WO2023132340A1 - Hydrogen production device - Google Patents

Hydrogen production device Download PDF

Info

Publication number
WO2023132340A1
WO2023132340A1 PCT/JP2023/000055 JP2023000055W WO2023132340A1 WO 2023132340 A1 WO2023132340 A1 WO 2023132340A1 JP 2023000055 W JP2023000055 W JP 2023000055W WO 2023132340 A1 WO2023132340 A1 WO 2023132340A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen production
reducing agent
transfer fluid
heat transfer
production apparatus
Prior art date
Application number
PCT/JP2023/000055
Other languages
French (fr)
Japanese (ja)
Inventor
甫 戸田
裕一 阿部
博文ジュニア 和田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023132340A1 publication Critical patent/WO2023132340A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the disclosed embodiments relate to hydrogen production equipment.
  • a hydrogen production apparatus includes a reducing agent, a container that stores the reducing agent, a steam generating unit that generates steam, a first channel member that supplies the steam to the reducing agent, A heating furnace for generating heated exhaust gas, a first heat exchanger for extracting heat from the exhaust gas, a second channel member for transferring the heat to the reducing agent, and a heat transfer channel for circulating the heat transfer channel.
  • a heat transfer fluid and a third flow path member supplying the heat transfer fluid to the first heat exchanger.
  • FIG. 1 is a diagram schematically showing the configuration of the hydrogen production apparatus of the present disclosure.
  • FIG. 2 is a diagram showing another example of the hydrogen production device of the present disclosure.
  • FIG. 3 is a diagram showing another example of the hydrogen production device of the present disclosure.
  • FIG. 4 is a diagram showing another example of the hydrogen production device of the present disclosure.
  • FIG. 5 is a diagram showing another example of the hydrogen production device of the present disclosure.
  • FIG. 6 is a diagram showing another example of the hydrogen production device of the present disclosure.
  • FIG. 7 is a diagram showing another example of the hydrogen production device of the present disclosure.
  • Patent Document 1 proposes a technology for generating hydrogen by reducing a catalyst using heat emitted from an industrial furnace such as a blast furnace, and oxidizing the catalyst by contacting water vapor with the reduced catalyst. It is in addition, although it is described as a catalyst in Patent Document 1, it is expressed as a reducing agent in the present application. Fundamentally, the reducing agent of the present application can be considered the same as the catalyst described in the prior art. In this application, the description of the catalyst may be used in the description of the prior art.
  • FIG. 1 is a diagram schematically showing the configuration of the hydrogen production device 1 of the present disclosure.
  • the hydrogen production apparatus 1 includes a reducing agent 10, a container 11 containing the reducing agent 10, a steam generating section 12, a first flow path member 13, a heating furnace 14, a first heat exchanger 15, a second It has a channel member 16 , a heat transfer fluid 17 and a third channel member 18 .
  • the reducing agent 10 has the function of coming into contact with water vapor, depriving the water vapor of oxygen, and reducing the water vapor to generate hydrogen.
  • a container 11 contains a reducing agent 10 used to produce hydrogen.
  • the reducing agent 10 may have a central channel through which various fluids can pass.
  • the reducing agent 10 may be a cylindrical porous body into which a tubular structure can be inserted.
  • the reducing agent 10 may be, for example, an oxide that is thermally reduced to create oxygen vacancies.
  • a perovskite oxide can be used as the reducing agent 10. With the perovskite oxide described in Patent Document 1, the hydrogen production cycle can be performed in the temperature range of 400° C. or higher and 1600° C. or lower.
  • a reducing agent 10 is contained in a container 11 .
  • the steam generator 12 has a function of heating water, which is a raw material, to generate steam.
  • the first channel member 13 is a channel for supplying the reducing agent 10 with the steam generated by the steam generator 12 .
  • the steam generating part 12 and the container 11 containing the reducing agent 10 may be connected.
  • the steam becomes superheated steam when it is supplied to the reducing agent 10 .
  • the steam generator 12 may generate superheated steam, or a device may be used to heat the steam generated by the steam generator 12 to obtain superheated steam.
  • the notation of steam in the specification of the present application may be read as superheated steam.
  • the heating furnace 14 is a variety of furnaces that are used in various industries and have high internal temperatures.
  • the heating furnace 14 generates an exhaust gas 14a.
  • the heating furnace 14 may be, for example, a firing furnace, a heat treatment furnace, a power plant, a waste incinerator, a blast furnace, an electric furnace, an industrial gas synthesizing device, a gasification device, a cement clinker firing furnace, or the like.
  • the first heat exchanger 15 has a function of extracting heat from the exhaust gas 14a.
  • the heat of the exhaust gas 14 a is transferred to the heat transfer fluid 17 flowing through the second flow path member 16 .
  • a heat transfer fluid 17 is supplied to the first heat exchanger 15 by a third channel member 18 .
  • a hydrogen production device with such a configuration can efficiently produce hydrogen. That is, the flow rate and temperature of the heat transfer fluid 17 sent to the third flow path member 18 can be freely changed according to the flow rate and temperature of the exhaust gas 14a, so that the efficiency of hydrogen production can be improved.
  • the container 11 may be connected to a gas recovery unit 24 that recovers hydrogen obtained by bringing water vapor into contact with the reducing agent 10 .
  • the gas recovery unit 24 may include, for example, a hydrogen separation membrane or a hydrogen storage alloy (not shown). Also, the gas recovery unit 24 may have other means for separating hydrogen from other gases, water vapor, and the like. Further, the gas recovery section 24 may be equipped with, for example, a vacuum suction machine to suck the gas from the container 11 .
  • Heat transfer fluid 17 may be a non-oxidizing gas. Using a substantially oxygen-free heat transfer fluid 17 allows the heat transfer fluid 17 to contact the reducing agent 10 to effectively reduce the reducing agent 10 .
  • the heat transfer fluid 17 may contain at least one of Ar gas, N2 gas and CO2 gas. These gases are readily available. In particular, it is preferable that the sum of Ar gas, N 2 gas and CO 2 gas occupies 70% by volume or more of the heat transfer fluid 17 .
  • the heat transfer fluid 17 may be a metal with a melting point of 300°C or less.
  • the heat transfer fluid 17 may be a metal with a boiling point of 700° C. or higher.
  • the heat transfer fluid 17 may be sodium, potassium.
  • the heat transfer fluid 17 may be a metal with a melting point of 600° C. or less.
  • Heat transfer fluid 17 may be a metal with a boiling point of 1200° C. or higher.
  • the heat transfer fluid 17 may contain at least one of lithium, indium and gallium.
  • the hydrogen production apparatus 1 of the present disclosure may also have a fourth flow path member 19 that connects with the second flow path member 16 and supplies the heat transfer fluid 17 to the first heat exchanger 15 .
  • the hydrogen production apparatus 1 having such a configuration reduces heat loss by supplying the once heated heat transfer fluid 17 to the first heat exchanger 15 again.
  • the second flow path member 16 may be connected to a fifth flow path member 20 that supplies the cooling fluid 20 a to the reducing agent 10 .
  • a hydrogen production apparatus having such a configuration can shorten the time for cooling the reducing agent 10 and has high efficiency in hydrogen production.
  • the fifth channel member 20 may be connected to the third channel member 18 .
  • the hydrogen production apparatus 1 having such a configuration can flow the cooling fluid 20a for cooling the reducing agent 10 using the third flow path member 18. Therefore, the structure of the hydrogen production apparatus 1 is can be simplified.
  • the cooling fluid 20a made of the same material as the heat transfer fluid 17 may be used.
  • the cooling fluid may be of the same material as the heat transfer fluid. Since the hydrogen production apparatus 1 having such a configuration can use the heat transfer fluid 17 as the cooling fluid 20a, the structure of the hydrogen production apparatus 1 can be simplified.
  • the second channel member 16 may also serve as the first channel member 13 .
  • the hydrogen production device 1 having such a configuration can simplify the structure of the hydrogen production device 1 .
  • gas may be used as the heat transfer fluid 17 .
  • a heat transfer fluid 17 containing water vapor V can then be contacted with the reducing agent 10 to produce hydrogen.
  • the third channel member 18 may also serve as the first channel member 13 . Since the hydrogen production device 1 having such a configuration can supply the steam V to the first heat exchanger 15, the steam V can be heated and the structure of the hydrogen production device 1 can be simplified. .
  • the hydrogen production apparatus 1 of the present disclosure even if the steam generating section 12 has the second heat exchanger 21 that generates steam using the heat of the heat transfer fluid 17, good.
  • the hydrogen production apparatus 1 having such a configuration can save energy for generating steam using the water 12a, and thus has high efficiency.
  • the water vapor generating section 12 may include a third heat exchanger 23 that generates water vapor using the heat of the exhaust gas 14a. .
  • the hydrogen production apparatus 1 having such a configuration can save energy for generating steam, and thus has high efficiency.
  • the second flow path member 16 of the hydrogen production apparatus 1 of the present disclosure may have a first heating section 26 that heats at least one of the heat transfer fluid 17 and water vapor.
  • the hydrogen production apparatus 1 having such a configuration can supply the heat transfer fluid 17 and steam heated by the first heating unit 26 to the reducing agent 10 in the container 11, and thus has high efficiency.
  • the hydrogen production device 1 of the present disclosure may have a second heating unit 27 that heats the reducing agent 10 . Since the hydrogen production apparatus 1 having such a configuration can stably heat the reducing agent 10 by the second heating unit 27, the efficiency is high.
  • the reducing agent 10 may be provided with various measuring instruments for managing the reaction state of the reducing agent 10 .
  • the measuring instrument for example, a displacement meter, a weight meter, an electrometer, or the like can be used. These measuring instruments may be used in combination as appropriate.
  • the displacement meter can measure the expansion and contraction of the reducing agent 10 as an indicator of the reaction state of the reducing agent 10 .
  • the weight scale can measure an increase or decrease in weight of the reducing agent 10 .
  • An electrometer can measure changes in potential of a conductive element attached to the reducing agent 10 .
  • the conductive element for example, ceramics having oxygen defects such as titanium oxide or rare earth-stabilized zirconium oxide can be used.
  • an electrometer can measure the potential because the amount of oxygen vacancies changes due to oxidation-reduction reactions, similar to perovskite-type oxides, and the oxygen ion conductivity changes accordingly.
  • the reducing agent 10 since it is the same ceramic as the perovskite oxide, it has substantially the same coefficient of thermal expansion, and cracks due to the difference in coefficient of thermal expansion during temperature cycles are less likely to occur.
  • the reducing agent 10 may be provided with a temperature sensor capable of detecting the temperature of the reducing agent 10 .
  • the shape of the reducing agent 10 is not limited to a cylindrical shape, and may be, for example, a rectangular cylindrical shape.
  • the heat transfer fluid 17 transports the heat H generated in the heating furnace 14 into the container 11, and the heat H reduces the reducing agent 10.
  • Reduction of the reducing agent 10 is achieved, for example, by heating the reducing agent 10 to a temperature of about 800° C. with heat H transported from the heating furnace 14 .
  • the second flow path member 16 is, for example, a hollow member whose both ends are attached to the first heat exchanger 15, the container 11, and the reducing agent 10, respectively.
  • the second channel member 16 may be a hollow member having the container 11 and the reducing agent 10 attached between both ends thereof.
  • the material of the tubular body used for the second flow path member 16 includes, for example, highly corrosion-resistant materials such as inconel, beryllia, and boron nitride.
  • the heat transfer fluid 17 of the second channel member 16 is Ar gas, N 2 gas, or CO 2 gas
  • the material of the tubular body used for the second channel member 16 includes, for example, ceramics and stainless steel. etc.
  • the first heat exchanger, the second heat exchanger, the third heat exchanger, and the container may partially have stainless steel, Inconel, or ceramic. With such a structure, heat resistance is high, so reliability can be improved.
  • ceramics such as alumina, silicon carbide, silicon nitride, and aluminum nitride are preferable.
  • the heat exchanger may be arranged by penetrating into each channel member.
  • the first heating unit and the second heating unit may have heating elements.
  • a heating element a nichrome wire, a kanthal wire, a ceramic heater, or the like is preferable, and these heating elements are arranged so as to be in contact with the second channel member or the reducing agent, or are arranged so as to penetrate the second channel member or the reducing agent.
  • the ceramic heater it is preferable to have a resistor layer mainly composed of tungsten, molybdenum, tantalum, carbides thereof, or titanium nitride, and to use silicon nitride or alumina as the base material.
  • the hydrogen production device 1 be covered with a heat insulating material.
  • the heat insulating material may be brick, glass wool, ceramic fiber, rock wool, alumina-silica mat, or the like, and an inorganic adhesive or the like may be used for bonding.
  • a heat insulating material may be provided between the reducing agent 10 and the container 11 .
  • the heat of the reducing agent 10 is less transmitted to the container 11, so that the efficiency is good and the deterioration of the container 11 due to heat can be prevented.
  • the steam generator 12 supplies steam V to the reducing agent 10 in the container 11 .
  • the steam V contacts the reduced reducing agent 10, the oxygen of the steam combines with the reducing agent 10, and the hydrogen of the steam becomes hydrogen gas. That is, when the reduced reducing agent 10 and the water vapor V come into contact with each other, oxygen contained in the water vapor V is taken into the oxygen vacancies of the reducing agent 10 and hydrogen gas is generated.
  • Such steam V may be superheated steam. Superheated steam makes it difficult to lower the temperature of the reducing agent 10 .
  • the generation of hydrogen is realized, for example, by lowering the temperature of the reduced reducing agent 10 to 400° C. to 800° C. and then bringing the reducing agent 10 into contact with water vapor V.
  • a raw water supply source (not shown) and a water supply pipe (not shown) may be connected to the steam generator 12 .
  • the raw water supply source is, for example, a tank that stores the raw water W that is the raw material of the steam V. Note that the raw water W stored in the raw water supply source may be water that is removed when hydrogen is recovered in the gas recovery unit 24 .
  • the gas recovery unit 24 may have a plurality of recovery units for recovering the gas generated inside the container 11 and the gas remaining inside the container 11 .
  • the gas recovery unit 24 includes a recovery unit (not shown) that recovers hydrogen generated in the container 11 and a recovery unit (not shown) that recovers oxygen generated when reducing the reducing agent 10 in the container 11. ) and a recovery unit (not shown) for recovering the atmosphere such as moisture remaining in the container 11 .
  • Various sensors for detecting the amount of gas generated in the container 11 and the like may be provided in the container 11, the gas recovery unit 24, and the recovery unit.
  • the sensor for example, an infrared flow sensor, a differential thermal flow sensor, a partial pressure sensor, or the like can be used.
  • the hydrogen production device 1 of the present disclosure may be provided with a valve 25 .
  • the hydrogen production apparatus 1 having such a configuration facilitates control when the heat transfer fluid 17 and the steam V flow.
  • a valve 25a may be provided at the connecting portion between the second channel member 16 and the fourth channel member 19.
  • a valve 25 b may be provided at the connecting portion between the second channel member 16 and the fifth channel member 20 .
  • a valve 25 c may be provided at the connecting portion of the first flow path member 13 (or the third flow path member 18 ), the fourth flow path member 19 and the fifth flow path member 20 .
  • the hydrogen production device 1 may further have a control unit (not shown).
  • a control unit may be, for example, a computer including a processor, a storage unit, an input device, a display device, and the like.
  • the storage unit of the control unit may store a control program for controlling various processes executed by the hydrogen production device 1 by the processor.
  • the processor of the control unit may operate based on the control program stored in the storage unit to control the operation of the hydrogen production device 1 as a whole.
  • the reducing agent is heated to a first temperature to reduce the reducing agent.
  • heating deprives the reducing agent of oxygen.
  • oxygen is released from the reducing agent to create oxygen vacancies in the reducing agent.
  • the heat transfer fluid heated by the first heat exchanger may be supplied to the reductant through the second flow path member.
  • the temperature of the reducing agent is lowered to a second temperature that is lower than the first temperature.
  • hydrogen can be produced from the steam.
  • the supply of the cooling fluid to the reducing agent should be cut off in the hydrogen production apparatus having the fifth channel member.
  • the reducing agent By producing hydrogen, the reducing agent is oxidized, so the hydrogen production capacity decreases. Therefore, next, the supply of steam to the reducing agent 10 is stopped.
  • a reducing agent (Appendix 1) a reducing agent; a container containing the reducing agent; a steam generator that generates steam; a first channel member for supplying the water vapor to the reducing agent; a heating furnace for generating heated exhaust gas; a first heat exchanger that extracts heat from the exhaust gas; a second channel member that transfers the heat to the reducing agent by means of a heat transfer fluid flowing therein; a third channel member for supplying the heat transfer fluid to the first heat exchanger; A hydrogen production device.
  • Appendix 4 The hydrogen production apparatus according to any one of Appendices 1 to 3, wherein the heat transfer fluid is a metal having a melting point of 300° C. or lower and a boiling point of 700° C. or higher.
  • Appendix 6 The hydrogen production apparatus according to any one of Appendices 1 to 5, further comprising a fourth flow path member connected to the second flow path member and supplying the heat transfer fluid to the first heat exchanger.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

The hydrogen production device according to the present disclosure is provided with: a reducing agent; a container in which the reducing agent is stored; a water vapor generation unit for generating water vapor; a first flow path member for supplying the water vapor to the reducing agent; a heating furnace for generating a heated exhaust gas; a first heat exchanger for removing heat of the exhaust gas; a second flow path member for transferring the heat to the reducing agent by means of the heat-transferring fluid flowing in the interior; and a third flow path member for supplying the heat-transferring fluid to the first heat exchanger.

Description

水素製造装置Hydrogen production equipment
 開示の実施形態は、水素製造装置に関する。 The disclosed embodiments relate to hydrogen production equipment.
 例えば、高炉等の工業炉から放出される熱を利用して触媒を還元し、還元された触媒に水蒸気を接触させて触媒を酸化することにより、水素を発生させる技術が提案されている(例えば、特許文献1参照)。 For example, a technology has been proposed in which hydrogen is generated by reducing a catalyst using heat emitted from an industrial furnace such as a blast furnace, and oxidizing the catalyst by contacting water vapor with the reduced catalyst (for example, , see Patent Document 1).
国際公開第2013/141385号WO2013/141385
 実施形態の一態様に係る水素製造装置は、還元剤と、該還元剤を収容する容器と、水蒸気を発生する水蒸気発生部と、前記還元剤に前記水蒸気を供給する第1流路部材と、加熱された排気ガスを発生させる加熱炉と、前記排気ガスの熱を取り出す第1熱交換器と、前記熱を前記還元剤に伝達する第2流路部材と、前記熱伝達流路を流通する熱伝達流体と、該熱伝達流体を前記1熱交換器に供給する、第3流路部材と、を有する。 A hydrogen production apparatus according to an aspect of an embodiment includes a reducing agent, a container that stores the reducing agent, a steam generating unit that generates steam, a first channel member that supplies the steam to the reducing agent, A heating furnace for generating heated exhaust gas, a first heat exchanger for extracting heat from the exhaust gas, a second channel member for transferring the heat to the reducing agent, and a heat transfer channel for circulating the heat transfer channel. A heat transfer fluid and a third flow path member supplying the heat transfer fluid to the first heat exchanger.
図1は、本開示の水素製造装置の構成を模式的に示す図である。FIG. 1 is a diagram schematically showing the configuration of the hydrogen production apparatus of the present disclosure. 図2は、本開示の水素製造装置の他の例を示す図である。FIG. 2 is a diagram showing another example of the hydrogen production device of the present disclosure. 図3は、本開示の水素製造装置の他の例を示す図である。FIG. 3 is a diagram showing another example of the hydrogen production device of the present disclosure. 図4は、本開示の水素製造装置の他の例を示す図である。FIG. 4 is a diagram showing another example of the hydrogen production device of the present disclosure. 図5は、本開示の水素製造装置の他の例を示す図である。FIG. 5 is a diagram showing another example of the hydrogen production device of the present disclosure. 図6は、本開示の水素製造装置の他の例を示す図である。FIG. 6 is a diagram showing another example of the hydrogen production device of the present disclosure. 図7は、本開示の水素製造装置の他の例を示す図である。FIG. 7 is a diagram showing another example of the hydrogen production device of the present disclosure.
 以下、添付図面を参照して、本願の開示する水素製造装置の各実施形態について説明する。なお、以下に示す各実施形態により本開示が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率等は、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。 Hereinafter, each embodiment of the hydrogen production apparatus disclosed in the present application will be described with reference to the accompanying drawings. In addition, this disclosure is not limited by each embodiment shown below. Also, it should be noted that the drawings are schematic, and the relationship of dimensions of each element, the ratio of each element, and the like may differ from reality. Furthermore, even between the drawings, there are cases where portions having different dimensional relationships and ratios are included.
 例えば、特許文献1などに高炉等の工業炉から放出される熱を利用して触媒を還元し、還元された触媒に水蒸気を接触させて触媒を酸化することにより、水素を発生させる技術が提案されている。なお、特許文献1では、触媒と記載されているが、本願においては、還元剤と表現する。基本的には、本願の還元剤は、従来技術で触媒と表記されているものと同じと考えてよい。本願においては、従来技術についての説明においては触媒との記載を用いる場合がある。 For example, Patent Document 1 proposes a technology for generating hydrogen by reducing a catalyst using heat emitted from an industrial furnace such as a blast furnace, and oxidizing the catalyst by contacting water vapor with the reduced catalyst. It is In addition, although it is described as a catalyst in Patent Document 1, it is expressed as a reducing agent in the present application. Fundamentally, the reducing agent of the present application can be considered the same as the catalyst described in the prior art. In this application, the description of the catalyst may be used in the description of the prior art.
 上記の従来技術では、高炉等からの熱を触媒に伝達する効率に改善すべき点があった。それゆえ、上記の従来技術では、水素を効率よく生成する点について改善の余地があった。 In the above conventional technology, there was a point to be improved in the efficiency of transferring heat from the blast furnace, etc. to the catalyst. Therefore, the conventional technology described above has room for improvement in terms of efficiently producing hydrogen.
 そこで、上述の問題点を克服し、水素の生成効率を向上させることができる技術の実現が期待されている。 Therefore, the realization of a technology that can overcome the above-mentioned problems and improve the efficiency of hydrogen generation is expected.
 図1は、本開示の水素製造装置1の構成を模式的に示す図である。水素製造装置1は、還元剤10と、還元剤10を収容する容器11と、水蒸気発生部12と、第1流路部材13と、加熱炉14と、第1熱交換器15と、第2流路部材16と、熱伝達流体17と、第3流路部材18とを有する。 FIG. 1 is a diagram schematically showing the configuration of the hydrogen production device 1 of the present disclosure. The hydrogen production apparatus 1 includes a reducing agent 10, a container 11 containing the reducing agent 10, a steam generating section 12, a first flow path member 13, a heating furnace 14, a first heat exchanger 15, a second It has a channel member 16 , a heat transfer fluid 17 and a third channel member 18 .
 還元剤10は、水蒸気と接触し、水蒸気から酸素を奪い、水蒸気を還元することで水素を生成する機能を有している。容器11は、水素の製造に用いられる還元剤10を収容する。還元剤10は、中央に種々の流体が通過可能な流路を有していてもよい。また、還元剤10は、管状の構造物を挿入できる円筒状の多孔質体であってもよい。還元剤10は、例えば、熱により還元されて酸素欠陥が生じる酸化物であってもよい。還元剤10としては、例えば、ペロブスカイト型酸化物を用いることができる。特許文献1に記載のペロブスカイト酸化物ならば、400℃以上1600℃以下の温度範囲で水素製造サイクルを行うことができる。還元剤10は、容器11に収容されている。 The reducing agent 10 has the function of coming into contact with water vapor, depriving the water vapor of oxygen, and reducing the water vapor to generate hydrogen. A container 11 contains a reducing agent 10 used to produce hydrogen. The reducing agent 10 may have a central channel through which various fluids can pass. Alternatively, the reducing agent 10 may be a cylindrical porous body into which a tubular structure can be inserted. The reducing agent 10 may be, for example, an oxide that is thermally reduced to create oxygen vacancies. As the reducing agent 10, for example, a perovskite oxide can be used. With the perovskite oxide described in Patent Document 1, the hydrogen production cycle can be performed in the temperature range of 400° C. or higher and 1600° C. or lower. A reducing agent 10 is contained in a container 11 .
 水蒸気発生部12は、原料となる水を加熱して水蒸気を発生させる機能を有している。第1流路部材13は、水蒸気発生部12で発生した水蒸気を還元剤10に供給するための流路である。言い換えると水蒸気発生部12と還元剤10を収容する容器11とを繋いでいてもよい。水蒸気は還元剤10に供給される際には過熱水蒸気となっている。水蒸気発生部12で過熱水蒸気を発生させてもよく、水蒸気発生部12で発生した水蒸気を加熱して過熱水蒸気とする装置を用いてもよい。本願明細書における水蒸気という表記は、過熱水蒸気と読み替えてもよい。 The steam generator 12 has a function of heating water, which is a raw material, to generate steam. The first channel member 13 is a channel for supplying the reducing agent 10 with the steam generated by the steam generator 12 . In other words, the steam generating part 12 and the container 11 containing the reducing agent 10 may be connected. The steam becomes superheated steam when it is supplied to the reducing agent 10 . The steam generator 12 may generate superheated steam, or a device may be used to heat the steam generated by the steam generator 12 to obtain superheated steam. The notation of steam in the specification of the present application may be read as superheated steam.
 加熱炉14は、さまざまな工業で用いられ、内部が高い温度となる各種の炉である。加熱炉14は、排気ガス14aを発生させる。加熱炉14は、例えば、焼成炉、熱処理炉、発電所、ごみ焼却炉、高炉、電炉、産業ガス合成装置、ガス化装置及びセメントクリンカーの焼成炉等であってもよい。 The heating furnace 14 is a variety of furnaces that are used in various industries and have high internal temperatures. The heating furnace 14 generates an exhaust gas 14a. The heating furnace 14 may be, for example, a firing furnace, a heat treatment furnace, a power plant, a waste incinerator, a blast furnace, an electric furnace, an industrial gas synthesizing device, a gasification device, a cement clinker firing furnace, or the like.
 第1熱交換器15は、排気ガス14aの熱を取り出す機能を有している。排気ガス14aの熱は、第2流路部材16の中を流通する熱伝達流体17に移動する。熱伝達流体17は第3流路部材18によって、第1熱交換器15に供給される。 The first heat exchanger 15 has a function of extracting heat from the exhaust gas 14a. The heat of the exhaust gas 14 a is transferred to the heat transfer fluid 17 flowing through the second flow path member 16 . A heat transfer fluid 17 is supplied to the first heat exchanger 15 by a third channel member 18 .
 このような構成を有する水素製造装置は効率的に水素を製造することができる。つまり、排気ガス14aの流量や温度に応じて、第3流路部材18に送り込む熱伝達流体17の流量や温度を自由に変更することができるので、水素製造の効率を向上することができる。 A hydrogen production device with such a configuration can efficiently produce hydrogen. That is, the flow rate and temperature of the heat transfer fluid 17 sent to the third flow path member 18 can be freely changed according to the flow rate and temperature of the exhaust gas 14a, so that the efficiency of hydrogen production can be improved.
 容器11には、水蒸気を還元剤10に接触させることで得られた水素を回収するガス回収部24が接続されていてもよい。ガス回収部24は、例えば、図示しない水素分離膜や水素吸蔵合金を備えていてもよい。また、ガス回収部24が、水素を他のガスや水蒸気などと分離する他の手段を有していてもよい。また、ガス回収部24は、容器11からガスを吸引するために、例えば、真空吸引機を備えていてもよい。 The container 11 may be connected to a gas recovery unit 24 that recovers hydrogen obtained by bringing water vapor into contact with the reducing agent 10 . The gas recovery unit 24 may include, for example, a hydrogen separation membrane or a hydrogen storage alloy (not shown). Also, the gas recovery unit 24 may have other means for separating hydrogen from other gases, water vapor, and the like. Further, the gas recovery section 24 may be equipped with, for example, a vacuum suction machine to suck the gas from the container 11 .
 熱伝達流体17は、非酸化性ガスであってもよい。実質的に酸素を含まない熱伝達流体17を用いると、熱伝達流体17を還元剤10に接触させて還元剤10を効率的に還元することができる。熱伝達流体17は、Arガス、Nガス、COガスの少なくとも一種を含有していてもよい。これらのガスは入手しやすい。特にArガス、Nガス、COガスの合計が熱伝達流体17の70体積%以上を占めているとよい。 Heat transfer fluid 17 may be a non-oxidizing gas. Using a substantially oxygen-free heat transfer fluid 17 allows the heat transfer fluid 17 to contact the reducing agent 10 to effectively reduce the reducing agent 10 . The heat transfer fluid 17 may contain at least one of Ar gas, N2 gas and CO2 gas. These gases are readily available. In particular, it is preferable that the sum of Ar gas, N 2 gas and CO 2 gas occupies 70% by volume or more of the heat transfer fluid 17 .
 熱伝達流体17は、融点が300℃以下の金属であってもよい。熱伝達流体17は、沸点が700℃以上の金属であってもよい。具体的には、熱伝達流体17は、ナトリウム、カリウムであってもよい。また、熱伝達流体17は、融点が600℃以下の金属であってもよい。熱伝達流体17は、沸点が1200℃以上の金属であってもよい。具体的には、熱伝達流体17は、リチウム、インジウム、ガリウムの少なくとも一種を含有してもよい。 The heat transfer fluid 17 may be a metal with a melting point of 300°C or less. The heat transfer fluid 17 may be a metal with a boiling point of 700° C. or higher. Specifically, the heat transfer fluid 17 may be sodium, potassium. Alternatively, the heat transfer fluid 17 may be a metal with a melting point of 600° C. or less. Heat transfer fluid 17 may be a metal with a boiling point of 1200° C. or higher. Specifically, the heat transfer fluid 17 may contain at least one of lithium, indium and gallium.
 また、本開示の水素製造装置1は、第2流路部材16と連結し、熱伝達流体17を第1熱交換器15に供給する第4流路部材19を有していてもよい。このような構成を有する水素製造装置1は、一旦、加熱された熱伝達流体17をもう一度、第1熱交換器15に供給することで熱の損失が少ない。 The hydrogen production apparatus 1 of the present disclosure may also have a fourth flow path member 19 that connects with the second flow path member 16 and supplies the heat transfer fluid 17 to the first heat exchanger 15 . The hydrogen production apparatus 1 having such a configuration reduces heat loss by supplying the once heated heat transfer fluid 17 to the first heat exchanger 15 again.
 また、図2に示すように、本開示の水素製造装置1は、第2流路部材16に、冷却流体20aを還元剤10に供給する第5流路部材20が接続されていてもよい。このような構成を有する水素製造装置は、還元剤10を冷却する時間を短くすることができ、水素製造の効率が高い。 In addition, as shown in FIG. 2 , in the hydrogen production apparatus 1 of the present disclosure, the second flow path member 16 may be connected to a fifth flow path member 20 that supplies the cooling fluid 20 a to the reducing agent 10 . A hydrogen production apparatus having such a configuration can shorten the time for cooling the reducing agent 10 and has high efficiency in hydrogen production.
 また、図3に示すように、開示の水素製造装置1は、第5流路部材20が、第3流路部材18に繋がっていてもよい。このような構成を有する水素製造装置1は、還元剤10を冷却するために冷却流体20aを流す際に、第3流路部材18を用いて流すことができることから、水素製造装置1の構造を簡略化することができる。 Further, as shown in FIG. 3 , in the disclosed hydrogen production apparatus 1 , the fifth channel member 20 may be connected to the third channel member 18 . The hydrogen production apparatus 1 having such a configuration can flow the cooling fluid 20a for cooling the reducing agent 10 using the third flow path member 18. Therefore, the structure of the hydrogen production apparatus 1 is can be simplified.
 また、熱伝達流体17と同じ材質の冷却流体20aを用いていてもよい。言い換えると、冷却流体は、前記熱伝達流体と材質が同じであってもよい。このような構成を有する水素製造装置1は、熱伝達流体17を冷却流体20aとして用いることができるため、水素製造装置1の構造を簡略化することができる。 Also, the cooling fluid 20a made of the same material as the heat transfer fluid 17 may be used. In other words, the cooling fluid may be of the same material as the heat transfer fluid. Since the hydrogen production apparatus 1 having such a configuration can use the heat transfer fluid 17 as the cooling fluid 20a, the structure of the hydrogen production apparatus 1 can be simplified.
 図4に示すように、本開示の水素製造装置1は、第2流路部材16が、第1流路部材13を兼ねていてもよい。このような構成を有する水素製造装置1は、水素製造装置1の構造を簡略化することができる。このような場合には熱伝達流体17としてガスを用いるとよい。そして、水蒸気Vを含有する熱伝達流体17を還元剤10に接触させて水素を製造することができる。 As shown in FIG. 4 , in the hydrogen production device 1 of the present disclosure, the second channel member 16 may also serve as the first channel member 13 . The hydrogen production device 1 having such a configuration can simplify the structure of the hydrogen production device 1 . In such a case, gas may be used as the heat transfer fluid 17 . A heat transfer fluid 17 containing water vapor V can then be contacted with the reducing agent 10 to produce hydrogen.
 なお、本開示の水素製造装置1は、第3流路部材18が、第1流路部材13を兼ねていてもよい。このような構成を有する水素製造装置1は、水蒸気Vを第1熱交換器15に供給できるので、水蒸気Vを加熱することができるうえに、水素製造装置1の構造を簡略化することができる。 In addition, in the hydrogen production apparatus 1 of the present disclosure, the third channel member 18 may also serve as the first channel member 13 . Since the hydrogen production device 1 having such a configuration can supply the steam V to the first heat exchanger 15, the steam V can be heated and the structure of the hydrogen production device 1 can be simplified. .
 なお、還元剤10に対し、第2流路部材16から熱伝達流体17または過熱水蒸気を噴出し直接接触させる場合には、第2流路部材16において、還元剤10と接触する箇所に複数の穴を設けていればよい。 When the heat transfer fluid 17 or superheated steam is ejected from the second channel member 16 to directly contact the reducing agent 10 , a plurality of A hole should be provided.
 また、図5に示すように、本開示の水素製造装置1は、水蒸気発生部12が、熱伝達流体17の熱を利用して水蒸気を発生させる第2熱交換器21を有していてもよい。このような構成を有する水素製造装置1は、水12aを用いて水蒸気を発生させるエネルギーを節約できるため、効率が高い。 Further, as shown in FIG. 5 , in the hydrogen production apparatus 1 of the present disclosure, even if the steam generating section 12 has the second heat exchanger 21 that generates steam using the heat of the heat transfer fluid 17, good. The hydrogen production apparatus 1 having such a configuration can save energy for generating steam using the water 12a, and thus has high efficiency.
 また、図6に示すように、本開示の水素製造装置1は、水蒸気発生部12が、排気ガス14aの熱を利用して水蒸気を発生させる第3熱交換器23を有していてもよい。このような構成を有する水素製造装置1は、水蒸気を発生させるエネルギーを節約できるため、効率が高い。 In addition, as shown in FIG. 6, in the hydrogen production device 1 of the present disclosure, the water vapor generating section 12 may include a third heat exchanger 23 that generates water vapor using the heat of the exhaust gas 14a. . The hydrogen production apparatus 1 having such a configuration can save energy for generating steam, and thus has high efficiency.
 また、図7に示すように、本開示の水素製造装置1の第2流路部材16は、熱伝達流体17、水蒸気のうち少なくとも一方を加熱する第1加熱部26を有していてもよい。このような構成を有する水素製造装置1は、容器11にある還元剤10に第1加熱部26によって加熱された熱伝達流体17や水蒸気を与えることができるので、効率が高い。 In addition, as shown in FIG. 7, the second flow path member 16 of the hydrogen production apparatus 1 of the present disclosure may have a first heating section 26 that heats at least one of the heat transfer fluid 17 and water vapor. . The hydrogen production apparatus 1 having such a configuration can supply the heat transfer fluid 17 and steam heated by the first heating unit 26 to the reducing agent 10 in the container 11, and thus has high efficiency.
 また、本開示の水素製造装置1は、還元剤10を加熱する第2加熱部27を有していてもよい。このような構成を有する水素製造装置1は、第2加熱部27により還元剤10を安定的に加熱することができるので、効率が高い。 Further, the hydrogen production device 1 of the present disclosure may have a second heating unit 27 that heats the reducing agent 10 . Since the hydrogen production apparatus 1 having such a configuration can stably heat the reducing agent 10 by the second heating unit 27, the efficiency is high.
 還元剤10には、還元剤10の反応状態を管理するための各種の計測器が設けられていてもよい。計測器としては、例えば、変位計、重量計または電位計等を用いることができる。これらの計測器は、適宜組み合わせて用いられてもよい。 The reducing agent 10 may be provided with various measuring instruments for managing the reaction state of the reducing agent 10 . As the measuring instrument, for example, a displacement meter, a weight meter, an electrometer, or the like can be used. These measuring instruments may be used in combination as appropriate.
 変位計は、還元剤10の反応状態を示す指標として、還元剤10の膨張及び収縮を計測することができる。重量計は、還元剤10の重量の増減を計測することができる。電位計は、還元剤10に取り付けた導電性素子の電位の変化を計測することができる。 The displacement meter can measure the expansion and contraction of the reducing agent 10 as an indicator of the reaction state of the reducing agent 10 . The weight scale can measure an increase or decrease in weight of the reducing agent 10 . An electrometer can measure changes in potential of a conductive element attached to the reducing agent 10 .
 導電性素子としては、例えば、酸化チタン又は希土類安定化酸化ジルコニウム等のような酸素欠陥を有するセラミックスを用いることができる。酸素欠損を有するセラミックスを用いる場合、電位計は、ペロブスカイト型酸化物と同じく酸化還元反応によって酸素欠陥量が変化し、その変化に応じて酸素イオン伝導が変化することで電位を測定することができる。このような導電性素子の場合、ペロブスカイト型酸化物と同じセラミックスであることから熱膨張係数が略同一であり、温度サイクル時の熱膨張係数差によるクラックが発生しにくい。また、還元剤10には、還元剤10の温度を検出可能な温度センサが設けられてもよい。また、還元剤10の形状は、円筒状に限らず、例えば矩形筒状であってもよい。 As the conductive element, for example, ceramics having oxygen defects such as titanium oxide or rare earth-stabilized zirconium oxide can be used. When using ceramics with oxygen vacancies, an electrometer can measure the potential because the amount of oxygen vacancies changes due to oxidation-reduction reactions, similar to perovskite-type oxides, and the oxygen ion conductivity changes accordingly. . In the case of such a conductive element, since it is the same ceramic as the perovskite oxide, it has substantially the same coefficient of thermal expansion, and cracks due to the difference in coefficient of thermal expansion during temperature cycles are less likely to occur. Further, the reducing agent 10 may be provided with a temperature sensor capable of detecting the temperature of the reducing agent 10 . Moreover, the shape of the reducing agent 10 is not limited to a cylindrical shape, and may be, for example, a rectangular cylindrical shape.
 熱伝達流体17は、加熱炉14で発生する熱Hを容器11内に輸送して、かかる熱Hにより還元剤10を還元する。還元剤10の還元は、例えば、加熱炉14から輸送される熱Hにより還元剤10を約800℃の温度まで加熱することにより、実現される。 The heat transfer fluid 17 transports the heat H generated in the heating furnace 14 into the container 11, and the heat H reduces the reducing agent 10. Reduction of the reducing agent 10 is achieved, for example, by heating the reducing agent 10 to a temperature of about 800° C. with heat H transported from the heating furnace 14 .
 第2流路部材16は、例えば、両端が第1熱交換器15の及び容器11や還元剤10にそれぞれ取り付けられた中空の部材である。または、第2流路部材16は、両端の間に容器11や還元剤10をそれぞれ取り付けられた中空の部材であってもよい。 The second flow path member 16 is, for example, a hollow member whose both ends are attached to the first heat exchanger 15, the container 11, and the reducing agent 10, respectively. Alternatively, the second channel member 16 may be a hollow member having the container 11 and the reducing agent 10 attached between both ends thereof.
 なお、第2流路部材16に用いられる管状体の材料としては、熱伝達流体17が液体金属である場合には、例えば、インコネル、ベリリア及び窒化ホウ素等の耐食性の高い材料が挙げられる。また、第2流路部材16の熱伝達流体17がArガス、Nガス、COガスである場合に、第2流路部材16に用いられる管状体の材料としては、例えば、セラミック及びステンレス等が挙げられる。 When the heat transfer fluid 17 is a liquid metal, the material of the tubular body used for the second flow path member 16 includes, for example, highly corrosion-resistant materials such as inconel, beryllia, and boron nitride. When the heat transfer fluid 17 of the second channel member 16 is Ar gas, N 2 gas, or CO 2 gas, the material of the tubular body used for the second channel member 16 includes, for example, ceramics and stainless steel. etc.
 また、第1熱交換器、第2熱交換器、第3熱交換器、容器としては、一部にステンレス、インコネルまたはセラミックを有してもよい。そのような構造ならば、耐熱性が高いので信頼性を向上することができる。特に、セラミックスとしては、アルミナ、炭化ケイ素、窒化ケイ素、窒化アルミニウムなどが好ましい。なお、熱交換器は、各流路部材に貫入して配置しても良い。 Also, the first heat exchanger, the second heat exchanger, the third heat exchanger, and the container may partially have stainless steel, Inconel, or ceramic. With such a structure, heat resistance is high, so reliability can be improved. In particular, ceramics such as alumina, silicon carbide, silicon nitride, and aluminum nitride are preferable. In addition, the heat exchanger may be arranged by penetrating into each channel member.
 また、第1加熱部および第2加熱部は、発熱体を有していても良い。発熱体としては、ニクロム線、カンタル線、セラミックヒータなどが好ましく、これら発熱体を第2流路部材または還元剤に接するように配置するか、第2流路部材または還元剤に貫入して配置しても良い。なお、セラミックヒータとしては、タングステン、モリブデン、タンタル、またはこれらの炭化物や窒化チタンを主成分とした抵抗層を備え、基材を窒化ケイ素またはアルミナとしたものが好ましい。 Also, the first heating unit and the second heating unit may have heating elements. As the heating element, a nichrome wire, a kanthal wire, a ceramic heater, or the like is preferable, and these heating elements are arranged so as to be in contact with the second channel member or the reducing agent, or are arranged so as to penetrate the second channel member or the reducing agent. You can As the ceramic heater, it is preferable to have a resistor layer mainly composed of tungsten, molybdenum, tantalum, carbides thereof, or titanium nitride, and to use silicon nitride or alumina as the base material.
 また、水素製造装置1は、断熱材でおおわれていることが望ましい。このような構造ならば、水素製造装置1の熱効率が向上し、水素製造を効率よく行うことができる。断熱材としては、レンガ、グラスウール、セラミックファイバー、ロックウール、アルミナ-シリカマットなどであり、接合には無機接着剤などを使用してもよい。 In addition, it is desirable that the hydrogen production device 1 be covered with a heat insulating material. With such a structure, the thermal efficiency of the hydrogen production device 1 is improved, and hydrogen production can be efficiently performed. The heat insulating material may be brick, glass wool, ceramic fiber, rock wool, alumina-silica mat, or the like, and an inorganic adhesive or the like may be used for bonding.
 また、還元剤10と容器11の間には、断熱材を有していても良い。このような構造ならば、還元剤10の熱が容器11に伝わることが少なくなるので、効率が良く、また、容器11の熱による劣化を生じにくくすることができる。 Also, a heat insulating material may be provided between the reducing agent 10 and the container 11 . With such a structure, the heat of the reducing agent 10 is less transmitted to the container 11, so that the efficiency is good and the deterioration of the container 11 due to heat can be prevented.
 水蒸気発生部12は、容器11内の還元剤10に水蒸気Vを供給する。水蒸気Vは、還元された還元剤10と接触して、水蒸気の酸素は、還元剤10と結合し、水蒸気の水素は水素ガスとなる。すなわち、還元された還元剤10と水蒸気Vとが接触することにより、水蒸気Vに含まれる酸素が還元剤10の酸素欠陥に取り込まれるとともに、水素ガスが発生する。なお、このような水蒸気Vとしては、過熱水蒸気であってもよい。過熱水蒸気ならば、還元剤10の温度を下げにくい。 The steam generator 12 supplies steam V to the reducing agent 10 in the container 11 . The steam V contacts the reduced reducing agent 10, the oxygen of the steam combines with the reducing agent 10, and the hydrogen of the steam becomes hydrogen gas. That is, when the reduced reducing agent 10 and the water vapor V come into contact with each other, oxygen contained in the water vapor V is taken into the oxygen vacancies of the reducing agent 10 and hydrogen gas is generated. Such steam V may be superheated steam. Superheated steam makes it difficult to lower the temperature of the reducing agent 10 .
 水素の発生は、例えば、還元された還元剤10の温度を400℃~800℃まで低下させた後に、還元剤10と水蒸気Vとを接触させることにより、実現される。 The generation of hydrogen is realized, for example, by lowering the temperature of the reduced reducing agent 10 to 400° C. to 800° C. and then bringing the reducing agent 10 into contact with water vapor V.
 水蒸気発生部12には、原料水供給源(図示せず)と、水供給配管(図示せず)とが接続されていてもよい。 A raw water supply source (not shown) and a water supply pipe (not shown) may be connected to the steam generator 12 .
 原料水供給源は、例えば、水蒸気Vの原料となる原料水Wを貯留するタンクである。なお、原料水供給源に貯留される原料水Wには、ガス回収部24において水素を回収する際に取り除かれる水分が用いられてもよい。 The raw water supply source is, for example, a tank that stores the raw water W that is the raw material of the steam V. Note that the raw water W stored in the raw water supply source may be water that is removed when hydrogen is recovered in the gas recovery unit 24 .
 ガス回収部24は、容器11内で発生するガスや容器11内に残留するガスを回収する複数の回収部を有していてもよい。 The gas recovery unit 24 may have a plurality of recovery units for recovering the gas generated inside the container 11 and the gas remaining inside the container 11 .
 例えば、ガス回収部24は、容器11内で発生する水素を回収する回収部(図示せず)と、容器11内で還元剤10を還元する際に発生する酸素を回収する回収部(図示せず)と、容器11内に残留する水分等の雰囲気を回収する回収部(図示せず)とを有していてもよい。 For example, the gas recovery unit 24 includes a recovery unit (not shown) that recovers hydrogen generated in the container 11 and a recovery unit (not shown) that recovers oxygen generated when reducing the reducing agent 10 in the container 11. ) and a recovery unit (not shown) for recovering the atmosphere such as moisture remaining in the container 11 .
 なお、容器11やガス回収部24や回収部には、容器11内で発生するガスの量等を検出するための各種のセンサが設けられてもよい。センサとしては、例えば、赤外線式流量センサ、示差熱式流量センサまたは分圧センサ等を用いることができる。 Various sensors for detecting the amount of gas generated in the container 11 and the like may be provided in the container 11, the gas recovery unit 24, and the recovery unit. As the sensor, for example, an infrared flow sensor, a differential thermal flow sensor, a partial pressure sensor, or the like can be used.
 なお、本開示の水素製造装置1は、バルブ25を設けられてもよい。このような構成を有する水素製造装置1は、熱伝達流体17や水蒸気Vを流す際に制御が容易となる。バルブ25としては、例えば、第2流路部材16と第4流路部材19の接続部にバルブ25aを設ければよい。また、第2流路部材16と第5流路部材20の接続部にバルブ25bを設ければよい。また、第1流路部材13(または第3流路部材18)と、第4流路部材19と、第5流路部材20の接続部にバルブ25cを設ければよい。 It should be noted that the hydrogen production device 1 of the present disclosure may be provided with a valve 25 . The hydrogen production apparatus 1 having such a configuration facilitates control when the heat transfer fluid 17 and the steam V flow. As the valve 25, for example, a valve 25a may be provided at the connecting portion between the second channel member 16 and the fourth channel member 19. FIG. Also, a valve 25 b may be provided at the connecting portion between the second channel member 16 and the fifth channel member 20 . Also, a valve 25 c may be provided at the connecting portion of the first flow path member 13 (or the third flow path member 18 ), the fourth flow path member 19 and the fifth flow path member 20 .
 水素製造装置1は、図示しない制御部をさらに有していてもよい。かかる制御部は、例えば、プロセッサ、記憶部、入力装置及び表示装置等を備えるコンピュータであってもよい。制御部の記憶部には、水素製造装置1で実行される各種処理をプロセッサにより制御するための制御プログラムが格納されていてもよい。制御部のプロセッサは、記憶部に格納された制御プログラムに基づき動作して、水素製造装置1全体の動作を制御してもよい。 The hydrogen production device 1 may further have a control unit (not shown). Such a control unit may be, for example, a computer including a processor, a storage unit, an input device, a display device, and the like. The storage unit of the control unit may store a control program for controlling various processes executed by the hydrogen production device 1 by the processor. The processor of the control unit may operate based on the control program stored in the storage unit to control the operation of the hydrogen production device 1 as a whole.
 以下に、本開示の水素製造装置1を用いた水素の製造方法について説明する。 A method for producing hydrogen using the hydrogen production apparatus 1 of the present disclosure will be described below.
 まず、図1の例を用いて説明する。最初に、還元剤を第1温度まで加熱して還元剤を還元する。言い換えると加熱によって還元剤から酸素を奪う。また、別の表現では、還元剤から酸素が放出されて、還元剤に酸素欠陥が生じる。還元剤を加熱するには、第1熱交換器によって加熱された熱伝達流体を、第2流路部材を経由して還元剤に供給するとよい。還元剤を還元した後、還元剤の温度を第1温度よりも低い第2温度まで下げる。次に、第2温度になった還元剤に水蒸気を供給することで、水蒸気から水素を製造することができる。 First, an explanation will be given using the example in FIG. First, the reducing agent is heated to a first temperature to reduce the reducing agent. In other words, heating deprives the reducing agent of oxygen. In other words, oxygen is released from the reducing agent to create oxygen vacancies in the reducing agent. To heat the reductant, the heat transfer fluid heated by the first heat exchanger may be supplied to the reductant through the second flow path member. After reducing the reducing agent, the temperature of the reducing agent is lowered to a second temperature that is lower than the first temperature. Next, by supplying steam to the reducing agent at the second temperature, hydrogen can be produced from the steam.
 なお、この還元剤の還元処理の際、第5流路部材を有する水素製造装置では、還元剤への冷却流体への供給は遮断しておくとよい。 It should be noted that, during the reduction treatment of the reducing agent, the supply of the cooling fluid to the reducing agent should be cut off in the hydrogen production apparatus having the fifth channel member.
 水素を製造することで、還元剤は、酸化されるため、水素製造能力が低下していく。そこで、次に、還元剤10への水蒸気の供給を止める。 By producing hydrogen, the reducing agent is oxidized, so the hydrogen production capacity decreases. Therefore, next, the supply of steam to the reducing agent 10 is stopped.
 次に、再び、還元剤を加熱して還元剤を還元する工程に戻る。このように還元剤の還元と、還元剤の酸化を伴う水素製造の行程を繰り返すことで、本開示の水素製造装置1を用いた効率の高い水素製造が実現できる。 Next, return to the step of heating the reducing agent to reduce the reducing agent. By repeating the steps of hydrogen production involving reduction of the reducing agent and oxidation of the reducing agent in this manner, highly efficient hydrogen production using the hydrogen production apparatus 1 of the present disclosure can be realized.
 以上、本開示の各実施形態について説明したが、本開示は上記の各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments, and various modifications are possible without departing from the spirit of the present disclosure.
 今回開示された各実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した各実施形態は多様な形態で具現され得る。また、上記の各実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 Each embodiment disclosed this time should be considered as an example and not restrictive in all respects. Indeed, each of the above-described embodiments can be embodied in various forms. Moreover, each of the above-described embodiments may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims.
 なお、以上の実施形態に関し、さらに以下の付記を開示する。 In addition, regarding the above embodiment, the following additional remarks are disclosed.
(付記1)
 還元剤と、
 該還元剤を収容する容器と、
 水蒸気を発生する水蒸気発生部と、
 前記還元剤に前記水蒸気を供給する第1流路部材と
 加熱された排気ガスを発生させる加熱炉と、
 前記排気ガスの熱を取り出す第1熱交換器と、
 内部を流通する熱伝達流体により前記還元剤に前記熱を伝達する第2流路部材と、
 該熱伝達流体を前記第1熱交換器に供給する、第3流路部材と、
を有する、水素製造装置。
(Appendix 1)
a reducing agent;
a container containing the reducing agent;
a steam generator that generates steam;
a first channel member for supplying the water vapor to the reducing agent; a heating furnace for generating heated exhaust gas;
a first heat exchanger that extracts heat from the exhaust gas;
a second channel member that transfers the heat to the reducing agent by means of a heat transfer fluid flowing therein;
a third channel member for supplying the heat transfer fluid to the first heat exchanger;
A hydrogen production device.
(付記2)
 前記熱伝達流体は、非酸化性ガスである、付記1に記載の水素製造装置。
(Appendix 2)
2. The hydrogen production apparatus of claim 1, wherein the heat transfer fluid is a non-oxidizing gas.
(付記3)
 前記熱伝達流体は、Arガス、Nガス、COガスの少なくとも一種を含有する、付記2に記載の水素製造装置。
(Appendix 3)
3. The hydrogen production apparatus according to appendix 2, wherein the heat transfer fluid contains at least one of Ar gas, N2 gas, and CO2 gas.
(付記4)
 前記熱伝達流体は、融点が300℃以下、沸点が700℃以上の金属である、付記1~3のいずれかに記載の水素製造装置。
(Appendix 4)
4. The hydrogen production apparatus according to any one of Appendices 1 to 3, wherein the heat transfer fluid is a metal having a melting point of 300° C. or lower and a boiling point of 700° C. or higher.
(付記5)
 前記熱伝達流体は、ナトリウム、カリウム、リチウム、インジウム、ガリウムの少なくとも一種を含有する、付記4に記載の水素製造装置。
(Appendix 5)
5. The hydrogen generator according to appendix 4, wherein the heat transfer fluid contains at least one of sodium, potassium, lithium, indium and gallium.
(付記6)
 前記第2流路部材と連結し、前記熱伝達流体を前記第1熱交換器に供給する第4流路部材を有する、付記1~5のいずれかに記載の水素製造装置。
(Appendix 6)
6. The hydrogen production apparatus according to any one of Appendices 1 to 5, further comprising a fourth flow path member connected to the second flow path member and supplying the heat transfer fluid to the first heat exchanger.
(付記7)
 前記第2流路部材は、前記還元剤に冷却流体を供給する第5流路部材が接続されている、付記1~6のいずれかに記載の水素製造装置。
(Appendix 7)
7. The hydrogen production apparatus according to any one of appendices 1 to 6, wherein the second flow path member is connected to a fifth flow path member that supplies a cooling fluid to the reducing agent.
(付記8)
 前記第5流路部材は、前記第3流路部材と繋がっている、付記7に記載の水素製造装置。
(Appendix 8)
The hydrogen production apparatus according to appendix 7, wherein the fifth flow path member is connected to the third flow path member.
(付記9)
 前記冷却流体は、前記熱伝達流体と材質が同じである、付記7または8に記載の水素製造装置。
(Appendix 9)
9. The hydrogen production apparatus according to appendix 7 or 8, wherein the cooling fluid is made of the same material as the heat transfer fluid.
(付記10)
 前記第2流路部材は、第1流路部材を兼ねている、付記1~9のいずれかに記載の水素製造装置。
(Appendix 10)
10. The hydrogen production device according to any one of Appendixes 1 to 9, wherein the second channel member also serves as the first channel member.
(付記11)
 前記水蒸気発生部は、前記熱伝達流体の熱を利用して水蒸気を発生させる第2熱交換器を有する、付記1~10のいずれかに記載の水素製造装置。
(Appendix 11)
11. The hydrogen production apparatus according to any one of Appendices 1 to 10, wherein the steam generating unit has a second heat exchanger that uses the heat of the heat transfer fluid to generate steam.
(付記12)
 前記水蒸気発生部は、前記排気ガスの熱を利用して水蒸気を発生させる第3熱交換器を有する、付記1~11のいずれかに記載の水素製造装置。
(Appendix 12)
12. The hydrogen production apparatus according to any one of Additions 1 to 11, wherein the steam generating unit has a third heat exchanger that uses the heat of the exhaust gas to generate steam.
(付記13)
 前記第2流路部材は、前記熱伝達流体、前記水蒸気のうち少なくとも一方を加熱する第1加熱部を有する、付記1~12のいずれかに記載の水素製造装置。
(Appendix 13)
13. The hydrogen production apparatus according to any one of Additions 1 to 12, wherein the second flow path member has a first heating section that heats at least one of the heat transfer fluid and the steam.
(付記14)
 前記容器は、前記還元剤を加熱する第2加熱部を有する、付記1~13のいずれかに記載の水素製造装置。
(Appendix 14)
14. The hydrogen production device according to any one of Additions 1 to 13, wherein the container has a second heating unit that heats the reducing agent.
 1   水素製造装置
 10  還元剤
 11  容器
 12  水蒸気発生部
 13  第1流路部材
 14  加熱炉
 14a 排気ガス
 15  第1熱交換器
 16  第2流路部材
 17  熱伝達流体
 18  第3流路部材
 19  第4流路部材
 20  第5流路部材
 20a 冷却流体
 21  第2熱交換器
 23  第3熱交換器
 24  ガス回収部
 25a,25b,25c バルブ
 26  第1加熱部
 27  第2加熱部
REFERENCE SIGNS LIST 1 hydrogen production device 10 reducing agent 11 container 12 steam generator 13 first channel member 14 heating furnace 14a exhaust gas 15 first heat exchanger 16 second channel member 17 heat transfer fluid 18 third channel member 19 fourth fourth channel member Flow path member 20 Fifth flow path member 20a Cooling fluid 21 Second heat exchanger 23 Third heat exchanger 24 Gas recovery section 25a, 25b, 25c Valve 26 First heating section 27 Second heating section

Claims (14)

  1.  還元剤と、
     該還元剤を収容する容器と、
     水蒸気を発生する水蒸気発生部と、
     前記還元剤に前記水蒸気を供給する第1流路部材と
     加熱された排気ガスを発生させる加熱炉と、
     前記排気ガスの熱を取り出す第1熱交換器と、
     内部を流通する熱伝達流体により前記還元剤に前記熱を伝達する第2流路部材と、
     該熱伝達流体を前記第1熱交換器に供給する、第3流路部材と、
    を有する、水素製造装置。
    a reducing agent;
    a container containing the reducing agent;
    a steam generator that generates steam;
    a first channel member for supplying the water vapor to the reducing agent; a heating furnace for generating heated exhaust gas;
    a first heat exchanger that extracts heat from the exhaust gas;
    a second channel member that transfers the heat to the reducing agent by means of a heat transfer fluid flowing therein;
    a third channel member for supplying the heat transfer fluid to the first heat exchanger;
    A hydrogen production device.
  2.  前記熱伝達流体は、非酸化性ガスである、請求項1に記載の水素製造装置。 The hydrogen production apparatus according to claim 1, wherein the heat transfer fluid is a non-oxidizing gas.
  3.  前記熱伝達流体は、Arガス、Nガス、COガスの少なくとも一種を含有する、請求項2に記載の水素製造装置。 3. The hydrogen generator according to claim 2, wherein the heat transfer fluid contains at least one of Ar gas, N2 gas, and CO2 gas.
  4.  前記熱伝達流体は、融点が300℃以下、沸点が700℃以上の金属である、請求項1に記載の水素製造装置。 The hydrogen production apparatus according to claim 1, wherein the heat transfer fluid is a metal with a melting point of 300°C or lower and a boiling point of 700°C or higher.
  5.  前記熱伝達流体は、ナトリウム、カリウム、リチウム、インジウム、ガリウムの少なくとも一種を含有する、請求項4に記載の水素製造装置。 The hydrogen production apparatus according to claim 4, wherein the heat transfer fluid contains at least one of sodium, potassium, lithium, indium and gallium.
  6.  前記第2流路部材と連結し、前記熱伝達流体を前記第1熱交換器に供給する第4流路部材を有する、請求項1に記載の水素製造装置。 2. The hydrogen production apparatus according to claim 1, further comprising a fourth flow path member connected to said second flow path member and supplying said heat transfer fluid to said first heat exchanger.
  7.  前記第2流路部材は、前記還元剤に冷却流体を供給する第5流路部材が接続されている、請求項1に記載の水素製造装置。 The hydrogen production apparatus according to claim 1, wherein the second channel member is connected to a fifth channel member that supplies a cooling fluid to the reducing agent.
  8.  前記第5流路部材は、前記第3流路部材と繋がっている、請求項7に記載の水素製造装置。 The hydrogen production apparatus according to claim 7, wherein the fifth channel member is connected to the third channel member.
  9.  前記冷却流体は、前記熱伝達流体と材質が同じである、請求項7に記載の水素製造装置。 The hydrogen production apparatus according to claim 7, wherein the cooling fluid is made of the same material as the heat transfer fluid.
  10.  前記第2流路部材は、第1流路部材を兼ねている、請求項1に記載の水素製造装置。 The hydrogen production apparatus according to claim 1, wherein the second channel member also serves as the first channel member.
  11.  前記水蒸気発生部は、前記熱伝達流体の熱を利用して水蒸気を発生させる第2熱交換器を有する、請求項1に記載の水素製造装置。 The hydrogen production apparatus according to claim 1, wherein the steam generating section has a second heat exchanger that generates steam using the heat of the heat transfer fluid.
  12.  前記水蒸気発生部は、前記排気ガスの熱を利用して水蒸気を発生させる第3熱交換器を有する、請求項1に記載の水素製造装置。 The hydrogen production apparatus according to claim 1, wherein the steam generating unit has a third heat exchanger that generates steam using the heat of the exhaust gas.
  13.  前記第2流路部材は、前記熱伝達流体、前記水蒸気のうち少なくとも一方を加熱する第1加熱部を有する、請求項1に記載の水素製造装置。 The hydrogen production apparatus according to claim 1, wherein the second flow path member has a first heating section that heats at least one of the heat transfer fluid and the steam.
  14.  前記容器は、前記還元剤を加熱する第2加熱部を有する、請求項1に記載の水素製造装置。 The hydrogen production apparatus according to claim 1, wherein the container has a second heating unit that heats the reducing agent.
PCT/JP2023/000055 2022-01-06 2023-01-05 Hydrogen production device WO2023132340A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022001217 2022-01-06
JP2022-001217 2022-01-06
JP2022138613 2022-08-31
JP2022-138613 2022-08-31

Publications (1)

Publication Number Publication Date
WO2023132340A1 true WO2023132340A1 (en) 2023-07-13

Family

ID=87073781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000055 WO2023132340A1 (en) 2022-01-06 2023-01-05 Hydrogen production device

Country Status (1)

Country Link
WO (1) WO2023132340A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145638A (en) * 2005-11-28 2007-06-14 Toshiba Corp Hydrogen production system and hydrogen production method
JP2016530187A (en) * 2013-06-26 2016-09-29 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Direct combustion heating method and equipment for its implementation
JP2017148704A (en) * 2016-02-23 2017-08-31 株式会社Ihi Reaction apparatus and reaction system
CN206858159U (en) * 2017-06-29 2018-01-09 中国科学院理化技术研究所 Hydrogen production system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145638A (en) * 2005-11-28 2007-06-14 Toshiba Corp Hydrogen production system and hydrogen production method
JP2016530187A (en) * 2013-06-26 2016-09-29 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Direct combustion heating method and equipment for its implementation
JP2017148704A (en) * 2016-02-23 2017-08-31 株式会社Ihi Reaction apparatus and reaction system
CN206858159U (en) * 2017-06-29 2018-01-09 中国科学院理化技术研究所 Hydrogen production system

Similar Documents

Publication Publication Date Title
Banerjee et al. Experimental investigation of a reticulated porous alumina heat exchanger for high temperature gas heat recovery
Wang et al. First-principles investigation on the corrosion resistance of rare earth disilicates in water vapor
CN107683384A (en) Airtight, heat conduction multi-layer ceramics multiple tube
JPS58194712A (en) Regeneration of oxygen from carbon oxide exhaust gas
JP2004262753A (en) Apparatus for coming into contact with high temperature gas
WO2023132340A1 (en) Hydrogen production device
CN110062868B (en) Heat exchanger and heat exchange method using the same
WO2022181801A1 (en) Hydrogen production device
WO2022181619A1 (en) Hydrogen production device and hydrogen production method
CN207585967U (en) A kind of sampling feeler lever
JP2008045150A (en) Method for heating article under saved energy and heating furnace
Shin et al. Optimization of an ion transport membrane reactor system for syngas production
Nakano et al. Thermodynamics of Zr/Hf-mixed silicates as a potential for environmental barrier coatings for Tyranno-hex materials
JP2021191989A (en) Defatting furnace and defatting method
CN208753436U (en) The vacuum insulation incubator and fuel cell system of solid oxide fuel cell
KR100766142B1 (en) Molten hydride fuel cell
EP4390071A1 (en) Fluid purification device and method for operating a fluid purification device
JP2023176697A (en) Hydrogen production apparatus
JP4592926B2 (en) Heater with ceramic layer
WO2024175534A1 (en) Systems and methods for continuous renewable heating of gas in chemical production
Roy et al. Ceramic tube materials and processing development. Annual report Feb-Oct 82
Butherus et al. Rotational collision numbers and the heat conductivity of nitrogen gas from thermal transpiration measurements to 1250 K
JP2006329500A (en) Structure of water heater
Opila et al. Alumina volatility in water vapor at elevated temperatures: Application to combustion environments
JP2007076968A (en) Method and apparatus for substitution of oxygen isotope of oxide material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23737291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE