げ性が劣化する。穴広げ性の劣化を防ぐために、S含有量は0.005%以下とする。好ましくは、0.004%以下である。MnSによる影響を可能な限り低減するためには、S含有量は0.003%以下とすることが好ましい。
 なお、S含有量を0.0005%未満とすると、脱硫コストが極めて高くなり、経済性を損ねる。そのため、S含有量は0.0005%以上としてもよい。
S: 0.005% or less S is an impurity element that is unavoidably mixed in the manufacturing process. If the S content is too high, MnS will form. When MnS is formed, martensite is generated around MnS, and as a result of an increase in the amount of martensite, the hole expansibility deteriorates. In order to prevent deterioration of the hole expansibility, the S content is made 0.005% or less. Preferably, it is 0.004% or less. In order to reduce the influence of MnS as much as possible, the S content is preferably 0.003% or less.
If the S content is less than 0.0005%, the desulfurization cost becomes extremely high, impairing economic efficiency. Therefore, the S content may be 0.0005% or more.
 N:0.0070%以下
 Nは、含有量が多すぎると、製造工程において窒化物を形成し、スラブの脆化割れを引き起こす場合がある。そのため、N含有量は少ない方が好ましい。スラブの脆化割れを抑制するために、N含有量は0.0070%以下とする。好ましくは、0.0050%以下である。
 なお、N含有量を0.0003%未満とする場合、脱Nコストが著しく増加する。そのため、N含有量は0.0003%以上としてもよい。
N: 0.0070% or less If the N content is too high, it may form nitrides during the manufacturing process and cause embrittlement cracking of the slab. Therefore, the smaller the N content, the better. In order to suppress embrittlement cracking of the slab, the N content is made 0.0070% or less. Preferably, it is 0.0050% or less.
If the N content is less than 0.0003%, the N removal cost will increase significantly. Therefore, the N content may be 0.0003% or more.
 Al:0.020~0.430%
 Alは、不可避的に混入する不純物元素であるが、脱酸効果を有する元素でもある。また、Alは、パーライトの形成を抑制する元素でもある。Al含有量が0.020%未満であると、パーライト量が増え、穴広げ性が劣化する場合がある。そのため、Al含有量は0.020%以上とする。好ましくは、0.100%以上、0.150%以上である。
 一方、Al含有量が0.430%超であると、鋳造時にAlNが形成され、スラブ割れが発生する。また、連続鋳造時の鋳造ノズルで酸化物を形成することで、製造性を損ねる場合がある。そのため、Al含有量は0.430%以下とする。好ましくは、0.350%以下である。
Al: 0.020-0.430%
Al is an impurity element that is inevitably mixed, but it is also an element that has a deoxidizing effect. Al is also an element that suppresses the formation of pearlite. If the Al content is less than 0.020%, the amount of pearlite increases and the hole expansibility may deteriorate. Therefore, the Al content is set to 0.020% or more. Preferably, it is 0.100% or more and 0.150% or more.
On the other hand, when the Al content exceeds 0.430%, AlN is formed during casting and slab cracking occurs. In addition, the formation of oxides in the casting nozzle during continuous casting may impair the manufacturability. Therefore, the Al content is set to 0.430% or less. Preferably, it is 0.350% or less.
 Ti:0.006~0.055%
 Tiは、TiNを形成することで後述するBの効果を最大限発現させるために必要な元素である。Ti含有量が0.006%未満であると、BがBNとなることで、フェライト量が増え、強度が劣化する。そのため、Ti含有量は0.006%以上とする。好ましくは、0.010%以上である。
 一方、Ti含有量が0.055%超であると、TiNによって連続鋳造時のスラブ割れが発生する。そのため、Ti含有量は0.055%以下とする。好ましくは、0.040%以下、0.030%以下、0.025%以下である。
Ti: 0.006-0.055%
Ti is an element necessary for maximizing the effect of B, which will be described later, by forming TiN. If the Ti content is less than 0.006%, B becomes BN, so the amount of ferrite increases and the strength deteriorates. Therefore, the Ti content is set to 0.006% or more. Preferably, it is 0.010% or more.
On the other hand, when the Ti content exceeds 0.055%, TiN causes slab cracking during continuous casting. Therefore, the Ti content is set to 0.055% or less. Preferably, it is 0.040% or less, 0.030% or less, or 0.025% or less.
 Nb:0.006~0.040%
 Nbは、圧延組織を細粒化し、旧オーステナイト粒の平均粒径を好ましく制御するために必要な元素である。Nb含有量が0.006%未満であると、旧オーステナイト粒の平均粒径を好ましく制御することができず、穴広げ性が劣化する。そのため、Nb含有量は0.006%以上とする。好ましくは、0.010%以上、0.015%以上である。
 一方、Nb含有量が0.040%超であると、結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合が少なくなることで、均一伸びを等方的に高めることができない。そのため、Nb含有量は0.040%以下とする。好ましくは、0.030%以下、0.022%以下である。
Nb: 0.006-0.040%
Nb is an element necessary for refining the rolling structure and preferably controlling the average grain size of prior austenite grains. If the Nb content is less than 0.006%, the average grain size of the prior austenite grains cannot be preferably controlled, and the hole expansibility deteriorates. Therefore, the Nb content is made 0.006% or more. Preferably, it is 0.010% or more and 0.015% or more.
On the other hand, when the Nb content is more than 0.040%, the ratio of the line lengths in contact with the retained austenite among the line lengths of the large-angle grain boundaries of the bainite having a crystal orientation difference of 15° or more decreases. Uniform elongation cannot be increased isotropically. Therefore, the Nb content is set to 0.040% or less. Preferably, it is 0.030% or less and 0.022% or less.
 Cr:0.05~0.47%
 Crは、フェライト量を低減し、所望の強度を得るために必要な元素である。Cr含有量が0.05%未満であると、フェライト量が増え、強度が劣化する。そのため、Cr含有量は0.05%以上とする。好ましくは、0.10%以上、0.20%以上である。
 一方、Cr含有量が0.47%超であると、マルテンサイト量が増え、延性が劣化する。そのため、Cr含有量は0.47%以下とする。好ましくは、0.40%以下、0.35%以下である。
Cr: 0.05-0.47%
Cr is an element necessary to reduce the amount of ferrite and obtain desired strength. If the Cr content is less than 0.05%, the amount of ferrite increases and the strength deteriorates. Therefore, the Cr content is set to 0.05% or more. Preferably, it is 0.10% or more and 0.20% or more.
On the other hand, when the Cr content exceeds 0.47%, the amount of martensite increases and the ductility deteriorates. Therefore, the Cr content is set to 0.47% or less. Preferably, it is 0.40% or less and 0.35% or less.
 Mo:0.020~0.120%
 Moは、フェライト量を低減し、所望の強度を得るために必要な元素である。Mo含有量が0.020%未満であると、フェライト量が増え、強度が劣化する。そのため、Mo含有量は0.020%以上とする。好ましくは、0.040%以上、0.060%以上である。
 一方、Mo含有量が0.120%超であると、マルテンサイト量が増え、延性が劣化する。そのため、Mo含有量は0.120%以下とする。好ましくは、0.100%以下、0.080%以下である。
Mo: 0.020-0.120%
Mo is an element necessary to reduce the amount of ferrite and obtain desired strength. If the Mo content is less than 0.020%, the amount of ferrite increases and the strength deteriorates. Therefore, Mo content shall be 0.020% or more. Preferably, it is 0.040% or more and 0.060% or more.
On the other hand, if the Mo content exceeds 0.120%, the amount of martensite increases and the ductility deteriorates. Therefore, Mo content shall be 0.120% or less. Preferably, it is 0.100% or less and 0.080% or less.
 B:0.0008~0.0030%
 Bは、フェライトの形成を抑制する元素である。B含有量が0.0008%未満であると、フェライト量が増え、強度が劣化する場合がある。そのため、B含有量は0.0008%以上とする。好ましくは、0.0009%以上、0.0010%以上である。
 一方、B含有量が0.0030%超であると、熱間での変形抵抗が高くなり、通板が困難となる。そのため、B含有量は0.0030%以下とする。好ましくは、0.0020%以下、0.0015%以下である。
B: 0.0008 to 0.0030%
B is an element that suppresses the formation of ferrite. If the B content is less than 0.0008%, the amount of ferrite may increase and the strength may deteriorate. Therefore, the B content is made 0.0008% or more. Preferably, it is 0.0009% or more and 0.0010% or more.
On the other hand, if the B content exceeds 0.0030%, the hot deformation resistance becomes high, making it difficult to thread the sheet. Therefore, the B content is set to 0.0030% or less. Preferably, it is 0.0020% or less and 0.0015% or less.
 熱延鋼板の化学組成の残部は、Fe及び不純物であってもよい。不純物としては、鋼原料もしくはスクラップから及び/又は製鋼過程で不可避的に混入し、本実施形態に係る熱延鋼板の特性を阻害しない範囲で許容される元素が例示される。 The balance of the chemical composition of the hot-rolled steel sheet may be Fe and impurities. Examples of impurities include elements that are inevitably mixed from steel raw materials or scraps and/or during the steelmaking process and that are permissible within a range that does not impair the properties of the hot-rolled steel sheet according to the present embodiment.
 本実施形態に係る熱延鋼板の化学組成では、Feの一部に代えて、任意元素として、以下の元素を含有してもよい。以下の任意元素を含有しない場合の含有量は0%である。 The chemical composition of the hot-rolled steel sheet according to the present embodiment may contain the following elements as optional elements instead of part of Fe. The content is 0% when the following optional elements are not contained.
 Cu:0.01~0.40%
 Cuはトランプエレメントとして混入する元素である。Cuは、固溶することで強度を高めると共に、均一伸びおよび穴広げ性を高め、且つ均一伸びを等方的に高める。この効果を確実に発揮させるために、Cu含有量は0.01%以上としてもよい。
 一方、Cu含有量が0.40%超であると、熱間でのCu脆化割れを引き起こし、製造が困難となる。そのため、Cu含有量は0.40%以下とする。
Cu: 0.01-0.40%
Cu is an element that is incorporated as a tramp element. Cu increases the strength by forming a solid solution, improves uniform elongation and hole expansibility, and isotropically enhances uniform elongation. In order to ensure this effect, the Cu content may be 0.01% or more.
On the other hand, when the Cu content exceeds 0.40%, Cu embrittlement cracking occurs during hot working, making production difficult. Therefore, the Cu content is set to 0.40% or less.
 Ni:0.01~0.30%
 Niは、固溶することで強度を高めると共に、均一伸びおよび穴広げ性を高め、且つ均一伸びを等方的に高める。この効果を確実に発揮させるために、Ni含有量は0.01%以上としてもよい。
 一方、Ni含有量が0.30%超であると、連続鋳造時の割れが発生する。そのため、Ni含有量は0.30%以下とする。
Ni: 0.01-0.30%
Ni increases the strength by forming a solid solution, improves uniform elongation and hole expansibility, and isotropically enhances uniform elongation. In order to ensure this effect, the Ni content may be 0.01% or more.
On the other hand, when the Ni content exceeds 0.30%, cracks occur during continuous casting. Therefore, the Ni content is set to 0.30% or less.
 V:0.01~0.30%
 Vは、固溶することで強度を高めると共に、均一伸びおよび穴広げ性を高め、且つ均一伸びを等方的に高める。この効果を確実に発揮させるために、V含有量は0.01%以上としてもよい。
 一方、V含有量が0.30%超であると、連続鋳造時の割れが発生する。そのため、V含有量は0.30%以下とする。
V: 0.01-0.30%
V increases the strength by forming a solid solution, improves uniform elongation and hole expansibility, and isotropically enhances uniform elongation. In order to ensure this effect, the V content may be 0.01% or more.
On the other hand, when the V content exceeds 0.30%, cracks occur during continuous casting. Therefore, the V content is set to 0.30% or less.
 Sn:0.01~0.04%
 Snは、固溶することで強度を高めると共に、均一伸びおよび穴広げ性を高め、且つ均一伸びを等方的に高める。この効果を確実に発揮させるために、Sn含有量は0.01%以上としてもよい。
 一方、Sn含有量が0.04%超であると、熱間での粒界脆化割れが発生する。そのため、Sn含有量は0.04%以下とする。
Sn: 0.01-0.04%
Sn increases the strength by forming a solid solution, improves uniform elongation and hole expansibility, and isotropically enhances uniform elongation. In order to ensure this effect, the Sn content may be 0.01% or more.
On the other hand, when the Sn content exceeds 0.04%, intergranular embrittlement cracking occurs during hot working. Therefore, the Sn content is set to 0.04% or less.
 上述した熱延鋼板の化学組成は、スパーク放電発光分光分析装置などを用いて、分析すればよい。なお、CおよびSはガス成分分析装置などを用いて、酸素気流中で燃焼させ、赤外線吸収法によって測定することで同定された値を採用する。また、Nは、熱延鋼板から採取した試験片をヘリウム気流中で融解させ、熱伝導度法によって測定することで同定された値を採用する。 The chemical composition of the hot-rolled steel sheet described above can be analyzed using a spark discharge emission spectrometer or the like. For C and S, values identified by burning in an oxygen stream and measuring by an infrared absorption method using a gas component analyzer or the like are adopted. For N, a value identified by melting a test piece taken from a hot-rolled steel sheet in a helium stream and measuring it by a thermal conductivity method is adopted.
 次に、本実施形態に係る熱延鋼板の金属組織について説明する。本実施形態に係る熱延鋼板は、金属組織が、面積%で、ベイナイトが25.0~96.0%、残留オーステナイトが4.0~12.0%、フェライトが5.0%以下、マルテンサイトが70.0%以下、パーライトが3.0%以下であり、旧オーステナイト粒の平均粒径が25.0μm以下であり、結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合が3.0%以上、12.0%未満である。 Next, the metal structure of the hot-rolled steel sheet according to this embodiment will be described. The hot-rolled steel sheet according to the present embodiment has a metal structure in terms of area %, 25.0 to 96.0% bainite, 4.0 to 12.0% retained austenite, 5.0% or less ferrite, marten A bainite high-angle grain boundary line having a site content of 70.0% or less, a pearlite content of 3.0% or less, an average grain size of prior austenite grains of 25.0 μm or less, and a crystal orientation difference of 15° or more. Among the lengths, the ratio of wire lengths in contact with retained austenite is 3.0% or more and less than 12.0%.
 なお、本実施形態では、板面に直角な断面の、表面から板厚の1/4深さ位置(表面から板厚の1/8深さ~板厚の3/8深さの領域)における金属組織を規定する。その理由は、この位置における金属組織が、熱延鋼板の代表的な金属組織を示すからである。以下、各規定について説明する。 In the present embodiment, in a cross section perpendicular to the plate surface, at a depth position of 1/4 of the plate thickness from the surface (a region from 1/8 of the plate thickness to 3/8 of the plate thickness from the surface) Define metallographic structure. The reason is that the metallographic structure at this position shows the typical metallographic structure of the hot-rolled steel sheet. Each rule will be explained below.
 ベイナイトの面積率:25.0~96.0%
 ベイナイトは熱延鋼板の強度、均一伸び、穴広げ率を高める。所望の強度、均一伸び、穴広げ率を得るために、ベイナイトの面積率は25.0%以上とする。好ましくは、30.0%以上、40.0%以上、50.0%以上または60.0%以上である。
 残留オーステナイトの面積率との関係から、ベイナイトの面積率は96.0%以下とする。好ましくは、94.0%以下、92.0%以下である。
Bainite area ratio: 25.0 to 96.0%
Bainite increases the strength, uniform elongation, and hole expansion ratio of hot-rolled steel sheets. In order to obtain desired strength, uniform elongation and hole expansion rate, the area ratio of bainite is set to 25.0% or more. Preferably, it is 30.0% or more, 40.0% or more, 50.0% or more, or 60.0% or more.
Based on the relationship with the area ratio of retained austenite, the area ratio of bainite is set to 96.0% or less. Preferably, it is 94.0% or less and 92.0% or less.
 残留オーステナイトの面積率:4.0~12.0%
 残留オーステナイトは熱延鋼板の均一伸びを高める。均一伸びを高めて優れた延性を得るために、残留オーステナイトの面積率は4.0%以上とする。好ましくは、6.0%以上、8.0%以上である。
 一方、残留オーステナイトの面積率が12.0%超であると、穴広げ性が劣化する。そのため、残留オーステナイトの面積率は12.0%以下とする。好ましくは、10.0%以下、8.0%以下である。
Area ratio of retained austenite: 4.0 to 12.0%
Retained austenite enhances the uniform elongation of the hot rolled steel sheet. In order to increase uniform elongation and obtain excellent ductility, the area ratio of retained austenite is set to 4.0% or more. Preferably, it is 6.0% or more and 8.0% or more.
On the other hand, if the area ratio of retained austenite exceeds 12.0%, the hole expansibility deteriorates. Therefore, the area ratio of retained austenite is set to 12.0% or less. Preferably, it is 10.0% or less and 8.0% or less.
 フェライトの面積率:5.0%以下
 フェライトの面積率が5.0%超であると、強度が劣化する。そのため、フェライトの面積率は5.0%以下とする。好ましくは3.0%以下であり、0.0%であってもよい。
Area ratio of ferrite: 5.0% or less When the area ratio of ferrite exceeds 5.0%, the strength deteriorates. Therefore, the area ratio of ferrite is set to 5.0% or less. It is preferably 3.0% or less, and may be 0.0%.
 マルテンサイトの面積率:70.0%以下
 マルテンサイトは熱延鋼板の強度を高めるために有効な金属組織であるが、面積率が高まることで延性が劣化する。マルテンサイトの面積率が70.0%超であると、熱延鋼板の延性が著しく劣化する。そのため、マルテンサイトの面積率は70.0%以下とする。好ましくは、60.0%以下、50.0%以下または40.0%以下である。本実施形態に係る熱延鋼板は所望量のベイナイトを含むことで強度を確保できるため、マルテンサイトの面積率は0.0%であってもよい。
Area ratio of martensite: 70.0% or less Martensite is a metal structure effective for increasing the strength of a hot-rolled steel sheet, but ductility deteriorates as the area ratio increases. If the area ratio of martensite exceeds 70.0%, the ductility of the hot-rolled steel sheet significantly deteriorates. Therefore, the area ratio of martensite is set to 70.0% or less. Preferably, it is 60.0% or less, 50.0% or less, or 40.0% or less. Since the hot-rolled steel sheet according to the present embodiment can ensure strength by including a desired amount of bainite, the area ratio of martensite may be 0.0%.
 パーライトの面積率:3.0%以下
 金属組織にパーライトが含まれると、熱延鋼板の穴広げ性が劣化する。パーライトの面積率が3.0%超であると、穴広げ性が著しく劣化する。また、パーライトの面積率が高いほど、均一伸びが劣化する。そのため、パーライトの面積率は3.0%以下とする。均一伸びの低下を十分に抑制するために、パーライトの面積率は1.0%以下が好ましく、0.0%がより好ましい。
Area ratio of pearlite: 3.0% or less When pearlite is contained in the metal structure, the hole expansibility of the hot-rolled steel sheet deteriorates. If the area ratio of pearlite is more than 3.0%, the expansibility is significantly deteriorated. Further, the higher the area ratio of pearlite, the worse the uniform elongation. Therefore, the area ratio of pearlite is set to 3.0% or less. In order to sufficiently suppress the decrease in uniform elongation, the area ratio of pearlite is preferably 1.0% or less, more preferably 0.0%.
 以下、金属組織の面積率の測定方法について説明する。 The method for measuring the area ratio of the metal structure will be described below.
 フェライトの面積率の測定方法
 EBSD解析によって得られた結晶方位情報を用いて測定する。測定には、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製DVC5型検出器)とで構成されたEBSD解析装置を用いる。この際、装置内の真空度は1.0×10-4Pa以下、加速電圧は15kV,照射電流レベルは13~15、電子線の照射レベルは62とし、WDは15mmとする。
Method for measuring area ratio of ferrite Measured using crystal orientation information obtained by EBSD analysis. For the measurement, an EBSD analyzer composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used. At this time, the degree of vacuum in the apparatus is 1.0×10 −4 Pa or less, the acceleration voltage is 15 kV, the irradiation current level is 13 to 15, the electron beam irradiation level is 62, and the WD is 15 mm.
 観察する試料は、熱延鋼板の幅方向1/4位置、1/2位置、3/4位置の各々の位置から、表面から板厚の1/4深さ位置(表面から板厚の1/8深さ~板厚の3/8深さの領域)が観察できるように、圧延方向に直交する方向に10mmの幅方向サイズとなるように採取する。圧延方向に直交する断面について、#1000で粗研磨し、粒度1~3μmのダイヤモンドパウダーを分散させた研磨液で鏡面研磨仕上げを行った後、電解研磨によって表面の研磨ひずみを除去して観察サンプルとする。この電解研磨では、観察面の機械研磨ひずみを除去するため、最小でも20μmを研磨すればよく、最大でも50μm研磨すればよい。端部のダレを考慮すると30μm以下とすることが好ましい。 The sample to be observed is positioned at a depth of 1/4 of the plate thickness from the surface (1/4 of the plate thickness from the surface) from each of the 1/4 position, 1/2 position, and 3/4 position in the width direction of the hot-rolled steel sheet. 8 depth to 3/8 depth of the plate thickness) is sampled so as to have a width direction size of 10 mm in the direction perpendicular to the rolling direction so that the region can be observed. The cross section perpendicular to the rolling direction was roughly polished with #1000, mirror-polished with a polishing liquid in which diamond powder with a particle size of 1 to 3 μm was dispersed, and then electrolytically polished to remove polishing strain on the surface. and In this electropolishing, in order to remove the mechanical polishing distortion of the observation surface, it is sufficient to polish the observation surface by a minimum of 20 μm and a maximum of 50 μm. Considering the sagging of the end portion, the thickness is preferably 30 μm or less.
 得られた観察サンプルについて、表面から板厚の1/4深さ位置(表面から板厚の1/8深さ~板厚の3/8深さの領域)において、板厚方向に100μmおよびその直交方向に200μmの範囲で、EBSD解析を実施する。EBSDで得る結晶方位情報は0.05~0.5μmの測定点間隔で測定された結晶方位とその測定座標とを記録したデータである。EBSD解析で得た結晶方位情報を用いて、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」によってbccと判定された領域の面積率を算出する。 For the obtained observation sample, at a depth position of 1/4 of the plate thickness from the surface (a region from 1/8 of the plate thickness to 3/8 of the plate thickness from the surface), 100 μm in the plate thickness direction and EBSD analysis is performed over a range of 200 μm in the orthogonal direction. The crystal orientation information obtained by EBSD is data recording the crystal orientation measured at intervals of 0.05 to 0.5 μm and the measurement coordinates. Using the crystal orientation information obtained by the EBSD analysis, the area ratio of the region determined to be bcc is calculated by the software "OIM Analysis (registered trademark)" attached to the EBSD analysis device.
 次に、OIM出力した逆極点カラーマップ上でbccのphaseと判定された図から隣接測定点の方位差が15゜以上である境界を結晶粒界と定義し、各結晶粒についてGAM値を算出する。このGAM値が0.5以下である結晶粒をフェライトおよびパーライトとみなす。各幅方向位置におけるフェライトおよびパーライトの結晶粒の面積率の平均値を算出することで、フェライトおよびパーライトの面積率の合計を得る。得られたフェライトおよびパーライトの面積率の合計から、後述するパーライトの面積率を差し引くことで、フェライトの面積率を得る。 Next, from the figure determined as the bcc phase on the inverse pole color map output by OIM, the boundary where the orientation difference between the adjacent measurement points is 15° or more is defined as the grain boundary, and the GAM value is calculated for each grain. do. Crystal grains with a GAM value of 0.5 or less are regarded as ferrite and pearlite. The sum of the area ratios of ferrite and pearlite is obtained by calculating the average value of the area ratios of ferrite and pearlite crystal grains at each position in the width direction. The area ratio of ferrite is obtained by subtracting the area ratio of pearlite, which will be described later, from the total area ratio of ferrite and pearlite obtained.
 マルテンサイトの面積率の測定方法
 フェライトの面積率を測定して得られたときの結晶方位情報を用いて、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」によってIQ(Image Quality)値が8000以上の値を示した測定点がマルテンサイトの測定点である。全測定点数に占める、マルテンサイトの測定点の割合を算出することで、マルテンサイトの面積率を得る。この方法により、各幅方向位置におけるマルテンサイトの面積率の平均値を算出することで、マルテンサイトの面積率を得る。なお、IQ値は観察試料表面の状態、測定時の精度によって変化することがある。これらの影響を排除するために、結晶方位情報の信頼性を現すCI(Cоnfidence Index)値が0.8以上のものを用いればよい。CI値が0.8未満となる場合は、前記方法での電解研磨を再度実施し、試料とEBSDパターンの検出機との作動距離を調整することや、加速電圧、照射電流レベルの調整を行うか、検出器のゲインあるいは露出を調整し、CI値が0.8以上となるようにデータを取得する。
Method for measuring the area ratio of martensite Using the crystal orientation information obtained by measuring the area ratio of ferrite, an IQ (Image Quality) value is obtained by the software "OIM Analysis (registered trademark)" attached to the EBSD analysis device. A measurement point where the value of is 8000 or more is a martensite measurement point. The area ratio of martensite is obtained by calculating the ratio of martensite measurement points to the total number of measurement points. By this method, the average value of the area ratio of martensite at each position in the width direction is calculated to obtain the area ratio of martensite. Note that the IQ value may change depending on the state of the surface of the observation sample and the accuracy of measurement. In order to eliminate these influences, a CI (Confidence Index) value of 0.8 or more, which indicates the reliability of the crystal orientation information, should be used. If the CI value is less than 0.8, electropolishing is performed again by the above method, and the working distance between the sample and the EBSD pattern detector is adjusted, and the acceleration voltage and irradiation current level are adjusted. Alternatively, adjust the gain or exposure of the detector and acquire data so that the CI value is 0.8 or more.
 残留オーステナイトの面積率の測定方法
 フェライトの面積率を測定して得られたときの結晶方位情報を用いて、fccのphaseと判定された領域を残留オーステナイトとみなす。各幅方向位置における残留オーステナイトの面積率の平均値を算出することで、残留オーステナイトの面積率を得る。
Method for Measuring Area Ratio of Retained Austenite Using the crystal orientation information obtained by measuring the area ratio of ferrite, the region determined as the phase of fcc is regarded as retained austenite. The area ratio of retained austenite is obtained by calculating the average value of the area ratio of retained austenite at each width direction position.
 パーライトの面積率の測定方法
 パーライトはフェライト中にラメラ状の炭化物が配置されている組織である。パーライトは、EBSD解析により得られた結晶方位情報を、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」で測定しても、フェライトと同一のbccと判定される。これは電子線ビームのスポット径内にパーライト中のフェライトが含まれるためである。したがって、パーライトの面積率のみはEBSD解析によらず、腐食サンプルの光学顕微鏡観察により測定する。
Method for Measuring Area Ratio of Pearlite Pearlite is a structure in which lamellar carbides are arranged in ferrite. Pearlite is determined to have the same bcc as ferrite even when the crystal orientation information obtained by EBSD analysis is measured using the software "OIM Analysis (registered trademark)" attached to the EBSD analysis device. This is because the ferrite in the pearlite is included in the spot diameter of the electron beam. Therefore, only the area ratio of pearlite is measured not by the EBSD analysis but by observing the corroded sample with an optical microscope.
 フェライトの面積率を測定する際に用いたサンプルと同一のサンプルを用いて、ナイタル腐食液によって現出させた組織を撮影することで、金属組織写真を得る。金属組織写真は、板厚方向に100μmおよびその直交方向に200μmの範囲を撮影したものとする。この金属組織写真を用いて、パーライトの面積率を測定する。ラメラ状の炭化物が含まれる結晶粒をパーライトとみなす。各幅方向位置におけるパーライトの面積率の平均値を算出することで、パーライトの面積率を得る。 Using the same sample as the one used to measure the area ratio of ferrite, a metallographic photograph is obtained by photographing the structure revealed by the nital etchant. It is assumed that the metal structure photograph is taken in a range of 100 μm in the plate thickness direction and 200 μm in the orthogonal direction. Using this metallographic photograph, the area ratio of pearlite is measured. Crystal grains containing lamellar carbides are regarded as pearlite. The area ratio of pearlite is obtained by calculating the average value of the area ratio of pearlite at each position in the width direction.
 ベイナイトの面積率の測定方法
 フェライトの面積率を測定して得られたときの結晶方位情報を用いて、フェライトおよびパーライトと判定された測定点、マルテンサイトと判定された測定点および残留オーステナイトと判定された点を除いた測定点がベイナイトの測定点である。全測定点に示すベイナイトの測定点の割合を算出することで、ベイナイトの面積率を得る。
Method of measuring the area ratio of bainite Using the crystal orientation information obtained by measuring the area ratio of ferrite, the measurement points determined to be ferrite and pearlite, the measurement points determined to be martensite, and the measurement points determined to be retained austenite. The bainite measurement points are the measurement points except for the points marked with . The area ratio of bainite is obtained by calculating the ratio of the bainite measurement points shown in all the measurement points.
 旧オーステナイト粒の平均粒径:25.0μm以下
 旧オーステナイト粒の粒径が大きいと、複相組織においては局部伸びが低下する。その結果として、熱延鋼板の穴広げ性が劣化する。旧オーステナイト粒の平均粒径が25.0μm超であると、穴広げ性の劣化が顕著となる。そのため、旧オーステナイト粒の平均粒径は25.0μm以下とする。好ましくは20.0μm以下、15.0μm以下である。
 旧オーステナイト粒の平均粒径が小さければ小さい程穴広げ性は向上するが、7.0μm未満としてもその効果は飽和する。そのため、旧オーステナイト粒の平均粒径は7.0μm以上としてもよい。
Average grain size of prior austenite grains: 25.0 µm or less When the grain size of prior austenite grains is large, the local elongation decreases in the dual-phase structure. As a result, the hole expansibility of the hot-rolled steel sheet deteriorates. If the average grain size of the prior austenite grains is more than 25.0 μm, the deterioration of the hole expansibility becomes remarkable. Therefore, the average grain size of prior austenite grains is set to 25.0 μm or less. It is preferably 20.0 μm or less and 15.0 μm or less.
The smaller the average grain size of the prior austenite grains, the better the hole expansibility. Therefore, the average grain size of the prior austenite grains may be 7.0 μm or more.
 旧オーステナイト粒の粒径の測定方法
 観察する試料は、熱延鋼板の幅方向1/4位置、1/2位置、3/4位置の各々の位置から、熱延鋼板の圧延方向と直行する板厚断面であり、表面から板厚の1/4深さ位置(表面から板厚の1/8深さ~板厚の3/8深さの領域)が観察できるようにサンプルを採取する。ピクリン酸飽和水溶液にドデシルベンゼンスルホン酸ナトリウム腐食液を加えた腐食液によって板厚断面の組織を現出させる。このサンプルの表面から板厚の1/4深さ位置(表面から板厚の1/8深さ~板厚の3/8深さの領域)について、500倍の倍率で、板厚方向に200μm、圧延方向と直行する方向に200μmの領域の3か所について撮影した金属組織写真から、旧オーステナイト粒の粒径を測定する。各観察視野に含まれる旧オーステナイト粒の1つについて、円相当直径を算出する。撮影視野の端部等、旧オーステナイト粒の全体が撮影視野に含まれていない旧オーステナイト粒を除き、各観察視野に含まれる全ての旧オーステナイト粒について上記操作を行い、各撮影視野における全ての旧オーステナイト粒の円相当直径を求める。各撮影視野において得られた旧オーステナイト粒の円相当直径の平均値を算出することで、旧オーステナイト粒の平均粒径を得る。
Method for measuring the grain size of prior austenite grains The samples to be observed were obtained from 1/4, 1/2, and 3/4 positions in the width direction of the hot-rolled steel sheet. It is a thick section, and a sample is taken so that a position 1/4 of the plate thickness from the surface (a region from 1/8 of the plate thickness to 3/8 of the plate thickness from the surface) can be observed. The texture of the thickness cross-section is revealed by an etchant in which a sodium dodecylbenzenesulfonate etchant is added to a picric acid saturated aqueous solution. 200 μm in the thickness direction at a magnification of 500 times for the 1/4 depth position of the plate thickness from the surface of this sample (region from 1/8 depth of plate thickness to 3/8 depth of plate thickness from surface) , the grain size of the prior austenite grains is measured from metallographic photographs taken at three locations in a 200 μm region in a direction perpendicular to the rolling direction. An equivalent circle diameter is calculated for one of the prior austenite grains included in each observation field. Except for the old austenite grains where the entire old austenite grains are not included in the imaging field such as the edge of the imaging field, perform the above operation for all the old austenite grains contained in each observation field, and all the old austenite grains in each imaging field Obtain the circle-equivalent diameter of the austenite grains. By calculating the average value of the equivalent circle diameters of the prior austenite grains obtained in each imaging field, the average grain size of the prior austenite grains is obtained.
 結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合:3.0%以上、12.0%未満
 熱延鋼板の金属組織は、熱間圧延時のひずみを受けることで、オーステナイトの形態が特徴付けられ、冷却、巻取り後もその形態を引継いで所定の金属組織となる。したがって、どのような金属組織においても、少なからず、熱間圧延によって生じた圧延方向に由来する集合組織および伸展した組織形態の特徴を残している。
Of the line lengths of large-angle grain boundaries of bainite with a crystal orientation difference of 15° or more, the ratio of line lengths in contact with retained austenite: 3.0% or more and less than 12.0% The austenitic morphology is characterized by being subjected to strain during inter-rolling, and even after cooling and coiling, the morphology is inherited to form a predetermined metal structure. Therefore, any metallographic structure retains not a little features of the rolling direction-derived texture and extended structure morphology produced by hot rolling.
 しかしながら、主相であるベイナイトの粒界に残留オーステナイトが接している場合、変形が強い箇所では残留オーステナイトが応力誘起変態して硬質組織として振る舞い、局所的な変形を抑制する。また、残留オーステナイトは、変形が弱い箇所では軟質な組織として変形を担う役割を果たす。その結果として、均一伸びを等方的に高めることができる。 However, when retained austenite is in contact with the grain boundaries of bainite, which is the main phase, the retained austenite undergoes stress-induced transformation and behaves as a hard structure at locations where deformation is strong, suppressing local deformation. In addition, retained austenite plays a role of supporting deformation as a soft structure at locations where deformation is weak. As a result, uniform elongation can be enhanced isotropically.
 本発明者らの鋭意検討の結果、結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合を3.0%以上とすることで、圧延方向およびそれに直交する方向の均一伸びの差を低減でき、均一伸びを等方的に高められることを知見した。その結果、本発明者らは、曲げひずみと直交する方向の変形によって生じるプレス部品の破断を抑制できることを知見した。そのため、結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合は3.0%以上とする。好ましくは、5.0%以上、8.0%以上である。 As a result of intensive studies by the present inventors, among the line lengths of the high-angle grain boundaries of bainite having a crystal orientation difference of 15° or more, the proportion of line lengths in contact with retained austenite is 3.0% or more. It has been found that the difference in uniform elongation in the rolling direction and in the direction perpendicular thereto can be reduced, and the uniform elongation can be isotropically enhanced. As a result, the present inventors have found that it is possible to suppress breakage of the pressed part caused by deformation in the direction perpendicular to the bending strain. Therefore, the proportion of line lengths in contact with retained austenite among the line lengths of large-angle grain boundaries of bainite having a crystal orientation difference of 15° or more is set to 3.0% or more. Preferably, it is 5.0% or more and 8.0% or more.
 一方、結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合が12.0%以上であると、均一伸びを等方的に高めることができない。そのため、結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合は12.0%未満とする。好ましくは11.0%以下、10.0%以下である。 On the other hand, when the ratio of the line length in contact with the retained austenite is 12.0% or more among the line lengths of the large-angle grain boundaries of the bainite having a crystal orientation difference of 15° or more, the uniform elongation is isotropically increased. can't Therefore, the proportion of line lengths in contact with retained austenite among the line lengths of large-angle grain boundaries of bainite having a crystal orientation difference of 15° or more is less than 12.0%. It is preferably 11.0% or less and 10.0% or less.
 結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合の測定方法
 フェライトの面積率を測定して得られたときの結晶方位情報を用いて、ベイナイトと判定された点群でOIM出力した逆極点カラーマップ上において、bccのphaseと判定された図から隣接測定点の方位差が15゜以上である境界を結晶粒界と定義し、ベイナイト粒界マップを作成する。次に、fccと判定された点群を上記のベイナイト粒界マップ上に描き、ベイナイト粒界の全ての線長に占めるベイナイト粒界とfccとが接する線長の割合を求める。この操作を採取したすべてのサンプルについて行い、その平均値を求めることで、結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合を得る。
Method for measuring the proportion of line lengths in contact with retained austenite among the line lengths of large-angle grain boundaries of bainite with a crystal orientation difference of 15° or more Using crystal orientation information obtained by measuring the area ratio of ferrite Then, on the inverse pole color map output by OIM with the point group determined to be bainite, the boundary where the orientation difference between the adjacent measurement points is 15 ° or more from the diagram determined as the bcc phase is defined as the grain boundary, Create a bainite grain boundary map. Next, the group of points determined to be fcc is drawn on the bainite grain boundary map, and the proportion of line lengths in which the bainite grain boundary and fcc are in contact with each other among all the line lengths of the bainite grain boundaries is determined. This operation is performed for all the samples collected, and the average value is obtained to obtain the ratio of the line length in contact with the retained austenite among the line lengths of the large angle grain boundaries of bainite with a crystal orientation difference of 15 ° or more. .
 本実施形態に係る熱延鋼板は、引張強さが1100MPa以上であってもよい。引張強さを1100MPa以上とすることで、車体軽量化により寄与することができる。引張強さの上限は特に規定しないが、1400MPa以下としてもよい。 The hot-rolled steel sheet according to this embodiment may have a tensile strength of 1100 MPa or more. By setting the tensile strength to 1100 MPa or more, it is possible to contribute to the weight reduction of the vehicle body. Although the upper limit of the tensile strength is not particularly defined, it may be 1400 MPa or less.
 また、本実施形態に係る熱延鋼板は、均一伸びが5.0%以上であり、圧延方向の均一伸びと圧延方向に直角な方向の均一伸びとの差が2.0%以下であってもよい。 Further, the hot-rolled steel sheet according to the present embodiment has a uniform elongation of 5.0% or more, and a difference between the uniform elongation in the rolling direction and the uniform elongation in the direction perpendicular to the rolling direction of 2.0% or less. good too.
 引張強さおよび均一伸びは、熱延鋼板から、JIS Z 2241:2011に記載の5号試験片を作製して、JIS Z 2241:2011に記載の試験方法に従って求める。  Tensile strength and uniform elongation are determined according to the test method described in JIS Z 2241:2011 by preparing No. 5 test pieces described in JIS Z 2241:2011 from hot-rolled steel sheets.
 なお、均一伸びは、圧延方向と、圧延方向に直角な方向とについてそれぞれ求める。コイルから切り出す場合は、コイルの長手方向が圧延方向である。その他、切り板から圧延方向を判定する場合、熱延鋼板の表面には圧延方向に沿ってSiスケールに起因した微細な凹凸が形成されているため、そのスケール模様から圧延方向を判定する。スケール模様の長辺と平行な方向を圧延方向とみなせばよい。 Note that the uniform elongation is obtained for each of the rolling direction and the direction perpendicular to the rolling direction. When cutting from a coil, the longitudinal direction of the coil is the rolling direction. In addition, when judging the rolling direction from a cut sheet, the surface of the hot-rolled steel sheet has fine unevenness caused by Si scale along the rolling direction, so the rolling direction is judged from the scale pattern. A direction parallel to the long side of the scale pattern may be regarded as the rolling direction.
 本実施形態に係る熱延鋼板は、穴広げ率が30%以上であってもよい。穴広げ率は、JIS Z 2256:2010準拠して穴広げ試験を行うことで測定する。 The hot-rolled steel sheet according to this embodiment may have a hole expansion ratio of 30% or more. The hole expansion ratio is measured by conducting a hole expansion test in accordance with JIS Z 2256:2010.
 次に、本実施形態に係る熱延鋼板の製造方法について説明する。本実施形態に係る熱延鋼板の好ましい製造方法は、以下の工程を順次行う。 Next, a method for manufacturing a hot-rolled steel sheet according to this embodiment will be described. A preferable method for manufacturing a hot-rolled steel sheet according to the present embodiment sequentially performs the following steps.
 上述した化学組成を有するスラブを1220~1300℃の温度域で40分以上加熱する加熱工程。
 75~85%の総圧下率で、且つ1070~1200℃の粗圧延温度で粗圧延を行う粗圧延工程。
 最終圧延温度が940~1020℃であり、最終圧下率が26~43%となるように仕上げ圧延を行う仕上げ圧延工程。
 前記仕上げ圧延の完了後2.0秒以内に冷却を開始し、前記仕上げ圧延の完了後17.0秒以内に300~480℃の温度域まで冷却する冷却工程。
 巻取りを行う巻取り工程。
 前記巻取り後、30分以内に、加熱量ΔTが下記式(1)を満たすように加熱する再加熱工程と、
 200℃以下の温度域まで空冷する空冷工程。
 245-0.942×CT+0.00092×CT<ΔT<686-2.38×CT+0.0022×CT …(1)
 ただし、上記式(1)中のCTは冷却停止温度である。
A heating step of heating a slab having the chemical composition described above in a temperature range of 1220 to 1300° C. for 40 minutes or longer.
A rough rolling step in which rough rolling is performed at a rough rolling temperature of 1070 to 1200° C. at a total rolling reduction of 75 to 85%.
A finish rolling step in which finish rolling is performed so that the final rolling temperature is 940 to 1020° C. and the final rolling reduction is 26 to 43%.
A cooling step of starting cooling within 2.0 seconds after completion of the finish rolling and cooling to a temperature range of 300 to 480° C. within 17.0 seconds after completion of the finish rolling.
Winding process for winding.
A reheating step of heating such that the heating amount ΔT satisfies the following formula (1) within 30 minutes after the winding;
An air-cooling process for air-cooling to a temperature range of 200°C or less.
245−0.942×CT+0.00092×CT 2 <ΔT<686−2.38×CT+0.0022×CT 2 (1)
However, CT in the above formula (1) is the cooling stop temperature.
 加熱工程
 上述した化学組成を有するスラブを、1220~1300℃の温度域で40分以上加熱する。加熱温度が1220℃未満であると、溶体化が進まず、フェライト量が多くなり、強度が劣化する。そのため、加熱温度は1220℃以上とする。好ましくは1240℃以上である。
 一方、加熱温度が1300℃超であると、加熱時にオーステナイト粒が粗大化し、結果として穴広げ性が劣化する。そのため、加熱温度は1300℃以下とする。エネルギーコストの観点から、加熱温度は、1280℃以下であることが好ましい。
Heating Step A slab having the chemical composition described above is heated in a temperature range of 1220 to 1300° C. for 40 minutes or longer. If the heating temperature is lower than 1220° C., the solutionization does not progress, the amount of ferrite increases, and the strength deteriorates. Therefore, the heating temperature is set to 1220° C. or higher. It is preferably 1240° C. or higher.
On the other hand, if the heating temperature is higher than 1300° C., the austenite grains become coarse during heating, resulting in deterioration of the hole expansibility. Therefore, the heating temperature is set to 1300° C. or less. From the viewpoint of energy cost, the heating temperature is preferably 1280° C. or less.
 1220~1300℃の温度域での保持時間が40分未満であると、溶体化が進まず、フェライト量が多くなり、強度が劣化する。そのため、上記温度域での保持時間は40分以上とする。好ましくは60分以上、80分以上である。このように加熱工程での加熱条件は最終組織の相構成に影響を及ぼす。したがって、通常、生産性のために30分程度となるような保持時間は好ましくなく、スラブの任意の箇所での温度が上記を満たすように40分以上の保持が必要である。
 保持時間の上限は特に限定しないが、200分以下としてもよい。
If the holding time in the temperature range of 1220 to 1300° C. is less than 40 minutes, the solutionization does not progress, the amount of ferrite increases, and the strength deteriorates. Therefore, the holding time in the above temperature range is set to 40 minutes or longer. It is preferably 60 minutes or more and 80 minutes or more. Thus, the heating conditions in the heating process affect the phase composition of the final structure. Therefore, a holding time of about 30 minutes is generally not preferable for productivity, and a holding time of 40 minutes or longer is necessary so that the temperature at any point of the slab satisfies the above.
Although the upper limit of the retention time is not particularly limited, it may be 200 minutes or less.
 粗圧延工程
 75~85%の総圧下率で粗圧延を行う。粗圧延工程における総圧下率は、スラブ厚さ:tと、粗圧延終了時の板厚tとを用いて、(1-t/t)×100(%)で表される。総圧下率が75%未満であると、圧延ひずみが不足し、熱間でのオーステナイト再結晶が進まない。そのため、オーステナイト粒の平均粒径が25.0μmを超えるまで粗大化し、結果として穴広げ性が劣化する。そのため、75%以上の総圧下率で粗圧延を行う。好ましくは77%以上である。
Rough rolling step Rough rolling is performed at a total rolling reduction of 75 to 85%. The total rolling reduction in the rough rolling step is expressed by (1−t r /t s )×100(%) using the slab thickness: t s and the strip thickness t r at the end of rough rolling. If the total rolling reduction is less than 75%, the rolling strain is insufficient, and hot austenite recrystallization does not proceed. Therefore, the average grain size of the austenite grains is coarsened to exceed 25.0 μm, and as a result, the hole expansibility is deteriorated. Therefore, rough rolling is performed at a total rolling reduction of 75% or more. Preferably it is 77% or more.
 一方、総圧下率が85%超であると、圧延ひずみが高すぎるため、オーステナイト再結晶が進むものの粒成長が大きく、オーステナイト粒の平均粒径が25.0μmを超えるまで粗大化し、穴広げ性が劣化する。そのため、総板減率で85%以下の粗圧延を行う。好ましくは83%以下である。 On the other hand, if the total rolling reduction is more than 85%, the rolling strain is too high, and although austenite recrystallization progresses, grain growth is large, and the average grain size of the austenite grains is coarsened to exceed 25.0 μm. deteriorates. Therefore, rough rolling is performed with a total reduction of 85% or less. Preferably it is 83% or less.
 粗圧延工程における粗圧延温度は特に限定しないが、熱間変形抵抗の観点から1070℃以上が好ましい。また、所望のフェライト分率を得る観点からも、粗圧延温度は1070℃以上が好ましい。
 スケール噛み込みによる疵を減らす観点からは、粗圧延温度は、1200℃以下が好ましい。また、所望の旧オーステナイト粒の平均粒径を得る観点からも、粗圧延温度は1200℃以下が好ましい。
 なお、ここでいう粗圧延温度とは、粗圧延最終段の出側温度のことである。
The rough rolling temperature in the rough rolling step is not particularly limited, but is preferably 1070° C. or higher from the viewpoint of hot deformation resistance. Further, from the viewpoint of obtaining a desired ferrite fraction, the rough rolling temperature is preferably 1070° C. or higher.
From the viewpoint of reducing flaws due to scale entrapment, the rough rolling temperature is preferably 1200° C. or less. Also from the viewpoint of obtaining the desired average grain size of the prior austenite grains, the rough rolling temperature is preferably 1200° C. or less.
The term "rough rolling temperature" as used herein means the temperature at the delivery side of the last stage of rough rolling.
 仕上げ圧延工程
 最終圧延温度が940~1020℃であり、最終圧下率が26~43%となるように仕上げ圧延を行う。最終圧延温度が940℃未満であると、オーステナイト再結晶が進まず細粒化せず、結果として旧オーステナイト粒の平均粒径が25.0μmを超える。そのため、最終圧延温度は940℃以上とする。好ましくは960℃以上である。
 なお、最終圧延温度とは、仕上げ圧延の最終パス出側の鋼板表面温度のことをいう。
Finish Rolling Process Finish rolling is performed at a final rolling temperature of 940 to 1020° C. and a final rolling reduction of 26 to 43%. If the final rolling temperature is less than 940° C., recrystallization of austenite does not proceed and grain refinement does not occur, and as a result, the average grain size of prior austenite grains exceeds 25.0 μm. Therefore, the final rolling temperature should be 940° C. or higher. Preferably, it is 960°C or higher.
The final rolling temperature means the surface temperature of the steel sheet on the exit side of the final pass of finish rolling.
 一方、最終圧延温度が1020℃超であると、オーステナイト再結晶が進むものの粗粒化することで、穴広げ性が劣化する。そのため、最終圧延温度は1020℃以下とする。好ましくは1000℃以下である。 On the other hand, if the final rolling temperature exceeds 1020°C, although austenite recrystallization progresses, the grains become coarse and the hole expandability deteriorates. Therefore, the final rolling temperature is set to 1020° C. or lower. It is preferably 1000° C. or less.
 仕上げ圧延の最終圧下率はオーステナイトの再結晶に影響を及ぼす。最終圧下率が26%未満であると、オーステナイト再結晶が進まず細粒化せず、結果として旧オーステナイト粒の平均粒径が25.0μmを超える。そのため、最終圧下率は26%以上とする。好ましくは30%以上である。
 なお、最終圧下率は、仕上げ圧延最終パス入側板厚:tと、仕上げ圧延最終パス出側板厚tとを用いて、(1-t/t)×100(%)で表される。
The final reduction in finish rolling affects the recrystallization of austenite. When the final rolling reduction is less than 26%, recrystallization of austenite does not progress and grain refinement does not occur, and as a result, the average grain size of prior austenite grains exceeds 25.0 μm. Therefore, the final rolling reduction is set to 26% or more. Preferably it is 30% or more.
The final rolling reduction is expressed by (1−t 1 /t 0 )×100 (%) using the plate thickness on the entry side of the final pass of finish rolling: t 0 and the plate thickness on the exit side of the final pass of finish rolling t 1 . be.
 一方、最終圧下率が43%超であると、オーステナイト再結晶が進むものの粗粒化することで、穴広げ性が劣化する。そのため、最終圧下率は43%以下とする。好ましくは40%以下である。 On the other hand, if the final rolling reduction is more than 43%, although austenite recrystallization progresses, the grains become coarser, resulting in deterioration in hole expansibility. Therefore, the final rolling reduction is set to 43% or less. Preferably it is 40% or less.
 仕上げ圧延の圧延開始温度(仕上げ圧延の最初パス入側の鋼板表面温度)は、変形抵抗を下げるためには、1040℃以上が好ましい。また、スケール噛み込みによる疵を減らすためには1100℃以下が好ましい。 The rolling start temperature of finish rolling (steel plate surface temperature at the first pass entry side of finish rolling) is preferably 1040°C or higher in order to reduce deformation resistance. In addition, the temperature is preferably 1100° C. or less in order to reduce flaws due to entrapment of scale.
 冷却工程
 仕上げ圧延の完了から冷却開始までの時間が2.0秒超であると、オーステナイト再結晶粒の粒成長が進み、穴広げ性が劣化する。そのため、仕上げ圧延後の完了後、2.0秒以内に冷却を開始する。ここでいう冷却開始までの時間とは、仕上げ圧延の最終パスでの圧延後、水冷が開始されるまでの時間のことをいう。
Cooling Step If the time from the completion of finish rolling to the start of cooling exceeds 2.0 seconds, the grain growth of recrystallized austenite grains proceeds and the hole expandability deteriorates. Therefore, cooling is started within 2.0 seconds after completion of finish rolling. Here, the time until the start of cooling means the time until the start of water cooling after rolling in the final pass of finish rolling.
 仕上げ圧延の完了直後に冷却を開始してもよいが、仕上げ圧延機直下への冷却水を噴射することが必要となり、ロールが過度に冷却されることで、変態核生成の駆動力が高まる。その結果として、結晶方位差が15゜以上である前記ベイナイトの大傾角粒界の線長のうち、前記残留オーステナイトと接する線長の割合が増加する。そのため、冷却開始までの時間は1.0秒以上とすることが好ましい。 Although cooling may be started immediately after finish rolling is completed, it is necessary to inject cooling water directly below the finish rolling mill, and excessive cooling of the rolls increases the driving force for transformation nucleation. As a result, the proportion of line lengths in contact with the retained austenite among the line lengths of the high-angle grain boundaries of the bainite having a crystal orientation difference of 15° or more increases. Therefore, it is preferable to set the time until the start of cooling to 1.0 second or longer.
 仕上げ圧延の完了から300~480℃の温度域までの冷却時間が17.0秒超であると、フェライトの面積率が高まり、強度が劣化する。そのため、冷却開始後は、仕上げ圧延が完了してから17.0秒以内に、300~480℃の温度域まで冷却する。冷却時間は短い程好ましいが、短時間で所望の温度域まで冷却するためには量密度を高める必要があり、冷却ノズルへの負荷が増大するため経済性を損ねる。そのため、300~480℃の温度域までの冷却時間は、仕上げ圧延の完了から7.0秒以上とすることが好ましい。 If the cooling time from the completion of finish rolling to the temperature range of 300 to 480°C exceeds 17.0 seconds, the area ratio of ferrite increases and the strength deteriorates. Therefore, after the start of cooling, the steel sheet is cooled to a temperature range of 300 to 480° C. within 17.0 seconds after completion of finish rolling. A shorter cooling time is more preferable, but in order to cool to a desired temperature range in a short time, it is necessary to increase the mass density, which increases the load on the cooling nozzle and impairs economic efficiency. Therefore, the cooling time to the temperature range of 300 to 480° C. is preferably set to 7.0 seconds or more after completion of finish rolling.
 300~480℃の温度域まで冷却した後、冷却を停止する。冷却停止温度が300℃未満であると、マルテンサイト量が増え、穴広げ性が劣化する。そのため、冷却停止温度は300℃以上とする。好ましくは320℃以上である。
 一方、冷却停止温度が480℃超であると、パーライト量が増え、且つ残留オーステナイト量が減ることで、延性および穴広げ性が劣化する。そのため、冷却停止温度は480℃以下とする。好ましくは460℃以下である。
After cooling to a temperature range of 300-480° C., cooling is stopped. If the cooling stop temperature is less than 300°C, the amount of martensite increases and the hole expansibility deteriorates. Therefore, the cooling stop temperature is set to 300° C. or higher. Preferably, it is 320°C or higher.
On the other hand, when the cooling stop temperature is higher than 480°C, the amount of pearlite increases and the amount of retained austenite decreases, resulting in deterioration of ductility and hole expansibility. Therefore, the cooling stop temperature is set to 480° C. or lower. It is preferably 460° C. or less.
 巻取り工程
 冷却停止後は直ちにコイル状に巻き取る。つまり、巻取り温度と冷却停止温度とは同じ温度となる。
Winding process Immediately after cooling is stopped, the material is wound into a coil. That is, the winding temperature and the cooling stop temperature are the same temperature.
 再加熱工程
 巻取り後は、30分以内に、加熱量ΔTが下記式(1)を満たすように加熱する。ここでの温度は、コイルの最外周の鋼板表面温度のことである。
 この再加熱工程は、結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合を好ましく制御するために特に重要な工程である。巻取り後の再加熱工程によって、旧オーステナイト粒界に対応する結晶方位差が15゜以上であるベイナイトの大傾角粒界でのC拡散が促され、結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合を高める。
Reheating Step Within 30 minutes after winding, the film is heated so that the heating amount ΔT satisfies the following formula (1). The temperature here means the surface temperature of the steel sheet on the outermost periphery of the coil.
This reheating step is a particularly important step for preferably controlling the proportion of wire lengths in contact with retained austenite among wire lengths of high-angle grain boundaries of bainite having a crystal misorientation of 15° or more. The reheating process after winding promotes C diffusion at the large-angle grain boundaries of bainite with a crystal orientation difference of 15° or more corresponding to the prior austenite grain boundary, and bainite with a crystal orientation difference of 15° or more. Increase the proportion of wire lengths in contact with retained austenite in the wire lengths of high-angle grain boundaries.
 245-0.942×CT+0.00092×CT<ΔT<686-2.38×CT+0.0022×CT …(1)
 ただし、上記式(1)中のCTは冷却停止温度(℃)である。また、ΔTの単位は℃である。
245−0.942×CT+0.00092×CT 2 <ΔT<686−2.38×CT+0.0022×CT 2 (1)
However, CT in the above formula (1) is the cooling stop temperature (°C). The unit of ΔT is degrees Celsius.
 加熱量ΔTが上記式(1)の左辺以下であると、残留オーステナイト量を好ましく制御することはできるが、結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合が少なくなる。また、加熱量ΔTが右辺以上であると、結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合が多くなる。 When the amount of heating ΔT is equal to or less than the left side of the above formula (1), the amount of retained austenite can be preferably controlled, but the residual The proportion of wire length in contact with austenite is reduced. When the amount of heating ΔT is equal to or greater than the right side, the proportion of line lengths in contact with retained austenite among the line lengths of the high-angle grain boundaries of bainite having a crystal orientation difference of 15° or more increases.
 また、ΔT加熱に要する時間が30分を超えると、ベイナイト界面近傍で炭化物反応が生じることで、残留オーステナイト量が減る。 Also, if the time required for ΔT heating exceeds 30 minutes, a carbide reaction occurs near the bainite interface, which reduces the amount of retained austenite.
 なお、加熱量ΔTが上記式(1)を満たすようにコイルが加熱されればよく、当該温度にて長時間保持する必要は無い。保持時間は例えば、1~3000秒とすればよい。 It should be noted that the coil should be heated so that the amount of heating ΔT satisfies the above formula (1), and it is not necessary to hold the coil at that temperature for a long time. The retention time may be, for example, 1 to 3000 seconds.
 空冷工程
 加熱量ΔTが上記式(1)を満たすように加熱した後は、200℃以下の温度域まで空冷する。空冷は、コイル搬送時の安全性を考慮し、100℃以下の温度域まで行うことが好ましい。
Air-cooling process After heating so that the heating amount ΔT satisfies the above formula (1), air-cooling is performed to a temperature range of 200°C or less. Air cooling is preferably carried out to a temperature range of 100° C. or less in consideration of safety during coil transportation.
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用する一条件例である。本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。 Next, examples of the present invention will be described, but the conditions in the examples are examples of conditions adopted to confirm the feasibility and effect of the present invention. The present invention is not limited to this one conditional example. Various conditions can be adopted in the present invention as long as the object of the present invention is achieved without departing from the gist of the present invention.
 連続鋳造を実施することで、表1Aおよび表1Bに示す化学組成を有するスラブを得た。鋼No.I、L、SおよびXは、鋳造時にスラブの割れが認められたため、その時点で製造を中止した。 By performing continuous casting, slabs having the chemical compositions shown in Tables 1A and 1B were obtained. Steel no. For I, L, S and X, slab cracking was observed during casting, and production was discontinued at that point.
 次に、表2A~表2Cに示す条件により、熱延鋼板からなるコイルを製造した。なお、仕上げ圧延の圧延開始温度は1040~1100℃とし、ΔT加熱した温度での保持時間は1~3000秒とし、ΔT加熱した温度で保持した後は、100℃以下の温度域まで空冷した。
 なお、試験No.53は、熱間での変形抵抗が高かったため、仕上げ圧延以降の製造を中止した。
Next, coils made of hot-rolled steel sheets were manufactured under the conditions shown in Tables 2A to 2C. In addition, the rolling start temperature of the finish rolling is 1040 to 1100 ° C., the holding time at the ΔT heating temperature is 1 to 3000 seconds, and after holding at the ΔT heating temperature, it is air-cooled to a temperature range of 100 ° C. or less.
In addition, test No. No. 53 had high deformation resistance in hot working, so production after finish rolling was discontinued.
 得られたコイルの最外周部から、金属組織観察、引張試験および穴広げ試験用の試験片を切り出した。試験片は、熱延鋼板の幅方向1/4位置、1/2位置、3/4位置から2つずつ採取し、引張強さ、均一伸び、穴広げ率、圧延方向の均一伸びと圧延方向に直角な方向の均一伸びとの差を求めた。試験方法は上述の方法と同様の方法とした。
 また、得られた試験片から、上述の方法により、金属組織観察を行った。得られた結果を表3A~表3Cに示す。
Specimens for metallographic observation, tensile test and hole-expanding test were cut out from the outermost periphery of the obtained coil. Two test pieces were taken from each of the 1/4 position, 1/2 position, and 3/4 position in the width direction of the hot-rolled steel sheet, and the tensile strength, uniform elongation, hole expansion ratio, uniform elongation in the rolling direction and rolling direction The difference from the uniform elongation in the direction perpendicular to the The test method was the same as the method described above.
Moreover, metal structure observation was performed from the obtained test piece by the above-mentioned method. The results obtained are shown in Tables 3A-3C.
 なお、表3A~表3Cにおいて、「残留オーステナイトと接する線長の割合」は、「結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合」を示し、「均一伸びの差」は、「圧延方向の均一伸びと圧延方向に直角な方向の均一伸びとの差」を示す。 In Tables 3A to 3C, the "percentage of wire lengths in contact with retained austenite" refers to "the ratio of wire lengths in contact with retained austenite among the line lengths of high-angle grain boundaries of bainite with a crystal misorientation of 15° or more. The "uniform elongation difference" indicates the "difference between the uniform elongation in the rolling direction and the uniform elongation in the direction perpendicular to the rolling direction".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表3A~表3Cに示す通り、本発明例に係る熱延鋼板は、高い強度、並びに、優れた延性および穴広げ性を有し、且つ均一伸びが等方的に高められたことが分かる。
 一方、比較例に係る熱延鋼板は、上記特性のいずれか一つ以上が劣ることが分かる。
As shown in Tables 3A to 3C, it can be seen that the hot-rolled steel sheets according to the examples of the present invention had high strength, excellent ductility and hole expansibility, and isotropically increased uniform elongation.
On the other hand, it can be seen that the hot-rolled steel sheets according to the comparative examples are inferior in at least one of the above properties.
 張出し変形を受けた後に、割れに直交するように引張変形を受ける部分で生じる割れを回避するためには、圧延方向の均一伸びと圧延方向に直角な方向の均一伸びとの差を2.0%以下とする必要がある。図2によれば、結晶方位差が15゜以上であるベイナイトの大傾角粒界の線長のうち、残留オーステナイトと接する線長の割合を3.0%以上、12.0%未満とすることで、圧延方向の均一伸びと圧延方向に直角な方向の均一伸びとの差を2.0%以下に制御できること分かる。 In order to avoid cracks occurring in the portion subjected to tensile deformation perpendicular to the crack after being subjected to stretch deformation, the difference between the uniform elongation in the rolling direction and the uniform elongation in the direction perpendicular to the rolling direction should be 2.0. % or less. According to FIG. 2, among the line lengths of the high-angle grain boundaries of bainite with a crystal orientation difference of 15° or more, the proportion of line lengths in contact with retained austenite is 3.0% or more and less than 12.0%. , the difference between the uniform elongation in the rolling direction and the uniform elongation in the direction perpendicular to the rolling direction can be controlled to 2.0% or less.
 本発明に係る上記態様によれば、高い強度、並びに、優れた延性および穴広げ性を有し、且つ均一伸びが等方的に高められた熱延鋼板およびその製造方法を提供することができる。 According to the above aspect of the present invention, it is possible to provide a hot-rolled steel sheet having high strength, excellent ductility and hole expansibility, and isotropically enhanced uniform elongation, and a method for producing the same. .

Claims (3)

  1.  化学組成が、質量%で、
    C :0.13~0.21%、
    Si:0.70~1.45%、
    Mn:1.95~2.55%、
    P :0.060%以下、
    S :0.005%以下、
    N :0.0070%以下、
    Al:0.020~0.430%、
    Ti:0.006~0.055%、
    Nb:0.006~0.040%、
    Cr:0.05~0.47%、
    Mo:0.020~0.120%、
    B :0.0008~0.0030%、
    Cu:0~0.40%、
    Ni:0~0.30%、
    V :0~0.30%、および
    Sn:0~0.04%
    を含有し、残部がFeおよび不純物からなり、
     金属組織が、面積%で、
     ベイナイトが25.0~96.0%、
     残留オーステナイトが4.0~12.0%、
     フェライトが5.0%以下、
     マルテンサイトが70.0%以下、
     パーライトが3.0%以下であり、
     旧オーステナイト粒の平均粒径が25.0μm以下であり、
     結晶方位差が15゜以上である前記ベイナイトの大傾角粒界の線長のうち、前記残留オーステナイトと接する線長の割合が3.0%以上、12.0%未満である、ことを特徴とする熱延鋼板。
    The chemical composition, in mass %,
    C: 0.13 to 0.21%,
    Si: 0.70 to 1.45%,
    Mn: 1.95-2.55%,
    P: 0.060% or less,
    S: 0.005% or less,
    N: 0.0070% or less,
    Al: 0.020 to 0.430%,
    Ti: 0.006-0.055%,
    Nb: 0.006 to 0.040%,
    Cr: 0.05 to 0.47%,
    Mo: 0.020-0.120%,
    B: 0.0008 to 0.0030%,
    Cu: 0-0.40%,
    Ni: 0 to 0.30%,
    V: 0-0.30%, and Sn: 0-0.04%
    and the balance consists of Fe and impurities,
    The metal structure, in area %,
    Bainite is 25.0 to 96.0%,
    4.0 to 12.0% retained austenite,
    Ferrite content is 5.0% or less,
    martensite is 70.0% or less,
    Perlite is 3.0% or less,
    The average grain size of the prior austenite grains is 25.0 μm or less,
    The ratio of the line length in contact with the retained austenite is 3.0% or more and less than 12.0% among the line lengths of the large-angle grain boundaries of the bainite having a crystal orientation difference of 15° or more. hot-rolled steel sheet.
  2.  前記化学組成が、質量%で、
    Cu:0.01~0.40%、
    Ni:0.01~0.30%、
    V :0.01~0.30%、および
    Sn:0.01~0.04%
    からなる群から選択される1種または2種以上含有する、ことを特徴とする請求項1に記載の熱延鋼板。
    The chemical composition, in mass %,
    Cu: 0.01 to 0.40%,
    Ni: 0.01 to 0.30%,
    V: 0.01-0.30%, and Sn: 0.01-0.04%
    The hot-rolled steel sheet according to claim 1, containing one or more selected from the group consisting of:
  3.  請求項1または2に記載の熱延鋼板の製造方法であって、
     請求項1または2に記載の化学組成を有するスラブを1220~1300℃の温度域で40分以上加熱する加熱工程と、
     75~85%の総圧下率で、且つ1070~1200℃の粗圧延温度で粗圧延を行う粗圧延工程と、
     最終圧延温度が940~1020℃であり、最終圧下率が26~43%となるように仕上げ圧延を行う仕上げ圧延工程と、
     前記仕上げ圧延の完了後2.0秒以内に冷却を開始し、前記仕上げ圧延の完了後17.0秒以内に300~480℃の温度域まで冷却する冷却工程と、
     巻取りを行う巻取り工程と、
     前記巻取り後、30分以内に、加熱量ΔTが下記式(1)を満たすように加熱する再加熱工程と、
     200℃以下の温度域まで空冷する空冷工程と、を順次行うことを特徴とする熱延鋼板の製造方法。
     245-0.942×CT+0.00092×CT<ΔT<686-2.38×CT+0.0022×CT …(1)
     ただし、上記式(1)中のCTは冷却停止温度である。
    A method for manufacturing a hot-rolled steel sheet according to claim 1 or 2,
    a heating step of heating a slab having the chemical composition according to claim 1 or 2 in a temperature range of 1220 to 1300° C. for 40 minutes or more;
    A rough rolling step in which rough rolling is performed at a rough rolling temperature of 1070 to 1200 ° C. with a total rolling reduction of 75 to 85%;
    A finish rolling step in which finish rolling is performed so that the final rolling temperature is 940 to 1020 ° C. and the final rolling reduction is 26 to 43%;
    A cooling step of starting cooling within 2.0 seconds after the completion of the finish rolling and cooling to a temperature range of 300 to 480 ° C. within 17.0 seconds after the completion of the finish rolling;
    A winding process for winding,
    A reheating step of heating such that the heating amount ΔT satisfies the following formula (1) within 30 minutes after the winding;
    and an air-cooling step of air-cooling to a temperature range of 200° C. or less.
    245−0.942×CT+0.00092×CT 2 <ΔT<686−2.38×CT+0.0022×CT 2 (1)
    However, CT in the above formula (1) is the cooling stop temperature.
PCT/JP2023/000119 2022-01-07 2023-01-06 Hot-rolled steel sheet and method for producing same WO2023132351A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023572486A JPWO2023132351A1 (en) 2022-01-07 2023-01-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022001420 2022-01-07
JP2022-001420 2022-01-07

Publications (1)

Publication Number Publication Date
WO2023132351A1 true WO2023132351A1 (en) 2023-07-13

Family

ID=87073728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000119 WO2023132351A1 (en) 2022-01-07 2023-01-06 Hot-rolled steel sheet and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2023132351A1 (en)
WO (1) WO2023132351A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263715A (en) * 2008-04-24 2009-11-12 Nippon Steel Corp Hot-rolled steel plate superior in hole expandability and manufacturing method therefor
JP2014510838A (en) * 2011-02-18 2014-05-01 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Hot rolled flat steel product manufactured from composite phase steel and method for manufacturing the same
WO2018151273A1 (en) * 2017-02-16 2018-08-23 新日鐵住金株式会社 Hot rolled steel sheet and method for manufacturing same
WO2020170681A1 (en) * 2019-02-18 2020-08-27 日本製鉄株式会社 Hot-rolled steel sheet and method for manufacturing same
WO2020203943A1 (en) * 2019-04-04 2020-10-08 日本製鉄株式会社 Galvanized steel sheet and method for producing same
WO2021187321A1 (en) * 2020-03-17 2021-09-23 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263715A (en) * 2008-04-24 2009-11-12 Nippon Steel Corp Hot-rolled steel plate superior in hole expandability and manufacturing method therefor
JP2014510838A (en) * 2011-02-18 2014-05-01 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Hot rolled flat steel product manufactured from composite phase steel and method for manufacturing the same
WO2018151273A1 (en) * 2017-02-16 2018-08-23 新日鐵住金株式会社 Hot rolled steel sheet and method for manufacturing same
WO2020170681A1 (en) * 2019-02-18 2020-08-27 日本製鉄株式会社 Hot-rolled steel sheet and method for manufacturing same
WO2020203943A1 (en) * 2019-04-04 2020-10-08 日本製鉄株式会社 Galvanized steel sheet and method for producing same
WO2021187321A1 (en) * 2020-03-17 2021-09-23 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2023132351A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
JP5176431B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP6019117B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP6760407B2 (en) Hot-rolled steel sheet and its manufacturing method
JP7243854B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JPWO2020070810A1 (en) Manufacturing method of carburized steel sheet and carburized steel sheet
EP3492610A1 (en) High-strength steel sheet
WO2018030400A1 (en) Steel sheet
KR102455453B1 (en) High-strength steel sheet with excellent ductility and hole expandability
EP4286544A1 (en) Steel sheet for hot stamping and hot stamping molded body
JP2007162076A (en) Hot rolled steel sheet having excellent workability and fatigue property and casting method therefor
JP7104370B2 (en) Thick steel plate and its manufacturing method
JP2021066941A (en) Wear-resistant steel sheet and method for producing the same
WO2023132351A1 (en) Hot-rolled steel sheet and method for producing same
US20230257845A1 (en) Hot-rolled steel sheet
JP7440804B2 (en) hot rolled steel plate
JP7151889B2 (en) Steel plate for hot stamping
CN115244204A (en) Hot rolled steel plate
KR102603447B1 (en) hot stamp molding body
WO2024009812A1 (en) Hot-rolled steel sheet
WO2023132342A1 (en) Hot-rolled steel sheet and method for producing same
JPWO2019203251A1 (en) Hot rolled steel sheet
JP7469706B2 (en) High-strength steel plate
JP7211566B1 (en) High-strength hot-rolled steel sheet and manufacturing method thereof, and high-strength electric resistance welded steel pipe and manufacturing method thereof
JP7397380B2 (en) Steel plates for hot stamping and hot stamping molded bodies
JP7397381B2 (en) Steel plates for hot stamping and hot stamping molded bodies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23737302

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023572486

Country of ref document: JP